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ABSTRACT 

In order to provide a step towards the goal of passing TCP/IP traffic across 

wireless sensor networks, a method for file transfer utilizing forward error correction 

(FEC) is studied.  Previous work in the area of terminal communication across the sensor 

network is expanded upon to include file transfer in order to provide a more capable 

channel and a basis for testing the performance obtained through erasure coding.  The 

results of the FEC implementation are examined using multiple sensor network 

configurations.  The study is completed with recommendations for continued work 

towards developing tunneled TCP/IP data transfer across wireless sensor networks. 

.  



 vi

THIS PAGE INTENTIONALLY LEFT BLANK 



 vii

TABLE OF CONTENTS 

I.  INTRODUCTION........................................................................................................1 
A. THESIS MOTIVATION.................................................................................2 
B. THESIS OBJECTIVE.....................................................................................3 

1. File Transfer Capability ......................................................................4 
2. Implement Forward Error Correction to Improve Reliability .......4 
3. Provide Recommendations for Follow-on Work ..............................4 

C. RELATED WORK ..........................................................................................5 
1. Forward Error Correction in Wireless Sensor Networks................5 
2. Medium Access Control for Wireless Sensor Networks...................5 
3. Tunneled Data Transmission Across Sensor Networks ...................6 

D. THESIS ORGANIZATION............................................................................6 

II.  WIRELESS SENSOR NETWORKS .........................................................................9 
A. OVERVIEW OF WIRELESS SENSOR NETWORKS...............................9 

1. Devices...................................................................................................9 
2. Operating System...............................................................................10 
3. Communications Stack......................................................................10 

B. WIRELESS SENSOR NETWORKS AS A TCP/IP NETWORK 
BRIDGE..........................................................................................................11 
1. Benefits of Implementation ...............................................................11 
2. Barriers for Implementation.............................................................12 

C. CONTINUING DEVELOPMENT OF WIRELESS SENSOR 
NETWORK ADAPTATION INTERFACE LAYER (SNAIL).................13 
1. SNAIL Client Module........................................................................13 
2. SNAIL Server Module.......................................................................15 
3. SNAIL Listen Module .......................................................................17 

D. SUMMARY ....................................................................................................19 

III. FORWARD ERROR CORRECTION IN WIRELESS SENSOR 
NETWORKS..............................................................................................................21 
A. GENERAL OVERVIEW OF AVAILABLE FEC CORRECTION 

METHODS .....................................................................................................21 
1. Block Coding ......................................................................................21 
2. Convolutional Coding........................................................................22 

B. ERASURE CODING.....................................................................................22 
1. Erasure Coding Fundamentals.........................................................23 
2. Erasure Code Based on Vandermonde Matrices............................25 
3. Erasure Codes for Wireless Sensor Networks.................................26 

C. PROPOSED SOLUTION..............................................................................27 
1. Onion Networks JAVA FEC Library ..............................................27 
2. SNAIL Server Modifications ............................................................27 
3. SNAIL Listen Modifications .............................................................29 

D. SUMMARY ....................................................................................................30 



 viii

IV.  EXPERIMENT DETAILS........................................................................................31 
A. EXPERIMENT SETUP.................................................................................31 

1. Hardware ............................................................................................32 
a. MICAz Sensor Motes ..............................................................33 
b. MIB520 Parallel Programming Board ..................................34 

2. Software ..............................................................................................34 
B. TERMINAL TO TERMINAL EXPERIMENT..........................................35 
C. ONE HOP EXPERIMENT ...........................................................................37 
D. TWO HOP EXPERIMENT..........................................................................38 
E. FEC PERFORMANCE OVER VARYING DISTANCES ........................40 
F. SUMMARY ....................................................................................................42 

V.  CONCLUSIONS AND RECOMMENDATIONS...................................................43 
A. CONCLUSIONS ............................................................................................43 
B. RECOMMENDATIONS...............................................................................43 

APPENDIX.............................................................................................................................45 
A. SNAIL CLIENT CODE ................................................................................45 
B. SNAIL SERVER CODE ...............................................................................50 
C. SNAIL LISTEN CODE .................................................................................65 

LIST OF REFERENCES......................................................................................................81 

INITIAL DISTRIBUTION LIST .........................................................................................83 

 
 

 

 

 

 

 

 



 ix

LIST OF FIGURES 

Figure 1. Comparison of the OSI, TC/IP, and Typical WSN Stack................................11 
Figure 2. SNAIL Client Flow Diagram...........................................................................15 
Figure 3. Packet structure of TinyOS (from [8]).............................................................16 
Figure 4. SNAIL Server Flow Diagram ..........................................................................17 
Figure 5. Flow Diagram for SNAIL Listen Module .......................................................18 
Figure 6. Data Reconstruction in Erasure Coding (from [13])........................................23 
Figure 7. Encoding / Decoding Systematic Code (from [13]) ........................................24 
Figure 8. Anechoic Chamber used for the Experiment ...................................................32 
Figure 9. MICAz 2.4 GHz Mote .....................................................................................33 
Figure 10. MIB520 Interface Board ..................................................................................34 
Figure 11. Scenario 1 – Terminal to Terminal Communication .......................................35 
Figure 12. Scenario 2 -  Terminal to Terminal via One Hop ............................................37 
Figure 13. Scenario 3 -  Terminal to Terminal via Two Hops ..........................................38 
Figure 14. Desired Mote Coverage For Two Hop Test.....................................................39 
Figure 15. Quadratic Fit Curves for Experimental Results ...............................................41 
 



 x

THIS PAGE INTENTIONALLY LEFT BLANK  



 xi

LIST OF TABLES 

Table 1. Available RF Power Levels for CC2240 Transmitter......................................34 
Table 2. Terminal to Terminal JPEG Transmission Results..........................................36 
Table 3. One Hop JPEG Transmission Results..............................................................38 
Table 4. Two Hop JPEG Transmission Results.............................................................39 
Table 5. Effect of Varying Distances Upon Transmission Success...............................40 
 

 



 xii

THIS PAGE INTENTIONALLY LEFT BLANK 



 xiii

LIST OF ABBREVIATIONS AND ACRONYMS 

ADC Analog-to-Digital Converter 

ARQ Automated Repeat Request 

CRC Cyclic Redundancy Check 

DARPA Defense Advanced Research Projects Agency 

DSN Distributed Sensor Networks 

FEC Forward Error Correction 

IDE Integrated Development Environment 

JPEG Joint Photographic Expert Group 

MAC Medium Access Control 

RAM Random Access Memory 

SNAIL Sensor Network Adaptation Interface Layer 

SNR      Signal-to-Noise Ratio 

WSN Wireless Sensor Network 



 xiv

THIS PAGE INTENTIONALLY LEFT BLANK 



 xv

ACKNOWLEDGMENTS 

I am very thankful for the guidance and direction from Professor John McEachen, 

who allowed me to pursue the interesting topic of sensor networking and provided an 

ideal amount of experimental freedom during the research stages of this project.  

The subject matter expertise obtained from Professor Murali Tummala greatly 

helped in the development of my research. 

I would also like to thank Bob Broadston for his guidance and the use of the 

anechoic chamber which made the collection of more reliable experimental data possible.  

Last but not least, I would like to extend my appreciation to all who have 

contributed to the completion of this thesis in one way or another. 



 xvi

THIS PAGE INTENTIONALLY LEFT BLANK 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 xvii

EXECUTIVE SUMMARY 

Wireless sensor networks were originally developed to provide the warfighter 

with a more accurate picture of the battlefield environment using small, virtually 

undetectable devices.  These devices, upon deployment, could form an ad hoc network, 

sense the physical conditions of their surroundings, and report back their observations 

without putting the life of a single soldier at risk. 

While the sensor networks are optimized for this type of use, other applications 

may be equally beneficial to the warfighter.  Utilizing existing systems to fit new mission 

requirements is one of the most cost and time effective acquisition strategies.  Along this 

line, sensor networks may be able to provide a new service on the battlefield as a bridge 

for TCP/IP networks.  This could provide a means for passing vital intelligence data and 

communications in areas with little or no infrastructure. 

Based on this new idea, a former student of the Naval Postgraduate School 

devised a sensor network channel to transfer text messages from one terminal to another.  

Building upon this previous work, file transfer and forward error correction are now 

added to make a more capable and reliable channel.  A form of block coding called 

erasure coding was implemented during this research.  Several tests were conducted 

using different hardware configurations to examine the performance of the now enhanced 

channel. 

While the file transfer tests were successful and the error correction method 

proved effective, channel weaknesses were observed.  Larger network topologies 

appeared to present congestion issues that require further analysis.  Also, observed 

throughput was well below the rates necessary for transfer of multimedia or other useful 

traffic.  The Carrier Sense Multiple Access (CSMA) protocol used during the tests proved 

to be the limiting factor. 

Ideas for future research include optimization of the erasure code used during the 

experiment, tests with a Time Division Multiple Access (TDMA) based medium access 

protocol, and tests with some form of feedback channel.  These measures might be a 

positive next step towards the goal of passing TCP/IP traffic across a sensor network. 
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I.  INTRODUCTION 

Wireless networking continues to be one of the fastest growing technologies 

today.  Through advances in technology, the cost and size of wireless devices have 

reduced dramatically, making them more readily available to people today than ever 

before.  Whether it is a cell phone, wireless internet router, or some other device, the 

average person today is using wireless devices on an increasingly regular basis.   

A small subset of wireless networking is wireless sensor networks.  Much less 

known to the average consumer, the technology used by these networks is just now 

reaching the maturity level necessary to make them commercially viable.  These sensor 

networks are made up of multiple low cost, spatially distributed, autonomous devices that 

are able to collect and distribute environmental information for various purposes.   The 

devices are able to independently form an ad hoc network upon deployment and 

commence the mission they were intended for. 

Military applications for sensor networks have been the driving force for much of 

the research being conducted today.  Modern research in this area can be traced back to 

work done during the early 1980s by the Defense Advanced Research Projects Agency 

(DARPA), and their Distributed Sensor Networks program (DSN) [1].  Commercial 

applications have come along much more slowly but have begun to accelerate recently.  

Although the commercial benefits cannot be overlooked, the military aspect is especially 

intriguing due to the portability and small footprint of these wireless devices.  

  Sensor networks do not face some of the same limitations as normal networks in 

that they are battery operated and thus do not rely on an established infrastructure.  They 

can be placed to operate in remote locations just as easily as they could in easier to 

access, more populated areas.  As the technology progresses, the day will soon come 

when these devices are being dropped from the air into areas of interest.  Upon landing, 

they will power up, establish communications with the other sensor nodes, and begin 

operations. 

The advantages of these sensor devices cannot be denied, but they do have a few 

weaknesses that must be considered.  While being portable, and free of the need for 
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external power sources, the fact that they rely on batteries can also be a disadvantage.  

Typical sensor networks pass small amounts of data between nodes. These data 

exchanges require a small drain on the batteries.  With this kind of implementation, the 

units will last for months on batteries.  If the units are to provide a higher level of service, 

such as multimedia transportation, for example, the power issue becomes more important.  

As with the power limitations, network throughput also becomes an issue if more is 

demanded of the sensor network.  

As the technology matures, it can be expected that these devices will get smaller 

and smaller, and become more capable at the same time.  Many applications for these 

devices have yet to be discovered. 

A. THESIS MOTIVATION 

 Military operational requirements drive the development of new technologies and 

modification of current technologies to meet applicable mission objectives.  The latter is 

the more desirable of the two as it usually requires lower developmental costs to come up 

with a working solution.  By looking at sensor networks in this light, it is possible they 

may provide capabilities outside of what they were originally designed for. 

Sensor networks were designed to incorporate small, lost cost, portable devices 

that could collect and report on physical or environmental conditions.  This type of 

information reporting suits these devices well as it requires less power and lower bit 

rates.  It is outside this base area of operations that the aim of this thesis is directed.    

The warfighter of today is more reliant on communications than ever before.  

Command and Control of military forces relies daily on effective communication from 

the command center level down to the lowest echelon soldier in the field.  While sensor 

networks may initially play a small role on the battlefield, increased hardware capability 

may open up new applications for these networks.     

By configuring the sensor nodes as repeaters, it may be possible to use the 

devices, on a limited basis, as a means to extend network communications into  

regions normally difficult to access.  Their small profile and portability would allow  

them to be nearly invisible to the enemy, meanwhile serving as a pipe for vital 
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communications to forces in theater.  While limited in power and throughput, they may 

provide a temporary solution where no others exist.   

B. THESIS OBJECTIVE 

In order to utilize sensor networks as a bridge between TCP/IP networks, it is 

necessary to look more closely at how sensor networks work and decide what measures 

must be taken to facilitate this implementation.  TCP/IP traffic is based upon the principle 

of assuring that the transmitted packets will be received at the desired location.  Sensor 

networks are normally passing information considered non-vital and thus handle the data 

accordingly.  On top of that, when working with a wireless medium, a large amount of 

loss can be expected.   In order to consider using a sensor network to pass TCP/IP traffic, 

particular emphasis must be placed on data reliability across the network.  

Two means of providing better reliability were considered.  First, using 

Automated Repeat Request, or ARQ, was analyzed.  Considerable research has already 

been done in this area.  While it would be an effective means of verifying whether or not 

packets were received properly, the difficulties of employing this method with multiple 

sensor nodes were daunting.   The work that this thesis was based on used a simple 

broadcast of packets that each node repeated until received by the destination.  Changing 

this scheme would present two major problems [1].  By adding a feedback channel, the 

throughput would be significantly decreased.  If the end goal was to be, for instance, 

passing Voice over IP (VOIP) traffic over the network, throughput would be a major 

concern.  Something in the order of 90 kbps would be required for a reliable channel 

depending on the codec chosen [2].  Second, the use of an ARQ response would be fairly 

straightforward when using a simple, one-hop network, but would increase exponentially 

in difficulty as more nodes were added to the topology.   

Because of the difficulties of using acknowledgements, Forward Error Correction 

(FEC) was chosen to add reliability to the communication path.  Throughput was a 

concern but the implementation was considerably easier.  Based on the FEC schemes 

available, a form of block coding was chosen for the experiment.  The implementation of 

the block coding scheme and the results of its implementation are discussed later. 
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The overall objective of this thesis was to achieve the following: 

1. File Transfer Capability 

The preceding work on this project successfully set up a Java based 

implementation of a text messaging service across a sensor network.  Messages that were 

typed in to the sending terminal were packaged into packets and sent over the network to 

the destination terminal which assembled the packets and displayed the message.  To 

improve the capabilities of the channel, the next step was to add the ability for 

transporting files across the network.  Specifically, the ability to send Joint Photographic 

Expert Group (JPEG) encoded images was desired.  Adding this capability would 

improve the usefulness of the channel and make it possible to evaluate the effectiveness 

of an FEC algorithm.  The smaller text based messages would not provide enough 

packets to make a proper evaluation. 

2. Implement Forward Error Correction to Improve Reliability 

Adding FEC to the channel would improve the reliability but also decrease the 

throughput.  It was necessary to look at the effectiveness of the chosen algorithm and the 

throughput that resulted from its implementation.  During the experiment, the FEC 

implementation would be compared against two different transmission schemes.  One 

would be transmitting the data from a representative JPEG image without any 

redundancy.  The second would be transmitting a copy of the packets along with the 

original packets.  This second scheme would send roughly the same number of packets as 

the FEC scheme and provide a better basis for comparison.  

3. Provide Recommendations for Follow-on Work 

This thesis is only a small step towards the goal of being able to send TCP/IP 

traffic across a sensor network.  Once the analysis of the preceding steps is complete, 

recommendations for possible follow-on work will be provided.  Lessons learned from 

the experiment will be used to form the recommendations.  Related work in sensor 

networks will also be considered while making the recommendations.    



5 

C. RELATED WORK 

Sensor networks, as do traditional wireless networks, experience considerable 

challenges when it comes to providing reliable network communications.  Hardware 

limitations, network configurations, and the environment all play a role in increasing the 

difficulty for networks to pass information efficiently.  There have been a number of 

studies in the area of improving sensor network reliability.  This thesis pulled ideas from 

many of these studies to either aid in the experimental phase or to gather information in 

order to form a proposal for future recommendations.  Research in error correction and 

Medium Access Control (MAC) were particularly useful.  Also this thesis drew heavily 

from previous thesis topics that covered the areas of erasure coding and tunneled 

networks. 

1. Forward Error Correction in Wireless Sensor Networks 

Several useful studies of error correction in sensor networks were found while 

doing research for this thesis.  Students at the University of California Berkeley 

conducted tests of single and double error correcting codes in outdoor and indoor tests 

[3].  Another interesting research topic involved using an adaptive FEC code control 

algorithm for sensor networks [4].  In the study, they identified the need for something 

other than fixed correction codes for channels with constantly varying bit error rates.   

Finally, Terry Norbraten’s work with erasure codes and detailed explanation of the Java 

FEC Library from Onion Networks were extremely helpful during this research [5]. 

2. Medium Access Control for Wireless Sensor Networks 

One of the realizations after examining the results from this thesis was that simply 

using error correction alone to improve the reliability of a channel is not sufficient.  With 

increasing network topology complexity, additional measures should be considered.   

One such measure deals with modifying medium access control (MAC).   A few different 

protocols were examined.  Z-MAC is an exciting MAC protocol that achieves high 

efficiency by acting as hybrid between TDMA and CSMA [6].   Z-MAC behaves like 

CSMA during periods of low contention and like TDMA during periods of high 
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contention.   By using this approach, it aims to maximize efficiency during all phases of 

network activity.  Two other protocols, T-MAC [7] and S-MAC [8], represent hybrids 

between TDMA and CSMA, although these protocols put more emphasis on energy 

efficiency while Z-MAC aims to maximize network throughput. 

 3. Tunneled Data Transmission Across Sensor Networks 

Last but not least, the thesis work of Yow Thiam Poh on the topic of tunneled 

data transmission over wireless sensor networks was the foundation that this thesis was 

built upon.  Yow created a text messaging channel across a sensor network and tested the 

channel’s efficiency with varied configurations and varying transmission parameters [9].  

The goal of this thesis was to make the channel, created by Yow, more capable by adding 

file transfer and error correction. 

D. THESIS ORGANIZATION 

Chapter I presents the motivation and objective of this thesis.  It also aims to 

provide the reader with a general idea of operational applications, outside of 

environmental sensor reporting, that are possible with wireless sensor networks. 

Chapter II takes a look at wireless sensor networks and how they might be used as 

a bridge for TCP/IP networks.  Covered in the chapter are the capabilities and limitations 

of the sensor networks and how the limitations might be mitigated.  Also, detailed 

descriptions of the modifications that were made to Yow's text messaging channel in 

order to add file transfer capability are provided in this chapter.   

Chapter III covers the use of FEC to enhance the performance of sensor network 

transmissions.  A brief overview of the different FEC methods available is given.  The 

proposed method of FEC to be used in the experiment, erasure coding, is covered more 

thoroughly.  Also, how the FEC code is to be implemented is described in detail. 
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Chapter IV begins by presenting the setup of the experiment.  The hardware and 

software used are described in detail.  Following the setup discussion, the experimental 

procedures and results are presented.   The chapter concludes with an analysis of the 

results. 

Chapter V provides the conclusions resulting from the experiment.  In this 

chapter, future work and recommendations will also be proposed.     
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II.  WIRELESS SENSOR NETWORKS 

A. OVERVIEW OF WIRELESS SENSOR NETWORKS 

 Originally motivated by military applications like battlefield surveillance, 

wireless sensor networks have rapidly become a growing industry with applications for 

both civilian and military interests.  These networks are made up of spatially distributed 

autonomous devices that incorporate sensors to monitor physical and environmental 

conditions.   The individual devices, or motes, are made up of a radio transceiver, a 

microcontroller, and batteries for a power source.   

 Sensor networks form ad-hoc networks upon deployment, allowing the transfer of 

sensor data to a parent node where the data is collected.   A few examples of possible 

applications are battlefield condition reporting, home automation, and traffic control.  

Eventually, this new technology may affect all aspects of typical daily lives.   

1. Devices 

The functions that are typical of wireless sensor devices are communication, 

computation, and sensing.  In order to perform these tasks, these devices incorporate a 

microcontroller for computation, a small amount of RAM for dynamic data, one or more 

flash memories that store the program code and long-lived data, a wireless transceiver, an 

antenna, an analog-to-digital converter (ADC), single or multiple sensors, and a power 

source [10].   Many variations of these devices are available.  For example, a variety of 

power sources is possible.  Batteries, solar power, and external power are all being 

utilized depending on the type of deployment.  Also, some devices feature multiple 

processors in order to incorporate a digital signal processor (DSP), although these chips 

tend to consume greater amounts of energy.  As the hardware capability improves and 

additional applications are targeted, the number of variations can also be expected to 

increase.   
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2. Operating System 

The operating system for wireless sensor network devices tends to be a very 

simple design that handles interrupts and performs simple scheduling of tasks.  While 

research has introduced a number of operating systems for the emerging technology, 

TinyOS continues to be the most popular.  TinyOS is an open source operating system 

that started as a collaboration between the University of California, Berkeley and Intel 

Research.  Since that time, it has grown into an international consortium called the 

TinyOS alliance. 

TinyOS is a component based operating system written in nesC, a C based 

programming language.  Components for certain tasks, such as packet communication, 

routing, sensing, actuation, and storage, are connected together using interfaces.  Since 

development of the first TinyOS platform in 1999, many releases have been developed up 

to the current release of TinyOS 2.1.0 in August of 2008.  

3. Communications Stack 

Wireless Sensor Networks are typically multihop networks and rely on a 

communications stack that includes, medium access control (MAC), routing, and 

transport layers.  Many available protocols exist for these layers and they differ from 

those used in wired networks and Wi-Fi networks.  This is due to the different 

environments where these devices are located and the additional constraints that they 

must adhere to.  Many limiting factors drive the need for specialized MAC, routing, and 

transport layers.  Among them, small amounts of memory make large routing tables 

impossible and energy limitations limit communication ranges.  Figure 1 depicts a typical 

WSN stack. 
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Figure 1.   Comparison of the OSI, TC/IP, and Typical WSN Stack 

An interesting feature of the WSN communication stack is self-organization.  A 

few different methods of self discovery are utilized.  In one example, devices discover 

their neighbors and append this information to a neighbor table.  These tables include 

such information as node identification and geographic location.  Using this location 

information, devices can then perform routing.  Another example has the base station 

learning the entire network topology, using it to create a spanning tree routing structure 

[10]. 

B. WIRELESS SENSOR NETWORKS AS A TCP/IP NETWORK BRIDGE 

An exciting application worth considering is the temporary use of sensor 

networks as a bridge for TCP/IP networks.  Although throughput and power limitations 

prevent these devices from performing more intensive data transfers, temporary use to aid 

the warfighter in difficult environments may be worthwhile. 

1. Benefits of Implementation 

Wireless network communications are becoming more prevalent for military 

operations.  Intelligence reports, imagery, and general communication are reaching 

further into the battlefield than ever before.  Typically, the infrastructure found in these 

environments is limited or non-existent.   

Wireless sensor networks were originally designed for the purpose of reporting on 

the environmental and physical conditions of the battlefield.   Using these networks to 
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temporarily extend vital TCP/IP network communications might be possible despite the 

limitations of the sensor nodes.  A few specific applications of interest are Voice-Over-IP 

(VOIP) and the transmission of time sensitive data and imagery.  In order to consider this 

as a possibility, the difficulties involved must first be considered 

2. Barriers for Implementation 

Sensor networks were designed to transmit small amounts of data with limited 

frequency.  As a result, the sensor nodes typically have limited onboard memory.  The 

MICAz motes used in this research have 128 kbytes of flash program memory, 512 

kbytes of flash log memory, and only 4 kbytes of RAM.  Since the data they transmit is 

considered non time-sensitive and non vital, the networks do not have to incorporate 

many of the assurances necessary in TCP/IP networks.  Tunneling over the sensor 

network may involve increasing the onboard memory to support an enhanced network 

stack or finding ways to more efficiently use the smaller amount of memory. 

Power is another limitation that must be addressed.  As sensor motes were 

designed for low power, autonomous operation, batteries or solar power are typically 

employed.  Increasing the data amounts and rates would increase the power demand and 

threaten the longevity of the device.   

In order for this application of sensor networks to be successful, the throughput of 

the network would have to provide a certain level of performance to meet the needs of the 

user.   To use the network to pass VOIP traffic, for example, a minimum data rate of 

about 90 kbps would have to be supported to provide adequate communications.  For 

transmission of time sensitive data or imagery, throughput would have to meet specific 

mission requirements.  

By testing the transmission of image files across a sensor network during the 

course of this research, it was desired that a general idea of the throughput capabilities 

would be found.  Although the forward error correction implemented would reduce the 

channel's throughput, it was considered necessary for the channel's reliability.  
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C. CONTINUING DEVELOPMENT OF WIRELESS SENSOR NETWORK 
ADAPTATION INTERFACE LAYER (SNAIL) 

As mentioned before, the experiment portion of this thesis was based on the work 

of Yow Thiam Poh, a former student at the Naval Postgraduate School.  His work 

involved the development of a sensor network channel that allowed a form of text 

messaging.  He developed three Java applications that would work in coordination with 

the sensor mote hardware from Crossbow to achieve this task.  The suite of applications 

was referred to as the Sensor Network Adaptation Interface Layer (SNAIL).  SNAIL 

consisted of separate Client and Server modules that were used on a transmitting laptop, 

and a Listen module that was used on the receiving laptop.  These SNAIL modules were 

modified extensively to achieve the goals of this thesis.  

In order to incorporate a more robust channel by adding error correction, the first 

step was in modifying the SNAIL software to incorporate file transfer.  The larger 

amounts of data associated with file transfer would allow the improvements provided by 

error correction to be observed.  The file types that were chosen for implementation and 

testing were JPEG images, test files, and MS Office documents.   These were chosen due 

to their popularity and everyday use.  How each of the SNAIL modules was modified is 

explained below. 

1. SNAIL Client Module 

The SNAIL Client module now presents the user with three options upon running 

the application.   Choices are now for text message transfer, standard file transfer, or 

JPEG image transfer.  Before passing off the data to the SNAIL server module, a few 

modifications were necessary. 

Previously, the Client module allowed the user to input a text message from the 

terminal to be transferred over the sensor network.  Using a blocking reader module, 

upon receiving a message from the user, the message was read in as a string and then 

converted to a character array.  The use of a character array was chosen to allow some 

flexibility with the data stream.   Essentially, this allowed adding the user’s selection to 
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the data stream before passing it on to the Server module.  Prior to the IO operation, the 

character array had been converted back to a string. 

To accommodate the transfer of files, the first modification was changing the 

module to work with byte arrays.  Should the user choose to send a text message, the 

message is still read in as a string, but is converted to a byte array.  The option selected is 

added to the byte array by using concatenation of arrays.  By using byte arrays, the data is 

now compatible with the file transfer options.  Strings could have been used for both, but 

ultimately that would have limited the file length to roughly 64 kbytes. 

Upon the choice of either standard file transfer or JPEG image transfer, the user is 

presented with a file selection box.  Upon selecting the desired directory and file, the file 

data is read in to a byte array.   The two file transfer options are executed differently.  For 

standard file transfer, a fileinputstream is opened to pull in the data to a byte array.  To 

pull in a JPEG image correctly, the Java ImageIO tools were used to read in the file as a 

bufferedimage.  After the file is read in, it is converted to a byte array. 

By utilizing byte arrays for each of the three options, all three are assured to be 

compatible and the same flexibility to modify the data stream that character arrays 

afforded is maintained.  Finally, the data residing in the byte array is transmitted to the 

SNAIL Server module via an ObjectOutputStream.  Figure 2 presents the process 

decisions of the SNAIL Client module as a flow diagram. 
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Figure 2.   SNAIL Client Flow Diagram 

2. SNAIL Server Module 

The SNAIL Server module required more extensive modifications to allow file 

transfer and error correction.  Error correction will be covered later.  For now, data 

handling and packetizing for sensor network transport will be covered. 

After reading the data sent from the SNAIL Client module, the data is stored in a 

byte array.  One of the main changes is the handling of all data as byte arrays from start 

to finish.  From the data array, the option that was selected is obtained.   The option will 

ultimately be removed from the data and transmitted as part of a handshake packet.  The 

handshake packet is the first packet that will be transmitted by the server and contains 

much of the amplifying information needed by the receiver.   
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Figure 3.   Packet structure of TinyOS (from [8])  

Should encoding not be desired by the user, the number of packets to be sent is 

calculated from the array size.  The array size is a key piece of information needed by the 

receiving terminal and is included in the handshake packet.  Of the 29 bytes of data 

available in the Active Messaging (AM) packet, two of the bytes will be used for 

Terminal ID and packet number for this non-encoding case.   Figure 3 shows the standard 

AM packet structure used by TinyOS.  The packet number will help the SNAIL Listen 

module keep track of which packets have been received and facilitate dropping redundant 

packets. 

The use of the header packet was changed only with regards to content.  Because 

of the new error correction option, additional information was required at the receiver.  

One new addition to the transmission process was the use of a terminating packet.  After 

all of the data packets are sent out, the terminating packet is sent out which contains an 

identifying byte sequence.   This packet was added to correct the condition where packets 

are dropped and the receiving end is stuck in a loop waiting for packets.  Once the 

terminating packet is read in, the Listen module is free to move on to analyzing the data. 

Figure 4 presents the flow diagram for the SNAIL Server module. 
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Figure 4.   SNAIL Server Flow Diagram 

3. SNAIL Listen Module 

Upon receiving the handshake packet, the SNAIL Listen module knows whether 

or not the data will be encoded, what option was selected, and the length of the data array 

involved.  Using the array length, the number of packets to be expected is calculated.   

A loop is entered in which each of the packets is read in.  Both the handshake and 

terminating packets contain flags to help identify them from normal packets.  Also, as the 

packets are read in, the packet number is obtained which is used to identify the packet.  If 

the packet is redundant, it is dropped.   A change was made to help keep track of which 
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packets are read in.  Previously a packet counter expired when the expected number of 

packets was reached.  This was changed due to the encoding option.  This will be covered 

further in the next chapter.  

Once all of the data has been read in and decoding has been completed, if 

necessary, the option selected determines how the data is handled.  If a text message was 

selected, the message is displayed on the terminal.  If a standard file was transferred, the 

file is saved to the location chosen by the user using a fileoutputstream.   For a JPEG 

image, the byte array is converted back into a bufferedimage and then the image is stored 

using the ImageIO utilities.   

Figure 5 presents the flow diagram for the SNAIL Listen module. 
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Figure 5.    Flow Diagram for SNAIL Listen Module 
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D. SUMMARY 

Wireless Sensor Network design involves even greater complexity than traditional 

wireless networks.  Due to the limitations of the devices, greater emphasis on MAC, 

routing, and transport layer design is required to combat the typical congestion and losses 

associated with data transfer in wireless networks.   Despite the challenges, many new 

and exciting applications are being created to take advantage of the size and portability of 

the devices.   Possible applications like that of TCP/IP data transfer across sensor 

networks may soon become a reality.  This chapter concluded with an update to previous 

thesis work in the area of transporting data messages across sensor networks.  By adding 

file transfer capabilities, studies regarding forward error correction’s effects upon sensor 

network performance can be pursued.   
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III. FORWARD ERROR CORRECTION IN WIRELESS SENSOR 
NETWORKS 

In wireless networks, packet loss is inevitable.  In order to combat this packet 

loss, either Forward Error Correction (FEC) or Automatic Repeat Request (ARQ) or a 

combination of the two techniques are used.   ARQ is an attractive option since it is 

relatively inexpensive in that it requires no manipulation of the data being transferred.   

Under conditions of increasing losses, ARQ does suffer significant reductions in overall 

throughput.  Tradeoffs exist between complexity of implementation and data throughput.  

ARQ also rapidly becomes more complicated as the number of clients grows. 

FEC, on the other hand, detects and corrects losses incurred by a noisy channel by 

including redundant information with the data it passes.  This has the advantages of 

allowing the correction of errors more quickly than with ARQ and by simplifying the 

network traffic scheme.  Some kind of feedback channel could be included but may not 

be necessary.   

A. GENERAL OVERVIEW OF AVAILABLE FEC CORRECTION 
METHODS 

The available types of FEC are broken down into two categories.  These are block 

codes and convolutional codes.   Block codes work on fixed-size blocks of bits or 

symbols of a fixed size.  Convolutional codes work on bit or symbol streams of various 

sizes. 

1. Block Coding 

Many different forms of blocks codes exist.  A few examples are the Hamming 

code, BCH code, and Reed Solomon code.  The latter is the most widely used due to its 

near optimal coding qualities.   

A Reed Solomon code encodes a data message block as points in a polynomial 

function plotted over a finite field [11].  The polynomial coefficients are the data symbols 

of the block.  These codes can work to correct errors at either the bit-level or the packet 

level.  Lost data packets are corrected from encoded packets, otherwise known as repair 
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packets.  These repair packets represent a set of linearly independent equations.  By 

solving this set of equations, the lost packets are recovered.  One drawback to the Reed 

Solomon coding scheme is encoding and decoding time which is O(n2) and O(n3) 

respectively.  Another is the memory requirement resulting from the polynomial 

operations. 

2. Convolutional Coding 

Convolutional coding involves taking an m-bit message that will be encoded and 

converting it to a n-bit symbol.  The code rate for the encoding process is m / n where n ≥ 

m.  The constraint length of the code, k, determines the error correction capability and the 

complexity.  As k increases, the correction capability increases but the complexity also 

increases exponentially.  For decoding convolutional codes, the Viterbi algorithm is 

commonly used.  The Viterbi algorithm uses maximum likelihood estimation to make 

decisions regarding the underlying probability distribution of the bits received [12].  For 

effective correction, a constraint length of at least 7 and typically below 9 is used while a 

code rate m / n of at least 1 / 2 is required.   A convolution code has reduced complexity 

over a Reed Solomon code but suffers higher coding redundancies.  For this reason, 

convolutional codes are more ideal for communication channels with a lower signal-to-

noise rate (SNR).  A convolution code is also not typically used for the recovery of lost 

packets as is Reed Solomon. 

B. ERASURE CODING  

For this experiment, an implementation of erasure coding was chosen.  Erasure 

coding is basically a form of block coding that takes a number of data packets, or blocks, 

and encodes them into a larger number of encoded data packets.  The larger the number 

of encoded data packets, the more redundancy allowed.   As long as a minimum number 

of the transmitted packets reach the destination, the source data can be reconstructed.  

The key to erasure coding is that the destination knows exactly which packets have been 

dropped.  Without that knowledge, this coding scheme would not work.   
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Erasure coding was chosen due to the inclusion of CRC in the wireless sensor 

network packets.  Since the lower layers of the protocol stack would check arriving 

packets for errors, only allowing error free packets to reach the application layer, this 

method of FEC coding seemed appropriate.  Packets lost in transmission or dropped due 

to errors would not prevent the successful transmission of the source data. An open 

source JAVA implementation of erasure coding created by Onion Networks was 

implemented during the experiment.  Based on the work of Rizzo [13], this Java based 

software library will be discussed further in the next section.  

1. Erasure Coding Fundamentals 

The basis behind erasure coding is that k blocks of source data are encoded 

producing n blocks of encoded data [13].  If any subset of the n encoded blocks is 

received at the destination, the receiver is able to reconstruct the source data.  This code 

is referred to as an (n, k) code.   In this scheme, up to n – k losses are acceptable.  Figure 

6 gives a graphical representation of the source data encoding and reconstruction. 

 

 
Figure 6.   Data Reconstruction in Erasure Coding (from [13]) 
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A subset of the erasure codes, called linear codes, can be analyzed using the 

properties of linear algebra.  If x = x0 … x k-1 represents the source data and G is an n ×  k 

generator matrix, then y = Gx is the  (n, k) linear code resulting from the matrix 

multiplication.  As long as k components of y are received, x can be recovered. 

If the encoded data contains an exact copy of the source data, this is referred to as 

a systematic code.  With a systematic code, a portion of the generator matrix, G, will 

contain the identity matrix.  Systematic codes can be very advantageous if very few 

losses are expected in the link.   Reconstruction of the source code would be greatly 

simplified.  Figure 7 once again shows the encoding and decoding process but this time in 

matrix form for a systematic code.   Note the identity matrix in the upper portion of the 

generator matrix. 

 

Figure 7.   Encoding / Decoding Systematic Code (from [13]) 

The generator matrix G is a n × k matrix of rank k.  Because of this, only k of the 

n encoded packets are necessary.  Each column of G can be composed of a maximum of 

(k – 1) nonzero elements.  For the systematic code example, since the columns already 

have (k – 1) zero elements due to the identity matrix, all of the remaining elements are 

required to be nonzero.  

For the reconstruction process, along with the encoded packets of data, the 

identification of those packets must also be known.  This will add overhead to the process 
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as the transmitting end will have to include this information with the transmission.  This 

is a negligible amount of overhead though and the packet identification will also aid in 

with identifying redundant packets so they may be ignored.  The recovery is performed 

by solving the linear system: 

( ) 1' ' ' 'y G x x G y−= → =     (1) 

For the above equation, x represents the original source data and 'y  is a subset of k 

encoded packets.   G’ is the corresponding subset of columns from the generator matrix.   

To reconstruct the original data, the inverse of 'G  is taken and then multiplied by the 

subset of encoded packets, 'y .    The cost of inversion is somewhere in O(kl2), where 

min( , )l k n k≤ − .  The value of l  represents the minimum number of packets that must be 

received.   

2. Erasure Code Based on Vandermonde Matrices 

An example process for the creation of a generator matrix can be shown with the 

use of a Vandermonde matrix.  This matrix has coefficients of the form  

1
,

j
i j ig x −=      (2) 

where the ix ’s are elements of extension fields, or ( ')GF p . 

Extension fields are a subset of finite fields that allow basic arithmetic to be 

performed on data much like it is done with integers.   They help resolve problems 

associated with handling the number of bits needed to represent the result of 

computations.    Mapping data elements into field elements prior to arithmetic operations 

and then applying the reverse mapping to get the desired results avoids this trouble.  If 

finite fields are not used and the results of the coding arithmetic operations are rounded 

prior to transmission, exact reproduction of the data would not be possible. 

 Seen in matrix form, the n × k Vandermonde matrix is 
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The determinant of a square Vandermonde matrix is defined as 

, 1... ,

( )j i
i j k i j

x x
= <

−∏ .    (4) 

The matrix will have a non-null determinant and thus be invertible if all of the ix ’s are 

different.  As long as q > k and all ix ’s are not equal to zero, q – 1 rows at a maximum 

can be created, where q is the number of finite field elements.   If the identity matrix is 

added, a suitable generator can be created for a systematic code.   

 Considering a few special cases for the code, a (n, 1) code would simply create 

copies of the single packet.  This is essentially the same thing as making multiple copies 

of the same packet to be sent out.  The work that this thesis built upon utilized this simple 

method of improving the link performance by sending multiple packet copies.   

Unfortunately, this type of code is inefficient compared to codes with higher values of k.  

A (k+1, k) code is another simple case.  This would include the k packets plus one packet 

that would represent the sum of the others.  Once again, this case is not very useful 

except for channels with small amounts of loss. 

3. Erasure Codes for Wireless Sensor Networks 

 Once again, erasure codes were chosen to combat the relatively high amount of 

packet loss that can be expected with wireless sensor networks.  While the software 

implementation of erasure codes is somewhat computationally expensive, low to medium 

speed applications, up to the 100 KB/s range, could be supported with fairly low amounts 

of overhead.  Given the limitations of power and throughput with these networks, erasure 

codes may be a very useful tool.  Combining this technique with a simple form of ARQ 

might be the best course of action.    
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C. PROPOSED SOLUTION 

1. Onion Networks JAVA FEC Library 

While investigating Rizzo’s C implementation of the Vandermonde based erasure 

codes, a Java based version of the same was discovered.  Onion Networks, Inc. developed 

this open source Java based implementation they refer to as the FEC 1.0.3 library.   

Considering the SNAIL applications were developed in Java, this seemed a logical fit and 

worth exploring how they could be used together. 

The FEC library incorporates a number of classes and tools that can be used to 

encode and decode data given the specifications of k and n, the number of packets to 

encode and the number of encoded packets to create.  The library supports a pure Java 

implementation of the code as well as a C based implementation that can achieve higher 

speeds.  For this experiment, the Java based implementation was chosen for compatibility 

reasons.    

2. SNAIL Server Modifications 

The Java code below shows the actual encoding process of the data.   

       //  FEC Setup Procedure  // 
                         
       byte[][] repair = new byte[numblocks][n*packetsize]; 
       //this is our encoded data 
   
       int[][] repairIndex = new int[numblocks][n]; 
         
       //These buffers allow us to put our data in them they 
       //reference a packet length of the file (or at least will once 
       //we fill them) 
                         
       //create our fec code 
       if (encoded == 0)      // I only want to do this section if we    
  are going to encode 
       { 
         FECCode fec = FECCodeFactory.getDefault().createFECCode(k, n);  
    // creating code 
 
         for (int w=0; w < numblocks; w++) 
         { 
            Buffer[] sourceBuffer = new Buffer[k]; 
            Buffer[] repairBuffer = new Buffer[n]; 
 
            for (int i = 0; i < sourceBuffer.length; i++) 
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                sourceBuffer[i] = new Buffer(source2[w], i*packetsize, 
…        packetsize); 
 
             for (int i = 0; i < repairBuffer.length; i++) 
                repairBuffer[i] = new Buffer(repair[w], i*packetsize, … 
           packetsize); 
 
             //When sending the data you must identify what it's index   
   was. 
              
             for (int i = 0; i < repairIndex[w].length; i++) 
                repairIndex[w][i] = i; 
 
 
             //encode the data 
             fec.encode(sourceBuffer, repairBuffer, repairIndex[w]); 
           } 
         }   
         //  End FEC Encoding // 

Prior to encoding, the values of k and n must be chosen.  For the experiment, 64 

and 128 were chosen respectively.  From Rizzo’s analysis of erasure coding, it was 

explained that increasing values of k improved efficiency.  From early experiment tests, 

this improvement was seen in increased values of k up to a certain point.  Also, as k is 

increased, the number of blocks the image is broken up into is decreased.  Increasing or 

decreasing the number of blocks has a negligible effect on total encoding time.   

Looking at the code, the two byte arrays, source and repair, hold the source data 

and encoded data respectively.  The sourceBuffer and repairBuffer buffers are used to 

temporarily hold the data in packet form needed for the encoding process.  The 

repairIndex array holds the numbering of each of the packets to be encoded.   The 

encoded packet number must be transmitted with each packet in order to reconstruct the 

data.  The last line of code calls the encode method which completes the encoding 

process, storing the now encoded data into the repair array. 

The SNAIL Server module now transmits the data as it would with non-encoded 

data.  The only differences being the addition of the block number and roughly double the 

number of packets for the chosen k and n. 



29 

3. SNAIL Listen Modifications 

Modifications were necessary for the SNAIL Listen module to receive encoded 

packets.  As mentioned before, the block number and packet number are sent in each 

packet.  Also the handshake packet contains the encoding parameters k and n that were 

chosen.  By not hard coding this information, experiments with differing values of each 

are possible.     

Prior to the modifications to the SNAIL Listen module, packets were read in until 

the number of expected packets had been reached.  If the number of packets expected was 

not reached, it was considered a failure to transfer the text message.  With error 

correction, this is not the case.  In order to keep track of what packets had been received, 

an integer matrix was constantly updated as packets were read in.  The rows of the matrix 

represented the different blocks being read in and the columns represented the packets 

that each block contained.  Initially the matrix was filled was zeros.  As each packet is 

read in the respective matrix position was updated with a value of one.  Once the 

terminating packet is received, if a particular block does not have at least k values read in, 

the data cannot be reconstructed.   

       // Decoding Process 
       System.out.println("Message Received: Decoding..."); 
       byte[] received2 = new byte[arraysize];    // All data minus    
          // padding 
       Buffer[][] receiverBuffer = new Buffer[numblocks][n]; 
       // k subset of packets 
 
       for (int z=0; z < numblocks; z++) 
       { 
          System.out.println("Decoding Block: " +(z+1)+" of " …     
  +numblocks); 
          //create our Buffers for the encoded data 
          for (int i = 0; i < n; i++) 
           { 
              receiverBuffer[z][i] = new Buffer(received[z], …   
   i*packetsize, packetsize); 
           } 
 
           //finally we can decode 
                                                    
      fec.decode(receiverBuffer[z], receiverIndex[z]); 
         } 
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From the subset of code above, the decoding process is seen to be very similar to 

the encoding process.  After all of the packets have been read in a check is performed to 

make sure enough packets are stored for each block.  If this is the case, the decoding 

process commences one block at a time.  Like during the encoding process, a buffer is 

used to hold the data for decoding and the result of the decode method is stored into a 

byte array. 

D. SUMMARY 

With any network, there are basically two methods for recovering erroneous 

packets.  Either ARQ or FEC are used.  Of the two, FEC was the preferred choice in this 

study due to power consumption limitations with wireless sensor networks and due to the 

complications of congestion when dealing with ARQ.  A software implementation of 

FEC was preferred for this thesis given the Java based software platform that the original 

work was built upon.  The FEC library by Onion Networks provided a very effective Java 

implementation of the erasure code written about by Rizzo.   In the next chapter, the 

results of this implementation over a sensor network will be shown and compared to 

experiments without FEC.  
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IV.  EXPERIMENT DETAILS 

The performance of the link was the primary concern while conducting the 

experiments.  Since a more robust link was desired, the performance of the sensor 

network link was tested with forward error correction implemented.  In order to provide a 

comparison for the results, experiments without the FEC coding were also conducted.    

These results will hopefully provide a good foundation for what performance 

enhancements can be achieved using the FEC scheme selected. 

This chapter aims to provide the results that were obtained from the laboratory 

experiment.  Three different scenarios were chosen for conducting the test.  These 

include a direct terminal to terminal test, a terminal to terminal test via one sensor mote 

hop, and a terminal to terminal test via two sensor mote hops.   For each of these 

scenarios, three different data transmission schemes were tested.   First, the erasure 

coding scheme was tested.  The second scheme involved testing the link by sending only 

the image data across.  No redundancy was used during this test.   For the last scheme, 

redundancy was incorporated by sending a copy of each packet along with the original 

packets.   This last scheme was chosen since it more closely approximates the total 

number of packets being sent out during the FEC test. 

To test the three transmission schemes, a small 8 kbyte image was chosen to be 

transferred.  The small file was chosen to allow for large number of tests to provide an 

adequate amount of results for a comparison.   For a successful transmission, the entire 

image had to be transferred without error. 

A. EXPERIMENT SETUP 

The experiment was originally conducted in an academic building hallway to 

allow enough space to separate the base stations and motes in order to drive the link to 

the edge of its performance capabilities.  By adjusting the power on the motes and 

investigating the resulting transmission range, the motes were placed to force a 
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considerable amount of packet loss.   This was necessary to prove that the FEC method 

would handle more challenging conditions better than the schemes lacking error 

correction. 

After initial trials that were conducted, it was determined that multipath effects 

encountered in the hallway environment would negatively influence the results.   Due to 

this realization, the experiment was relocated to an anechoic chamber which would help 

by eliminating a majority of the undesired signals.  The chamber can be seen in Figure 8. 

 

 
Figure 8.   Anechoic Chamber used for the Experiment 

1. Hardware 

Each of the base stations incorporated a laptop and a Crossbow MICAz sensor 

mote connected through the USB port using a MIB520 sensor board.  Individual MICAz 

motes were used for the repeater stations simulating the sensor network.  Descriptions of 

each component used in this experiment are included below. 
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a. MICAz Sensor Motes 

 

Figure 9.   MICAz 2.4 GHz Mote 

The MICAz mote, pictured in Figure 9, is a small wireless hardware 

device produced by Crossbow [14].   The mote has an Atmel Atmega microcontroller, 4 

KB of RAM, 128 KB of program flash, 512 KB of flash log memory, a 2.4 GHz IEEE 

802.15.4 transceiver that supports a maximum rate of 250 kbps, and a maximum range of 

50 m.  The mote also features a 10-bit ADC and runs on two AA batteries, drawing 8 mA 

in active mode. 

The mote can be used with or without an optional sensor board providing 

capabilities as a wireless sensor platform or as a wireless node.    A variety of sensor and 

data acquisition boards can be connected to the MICAz by means of a 51-pin expansion 

connector.  The RF transmit power for the MICAz is user selectable from -24 dBm to 0 

dBm.   This feature was particularly helpful in allowing tests to be conducted in a small 

laboratory sized environment.  The CC2240 Transmitter datasheet power levels are 

shown in Table 1.  Experimental tests found that the power levels lower than those shown 

were also possible.   

These MICAz motes implement a CSMA based protocol.  This was 

determined by the CC2420 radio installed on the board and the version of TinyOS 

installed.  A more advanced CSMA protocol, B-MAC, became available in the 1.1.3 

version of TinyOS, but was not available for this experiment.  Among the changes in this 

protocol was a variable noise floor over the fixed floor originally used.  This noise floor 
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is used in the determination process of when the mote can transmit.  B-MAC's 

improvements on performance might be a valuable topic for further work which will be 

discussed further in Chapter V. 

 

Table 1.   Available RF Power Levels for CC2240 Transmitter 

b. MIB520 Parallel Programming Board  

 

Figure 10.   MIB520 Interface Board 

The MIB520, pictured in Figure 10, provides USB connectivity to the 

MICA family of motes for in-system programming and general communication [14].   A 

MICAz node connected to the MIB520 can act as a base station.   This configuration was 

used for the sending and receiving terminals configured for the experiment. 

2. Software 

Two software elements used for the experiment were Java and TinyOS.   Java 

applications were written for the transmit side to read in, format, and encode the data for 

transmission.  On the receive end, another Java application was written to read in the 
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packets and process the information.  TinyOS is one of the operating systems used by 

wireless sensor networks.  For the experiment, TinyOS version 1.1.0 was installed on the 

laptops being utilized.  TinyOS was written in nesC, a dialect of the C programming 

language.   While most of the programming required for this thesis was in Java, some 

modification of nesC code was necessary for controlling certain parameters of the 

MICAz motes, such as the RF transmission power. 

For the ease of programming, the Netbeans Integrated Development Environment 

(IDE) was used during the software development process.  This software tool provided an 

eased integration of TinyOS and Java development. 

B. TERMINAL TO TERMINAL EXPERIMENT 

The first scenario for the experiment involved setting up a simple terminal to 

terminal link as pictured in Figure 11. 

 

 

Figure 11.   Scenario 1 – Terminal to Terminal Communication 

This, the most simple of the arrangements to be tested, was used for the initial 

testing of the FEC code and would provide a good basis of comparison for the one hop 

and two hop tests to be conducted later.   The Tx laptop shown in Figure 11 uses the 

SNAILServerTest_fec and SNAILClient_fec applications.  Simultaneously running is the 

SerialForwarder application that is also used on the Rx laptop.  In addition to 

SerialForwarder, the Rx laptop runs the SerialListenTest_fec application.   Both MICAz 

motes were programmed with the TOSBase software.  The TOSBase software was 

modified to set an RF power level of -24 dBm.   

MIB520 + 
MICAz Mote 

MIB520 + 
MICAz Mote 

Tx Laptop Rx Laptop 
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Run No Packets No Packets Redundant Success No Packets No Packets Redundant Success No Packets No Packets Redundant Success
Transmitted Received Packets (Y/N) Transmitted Received Packets (Y/N) Transmitted Received Packets (Y/N)

1 299 163 0 N 598 299 296 Y 640 623 0 Y
2 299 293 0 N 598 299 294 Y 640 637 0 Y
3 299 292 0 N 598 299 295 Y 640 616 0 Y
4 299 296 0 N 598 298 295 N 640 627 0 Y
5 299 286 0 N 598 299 291 Y 640 626 0 Y
6 299 296 0 N 598 299 283 Y 640 626 0 Y
7 299 294 0 N 598 299 299 Y 640 632 0 Y
8 299 286 0 N 598 298 276 N 640 635 0 Y
9 299 295 0 N 598 299 261 Y 640 620 0 Y
10 299 296 0 N 598 299 293 Y 640 633 0 Y
11 299 294 0 N 598 193 152 N 640 634 0 Y
12 299 292 0 N 598 299 286 Y 640 632 0 Y
13 299 246 0 N 598 237 100 N 640 636 0 Y
14 299 285 0 N 598 299 289 Y 640 630 0 Y
15 299 262 0 N 598 298 291 N 640 618 0 Y
16 299 272 0 N 598 299 297 Y 640 588 0 Y
17 299 287 0 N 598 299 297 Y 640 631 0 Y
18 299 287 0 N 598 209 67 N 640 614 0 Y
19 299 291 0 N 598 299 290 Y 640 493 0 N
20 299 289 0 N 598 298 249 N 640 466 0 Y
21 299 285 0 N 598 299 289 Y 640 593 0 Y
22 299 290 0 N 598 293 216 N 640 622 0 Y
23 299 291 0 N 598 295 249 N 640 389 0 N
24 299 293 0 N 598 299 279 Y 640 305 0 N
25 299 281 0 N 598 298 276 N 640 589 0 Y

Non-Encoded Non-Encoded (Redundant) FEC Encoded

  

Table 2.   Terminal to Terminal JPEG Transmission Results 

The transmitting and receiving motes were placed at a distance of 110 inches 

from each other.   This distance was chosen to promote some loss of packets at the 

receiving end in order to test the effectiveness of the FEC algorithm.  Looking at the 

results in Table 2, the FEC encoded transmissions were the best performing of the three 

tested methods.  Of the twenty-five runs performed, the non-encoded scheme was unable 

to successfully transfer an image.  Without any redundancy, losing a single packet 

constitutes a failure to transfer an image.   Averaging 282 packets received out of the 

original 299 packets sent, this method of transfer did not provide for a robust link at the 

chosen distance. 

The second transmission scheme sent a copy of each data packet or a total of 598 

packets.   This provides for the ability to lose random packets but consecutive lost 

packets could be a problem.   This method proved successful for 60% of the 

transmissions, averaging 288 of the necessary 299 data packets.   A counter was created 

to keep track of the extra or redundant packets that were received.   An average of 260 

redundant packets was received. 

The performance enhancement of the FEC coding was obvious.   On average 88% 

of the runs were successful;   589 of 640 sent packets were received on average.   
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Looking at run number twenty, the image was saved successfully even though only 466 

of the 640 packets were received.  The key of the erasure code algorithm is that for each 

block of image data being transferred, as long as k packets out of n transferred are 

received, the file can be reconstructed.   

C. ONE HOP EXPERIMENT 

The general arrangement for the one hop scenario is shown in Figure 12.   

 

 

Figure 12.   Scenario 2 -  Terminal to Terminal via One Hop 

To facilitate adding a hop between the two terminals, the power of the 

transmitting mote was reduced to a reference level two, which is believed to be 

equivalent to roughly -35 dBm.  This equated to a transmission range of 1 ft.  Due to the 

size limitation of the anechoic chamber, this short first hop would be necessary later for 

the two hop experiment.   The power level for the mote used for the hop was set to -24 

dBm. 

 

MIB520 + 
MICAz Mote 

MIB520 + 
MICAz Mote 

Tx Laptop Rx Laptop

MICAz 
Mote 
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Table 3.   One Hop JPEG Transmission Results 

Once again the layout of the motes was selected to force dropped packets to 

occur.  The results in Table 3 show that both of the non-encoded tests yielded no 

successful transmissions while the FEC encoded test was successful 100% of the time.  

Without redundancy, an average of 224 of the 299 necessary packets was received.  

Doubling the number of packets increased the average to 267 with an average of 141 

redundant packets, although no successful transmissions were obtained.   The FEC 

approach yielded an average of 459 of the 640 encoded packets received.   

D. TWO HOP EXPERIMENT 

The last of the scenarios, the two hop arrangement, is pictured in Figure 13. 

 

 

Figure 13.   Scenario 3 -  Terminal to Terminal via Two Hops 

MIB520 
MICAz 

MIB520 
MICAz 

MICAz 
Mote 

Rx Laptop 

MICAz 
Mote 

Tx Laptop 

Run No Packets No Packets Redundant Success No Packets No Packets Redundant Success No Packets No Packets Redundant Success
Transmitted Received Packets (Y/N) Transmitted Received Packets (Y/N) Transmitted Received Packets (Y/N)

1 299 238 0 N 598 288 214 N 640 501 0 Y
2 299 239 0 N 598 288 204 N 640 452 0 Y
3 299 229 0 N 598 296 235 N 640 451 0 Y
4 299 204 0 N 598 279 168 N 640 475 0 Y
5 299 233 0 N 598 283 178 N 640 472 0 Y
6 299 243 0 N 598 266 118 N 640 485 0 Y
7 299 227 0 N 598 260 12 N 640 446 0 Y
8 299 205 0 N 598 260 19 N 640 452 0 Y
9 299 230 0 N 598 248 127 N 640 453 0 Y
10 299 230 0 N 598 277 149 N 640 456 0 Y
11 299 219 0 N 598 282 165 N 640 500 0 Y
12 299 208 0 N 598 270 161 N 640 465 0 Y
13 299 221 0 N 598 256 147 N 640 503 0 Y
14 299 228 0 N 598 256 131 N 640 503 0 Y
15 299 221 0 N 598 257 148 N 640 505 0 Y
16 299 212 0 N 598 227 99 N 640 509 0 Y
17 299 230 0 N 598 280 144 N 640 471 0 Y
18 299 219 0 N 598 264 139 N 640 488 0 Y
19 299 219 0 N 598 274 156 N 640 500 0 Y
20 299 210 0 N 598 256 139 N 640 485 0 Y
21 299 236 0 N 598 270 134 N 640 523 0 Y
22 299 212 0 N 598 255 113 N 640 444 0 Y
23 299 230 0 N 598 276 146 N 640 446 0 Y
24 299 228 0 N 598 263 144 N 640 473 0 Y
25 299 234 0 N 598 254 136 N 640 475 0 Y

Non-Encoded Non-Encoded (Redundant) FEC Encoded
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The arrangement of the terminal mote and first hop mote remain unchanged from 

the previous one hop test.  The second hop mote, like the first, was set to -24 dBm for 

transmit power and located roughly 100 inches from the first mote.  The arrangement of 

motes was set in order to make sure the coverage for each mote was as shown in Figure 

14. 

 

Figure 14.   Desired Mote Coverage For Two Hop Test 

 

Table 4.   Two Hop JPEG Transmission Results 

The results of the two hop tests are shown in Table 4.  Once again the FEC 

encoded data tests outperformed the non-encoded data tests.   Adding redundancy to the 

non-encoded tests raised the success rate from 0% to 4%, or an average number of 

packets received from 166 to 270.   The average redundant packets increased from 154 to 

415.  By using the FEC encoding, the success rate was increased to 52%.  An average of 

403 packets out of the 640 sent was received with an average of 200 redundant packets.  

Run No Packets No Packets Redundant Success No Packets No Packets Redundant Success No Packets No Packets Redundant Success
Transmitted Received Packets (Y/N) Transmitted Received Packets (Y/N) Transmitted Received Packets (Y/N)

1 299 151 279 N 598 239 545 N 640 458 110 Y
2 299 194 182 N 598 271 244 N 640 418 103 Y
3 299 186 18 N 598 282 306 N 640 405 314 Y
4 299 196 118 N 598 272 482 N 640 453 221 Y
5 299 198 108 N 598 264 533 N 640 398 412 Y
6 299 136 263 N 598 267 544 N 640 408 399 N
7 299 130 286 N 598 295 455 N 640 231 2 N
8 299 175 16 N 598 292 285 N 640 463 172 Y
9 299 201 109 N 598 157 455 N 640 156 56 N
10 299 174 108 N 598 285 302 N 640 408 346 Y
11 299 134 114 N 598 268 485 N 640 302 156 N
12 299 137 34 N 598 255 502 N 640 344 122 N
13 299 156 156 N 598 249 433 N 640 415 325 Y
14 299 165 167 N 598 289 526 N 640 285 208 N
15 299 165 185 N 598 299 285 Y 640 455 265 Y
16 299 174 221 N 598 297 465 N 640 468 214 Y
17 299 189 45 N 598 285 475 N 640 452 232 Y
18 299 198 49 N 598 246 388 N 640 385 126 N
19 299 156 145 N 598 264 475 N 640 408 188 N
20 299 164 164 N 598 255 385 N 640 415 182 N
21 299 134 185 N 598 269 352 N 640 375 55 N
22 299 137 235 N 598 285 387 N 640 435 164 Y
23 299 199 141 N 598 287 402 N 640 387 198 N
24 299 134 246 N 598 288 405 N 640 452 235 Y
25 299 155 270 N 598 292 265 N 640 407 185 N

Non-Encoded Non-Encoded (Redundant) FEC Encoded
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The two hop arrangement added a large number of redundant packets to the link 

and caused a considerable reduction of link performance as a result.  The increase of 

repeated packets seemed to cause a large number of necessary packets to be dropped 

during transmission and even the encoded tests showed difficulty in transferring complete 

JPEG images.   

E. FEC PERFORMANCE OVER VARYING DISTANCES 

The previous scenarios that were run were setup to purposefully cause a 

considerable amount of packet loss in order to test the FEC effectiveness.  Each of the 

transceivers were positioned at a certain location and set to a power level that would 

force this condition.  While the tests did show that the FEC scheme provided improved 

performance over the other tests run, another series of tests was needed in order to give a 

more qualitative comparison of the three schemes.  

 

Table 5.   Effect of Varying Distances Upon Transmission Success 

In order to get a better idea of how the performance was falling off for each of the 

transmission methods as the distance increased, the final test was performed.  The 

configuration of hardware used for this test was that of the original terminal to terminal 

test.  The transmitting terminal, set to a power level of -24 dBm, remained fixed while the 

receiving terminal was varied to record the packet transmission effects.  Each of the non- 

 

Distance No of Avg Packets Avg Red % Avg Packets Avg Red % Avg Packets Avg Red %
(in) Trials Received Packets Success Received Packets Success Received Packets Success
43 15 299 0 100
49 15 298.8 0 80
55 15 298.3 0 67
61 15 298.6 0 73
67 15 298.4 0 73
73 15 298.1 0 67 299 299 100 640 0 100
79 15 298.5 0 80 298.9 297.5 100 638.7 0 100
85 15 298.2 0 67 299 297 100 638.4 0 100
91 15 297 0 33 298.9 296.8 87 635.5 0 100
97 15 295.6 0 0 298.9 296 93 635.2 0 100
103 15 288.1 0 0 298.9 292.6 87 615.5 0 100
109 15 220 0 0 298.1 275.7 27 473.9 0 87
115 15 292.1 228.9 0 398.3 0 53
121 15 272.2 173.4 0 282.6 0 7
127 15 287.7 211.5 0 370.7 0 60
133 15 75 12 0 78 0 0
139 15

Non-Encoded (Redundant) FEC EncodedNon-Encoded
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encoded and encoded methods were tested fifteen times at varied distances to find the 

transition from 100% image transfer success to the distance that resulted in a failure to 

transfer a single image. 

Table 5 displays the results from the test.   The non-encoded scheme showed a 

gradual decrease in link performance starting at a distance of 43 inches until it totally 

failed at 97 inches.   At that distance, the non-encoded scheme that included redundant 

packets was still showing a 93% success rate.  At 115 inches, the redundant packet 

scheme completely failed.  At this distance the FEC encoded scheme still performs at a 

53% success rate.  Not till 133 inches did it fail to transfer a single image.   There was an 

unexpected spike in performance for the FEC scheme at the next to last distance that was 

unexplained. 

 

 

Figure 15.   Quadratic Fit Curves for Experimental Results 
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In order to get a better picture of the performance falloff, the plot shown in Figure 

15 was created from the recorded data.  To achieve the smooth curves shown, quadratic 

fit curves were created from the data.   To compare the three transmission schemes, a 

reference for acceptable loss of 25% was chosen.   This translated to receiving 11.25 out 

of the 15 files sent.  By that standard the non-redundant scheme that included redundancy 

represented a 42% increase in transmitting range from the non-redundant scheme.  The 

FEC encoded scheme represented a 66% increase in transmitting range. 

F. SUMMARY 

 For the experiment, results were taken for three different configurations in order 

to demonstrate the effectiveness of the FEC algorithm under differing conditions.    In 

each of the configurations tested, the FEC encoded transmissions achieved better results 

at greater ranges than the non-encoded tests.   The erasure coding allowed for significant 

packet loss to occur while still recovering the image at the receiving terminal.  While the 

redundant example showed some improvement over the non-redundant test, consecutive 

lost packets quickly became an issue as the receiver’s distance from the transmitter was 

increased. 

 Both the terminal to terminal and one hop configurations yielded very similar 

results.   The two hop configuration was similar in that it showed the FEC test to be the 

most effective, but it also highlighted some performance limitations of the medium 

access protocol used by the lab motes that should be investigated further.   The packet 

losses at the receiving node were much greater with the two hop configuration.  It 

appeared that the increased network congestion was responsible for the reduced 

performance. 
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V.  CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 

For each of the experiment configurations used, the erasure code outperformed 

the non-FEC schemes.  The larger the amount of data to be sent, the more effective 

erasure code would be for the transmission process.  While the TinyOS AM packet 

structure is very limiting, the positive effects of the coding scheme were still observed. 

While the error correction method did improve the performance of the channel, 

the two hop experiment pointed out flaws with the underlying architecture that must be 

addressed.  During the two hop experiment, a large amount of packet loss was observed 

that can be attributed to unnecessary congestion in the network.  The CSMA scheme used 

by the motes may be the reason for the packet loss observed.  

Maybe the most limiting factor observed was the channel throughput.  During the 

terminal to terminal tests an average transfer time of 7 sec was recorded for the non-

redundant file transfer.  This equated to a transfer rate of 12.3 kbps for the 299 packets.  

Considering that the CC2420 radio on the MICAz mote was rated for 250 kbps and the 

serial forwarder program was set for a transfer rate of 57.6 kbps, the cause of the slow 

transmission speed was unknown.  Researching the TinyOS documentation led to the 

discovery that the MAC protocol was actually the limiting factor.  The CSMA protocol 

limited the number of packets sent to the radio each second to 43.   Implementing a 

TCP/IP bridge to pass multimedia or VOIP traffic would require a much higher 

transmission rate.  While the equipment and software used in this experiment might not 

be able to achieve the desired results, other MAC schemes may be available that could 

provide a transmission rate closer to the radio's capabilities.    

B. RECOMMENDATIONS 

The first recommendation would be to conduct further tests on the erasure code to 

find what parameters of k and n would yield the most optimum coding scheme.  During 

the course of the experiment, these values were only adjusted to manipulate the number 
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of blocks that would be encoded.  A more in-depth study to find out if these values can be 

more useful to the overall channel performance might be beneficial. 

Erasure code did provide very positive results during the experiment.  A positive 

next step would be take the performance of the erasure code and compare it to a 

convolutional or turbo code.  Convolutional codes and turbo codes represent some of the 

more advanced and efficient codes available today.  

Due to the limitations provided by the CSMA MAC scheme installed on the 

experimental motes, work involving newer MAC schemes may provide better results.  

With TinyOS 1.1.3, the B-MAC MAC scheme was introduced.  B-MAC increased the 

rate at which packets are sent to the radio slightly over the CSMA scheme used during 

this experiment.   Improvements to this transmission rate above that provided by B-MAC 

may also be available in versions later than 1.1.3. 

Finally, an ideal sensor network would most likely combine some form of 

forward error correction with a limited implementation of ARQ.   In order to make this 

possible, it may be necessary to combine the ARQ with a suitable MAC scheme as 

mentioned before.  The Z-MAC scheme introduced earlier might be a good fit with its 

congestion dependent combination of CSMA and TDMA.   
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APPENDIX 

A. SNAIL CLIENT CODE 

// SNAILClient_fec.java 
// 
// Java program prompts user for selection and collects data ... 
// to be transferred to SNAILServer 
// 
// Last Updated by Thomas Childers  26Nov08 
 
package net.tinyos.tools1; 
 
import com.sun.image.codec.jpeg.ImageFormatException; 
import com.sun.image.codec.jpeg.JPEGCodec; 
import com.sun.image.codec.jpeg.JPEGImageEncoder; 
import javax.swing.*; 
import java.awt.image.BufferedImage; 
import java.net.*; 
import java.io.*; 
import javax.imageio.ImageIO; 
 
public class SNAILClient_fec { 
 
    private static byte[] concatenate(byte[] a, byte[] b) 
    {  
        if (a == null) {  
            return b;  
        } else {  
            byte[] bytes = new byte[a.length + b.length];  
 
            System.arraycopy(a, 0, bytes, 0, a.length);  
            System.arraycopy(b, 0, bytes, a.length, b.length);  
            return bytes;  
        }  
    } 
     
    /** Creates a new instance of TcpClient */ 
    public SNAILClient_fec() { 
    } 
     
    public static byte[] bufferedImageToByteArray(BufferedImage img) 
throws ImageFormatException, IOException 
    {   
        ByteArrayOutputStream os = new ByteArrayOutputStream(); 
        JPEGImageEncoder encoder = JPEGCodec.createJPEGEncoder(os); 
        encoder.encode(img); 
        return os.toByteArray();  } 
     
                 
    // ---------------------------------------------------------------- 
    public static void main( String args[] ) 
    { 
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  Socket clientSocket; 
         String DIGEST_ALGORITHM = "sha"; 
         byte[] outy = null; 
   
  try 
         {    
   
  while(true) 
  { 
   // Initialization for File Transfer 
   FileInputStream inputFile = null; 
                 FileOutputStream outputFile = null; 
                 BufferedReader input = null; 
                 BufferedWriter output = null; 
   char NewArray[] = null; 
                        String FinalFileData = null;  
   

// This is the portion that attempts to collect data      
from the console 
System.out.print("\nActions available 
currently:\n\n\t (1) - Send Instant Msg \n\t (2) - 
Standard File Transfer \n\t (3) - Jpeg Transfer"); 

   System.out.print("\n\n Enter Option Number: "); 
BufferedReader instruction = new BufferedReader 

(new InputStreamReader(System.in)); 
   String processInstruction = instruction.readLine(); 

int instrObtained = 
Integer.parseInt(processInstruction); 

   String FinalOutputData = new String(); 
                         

// This asks the user whether or not to encode the 
data 

System.out.print("\nFEC Encoding:\n\n\t (1) - 
Encode Data \n\t (2) - Data Tx Only \n\t"); 

   System.out.print("\n\n Enter Coding Selection: "); 
BufferedReader encoding = new BufferedReader (new 

InputStreamReader(System.in)); 
   String encodingoption = encoding.readLine(); 

int encodingchoice = 
Integer.parseInt(encodingoption); 

                        byte encoded = 0; 
                        if (encodingchoice == 1) 
                            encoded = 0; 
                        if (encodingchoice == 2) 
                            encoded = 1; 
    
                  // ------------------------------------------------ 
                  // Next section does based on the option selected 
                         

if(instrObtained == 1) // Loop for short message 
services 

   { 
System.out.print("Enter message that needs to 
be transmitted: "); 
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BufferedReader inStream = new BufferedReader 
(new InputStreamReader(System.in)); 

     String outputData = inStream.readLine(); 
     

// The following is to add in the flag for 
option selected 
String dataReceived = outputData;    
// Conversion of string to char array 

     char dataArray [] = dataReceived.toCharArray(); 
    
    NewArray = new char[ dataArray.length ];  

// Additional 2 segments in array for 
optionSelect and Filesize 

     for(int i = 0; i < (dataArray.length); i++) 
     { 
        NewArray[i] = dataArray[i]; 
     } 
            
                        byte[] codeArray = new byte[3]; 

codeArray[0] = '1'; // Flag to server that 
this is a short message service 

     codeArray[1] = '0'; 
    codeArray[2] = encoded; 
      

// This routine is to check if the mapping of 
array is correct. Uncomment when required to 
use. 
// for (int count = 0; count < NewArray.length; 
count++) 

         // { 
         //  System.out.print(" " +NewArray[count]); 
         // } 
     

for( int count = 0; count < NewArray.length; 
count++) 

     { 
          FinalOutputData += NewArray[count]; 
     } 
         // End of adding option selection flag 
                                 

byte[] foutdata = FinalOutputData.getBytes( 
"8859_1" /* encoding */ );  // Putting in byte 
array form for transfer 

    
                        outy = concatenate(codeArray,foutdata); 
                        }    
       

else if(instrObtained == 2) // This is the loop 
for File transfer  

                        { 
      

JFileChooser fileChooser = new 
JFileChooser("."); 

                        int status = fileChooser.showOpenDialog(null); 
                        String filename = new String(); 
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                        if (status == JFileChooser.APPROVE_OPTION) 
                        { 

File selectedFile = 
fileChooser.getSelectedFile(); 
System.out.println("Selected: " + 
selectedFile.getPath()); 

                              filename = selectedFile.getPath(); 
                        } 
                                 
                        File fileIn; 
                        BufferedInputStream in = null; 
                        BufferedOutputStream out = null; 
                        byte[] filedata = null; 
                                 
                        try 
                        { 
                              fileIn = new File(filename); 

System.out.println("File size is " + 
fileIn.length() + " bytes"); 
in  = new BufferedInputStream(new 
FileInputStream(fileIn)); 

                                                                           
byte[] fileContent = new 
byte[(int)fileIn.length()]; 

                              in.read(fileContent); 
                              filedata = fileContent; 
                        } 
                        catch (IOException ex) 
                        { 
                              ex.printStackTrace(); 
                        } 
                        finally 
                        {            // always close the streams 
                              try 
                              { 
                                  if (in != null) in.close(); 
                                  if (out != null) out.close(); 
                              } 

catch (IOException ex)  
{ 

 ex.printStackTrace(); } 
                              } 
                                 

//  Putting the options with the data into 
FinalOutputData 

                        byte[] option = new byte[3]; 
                        option[0] = (byte)'2'; 
                        option[1] = (byte)'0'; 
                        option[2] = encoded; 
                                 
                        outy = concatenate(option,filedata); 
                                                                                       
   } 
                  // End of text file transfer portion 
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   else if(instrObtained == 3) // Jpeg Transfer Portion 
   { 

JFileChooser fileChooser = new  
JFileChooser("."); 

                        int status = fileChooser.showOpenDialog(null); 
                        String filename = new String(); 
                        if (status == JFileChooser.APPROVE_OPTION) 
                        { 

File selectedFile = 
fileChooser.getSelectedFile(); 
System.out.println("Selected: " + 
selectedFile.getPath()); 

                              filename = selectedFile.getPath(); 
                        } 
                                 
                        BufferedImage img = null; 
                        try 
                        { 
                              img = ImageIO.read(new File(filename)); 
                        } 
                        catch (IOException e) {} 
   

ByteArrayOutputStream baos=new 
ByteArrayOutputStream(); 
JPEGImageEncoder encoder 
=JPEGCodec.createJPEGEncoder(baos); 

                        encoder.encode(img); 
                byte [] fileData = baos.toByteArray(); 

//System.out.println("File size is " + 
fileData.length() + " bytes");    !! Find 
length of byte array??? 

 
//  Putting the options with the data into 
FinalOutputData 

                        byte[] option = new byte[3]; 
                        option[0] = (byte)'3'; 
                        option[1] = (byte)'0'; 
                        option[2] = encoded; 
                                 

//  Now need to combine image data and option 
data 

                                 
                        outy = concatenate(option,fileData); 
                                 
   } 
    

// Below will send the collected data out to 
SNAILserver 

   InetAddress srcAddress = InetAddress.getLocalHost(); 
               
   int srcListeningPort = 4567; 

clientSocket = new Socket( srcAddress, 
srcListeningPort  ); 
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System.out.println("Client:  Attempting to 
established connection " ); 

             
//int len = outy.length; // If I were to find the 
length of the byte array 

                         
//                InputStream is = clientSocket.getInputStream(); 
//                DataInputStream dis = new DataInputStream( is ); 
// 
        OutputStream os = clientSocket.getOutputStream(); 
//        DataOutputStream dos = new DataOutputStream( os ); 
      
//    dos.write( outy, 0, outy.length ); 

ObjectOutputStream oos = new ObjectOutputStream(os);  
 
// get the socket output stream 

                  oos.writeObject(outy); 
 
    System.out.println( "\n\n"); 
    System.out.println("Information transmitted"); 
                  if (instrObtained == 1) 
                  {    

String t = new String( outy , "Cp1252" /* 
encoding */ ); 

                        System.out.println( t ); 
                  } 
                  System.out.println( "\n\n"); 
                                                                                       
  }       // End of while-loop 
  }      //  End of Try Statement 
         catch( Exception e ) 
         { 
                System.out.println( e ); 
         } 
    }  // End Main Method 
     
}  //  End SNAILClient_fec 
 

 

B. SNAIL SERVER CODE 

// SNAILserverTest3_fec.java 
// 
// Java program encodes the data if required and packages the data ... 
// for transfer over the sensor network 
// 
// Last Updated by Thomas Childers  26Nov08   
 
package net.tinyos.tools; 
 
import java.io.*; 
import java.net.*; 
import java.util.Properties; 
import net.tinyos.message.*; 



51 

import net.tinyos.util.*; 
 
//  Added for FEC Operations 
import com.onionnetworks.fec.FECCode; 
import com.onionnetworks.fec.FECCodeFactory; 
import com.onionnetworks.util.Buffer; 
 
public class SNAILserverTest3_fec  
{ 
      
    public static final short TOS_BCAST_ADDR = (short) 0xffff; 
    static Properties p = new Properties(); 
    
    /** Creates a new instance of TcpServer */ 
    public SNAILserverTest3_fec()  
    {} 
 

public static byte restoreSequenceNo() // This instance is to   
obtain the sequence number of the packet 

    { 
  try  
 { 

FileInputStream fis = new 
FileInputStream("bcast.properties"); 

      p.load(fis); 
byte i = (byte)Integer.parseInt(p.getProperty("sequenceNo", 
"1")); 

      fis.close(); 
      return i; 
 }  
  
 catch (IOException e)  
 { 
         p.setProperty("sequenceNo", "1"); 
         return 1; 
 } 
    } 
 

public static void saveSequenceNo(int i) // This is an instance 
to save the sequence number  

    { 
 try  
      { 

FileOutputStream fos = new 
FileOutputStream("bcast.properties"); 

      p.setProperty("sequenceNo", Integer.toString(i)); 
      p.store(fos, "#Properties for BcastInject\n"); 
 }  
 catch (IOException e)  
 { 

System.err.println("Exception while saving sequence number" 
+ e); 

     e.printStackTrace(); 
 } 
    } 
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    public static void main( String args[] ) // This is the main       
    instance where the program runs 
    { 
 byte sequenceNo = 0; 
 boolean read_log = false; 
     
      ServerSocket serverSocket; 
      try 
      { 
            // without specifying on the interface 
            // it will listens to all interfaces; wildcard 
            serverSocket = new ServerSocket( 4567 );  
             
            while( true )                    //  Infinite Loop 
            {                                   
               System.out.println("  "); 

System.out.println(" ----------------Start Of Server 
Service ---------------" ); 
System.out.println(" Server:  No Client Yet; Please 
Wait Longer ..."); 

               Socket aSocket = serverSocket.accept();   
               System.out.println(" Server:  Client arrived!"); 
             
                  InputStream is = aSocket.getInputStream(); 
               // reading in byte array 
                  ObjectInputStream ois = new ObjectInputStream(is); 
                  byte[] data = (byte[])ois.readObject(); 
                  int arraysize = data.length; 

char data1 = (char) data[0];    // Pull out options 
selected 

                  char data2 = (char) data[1]; 
                  //char data3 = (char) data[2]; 
                  byte encoded = data[2]; 
                                               
        System.out.println(" "); 
                  //  -----------------------------------------------     
                  //  Data has been read in, now to Encode and Transmit 
              
        SNAILmsg_tc packet = new SNAILmsg_tc();  
     
          packet.set_hop_count((short)0); 
        packet.set_source(0); 
    
        try  
        { 

int optionSelect = 0;        // This   
variable is in ascii due to input from terminal 
int FileNameSize = 0;     // This   
variable will be in integer value 

      int count = 0; 
int j = 0;      //  Variable to   
store  characters converted to Hex 
int end = 1;      // Counter for next  
packet to be sent 
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int start = 0;        // Counter for 
number of packets sent 

   int z = 0;                         // Loop counter 
 int test = 0;             // Counter for 

character count 
   int packetcount = 0;               // Packet Counter 
   int newIndexStart = 0; 
   int newIndexEnd = 0; 
   int oldarray = 0; 

int bytesCopied = 0;               // Running counter 
of the number of bytes sent out 

   int padding = 0; 
byte TerminalID = '2';         // This ID is 
unique to every terminal. Not really utilized. 
int TxScanFlag = '0';              // Old variable.  
Not used. 
long delay = 5;              // Delay in 
between packets transmission 
long delay2 = 160;                 // Delay for 
handshake packet transmission 

                        
   byte queueArray [] = new byte[29]; 
   byte FinalDataArray [] = null; 
   byte headerArray [] = new byte[29]; 
            
       
      

System.out.println("Total Characters Received: " 
+arraysize);  

   System.out.print("\n"); 
      
   System.out.print("\nOption Selected: " + data1); 
   System.out.print("\nFile Name Size : " + data2);  
   System.out.println("\n"); 
   System.out.print("\n\n"); 
      
   optionSelect = data1; 
      
   System.out.print("\n"); 
 
                                                  
                  // ------------------------------------------------- 

// Finding Out what kind of packet structure we are 
dealing with 

                         
arraysize = arraysize - 3;               
// Not transmitting the option 3 digit code 
int k2 = (arraysize/(packet.dataLength()-3)+1);         
// # packets before encoding 
if ((arraysize % (packet.dataLength()-3)) == 0)         
// Fix case if evenly divisible 

                  k2 = k2 - 1; 
int n2 = 2 * k2;               
// n is # of encoded packets 
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int packetsize = 26;               
// AM message determined data size (29) minus 3 bytes 

                         
int k = 64;               
// Number of packets to encode 
int n = 128;               
// Number of encoded packets 
if (data1 == '1')               
// If this is a text message or non-encoded, i want 
to fix k and n by msg length 

                  { 
                       k = k2; 
                       n = n2; 
                  } 
                         
                  if (encoded == 1) 
                  { 

k = (arraysize/(packet.dataLength()-2)+1);           
// # packets before encoding 
if ((arraysize % (packet.dataLength()-2)) == 0)      
// Fix case if e venly divisible 

                        k = k - 1;   
                  } 
                         
                         
                  System.out.print("\nArray Size : " +arraysize); 
   int totalBits = k*packetsize;     
  
   //System.out.println("\nTotal bytes : " +totalBits); 
   //padding = totalBits - (arraysize - 3);   
   // Due to 1 additional bit per payload 

//System.out.println("\nCharacters Sent: " 
+arraysize); 
//System.out.println("\nPackets required: " + 
packetcount); 

                         
                         
                         
                  //  ------------------------------------------------ 

// Fix the format of the arraysize and the 
packetcount so they can be transmitted in 2 bytes 
each 

                         
byte[] arraysz =  new byte[]        //  Convert 
arraysize to 2 bytes 

                  { 
                      (byte)(arraysize >>> 16), 
                      (byte)(arraysize >>> 8), 
                      (byte) arraysize 
                  }; 
                         

byte[] ksz =  new byte[]        //  Convert k to 2 
bytes 

                  { 
                      (byte)(k >>> 8), 
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                       (byte) k 
                  }; 
                         

byte[] nsz =  new byte[]        //  Convert n to 2 
bytes 

                        { 
                           (byte)(n >>> 8), 
                           (byte) n 
                        }; 
                         
                                                 
                        // ------------------------------------------- 

//  Find out out many image blocks there will 
be (can't encode entire image at once *slow*) 

                         
int block = k * packetsize;               
// Size of image block 
int numblocks = (arraysize / block) + 1;               
// Number of image blocks to encode 
if ((arraysize % block) == 0)               
// Fix case if evenly divisible 

                        numblocks = numblocks - 1; 
                         
                        //  ------------------------------------------- 
                        //  Need to store each of the image data blocks 
                         

byte[] source = new byte[arraysize];               
// Contains all of data minus the 3 byte option 
System.arraycopy(data, 3, source, 0, 
arraysize); 

                         
                        byte[][] source2 = new byte[numblocks][block]; 
                                                

if (numblocks == 1)               
// If less than blocksize of data 

                        { 
                              for (int i=0; i < arraysize; i++) 
                              source2[0][i] = source[i]; 
                        }     
                        else 
                        { 

for (int i=0; i < (numblocks-1); i++)             
//  Puts data blocks in correct place 
System.arraycopy(source, i*block , 
source2[i], 0, block);   
for (int i=0; i < (arraysize % block); 
i++) 
source2[numblocks-1][i] = 
source[((numblocks-1)*block) + i]; 

                        }                       
                         
                         
                        //  -------------------------------------------   
                        //  FEC Setup Procedure  // 
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byte[][] repair = new 
byte[numblocks][n*packetsize];     //this is 
our encoded data 

                        int[][] repairIndex = new int[numblocks][n]; 
         

//These buffers allow us to put our data in 
them they 
//reference a packet length of the file (or at 
least will once 

                        //we fill them) 
                         
                        //create our fec code 

if (encoded == 0)      // I only want to do 
this section if we are going to encode 

                        { 
FECCode fec = 
FECCodeFactory.getDefault().createFECCode
(k, n);  // creating code 

 
                             for (int w=0; w < numblocks; w++) 
                              { 
                                 Buffer[] sourceBuffer = new Buffer[k]; 
                                 Buffer[] repairBuffer = new Buffer[n]; 
 

for (int i = 0; i <   
sourceBuffer.length; i++) 
sourceBuffer[i] = new 
Buffer(source2[w], i*packetsize, 
packetsize); 

 
for (int i = 0; i < 
repairBuffer.length; i++) 
repairBuffer[i] = new  
Buffer(repair[w], i*packetsize, 
packetsize); 

 
//When sending the data you must 
identify what it's index was. 

                                 //Will be shown and explained later 
 

   for (int i = 0; i <    
 repairIndex[w].length; i++) 

repairIndex[w][i] = i; 
 
 
                                 //encode the data 
                                 fec.encode(sourceBuffer, repairBuffer,               
        repairIndex[w]); 
                              } 
                        }   
                        //  End FEC Encoding // 
                        //  ------------------------------------- 
    
                        if (encoded == 0) 
                        { 
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                        //  This routine is to send out the handshake  
    packet. To inform receiver, how many 
                        //  packets to expect and bytes of padding  
    required.  Also sent, the repair packet index 
 
                        sequenceNo = restoreSequenceNo(); 
                        sequenceNo++; 
                        packet.set_seqno(sequenceNo); 
                        System.out.print("\nThis is the headerpacket  
    sequence number: " +sequenceNo); 
                        saveSequenceNo(sequenceNo);  
 
                        System.out.println("\nSending Header Packet"); 
                        headerArray [0] = (byte) sequenceNo;       //  
    Sequence number 
                        headerArray [1] = (byte) TerminalID;       //  
    Second byte contains the Terminal ID 
                        headerArray [2] = (byte) optionSelect;     //  
    Third byte contains the option selected 
                        headerArray [3] = (byte) FileNameSize;     //  
    Fourth byte contains the FileName length  (not  
    used) 
                        headerArray [4] = encoded;                 //  
    Fifth byte contains Encoding Option 
                        headerArray [5] = ksz[0];                  //  
    6th/7th byte contains ksz info (1) 
                        headerArray [6] = ksz[1];                  //  
    (2) 
                        headerArray [7] = nsz[0];                  //  
    8th/9th byte contains nsz info (1) 
                        headerArray [8] = nsz[1];                  //  
    (2) 
                        headerArray [9] = arraysz[0];              //  
    10th/11th/12th byte contains arraysize info (1) 
                        headerArray [10] = arraysz[1];             //  
    (2) 
                        headerArray [11] = arraysz[2];             //  
    (3) 
                        headerArray [12] = (byte) 69;              //  
    Handshake Packet Queue (not used) 
                        MoteIF mote = new      
    MoteIF(PrintStreamMessenger.err); 
 
                        for(int redundancy = 4; redundancy > 0;   
    redundancy--) 
                        {     
 
                              for ( int i = 13; i < 29 ; i++)    //  
     Clear the rest of the payload 
                              {     
                                  headerArray [i] = 00; 
                              }     
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                              for( int i = 0; i < headerArray.length;  
     i++) 
                              System.out.print(" " + (headerArray[i])); 
 
                              for (int i = 0; i < packet.dataLength();  
     i++) // This boundary is fixed due to 29  
     bytes limitation by AM 
                              { 
                                  int c = headerArray[i]; 
                                  packet.set_action(i,c);      
         // Contents in packet is now   
         Hexadecimal 
                                                  
         packet.set_seqno(sequenceNo);  
         // i points to the start of the array 
                                  count = i+1;     
              // Characters counter 
                              } 
 
                              System.out.println("\n"); 
 
 
                              Thread.sleep( delay2 ); 
                              mote.send(TOS_BCAST_ADDR, packet); 
                              Thread.sleep( delay2 ); 
                      }  
                      //  End of handshake packet transmission 
                      //  ------------------------------------------ 
       
                      //  Now transmitting data packets 
 
                      for (int y=0; y < numblocks; y++)               
       // Out loop for transmitting all of the data  
       blocks 
                      {   
                          packetcount = n; 
                          int TotalPacketCount = 0;               
      // Will be used to store packet # 
                          bytesCopied = 0; 
                          System.out.println("Sending block: " +   
      (y+1)+" of " +numblocks); 
                          for ( ; packetcount > 0; packetcount--)    
                          { 
                             sequenceNo = restoreSequenceNo(); 
                             sequenceNo++; 
                             packet.set_seqno(sequenceNo); 
                             //System.out.print("\nThis is the payload  
         sequence number :" +sequenceNo); 
 
                             //System.out.println("\nSending Packet  
         Number :" + (TotalPacketCount+1)); 
 
                             saveSequenceNo(sequenceNo); 
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                             queueArray[0] = (byte) y;               
         // Storing Block number to be sent  
       
 
                             byte[] countsz =  new byte[]        //   
         Convert n to 2 bytes 
                             { 
                                 (byte)(TotalPacketCount >>> 8), 
                                 (byte) TotalPacketCount 
                             }; 
 
                             queueArray[1] = (byte) countsz[0];               
         // Storing 2 byte Packet Number 
                             queueArray[2] = (byte) countsz[1]; 
 
 
                             for ( int counter = 3; (counter < 29) ;  
         counter++) 
                             { 
                                queueArray [counter] =    
       repair[y][bytesCopied];   // Conversion 
       to byte array of Data 
                                bytesCopied++;   
                                                    
       //System.out.println(counter+" "+y+"  
       "+bytesCopied+" "+); 
                             } 
                             //bytesCopied--; 
 
                             // --------------------------------------- 
                             // Send Packets 
 
                             for (int redundancy = 1; redundancy > 0;  
         redundancy--)       // Sending Packets 
                             { 
                             for (int i = 0; i < packet.dataLength();  
         i++) 
                             { 
                             //byte c = queueArray[i]; 
                             //j = (int) c;            
         // j contains the decimal integer  
                                                            
         packet.set_action(i,queueArray[i]);          
         // Contents in packet is now Hexadecimal 
                                                            
         //packet.set_seqno(sequenceNo);         
         // i points to the start of the array 
                                                                                       
         // j is the contents of the array    
                                                            
         //System.out.print((packet.dataGet()[i])+  
         " "); 
                             count = i+1;                 //  
         Characters counter 
                                               } 
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                             Thread.sleep( delay ); 
                                                                          
         mote.send(TOS_BCAST_ADDR, packet); 
                          }  // End transmission loop    
 
                          saveSequenceNo(sequenceNo); 
                          TotalPacketCount++; 
                     }  //  End inner for loop 
                }  //  End Block Tx for loop 
 
                // ----------------------------------------------- 
                // Now transmitting a termination packet 
 
                sequenceNo = restoreSequenceNo(); 
                sequenceNo++; 
                packet.set_seqno(sequenceNo); 
                System.out.print("\nThis is the termpacket sequence     
      number: " +sequenceNo); 
                saveSequenceNo(sequenceNo); 
                byte[] termArray = new byte[29]; 
 
                System.out.println("\nSending Terminating Packet"); 
                termArray [1] = (byte) 69;         // Flags 
                termArray [2] = (byte) 69;    //  
                termArray [3] = (byte) 69;    //  
 
 
                for(int redundancy = 10; redundancy > 0; redundancy--) 
                {     
 
                    for ( int i = 4; i < 29 ; i++)    // Clear the rest 
     of the payload 
                    {     
                        termArray [i] = 00; 
                    }     
 
                    for( int i = 0; i < termArray.length; i++) 
                        System.out.print(" " + (termArray[i])); 
 
                    for (int i = 0; i < packet.dataLength(); i++) //  
          This boundary is fixed due to 29 bytes limitation  
          by AM 
                    { 
                       int c = termArray[i]; 
                       packet.set_action(i,c);       //  
        Contents in packet is now Hexadecimal 
                                                  
        packet.set_seqno(sequenceNo);   //   
        i points to the start of the array 
                       count = i+1;           //  
        Characters counter 
                                    } 
 
                       System.out.println("\n"); 
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                       Thread.sleep( delay ); 
                       mote.send(TOS_BCAST_ADDR, packet); 
                       Thread.sleep( delay ); 
 
                    }   // end for loop      
      
                         
                } // end if (encoded) 
                       
                //  ------------------------------------------------ 
                //  ------------------------------------------------ 
                         
                else if (encoded == 1)  // if non-encoded 
                { 
                   //  This routine is to send out the handshake   
         packet. To inform receiver, how many 
                   //  packets to expect and bytes of padding required.  
    Also sent, the repair packet index 
 
                   sequenceNo = restoreSequenceNo(); 
                   sequenceNo++; 
                   packet.set_seqno(sequenceNo); 
                   System.out.print("\nThis is the headerpacket   
         sequence number: " +sequenceNo); 
                   saveSequenceNo(sequenceNo);  
 
                   System.out.println("\nSending Header Packet"); 
                   headerArray [0] = (byte) sequenceNo;       //   
         Sequence number 
                   headerArray [1] = (byte) TerminalID;       // Second 
         byte contains the Terminal ID 
                   headerArray [2] = (byte) optionSelect;     // Third  
         byte contains the option selected 
                   headerArray [3] = (byte) FileNameSize;     // Fourth 
    byte contains the FileName length  (not used) 
                   headerArray [4] = encoded;                // Fifth 
    byte contains Encoding Option 
                   headerArray [5] = ksz[0];                  //   
    6th/7th byte contains ksz info (1) 
                   headerArray [6] = ksz[1];                  // (2) 
                   headerArray [7] = nsz[0];                  //   
         8th/9th byte contains nsz info (1) 
                   headerArray [8] = nsz[1];                  // (2) 
                   headerArray [9] = arraysz[0];              //   
    10th/11th/12th byte contains arraysize info (1) 
                   headerArray [10] = arraysz[1];             // (2) 
                   headerArray [11] = arraysz[2];             // (3) 
                   headerArray [12] = (byte) 69;              //   
    Handshake Packet Queue (not used) 
                   MoteIF mote = new MoteIF(PrintStreamMessenger.err); 
 
                   for(int redundancy = 4; redundancy > 0; redundancy-- 
    ) 
                   {     
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                     for ( int i = 13; i < 29 ; i++)               
      // Clear the rest of the payload 
                     {     
                        headerArray [i] = 00; 
                     }     
 
                     for( int i = 0; i < headerArray.length; i++) 
                       System.out.print(" " + (headerArray[i])); 
 
                     for (int i = 0; i < packet.dataLength(); i++)      
      // This boundary is fixed due to 29 bytes   
           limitation by AM 
                     { 
                       int c = headerArray[i]; 
                       packet.set_action(i,c);            //  
        Contents in packet is now Hexadecimal 
                                                  
             packet.set_seqno(sequenceNo);        //  
             i points to the start of the array 
                       count = i+1;          // Characters  
        counter 
                     } 
 
                     System.out.println("\n"); 
                     Thread.sleep( delay ); 
                     mote.send(TOS_BCAST_ADDR, packet); 
                     Thread.sleep( delay ); 
                  }  
 
                  //  End of handshake packet transmission 
                  //  ----------------------------------------------- 
       
                  //  Now transmitting data packets 
 
                            
                  packetcount = k; 
                  int TotalPacketCount = 0;                            
        // Will be used to store packet # 
                  bytesCopied = 0; 
                  for ( ; packetcount > 0; packetcount--)    
                  { 
                     sequenceNo = restoreSequenceNo(); 
                     sequenceNo++; 
                     packet.set_seqno(sequenceNo); 
                     //System.out.print("\nThis is the payload sequence 
           number :" +sequenceNo); 
 
                     //System.out.println("\nSending Packet Number :" + 
     (TotalPacketCount+1)); 
 
                    saveSequenceNo(sequenceNo); 
                    //queueArray[1] = (byte) TerminalID;               
     // Storing Block number to be sent   
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                    byte[] countsz =  new byte[]               
     // Converting packet number to two bytes 
                    { 
                       (byte)(TotalPacketCount >>> 8), 
                       (byte) TotalPacketCount 
                 }; 
 
                 queueArray[0] = (byte) countsz[0];               
            // Storing 2 byte Packet Number 
                 queueArray[1] = (byte) countsz[1]; 
                                     
                 for ( int counter = 2; (counter < 29) && (bytesCopied  
       < arraysize) ; counter++) 
                 { 
                    queueArray [counter] = source[bytesCopied];           
     // Conversion to byte array of Data 
                    bytesCopied++;   
                                                 
          //System.out.println(counter+" "+y+"    
          "+bytesCopied+" "+); 
                 } 
                 //bytesCopied--; 
 
 
                 // --------------------------------------------------- 
                 // Send Packets 
 
                 for (int redundancy = 1; redundancy > 0; redundancy--)       
       // Sending Packets 
                 { 
                   for (int i = 0; i < packet.dataLength(); i++) 
                   { 
                      //byte c = queueArray[i]; 
                      //j = (int) c;            // j  
            contains the decimal integer  
                                                         
            packet.set_action(i,queueArray[i]);          
       // Contents in packet is now Hexadecimal 
                                                         
            //packet.set_seqno(sequenceNo);         
       // i points to the start of the array 
                                                                                       
       // j is the contents of the array    
                                                         
       //System.out.print((packet.dataGet()[i])+ " "); 
                      count = i+1;                 //   
            Characters counter 
                   } 
                   Thread.sleep( delay ); 
                   //System.out.print("\n"); 
                   //System.out.println("\n"); 
                   mote.send(TOS_BCAST_ADDR, packet); 
                 }  // End transmission loop    
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                 saveSequenceNo(sequenceNo); 
                 TotalPacketCount++; 
              }  //  End inner for loop 
 
 
              // ------------------------------------------------------ 
              // Send terminating packet   
                             
              sequenceNo = restoreSequenceNo(); 
              sequenceNo++; 
              packet.set_seqno(sequenceNo); 
              System.out.print("\nThis is the termpacket sequence  
         number: " +sequenceNo); 
              saveSequenceNo(sequenceNo); 
              byte[] termArray = new byte[29]; 
 
              System.out.println("\nSending Terminating Packet"); 
              termArray [1] = (byte) 69;         // Flags 
              termArray [2] = (byte) 69;    //  
              termArray [3] = (byte) 69;    //  
 
 
              for(int redundancy = 5; redundancy > 0; redundancy--) 
              {     
 
                for ( int i = 4; i < 29 ; i++)    // Clear the rest of  
      the payload 
                {     
                   termArray [i] = 00; 
                }     
 
                for( int i = 0; i < termArray.length; i++) 
                   System.out.print(" " + (termArray[i])); 
 
                for (int i = 0; i < packet.dataLength(); i++) // This  
      boundary is fixed due to 29 bytes limitation by AM 
                { 
                   int c = termArray[i]; 
                   packet.set_action(i,c);        // Contents  
              in packet is now Hexadecimal 
                                                  
         packet.set_seqno(sequenceNo);    //  
                   i points to the start of the array 
                   count = i+1;     //    
         Characters counter 
                } 
 
                System.out.println("\n"); 
 
 
                Thread.sleep( delay ); 
                mote.send(TOS_BCAST_ADDR, packet); 
                Thread.sleep( delay ); 
 
             }   // end for loop      
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         }  // end else for non-encoded option 
                         
                         
       }  // end try statement 
  catch(Exception e)  
  { 
   e.printStackTrace(); 
  } 
  // ---> 
                  
              
       System.out.println(" ----------------End Of Server Service -----  
  ----------" ); 
    
       System.out.println("  ");  
                 
                 
                 
 
      }  // End infinite While Loop 
             
     }  // End Main Class Try Statement 
     catch( Exception e ) 
     { 
          System.out.println( e ); 
     } 
   }  // End Main Class 
     
}  // End SNAILserverTest_fec 
 

C. SNAIL LISTEN CODE 

// SNAILlistenTest3_fec.java 
// 
// Java program takes in data from the sensor network and decodes if  
// necessary.  Resulting data is displayed or stored as a file. 
// 
// Last Updated by Thomas Childers  26Nov08  
 
// $Id: Listen.java,v 1.5 2004/08/19 00:13:49 idgay Exp $ 
 
/*          
 * "Copyright (c) 2000-2003 The Regents of the University  of 
California.   
 * All rights reserved. 
 * 
 * Permission to use, copy, modify, and distribute this software and 
its 
 * documentation for any purpose, without fee, and without written 
agreement is 
 * hereby granted, provided that the above copyright notice, the 
following 
 * two paragraphs and the author appear in all copies of this software. 
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 *  
 * IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY 
PARTY FOR 
 * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES 
ARISING OUT 
 * OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE 
UNIVERSITY OF 
 * CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
 *  
 * THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, 
 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 
MERCHANTABILITY 
 * AND FITNESS FOR A PARTICULAR PURPOSE.  THE SOFTWARE PROVIDED 
HEREUNDER IS 
 * ON AN "AS IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO 
OBLIGATION TO 
 * PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR 
MODIFICATIONS." 
 * 
 * Copyright (c) 2002-2003 Intel Corporation 
 * All rights reserved. 
 * 
 * This file is distributed under the terms in the attached INTEL-
LICENSE      
 * file. If you do not find these files, copies can be found by writing 
to 
 * Intel Research Berkeley, 2150 Shattuck Avenue, Suite 1300, Berkeley, 
CA,  
 * 94704.  Attention:  Intel License Inquiry. 
 */ 
 
import java.io.*; 
import java.net.*; 
import net.tinyos.util.*; 
import net.tinyos.packet.*; 
import java.util.*; 
import javax.swing.*; 
 
import com.onionnetworks.fec.FECCode; 
import com.onionnetworks.fec.FECCodeFactory; 
import com.onionnetworks.util.Buffer; 
import java.awt.image.BufferedImage; 
import javax.imageio.ImageIO; 
 
public class SNAILlistenTest3_fec { 
   
  public static void main(String args[]) throws IOException  
  { 
 if (args.length > 0)  
 { 
            System.err.println("usage: java net.tinyos.tools.Listen"); 
     System.exit(2); 
 } 
  
 Socket clientSocket; 
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 PacketSource reader = BuildSource.makePacketSource(); 
 if (reader == null) { 
     System.err.println("Invalid packet source (check your MOTECOM  
     environment variable)"); 
     System.exit(2); 
 } 
 
 BufferedWriter output = null; 
 FileOutputStream outputFile = null; 
  
 try 
        { 
      byte TerminalID = '3'; 
             reader.open(PrintStreamMessenger.err); 
      byte sequenceNo = 0; 
      byte [] HandshakePkt = new byte[34]; 
      byte [] buffer = new byte[34]; 
    
      while(true) 
      {  
             System.out.println("---------------------------------- 
   -------------------------------------------"); 
                 System.out.println("Waiting ...."); 
     int j = 0; 
   int d = 0; 
   int ascii = 0; 
   int packetcount = 0; 
   int reconstructbuffer = 0; 
   int TxScanFlag = 0; 
    
   char NewArray[] = null; 
   String outputData = new String(); 
   String FinalOutputData = new String(); 
      
   ArrayList Reconstruct = new ArrayList(); // will use array 
   list Reconstruct to get back all information 
   String FileName = new String();  
    
   HandshakePkt = reader.readPacket(); // read the packet  
   count for 1 time only 
    
             // If a redundant handshake packet or an extra data   
   packet, drop packet 
   while((HandshakePkt[5] == buffer[5]) || (HandshakePkt[17]   
   != 69)) 
   { 
      HandshakePkt = reader.readPacket(); // read the packet  
      count for 1 time only 
      //System.out.print("\nExtra Data Packet or Not a   
      Handshake Packet (dropped)\n"); 
   } 
   char optionSelect = (char) HandshakePkt[7]; 
  
   sequenceNo = HandshakePkt[5];  // Update sequence number 
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   //System.out.print("Received Sequence No: "    
   +Integer.toHexString(sequenceNo)); 
    
   //System.out.print("\nTest " +HandshakePkt[6]);     
   //HandshakePkt[6] = Packet number 
   //System.out.print("\nSystem Terminal ID:" +(char)   
   TerminalID); 
    
   if(HandshakePkt[6] == TerminalID) 
   { 
      System.out.print("\nRepeated Packet Dropped\n"); 
   } 
 
  
   if(HandshakePkt[6] != (TerminalID)) // HandshakePkt[6] is  
        the Terminal ID 
   { 
     //System.out.print(" This message is from other terminal 
     "); 
    
     System.out.println("\nOption Selected\t: "    
     +optionSelect); 
    
     int FileNameSize = HandshakePkt[8];      // This is to  
     convert char in HandshakePkt into integer 
     TxScanFlag = HandshakePkt[9];    // This   
        is to signify whether heartbeat scan is requested or  
     initiated 
     
     // if(FileNameSize != 0) 
     //   System.out.print("\nFileName Size\t: "    
          +(char)FileNameSize); 
                   
               // ----------------------------------------------------- 
               // Find out size of array & number of packets needed to  
        decode 
                                 
               int arraysize = ((HandshakePkt[14] & 0xFF) <<16) 
               + ((HandshakePkt[15] & 0xFF) << 8) 
               + (HandshakePkt[16] & 0xFF); 
                                                                 
               int k = ((HandshakePkt[10] & 0xFF) << 8) 
               + (HandshakePkt[11] & 0xFF); 
                                 
               int n = ((HandshakePkt[12] & 0xFF) << 8) 
               + (HandshakePkt[13] & 0xFF); 
                                 
               byte encoded = HandshakePkt[9]; 
                                 
     Integer.toHexString(HandshakePkt[i]) ); 
   
    
              // --------------------------------------------------- 
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              if (encoded == 0) 
              { 
                // --------------------------------------------------- 
                // FEC Decoding Process for all incoming packets 
                int packetsize = 26;                             // 29  
      bytes minus 3 bytes overhead 
 
                int block = k * packetsize;                      //  
      Image block size 
                int numblocks = (arraysize / block) + 1;         //  
           Number of blocks we will Rx 
                if ((arraysize % block) == 0) 
                   numblocks = numblocks - 1; 
                int[][] receiverIndex = new int[numblocks][n];   //  
      Index for all packets received 
 
                // create our fec code 
                FECCode fec =        
      FECCodeFactory.getDefault().createFECCode(k,n); 
 
                System.out.println("Reading in "+(n*numblocks)+"   
      Encoded Packet(s)"); 
                // ---------------------------------------------------- 
                // Need to collect all incoming packets now and store  
      in a byte array 
                byte[][] received = new byte[numblocks][n*packetsize];      
      // Storage for data read in 
                int[][] expected = new int[numblocks][n];               
      // Keeps track of which data read in 
                byte EOP1 = 0;               
      //  Flag for terminating packet 
                byte EOP2 = 0; 
                byte EOP3 = 0; 
                int redundant = 0; 
                boolean condition = true; 
                int packetcounter = 0; 
                int[] blockindex = new int[numblocks];               
      // Keep track of number of packets read ... 
                                                                                       
      // in for each block 
                for (int i=0;i<numblocks;i++)                
      // zero out  (necessary ?) 
                blockindex[i] = 0;  
 
                try 
                { 
                  buffer = reader.readPacket();               
        // Read in packet 
                  EOP1 = buffer[6]; 
                  EOP2 = buffer[7]; 
                  EOP3 = buffer[8]; 
                  int blocknum = buffer[5];               
        // Find out block number 
                  int packetnum = ((buffer[6] & 0xFF) << 8)               
        // Find out packet number 
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                  + (buffer[7] & 0xFF); 
                  while (buffer[17] == 69)               
        // Catching extra handshake pckts 
                  {                                                
                     buffer = reader.readPacket();               
           // Read in packet 
                     EOP1 = buffer[6]; 
                     EOP2 = buffer[7]; 
                     EOP3 = buffer[8]; 
                     blocknum = buffer[5];               
      // Find out block number 
                     packetnum = ((buffer[6] & 0xFF) << 8)               
      // Find out packet number 
                     + (buffer[7] & 0xFF); 
                  } 
                                         
                  while ((packetnum > (n-1)) || (blocknum > (numblocks- 
   1))) 
                  { 
                    buffer = reader.readPacket();                  //  
     Read in packet 
                    EOP1 = buffer[6]; 
                    EOP2 = buffer[7]; 
                    EOP3 = buffer[8]; 
                    packetnum = ((buffer[5] & 0xFF) << 8)          //  
     Find out packet number 
                    + (buffer[6] & 0xFF); 
                  } 
 
                  condition = (EOP1==69) && (EOP2==69) && (EOP3==69); 
 
                  while (condition != true) 
                  { 
                    if (buffer.length < 34)          // Trying to catch 
          incomplete packets 
                    { 
                      buffer = reader.readPacket();                  // 
       Read in packet 
                      EOP1 = buffer[6]; 
                      EOP2 = buffer[7]; 
                      EOP3 = buffer[8]; 
                      packetnum = ((buffer[5] & 0xFF) << 8)          // 
       Find out packet number 
                      + (buffer[6] & 0xFF); 
                      condition = (EOP1==69) && (EOP2==69) &&   
            (EOP3==69); 
                                                
                      while ((packetnum > (n-1)) || (blocknum >   
            (numblocks-1))) 
                      { 
                        buffer = reader.readPacket();                   
         // Read in packet 
                        EOP1 = buffer[6]; 
                        EOP2 = buffer[7]; 
                        EOP3 = buffer[8]; 
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                        packetnum = ((buffer[5] & 0xFF) << 8)           
         // Find out packet number 
                        + (buffer[6] & 0xFF); 
                        condition = (EOP1==69) && (EOP2==69) &&   
         (EOP3==69); 
                      } 
                    } 
                                             
                                                 
          expected[blocknum][packetnum] = 1; 
                    int countbyte = 0; 
                    packetcounter++; 
                                                
                    sequenceNo = (byte) packetnum;                // 
     Update sequence No 
 
                    for (int i = 8; i < 34 ; i++)                // 
          Strip off headers 
                    { 
                       received[blocknum][(packetsize… 
        *blockindex[blocknum]) + (i-8)] = buffer[i]; 
                    }   // End for loop 
 
                                                 
     receiverIndex[blocknum][blockindex[blocknum]] =  
     packetnum; 
                    blockindex[blocknum]++; 
                    buffer = reader.readPacket();                       
               // Read in next packet 
                    EOP1 = buffer[6];                                   
     // Check if terminating packet 
                    EOP2 = buffer[7]; 
                    EOP3 = buffer[8]; 
                    condition = (EOP1==69) && (EOP3==69) && (EOP3==69); 
                    blocknum = buffer[5];                               
          // Find out block number 
                    packetnum = ((buffer[6] & 0xFF) << 8)               
     // Find out packet number 
                    + (buffer[7] & 0xFF); 
                    if (condition == true) 
                    { 
                      blocknum = 0; 
                      packetnum = 0; 
                    } 
                                              
                    while ((packetnum > (n-1)) || (blocknum >   
          (numblocks-1))) 
                    { 
                      buffer = reader.readPacket();                   
       // Read in packet 
                      EOP1 = buffer[6]; 
                      EOP2 = buffer[7]; 
                      EOP3 = buffer[8]; 
                      packetnum = ((buffer[5] & 0xFF) << 8)           
                      // Find out packet number 
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                      + (buffer[6] & 0xFF); 
                      condition = (EOP1==69) && (EOP2==69) &&   
            (EOP3==69); 
                      if (condition == true) 
                      { 
                         blocknum = 0; 
                         packetnum = 0; 
                      } 
                   } 
                   System.out.println(blocknum + " " + packetnum); 
                   while ((expected[blocknum][packetnum] == 1) &&  
    (condition != true)) 
                   { 
                                                    
         //System.out.print("\nRedundant Data Packet   
         dropped\n"); 
                   redundant++; 
                   buffer = reader.readPacket(); 
                   EOP1 = buffer[6];                               
    // Check if terminating packet 
                   EOP2 = buffer[7]; 
                   EOP3 = buffer[8]; 
                   blocknum = buffer[5];                           
    // Find out block number 
                   packetnum = ((buffer[6] & 0xFF) << 8)           
    // Find out packet number 
                   + (buffer[7] & 0xFF); 
                                                    
         //System.out.println(blocknum+" "+packetnum); 
                  condition = (EOP1==69) && (EOP3==69) && (EOP3==69); 
                  if (condition == true) 
                  { 
                     blocknum = 0; 
                     packetnum = 0; 
                  } 
                }  // end redundant packet check 
              }  // End try 
              } catch (IOException e) {}  
              System.out.println(packetcounter +" out of " +   
    (n*numblocks) + " packets received");     
              System.out.println(redundant + " redundant packets"); 
                                     
              // ------------------------------------------------------ 
              // Need to find out if we have enough packets read in for 
    each block to decode 
 
              boolean ok = true; 
              for (int i=0; i<numblocks; i++) 
              if (blockindex[i] < k) 
                 ok = false; 
 
 
              // ------------------------------------------------------ 
 
             if (ok == true)  // Means enough data read in 
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             { 
                // Decoding Process 
                System.out.println("Message Received: Decoding..."); 
                byte[] received2 = new byte[arraysize];               
      // All data minus padding 
                Buffer[][] receiverBuffer = new Buffer[numblocks][n];   
      // k subset of packets 
 
                for (int z=0; z < numblocks; z++) 
                { 
 
                   System.out.println("Decoding Block: " +(z+1)+" of "  
    +numblocks); 
                   //create our Buffers for the encoded data 
                   for (int i = 0; i < n; i++) 
                   { 
                      receiverBuffer[z][i] = new Buffer(received[z],  
       i*packetsize, packetsize); 
                   } 
 
                   //finally we can decode 
                                                 
    fec.decode(receiverBuffer[z], receiverIndex[z]); 
 
                 }     
 
                 // Now in the received array we have the decoded  
       blocks of data but with padding 
                 // Need to remove the padding 
 
                 if (numblocks==1) 
                                                 
         System.arraycopy(received[0], 0, received2, 0,  
    arraysize); 
                 else 
                 {     
                    for (int i=0; i< (numblocks -1); i++) 
                    { 
                                                    
        System.arraycopy(received[i], 0, received2 ,  
        i*block, block);                                        
                    } 
                    System.out.println(""); 
                                              
          System.arraycopy(received[(numblocks -1)], 0,  
            received2, ((numblocks-1)*block) 
                    , block - ((numblocks*block)- arraysize)); 
                 } 
 
                 // End decoding process 
                 // ---------------------------------------------------                 
 
       if(optionSelect == '1') 
                 { 
                   // Print out the message 
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                  System.out.println("TEXT MSG"); 
                  System.out.println("Total Characters: " +arraysize); 
                                           String t = new     
        String(received2 , "Cp1252"); 
                                                
   System.out.println("\nMessage Received: " +t); 
                  }//End of IF loop for Option 1 
 
                  else if(optionSelect == '2') 
                  { 
                    System.out.println("Text File TX"); 
 
                    // Let user choose save location 
                    JFileChooser fileChooser = new JFileChooser("."); 
                    int status = fileChooser.showSaveDialog(null); 
                    String filename = new String(); 
                    filename = "C:/Documents and     
          Settings/Administrator/My Documents/My    
          Pictures/test.jpg"; 
                    if (status == JFileChooser.APPROVE_OPTION) 
                    { 
                       File selectedFile =      
        fileChooser.getSelectedFile(); 
                                                    
        System.out.println("Saving to: " +    
        selectedFile.getPath()); 
                       filename = selectedFile.getPath(); 
                    } 
 
                    File fileOut; 
                    BufferedInputStream in = null; 
                    BufferedOutputStream out = null; 
 
                    try 
                    { 
                      out = new BufferedOutputStream(new    
       FileOutputStream(filename)); 
                      out.write(received2); 
                    }                                         
                    catch (IOException ex) 
                    { 
                      ex.printStackTrace(); 
                    }         
                    finally 
                    {            // closing the stream 
                      try 
                      { 
                       if (in != null) in.close(); 
                         if (out != null) out.close(); 
                      } 
                      catch (IOException ex) { ex.printStackTrace(); } 
                   }     
 
                   }  // End option 2 if portion              
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                   else if(optionSelect == '3') 
                   { 
                     System.out.println("Image TX"); 
                     // Let user choose save location 
                     String filename = new String(); 
                    filename = "C:/Documents and     
     Settings/Administrator/My Documents/My    
          Pictures/test.jpg"; 
//                  JFileChooser fileChooser = new JFileChooser("."); 
//                  int status = fileChooser.showSaveDialog(null); 
//                  if (status == JFileChooser.APPROVE_OPTION) 
//                  { 
//                    File selectedFile =      
            fileChooser.getSelectedFile(); 
//                                                    
            System.out.println("Saving to: " +    
       selectedFile.getPath()); 
//                    filename = selectedFile.getPath(); 
//                  } 
 
                    File fileOut; 
                    BufferedInputStream in = null; 
                    BufferedOutputStream out = null; 
 
                    try   // Write Image to a file 
                    { 
                       InputStream input = new      
        ByteArrayInputStream(received2); 
                       BufferedImage bi =      
        javax.imageio.ImageIO.read(input);  
                       File outputfile = new File(filename); 
                       ImageIO.write(bi, "jpeg", outputfile); 
                    }                                         
                    catch (IOException ex) 
                    { 
                       ex.printStackTrace(); 
                    }         
                    finally 
                    {            // closing the stream 
                      try 
                      { 
                        if (in != null) in.close(); 
                          if (out != null) out.close(); 
                      } 
                      catch (IOException ex) { ex.printStackTrace(); } 
                    }     
 
                 }  // End option 3 if portion 
              }  // end if true statement 
              else System.out.println("Not enough packets read in"); 
                            
           } // End if encoded  
           //  -----------------------------------------------------  
          else if (encoded == 1) 
          {     
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          //  ---------------------------------------------------------                
     //  --------------------------------------------------------- 
          //  Now for non-encoded data 
                                   
          // ---------------------------------------------------------- 
         int count = k; 
         int packetcounter = 0; 
         int packetnum = 0; 
         byte EOP1 = 0;                          //  Flag 
         byte EOP2 = 0; 
         byte EOP3 = 0; 
         boolean condition = true; 
         System.out.println("Reading in "+k+" Packet(s)..."); 
         byte[] received = new byte[k*27]; 
         byte[] received2 = new byte[arraysize]; 
         int[] expected = new int[k]; 
         int countbyte = 0; 
         int redundant = 0; 
                                
         try 
         { 
            buffer = reader.readPacket();                      // Read    
  in packet 
            if (buffer[17] == 69)                              // Catch 
    for extra handshake packet 
            buffer = reader.readPacket(); 
            EOP1 = buffer[6]; 
            EOP2 = buffer[7]; 
            EOP3 = buffer[8]; 
            packetnum = ((buffer[5] & 0xFF) << 8)              // Find  
  out packet number 
            + (buffer[6] & 0xFF); 
            while (buffer[17] == 69)                           //  
       Catching extra handshake pckts 
            {                                                
              buffer = reader.readPacket();                  // Read in 
    packet                                             
    EOP1 =  buffer[6]; 
              EOP2 = buffer[7]; 
              EOP3 = buffer[8]; 
              packetnum = ((buffer[5] & 0xFF) << 8)          // Find  
    out packet number 
              + (buffer[6] & 0xFF); 
            } 
                                         
            condition = (EOP1==69) && (EOP2==69) && (EOP3==69); 
 
            while (condition != true) 
            { 
              if (condition != true) 
              { 
               if (buffer.length < 34)          // Trying to catch  
     incomplete packets 
                                               { 
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               buffer = reader.readPacket();                  // Read    
     in packet 
               EOP1 = buffer[6]; 
               EOP2 = buffer[7]; 
               EOP3 = buffer[8]; 
               packetnum = ((buffer[5] & 0xFF) << 8)          // Find  
     out packet number 
               + (buffer[6] & 0xFF); 
             } 
                                        
             expected[packetnum] = 1; 
             packetcounter++; 
             sequenceNo = (byte) buffer[5];            // Update  
   sequence No 
 
             for (int i = 7; i < 34 ; i++)            // Strip off 
   headers 
             { 
                                                      
      //System.out.println(packetnum + " " +countbyte + " " + 
      i + " " + redundant); 
                received[countbyte] = buffer[i]; 
                countbyte++; 
                                                   
             }   // End for loop     
                                          
             buffer = reader.readPacket();              // Read in next 
   packet 
             EOP1 = buffer[6];                          // Check if    
   terminating packet 
             EOP2 = buffer[7]; 
             EOP3 = buffer[8]; 
             packetnum = ((buffer[5] & 0xFF) << 8)      // Find out  
   packet number 
             + (buffer[6] & 0xFF); 
             condition = (EOP1==69) && (EOP3==69) && (EOP3==69); 
             if (condition == true) 
             packetnum = 0; 
             } // end if  
                                             
             while ((expected[packetnum] == 1) && (condition != true))         
   // Catching redundant packets 
             { 
                                                     
     //System.out.print("\nRedundant Data Packet dropped\n"); 
               redundant++; 
               buffer = reader.readPacket(); 
               EOP1 = buffer[6];                         // Check if  
     terminating packet 
               EOP2 = buffer[7]; 
               EOP3 = buffer[8]; 
               packetnum = ((buffer[5] & 0xFF) << 8)              //  
     Find out packet number 
               + (buffer[6] & 0xFF); 
               condition = (EOP1==69) && (EOP3==69) && (EOP3==69); 
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               if (condition == true) 
                  packetnum = 0; 
              }                                            
           }  // End while 
           System.arraycopy(received, 0, received2, 0, arraysize); 
        } catch (IOException e) {}                                     
                               
        System.out.println(packetcounter+ " out of " +k+ " packets   
   received"); 
        System.out.println(redundant+  " redundant packets"); 
 
     
        // ------------------------------------------------------------ 
        // Non-encoded packets received, now to save/display 
                                    
        if (packetcounter == k) 
        { 
          if(optionSelect == '1') 
          { 
            // Print out the message 
            System.out.println("TEXT MSG"); 
                                                      
  System.out.println("Total Characters: " +arraysize); 
            String t = new String(received2 , "Cp1252"); 
                                                    
  System.out.println("\nMessage Received: " +t); 
            }//End of IF loop for Option 1 
 
            else if(optionSelect == '2') 
            { 
                                                    
  System.out.println("Text File TX"); 
 
            // Let user choose save location 
           JFileChooser fileChooser = new JFileChooser("."); 
           int status = fileChooser.showSaveDialog(null); 
           String filename = new String(); 
           filename = "C:/Documents and Settings/Administrator/My  
      Documents/My Pictures/test.jpg"; 
           if (status == JFileChooser.APPROVE_OPTION) 
           { 
              File selectedFile = fileChooser.getSelectedFile(); 
              System.out.println("Saving to: " +     
    selectedFile.getPath()); 
              filename = selectedFile.getPath(); 
           } 
 
           File fileOut; 
           BufferedInputStream in = null; 
           BufferedOutputStream out = null; 
 
           try 
           { 
              out = new BufferedOutputStream(new     
    FileOutputStream(filename)); 
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              out.write(received2); 
           }                                         
           catch (IOException ex) 
           { 
             ex.printStackTrace(); 
           }         
         finally 
         {            // closing the stream 
           try 
           { 
             if (in != null) in.close(); 
             if (out != null) out.close(); 
           } 
           catch (IOException ex) { ex.printStackTrace(); } 
         }     
      }  // End option 2 if portion              
 
      else if(optionSelect == '3') 
      { 
           System.out.println("Image TX"); 
           // Let user choose save location 
           String filename = new String(); 
           filename = "C:/Documents and Settings/Administrator/My  
      Documents/My Pictures/test.jpg"; 
      // JFileChooser fileChooser = new JFileChooser("."); 
      // int status = fileChooser.showSaveDialog(null); 
      // if (status == JFileChooser.APPROVE_OPTION) 
      // { 
      //   File selectedFile = fileChooser.getSelectedFile(); 
      //                                                
     System.out.println("Saving to: " +     
     selectedFile.getPath()); 
      //  filename = selectedFile.getPath(); 
      // } 
 
          File fileOut; 
          BufferedInputStream in = null; 
          BufferedOutputStream out = null; 
 
          try   // Write Image to a file 
          { 
             InputStream input = new ByteArrayInputStream(received2); 
             BufferedImage bi = javax.imageio.ImageIO.read(input);  
             File outputfile = new File(filename); 
             ImageIO.write(bi, "jpeg", outputfile); 
          }                                         
          catch (IOException ex) 
          { 
             ex.printStackTrace(); 
          }         
          finally 
          {            // closing the stream 
            try 
            { 
               if (in != null) in.close(); 
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                if (out != null) out.close(); 
             } 
             catch (IOException ex) { ex.printStackTrace(); } 
           }     
 
         }  // End option 3    
      }  // end if not enough packets 
      else if (packetcounter < k) 
      System.out.println("Not enough packets received to process"); 
     }   // End if non-encoded loop 
    } //End of Terminal ID Check Loop  
                 
   } // End of while infinite loop 
 
  } // End of try statement 
  catch (IOException e)  
  { 
     System.err.println("Error on " + reader.getName() + ": " + e); 
  } 
 }  // End main Class 
 
}  // End SnailListenTest_fec 
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