

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

FILE TRANSFER WITH ERASURE CODING OVER
WIRELESS SENSOR NETWORKS

by

Thomas Edward Childers

March 2009

 Thesis Advisor: John McEachen
 Thesis Co-Advisor: Murali Tummala

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
March 2009

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE File Transfer with Erasure Coding over Wireless
Sensor Networks
6. AUTHOR(S) Thomas Edward Childers

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
In order to provide a step towards the goal of passing TCP/IP traffic across wireless sensor networks, a method for file

transfer utilizing forward error correction (FEC) is studied. Previous work in the area of terminal communication across the sensor
network is expanded upon to include file transfer in order to provide a more capable channel and a basis for testing the
performance obtained through erasure coding. The results of the FEC implementation are examined using multiple sensor network
configurations. The study is completed with recommendations for continued work towards developing tunneled TCP/IP data
transfer across wireless sensor networks.

15. NUMBER OF
PAGES

103

14. SUBJECT TERMS

Wireless Communication, Wireless Sensor Networks, Data Transmission

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

FILE TRANSFER WITH ERASURE CODING OVER WIRELESS SENSOR
NETWORKS

Thomas Edward Childers

Lieutenant, United States Navy
Bachelor of Science in Electrical Engineering, Georgia Institute of Technology, 1997

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
March 2009

Author: Thomas Edward Childers

Approved by: John C. McEachen
Thesis Advisor

Murali Tummala
Thesis Co-Advisor

Jeffrey B. Knorr
Chairman, Department of Electrical and Computer Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

In order to provide a step towards the goal of passing TCP/IP traffic across

wireless sensor networks, a method for file transfer utilizing forward error correction

(FEC) is studied. Previous work in the area of terminal communication across the sensor

network is expanded upon to include file transfer in order to provide a more capable

channel and a basis for testing the performance obtained through erasure coding. The

results of the FEC implementation are examined using multiple sensor network

configurations. The study is completed with recommendations for continued work

towards developing tunneled TCP/IP data transfer across wireless sensor networks.

.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. THESIS MOTIVATION...2
B. THESIS OBJECTIVE...3

1. File Transfer Capability ..4
2. Implement Forward Error Correction to Improve Reliability4
3. Provide Recommendations for Follow-on Work4

C. RELATED WORK ..5
1. Forward Error Correction in Wireless Sensor Networks................5
2. Medium Access Control for Wireless Sensor Networks...................5
3. Tunneled Data Transmission Across Sensor Networks6

D. THESIS ORGANIZATION..6

II. WIRELESS SENSOR NETWORKS ...9
A. OVERVIEW OF WIRELESS SENSOR NETWORKS...............................9

1. Devices...9
2. Operating System...10
3. Communications Stack..10

B. WIRELESS SENSOR NETWORKS AS A TCP/IP NETWORK
BRIDGE..11
1. Benefits of Implementation ...11
2. Barriers for Implementation...12

C. CONTINUING DEVELOPMENT OF WIRELESS SENSOR
NETWORK ADAPTATION INTERFACE LAYER (SNAIL).................13
1. SNAIL Client Module..13
2. SNAIL Server Module...15
3. SNAIL Listen Module ...17

D. SUMMARY ..19

III. FORWARD ERROR CORRECTION IN WIRELESS SENSOR
NETWORKS..21
A. GENERAL OVERVIEW OF AVAILABLE FEC CORRECTION

METHODS ...21
1. Block Coding ..21
2. Convolutional Coding..22

B. ERASURE CODING...22
1. Erasure Coding Fundamentals...23
2. Erasure Code Based on Vandermonde Matrices............................25
3. Erasure Codes for Wireless Sensor Networks.................................26

C. PROPOSED SOLUTION..27
1. Onion Networks JAVA FEC Library ..27
2. SNAIL Server Modifications ..27
3. SNAIL Listen Modifications ...29

D. SUMMARY ..30

 viii

IV. EXPERIMENT DETAILS..31
A. EXPERIMENT SETUP...31

1. Hardware ..32
a. MICAz Sensor Motes ..33
b. MIB520 Parallel Programming Board34

2. Software ..34
B. TERMINAL TO TERMINAL EXPERIMENT..35
C. ONE HOP EXPERIMENT ...37
D. TWO HOP EXPERIMENT..38
E. FEC PERFORMANCE OVER VARYING DISTANCES40
F. SUMMARY ..42

V. CONCLUSIONS AND RECOMMENDATIONS...43
A. CONCLUSIONS ..43
B. RECOMMENDATIONS...43

APPENDIX...45
A. SNAIL CLIENT CODE ..45
B. SNAIL SERVER CODE ...50
C. SNAIL LISTEN CODE ...65

LIST OF REFERENCES..81

INITIAL DISTRIBUTION LIST ...83

 ix

LIST OF FIGURES

Figure 1. Comparison of the OSI, TC/IP, and Typical WSN Stack................................11
Figure 2. SNAIL Client Flow Diagram...15
Figure 3. Packet structure of TinyOS (from [8])...16
Figure 4. SNAIL Server Flow Diagram ..17
Figure 5. Flow Diagram for SNAIL Listen Module ...18
Figure 6. Data Reconstruction in Erasure Coding (from [13])..23
Figure 7. Encoding / Decoding Systematic Code (from [13]) ..24
Figure 8. Anechoic Chamber used for the Experiment ...32
Figure 9. MICAz 2.4 GHz Mote ...33
Figure 10. MIB520 Interface Board ..34
Figure 11. Scenario 1 – Terminal to Terminal Communication35
Figure 12. Scenario 2 - Terminal to Terminal via One Hop ..37
Figure 13. Scenario 3 - Terminal to Terminal via Two Hops ..38
Figure 14. Desired Mote Coverage For Two Hop Test...39
Figure 15. Quadratic Fit Curves for Experimental Results ...41

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Available RF Power Levels for CC2240 Transmitter......................................34
Table 2. Terminal to Terminal JPEG Transmission Results..36
Table 3. One Hop JPEG Transmission Results..38
Table 4. Two Hop JPEG Transmission Results...39
Table 5. Effect of Varying Distances Upon Transmission Success...............................40

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ABBREVIATIONS AND ACRONYMS

ADC Analog-to-Digital Converter

ARQ Automated Repeat Request

CRC Cyclic Redundancy Check

DARPA Defense Advanced Research Projects Agency

DSN Distributed Sensor Networks

FEC Forward Error Correction

IDE Integrated Development Environment

JPEG Joint Photographic Expert Group

MAC Medium Access Control

RAM Random Access Memory

SNAIL Sensor Network Adaptation Interface Layer

SNR Signal-to-Noise Ratio

WSN Wireless Sensor Network

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

I am very thankful for the guidance and direction from Professor John McEachen,

who allowed me to pursue the interesting topic of sensor networking and provided an

ideal amount of experimental freedom during the research stages of this project.

The subject matter expertise obtained from Professor Murali Tummala greatly

helped in the development of my research.

I would also like to thank Bob Broadston for his guidance and the use of the

anechoic chamber which made the collection of more reliable experimental data possible.

Last but not least, I would like to extend my appreciation to all who have

contributed to the completion of this thesis in one way or another.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

EXECUTIVE SUMMARY

Wireless sensor networks were originally developed to provide the warfighter

with a more accurate picture of the battlefield environment using small, virtually

undetectable devices. These devices, upon deployment, could form an ad hoc network,

sense the physical conditions of their surroundings, and report back their observations

without putting the life of a single soldier at risk.

While the sensor networks are optimized for this type of use, other applications

may be equally beneficial to the warfighter. Utilizing existing systems to fit new mission

requirements is one of the most cost and time effective acquisition strategies. Along this

line, sensor networks may be able to provide a new service on the battlefield as a bridge

for TCP/IP networks. This could provide a means for passing vital intelligence data and

communications in areas with little or no infrastructure.

Based on this new idea, a former student of the Naval Postgraduate School

devised a sensor network channel to transfer text messages from one terminal to another.

Building upon this previous work, file transfer and forward error correction are now

added to make a more capable and reliable channel. A form of block coding called

erasure coding was implemented during this research. Several tests were conducted

using different hardware configurations to examine the performance of the now enhanced

channel.

While the file transfer tests were successful and the error correction method

proved effective, channel weaknesses were observed. Larger network topologies

appeared to present congestion issues that require further analysis. Also, observed

throughput was well below the rates necessary for transfer of multimedia or other useful

traffic. The Carrier Sense Multiple Access (CSMA) protocol used during the tests proved

to be the limiting factor.

Ideas for future research include optimization of the erasure code used during the

experiment, tests with a Time Division Multiple Access (TDMA) based medium access

protocol, and tests with some form of feedback channel. These measures might be a

positive next step towards the goal of passing TCP/IP traffic across a sensor network.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

Wireless networking continues to be one of the fastest growing technologies

today. Through advances in technology, the cost and size of wireless devices have

reduced dramatically, making them more readily available to people today than ever

before. Whether it is a cell phone, wireless internet router, or some other device, the

average person today is using wireless devices on an increasingly regular basis.

A small subset of wireless networking is wireless sensor networks. Much less

known to the average consumer, the technology used by these networks is just now

reaching the maturity level necessary to make them commercially viable. These sensor

networks are made up of multiple low cost, spatially distributed, autonomous devices that

are able to collect and distribute environmental information for various purposes. The

devices are able to independently form an ad hoc network upon deployment and

commence the mission they were intended for.

Military applications for sensor networks have been the driving force for much of

the research being conducted today. Modern research in this area can be traced back to

work done during the early 1980s by the Defense Advanced Research Projects Agency

(DARPA), and their Distributed Sensor Networks program (DSN) [1]. Commercial

applications have come along much more slowly but have begun to accelerate recently.

Although the commercial benefits cannot be overlooked, the military aspect is especially

intriguing due to the portability and small footprint of these wireless devices.

 Sensor networks do not face some of the same limitations as normal networks in

that they are battery operated and thus do not rely on an established infrastructure. They

can be placed to operate in remote locations just as easily as they could in easier to

access, more populated areas. As the technology progresses, the day will soon come

when these devices are being dropped from the air into areas of interest. Upon landing,

they will power up, establish communications with the other sensor nodes, and begin

operations.

The advantages of these sensor devices cannot be denied, but they do have a few

weaknesses that must be considered. While being portable, and free of the need for

2

external power sources, the fact that they rely on batteries can also be a disadvantage.

Typical sensor networks pass small amounts of data between nodes. These data

exchanges require a small drain on the batteries. With this kind of implementation, the

units will last for months on batteries. If the units are to provide a higher level of service,

such as multimedia transportation, for example, the power issue becomes more important.

As with the power limitations, network throughput also becomes an issue if more is

demanded of the sensor network.

As the technology matures, it can be expected that these devices will get smaller

and smaller, and become more capable at the same time. Many applications for these

devices have yet to be discovered.

A. THESIS MOTIVATION

 Military operational requirements drive the development of new technologies and

modification of current technologies to meet applicable mission objectives. The latter is

the more desirable of the two as it usually requires lower developmental costs to come up

with a working solution. By looking at sensor networks in this light, it is possible they

may provide capabilities outside of what they were originally designed for.

Sensor networks were designed to incorporate small, lost cost, portable devices

that could collect and report on physical or environmental conditions. This type of

information reporting suits these devices well as it requires less power and lower bit

rates. It is outside this base area of operations that the aim of this thesis is directed.

The warfighter of today is more reliant on communications than ever before.

Command and Control of military forces relies daily on effective communication from

the command center level down to the lowest echelon soldier in the field. While sensor

networks may initially play a small role on the battlefield, increased hardware capability

may open up new applications for these networks.

By configuring the sensor nodes as repeaters, it may be possible to use the

devices, on a limited basis, as a means to extend network communications into

regions normally difficult to access. Their small profile and portability would allow

them to be nearly invisible to the enemy, meanwhile serving as a pipe for vital

3

communications to forces in theater. While limited in power and throughput, they may

provide a temporary solution where no others exist.

B. THESIS OBJECTIVE

In order to utilize sensor networks as a bridge between TCP/IP networks, it is

necessary to look more closely at how sensor networks work and decide what measures

must be taken to facilitate this implementation. TCP/IP traffic is based upon the principle

of assuring that the transmitted packets will be received at the desired location. Sensor

networks are normally passing information considered non-vital and thus handle the data

accordingly. On top of that, when working with a wireless medium, a large amount of

loss can be expected. In order to consider using a sensor network to pass TCP/IP traffic,

particular emphasis must be placed on data reliability across the network.

Two means of providing better reliability were considered. First, using

Automated Repeat Request, or ARQ, was analyzed. Considerable research has already

been done in this area. While it would be an effective means of verifying whether or not

packets were received properly, the difficulties of employing this method with multiple

sensor nodes were daunting. The work that this thesis was based on used a simple

broadcast of packets that each node repeated until received by the destination. Changing

this scheme would present two major problems [1]. By adding a feedback channel, the

throughput would be significantly decreased. If the end goal was to be, for instance,

passing Voice over IP (VOIP) traffic over the network, throughput would be a major

concern. Something in the order of 90 kbps would be required for a reliable channel

depending on the codec chosen [2]. Second, the use of an ARQ response would be fairly

straightforward when using a simple, one-hop network, but would increase exponentially

in difficulty as more nodes were added to the topology.

Because of the difficulties of using acknowledgements, Forward Error Correction

(FEC) was chosen to add reliability to the communication path. Throughput was a

concern but the implementation was considerably easier. Based on the FEC schemes

available, a form of block coding was chosen for the experiment. The implementation of

the block coding scheme and the results of its implementation are discussed later.

4

The overall objective of this thesis was to achieve the following:

1. File Transfer Capability

The preceding work on this project successfully set up a Java based

implementation of a text messaging service across a sensor network. Messages that were

typed in to the sending terminal were packaged into packets and sent over the network to

the destination terminal which assembled the packets and displayed the message. To

improve the capabilities of the channel, the next step was to add the ability for

transporting files across the network. Specifically, the ability to send Joint Photographic

Expert Group (JPEG) encoded images was desired. Adding this capability would

improve the usefulness of the channel and make it possible to evaluate the effectiveness

of an FEC algorithm. The smaller text based messages would not provide enough

packets to make a proper evaluation.

2. Implement Forward Error Correction to Improve Reliability

Adding FEC to the channel would improve the reliability but also decrease the

throughput. It was necessary to look at the effectiveness of the chosen algorithm and the

throughput that resulted from its implementation. During the experiment, the FEC

implementation would be compared against two different transmission schemes. One

would be transmitting the data from a representative JPEG image without any

redundancy. The second would be transmitting a copy of the packets along with the

original packets. This second scheme would send roughly the same number of packets as

the FEC scheme and provide a better basis for comparison.

3. Provide Recommendations for Follow-on Work

This thesis is only a small step towards the goal of being able to send TCP/IP

traffic across a sensor network. Once the analysis of the preceding steps is complete,

recommendations for possible follow-on work will be provided. Lessons learned from

the experiment will be used to form the recommendations. Related work in sensor

networks will also be considered while making the recommendations.

5

C. RELATED WORK

Sensor networks, as do traditional wireless networks, experience considerable

challenges when it comes to providing reliable network communications. Hardware

limitations, network configurations, and the environment all play a role in increasing the

difficulty for networks to pass information efficiently. There have been a number of

studies in the area of improving sensor network reliability. This thesis pulled ideas from

many of these studies to either aid in the experimental phase or to gather information in

order to form a proposal for future recommendations. Research in error correction and

Medium Access Control (MAC) were particularly useful. Also this thesis drew heavily

from previous thesis topics that covered the areas of erasure coding and tunneled

networks.

1. Forward Error Correction in Wireless Sensor Networks

Several useful studies of error correction in sensor networks were found while

doing research for this thesis. Students at the University of California Berkeley

conducted tests of single and double error correcting codes in outdoor and indoor tests

[3]. Another interesting research topic involved using an adaptive FEC code control

algorithm for sensor networks [4]. In the study, they identified the need for something

other than fixed correction codes for channels with constantly varying bit error rates.

Finally, Terry Norbraten’s work with erasure codes and detailed explanation of the Java

FEC Library from Onion Networks were extremely helpful during this research [5].

2. Medium Access Control for Wireless Sensor Networks

One of the realizations after examining the results from this thesis was that simply

using error correction alone to improve the reliability of a channel is not sufficient. With

increasing network topology complexity, additional measures should be considered.

One such measure deals with modifying medium access control (MAC). A few different

protocols were examined. Z-MAC is an exciting MAC protocol that achieves high

efficiency by acting as hybrid between TDMA and CSMA [6]. Z-MAC behaves like

CSMA during periods of low contention and like TDMA during periods of high

6

contention. By using this approach, it aims to maximize efficiency during all phases of

network activity. Two other protocols, T-MAC [7] and S-MAC [8], represent hybrids

between TDMA and CSMA, although these protocols put more emphasis on energy

efficiency while Z-MAC aims to maximize network throughput.

 3. Tunneled Data Transmission Across Sensor Networks

Last but not least, the thesis work of Yow Thiam Poh on the topic of tunneled

data transmission over wireless sensor networks was the foundation that this thesis was

built upon. Yow created a text messaging channel across a sensor network and tested the

channel’s efficiency with varied configurations and varying transmission parameters [9].

The goal of this thesis was to make the channel, created by Yow, more capable by adding

file transfer and error correction.

D. THESIS ORGANIZATION

Chapter I presents the motivation and objective of this thesis. It also aims to

provide the reader with a general idea of operational applications, outside of

environmental sensor reporting, that are possible with wireless sensor networks.

Chapter II takes a look at wireless sensor networks and how they might be used as

a bridge for TCP/IP networks. Covered in the chapter are the capabilities and limitations

of the sensor networks and how the limitations might be mitigated. Also, detailed

descriptions of the modifications that were made to Yow's text messaging channel in

order to add file transfer capability are provided in this chapter.

Chapter III covers the use of FEC to enhance the performance of sensor network

transmissions. A brief overview of the different FEC methods available is given. The

proposed method of FEC to be used in the experiment, erasure coding, is covered more

thoroughly. Also, how the FEC code is to be implemented is described in detail.

7

Chapter IV begins by presenting the setup of the experiment. The hardware and

software used are described in detail. Following the setup discussion, the experimental

procedures and results are presented. The chapter concludes with an analysis of the

results.

Chapter V provides the conclusions resulting from the experiment. In this

chapter, future work and recommendations will also be proposed.

8

THIS PAGE INTENTIONALLY LEFT BLANK

9

II. WIRELESS SENSOR NETWORKS

A. OVERVIEW OF WIRELESS SENSOR NETWORKS

 Originally motivated by military applications like battlefield surveillance,

wireless sensor networks have rapidly become a growing industry with applications for

both civilian and military interests. These networks are made up of spatially distributed

autonomous devices that incorporate sensors to monitor physical and environmental

conditions. The individual devices, or motes, are made up of a radio transceiver, a

microcontroller, and batteries for a power source.

 Sensor networks form ad-hoc networks upon deployment, allowing the transfer of

sensor data to a parent node where the data is collected. A few examples of possible

applications are battlefield condition reporting, home automation, and traffic control.

Eventually, this new technology may affect all aspects of typical daily lives.

1. Devices

The functions that are typical of wireless sensor devices are communication,

computation, and sensing. In order to perform these tasks, these devices incorporate a

microcontroller for computation, a small amount of RAM for dynamic data, one or more

flash memories that store the program code and long-lived data, a wireless transceiver, an

antenna, an analog-to-digital converter (ADC), single or multiple sensors, and a power

source [10]. Many variations of these devices are available. For example, a variety of

power sources is possible. Batteries, solar power, and external power are all being

utilized depending on the type of deployment. Also, some devices feature multiple

processors in order to incorporate a digital signal processor (DSP), although these chips

tend to consume greater amounts of energy. As the hardware capability improves and

additional applications are targeted, the number of variations can also be expected to

increase.

10

2. Operating System

The operating system for wireless sensor network devices tends to be a very

simple design that handles interrupts and performs simple scheduling of tasks. While

research has introduced a number of operating systems for the emerging technology,

TinyOS continues to be the most popular. TinyOS is an open source operating system

that started as a collaboration between the University of California, Berkeley and Intel

Research. Since that time, it has grown into an international consortium called the

TinyOS alliance.

TinyOS is a component based operating system written in nesC, a C based

programming language. Components for certain tasks, such as packet communication,

routing, sensing, actuation, and storage, are connected together using interfaces. Since

development of the first TinyOS platform in 1999, many releases have been developed up

to the current release of TinyOS 2.1.0 in August of 2008.

3. Communications Stack

Wireless Sensor Networks are typically multihop networks and rely on a

communications stack that includes, medium access control (MAC), routing, and

transport layers. Many available protocols exist for these layers and they differ from

those used in wired networks and Wi-Fi networks. This is due to the different

environments where these devices are located and the additional constraints that they

must adhere to. Many limiting factors drive the need for specialized MAC, routing, and

transport layers. Among them, small amounts of memory make large routing tables

impossible and energy limitations limit communication ranges. Figure 1 depicts a typical

WSN stack.

11

Figure 1. Comparison of the OSI, TC/IP, and Typical WSN Stack

An interesting feature of the WSN communication stack is self-organization. A

few different methods of self discovery are utilized. In one example, devices discover

their neighbors and append this information to a neighbor table. These tables include

such information as node identification and geographic location. Using this location

information, devices can then perform routing. Another example has the base station

learning the entire network topology, using it to create a spanning tree routing structure

[10].

B. WIRELESS SENSOR NETWORKS AS A TCP/IP NETWORK BRIDGE

An exciting application worth considering is the temporary use of sensor

networks as a bridge for TCP/IP networks. Although throughput and power limitations

prevent these devices from performing more intensive data transfers, temporary use to aid

the warfighter in difficult environments may be worthwhile.

1. Benefits of Implementation

Wireless network communications are becoming more prevalent for military

operations. Intelligence reports, imagery, and general communication are reaching

further into the battlefield than ever before. Typically, the infrastructure found in these

environments is limited or non-existent.

Wireless sensor networks were originally designed for the purpose of reporting on

the environmental and physical conditions of the battlefield. Using these networks to

12

temporarily extend vital TCP/IP network communications might be possible despite the

limitations of the sensor nodes. A few specific applications of interest are Voice-Over-IP

(VOIP) and the transmission of time sensitive data and imagery. In order to consider this

as a possibility, the difficulties involved must first be considered

2. Barriers for Implementation

Sensor networks were designed to transmit small amounts of data with limited

frequency. As a result, the sensor nodes typically have limited onboard memory. The

MICAz motes used in this research have 128 kbytes of flash program memory, 512

kbytes of flash log memory, and only 4 kbytes of RAM. Since the data they transmit is

considered non time-sensitive and non vital, the networks do not have to incorporate

many of the assurances necessary in TCP/IP networks. Tunneling over the sensor

network may involve increasing the onboard memory to support an enhanced network

stack or finding ways to more efficiently use the smaller amount of memory.

Power is another limitation that must be addressed. As sensor motes were

designed for low power, autonomous operation, batteries or solar power are typically

employed. Increasing the data amounts and rates would increase the power demand and

threaten the longevity of the device.

In order for this application of sensor networks to be successful, the throughput of

the network would have to provide a certain level of performance to meet the needs of the

user. To use the network to pass VOIP traffic, for example, a minimum data rate of

about 90 kbps would have to be supported to provide adequate communications. For

transmission of time sensitive data or imagery, throughput would have to meet specific

mission requirements.

By testing the transmission of image files across a sensor network during the

course of this research, it was desired that a general idea of the throughput capabilities

would be found. Although the forward error correction implemented would reduce the

channel's throughput, it was considered necessary for the channel's reliability.

13

C. CONTINUING DEVELOPMENT OF WIRELESS SENSOR NETWORK
ADAPTATION INTERFACE LAYER (SNAIL)

As mentioned before, the experiment portion of this thesis was based on the work

of Yow Thiam Poh, a former student at the Naval Postgraduate School. His work

involved the development of a sensor network channel that allowed a form of text

messaging. He developed three Java applications that would work in coordination with

the sensor mote hardware from Crossbow to achieve this task. The suite of applications

was referred to as the Sensor Network Adaptation Interface Layer (SNAIL). SNAIL

consisted of separate Client and Server modules that were used on a transmitting laptop,

and a Listen module that was used on the receiving laptop. These SNAIL modules were

modified extensively to achieve the goals of this thesis.

In order to incorporate a more robust channel by adding error correction, the first

step was in modifying the SNAIL software to incorporate file transfer. The larger

amounts of data associated with file transfer would allow the improvements provided by

error correction to be observed. The file types that were chosen for implementation and

testing were JPEG images, test files, and MS Office documents. These were chosen due

to their popularity and everyday use. How each of the SNAIL modules was modified is

explained below.

1. SNAIL Client Module

The SNAIL Client module now presents the user with three options upon running

the application. Choices are now for text message transfer, standard file transfer, or

JPEG image transfer. Before passing off the data to the SNAIL server module, a few

modifications were necessary.

Previously, the Client module allowed the user to input a text message from the

terminal to be transferred over the sensor network. Using a blocking reader module,

upon receiving a message from the user, the message was read in as a string and then

converted to a character array. The use of a character array was chosen to allow some

flexibility with the data stream. Essentially, this allowed adding the user’s selection to

14

the data stream before passing it on to the Server module. Prior to the IO operation, the

character array had been converted back to a string.

To accommodate the transfer of files, the first modification was changing the

module to work with byte arrays. Should the user choose to send a text message, the

message is still read in as a string, but is converted to a byte array. The option selected is

added to the byte array by using concatenation of arrays. By using byte arrays, the data is

now compatible with the file transfer options. Strings could have been used for both, but

ultimately that would have limited the file length to roughly 64 kbytes.

Upon the choice of either standard file transfer or JPEG image transfer, the user is

presented with a file selection box. Upon selecting the desired directory and file, the file

data is read in to a byte array. The two file transfer options are executed differently. For

standard file transfer, a fileinputstream is opened to pull in the data to a byte array. To

pull in a JPEG image correctly, the Java ImageIO tools were used to read in the file as a

bufferedimage. After the file is read in, it is converted to a byte array.

By utilizing byte arrays for each of the three options, all three are assured to be

compatible and the same flexibility to modify the data stream that character arrays

afforded is maintained. Finally, the data residing in the byte array is transmitted to the

SNAIL Server module via an ObjectOutputStream. Figure 2 presents the process

decisions of the SNAIL Client module as a flow diagram.

15

Figure 2. SNAIL Client Flow Diagram

2. SNAIL Server Module

The SNAIL Server module required more extensive modifications to allow file

transfer and error correction. Error correction will be covered later. For now, data

handling and packetizing for sensor network transport will be covered.

After reading the data sent from the SNAIL Client module, the data is stored in a

byte array. One of the main changes is the handling of all data as byte arrays from start

to finish. From the data array, the option that was selected is obtained. The option will

ultimately be removed from the data and transmitted as part of a handshake packet. The

handshake packet is the first packet that will be transmitted by the server and contains

much of the amplifying information needed by the receiver.

Waiting for
User Selection

Selection
Made ?

Add Options
To Data Array

Read Data
From Terminal

Read Data
From File

Send Array
To Server

Text, File,
Or JPEG ?

Yes

Text

No

File /JPEG

16

Figure 3. Packet structure of TinyOS (from [8])

Should encoding not be desired by the user, the number of packets to be sent is

calculated from the array size. The array size is a key piece of information needed by the

receiving terminal and is included in the handshake packet. Of the 29 bytes of data

available in the Active Messaging (AM) packet, two of the bytes will be used for

Terminal ID and packet number for this non-encoding case. Figure 3 shows the standard

AM packet structure used by TinyOS. The packet number will help the SNAIL Listen

module keep track of which packets have been received and facilitate dropping redundant

packets.

The use of the header packet was changed only with regards to content. Because

of the new error correction option, additional information was required at the receiver.

One new addition to the transmission process was the use of a terminating packet. After

all of the data packets are sent out, the terminating packet is sent out which contains an

identifying byte sequence. This packet was added to correct the condition where packets

are dropped and the receiving end is stuck in a loop waiting for packets. Once the

terminating packet is read in, the Listen module is free to move on to analyzing the data.

Figure 4 presents the flow diagram for the SNAIL Server module.

Header(5) Payload(29) CRC(2)

17

Wait for data
from Client

Data from
Client ?

Encode ?

Encode Data

Devide JPEG
Into Blocks

Send Terminating
Packet

Determine Number
Of Packets Per

Block

Construct Header
Packet

Data Packet
Sent Out

Send out
Header Packet

End of Data ?

Determine Number
Of Packets

Text, File,
Or JPEG ?

No

Yes

Yes

No

JPEG

Text / File

No Yes

Figure 4. SNAIL Server Flow Diagram

3. SNAIL Listen Module

Upon receiving the handshake packet, the SNAIL Listen module knows whether

or not the data will be encoded, what option was selected, and the length of the data array

involved. Using the array length, the number of packets to be expected is calculated.

A loop is entered in which each of the packets is read in. Both the handshake and

terminating packets contain flags to help identify them from normal packets. Also, as the

packets are read in, the packet number is obtained which is used to identify the packet. If

the packet is redundant, it is dropped. A change was made to help keep track of which

18

packets are read in. Previously a packet counter expired when the expected number of

packets was reached. This was changed due to the encoding option. This will be covered

further in the next chapter.

Once all of the data has been read in and decoding has been completed, if

necessary, the option selected determines how the data is handled. If a text message was

selected, the message is displayed on the terminal. If a standard file was transferred, the

file is saved to the location chosen by the user using a fileoutputstream. For a JPEG

image, the byte array is converted back into a bufferedimage and then the image is stored

using the ImageIO utilities.

Figure 5 presents the flow diagram for the SNAIL Listen module.

Wait for
Handshake

Packet

Packet
Arrived ?

Duplicate
Packet ?

Write to File

Decode Data

Waiting For
Data Packet

Calculate Number
Of Packets

Display Text
Message to

Terminal

Drop Packet

Packet
Received ?

Find out Options
Selected and

Array Size

Text, File,
Or JPEG ?

No

Yes

Yes

No

Text File / JPEG

No

Yes

Terminating
Packet ?

Data
Encoded ?

Yes

No

Yes

No

Figure 5. Flow Diagram for SNAIL Listen Module

19

D. SUMMARY

Wireless Sensor Network design involves even greater complexity than traditional

wireless networks. Due to the limitations of the devices, greater emphasis on MAC,

routing, and transport layer design is required to combat the typical congestion and losses

associated with data transfer in wireless networks. Despite the challenges, many new

and exciting applications are being created to take advantage of the size and portability of

the devices. Possible applications like that of TCP/IP data transfer across sensor

networks may soon become a reality. This chapter concluded with an update to previous

thesis work in the area of transporting data messages across sensor networks. By adding

file transfer capabilities, studies regarding forward error correction’s effects upon sensor

network performance can be pursued.

20

THIS PAGE INTENTIONALLY LEFT BLANK

21

III. FORWARD ERROR CORRECTION IN WIRELESS SENSOR
NETWORKS

In wireless networks, packet loss is inevitable. In order to combat this packet

loss, either Forward Error Correction (FEC) or Automatic Repeat Request (ARQ) or a

combination of the two techniques are used. ARQ is an attractive option since it is

relatively inexpensive in that it requires no manipulation of the data being transferred.

Under conditions of increasing losses, ARQ does suffer significant reductions in overall

throughput. Tradeoffs exist between complexity of implementation and data throughput.

ARQ also rapidly becomes more complicated as the number of clients grows.

FEC, on the other hand, detects and corrects losses incurred by a noisy channel by

including redundant information with the data it passes. This has the advantages of

allowing the correction of errors more quickly than with ARQ and by simplifying the

network traffic scheme. Some kind of feedback channel could be included but may not

be necessary.

A. GENERAL OVERVIEW OF AVAILABLE FEC CORRECTION
METHODS

The available types of FEC are broken down into two categories. These are block

codes and convolutional codes. Block codes work on fixed-size blocks of bits or

symbols of a fixed size. Convolutional codes work on bit or symbol streams of various

sizes.

1. Block Coding

Many different forms of blocks codes exist. A few examples are the Hamming

code, BCH code, and Reed Solomon code. The latter is the most widely used due to its

near optimal coding qualities.

A Reed Solomon code encodes a data message block as points in a polynomial

function plotted over a finite field [11]. The polynomial coefficients are the data symbols

of the block. These codes can work to correct errors at either the bit-level or the packet

level. Lost data packets are corrected from encoded packets, otherwise known as repair

22

packets. These repair packets represent a set of linearly independent equations. By

solving this set of equations, the lost packets are recovered. One drawback to the Reed

Solomon coding scheme is encoding and decoding time which is O(n2) and O(n3)

respectively. Another is the memory requirement resulting from the polynomial

operations.

2. Convolutional Coding

Convolutional coding involves taking an m-bit message that will be encoded and

converting it to a n-bit symbol. The code rate for the encoding process is m / n where n ≥

m. The constraint length of the code, k, determines the error correction capability and the

complexity. As k increases, the correction capability increases but the complexity also

increases exponentially. For decoding convolutional codes, the Viterbi algorithm is

commonly used. The Viterbi algorithm uses maximum likelihood estimation to make

decisions regarding the underlying probability distribution of the bits received [12]. For

effective correction, a constraint length of at least 7 and typically below 9 is used while a

code rate m / n of at least 1 / 2 is required. A convolution code has reduced complexity

over a Reed Solomon code but suffers higher coding redundancies. For this reason,

convolutional codes are more ideal for communication channels with a lower signal-to-

noise rate (SNR). A convolution code is also not typically used for the recovery of lost

packets as is Reed Solomon.

B. ERASURE CODING

For this experiment, an implementation of erasure coding was chosen. Erasure

coding is basically a form of block coding that takes a number of data packets, or blocks,

and encodes them into a larger number of encoded data packets. The larger the number

of encoded data packets, the more redundancy allowed. As long as a minimum number

of the transmitted packets reach the destination, the source data can be reconstructed.

The key to erasure coding is that the destination knows exactly which packets have been

dropped. Without that knowledge, this coding scheme would not work.

23

Erasure coding was chosen due to the inclusion of CRC in the wireless sensor

network packets. Since the lower layers of the protocol stack would check arriving

packets for errors, only allowing error free packets to reach the application layer, this

method of FEC coding seemed appropriate. Packets lost in transmission or dropped due

to errors would not prevent the successful transmission of the source data. An open

source JAVA implementation of erasure coding created by Onion Networks was

implemented during the experiment. Based on the work of Rizzo [13], this Java based

software library will be discussed further in the next section.

1. Erasure Coding Fundamentals

The basis behind erasure coding is that k blocks of source data are encoded

producing n blocks of encoded data [13]. If any subset of the n encoded blocks is

received at the destination, the receiver is able to reconstruct the source data. This code

is referred to as an (n, k) code. In this scheme, up to n – k losses are acceptable. Figure

6 gives a graphical representation of the source data encoding and reconstruction.

Figure 6. Data Reconstruction in Erasure Coding (from [13])

24

A subset of the erasure codes, called linear codes, can be analyzed using the

properties of linear algebra. If x = x0 … x k-1 represents the source data and G is an n × k

generator matrix, then y = Gx is the (n, k) linear code resulting from the matrix

multiplication. As long as k components of y are received, x can be recovered.

If the encoded data contains an exact copy of the source data, this is referred to as

a systematic code. With a systematic code, a portion of the generator matrix, G, will

contain the identity matrix. Systematic codes can be very advantageous if very few

losses are expected in the link. Reconstruction of the source code would be greatly

simplified. Figure 7 once again shows the encoding and decoding process but this time in

matrix form for a systematic code. Note the identity matrix in the upper portion of the

generator matrix.

Figure 7. Encoding / Decoding Systematic Code (from [13])

The generator matrix G is a n × k matrix of rank k. Because of this, only k of the

n encoded packets are necessary. Each column of G can be composed of a maximum of

(k – 1) nonzero elements. For the systematic code example, since the columns already

have (k – 1) zero elements due to the identity matrix, all of the remaining elements are

required to be nonzero.

For the reconstruction process, along with the encoded packets of data, the

identification of those packets must also be known. This will add overhead to the process

25

as the transmitting end will have to include this information with the transmission. This

is a negligible amount of overhead though and the packet identification will also aid in

with identifying redundant packets so they may be ignored. The recovery is performed

by solving the linear system:

() 1' ' ' 'y G x x G y−= → = (1)

For the above equation, x represents the original source data and 'y is a subset of k

encoded packets. G’ is the corresponding subset of columns from the generator matrix.

To reconstruct the original data, the inverse of 'G is taken and then multiplied by the

subset of encoded packets, 'y . The cost of inversion is somewhere in O(kl2), where

min(,)l k n k≤ − . The value of l represents the minimum number of packets that must be

received.

2. Erasure Code Based on Vandermonde Matrices

An example process for the creation of a generator matrix can be shown with the

use of a Vandermonde matrix. This matrix has coefficients of the form

1
,

j
i j ig x −= (2)

where the ix ’s are elements of extension fields, or (')GF p .

Extension fields are a subset of finite fields that allow basic arithmetic to be

performed on data much like it is done with integers. They help resolve problems

associated with handling the number of bits needed to represent the result of

computations. Mapping data elements into field elements prior to arithmetic operations

and then applying the reverse mapping to get the desired results avoids this trouble. If

finite fields are not used and the results of the coding arithmetic operations are rounded

prior to transmission, exact reproduction of the data would not be possible.

 Seen in matrix form, the n × k Vandermonde matrix is

26

2 1
1 1 1

2 1
2 2 2

2 1
3 3 3

2 1

.
1
1
1

1

k

k

k

k
n n n

G
x x x
x x x
x x x

x x x

−

−

−

−

= ⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (3)

The determinant of a square Vandermonde matrix is defined as

, 1... ,

()j i
i j k i j

x x
= <

−∏ . (4)

The matrix will have a non-null determinant and thus be invertible if all of the ix ’s are

different. As long as q > k and all ix ’s are not equal to zero, q – 1 rows at a maximum

can be created, where q is the number of finite field elements. If the identity matrix is

added, a suitable generator can be created for a systematic code.

 Considering a few special cases for the code, a (n, 1) code would simply create

copies of the single packet. This is essentially the same thing as making multiple copies

of the same packet to be sent out. The work that this thesis built upon utilized this simple

method of improving the link performance by sending multiple packet copies.

Unfortunately, this type of code is inefficient compared to codes with higher values of k.

A (k+1, k) code is another simple case. This would include the k packets plus one packet

that would represent the sum of the others. Once again, this case is not very useful

except for channels with small amounts of loss.

3. Erasure Codes for Wireless Sensor Networks

 Once again, erasure codes were chosen to combat the relatively high amount of

packet loss that can be expected with wireless sensor networks. While the software

implementation of erasure codes is somewhat computationally expensive, low to medium

speed applications, up to the 100 KB/s range, could be supported with fairly low amounts

of overhead. Given the limitations of power and throughput with these networks, erasure

codes may be a very useful tool. Combining this technique with a simple form of ARQ

might be the best course of action.

27

C. PROPOSED SOLUTION

1. Onion Networks JAVA FEC Library

While investigating Rizzo’s C implementation of the Vandermonde based erasure

codes, a Java based version of the same was discovered. Onion Networks, Inc. developed

this open source Java based implementation they refer to as the FEC 1.0.3 library.

Considering the SNAIL applications were developed in Java, this seemed a logical fit and

worth exploring how they could be used together.

The FEC library incorporates a number of classes and tools that can be used to

encode and decode data given the specifications of k and n, the number of packets to

encode and the number of encoded packets to create. The library supports a pure Java

implementation of the code as well as a C based implementation that can achieve higher

speeds. For this experiment, the Java based implementation was chosen for compatibility

reasons.

2. SNAIL Server Modifications

The Java code below shows the actual encoding process of the data.

 // FEC Setup Procedure //

 byte[][] repair = new byte[numblocks][n*packetsize];
 //this is our encoded data

 int[][] repairIndex = new int[numblocks][n];

 //These buffers allow us to put our data in them they
 //reference a packet length of the file (or at least will once
 //we fill them)

 //create our fec code
 if (encoded == 0) // I only want to do this section if we
 are going to encode
 {
 FECCode fec = FECCodeFactory.getDefault().createFECCode(k, n);
 // creating code

 for (int w=0; w < numblocks; w++)
 {
 Buffer[] sourceBuffer = new Buffer[k];
 Buffer[] repairBuffer = new Buffer[n];

 for (int i = 0; i < sourceBuffer.length; i++)

28

 sourceBuffer[i] = new Buffer(source2[w], i*packetsize,
… packetsize);

 for (int i = 0; i < repairBuffer.length; i++)
 repairBuffer[i] = new Buffer(repair[w], i*packetsize, …
 packetsize);

 //When sending the data you must identify what it's index
 was.

 for (int i = 0; i < repairIndex[w].length; i++)
 repairIndex[w][i] = i;

 //encode the data
 fec.encode(sourceBuffer, repairBuffer, repairIndex[w]);
 }
 }
 // End FEC Encoding //

Prior to encoding, the values of k and n must be chosen. For the experiment, 64

and 128 were chosen respectively. From Rizzo’s analysis of erasure coding, it was

explained that increasing values of k improved efficiency. From early experiment tests,

this improvement was seen in increased values of k up to a certain point. Also, as k is

increased, the number of blocks the image is broken up into is decreased. Increasing or

decreasing the number of blocks has a negligible effect on total encoding time.

Looking at the code, the two byte arrays, source and repair, hold the source data

and encoded data respectively. The sourceBuffer and repairBuffer buffers are used to

temporarily hold the data in packet form needed for the encoding process. The

repairIndex array holds the numbering of each of the packets to be encoded. The

encoded packet number must be transmitted with each packet in order to reconstruct the

data. The last line of code calls the encode method which completes the encoding

process, storing the now encoded data into the repair array.

The SNAIL Server module now transmits the data as it would with non-encoded

data. The only differences being the addition of the block number and roughly double the

number of packets for the chosen k and n.

29

3. SNAIL Listen Modifications

Modifications were necessary for the SNAIL Listen module to receive encoded

packets. As mentioned before, the block number and packet number are sent in each

packet. Also the handshake packet contains the encoding parameters k and n that were

chosen. By not hard coding this information, experiments with differing values of each

are possible.

Prior to the modifications to the SNAIL Listen module, packets were read in until

the number of expected packets had been reached. If the number of packets expected was

not reached, it was considered a failure to transfer the text message. With error

correction, this is not the case. In order to keep track of what packets had been received,

an integer matrix was constantly updated as packets were read in. The rows of the matrix

represented the different blocks being read in and the columns represented the packets

that each block contained. Initially the matrix was filled was zeros. As each packet is

read in the respective matrix position was updated with a value of one. Once the

terminating packet is received, if a particular block does not have at least k values read in,

the data cannot be reconstructed.

 // Decoding Process
 System.out.println("Message Received: Decoding...");
 byte[] received2 = new byte[arraysize]; // All data minus
 // padding
 Buffer[][] receiverBuffer = new Buffer[numblocks][n];
 // k subset of packets

 for (int z=0; z < numblocks; z++)
 {
 System.out.println("Decoding Block: " +(z+1)+" of " …
 +numblocks);
 //create our Buffers for the encoded data
 for (int i = 0; i < n; i++)
 {
 receiverBuffer[z][i] = new Buffer(received[z], …
 i*packetsize, packetsize);
 }

 //finally we can decode

 fec.decode(receiverBuffer[z], receiverIndex[z]);
 }

30

From the subset of code above, the decoding process is seen to be very similar to

the encoding process. After all of the packets have been read in a check is performed to

make sure enough packets are stored for each block. If this is the case, the decoding

process commences one block at a time. Like during the encoding process, a buffer is

used to hold the data for decoding and the result of the decode method is stored into a

byte array.

D. SUMMARY

With any network, there are basically two methods for recovering erroneous

packets. Either ARQ or FEC are used. Of the two, FEC was the preferred choice in this

study due to power consumption limitations with wireless sensor networks and due to the

complications of congestion when dealing with ARQ. A software implementation of

FEC was preferred for this thesis given the Java based software platform that the original

work was built upon. The FEC library by Onion Networks provided a very effective Java

implementation of the erasure code written about by Rizzo. In the next chapter, the

results of this implementation over a sensor network will be shown and compared to

experiments without FEC.

31

IV. EXPERIMENT DETAILS

The performance of the link was the primary concern while conducting the

experiments. Since a more robust link was desired, the performance of the sensor

network link was tested with forward error correction implemented. In order to provide a

comparison for the results, experiments without the FEC coding were also conducted.

These results will hopefully provide a good foundation for what performance

enhancements can be achieved using the FEC scheme selected.

This chapter aims to provide the results that were obtained from the laboratory

experiment. Three different scenarios were chosen for conducting the test. These

include a direct terminal to terminal test, a terminal to terminal test via one sensor mote

hop, and a terminal to terminal test via two sensor mote hops. For each of these

scenarios, three different data transmission schemes were tested. First, the erasure

coding scheme was tested. The second scheme involved testing the link by sending only

the image data across. No redundancy was used during this test. For the last scheme,

redundancy was incorporated by sending a copy of each packet along with the original

packets. This last scheme was chosen since it more closely approximates the total

number of packets being sent out during the FEC test.

To test the three transmission schemes, a small 8 kbyte image was chosen to be

transferred. The small file was chosen to allow for large number of tests to provide an

adequate amount of results for a comparison. For a successful transmission, the entire

image had to be transferred without error.

A. EXPERIMENT SETUP

The experiment was originally conducted in an academic building hallway to

allow enough space to separate the base stations and motes in order to drive the link to

the edge of its performance capabilities. By adjusting the power on the motes and

investigating the resulting transmission range, the motes were placed to force a

32

considerable amount of packet loss. This was necessary to prove that the FEC method

would handle more challenging conditions better than the schemes lacking error

correction.

After initial trials that were conducted, it was determined that multipath effects

encountered in the hallway environment would negatively influence the results. Due to

this realization, the experiment was relocated to an anechoic chamber which would help

by eliminating a majority of the undesired signals. The chamber can be seen in Figure 8.

Figure 8. Anechoic Chamber used for the Experiment

1. Hardware

Each of the base stations incorporated a laptop and a Crossbow MICAz sensor

mote connected through the USB port using a MIB520 sensor board. Individual MICAz

motes were used for the repeater stations simulating the sensor network. Descriptions of

each component used in this experiment are included below.

33

a. MICAz Sensor Motes

Figure 9. MICAz 2.4 GHz Mote

The MICAz mote, pictured in Figure 9, is a small wireless hardware

device produced by Crossbow [14]. The mote has an Atmel Atmega microcontroller, 4

KB of RAM, 128 KB of program flash, 512 KB of flash log memory, a 2.4 GHz IEEE

802.15.4 transceiver that supports a maximum rate of 250 kbps, and a maximum range of

50 m. The mote also features a 10-bit ADC and runs on two AA batteries, drawing 8 mA

in active mode.

The mote can be used with or without an optional sensor board providing

capabilities as a wireless sensor platform or as a wireless node. A variety of sensor and

data acquisition boards can be connected to the MICAz by means of a 51-pin expansion

connector. The RF transmit power for the MICAz is user selectable from -24 dBm to 0

dBm. This feature was particularly helpful in allowing tests to be conducted in a small

laboratory sized environment. The CC2240 Transmitter datasheet power levels are

shown in Table 1. Experimental tests found that the power levels lower than those shown

were also possible.

These MICAz motes implement a CSMA based protocol. This was

determined by the CC2420 radio installed on the board and the version of TinyOS

installed. A more advanced CSMA protocol, B-MAC, became available in the 1.1.3

version of TinyOS, but was not available for this experiment. Among the changes in this

protocol was a variable noise floor over the fixed floor originally used. This noise floor

34

is used in the determination process of when the mote can transmit. B-MAC's

improvements on performance might be a valuable topic for further work which will be

discussed further in Chapter V.

Table 1. Available RF Power Levels for CC2240 Transmitter

b. MIB520 Parallel Programming Board

Figure 10. MIB520 Interface Board

The MIB520, pictured in Figure 10, provides USB connectivity to the

MICA family of motes for in-system programming and general communication [14]. A

MICAz node connected to the MIB520 can act as a base station. This configuration was

used for the sending and receiving terminals configured for the experiment.

2. Software

Two software elements used for the experiment were Java and TinyOS. Java

applications were written for the transmit side to read in, format, and encode the data for

transmission. On the receive end, another Java application was written to read in the

35

packets and process the information. TinyOS is one of the operating systems used by

wireless sensor networks. For the experiment, TinyOS version 1.1.0 was installed on the

laptops being utilized. TinyOS was written in nesC, a dialect of the C programming

language. While most of the programming required for this thesis was in Java, some

modification of nesC code was necessary for controlling certain parameters of the

MICAz motes, such as the RF transmission power.

For the ease of programming, the Netbeans Integrated Development Environment

(IDE) was used during the software development process. This software tool provided an

eased integration of TinyOS and Java development.

B. TERMINAL TO TERMINAL EXPERIMENT

The first scenario for the experiment involved setting up a simple terminal to

terminal link as pictured in Figure 11.

Figure 11. Scenario 1 – Terminal to Terminal Communication

This, the most simple of the arrangements to be tested, was used for the initial

testing of the FEC code and would provide a good basis of comparison for the one hop

and two hop tests to be conducted later. The Tx laptop shown in Figure 11 uses the

SNAILServerTest_fec and SNAILClient_fec applications. Simultaneously running is the

SerialForwarder application that is also used on the Rx laptop. In addition to

SerialForwarder, the Rx laptop runs the SerialListenTest_fec application. Both MICAz

motes were programmed with the TOSBase software. The TOSBase software was

modified to set an RF power level of -24 dBm.

MIB520 +
MICAz Mote

MIB520 +
MICAz Mote

Tx Laptop Rx Laptop

36

Run No Packets No Packets Redundant Success No Packets No Packets Redundant Success No Packets No Packets Redundant Success
Transmitted Received Packets (Y/N) Transmitted Received Packets (Y/N) Transmitted Received Packets (Y/N)

1 299 163 0 N 598 299 296 Y 640 623 0 Y
2 299 293 0 N 598 299 294 Y 640 637 0 Y
3 299 292 0 N 598 299 295 Y 640 616 0 Y
4 299 296 0 N 598 298 295 N 640 627 0 Y
5 299 286 0 N 598 299 291 Y 640 626 0 Y
6 299 296 0 N 598 299 283 Y 640 626 0 Y
7 299 294 0 N 598 299 299 Y 640 632 0 Y
8 299 286 0 N 598 298 276 N 640 635 0 Y
9 299 295 0 N 598 299 261 Y 640 620 0 Y
10 299 296 0 N 598 299 293 Y 640 633 0 Y
11 299 294 0 N 598 193 152 N 640 634 0 Y
12 299 292 0 N 598 299 286 Y 640 632 0 Y
13 299 246 0 N 598 237 100 N 640 636 0 Y
14 299 285 0 N 598 299 289 Y 640 630 0 Y
15 299 262 0 N 598 298 291 N 640 618 0 Y
16 299 272 0 N 598 299 297 Y 640 588 0 Y
17 299 287 0 N 598 299 297 Y 640 631 0 Y
18 299 287 0 N 598 209 67 N 640 614 0 Y
19 299 291 0 N 598 299 290 Y 640 493 0 N
20 299 289 0 N 598 298 249 N 640 466 0 Y
21 299 285 0 N 598 299 289 Y 640 593 0 Y
22 299 290 0 N 598 293 216 N 640 622 0 Y
23 299 291 0 N 598 295 249 N 640 389 0 N
24 299 293 0 N 598 299 279 Y 640 305 0 N
25 299 281 0 N 598 298 276 N 640 589 0 Y

Non-Encoded Non-Encoded (Redundant) FEC Encoded

Table 2. Terminal to Terminal JPEG Transmission Results

The transmitting and receiving motes were placed at a distance of 110 inches

from each other. This distance was chosen to promote some loss of packets at the

receiving end in order to test the effectiveness of the FEC algorithm. Looking at the

results in Table 2, the FEC encoded transmissions were the best performing of the three

tested methods. Of the twenty-five runs performed, the non-encoded scheme was unable

to successfully transfer an image. Without any redundancy, losing a single packet

constitutes a failure to transfer an image. Averaging 282 packets received out of the

original 299 packets sent, this method of transfer did not provide for a robust link at the

chosen distance.

The second transmission scheme sent a copy of each data packet or a total of 598

packets. This provides for the ability to lose random packets but consecutive lost

packets could be a problem. This method proved successful for 60% of the

transmissions, averaging 288 of the necessary 299 data packets. A counter was created

to keep track of the extra or redundant packets that were received. An average of 260

redundant packets was received.

The performance enhancement of the FEC coding was obvious. On average 88%

of the runs were successful; 589 of 640 sent packets were received on average.

37

Looking at run number twenty, the image was saved successfully even though only 466

of the 640 packets were received. The key of the erasure code algorithm is that for each

block of image data being transferred, as long as k packets out of n transferred are

received, the file can be reconstructed.

C. ONE HOP EXPERIMENT

The general arrangement for the one hop scenario is shown in Figure 12.

Figure 12. Scenario 2 - Terminal to Terminal via One Hop

To facilitate adding a hop between the two terminals, the power of the

transmitting mote was reduced to a reference level two, which is believed to be

equivalent to roughly -35 dBm. This equated to a transmission range of 1 ft. Due to the

size limitation of the anechoic chamber, this short first hop would be necessary later for

the two hop experiment. The power level for the mote used for the hop was set to -24

dBm.

MIB520 +
MICAz Mote

MIB520 +
MICAz Mote

Tx Laptop Rx Laptop

MICAz
Mote

38

Table 3. One Hop JPEG Transmission Results

Once again the layout of the motes was selected to force dropped packets to

occur. The results in Table 3 show that both of the non-encoded tests yielded no

successful transmissions while the FEC encoded test was successful 100% of the time.

Without redundancy, an average of 224 of the 299 necessary packets was received.

Doubling the number of packets increased the average to 267 with an average of 141

redundant packets, although no successful transmissions were obtained. The FEC

approach yielded an average of 459 of the 640 encoded packets received.

D. TWO HOP EXPERIMENT

The last of the scenarios, the two hop arrangement, is pictured in Figure 13.

Figure 13. Scenario 3 - Terminal to Terminal via Two Hops

MIB520
MICAz

MIB520
MICAz

MICAz
Mote

Rx Laptop

MICAz
Mote

Tx Laptop

Run No Packets No Packets Redundant Success No Packets No Packets Redundant Success No Packets No Packets Redundant Success
Transmitted Received Packets (Y/N) Transmitted Received Packets (Y/N) Transmitted Received Packets (Y/N)

1 299 238 0 N 598 288 214 N 640 501 0 Y
2 299 239 0 N 598 288 204 N 640 452 0 Y
3 299 229 0 N 598 296 235 N 640 451 0 Y
4 299 204 0 N 598 279 168 N 640 475 0 Y
5 299 233 0 N 598 283 178 N 640 472 0 Y
6 299 243 0 N 598 266 118 N 640 485 0 Y
7 299 227 0 N 598 260 12 N 640 446 0 Y
8 299 205 0 N 598 260 19 N 640 452 0 Y
9 299 230 0 N 598 248 127 N 640 453 0 Y
10 299 230 0 N 598 277 149 N 640 456 0 Y
11 299 219 0 N 598 282 165 N 640 500 0 Y
12 299 208 0 N 598 270 161 N 640 465 0 Y
13 299 221 0 N 598 256 147 N 640 503 0 Y
14 299 228 0 N 598 256 131 N 640 503 0 Y
15 299 221 0 N 598 257 148 N 640 505 0 Y
16 299 212 0 N 598 227 99 N 640 509 0 Y
17 299 230 0 N 598 280 144 N 640 471 0 Y
18 299 219 0 N 598 264 139 N 640 488 0 Y
19 299 219 0 N 598 274 156 N 640 500 0 Y
20 299 210 0 N 598 256 139 N 640 485 0 Y
21 299 236 0 N 598 270 134 N 640 523 0 Y
22 299 212 0 N 598 255 113 N 640 444 0 Y
23 299 230 0 N 598 276 146 N 640 446 0 Y
24 299 228 0 N 598 263 144 N 640 473 0 Y
25 299 234 0 N 598 254 136 N 640 475 0 Y

Non-Encoded Non-Encoded (Redundant) FEC Encoded

39

The arrangement of the terminal mote and first hop mote remain unchanged from

the previous one hop test. The second hop mote, like the first, was set to -24 dBm for

transmit power and located roughly 100 inches from the first mote. The arrangement of

motes was set in order to make sure the coverage for each mote was as shown in Figure

14.

Figure 14. Desired Mote Coverage For Two Hop Test

Table 4. Two Hop JPEG Transmission Results

The results of the two hop tests are shown in Table 4. Once again the FEC

encoded data tests outperformed the non-encoded data tests. Adding redundancy to the

non-encoded tests raised the success rate from 0% to 4%, or an average number of

packets received from 166 to 270. The average redundant packets increased from 154 to

415. By using the FEC encoding, the success rate was increased to 52%. An average of

403 packets out of the 640 sent was received with an average of 200 redundant packets.

Run No Packets No Packets Redundant Success No Packets No Packets Redundant Success No Packets No Packets Redundant Success
Transmitted Received Packets (Y/N) Transmitted Received Packets (Y/N) Transmitted Received Packets (Y/N)

1 299 151 279 N 598 239 545 N 640 458 110 Y
2 299 194 182 N 598 271 244 N 640 418 103 Y
3 299 186 18 N 598 282 306 N 640 405 314 Y
4 299 196 118 N 598 272 482 N 640 453 221 Y
5 299 198 108 N 598 264 533 N 640 398 412 Y
6 299 136 263 N 598 267 544 N 640 408 399 N
7 299 130 286 N 598 295 455 N 640 231 2 N
8 299 175 16 N 598 292 285 N 640 463 172 Y
9 299 201 109 N 598 157 455 N 640 156 56 N
10 299 174 108 N 598 285 302 N 640 408 346 Y
11 299 134 114 N 598 268 485 N 640 302 156 N
12 299 137 34 N 598 255 502 N 640 344 122 N
13 299 156 156 N 598 249 433 N 640 415 325 Y
14 299 165 167 N 598 289 526 N 640 285 208 N
15 299 165 185 N 598 299 285 Y 640 455 265 Y
16 299 174 221 N 598 297 465 N 640 468 214 Y
17 299 189 45 N 598 285 475 N 640 452 232 Y
18 299 198 49 N 598 246 388 N 640 385 126 N
19 299 156 145 N 598 264 475 N 640 408 188 N
20 299 164 164 N 598 255 385 N 640 415 182 N
21 299 134 185 N 598 269 352 N 640 375 55 N
22 299 137 235 N 598 285 387 N 640 435 164 Y
23 299 199 141 N 598 287 402 N 640 387 198 N
24 299 134 246 N 598 288 405 N 640 452 235 Y
25 299 155 270 N 598 292 265 N 640 407 185 N

Non-Encoded Non-Encoded (Redundant) FEC Encoded

40

The two hop arrangement added a large number of redundant packets to the link

and caused a considerable reduction of link performance as a result. The increase of

repeated packets seemed to cause a large number of necessary packets to be dropped

during transmission and even the encoded tests showed difficulty in transferring complete

JPEG images.

E. FEC PERFORMANCE OVER VARYING DISTANCES

The previous scenarios that were run were setup to purposefully cause a

considerable amount of packet loss in order to test the FEC effectiveness. Each of the

transceivers were positioned at a certain location and set to a power level that would

force this condition. While the tests did show that the FEC scheme provided improved

performance over the other tests run, another series of tests was needed in order to give a

more qualitative comparison of the three schemes.

Table 5. Effect of Varying Distances Upon Transmission Success

In order to get a better idea of how the performance was falling off for each of the

transmission methods as the distance increased, the final test was performed. The

configuration of hardware used for this test was that of the original terminal to terminal

test. The transmitting terminal, set to a power level of -24 dBm, remained fixed while the

receiving terminal was varied to record the packet transmission effects. Each of the non-

Distance No of Avg Packets Avg Red % Avg Packets Avg Red % Avg Packets Avg Red %
(in) Trials Received Packets Success Received Packets Success Received Packets Success
43 15 299 0 100
49 15 298.8 0 80
55 15 298.3 0 67
61 15 298.6 0 73
67 15 298.4 0 73
73 15 298.1 0 67 299 299 100 640 0 100
79 15 298.5 0 80 298.9 297.5 100 638.7 0 100
85 15 298.2 0 67 299 297 100 638.4 0 100
91 15 297 0 33 298.9 296.8 87 635.5 0 100
97 15 295.6 0 0 298.9 296 93 635.2 0 100
103 15 288.1 0 0 298.9 292.6 87 615.5 0 100
109 15 220 0 0 298.1 275.7 27 473.9 0 87
115 15 292.1 228.9 0 398.3 0 53
121 15 272.2 173.4 0 282.6 0 7
127 15 287.7 211.5 0 370.7 0 60
133 15 75 12 0 78 0 0
139 15

Non-Encoded (Redundant) FEC EncodedNon-Encoded

41

encoded and encoded methods were tested fifteen times at varied distances to find the

transition from 100% image transfer success to the distance that resulted in a failure to

transfer a single image.

Table 5 displays the results from the test. The non-encoded scheme showed a

gradual decrease in link performance starting at a distance of 43 inches until it totally

failed at 97 inches. At that distance, the non-encoded scheme that included redundant

packets was still showing a 93% success rate. At 115 inches, the redundant packet

scheme completely failed. At this distance the FEC encoded scheme still performs at a

53% success rate. Not till 133 inches did it fail to transfer a single image. There was an

unexpected spike in performance for the FEC scheme at the next to last distance that was

unexplained.

Figure 15. Quadratic Fit Curves for Experimental Results

42

In order to get a better picture of the performance falloff, the plot shown in Figure

15 was created from the recorded data. To achieve the smooth curves shown, quadratic

fit curves were created from the data. To compare the three transmission schemes, a

reference for acceptable loss of 25% was chosen. This translated to receiving 11.25 out

of the 15 files sent. By that standard the non-redundant scheme that included redundancy

represented a 42% increase in transmitting range from the non-redundant scheme. The

FEC encoded scheme represented a 66% increase in transmitting range.

F. SUMMARY

 For the experiment, results were taken for three different configurations in order

to demonstrate the effectiveness of the FEC algorithm under differing conditions. In

each of the configurations tested, the FEC encoded transmissions achieved better results

at greater ranges than the non-encoded tests. The erasure coding allowed for significant

packet loss to occur while still recovering the image at the receiving terminal. While the

redundant example showed some improvement over the non-redundant test, consecutive

lost packets quickly became an issue as the receiver’s distance from the transmitter was

increased.

 Both the terminal to terminal and one hop configurations yielded very similar

results. The two hop configuration was similar in that it showed the FEC test to be the

most effective, but it also highlighted some performance limitations of the medium

access protocol used by the lab motes that should be investigated further. The packet

losses at the receiving node were much greater with the two hop configuration. It

appeared that the increased network congestion was responsible for the reduced

performance.

43

V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

For each of the experiment configurations used, the erasure code outperformed

the non-FEC schemes. The larger the amount of data to be sent, the more effective

erasure code would be for the transmission process. While the TinyOS AM packet

structure is very limiting, the positive effects of the coding scheme were still observed.

While the error correction method did improve the performance of the channel,

the two hop experiment pointed out flaws with the underlying architecture that must be

addressed. During the two hop experiment, a large amount of packet loss was observed

that can be attributed to unnecessary congestion in the network. The CSMA scheme used

by the motes may be the reason for the packet loss observed.

Maybe the most limiting factor observed was the channel throughput. During the

terminal to terminal tests an average transfer time of 7 sec was recorded for the non-

redundant file transfer. This equated to a transfer rate of 12.3 kbps for the 299 packets.

Considering that the CC2420 radio on the MICAz mote was rated for 250 kbps and the

serial forwarder program was set for a transfer rate of 57.6 kbps, the cause of the slow

transmission speed was unknown. Researching the TinyOS documentation led to the

discovery that the MAC protocol was actually the limiting factor. The CSMA protocol

limited the number of packets sent to the radio each second to 43. Implementing a

TCP/IP bridge to pass multimedia or VOIP traffic would require a much higher

transmission rate. While the equipment and software used in this experiment might not

be able to achieve the desired results, other MAC schemes may be available that could

provide a transmission rate closer to the radio's capabilities.

B. RECOMMENDATIONS

The first recommendation would be to conduct further tests on the erasure code to

find what parameters of k and n would yield the most optimum coding scheme. During

the course of the experiment, these values were only adjusted to manipulate the number

44

of blocks that would be encoded. A more in-depth study to find out if these values can be

more useful to the overall channel performance might be beneficial.

Erasure code did provide very positive results during the experiment. A positive

next step would be take the performance of the erasure code and compare it to a

convolutional or turbo code. Convolutional codes and turbo codes represent some of the

more advanced and efficient codes available today.

Due to the limitations provided by the CSMA MAC scheme installed on the

experimental motes, work involving newer MAC schemes may provide better results.

With TinyOS 1.1.3, the B-MAC MAC scheme was introduced. B-MAC increased the

rate at which packets are sent to the radio slightly over the CSMA scheme used during

this experiment. Improvements to this transmission rate above that provided by B-MAC

may also be available in versions later than 1.1.3.

Finally, an ideal sensor network would most likely combine some form of

forward error correction with a limited implementation of ARQ. In order to make this

possible, it may be necessary to combine the ARQ with a suitable MAC scheme as

mentioned before. The Z-MAC scheme introduced earlier might be a good fit with its

congestion dependent combination of CSMA and TDMA.

45

APPENDIX

A. SNAIL CLIENT CODE

// SNAILClient_fec.java
//
// Java program prompts user for selection and collects data ...
// to be transferred to SNAILServer
//
// Last Updated by Thomas Childers 26Nov08

package net.tinyos.tools1;

import com.sun.image.codec.jpeg.ImageFormatException;
import com.sun.image.codec.jpeg.JPEGCodec;
import com.sun.image.codec.jpeg.JPEGImageEncoder;
import javax.swing.*;
import java.awt.image.BufferedImage;
import java.net.*;
import java.io.*;
import javax.imageio.ImageIO;

public class SNAILClient_fec {

 private static byte[] concatenate(byte[] a, byte[] b)
 {
 if (a == null) {
 return b;
 } else {
 byte[] bytes = new byte[a.length + b.length];

 System.arraycopy(a, 0, bytes, 0, a.length);
 System.arraycopy(b, 0, bytes, a.length, b.length);
 return bytes;
 }
 }

 /** Creates a new instance of TcpClient */
 public SNAILClient_fec() {
 }

 public static byte[] bufferedImageToByteArray(BufferedImage img)
throws ImageFormatException, IOException
 {
 ByteArrayOutputStream os = new ByteArrayOutputStream();
 JPEGImageEncoder encoder = JPEGCodec.createJPEGEncoder(os);
 encoder.encode(img);
 return os.toByteArray(); }

 // --
 public static void main(String args[])
 {

46

 Socket clientSocket;
 String DIGEST_ALGORITHM = "sha";
 byte[] outy = null;

 try
 {

 while(true)
 {
 // Initialization for File Transfer
 FileInputStream inputFile = null;
 FileOutputStream outputFile = null;
 BufferedReader input = null;
 BufferedWriter output = null;
 char NewArray[] = null;
 String FinalFileData = null;

// This is the portion that attempts to collect data
from the console
System.out.print("\nActions available
currently:\n\n\t (1) - Send Instant Msg \n\t (2) -
Standard File Transfer \n\t (3) - Jpeg Transfer");

 System.out.print("\n\n Enter Option Number: ");
BufferedReader instruction = new BufferedReader

(new InputStreamReader(System.in));
 String processInstruction = instruction.readLine();

int instrObtained =
Integer.parseInt(processInstruction);

 String FinalOutputData = new String();

// This asks the user whether or not to encode the
data

System.out.print("\nFEC Encoding:\n\n\t (1) -
Encode Data \n\t (2) - Data Tx Only \n\t");

 System.out.print("\n\n Enter Coding Selection: ");
BufferedReader encoding = new BufferedReader (new

InputStreamReader(System.in));
 String encodingoption = encoding.readLine();

int encodingchoice =
Integer.parseInt(encodingoption);

 byte encoded = 0;
 if (encodingchoice == 1)
 encoded = 0;
 if (encodingchoice == 2)
 encoded = 1;

 // --
 // Next section does based on the option selected

if(instrObtained == 1) // Loop for short message
services

 {
System.out.print("Enter message that needs to
be transmitted: ");

47

BufferedReader inStream = new BufferedReader
(new InputStreamReader(System.in));

 String outputData = inStream.readLine();

// The following is to add in the flag for
option selected
String dataReceived = outputData;
// Conversion of string to char array

 char dataArray [] = dataReceived.toCharArray();

 NewArray = new char[dataArray.length];

// Additional 2 segments in array for
optionSelect and Filesize

 for(int i = 0; i < (dataArray.length); i++)
 {
 NewArray[i] = dataArray[i];
 }

 byte[] codeArray = new byte[3];

codeArray[0] = '1'; // Flag to server that
this is a short message service

 codeArray[1] = '0';
 codeArray[2] = encoded;

// This routine is to check if the mapping of
array is correct. Uncomment when required to
use.
// for (int count = 0; count < NewArray.length;
count++)

 // {
 // System.out.print(" " +NewArray[count]);
 // }

for(int count = 0; count < NewArray.length;
count++)

 {
 FinalOutputData += NewArray[count];
 }
 // End of adding option selection flag

byte[] foutdata = FinalOutputData.getBytes(
"8859_1" /* encoding */); // Putting in byte
array form for transfer

 outy = concatenate(codeArray,foutdata);
 }

else if(instrObtained == 2) // This is the loop
for File transfer

 {

JFileChooser fileChooser = new
JFileChooser(".");

 int status = fileChooser.showOpenDialog(null);
 String filename = new String();

48

 if (status == JFileChooser.APPROVE_OPTION)
 {

File selectedFile =
fileChooser.getSelectedFile();
System.out.println("Selected: " +
selectedFile.getPath());

 filename = selectedFile.getPath();
 }

 File fileIn;
 BufferedInputStream in = null;
 BufferedOutputStream out = null;
 byte[] filedata = null;

 try
 {
 fileIn = new File(filename);

System.out.println("File size is " +
fileIn.length() + " bytes");
in = new BufferedInputStream(new
FileInputStream(fileIn));

byte[] fileContent = new
byte[(int)fileIn.length()];

 in.read(fileContent);
 filedata = fileContent;
 }
 catch (IOException ex)
 {
 ex.printStackTrace();
 }
 finally
 { // always close the streams
 try
 {
 if (in != null) in.close();
 if (out != null) out.close();
 }

catch (IOException ex)
{

 ex.printStackTrace(); }
 }

// Putting the options with the data into
FinalOutputData

 byte[] option = new byte[3];
 option[0] = (byte)'2';
 option[1] = (byte)'0';
 option[2] = encoded;

 outy = concatenate(option,filedata);

 }
 // End of text file transfer portion

49

 else if(instrObtained == 3) // Jpeg Transfer Portion
 {

JFileChooser fileChooser = new
JFileChooser(".");

 int status = fileChooser.showOpenDialog(null);
 String filename = new String();
 if (status == JFileChooser.APPROVE_OPTION)
 {

File selectedFile =
fileChooser.getSelectedFile();
System.out.println("Selected: " +
selectedFile.getPath());

 filename = selectedFile.getPath();
 }

 BufferedImage img = null;
 try
 {
 img = ImageIO.read(new File(filename));
 }
 catch (IOException e) {}

ByteArrayOutputStream baos=new
ByteArrayOutputStream();
JPEGImageEncoder encoder
=JPEGCodec.createJPEGEncoder(baos);

 encoder.encode(img);
 byte [] fileData = baos.toByteArray();

//System.out.println("File size is " +
fileData.length() + " bytes"); !! Find
length of byte array???

// Putting the options with the data into
FinalOutputData

 byte[] option = new byte[3];
 option[0] = (byte)'3';
 option[1] = (byte)'0';
 option[2] = encoded;

// Now need to combine image data and option
data

 outy = concatenate(option,fileData);

 }

// Below will send the collected data out to
SNAILserver

 InetAddress srcAddress = InetAddress.getLocalHost();

 int srcListeningPort = 4567;

clientSocket = new Socket(srcAddress,
srcListeningPort);

50

System.out.println("Client: Attempting to
established connection ");

//int len = outy.length; // If I were to find the
length of the byte array

// InputStream is = clientSocket.getInputStream();
// DataInputStream dis = new DataInputStream(is);
//
 OutputStream os = clientSocket.getOutputStream();
// DataOutputStream dos = new DataOutputStream(os);

// dos.write(outy, 0, outy.length);

ObjectOutputStream oos = new ObjectOutputStream(os);

// get the socket output stream

 oos.writeObject(outy);

 System.out.println("\n\n");
 System.out.println("Information transmitted");
 if (instrObtained == 1)
 {

String t = new String(outy , "Cp1252" /*
encoding */);

 System.out.println(t);
 }
 System.out.println("\n\n");

 } // End of while-loop
 } // End of Try Statement
 catch(Exception e)
 {
 System.out.println(e);
 }
 } // End Main Method

} // End SNAILClient_fec

B. SNAIL SERVER CODE

// SNAILserverTest3_fec.java
//
// Java program encodes the data if required and packages the data ...
// for transfer over the sensor network
//
// Last Updated by Thomas Childers 26Nov08

package net.tinyos.tools;

import java.io.*;
import java.net.*;
import java.util.Properties;
import net.tinyos.message.*;

51

import net.tinyos.util.*;

// Added for FEC Operations
import com.onionnetworks.fec.FECCode;
import com.onionnetworks.fec.FECCodeFactory;
import com.onionnetworks.util.Buffer;

public class SNAILserverTest3_fec
{

 public static final short TOS_BCAST_ADDR = (short) 0xffff;
 static Properties p = new Properties();

 /** Creates a new instance of TcpServer */
 public SNAILserverTest3_fec()
 {}

public static byte restoreSequenceNo() // This instance is to
obtain the sequence number of the packet

 {
 try
 {

FileInputStream fis = new
FileInputStream("bcast.properties");

 p.load(fis);
byte i = (byte)Integer.parseInt(p.getProperty("sequenceNo",
"1"));

 fis.close();
 return i;
 }

 catch (IOException e)
 {
 p.setProperty("sequenceNo", "1");
 return 1;
 }
 }

public static void saveSequenceNo(int i) // This is an instance
to save the sequence number

 {
 try
 {

FileOutputStream fos = new
FileOutputStream("bcast.properties");

 p.setProperty("sequenceNo", Integer.toString(i));
 p.store(fos, "#Properties for BcastInject\n");
 }
 catch (IOException e)
 {

System.err.println("Exception while saving sequence number"
+ e);

 e.printStackTrace();
 }
 }

52

 public static void main(String args[]) // This is the main
 instance where the program runs
 {
 byte sequenceNo = 0;
 boolean read_log = false;

 ServerSocket serverSocket;
 try
 {
 // without specifying on the interface
 // it will listens to all interfaces; wildcard
 serverSocket = new ServerSocket(4567);

 while(true) // Infinite Loop
 {
 System.out.println(" ");

System.out.println(" ----------------Start Of Server
Service ---------------");
System.out.println(" Server: No Client Yet; Please
Wait Longer ...");

 Socket aSocket = serverSocket.accept();
 System.out.println(" Server: Client arrived!");

 InputStream is = aSocket.getInputStream();
 // reading in byte array
 ObjectInputStream ois = new ObjectInputStream(is);
 byte[] data = (byte[])ois.readObject();
 int arraysize = data.length;

char data1 = (char) data[0]; // Pull out options
selected

 char data2 = (char) data[1];
 //char data3 = (char) data[2];
 byte encoded = data[2];

 System.out.println(" ");
 // ---
 // Data has been read in, now to Encode and Transmit

 SNAILmsg_tc packet = new SNAILmsg_tc();

 packet.set_hop_count((short)0);
 packet.set_source(0);

 try
 {

int optionSelect = 0; // This
variable is in ascii due to input from terminal
int FileNameSize = 0; // This
variable will be in integer value

 int count = 0;
int j = 0; // Variable to
store characters converted to Hex
int end = 1; // Counter for next
packet to be sent

53

int start = 0; // Counter for
number of packets sent

 int z = 0; // Loop counter
 int test = 0; // Counter for

character count
 int packetcount = 0; // Packet Counter
 int newIndexStart = 0;
 int newIndexEnd = 0;
 int oldarray = 0;

int bytesCopied = 0; // Running counter
of the number of bytes sent out

 int padding = 0;
byte TerminalID = '2'; // This ID is
unique to every terminal. Not really utilized.
int TxScanFlag = '0'; // Old variable.
Not used.
long delay = 5; // Delay in
between packets transmission
long delay2 = 160; // Delay for
handshake packet transmission

 byte queueArray [] = new byte[29];
 byte FinalDataArray [] = null;
 byte headerArray [] = new byte[29];

System.out.println("Total Characters Received: "
+arraysize);

 System.out.print("\n");

 System.out.print("\nOption Selected: " + data1);
 System.out.print("\nFile Name Size : " + data2);
 System.out.println("\n");
 System.out.print("\n\n");

 optionSelect = data1;

 System.out.print("\n");

 // ---

// Finding Out what kind of packet structure we are
dealing with

arraysize = arraysize - 3;
// Not transmitting the option 3 digit code
int k2 = (arraysize/(packet.dataLength()-3)+1);
// # packets before encoding
if ((arraysize % (packet.dataLength()-3)) == 0)
// Fix case if evenly divisible

 k2 = k2 - 1;
int n2 = 2 * k2;
// n is # of encoded packets

54

int packetsize = 26;
// AM message determined data size (29) minus 3 bytes

int k = 64;
// Number of packets to encode
int n = 128;
// Number of encoded packets
if (data1 == '1')
// If this is a text message or non-encoded, i want
to fix k and n by msg length

 {
 k = k2;
 n = n2;
 }

 if (encoded == 1)
 {

k = (arraysize/(packet.dataLength()-2)+1);
// # packets before encoding
if ((arraysize % (packet.dataLength()-2)) == 0)
// Fix case if e venly divisible

 k = k - 1;
 }

 System.out.print("\nArray Size : " +arraysize);
 int totalBits = k*packetsize;

 //System.out.println("\nTotal bytes : " +totalBits);
 //padding = totalBits - (arraysize - 3);
 // Due to 1 additional bit per payload

//System.out.println("\nCharacters Sent: "
+arraysize);
//System.out.println("\nPackets required: " +
packetcount);

 // --

// Fix the format of the arraysize and the
packetcount so they can be transmitted in 2 bytes
each

byte[] arraysz = new byte[] // Convert
arraysize to 2 bytes

 {
 (byte)(arraysize >>> 16),
 (byte)(arraysize >>> 8),
 (byte) arraysize
 };

byte[] ksz = new byte[] // Convert k to 2
bytes

 {
 (byte)(k >>> 8),

55

 (byte) k
 };

byte[] nsz = new byte[] // Convert n to 2
bytes

 {
 (byte)(n >>> 8),
 (byte) n
 };

 // ---

// Find out out many image blocks there will
be (can't encode entire image at once *slow*)

int block = k * packetsize;
// Size of image block
int numblocks = (arraysize / block) + 1;
// Number of image blocks to encode
if ((arraysize % block) == 0)
// Fix case if evenly divisible

 numblocks = numblocks - 1;

 // ---
 // Need to store each of the image data blocks

byte[] source = new byte[arraysize];
// Contains all of data minus the 3 byte option
System.arraycopy(data, 3, source, 0,
arraysize);

 byte[][] source2 = new byte[numblocks][block];

if (numblocks == 1)
// If less than blocksize of data

 {
 for (int i=0; i < arraysize; i++)
 source2[0][i] = source[i];
 }
 else
 {

for (int i=0; i < (numblocks-1); i++)
// Puts data blocks in correct place
System.arraycopy(source, i*block ,
source2[i], 0, block);
for (int i=0; i < (arraysize % block);
i++)
source2[numblocks-1][i] =
source[((numblocks-1)*block) + i];

 }

 // ---
 // FEC Setup Procedure //

56

byte[][] repair = new
byte[numblocks][n*packetsize]; //this is
our encoded data

 int[][] repairIndex = new int[numblocks][n];

//These buffers allow us to put our data in
them they
//reference a packet length of the file (or at
least will once

 //we fill them)

 //create our fec code

if (encoded == 0) // I only want to do
this section if we are going to encode

 {
FECCode fec =
FECCodeFactory.getDefault().createFECCode
(k, n); // creating code

 for (int w=0; w < numblocks; w++)
 {
 Buffer[] sourceBuffer = new Buffer[k];
 Buffer[] repairBuffer = new Buffer[n];

for (int i = 0; i <
sourceBuffer.length; i++)
sourceBuffer[i] = new
Buffer(source2[w], i*packetsize,
packetsize);

for (int i = 0; i <
repairBuffer.length; i++)
repairBuffer[i] = new
Buffer(repair[w], i*packetsize,
packetsize);

//When sending the data you must
identify what it's index was.

 //Will be shown and explained later

 for (int i = 0; i <
 repairIndex[w].length; i++)

repairIndex[w][i] = i;

 //encode the data
 fec.encode(sourceBuffer, repairBuffer,
 repairIndex[w]);
 }
 }
 // End FEC Encoding //
 // -------------------------------------

 if (encoded == 0)
 {

57

 // This routine is to send out the handshake
 packet. To inform receiver, how many
 // packets to expect and bytes of padding
 required. Also sent, the repair packet index

 sequenceNo = restoreSequenceNo();
 sequenceNo++;
 packet.set_seqno(sequenceNo);
 System.out.print("\nThis is the headerpacket
 sequence number: " +sequenceNo);
 saveSequenceNo(sequenceNo);

 System.out.println("\nSending Header Packet");
 headerArray [0] = (byte) sequenceNo; //
 Sequence number
 headerArray [1] = (byte) TerminalID; //
 Second byte contains the Terminal ID
 headerArray [2] = (byte) optionSelect; //
 Third byte contains the option selected
 headerArray [3] = (byte) FileNameSize; //
 Fourth byte contains the FileName length (not
 used)
 headerArray [4] = encoded; //
 Fifth byte contains Encoding Option
 headerArray [5] = ksz[0]; //
 6th/7th byte contains ksz info (1)
 headerArray [6] = ksz[1]; //
 (2)
 headerArray [7] = nsz[0]; //
 8th/9th byte contains nsz info (1)
 headerArray [8] = nsz[1]; //
 (2)
 headerArray [9] = arraysz[0]; //
 10th/11th/12th byte contains arraysize info (1)
 headerArray [10] = arraysz[1]; //
 (2)
 headerArray [11] = arraysz[2]; //
 (3)
 headerArray [12] = (byte) 69; //
 Handshake Packet Queue (not used)
 MoteIF mote = new
 MoteIF(PrintStreamMessenger.err);

 for(int redundancy = 4; redundancy > 0;
 redundancy--)
 {

 for (int i = 13; i < 29 ; i++) //
 Clear the rest of the payload
 {
 headerArray [i] = 00;
 }

58

 for(int i = 0; i < headerArray.length;
 i++)
 System.out.print(" " + (headerArray[i]));

 for (int i = 0; i < packet.dataLength();
 i++) // This boundary is fixed due to 29
 bytes limitation by AM
 {
 int c = headerArray[i];
 packet.set_action(i,c);
 // Contents in packet is now
 Hexadecimal

 packet.set_seqno(sequenceNo);
 // i points to the start of the array
 count = i+1;
 // Characters counter
 }

 System.out.println("\n");

 Thread.sleep(delay2);
 mote.send(TOS_BCAST_ADDR, packet);
 Thread.sleep(delay2);
 }
 // End of handshake packet transmission
 // --

 // Now transmitting data packets

 for (int y=0; y < numblocks; y++)
 // Out loop for transmitting all of the data
 blocks
 {
 packetcount = n;
 int TotalPacketCount = 0;
 // Will be used to store packet #
 bytesCopied = 0;
 System.out.println("Sending block: " +
 (y+1)+" of " +numblocks);
 for (; packetcount > 0; packetcount--)
 {
 sequenceNo = restoreSequenceNo();
 sequenceNo++;
 packet.set_seqno(sequenceNo);
 //System.out.print("\nThis is the payload
 sequence number :" +sequenceNo);

 //System.out.println("\nSending Packet
 Number :" + (TotalPacketCount+1));

 saveSequenceNo(sequenceNo);

59

 queueArray[0] = (byte) y;
 // Storing Block number to be sent

 byte[] countsz = new byte[] //
 Convert n to 2 bytes
 {
 (byte)(TotalPacketCount >>> 8),
 (byte) TotalPacketCount
 };

 queueArray[1] = (byte) countsz[0];
 // Storing 2 byte Packet Number
 queueArray[2] = (byte) countsz[1];

 for (int counter = 3; (counter < 29) ;
 counter++)
 {
 queueArray [counter] =
 repair[y][bytesCopied]; // Conversion
 to byte array of Data
 bytesCopied++;

 //System.out.println(counter+" "+y+"
 "+bytesCopied+" "+);
 }
 //bytesCopied--;

 // ---------------------------------------
 // Send Packets

 for (int redundancy = 1; redundancy > 0;
 redundancy--) // Sending Packets
 {
 for (int i = 0; i < packet.dataLength();
 i++)
 {
 //byte c = queueArray[i];
 //j = (int) c;
 // j contains the decimal integer

 packet.set_action(i,queueArray[i]);
 // Contents in packet is now Hexadecimal

 //packet.set_seqno(sequenceNo);
 // i points to the start of the array

 // j is the contents of the array

 //System.out.print((packet.dataGet()[i])+
 " ");
 count = i+1; //
 Characters counter
 }

60

 Thread.sleep(delay);

 mote.send(TOS_BCAST_ADDR, packet);
 } // End transmission loop

 saveSequenceNo(sequenceNo);
 TotalPacketCount++;
 } // End inner for loop
 } // End Block Tx for loop

 // ---
 // Now transmitting a termination packet

 sequenceNo = restoreSequenceNo();
 sequenceNo++;
 packet.set_seqno(sequenceNo);
 System.out.print("\nThis is the termpacket sequence
 number: " +sequenceNo);
 saveSequenceNo(sequenceNo);
 byte[] termArray = new byte[29];

 System.out.println("\nSending Terminating Packet");
 termArray [1] = (byte) 69; // Flags
 termArray [2] = (byte) 69; //
 termArray [3] = (byte) 69; //

 for(int redundancy = 10; redundancy > 0; redundancy--)
 {

 for (int i = 4; i < 29 ; i++) // Clear the rest
 of the payload
 {
 termArray [i] = 00;
 }

 for(int i = 0; i < termArray.length; i++)
 System.out.print(" " + (termArray[i]));

 for (int i = 0; i < packet.dataLength(); i++) //
 This boundary is fixed due to 29 bytes limitation
 by AM
 {
 int c = termArray[i];
 packet.set_action(i,c); //
 Contents in packet is now Hexadecimal

 packet.set_seqno(sequenceNo); //
 i points to the start of the array
 count = i+1; //
 Characters counter
 }

 System.out.println("\n");

61

 Thread.sleep(delay);
 mote.send(TOS_BCAST_ADDR, packet);
 Thread.sleep(delay);

 } // end for loop

 } // end if (encoded)

 // --
 // --

 else if (encoded == 1) // if non-encoded
 {
 // This routine is to send out the handshake
 packet. To inform receiver, how many
 // packets to expect and bytes of padding required.
 Also sent, the repair packet index

 sequenceNo = restoreSequenceNo();
 sequenceNo++;
 packet.set_seqno(sequenceNo);
 System.out.print("\nThis is the headerpacket
 sequence number: " +sequenceNo);
 saveSequenceNo(sequenceNo);

 System.out.println("\nSending Header Packet");
 headerArray [0] = (byte) sequenceNo; //
 Sequence number
 headerArray [1] = (byte) TerminalID; // Second
 byte contains the Terminal ID
 headerArray [2] = (byte) optionSelect; // Third
 byte contains the option selected
 headerArray [3] = (byte) FileNameSize; // Fourth
 byte contains the FileName length (not used)
 headerArray [4] = encoded; // Fifth
 byte contains Encoding Option
 headerArray [5] = ksz[0]; //
 6th/7th byte contains ksz info (1)
 headerArray [6] = ksz[1]; // (2)
 headerArray [7] = nsz[0]; //
 8th/9th byte contains nsz info (1)
 headerArray [8] = nsz[1]; // (2)
 headerArray [9] = arraysz[0]; //
 10th/11th/12th byte contains arraysize info (1)
 headerArray [10] = arraysz[1]; // (2)
 headerArray [11] = arraysz[2]; // (3)
 headerArray [12] = (byte) 69; //
 Handshake Packet Queue (not used)
 MoteIF mote = new MoteIF(PrintStreamMessenger.err);

 for(int redundancy = 4; redundancy > 0; redundancy--
)
 {

62

 for (int i = 13; i < 29 ; i++)
 // Clear the rest of the payload
 {
 headerArray [i] = 00;
 }

 for(int i = 0; i < headerArray.length; i++)
 System.out.print(" " + (headerArray[i]));

 for (int i = 0; i < packet.dataLength(); i++)
 // This boundary is fixed due to 29 bytes
 limitation by AM
 {
 int c = headerArray[i];
 packet.set_action(i,c); //
 Contents in packet is now Hexadecimal

 packet.set_seqno(sequenceNo); //
 i points to the start of the array
 count = i+1; // Characters
 counter
 }

 System.out.println("\n");
 Thread.sleep(delay);
 mote.send(TOS_BCAST_ADDR, packet);
 Thread.sleep(delay);
 }

 // End of handshake packet transmission
 // ---

 // Now transmitting data packets

 packetcount = k;
 int TotalPacketCount = 0;
 // Will be used to store packet #
 bytesCopied = 0;
 for (; packetcount > 0; packetcount--)
 {
 sequenceNo = restoreSequenceNo();
 sequenceNo++;
 packet.set_seqno(sequenceNo);
 //System.out.print("\nThis is the payload sequence
 number :" +sequenceNo);

 //System.out.println("\nSending Packet Number :" +
 (TotalPacketCount+1));

 saveSequenceNo(sequenceNo);
 //queueArray[1] = (byte) TerminalID;
 // Storing Block number to be sent

63

 byte[] countsz = new byte[]
 // Converting packet number to two bytes
 {
 (byte)(TotalPacketCount >>> 8),
 (byte) TotalPacketCount
 };

 queueArray[0] = (byte) countsz[0];
 // Storing 2 byte Packet Number
 queueArray[1] = (byte) countsz[1];

 for (int counter = 2; (counter < 29) && (bytesCopied
 < arraysize) ; counter++)
 {
 queueArray [counter] = source[bytesCopied];
 // Conversion to byte array of Data
 bytesCopied++;

 //System.out.println(counter+" "+y+"
 "+bytesCopied+" "+);
 }
 //bytesCopied--;

 // ---
 // Send Packets

 for (int redundancy = 1; redundancy > 0; redundancy--)
 // Sending Packets
 {
 for (int i = 0; i < packet.dataLength(); i++)
 {
 //byte c = queueArray[i];
 //j = (int) c; // j
 contains the decimal integer

 packet.set_action(i,queueArray[i]);
 // Contents in packet is now Hexadecimal

 //packet.set_seqno(sequenceNo);
 // i points to the start of the array

 // j is the contents of the array

 //System.out.print((packet.dataGet()[i])+ " ");
 count = i+1; //
 Characters counter
 }
 Thread.sleep(delay);
 //System.out.print("\n");
 //System.out.println("\n");
 mote.send(TOS_BCAST_ADDR, packet);
 } // End transmission loop

64

 saveSequenceNo(sequenceNo);
 TotalPacketCount++;
 } // End inner for loop

 // --
 // Send terminating packet

 sequenceNo = restoreSequenceNo();
 sequenceNo++;
 packet.set_seqno(sequenceNo);
 System.out.print("\nThis is the termpacket sequence
 number: " +sequenceNo);
 saveSequenceNo(sequenceNo);
 byte[] termArray = new byte[29];

 System.out.println("\nSending Terminating Packet");
 termArray [1] = (byte) 69; // Flags
 termArray [2] = (byte) 69; //
 termArray [3] = (byte) 69; //

 for(int redundancy = 5; redundancy > 0; redundancy--)
 {

 for (int i = 4; i < 29 ; i++) // Clear the rest of
 the payload
 {
 termArray [i] = 00;
 }

 for(int i = 0; i < termArray.length; i++)
 System.out.print(" " + (termArray[i]));

 for (int i = 0; i < packet.dataLength(); i++) // This
 boundary is fixed due to 29 bytes limitation by AM
 {
 int c = termArray[i];
 packet.set_action(i,c); // Contents
 in packet is now Hexadecimal

 packet.set_seqno(sequenceNo); //
 i points to the start of the array
 count = i+1; //
 Characters counter
 }

 System.out.println("\n");

 Thread.sleep(delay);
 mote.send(TOS_BCAST_ADDR, packet);
 Thread.sleep(delay);

 } // end for loop

65

 } // end else for non-encoded option

 } // end try statement
 catch(Exception e)
 {
 e.printStackTrace();
 }
 // --->

 System.out.println(" ----------------End Of Server Service -----
 ----------");

 System.out.println(" ");

 } // End infinite While Loop

 } // End Main Class Try Statement
 catch(Exception e)
 {
 System.out.println(e);
 }
 } // End Main Class

} // End SNAILserverTest_fec

C. SNAIL LISTEN CODE

// SNAILlistenTest3_fec.java
//
// Java program takes in data from the sensor network and decodes if
// necessary. Resulting data is displayed or stored as a file.
//
// Last Updated by Thomas Childers 26Nov08

// $Id: Listen.java,v 1.5 2004/08/19 00:13:49 idgay Exp $

/*
 * "Copyright (c) 2000-2003 The Regents of the University of
California.
 * All rights reserved.
 *
 * Permission to use, copy, modify, and distribute this software and
its
 * documentation for any purpose, without fee, and without written
agreement is
 * hereby granted, provided that the above copyright notice, the
following
 * two paragraphs and the author appear in all copies of this software.

66

 *
 * IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY
PARTY FOR
 * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
ARISING OUT
 * OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE
UNIVERSITY OF
 * CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,
 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY
 * AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED
HEREUNDER IS
 * ON AN "AS IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO
OBLIGATION TO
 * PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR
MODIFICATIONS."
 *
 * Copyright (c) 2002-2003 Intel Corporation
 * All rights reserved.
 *
 * This file is distributed under the terms in the attached INTEL-
LICENSE
 * file. If you do not find these files, copies can be found by writing
to
 * Intel Research Berkeley, 2150 Shattuck Avenue, Suite 1300, Berkeley,
CA,
 * 94704. Attention: Intel License Inquiry.
 */

import java.io.*;
import java.net.*;
import net.tinyos.util.*;
import net.tinyos.packet.*;
import java.util.*;
import javax.swing.*;

import com.onionnetworks.fec.FECCode;
import com.onionnetworks.fec.FECCodeFactory;
import com.onionnetworks.util.Buffer;
import java.awt.image.BufferedImage;
import javax.imageio.ImageIO;

public class SNAILlistenTest3_fec {

 public static void main(String args[]) throws IOException
 {
 if (args.length > 0)
 {
 System.err.println("usage: java net.tinyos.tools.Listen");
 System.exit(2);
 }

 Socket clientSocket;

67

 PacketSource reader = BuildSource.makePacketSource();
 if (reader == null) {
 System.err.println("Invalid packet source (check your MOTECOM
 environment variable)");
 System.exit(2);
 }

 BufferedWriter output = null;
 FileOutputStream outputFile = null;

 try
 {
 byte TerminalID = '3';
 reader.open(PrintStreamMessenger.err);
 byte sequenceNo = 0;
 byte [] HandshakePkt = new byte[34];
 byte [] buffer = new byte[34];

 while(true)
 {
 System.out.println("----------------------------------
 ---");
 System.out.println("Waiting");
 int j = 0;
 int d = 0;
 int ascii = 0;
 int packetcount = 0;
 int reconstructbuffer = 0;
 int TxScanFlag = 0;

 char NewArray[] = null;
 String outputData = new String();
 String FinalOutputData = new String();

 ArrayList Reconstruct = new ArrayList(); // will use array
 list Reconstruct to get back all information
 String FileName = new String();

 HandshakePkt = reader.readPacket(); // read the packet
 count for 1 time only

 // If a redundant handshake packet or an extra data
 packet, drop packet
 while((HandshakePkt[5] == buffer[5]) || (HandshakePkt[17]
 != 69))
 {
 HandshakePkt = reader.readPacket(); // read the packet
 count for 1 time only
 //System.out.print("\nExtra Data Packet or Not a
 Handshake Packet (dropped)\n");
 }
 char optionSelect = (char) HandshakePkt[7];

 sequenceNo = HandshakePkt[5]; // Update sequence number

68

 //System.out.print("Received Sequence No: "
 +Integer.toHexString(sequenceNo));

 //System.out.print("\nTest " +HandshakePkt[6]);
 //HandshakePkt[6] = Packet number
 //System.out.print("\nSystem Terminal ID:" +(char)
 TerminalID);

 if(HandshakePkt[6] == TerminalID)
 {
 System.out.print("\nRepeated Packet Dropped\n");
 }

 if(HandshakePkt[6] != (TerminalID)) // HandshakePkt[6] is
 the Terminal ID
 {
 //System.out.print(" This message is from other terminal
 ");

 System.out.println("\nOption Selected\t: "
 +optionSelect);

 int FileNameSize = HandshakePkt[8]; // This is to
 convert char in HandshakePkt into integer
 TxScanFlag = HandshakePkt[9]; // This
 is to signify whether heartbeat scan is requested or
 initiated

 // if(FileNameSize != 0)
 // System.out.print("\nFileName Size\t: "
 +(char)FileNameSize);

 // ---
 // Find out size of array & number of packets needed to
 decode

 int arraysize = ((HandshakePkt[14] & 0xFF) <<16)
 + ((HandshakePkt[15] & 0xFF) << 8)
 + (HandshakePkt[16] & 0xFF);

 int k = ((HandshakePkt[10] & 0xFF) << 8)
 + (HandshakePkt[11] & 0xFF);

 int n = ((HandshakePkt[12] & 0xFF) << 8)
 + (HandshakePkt[13] & 0xFF);

 byte encoded = HandshakePkt[9];

 Integer.toHexString(HandshakePkt[i]));

 // ---

69

 if (encoded == 0)
 {
 // ---
 // FEC Decoding Process for all incoming packets
 int packetsize = 26; // 29
 bytes minus 3 bytes overhead

 int block = k * packetsize; //
 Image block size
 int numblocks = (arraysize / block) + 1; //
 Number of blocks we will Rx
 if ((arraysize % block) == 0)
 numblocks = numblocks - 1;
 int[][] receiverIndex = new int[numblocks][n]; //
 Index for all packets received

 // create our fec code
 FECCode fec =
 FECCodeFactory.getDefault().createFECCode(k,n);

 System.out.println("Reading in "+(n*numblocks)+"
 Encoded Packet(s)");
 // --
 // Need to collect all incoming packets now and store
 in a byte array
 byte[][] received = new byte[numblocks][n*packetsize];
 // Storage for data read in
 int[][] expected = new int[numblocks][n];
 // Keeps track of which data read in
 byte EOP1 = 0;
 // Flag for terminating packet
 byte EOP2 = 0;
 byte EOP3 = 0;
 int redundant = 0;
 boolean condition = true;
 int packetcounter = 0;
 int[] blockindex = new int[numblocks];
 // Keep track of number of packets read ...

 // in for each block
 for (int i=0;i<numblocks;i++)
 // zero out (necessary ?)
 blockindex[i] = 0;

 try
 {
 buffer = reader.readPacket();
 // Read in packet
 EOP1 = buffer[6];
 EOP2 = buffer[7];
 EOP3 = buffer[8];
 int blocknum = buffer[5];
 // Find out block number
 int packetnum = ((buffer[6] & 0xFF) << 8)
 // Find out packet number

70

 + (buffer[7] & 0xFF);
 while (buffer[17] == 69)
 // Catching extra handshake pckts
 {
 buffer = reader.readPacket();
 // Read in packet
 EOP1 = buffer[6];
 EOP2 = buffer[7];
 EOP3 = buffer[8];
 blocknum = buffer[5];
 // Find out block number
 packetnum = ((buffer[6] & 0xFF) << 8)
 // Find out packet number
 + (buffer[7] & 0xFF);
 }

 while ((packetnum > (n-1)) || (blocknum > (numblocks-
 1)))
 {
 buffer = reader.readPacket(); //
 Read in packet
 EOP1 = buffer[6];
 EOP2 = buffer[7];
 EOP3 = buffer[8];
 packetnum = ((buffer[5] & 0xFF) << 8) //
 Find out packet number
 + (buffer[6] & 0xFF);
 }

 condition = (EOP1==69) && (EOP2==69) && (EOP3==69);

 while (condition != true)
 {
 if (buffer.length < 34) // Trying to catch
 incomplete packets
 {
 buffer = reader.readPacket(); //
 Read in packet
 EOP1 = buffer[6];
 EOP2 = buffer[7];
 EOP3 = buffer[8];
 packetnum = ((buffer[5] & 0xFF) << 8) //
 Find out packet number
 + (buffer[6] & 0xFF);
 condition = (EOP1==69) && (EOP2==69) &&
 (EOP3==69);

 while ((packetnum > (n-1)) || (blocknum >
 (numblocks-1)))
 {
 buffer = reader.readPacket();
 // Read in packet
 EOP1 = buffer[6];
 EOP2 = buffer[7];
 EOP3 = buffer[8];

71

 packetnum = ((buffer[5] & 0xFF) << 8)
 // Find out packet number
 + (buffer[6] & 0xFF);
 condition = (EOP1==69) && (EOP2==69) &&
 (EOP3==69);
 }
 }

 expected[blocknum][packetnum] = 1;
 int countbyte = 0;
 packetcounter++;

 sequenceNo = (byte) packetnum; //
 Update sequence No

 for (int i = 8; i < 34 ; i++) //
 Strip off headers
 {
 received[blocknum][(packetsize…
 *blockindex[blocknum]) + (i-8)] = buffer[i];
 } // End for loop

 receiverIndex[blocknum][blockindex[blocknum]] =
 packetnum;
 blockindex[blocknum]++;
 buffer = reader.readPacket();
 // Read in next packet
 EOP1 = buffer[6];
 // Check if terminating packet
 EOP2 = buffer[7];
 EOP3 = buffer[8];
 condition = (EOP1==69) && (EOP3==69) && (EOP3==69);
 blocknum = buffer[5];
 // Find out block number
 packetnum = ((buffer[6] & 0xFF) << 8)
 // Find out packet number
 + (buffer[7] & 0xFF);
 if (condition == true)
 {
 blocknum = 0;
 packetnum = 0;
 }

 while ((packetnum > (n-1)) || (blocknum >
 (numblocks-1)))
 {
 buffer = reader.readPacket();
 // Read in packet
 EOP1 = buffer[6];
 EOP2 = buffer[7];
 EOP3 = buffer[8];
 packetnum = ((buffer[5] & 0xFF) << 8)
 // Find out packet number

72

 + (buffer[6] & 0xFF);
 condition = (EOP1==69) && (EOP2==69) &&
 (EOP3==69);
 if (condition == true)
 {
 blocknum = 0;
 packetnum = 0;
 }
 }
 System.out.println(blocknum + " " + packetnum);
 while ((expected[blocknum][packetnum] == 1) &&
 (condition != true))
 {

 //System.out.print("\nRedundant Data Packet
 dropped\n");
 redundant++;
 buffer = reader.readPacket();
 EOP1 = buffer[6];
 // Check if terminating packet
 EOP2 = buffer[7];
 EOP3 = buffer[8];
 blocknum = buffer[5];
 // Find out block number
 packetnum = ((buffer[6] & 0xFF) << 8)
 // Find out packet number
 + (buffer[7] & 0xFF);

 //System.out.println(blocknum+" "+packetnum);
 condition = (EOP1==69) && (EOP3==69) && (EOP3==69);
 if (condition == true)
 {
 blocknum = 0;
 packetnum = 0;
 }
 } // end redundant packet check
 } // End try
 } catch (IOException e) {}
 System.out.println(packetcounter +" out of " +
 (n*numblocks) + " packets received");
 System.out.println(redundant + " redundant packets");

 // --
 // Need to find out if we have enough packets read in for
 each block to decode

 boolean ok = true;
 for (int i=0; i<numblocks; i++)
 if (blockindex[i] < k)
 ok = false;

 // --

 if (ok == true) // Means enough data read in

73

 {
 // Decoding Process
 System.out.println("Message Received: Decoding...");
 byte[] received2 = new byte[arraysize];
 // All data minus padding
 Buffer[][] receiverBuffer = new Buffer[numblocks][n];
 // k subset of packets

 for (int z=0; z < numblocks; z++)
 {

 System.out.println("Decoding Block: " +(z+1)+" of "
 +numblocks);
 //create our Buffers for the encoded data
 for (int i = 0; i < n; i++)
 {
 receiverBuffer[z][i] = new Buffer(received[z],
 i*packetsize, packetsize);
 }

 //finally we can decode

 fec.decode(receiverBuffer[z], receiverIndex[z]);

 }

 // Now in the received array we have the decoded
 blocks of data but with padding
 // Need to remove the padding

 if (numblocks==1)

 System.arraycopy(received[0], 0, received2, 0,
 arraysize);
 else
 {
 for (int i=0; i< (numblocks -1); i++)
 {

 System.arraycopy(received[i], 0, received2 ,
 i*block, block);
 }
 System.out.println("");

 System.arraycopy(received[(numblocks -1)], 0,
 received2, ((numblocks-1)*block)
 , block - ((numblocks*block)- arraysize));
 }

 // End decoding process
 // ---

 if(optionSelect == '1')
 {
 // Print out the message

74

 System.out.println("TEXT MSG");
 System.out.println("Total Characters: " +arraysize);
 String t = new
 String(received2 , "Cp1252");

 System.out.println("\nMessage Received: " +t);
 }//End of IF loop for Option 1

 else if(optionSelect == '2')
 {
 System.out.println("Text File TX");

 // Let user choose save location
 JFileChooser fileChooser = new JFileChooser(".");
 int status = fileChooser.showSaveDialog(null);
 String filename = new String();
 filename = "C:/Documents and
 Settings/Administrator/My Documents/My
 Pictures/test.jpg";
 if (status == JFileChooser.APPROVE_OPTION)
 {
 File selectedFile =
 fileChooser.getSelectedFile();

 System.out.println("Saving to: " +
 selectedFile.getPath());
 filename = selectedFile.getPath();
 }

 File fileOut;
 BufferedInputStream in = null;
 BufferedOutputStream out = null;

 try
 {
 out = new BufferedOutputStream(new
 FileOutputStream(filename));
 out.write(received2);
 }
 catch (IOException ex)
 {
 ex.printStackTrace();
 }
 finally
 { // closing the stream
 try
 {
 if (in != null) in.close();
 if (out != null) out.close();
 }
 catch (IOException ex) { ex.printStackTrace(); }
 }

 } // End option 2 if portion

75

 else if(optionSelect == '3')
 {
 System.out.println("Image TX");
 // Let user choose save location
 String filename = new String();
 filename = "C:/Documents and
 Settings/Administrator/My Documents/My
 Pictures/test.jpg";
// JFileChooser fileChooser = new JFileChooser(".");
// int status = fileChooser.showSaveDialog(null);
// if (status == JFileChooser.APPROVE_OPTION)
// {
// File selectedFile =
 fileChooser.getSelectedFile();
//
 System.out.println("Saving to: " +
 selectedFile.getPath());
// filename = selectedFile.getPath();
// }

 File fileOut;
 BufferedInputStream in = null;
 BufferedOutputStream out = null;

 try // Write Image to a file
 {
 InputStream input = new
 ByteArrayInputStream(received2);
 BufferedImage bi =
 javax.imageio.ImageIO.read(input);
 File outputfile = new File(filename);
 ImageIO.write(bi, "jpeg", outputfile);
 }
 catch (IOException ex)
 {
 ex.printStackTrace();
 }
 finally
 { // closing the stream
 try
 {
 if (in != null) in.close();
 if (out != null) out.close();
 }
 catch (IOException ex) { ex.printStackTrace(); }
 }

 } // End option 3 if portion
 } // end if true statement
 else System.out.println("Not enough packets read in");

 } // End if encoded
 // ---
 else if (encoded == 1)
 {

76

 // ---
 // ---
 // Now for non-encoded data

 // --
 int count = k;
 int packetcounter = 0;
 int packetnum = 0;
 byte EOP1 = 0; // Flag
 byte EOP2 = 0;
 byte EOP3 = 0;
 boolean condition = true;
 System.out.println("Reading in "+k+" Packet(s)...");
 byte[] received = new byte[k*27];
 byte[] received2 = new byte[arraysize];
 int[] expected = new int[k];
 int countbyte = 0;
 int redundant = 0;

 try
 {
 buffer = reader.readPacket(); // Read
 in packet
 if (buffer[17] == 69) // Catch
 for extra handshake packet
 buffer = reader.readPacket();
 EOP1 = buffer[6];
 EOP2 = buffer[7];
 EOP3 = buffer[8];
 packetnum = ((buffer[5] & 0xFF) << 8) // Find
 out packet number
 + (buffer[6] & 0xFF);
 while (buffer[17] == 69) //
 Catching extra handshake pckts
 {
 buffer = reader.readPacket(); // Read in
 packet
 EOP1 = buffer[6];
 EOP2 = buffer[7];
 EOP3 = buffer[8];
 packetnum = ((buffer[5] & 0xFF) << 8) // Find
 out packet number
 + (buffer[6] & 0xFF);
 }

 condition = (EOP1==69) && (EOP2==69) && (EOP3==69);

 while (condition != true)
 {
 if (condition != true)
 {
 if (buffer.length < 34) // Trying to catch
 incomplete packets
 {

77

 buffer = reader.readPacket(); // Read
 in packet
 EOP1 = buffer[6];
 EOP2 = buffer[7];
 EOP3 = buffer[8];
 packetnum = ((buffer[5] & 0xFF) << 8) // Find
 out packet number
 + (buffer[6] & 0xFF);
 }

 expected[packetnum] = 1;
 packetcounter++;
 sequenceNo = (byte) buffer[5]; // Update
 sequence No

 for (int i = 7; i < 34 ; i++) // Strip off
 headers
 {

 //System.out.println(packetnum + " " +countbyte + " " +
 i + " " + redundant);
 received[countbyte] = buffer[i];
 countbyte++;

 } // End for loop

 buffer = reader.readPacket(); // Read in next
 packet
 EOP1 = buffer[6]; // Check if
 terminating packet
 EOP2 = buffer[7];
 EOP3 = buffer[8];
 packetnum = ((buffer[5] & 0xFF) << 8) // Find out
 packet number
 + (buffer[6] & 0xFF);
 condition = (EOP1==69) && (EOP3==69) && (EOP3==69);
 if (condition == true)
 packetnum = 0;
 } // end if

 while ((expected[packetnum] == 1) && (condition != true))
 // Catching redundant packets
 {

 //System.out.print("\nRedundant Data Packet dropped\n");
 redundant++;
 buffer = reader.readPacket();
 EOP1 = buffer[6]; // Check if
 terminating packet
 EOP2 = buffer[7];
 EOP3 = buffer[8];
 packetnum = ((buffer[5] & 0xFF) << 8) //
 Find out packet number
 + (buffer[6] & 0xFF);
 condition = (EOP1==69) && (EOP3==69) && (EOP3==69);

78

 if (condition == true)
 packetnum = 0;
 }
 } // End while
 System.arraycopy(received, 0, received2, 0, arraysize);
 } catch (IOException e) {}

 System.out.println(packetcounter+ " out of " +k+ " packets
 received");
 System.out.println(redundant+ " redundant packets");

 // --
 // Non-encoded packets received, now to save/display

 if (packetcounter == k)
 {
 if(optionSelect == '1')
 {
 // Print out the message
 System.out.println("TEXT MSG");

 System.out.println("Total Characters: " +arraysize);
 String t = new String(received2 , "Cp1252");

 System.out.println("\nMessage Received: " +t);
 }//End of IF loop for Option 1

 else if(optionSelect == '2')
 {

 System.out.println("Text File TX");

 // Let user choose save location
 JFileChooser fileChooser = new JFileChooser(".");
 int status = fileChooser.showSaveDialog(null);
 String filename = new String();
 filename = "C:/Documents and Settings/Administrator/My
 Documents/My Pictures/test.jpg";
 if (status == JFileChooser.APPROVE_OPTION)
 {
 File selectedFile = fileChooser.getSelectedFile();
 System.out.println("Saving to: " +
 selectedFile.getPath());
 filename = selectedFile.getPath();
 }

 File fileOut;
 BufferedInputStream in = null;
 BufferedOutputStream out = null;

 try
 {
 out = new BufferedOutputStream(new
 FileOutputStream(filename));

79

 out.write(received2);
 }
 catch (IOException ex)
 {
 ex.printStackTrace();
 }
 finally
 { // closing the stream
 try
 {
 if (in != null) in.close();
 if (out != null) out.close();
 }
 catch (IOException ex) { ex.printStackTrace(); }
 }
 } // End option 2 if portion

 else if(optionSelect == '3')
 {
 System.out.println("Image TX");
 // Let user choose save location
 String filename = new String();
 filename = "C:/Documents and Settings/Administrator/My
 Documents/My Pictures/test.jpg";
 // JFileChooser fileChooser = new JFileChooser(".");
 // int status = fileChooser.showSaveDialog(null);
 // if (status == JFileChooser.APPROVE_OPTION)
 // {
 // File selectedFile = fileChooser.getSelectedFile();
 //
 System.out.println("Saving to: " +
 selectedFile.getPath());
 // filename = selectedFile.getPath();
 // }

 File fileOut;
 BufferedInputStream in = null;
 BufferedOutputStream out = null;

 try // Write Image to a file
 {
 InputStream input = new ByteArrayInputStream(received2);
 BufferedImage bi = javax.imageio.ImageIO.read(input);
 File outputfile = new File(filename);
 ImageIO.write(bi, "jpeg", outputfile);
 }
 catch (IOException ex)
 {
 ex.printStackTrace();
 }
 finally
 { // closing the stream
 try
 {
 if (in != null) in.close();

80

 if (out != null) out.close();
 }
 catch (IOException ex) { ex.printStackTrace(); }
 }

 } // End option 3
 } // end if not enough packets
 else if (packetcounter < k)
 System.out.println("Not enough packets received to process");
 } // End if non-encoded loop
 } //End of Terminal ID Check Loop

 } // End of while infinite loop

 } // End of try statement
 catch (IOException e)
 {
 System.err.println("Error on " + reader.getName() + ": " + e);
 }
 } // End main Class

} // End SnailListenTest_fec

81

LIST OF REFERENCES

[1] Chee-Yee Chong, “Sensor Networks: Evolution, Opportunities, and Challenges,"
http://www-net.cs.umass.edu/cs791_sensornets/papers/chong.pdf, Last accessed
01 Nov 2008.

[2] "Implementing VOIP over Wireless Network," Retrieved from the Alvarion site:
http://www.alvarion.com/upload/contents/291/VoIP over wireless networks
060706.pdf. Last accessed 01 Nov 2008.

[3] University of California, Berkeley, “Forward Error Correction in Sensor

Networks,” Jaein Jong and Cheng Tien Ee,
http://webs.cs.berkeley.edu/papers/FEC_report.pdf, Last accessed 01 Nov 2008.

[4] DongGuk University, Seoul, Korea, “An Adaptive FEC Code Control Algorithm
for Mobile Wireless Sensor Networks,” Jong-Suk Ahn, Seung-Wook Hong, and
John Heidemann, http://www.isi.edu/~johnh/PAPERS/Ahn05a.pdf, Last accessed
01 Nov 2008.

[5] Terry D. Norbraten, “Utilization of Forward Error Correction (FEC) Techniques
with Extensible Markup Language (XML) Schema-Based Binary Compression
(XSBC) Technology,” Master’s Thesis, Naval Postgraduate School, Monterey,
California, Dec 2004.

[6] Injong Rhee, Ajit Warrier, Mahesh Aia, and Jeongki Min, “Z-MAC: A Hybrid
MAC for Wireless Sensor Networks,” IEEE Communications Magazine, Volume
16, Issue 3, pp. 511–524, June 2008.

[7] T. Van Dam and K. Langendoen. An Adaptive Energy Efficient MAC Protocol
for Wireless Sensor Networks. In Proceedings of the First ACM Conference on
Embedded Networked Sensor Systems (SenSys), Los Angeles, CA, Nov 2003.
(Tmac).

[8] W. Ye, J. Heidemann, and D. Estrin. Medium access control with coordinated
adaptive sleeping for wireless sensor networks. IEEE/ACM Trans. Netw.,
12(3):493{506, 2004. (Smac).

[9] Yow Thiam Poh, “Tunneled Data Transmission Over Wireless Sensor Networks,”
Master’s Thesis, Naval Postgraduate School, Monterey, California, Dec 2007.

[10] John A. Stankovic, “Wireless Sensor Networks,” IEEE Communications
Magazine, Volume 41, Issue 10, pp. 92– 95, Oct 2008.

82

[11] Hong Kong Baptist University, “Resilient Proactive Data Transmission in
Wireless Sensor Networks,” Yingqi Xu, Jianliang Xu, and Wang-Chien Lee,
http://www.comp.hkbu.edu.hk/~xujl/Papers/infocom2007.pdf, Last accessed 01
Nov 2008.

[12] A. J. Viterbi. Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm. IEEE Transactions on Information Theory,
IT(13):260–269, 1967.

[13] L. Rizzo. Effective erasure codes for reliable computer communication protocols.
SIGCOMM Comput. Commun. Rev., 27(2):24–36, 1997.

[14] Crossbow Technology Inc, “Smart Dust Training Seminar,” San Jose, Apr 19-20,
2005.

[15] Georgia Institute of Technology, “A Survey on Sensor Networks,” Ian F.

Akyildiz, Weilian Su, Yogesh Sankarasubramaniam, and Erdal Cayirci,
http://www-net.cs.umass.edu/cs791_sensornets/papers/akyildiz2.pdf. Last
accessed 01 Nov 2008.

83

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Chairman, Department of Electrical Engineering
Naval Postgraduate School
Monterey, California

4. Professor John C. McEachen, Code EC/Mj
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California

5. Professor Murali Tummala, Code EC/Tu
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California

