Rheol Acta (2001) 40: 373-383
© Springer-Verlag 2001

Stephen E. Bechtel
Nivine T. Youssef

M. Gregory Forest
Hong Zhou

Kurt W. Koelling

ORIGINAL CONTRIBUTION

Non-Newtonian viscous oscillating free
surface jets, and a new strain-rate
dependent viscosity form for flows

experiencing low strain rates

Received: 7 February 2000
Accepted: 31 October 2000

Abstract A model for oscillating free
surface jet flow of a fluid from an
elliptical orifice, together with

Eyring, and Powell-Eyring forms,
although they have finite viscosity at
zero strain rate, have either nonzero
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experimental measurements, can be
exploited to characterize the elonga-
tional viscosity of non-Newtonian
inelastic fluids. The oscillating jet
flow is predominantly elongational,
with a small strain that oscillates
rapidly between large and zero strain
rates. We find that to reproduce the
experimentally observed steady
oscillating jet flow in model simula-
tions, the assumed form of the non-
Newtonian viscosity as a function of
strain rate must have zero gradient,
i.e., be Newtonian, at zero strain rate
(a behavior exhibited, in general, by
real inelastic fluids). We demonstrate
that the Cross, Carreau, Prandtl-

or even unbounded gradient at zero,
and hence are unable to model oscil-
lating jet behavior. We propose a new
non-Newtonian viscous form which
has all of the desirable features of
existing forms (high and low strain
rate plateaus, with adjustable loca-
tion and steepness of the transition)
and the additional feature of Newto-
nian behavior at low strain rates.

Key words Oscillating free
surface jet - Strain-rate thinning
viscosity - Generalized Newtonian
fluid - Non-Newtonian inelastic
fluid - Rheometry - Extensional
flows

Introduction

When a fluid exits an elliptical orifice it establishes a jet
with a free surface that is steady in time and oscillates in
space (Fig. 1). Surface tension is the restoring force and
viscosity is the damping; in broad strokes, the wave-
length of the oscillating free surface is indicative of the
surface tension of the fluid in the ambient atmosphere,
and the decay of the oscillation indicates the fluid’s
viscosity. Lord Rayleigh (1879) developed a relation
between surface tension and the wavelength of oscilla-
tion for an inviscid jet in the absence of gravity which,
when combined with experimental measurements of
oscillating jets, determines the surface tension of the
fluid. Since then oscillating free surface jets have been
used to measure surface tension; the advantage of this

technique is that, because the surface of the jet is newly
created, the technique measures dynamic surface ten-
sion, i.e., tension as a rapidly changing function of time
for newly formed surfaces. Pedersen (1907), Bohr (1909),
Hansen et al. (1958), Defay and Hommelen (1958), and
Thomas and Potter (1975) each present improvements to
Rayleigh’s relation. These algebraic equations for sur-
face tension in terms of the measured wavelength and
amplitude of the free surface oscillation neglect gravity,
are based on a small departure of the oscillating profile
from a circular cylinder, and model the fluid as
Newtonian viscous. In previous work (Bechtel 1989;
Bechtel et al. 1995, 1998) we derive models for a finite
departure from equilibrium which account for gravity;
these models take the form of nonlinear integro-
differential equations for the free surface profile. In
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Fig. 1 The oscillating jet phenomenon; from Lord Rayleigh (1890)

Bechtel et al. (1995) we employ the inverse formulations
of these models, in conjunction with experiments
consistent with the model assumptions, to determine
Newtonian viscosity as well as surface tension.

The model equations employed in all of the inverse
techniques, except Bechtel et al. (1995), assume a
constant surface tension and constant viscosity within
the wavelength over which the measurements are taken.
Bechtel et al. (1995) generalize the model to allow for
variable surface tension and a non-Newtonian viscous
fluid (although the non-Newtonian capability is not
exploited in that paper). In Bechtel et al. (1998) we
investigate the signature in Newtonian oscillating jet
behavior of surface tension which changes within a
wavelength and on submillisecond timescales. Here
we investigate the effect of non-Newtonian, strain-
rate-dependent viscosity on oscillating jet behavior.

In the investigation we have discovered that existing
forms of strain-rate dependent viscosity (Cross, Carreau,
Prandtl-Eyring, and Powell-Eyring) all exhibit anoma-
lous non-zero gradients at low strain rates, so that they
are unable to capture the Newtonian plateau exhibited in
general in real inelastic fluids at low strain rates: Analysis
reveals that the viscosity gradient at zero strain rate is
unbounded for the Cross form, and finite but nonzero for
the Carreau, Prandtl-Eyring, and Powell-Eyring forms.

In physical experiments, slowly varying (i.e., slender)
oscillating jet flows of strain-rate-thinning non-Newto-
nian viscous fluids are readily observed, so the 3-D free
surface boundary value problem should have solutions
which are slowly varying. The kinematics of oscillating
jet flow are such that if the effect of gravity is negligible
(as is often the case), the strain rate is zero at the extremes
of each free-surface oscillation. When the Cross, Car-
reau, Prandtl-Eyring, and Powell-Eyring forms are
employed in the slender jet equations, they each fail at
these locations of zero strain rate because of their non-
zero gradients there, erroneously predicting the develop-
ment of small length scales and subsequent jet breakup.
The discovery that the slowly varying asymptotics can
produce no consistent solution indicates a failure of the
constitutive model for the fluid: the mathematical model
has incorrect assumptions, and the only empirical ad hoc
model feature is the viscosity form.

Our observations have an important ramification in
the modeling of non-Newtonian viscous fluids in general.
The oscillating jet flow serves as a test case. If a proposed
viscosity form cannot model the oscillating jet flow, it is
suspect to be applied to any flow that passes through low
strain rates. An acceptable non-Newtonian viscous
constitutive form must yield a solution for the oscillating
jet problem which is slowly varying and stable when the
fluid being modeled is observed to undergo a stable,
slowly varying oscillating jet flow; to do this the form
must possess, in addition to a bounded zero strain rate
viscosity, a sufficiently small gradient at zero strain rate,
1.e., it should be effectively Newtonian at low strain rates.

Motivated by this inadequacy of existing character-
izations of non-Newtonian inelastic fluids, we present a
new viscosity form, called the Zhou form, that has a zero
strain rate viscosity gradient which is identically zero,
i.e., it is Newtonian at low strain rates. We find that the
Zhou form, unlike the other forms, leads to slender
oscillating jet solutions.

The governing equations for a steady viscous
oscillating jet

In Bechtel et al. (1995) time-dependent governing equa-
tions for an oscillating slender jet of a viscous fluid are
derived allowing for variable viscosity and surface
tension. We recall only essential features of this deriva-
tion, which reveal why the various strain-rate dependent
viscosity forms are inconsistent with slender oscillating
jet behavior.

The fluid is assumed incompressible, and flows in the
direction of gravity. We define Cartesian coordinates
such that the e5 direction coincides with the centerline of
the jet, and assume the jet cross section is elliptical for
several oscillations, so that the free surface is

X %
(I)%(X37t) (Dé(x3,t)

The fluid we model is viscous (not viscoelastic), with a
strain-rate-dependent viscosity. Since the oscillating jet
flow is predominantly elongational, the appropriate
viscosity is elongational viscosity, which we label #; if
the fluid is Newtonian, 7 is constant and three times the
shear viscosity. Here the viscosity is variable, an explicit
function of the second invariant' of D:

A 2 1
T = 3n(11o)D, 1y = 5 [#(D?) - (@DY’]

—-1=0.

(1)

(2)

where T is the determinate part of the Cauchy stress
tensor T — pl and D is the symmetric part of the velocity
gradient. For an incompressible fluid (#rD=0), Il is

IThe definition (2), is not universal, e.g., Bird and Armstrong
(1987) define their second invariant II =4z+(D?), so that IT =8Il
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non-negative. The customary definition of strain rate
magnitude 7 is

P =21 . (3)

In order to deduce the dominant physical effects and
exploit the slenderness (or, equivalently, slow variation)
of the jet, the problem is non-dimensionalized through
adoption of characteristic scales ry, zg, fo, vo for
transverse length, axial length, force, and axial velocity,
respectively. The dimensionless forms x, y, z, 7, ¢, ¢» of
the coordinates x, x», x3, t and evolving semi-axes @, O,

of the elliptical jet cross section are introduced through

X] = roX, Xp = roy, X3 = zoz, t = Z—O‘c,

Yo (4)
@i (x3,1) = rod(z,1); Da(x3,2) =19¢h(2,1) -
The small parameter in the slender jet theory is
the slenderness ratio ¢ = ;—‘; < 1. For an oscillating jet ¢
is roughly the ratio of the mean radius of the jet cross
section to the wavelength of the oscillation, typically 0.1.
The velocity field within the oscillating jet is

v =uo{ [ex(i (z,7) + O(&))]er + [ey0a(2,7) + O(e3) ez
+(v(z,7) + O(e2))e3} (5)
where {, {5, v are dimensionless O(1) functions; note

that the flow is elongational. For this flow the second
invariant (2), is

Iy = [+ 3402+ 0] .

2 (©)
where “, ” denotes differentiation with respect to the
dimensionless axial coordinate z. To leading order in the
slenderness ratio, IIp, and hence the viscosity, are
functions only of the axial coordinate and time.

To the fixed observer of an oscillating jet experiment,
the free surface profile does not change; given the focus
of this paper on variable viscosity, we restrict ourselves to
constant surface tension. Therefore we recall the form of
the governing non-dimensional equations for the oscil-
lating jet which is steady with constant surface tension:

v¢l,z C U¢2z
¢y

BP —2Z¢,¢,(; + 12

w
_¢%¢>2(
T4

&=

vy =1,
b1,
4

Kc + 82 (Z,zCl,z + Zgl,zz)

UCI,Z + C%) )

b1¢
w

(UCZZ + C%) )

BP —2Z$ 1,0 + K+ &

_ ¢§¢>1

3
¢l4¢2 (Z,ZCZ,Z + ZCZ,zz)

(7)
(¢1¢22K + 29, K o)+ Qb hrZv

+2¢,¢,2v .. — BP) + f(bl(bz = v, P,

where
B zfo 1 _ 0z} l: gz (2) = 1(z)zo
pv%rg w pv%rg’ F %’ 3,0;%1)0
Z7Z(Z) _ ’7,z(22)20 7
3privo
[ o pana,
1 2n
KC:—/ & cos” 0d0 (8)
TTJo
1 cos? 0 2
- /0 TR do+ 0(&2),
1sin” 0 + ¢35 cos? 0)
1 2n
KS:—/ % sin® 0d0
TJo
b19, sin” 0 2
) — S 3/2d(9+0(:§),
(¢7sin” 0 + ¢3 cos? 0)

p, 0, g p. are the fluid density, surface tension,
acceleration of gravity, and specified ambient pressure,
assumed constant, and « is the dimensionless curvature
of the surface.

Equations (7);_3; are the leading order equations
which follow from the kinematic free surface boundary
condition and incompressibility. These equations are
independent of the constitutive nature of the fluid and
hold for all regimes of jet behavior. The constant of
integration in the flow rule (7); presupposes that the
characteristic length ry is the geometric mean of the
principal radii of the elliptical cross section at z=0 and
the characteristic velocity vq is the axial velocity at z=0.

Equations (7)4 ¢ correspond to projections of con-
servation of momentum in the x, y, and z directions,
respectively, and are special to the non-Newtonian viscous
constitutive assumption (Egs. 2). We have retained the
leading order terms within each of the viscosity (Z and
Z .), surface tension (W), constraint pressure (B), gravity
(F) and inertia (1) terms (1f surface tension is non-
constant, W . terms appear in Eqgs. (7)s6; see Bechtel
et al. 1998). For a Newtonian fluid the dimensionless
parameter Z . isidentically zero. The magnitude of the full
set of dimensionless parameters (8);_s relative to the
slenderness ratio ¢ indicates the relative balances of the
competing physical effects in the free jet problem. In a
particular experiment some subset of these effects will be
dominant, and thus survive in the leading order equations.
The jet oscillates if inertia, surface tension, and the
constraint pressure are leading order in the transverse
momentum equations (7), s; this condition translates to

7, B~O(1). We set B=1
4.2

scale fo =" VZOZLO, after which three independent scales

remain: ro, z, (typically 10r, for slender jets), and v,, which

by fixing the force
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depend on the experimental conditions and, together with
p,0, and g, completely specify the oscillating jet behavior.

The consequences of variable viscosity in the asymptotic
balance of Egs. (7)4¢ can be deduced by studying three

terms: 5 3
&
Lo =2Z¢ 9|0y, L1 = ¢41¢2

Ly =28|Zv.+Zv.. — P| . 9)
Ly is the leading order viscosity term and L; the next
order correction in the transverse momentum equations
(7)45, and L, is the leading order viscosity term in the
axial projection, (7). Ly must be O(1) for oscillating
viscous jets (if Ly is O(g?) or less the oscillating jet is
inviscid, with no damping to leading order). The

’Z,zCl,z + Cl.zzZ}a

equations (7)4_¢ simplify to slender jet equations only if

the correction terms L; and L, are O(¢?); otherwise these
terms compete in the leading order equations with the
formally leading-order L, term, thereby disordering the
perturbation expansion.

To anticipate, in the analysis immediately following
we show that for the power law, Cross, Carreau, Prandtl-
Eyring, and Powell-Eyring forms giving viscosity # as a
function of second invariant I, the viscosity gradient

d(I? ) is nonzero at I, =0, i.e., at zero strain rate. This
D . .. . . . . . .
feature is critical in the oscillating jet characterization
precisely because in that flow the strain rate oscillates

about zero: we discover in the computations of the next

section that, since dg? ) (0) #£0, the dimensionless
viscosity gradient Z . becomes too large at the axial
locations of small strain rates for these standard forms,
causing L, to be huge. This implies that either the jet flow
cannot remain slender or the empirical viscosity forms
are problematic. Since there is no experimental evidence
of an inability to perform oscillating slender jet
experiments, we conclude these empirical viscosity forms
have unphysical features for small strain rates.

We define the non-dimensional strain rate magnitude

7 by

~ Z zy .

=—/1llp=—7y . 10
1= Vi =5 0 (10)
The dimensionless form of the viscosity #(Ilp) is then
z=2(7) . (11)

To leading order in the oscillating jet,
~ 1
Y= \li(C%JrC%Jerz) .

Power law fluid

(12)

In the power law model (Bird et al. 1987) viscosity is
described by the expression’

— 11
’In Bird et al. (1987), 5 = kﬁ , which is equivalent to Eq. (14),
noting I1 =811, from the prévious footnote.

= k(41157 | (13)

where the consistency index k& and power law exponent /
are positive constants. The fluid is strain-rate thinning
for [ < 1, Newtonian for /=1, and strain-rate thicken-
ing for / > 1.
For the power law form the viscosity gradient is

dn -2
—— =kl - 1)2"7 (11,
The dimensionless forms of the viscosity (Eq. 13) and
viscosity gradient (Eq. 14) are

) _ (=1, s

=3
2

(14)

Z=2zp' " 7 == 15
Py d'))2 > ) ( )
with the two dimensionless constants
kzo  (2v0\'"
I, Zp = — <—°) . (16)
3prgvo \ Zo

For a strain-rate thinning fluid, as the strain rate goes to
zero,

7(0) — oo, %(0) 00, Z(0) — 00, Z(0) — —o0 .

(17)

Cross model

The predictions for a strain-rate thinning fluid of infinite
viscosity when the strain rate is zero, and zero viscosity
when the strain rate is large, are shortcomings of the
power law model. Cross (1965) proposed a model with
two additional constants 7o and 7., that corrects these
shortcomings:

Mo — Mo

S R (18)
1+ (4k211p) =

=N+

If ] < 1 and 59 > 5 > 0, the viscosity is strain-rate
thinning; 7y and 5., are the limiting viscosities at zero
and high strain rates, respectively. If /> 1 and
Mo > Neo > 0, the fluid is strain-rate thickening, with
no and 7, reversing roles to be the limiting viscosities at
high and zero strain rates, respectively. The Cross form
reduces to constant viscosity either by setting /=1
(resulting in constant viscosity W%) or setting 7y = .

The viscosity gradient as a function of strain rate is

(0 — 1)
=(-1)—
d(Ilp) =D (IID)%[1+(4k2IID)%}

(19)

*Cross gives 1 =1, +yigpm in which D=2yIp. This is
equivalent to Eq. (18) if t=k, m=1-1. In his original paper Cross
fixes m =2, ie., [ =1

3 3
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The dimensionless forms of the viscosity (Eq. 18) and
viscosity gradient (Eq. 19) are

Z0 — Zoo
Z - ZOO + 77171,
1 + Zcy
el _ _
PN STy )
dj 51+ Zey')

where there are now four dimensionless constants,

1 7. — Z0 70— A 7. — 2kv() 1=

T 3prug o> 20 = 3privo L '
(21)

For a strain-rate thinning fluid, as the strain rate goes to

zero the viscosity is bounded, but the viscosity gradient is
unbounded,

10) =15, %(ow

—00, Z(0)=2Zy, Z'(0)—o0 ; (22)

the Cross fluid is strongly non-Newtonian at low strain
rates.

Carreau model

Another remedy for the power law’s unbounded
viscosity at zero strain-rate is the Carreau (1972)
viscosity model®, which has been shown to have enough
flexibility to fit several experimental viscosity curves
(Bird et al. 1987; Macosko 1993):

where / is a time constant. If / < 1 and 59 > 5, > 0
this form models strain-rate thinning, whereas / < 1 and
0 < 19 < ns models strain-rate thickening. In both
cases, 1y and 7., are the limiting viscosities at zero and
high strain rates, respectively. The form reduces to
Newtonian either by setting /=1 (resulting in constant
ViScosity #g) or setting 7y = #uc.

The viscosity gradient as a function of strain rate is

Ty = 222~ Dl - (24)

and the dimensionless viscosity and viscosity gradient are
=1

Z =70+ (Zo — Z) [1 + (chi)z} 5,

(ZO *Zoo) { %

3 1+ (chﬁ)z} )

where the four dimensionless constants are /, the Z, and
Z, defined in Eq. (21), 3, and

=3
2

o) (1 +47°10p) = |

(25)
7' =Zgy(1-1)

“The Carreau-Yasuda model is given in Bird et al. (1987) in the
form [k = [1 + (2y)“] = where y = 2y/IIp. This model with the
param%te?‘ a=2, referred to as the Carreau model, is equivalent to

Eq. (23).

(26)

For this form, both the viscosity and viscosity gradient
are finite at zero strain rate for strain-rate thinning
fluids, but the gradient is nonzero:

dn

——~(0) = 22°(1 = 1)(ny — 1),

’7(0) = Mo, d(IID)

P (27)
Z(0) = Zo, Z'(0) = Z&y(1 - 1)(0_27“) .

Again, this model predicts non-Newtonian behavior at
low strain rates. The only way the Carreau form can
model Newtonian behavior at low strain rates is if it
models the fluid as Newtonian at all strain rates, since
the viscosity gradient at zero strain rate is zero only if

[=1 or nop="ee.

Prandtl-Eyring model

One of the first viscosity forms obtained by a molecular
theory was the Eyring equation (Brodkey 1967). A
modification of this form, the Prandtl-Eyring model
(Skelland 1967) has been used to describe the rheology
of strain-rate thinning fluids:

B, sinh™! (@)

1Ip ’

where B is a constant. The limit when the strain rate is
zero is 77g. Like the power law, this form can only predict
inviscid behavior at high strain rates. The viscosity
gradient as a function of strain rate is

/1 L 1p =1 (Vo
dy o VIlIp — By/1 + Zsinh (T ) (29)
d(I1 2 3/2 ) ’
(Hp) 11/ 1+

n(llp) =

(28)

which is finite but nonzero at zero strain rate (as with the
Carreau form):

dny
d(Ilp)

0=-¢5

s (30)

Powell-Eyring model

The Powell-Eyring model (Skelland 1967) adds a
constant to the Prandtl-Eyring form:

Bln — 1) sinh ™" (Y32)
(31)
0,

resulting in a finite limit 7., at high strain rates, but the
viscosity gradient is unaltered from the Prandtl-Eyring
model, with the same zero strain rate value given in
Eq. (30).

W(IID) = T o
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Zhou model

We now propose a form which has a finite value of
viscosity and a zero viscosity gradient at zero strain
rate, representing for the first time a non-Newtonian
viscous fluid model which is truly Newtonian at low strain
rates:

Mot Mle | (Mo — N\ I —f(lp)
2 +< 2 )1+f(IID)’

- ()l (1))

Specifying 4 >0, B> 0, 1 >0, 5y >#5,, >0 models a
strain-rate thinning fluid. The constants #y and 7., are
the limiting viscosities at zero and high strain rates,
respectively, 4 is the strain rate at the center of the
transition from the low strain rate viscosity plateau #q to
the high strain rate plateau #., and o controls the
steepness of this drop. The constant B is proportional to
the range of strain rates over which the fluid is strictly
Newtonian, 1.e., the viscosity is strictly constant.
The viscosity gradient for this model is

dn S(Ilp)
d(IIp) [+ f(I1p)>

f'(Ip) Zé E <H7D>;1+Ii) exp{B[l — (I%)]] } .
(33)

In dimensionless form the viscosity and viscosity
gradient are

. o1 . ;)é
ZO+Z°C+ZO_Zool (ZHy)eXp{B[l G ]}
2 2 1+(ZHA}2>§exp{B{1_<Z;§Z>,

~nq L
i 2y 1+,;%] exp{B[1 - (zi7)'] |

2

Frwnl-@

where there are now five dimensionless constants: «, B,
the Zy and Z, defined in Egs. (21),3, and

2
20

2
Av;

(32)

= (s — o)

7=

7'=(z

For this form the viscosity is finite and the viscosity
gradient is zero at zero strain rate for strain-rate
thinning fluids:

dny

Mo, m(o) =0, Z(0)

n(0) = =27, Z(0)=0 . (36)

Of all the strain-rate thinning viscosity forms consid-
ered, we will find that because of its zero gradient at zero
strain rate this form, and only this form, can model the
oscillating jet flow.

Example characterization of a conceptual fluid

To demonstrate the differences between the above six
non-Newtonian viscosity forms, we fit all of the forms to
the same set of elongational viscosity vs strain rate data
points, the circles O in Figs 2, 3, and 4. For complex
fluids elongational response cannot in general be
inferred from easy-to-perform shear measurements
(Moore and Pearson 1975; Baid and Metzner 1977;
Chai and Yeow 1988; Ramanan et al. 1997), and it is a
significant challenge to produce viscosity vs strain rate
data points directly from elongational measurements of
an inelastic fluid. We comment that the inverse formu-
lation of the mathematical model presented here,
together with experimental measurements of the oscil-
lating jet free surface profile, can be used to produce
data sets like the circles in Figs. 2, 3, and 4, but that
remains for future work. For the demonstration pur-
poses of this paper we have created a data set which
exhibits strain-rate thinning. Explicitly, we create a
hypothetical fluid with a low strain-rate Newtonian
elongational viscosity plateau of 0.15 Pa s for strain-
rates 1x107°s7, 1x107*s™, 1x107s", and
1 x 1072 s7!, and a high strain-rate Newtonian plateau
of 0.006 Pa s for strain rates 2 x 10%s™', 4 x 10% s7,
7% 10%s7!, and 1 x 10® s 7. The transition data points

at the strain rates 0.02 s7!, 0.04 s7!, 0.07 s}, 0.1 s7},
B =@ =G e D O o
@
g ot
2
8 0.05f il
Q
2
>
©
c
i
B
(o]
5
S 001f 1
V00560
0.005¢
10 10° 107 10 10°

strain rate (s")

Fig. 2 Plot of log of viscosity vs log of strain rate y for strain-rate
thinning viscosity forms fit to the experimental data (O): power law
(—), Cross (- - -), Carreau (-); coefficients in the forms are given in
Table 1. The power law form predicts unbounded viscosity at low
strain rates and a viscosity which approaches zero at high strain rates
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o
=

0.051

elongational viscosity (Pa s)

o

o

=
T

0.005f

10 10° 107 10" 10° 10" 102 10
strain rate (s™')

Fig. 3 Plot of log of viscosity vs log of strain rate y for strain-rate
thinning viscosity forms fit to the experimental data (O): Prandtl-
Eyring (---), Powell-Eyring (-+), Zhou (—); coefficients in the forms are
given in Table 1. The Prandtl-Eyring form predicts a viscosity which
approaches zero at high strain rates

025,045,077, 157,257,457 75,1057,
205,40 s7', 70 s7', and 100 s~' are generated from the
Carreau form (Eq. 23) with #,,=0.006 Pas, 5o=
0.15Pas, A=7.57 s, and /=0.068.

We fit each viscosity form to the data as follows: the
power law coefficients are obtained using a least squares
fit of only the data between 107> s™! and 10> s™', the
coefficients in the Prandtl-Eyring form are obtained using
a least squares fit of only the data between 107> s™! and
10? s7!, and the coefficients in the other four forms are
obtained using a least squares fit of all data (even though
we have used the Carreau form to generate the transition
data, we fit it to all of the data, since as we will see the
Carreau form is incapable of capturing the Newtonian
low strain-rate plateau). As is customary, the fits are done
on log 5. The resulting characterizations are in Table 1.

strain rates. This appearance is deceptive: non-log plots
of viscosity vs strain rate and viscosity gradient vs strain
rate at low strain rates (Figs. 4 and 5, respectively) and
the left column of Table 1 reveal that all but our Zhou
form have negative viscosity gradient, rather than zero
gradient, throughout the low strain rate “plateau.” As
can be seen from Figs. 4 and 5, only our form is capable
of modeling a fluid with constant viscosity over a range
of low strain rates, the feature that proves to be critical
to model oscillating jets. Note also from Fig. 3 that our
Zhou form is capable of fitting the transition behavior
predicted by the Carreau form, more so than the power
law, Cross, Prandtl-Eyring, and Powell-Eyring forms.

We now apply the six constitutive forms to model
oscillatory jet behavior.

Viscous oscillating jets

We assume that the material properties and process
conditions are such that W and Z are O(1) and Z" and & L
are at most O(¢%), so that the leading order equatlons
from Eq. (7) are, in order:

d)lz ¢2z
Tz T =1
Cl ¢1 ) ¢2 ¢2 ) ¢1¢2
P—MQ+%&—¢%Qﬁ{) (37)
P—2ZC2+%KS*¢2(§2Z+52) v=1.

In this regime, pressure, surface tension, inertia, and
viscosity balance in the transverse oscillation, and
gravity, surface tension, viscosity, and viscosity gradi-
ents are too weak to accelerate the jet in the axial
direction in this order of approximation. The system of
Equations (37) reduces algebraically to a single integro-
differential equation for the free surface profile ¢;:

%1

. . . 4 2 _
Figures 2 and 3 give the customary representation of (1 + )iz~ b ¢1 z (Ks —Ko) +16Z¢1¢, . =0,

the strain rate dependent viscosity, namely a plot of log

of viscosity vs log of the strain rate y = 2/Ilp. The (38)

power law and Prandtl-Eyring forms are unable to where

capture the nonzero viscosity plateau at high strain P [ cos2 ) — sin 0

rates. All of the forms except for the power law appear in K, — K. = -1 do .

h i T Jo 2 4 .2 \3/2

these log-log plots to have a Newtonian plateau at low (cos 0 + ¢ sin 0)

Table 1 Coeflicients in the - dy

viscosity forms characterizing Model Coeflicients da,) (0)

the conceptual fluid
Power law k = 0.0282 Pa s%* | = 0.48 -0
Cross Noo = 0.15Pas, 579 = 0.006 Pas, k = 6.18s,/ = .11 —00
Carreau Moo = 0.15Pas, 5o = 0.006 Pas, A = 7.57 s,/ = 0.068 -154 Pa s’
Prandtl-Eyring o = 0.15Pas, B = 0.0301 s™', -277Pas’
Powell-Eyring o = 0.15Pa's, B = 0.0231s™', .o = 0.006 Pa s —-46.8 Pa s°
Zhou oo = 0.006 Pas, o = 0.15Pas, A = 1.4102 x 1072572, 0

B

0.25,

o = 1.9345
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elongational viscosity (Pa s)

0.144

0.142 : , .
0 0.5 1 15 2

second invariant (s ) x107

Fig. 4 Non-log plot of viscosity vs second invariant II, for the strain-
rate thinning viscosity models of Figs. 2 and 3. Experimental data
(O). Only the Zhou form models the Newtonian (constant viscosity)
behavior of the fluid at low strain rates: the Cross form has
unbounded slope at zero, the Carreau, Prandtl-Eyring, and Powell-
Eyring forms have negative slope at zero, and the Zhou form has zero
slope at zero

The correction terms defined in Eq. (9), 3 reduce to

244 B}
L=y 7 + 7.
39
L :szlifzzl‘ﬁ(f +7%) >
2= =220 = 0+

recall that a solution of the slender jet (equation 38) is
valid only if these terms remain small, i.e., O(¢?).

0 Zhou
o -10
©
3
€
2-20H
g .
5 Prandtl-Eryi
2
-30
Q
2
>
Powell-Erying
-40
-50 : ' !
0 05 1 15 2
second invariant (s'z) x107

Fig. 5 Viscosity gradient vs second invariant I, for the strain-rate
thinning viscosity models

To leading order the non-dimensional strain rate
magnitude (Eq. 12) is

¢l,z
b

Note that in this regime the strain rate is zero at all
locations where ¢, =0, i.e., at the maxima and minima
of the free surface oscillation (recall ¢(z) is the evolving
semi-axis of the elliptical cross section). Hence, in this
regime of oscillating jet behavior the strain rate repeat-
edly passes through zero, twice in each wavelength.

’y:

: (40)

Power law fluid

When the power law expression (15), for dimensionless
viscosity Z is inserted into Eq. (38) we get

R L P
(l +¢)1)¢1‘zz (,b] ¢l,z+ w (KV KC) (41)

7 . l
+ 16Zp¢; 'sign(e; )|, .| =0 .

The solution of the dimensionless integro-differential
equation (41) for the free surface profile ¢»; depends on
initial conditions ¢,(0) and ¢, .(0), and three constants
W, Zp, and [.

d)l = d;l(WazPa l) . (42)
Figure 6 displays leading order solutions for strain-rate
thinning (/=0.5), Newtonian (/=1), and strain-rate

dimensionless semi-axis

0.6
0.0 2.0 4.0 6.0 8.0 100 120
dimensionless axial distance z

Fig. 6 Free surface profiles ¢;(z) for inviscid jets with rate-dependent
viscosity given by the power law: ¢(0)=1.5, ¢,.(0)=0, W=1,
Zp=0.032, with /=0.5 (strain-rate thinning, —), /=1 (Newtonian,
----- ), /= 1.5 (strain-rate thickening, )
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dimensionless axial distance z

12.0

Fig. 7 Dimensionless strain rate magnitude 7 for the solutions in
Fig. 6. The strain rate is zero at all locations of extrema of the free
surface oscillation

thickening (/=1.5) fluids, holding W and Zp fixed.
Figure 7 displays the accompanying evolution of the
strain rate magnitude; these simulations confirm that the
strain rate repeatedly passes through zero at the locations
of minima and maxima of the free surface oscillation.
We now check if the correction terms L; and L,
remain O(g?) everywhere, as must be the case if the
solution of Eq. (41) is to be consistent with the
assumptions inherent in Eq. (41). L, behaves properly.
However L, is in general unbounded at locations of zero
strain rate for all 0 < / < 1 (all strain-rate thinning
fluids) and 1 < / < 3 (a range of strain-rate thickening
fluids). From Eq. (16), the viscosity gradient Z’ goes to
infinity for the power law fluid as strain rate j goes to

zero if [ < 3; therefore the product (w;_z)zZ’ is unbound-
ed at zero strain rate since the square (5‘2)2 of the strain
rate gradient is not zero when strain rate y is zero. In
addition, y_. is not zero when j is zero, so the product
Z7 ., is also unbounded at zero strain rate, due to the
unboundedness of viscosity Z. Consequently, L, is
unbounded at the maxima and minima of oscillations.
This is illustrated by the numerical computation of L;
shown in Fig. 8, where we overlay L; on the jet profile
for the strain-rate thinning fluid of Fig. 6; similar
behavior occurs in the strain-rate thickening solution
of Fig. 6. This diagnostic indicates a failure of the
asymptotic approximation induced purely by the behav-
ior of the power law form near zero strain rate: The
isolated spikes in L; invalidate any power law solution
of the leading order problem as a leading order, slowly

2.0

/ 72
o v N AN T
0.5

0.0

dimensionless profile and correction term

-0.5

-1.0
0.0 2.0 4.0 6.0 8.0 10.0 12.0

dimensionless axial distance z

Fig. 8 Leading order free surface profile ¢(z) of Fig. 6 with /=0.5
(strain-rate thinning, --- ) and correction term L/e’ (—), showing
spikes at locations where ¢, . = 0. The spikes in L,/¢* have amplitudes
in the numerical simulation between 95 and 5.5 x 10'¢

varying approximation to the 3-D behavior by disor-
dering the presumed asymptotic expansion. The spikes
falsely indicate the onset of small length scales and
breakdown of the asymptotic approximation. The
analysis of the 3-D instability of an oscillating jet
described by this viscosity form is beyond the scope of
this paper, but is irrelevant: physical fluids are observed
to establish oscillating jet flows without the onset of
small length scales, and hence the power law cannot
characterize these fluids in this flow.

Cross model

Although the Cross model was constructed to avoid the
problems of the power law model at zero strain rate, we
again encounter (Fig. 9) artificial large-amplitude spikes
in the next order corrections at locations of zero strain
rate. This is due to the unbounded viscosity gradient

d (117 ) (Z’ in dimensionless form) at zero strain rate in the
D

Cross model (see Eq. 224).

Carreau model

The numerical simulation shown in Fig. 10 for an
oscillating jet of a strain-rate thinning fluid with
viscosity modeled by the Carreau form again indicates
large spikes in the correction terms. While the Carreau
model yields viscosity and viscosity gradients that are
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dimensionless profile and correction term

-1.0
0.0 2.0 4.0 6.0 8.0

dimensionless axial distance z

10.0 12.0

Fig. 9 Leading order free surface profile ¢(z) (---) and correction
term L,/e? (—) for an oscillating jet with strain-rate thinning viscosity
given by the Cross model: W=1, Zy=1.0, Z,,=0.0171, Z-=276,
and /=0.5, showing spikes in L, at locations where ¢, .=0. The
spikes have amplitudes between 63.4 and 9.7 x 10"

finite at zero strain rate (see Eqs. 27) so that L is
bounded, the magnitude of L, is still large enough to
disorder the asymptotic expansion. This is because the
dimensionless value of Z’ at zero strain rate in the
Carreau form is proportional to the difference between
the dimensionless zero strain rate viscosity Z, and large
strain rate viscosity Z.,, and typically this difference
is large. For example, Z’(0)=25,900 in the simula-
tion displayed in Fig. 10 (which models a hypo-
thetical experiment with the material properties
p=10gem™>, ¢=242 dyne cm™, 1,=0.0396 Pa s, 1., =
0.0057 Pa s, A= 2.09s, and /=0.5, and process
conditions of ry=0.05 cm, zo=0.5 cm, and vy=220
cm s™'). From Fig. 10 we see that this large value of
Z'(0) produces significant spikes in L.

We comment, without exhibiting the graphs, that the
Prandtl-Eyring and Powell-Eyring forms give results
similar to but slightly worse than the Carreau form, with
large spikes in L at the locations of zero strain rate. This
is to be expected, given that they demand a comparable
but slightly larger magnitude of viscosity gradient at low
strain rates (see Table 1 and Figs. 4 and 5).

Zhou model

From the analys%s above it is clear that we can control
the product (ﬂ)g) Z' in L at zero strain rate only with a
constitutive form in which the viscosity gradient at zero
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Fig. 10 Leading order free surface profile ¢(z) (---) and correction
term L,/e? (—) for an oscillating jet with strain-rate thinning viscosity
given by the Carreau model: W=1, Z;,=0.036, Z,,=0.00541,
Zcy=1839, and /=0.5, showing spikes in L,/¢* at locations where
¢1.=0. The maximum amplitude of the spikes in the numerical
simulation is 40

0.8
0.6
0.4

0.2

00f N N

0.0 2.0 40 6.0 8.0 10.0
dimensionless axial distance z

dimensionless profile and correction term

12.0

Fig. 11 Leading order free surface profile ¢(z) (---) and correc-
tion term L,/¢> (—) for an oscillating jet with strain-rate thinning vis-
cosity given by the Zhou model: W=1, Z,=0.4545, Z,,=0.018,
Zu=7%10"% o=181, and B=0.05. Note the uniformly small
magnitude of the correction term, indicating the leading order
solution is a valid representation of the 3-D solution
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strain rate is zero. The Zhou form (Eq. 34) is construct-
ed expressly to have this property. The simulation in
Fig. 11 illustrates that the correction term is bounded
everywhere. In fact the spikes are completely absent at
the locations of maximum and minimum amplitudes
(and zero strain rate); at these locations the correction
L, is identically zero.

From the analysis and computations of this section
we conclude that the power law, Cross, Carreau,
Prandtl-Eyring, and Powell-Eyring forms are problem-
atic as characterizations of a strain-rate thinning fluid in
flows experiencing locations or times of low strain rates,
since they cannot model observed slender oscillating jet
behavior: The first order corrections to the leading order
solution are either unbounded (for the power law and
Cross forms) or large (for the Carreau, Prandtl-Eyring,
and Powell-Eyring forms) at the locations where the
strain rate is passing through zero; these isolated spikes
indicate that if the fluid viscosity was in fact governed by
the assumed form, an oscillating jet could not be
established, in opposition to physical reality. Our
proposed Zhou form, on the contrary, yields uniformly
small first corrections, and hence passes the test of being
able to model oscillating jet behavior.

Conclusions

Oscillating jets with an elliptical cross-section provide
accurate means for material characterization of other-

wise difficult properties, namely dynamic surface ten-
sion and elongational viscosity. Here we have focused
on the relevance of oscillating jet models that accom-
pany this experimental technique for the specific case of
strain-rate thinning and strain-rate thickening viscous
fluids. We have shown analytically and illustrated
numerically that standard viscosity forms (the power
law, Cross, Carreau, Prandtl-Eyring, and Powell-
Eyring forms) for strain-rate thinning inelastic fluids
break down when applied to oscillating jet flows in
which gravity is a weak effect, precisely because of
behavior of these forms near zero strain rate. We then
propose a new form that can fit data at least as well as
the Cross, Carreau, Prandtl-Eyring, and Powell-Eyring
forms, and is in addition consistent with the asymptotic
model. These results offer a new model for material
characterization experiments on strain-rate thinning
fluids.
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