

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

TRANSLATION OF USER NEEDS TO SYSTEM
REQUIREMENTS

by

Patrick R. Hoff

March 2009

 Thesis Advisor: John M. Green
 Second Reader: Paul V. Shebalin

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per
response, including the time for reviewing instruction, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington headquarters Services, Directorate
for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)
Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
March 2009

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Translation of User Needs to
System Requirements
6. AUTHOR(S) Hoff, Patrick R.

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and
do not reflect the official policy or position of the Department of Defense or the U.S.
Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Department of the Navy system acquisition begins with a statement of
user need. Delivery of required capability depends heavily on the effective
translation of user need to system requirements. Failure typically results in
program cost overruns, schedule slippage, and sometimes partial or complete
failure to deliver needed capability.

Architectures as part of systems engineering were created to cope with
the growing complexity of modern systems. The Navy develops and operates some
of the most complex systems in the world. Yet, architecture development, while
mandated, remains largely ancillary to the systems engineering process. As a
result, much of the engineering advantage of architectures remains untapped.

This study examined U.S. Navy policy, process, and current engineering
and architectures standards and identified recommendations to improve the
process of translating user needs to system requirements while facilitating
the use of architectures.

15. NUMBER OF
PAGES

143

14. SUBJECT TERMS Architecture, architecture framework, DoDAF,
JCIDS, requirements, systems engineering

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

TRANSLATION OF USER NEEDS TO SYSTEM REQUIREMENTS

Patrick R. Hoff
Civilian, Naval Sea Systems Command
B.S., University of Houston, 1978
M.S., University of Maryland, 1992

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN SYSTEMS ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
March 2009

Author: Patrick R. Hoff

Approved by: John M. Green
Thesis Advisor

Paul V. Shebalin
Second Reader

David Olwell
Chairman, Department of Systems Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Department of the Navy system acquisition begins with

a statement of user need. Delivery of required capability

depends heavily on the effective translation of user need

to system requirements. Failure typically results in

program cost overruns, schedule slippage, and sometimes

partial or complete failure to deliver needed capability.

Architectures as part of systems engineering were

created to cope with the growing complexity of modern

systems. The Navy develops and operates some of the most

complex systems in the world. Yet, architecture

development, while mandated, remains largely ancillary to

the systems engineering process. As a result, much of the

engineering advantage of architectures remains untapped.

This study examined U.S. Navy policy, process, and

current engineering and architectures standards and

identified recommendations to improve the process of

translating user needs to system requirements while

facilitating the use of architectures.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION ..1
A. BACKGROUND: ..1
B. PURPOSE: ...3
C. RESEARCH QUESTIONS:3
D. BENEFITS OF STUDY4
E. SCOPE AND METHODOLOGY5

1. Scope ...5
2. Methodology6

F. CHAPTER SUMMARY6
II. SYSTEMS ENGINEERING PROCESS9

A. INTRODUCTION9
B. SYSTEMS ENGINEERING PROCESS LIFE CYCLE9
C. REQUIREMENTS ANALYSIS CHARACTERIZATION OF

ESTABLISHED SYSTEMS ENGINEERING STANDARDS13
1. ISO/IEC 15288 (2008)14
2. IEEE Std 1220 (2005), IEEE Standard for

Application and Management of the Systems
Engineering Process15

3. EIA 632 (1999), Processes for Engineering a
System15

D. INDUSTRY, DOD, AND NASA SYSTEMS ENGINEERING
GUIDEBOOKS ..16

E. CHAPTER SUMMARY21
III. ESTABLISHING USER NEED23

A. INTRODUCTION23
B. THE JCIDS PROCESS23
C. RELATIONSHIP OF JCIDS TO THE SYSTEMS ENGINEERING

PROCESS ...26
D. JCIDS AND INTEGRATED ARCHITECTURES29
E. JCIDS IMPLEMENTATION INSIGHTS31
F. CHAPTER SUMMARY33

IV. DOD ARCHITECTURE FRAMEWORK35
A. INTRODUCTION35
B. ORIGINS OF THE DOD ARCHITECTURE FRAMEWORK36
C. EVOLUTION TO THE DOD ARCHITECTURE FRAMEWORK38
D. REQUIREMENTS TO USE THE DODAF39
E. DEMONSTRATED UTILITY AND VALUE OF DODAF42
F. NEXT STEPS IN THE EVOLUTION OF THE DODAF46
G. CHAPTER SUMMARY47

V. INTEGRATING KEY PROCESSES WITH THE OVERALL SYSTEMS
ENGINEERING PROCESS49

 viii

A. INTRODUCTION49
B. TRANSLATING USER NEEDS TO SYSTEM REQUIREMENTS49
C. TRANSLATION OF USER NEEDS IN THE CONTEXT OF DON

POLICY AND GUIDANCE62
D. CHAPTER SUMMARY67

VI. APPLICATION TO NAVAL WARFARE SYSTEMS69
A. INTRODUCTION69
B. CHARACTERIZATION OF U.S. NAVY SURFACE WARFARE

SYSTEMS ...70
C. TOP-DOWN REQUIREMENTS DEVELOPMENT72
D. REQUIREMENTS AND ARCHITECTURE DEVELOPMENT PROCESS

EXAMPLE ...79
1. Process for System Architecture and

Requirements Engineering (PSARE)80
2. Problem Statement84
3. Requirements Model85
4. Architecture Model93

E. CHAPTER SUMMARY94
VII. CONCLUSIONS ..97

A. KEY POINTS AND RECOMMENDATIONS97
B. AREAS FOR FURTHER RESEARCH102

LIST OF REFERENCES ...105
INITIAL DISTRIBUTION LIST113

 ix

LIST OF FIGURES

Figure 1 Systems Engineering Process, From Blanchard,
2006..10

Figure 2 System Life Cycles, From INCOSE SE Handbook
v3.1, 2007......................................11

Figure 3 Comparison of SE Standards, From Langford,
2006..21

Figure 4 JCIDS; Preface to Acquisition, From Gonzales,
2007..25

Figure 5 Alignment of Acquisition, JCIDS, and Systems
Engineering Processes...........................27

Figure 6 DoDAF Development Organizational Structure,
From Wilcynski, 2007............................46

Figure 7 Engineering Vee Model, From Blanchard, 2006.....52
Figure 8 System Specification Models, From Hatley, 2000..82
Figure 9 Joint IAMD Operational View, From Baldwin,

2006..84
Figure 10 IAMD Environment Model..........................88
Figure 11 Environment Model with System Boundary Applied..89
Figure 12 IAMD Requirements Context Diagram...............90
Figure 13 IAMD Data Flow Diagram..........................91
Figure 14 PSARE Architecture Template, from Hatley, 1987..94

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1 PSARE Features and Benefits, From Haggerty,
2008..81

Table 2 IAMD Process Specifications.....................91
Table 3 IAMD Data Requirements Dictionary Content.......92

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

EXECUTIVE SUMMARY

Successful translation of user needs to system

requirements is foundational to successful product

development. This translation occurs during the concept

phase of the systems engineering process, “pre-Milestone B”

per (DoD Instruction 5000.2, 2008).

Requirements definition for DoN warfighting systems

predominantly involves upgrades or modifications of

existing systems. Even unprecedented systems have to

integrate and interoperate with existing or “legacy”

systems. Legacy requirements may be incomplete, ambiguous,

out-of-date, or in conflict with other requirements.

Similarly, legacy architectures may not be sufficiently

developed to support requirements definition.

Systems engineering principles and processes and

system architecting methods were established in large

measure to facilitate successful development of complex

systems (INCOSE Systems Engineering Handbook v. 3.1, 2007),

(Rhodes, 2007). DoN requirements for planning and

implementation of systems engineering are based on

Government and industry standards and best practices. DoN

also requires for major systems acquisitions, development

of architecture products in accordance with the DoD

Architecture Framework (DoD Architecture Framework, version

1.5, 2007). However, DoN acquisition policy (SECNAVINST

5000.2D, 2008) does not describe a relationship or

dependency between architecture requirements and systems

engineering requirements. Programs frequently develop

architecture products through a process that is essentially

 xiv

separate from the systems engineering process. This

practice marginalizes the utility of architectures

(Osvalds, 2006).

The purpose of this research is to review and

correlate systems engineering standards, the Joint

Capabilities Integration and Development System (CJCSI

3170.01F, 2007), (CJCSM 3170.01C, 207), and system

architecting policy and standards, then, to formulate and

present recommendations for improving the integration of

systems engineering with system architecting, and the

contribution of architectures to requirements definition.

At the time of this writing, the JCIDS process, as

well as DoN acquisition policy, require programs to develop

DoDAF-compliant architecture products. For a typical,

complex warfare system, substantial time and resources are

required to develop those products. In spite of

requirements to develop architecture products, there is

substantial evidence that the architecture products are

poorly executed. Architecture products form part of the

foundation for requirements definition. Poor execution of

system architecting and requirements definition leads to

program delays, cost overruns, and products whose

performance does not provide required capability.

Therefore, better alignment and implementation of

architecture development and systems engineering processes

holds the potential to deliver greater value from

architecture products and for those products to improve the

output of the requirements definition process. Achievement

of these objectives will facilitate more effective program

management and will contribute to improved system

 xv

performance, system supportability, system

interoperability, and system-of-systems integration.

The systems engineering process spans the entirety of

a product’s life cycle, from identification of a user need

to system retirement and disposal. Descriptions of the

systems engineering process life cycle phases in different

standards are generally well correlated at a high level,

with some semantic differences. The standards provide a

framework of tasks, but do not provide the process detail,

examples, or accommodation of differences among product

types necessary to be sufficient as stand-alone source

references from which a detailed, systems engineering plan

(SEP) can be developed and implemented. System engineering

standards neither preclude nor prescribe the use of

architectures to support requirements analysis. System

engineering guides and handbooks produced by the Services

and by industry complement and augment the standards. Among

both standards and guides, terminology is often not well-

defined and varies among standards and guides. For example,

a “performance specification” in one guide may have a

subtly different meaning in another guide. Variations and

lack of implementation specificity among systems

engineering process standards and guides can make it

difficult to implement a uniform, auditable systems

engineering process within an organization.

To begin the systems engineering process, a customer

presents a statement of need to a system developer. Through

an iterative process between user and developer, a

comprehensive set of system requirements is formed,

 xvi

establishing the basis for design. The DoD has its own

system for requirements generation.

In 2003, the DoD implemented the Joint Capabilities

Integration and Development System (JCIDS), a top-down,

joint capabilities (i.e., requirements) generation,

validation, and prioritization system intended to reduce

functionally overlapping, Service-specific systems as well

as inadequate intra-Service and inter-Service

interoperability among systems. The JCIDS process

interjects additional steps between the statement of user

need and the development of a system specification in

comparison with a typical commercial systems engineering

process as described in Fabrycky (2006).

The JCIDS process, as incorporated into systems

engineering processes described in the Naval Systems

Engineering Guide (2004) offers the potential for a cross-

service requirements analysis and prioritization capability

necessary to achieve the DoD’s mandate for capability-based

acquisition. It could also use architectures as an

analytical and management framework. However, research for

this study indicates the use of architectures in

conjunction with JCIDS is neither explicitly described nor

explained in policy, and to date, the Services’ approaches

to warfighting requirements continue to align to Service

perspective rather than a Joint perspective.

Understanding the role of system architecting as part

of the system engineering process first requires definition

of terms. To define “architecture framework” the terms

“architecture” and “framework” must each be defined. The

definition of architecture cited in the DoD Architecture

 xvii

Framework Version 1.5 (2007) is: “the structure of

components, their relationships, and the principles and

guidelines governing their design and evolution over time.”

Every existing system embodies an architecture. Webster’s

II Dictionary (1984) defines framework as: “a basic

arrangement, form, or system.” Rolf Siegers (2005) defined

architecture framework simply as “a resource that aids in

the development or description of an architecture.” Maier

(2004) asserts that an architecture framework exhibits one

or more of the following five characteristics:

1. A definition of the word “architecture”

2. A conceptual framework explaining key concepts or
terms

3. An approach to describing architectures

4. Architectural methods (e.g., creating, analyzing,
interpreting, realizing)

5. A theory of how architectures and architectural
descriptions fit into a larger context (e.g.,
systems engineering, design, etc.)

Motivation to establish and utilize architecture

frameworks can derive from business considerations,

technical considerations, or both. An architecture

framework used for enterprise product development can for

example facilitate shorter product development cycles,

lower manufacturing, support and upgrade costs, and a

reduced number of functionally duplicative products. This

accrual of benefits can be explained by a framework’s

ability to make individual product architectures comparable

and integratable, facilitating cross-product insights that

would be otherwise difficult. From a technical perspective,

and for the same reasons cited for the business

 xviii

perspective, products developed in conformance with an

architecture that is in turn developed in conformance with

an architecture framework potentially exhibit a greater

degree of interoperability, a simpler logistics support

infrastructure, and in systems of systems, a greater

ability to be reconfigured to adapt to changes in mission

needs. The DoD architecture framework (2007) is cited in

DoD requirements, acquisition, and systems engineering

policy and guidance for both business and technical

reasons.

DoDAF use, specified in DoN policy and guidance, is

the framework standard for architectures in DoN. However,

considerable variation in DoDAF architecture implementation

is evident within the boundaries of DoDAF compliance, such

that architectures for different but related systems may

not be effectively comparable or integratable. The current

framework is necessary but not sufficient to ensure the

effective use of architectures in acquisition and systems

engineering. The DoDAF Version 2.0, currently in

development, is intended to address some long-recognized

limitations of the DoDAF, but the framework is only one

part of what should be a multi-faceted approach to

realizing the potential of architectures in the systems

engineering process.

The systems engineering process, the DoD requirements

process, i.e., JCIDS, the DoD architecture framework, and

to a limited extent, the DoD acquisition process constitute

a complex system-of-systems in and of themselves. Process

components critical to successful requirements translation

in a systems engineering context and the necessary elements

 xix

of a good system specification can be identified in this

system-of-systems. In turn, an approach for how best to

integrate necessary process components can be developed.

DoD and DoN requirements, acquisition, and systems

engineering processes and associated guidance and standards

comprise a substantial amount of interrelated data, even

when limited to discussion of requirements development as

in this study. Research performed for this study has

revealed semantic inconsistencies and ambiguities as well

as a multiplicity of system engineering processes, guidance

and standards. This makes it difficult to trace data and

process relationships in a systems engineering context. As

a consequence it is difficult to rigorously and

unambiguously trace a top-level operational requirement to

a comprehensive and complete set of system requirements.

This study asserts that for Naval warfare systems, the

process of translation of user needs to system requirements

is not sufficiently rigorous and repeatable to ensure

consistently complete and valid system requirements. The

result is significant increases to program cost, schedule

and risk when requirements issues are resolved later in

development. Government Accounting Office Report (GAO-08-

782T, 2008) states:

At the strategic level, DOD does not prioritize
weapon system investments and the department’s
processes for matching warfighter needs with
resources are fragmented and broken. Furthermore,
the requirements and acquisition processes are
not agile enough to support programs that can
meet current operational requirements. At the
program level, programs are started without
knowing what resources will truly be needed and
are managed with lower levels of product

 xx

knowledge at critical junctures than expected
under best practices standards. In the absence of
such knowledge, managers rely heavily on
assumptions about system requirements,
technology, and design maturity, which are
consistently too optimistic. This exposes
programs to significant and unnecessary
technology, design, and production risks, and
ultimately damaging cost growth and schedule
delays.

Typical U.S. Navy surface combatants systems involve a

number of constraints and characteristics that lead to

significant complexity and difficulty in the requirements

analysis process. However, this study illustrates a

“blended” use case and Process for System Architecture and

Requirements Engineering (PSARE) process, from which

requirements and architectures models can be constructed in

an integrated, structured, repeatable manner that when

complete, provide the basis for a complete set of system

requirements for complex systems. Furthermore, the

requirements model is in fact an operational view of the

system’s architecture and the architecture model represents

the system view of the architecture, enabling generation of

required DoDAF products. Importantly, the products are

created by and for the systems engineering process. It is

done in a way that provides a full accounting of

requirements in a design. This type of process is not

provided as part of the DoD Architecture Framework (DoDAF,

2007) or the Naval Systems Engineering Guide (2004).

In summary, a substantial body of work among

Government and industry exists regarding system engineering

standards and processes. Standards and practices have been

evolved, refined, interpreted, and exercised over a period

 xxi

of approximately 50 years. The value of systems engineering

has been shown to lie in its ability to manage complexity

in system development such that systems produced will

consistently satisfy user needs. Yet, numerous examples

exist of warfare systems that exceed schedule and cost

requirements and do not meet operational requirements.

Shortcomings appear to exist in the application and

management of systems engineering principles.

The JCIDS process, ostensibly dependent on

architectures as an analytical basis, has not resulted in

desired levels of improvement in terms of ensuring Joint

solutions, supporting capability acquisition, and reducing

redundant or excess capability, while reliability

identifying capability gaps. This may be partly a result of

insufficiently developed architectural bases for the

necessary analysis.

In spite of mandated systems engineering and

architecture standards, the relationship between system

architecting and system engineering is poorly identified in

DoD policy and instructions, and processes to develop

architecture models as part of a systems engineering

process are not prescribed. Until a better connection

between system architecting and systems engineering is

made, architecture development efforts will be

significantly challenged to demonstrate a clear return on

investment.

Translation of operational requirements to a set of

system requirements is a vitally important part of the

systems engineering process. However, ambiguity exists in

definition of engineering and analytical roles, in terms

 xxii

and definitions, and in the dependencies of timing of

events in this process. As a result, demonstration of

system requirements completeness and linkage of system

requirements to operational requirements are not

consistently established.

Rigorous methods exist to model system requirements

and architectures in a manner that supports mandated DoD

Architecture Framework products while maintaining close-

coupling with the systems engineering process. These

methods can capture the behavior of complex, Naval warfare

systems, maintain traceability to higher level

requirements, and incorporate plain language views of

requirements. However, the community of skilled

practitioners may not be large enough to increase the use

of these methods to the point of becoming standard

practices.

 xxiii

LIST OF ACRONYMS AND ABBREVIATIONS

AITS Adopted Information Technology Standards

ASD(C3I) Assistant Secretary of Defense, Command,
Control, Communication, and Intelligence

ASW Anti-submarine Warfare

C&D Command and Decision

C4I Command, Control, Communications, Computers,
Intelligence

C4ISR Command, Control, Communications, Computers,
Intelligence, Surveillance, and
Reconnaissance

CADM Core Architecture Data Model

CBA Capability-Based Assessment

CDD Capabilities Definition Document

CDD Capability Development Document

CFD Control Flow Diagram

CIO Chief Information Officer

CJCSI Chairman of the Joint Chiefs of Staff
Instruction

CJCSM Chairman of the Joint Chiefs of Staff Manual

CNO Chief of Naval Operations

CONOP Concept of Operation

CPD Capability Production Document

CSPEC Control Specification

DAR Defense Architecture Repository

DAU Defense Acquisition University

 xxiv

DCR DOTMLPF Change Recommendation

DFD Data Flow Diagram

DISA Defense Information Systems Agency

DISR DoD IT Standards Registry

DoD Department of Defense

DoDAF Department of Defense Architecture Framework

DoN Department of Navy

DOTMLPF Doctrine, Organization, Training, Material,
Leadership and education, Personnel, and
Facilities

EIA Electronic Industries Alliance

FAA Functional Area Analysis

FBI Federal Bureau of Investigation

FCCC FORCEnet Consolidated Compliance Checklist

FNA Functional Needs Analysis

FSA Functional Solutions Analysis

GAO Government Accounting Office

IAMD Integrated Air and Missile Defense

ICD Initial Capabilities Document

IDA Institute for Defense Analysis

IEEE Institute of Electrical and Electronics
Engineers

IFF Identify, Friend or Foe

INCOSE International Council on System Engineering

IR Infrared

 xxv

ISO/IEC International Organization for
Standardization/International
Electrotechnical Commission

IT Information Technology

JCIDS Joint Capabilities Integration and
Development System

JIC Joint Integrating Concept

JOC Joint Operational Concept

JROC Joint Requirements Oversight Council

JTA Joint Technical Architecture

KPP Key Performance Parameter

MARCORSYSCOM Marine Corps Systems Command

MOA Memorandum Of Agreement

NASA National Aeronautics and Space
Administration

NAVAIR Naval Air Systems Command

NAVSEA Naval Sea Systems Command

NAVSUP Naval Supply Systems Command

NDIA National Defense Industries Association

NIST National Institute for Standards and
Technology

NSS National Security System

OODA Observe, Orient, Decide, Act

OSD Office of the Secretary of Defense

OV Operational View

PSARE Process for System Architecture and
Requirements Engineering

PSPEC Performance Specification

 xxvi

RDAV Requirements Development and Validation

SDD System Development and Demonstration

SEP Systems Engineering Plan

SMC Space and Missile Systems Center

SoS System of Systems

SPAWAR Space Systems Command

SRD System Requirements Document

SRS System Requirements Specification

SV Systems View

TAFIM Technical Architecture Framework for
Information Management

TV Technical View

 xxvii

ACKNOWLEDGMENTS

To Dr. James Meng and Mr. Carl Siel, for your

endorsement, which provided me this learning opportunity,

and for your extraordinary patience and support while I

completed this “last piece of the puzzle.”

To Professors Mike Green and Paul Shebalin, for your

encouragement and guidance in performing the research,

writing about it, and maintaining the proper perspective.

To Mr. Michael Collins, for sharing your ideas on

architecting and systems engineering which epitomize Albert

Einstein’s observation: “Everything should be made as

simple as possible, but not simpler.”

Finally, to my family, for not questioning this quest,

and for helping me remember what is most important.

 xxviii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. BACKGROUND:

Department of Navy (DoN) warfare systems are becoming

more complex. At the same time, the DoN is also moving

toward implementation of network-centric warfare and

increasingly complex systems-of-systems. One effect of

these trends on systems acquisition is significantly

greater requirements complexity. Proper identification of

requirements is a tenet of systems engineering. Based on

statistical analysis of Department of Defense (DoD)

programs performed by the Defense Acquisition University

(DAU), 80% of a system’s life cycle cost is determined by

the time 20% of a system’s actual cost is accrued. Within

that first 20% of cost lies the concept phase of a program,

accounting for, on average, 8% of the cost. It is during

that concept phase, “pre-Milestone B” per (DoD Instruction

5000.2, 2008) that user requirements are translated to

system requirements (INCOSE Systems Engineering Handbook v.

3.1, 2007). Some well-known examples of failures resulting

from poorly defined, verified, or validated requirements

sets are discussed by Bahill (2004).

Specifically, the complexity of requirements is

dependent upon required functionality, the number and

nature of nodes with which the system will interoperate,

the extent to which the system, or system-of-systems can be

reconfigured, and the range of environments and conditions

in which the system is expected to operate. Note that

operational flexibility, high interconnectivity and high

 2

reconfigurability are all considered valuable attributes by

the DoN and are typically required design attributes of new

systems or system upgrades.

For DoN warfighting systems the requirements

definition challenge is compounded by the fact that

development programs predominantly involve upgrades of

existing systems. Even truly new systems have to

interoperate with existing or “legacy” systems. Legacy

requirements may be incomplete, ambiguous, out-of-date, in

conflict with other requirements, or un-testable.

Similarly, legacy architectures may not be sufficiently

developed to support requirements or interface analysis.

Systems engineering principles and processes and

architecture frameworks were established in large measure

to facilitate successful development of complex systems

(INCOSE Systems Engineering Handbook v. 3.1, 2007),

(Rhodes, 2007). DoN requires the planning for and use of

systems engineering based on Government and industry

standards and best practices. For major acquisition

programs, DoN also requires the development of architecture

products in accordance with DoD Architecture Framework (DoD

Architecture Framework, version 1.5, 2007). DoN acquisition

policy (SECNAVINST 5000.2D, 2008) does not however

recognize a relationship or dependency between required

architectures and systems engineering requirements. DoN

guidance (Naval systems engineering guide, 2004), (Naval

“systems of systems” systems engineering guidebook, 2006)

does recognize and describe the contribution of

architectures in the requirements definition process.

However guidance, by definition, cannot mandate use of

 3

architectures for the requirements definition part of the

system engineering process. Programs frequently develop

architectures through a process that is essentially

separate from the systems engineering process. This

practice marginalizes the utility of architectures

(Osvalds, 2006).

B. PURPOSE:

The purpose of this research is to:

• Correlate systems engineering industry standards,
Department of the Navy standards, the Joint
Capabilities Integration and Development System
(CJCSI 3170.01F, 2007), (CJCSM 3170.01C, 207),
and recent systems engineering research as
evidenced in published technical papers; and
similarly, architecture and architecture
framework industry and defense policy, standards,
guidance, and technical papers. The research
focuses on the portion of the systems engineering
process leading up to and including system
requirements definition. This correlation should
reveal the extent to which Navy system
engineering and architecture policy and guidance
reflects best industry standards and practices
and current research efforts. It should also
provide insight on the potential versus realized
utility of architectures in the requirements
definition process, and the extent to which DoN
policy and guidance support the use of
architectures for requirements definition.

• Present recommendations for improving the
contribution of architectures to requirements
definition.

C. RESEARCH QUESTIONS:

Question: Within DoN, how can system architecting,

e.g., architectures described in compliance with DoD

Architecture Framework version 1.5 (2007), be better

integrated with the systems engineering process to improve

 4

requirements analysis and system requirements generation.

In order to answer that question, the following questions

and others concerning DoD policy, industry standards,

system engineering and architecture semantics, and the

engineering experience of others are also considered:

• What is an architecture framework and what is the
intended purpose(s)?

• What are the advantages and objectives of system
architecting for DoN systems during and as part
of the requirements definition process?

• How do system architecting processes relate to
the systems engineering process?

• What strategies, methodologies, or tools exist
for integration of architecture development and
requirements generation processes?

D. BENEFITS OF STUDY

At the time of this writing, the JCIDS process, as

well as DoN acquisition policy, require programs to develop

DoDAF-compliant architecture products. For a typical,

complex warfare system, substantial time and resources are

required to develop those products. In spite of

requirements to develop architecture products there is

substantial evidence that the architecture products are

poorly executed. The architecture products should form the

analytical framework for the requirements definition

process. Poor execution of system architecting and

requirements definition leads to program delays, cost

overruns, and products whose performance does not provide

the required capability. Therefore, better alignment and

implementation of architecture development and systems

engineering processes holds the potential for the DoN to

derive greater value from architecture products and for

 5

those products to improve the output of the requirements

definition process. Achievement of these objectives will

facilitate more effective program management and will

contribute to improved system performance, system

supportability, system interoperability, and system-of-

systems integration.

E. SCOPE AND METHODOLOGY

1. Scope

This study focuses on Department of Navy warfare

system requirements development. As such, it emphasizes

software-intensive and complex systems, systems-of-systems,

and integration and interoperability of new systems and

newly modified legacy systems with legacy systems.

Incorporation of Joint and coalition architectures and

requirements is included to the extent required by

discussion and analysis of the JCIDS process and DoN

policy.

Although the systems engineering process and

architecture framework requirements derived from DoD

requirements and imposed by DoN are a primary topic, other

established, in-development, and conceptualized processes

and frameworks are included to better understand and

illustrate where improvements or changes to DoN standards

may merit consideration. As one example, the DoD

Architecture Framework (DoDAF) version 2.0 is under

development and its goals and objectives are considered.

 6

2. Methodology

This study is primarily composed of the results of

researching and analyzing documents from DoD, DoN,

industry, and academia. Process steps include:

1. Conduct literature review and analysis of
architecture frameworks, architecture development
and use, and the requirements definition portion
of systems engineering processes.

2. Correlate established systems engineering and
architecture standards and processes with DoN
requirements and guidance.

3. Research and discuss the state of practice of the
requirements definition portion of the systems
engineering process and the architecture
development process in DoN or DoD.

4. Develop recommendations to improve integration of
architecture development with requirements
development.

5. Demonstrate by example, better integration of
architectures with system engineering processes.

F. CHAPTER SUMMARY

The fundamental premise of this paper is that

understanding a problem is the most important step toward a

solution. The structure of this paper overall, is to

examine systems engineering, requirements-setting, and

architecture standards, guidance and processes, observe

their strengths and weaknesses, consider where process gaps

or lack of process synchronization may exist and recommend

improvements.

Chapter II focuses on the systems engineering process,

both in the DoD, industry, and academia. Chapter III

reviews the initiation of user requirements, particularly

from a DoD perspective. Chapter IV provides an overview of

the evolution of the DoD Architecture Framework (2007).

 7

Chapter V considers the integration of component processes,

and Chapter VI presents development of system requirements

and architectures in a DoN warfare system context. The last

chapter, Chapter VII, presents conclusions and

recommendations for further study.

 8

THIS PAGE INTENTIONALLY LEFT BLANK

 9

II. SYSTEMS ENGINEERING PROCESS

A. INTRODUCTION

This section begins with an overview of the systems

engineering life cycle. Subsequent sections present a

literature review of industry standards and DoD and DoN

policy and standards. Emphasis is placed on the beginning

of the systems engineering process; the requirements

definition phase.

B. SYSTEMS ENGINEERING PROCESS LIFE CYCLE

The systems engineering process spans the entirety of

a product’s life cycle, from identification of a user need

to system retirement and disposal. In texts commonly used

for university-level system engineering education,

descriptions of the systems engineering process life cycle

phases are generally well correlated at a high level,

albeit with some semantic differences. In Blanchard and

Fabrycky’s Systems Engineering and Analysis (2006), the

phases, in sequence, are identified as: Conceptual Design,

Preliminary Design, Detail Design and Development,

Production/Construction, and Operational Use and System

Support. These phases are structured to follow a system’s

life cycle. The sequence is shown graphically in Figure 1

(Blanchard, 2006:31). By comparison, Figure 2 (INCOSE

Systems Engineering Handbook, 2007) shows alternative

definitions of life cycle phases.

 10

Figure 1 Systems Engineering Process, From Blanchard,
2006.

This shows systems engineering activities, milestones, and
products in a product, life cycle framework.

 11

Figure 2 System Life Cycles, From INCOSE SE Handbook v3.1,
2007.

High-level similarities of various standards, and
differences at a more detailed level are illustrated.

Systems engineering process models, for example the

“Vee” model, the spiral model, and the waterfall model

(Blanchard, 2006), provide systems engineering activity

timing, logic, and sequence structure for the systems

engineering process. They are applied to each of the life

cycle phases to establish an agreed-to structure for

product development and to facilitate understanding of

development progress, status, and risk.

The objective of this section is to identify the life

cycle phases, typical associated activities and engineering

products, and to highlight the requirements analysis

portion of the life cycle, a focus of this study. To manage

the scope and complexity of this study, the systems

 12

engineering process is predominantly described linearly and

progress is discussed in terms of requirements development

maturity and detail. Consequently, differences in system

engineering process models and bases for selection are

beyond the scope of this study.

This linear simplification makes comparison of the

systems engineering process with other related processes

easier, i.e., the DoN acquisition process (SECNAVINST

5000.2D), the DoN Requirements/Acquisition Two Pass, Six

Gate Review Process (SECNAVINST 5000.2D, 2008), and the

JCIDS process (CJCSM 3170.01C, 2007).

For this study, discussion of the systems engineering

process is primarily concerned with what Blanchard (2006)

describes as the Conceptual Design phase. As seen in Figure

1, an output of this phase is an “A spec” or system

specification, or functional baseline, all taken to be

equivalent in systems engineering terms. The system

specification is defined as “…the top ‘technical-

requirements’ document that provides overall guidance for

system design from the beginning” (Blanchard, 2006: 86).

Placement of system specification development in the

timeline of the DoN acquisition process is after the

Capabilities Definition Document (CDD). The CDD, defined in

CJCSM 3170.01C (2007) is an entrance criterion for

Milestone B which leads into System Development &

Demonstration (DoDI 5000.02, 2008) or “Preliminary Design”

per Figure 1. It follows that the system specification

represents the top of the specification hierarchy or

“specification tree” for product development.

 13

C. REQUIREMENTS ANALYSIS CHARACTERIZATION OF ESTABLISHED
SYSTEMS ENGINEERING STANDARDS

Several key systems engineering standards exist. Some

have been developed from or in coordination with others.

Problems arising from multiple frameworks and standards are

addressed in Sheard (1997). That paper discusses framework

trends that include: evolution, proliferation, integration

and coordination, and consolidation. Although the value of

evolution, i.e., improvement, is recognized, continually

changing and overlapping frameworks and standards create a

burden on companies required to comply with different

frameworks for different programs. Also, from the

standpoints of both the invoking organization and the

complying organization, a succession of changing frameworks

and standards whose page counts typically number in the

hundreds makes it more difficult to establish and maintain

individual and organizational expertise and experience with

requirements, compliant processes, and products.

In the 11 years since Sheard (1997), the cited trends

have for the most part continued. More recently, there has

been some increased focus on consolidation of hardware and

software frameworks and standards. As is pointed out by

Sheard, “…frameworks define characteristics of good

processes but do not prescribe how they should be enacted.”

Most Services have attempted to address this “gap” by

publishing more prescriptive systems engineering guides

based on a small number of established frameworks and

standards.

The primary standards cited by the Defense Acquisition

Guidebook, Chapter 4, (DAG, 2004) are:

 14

• ISO/IEC 15288, Systems Engineering – System Life
Cycle Processes (2008)

• EIA 632, Processes for Engineering a System
(1999)

• IEEE 1220, Application Management of the Systems
Engineering Process (2007).

The systems engineering framework standard for the

Naval Systems Engineering Guide is EIA 632.

1. ISO/IEC 15288 (2008)

This standard is written with a broad scope,

identifying the following four system life cycle process

groups: Agreement processes, Organizational Project-

Enabling Processes, Project Processes, and Technical

Processes. Within the Technical Processes life cycle

process group lie the “Stakeholder Requirements Definition

Process” (ISO/IEC 15288, 2008:36) and “Requirements

Analysis Process” (ISO/IEC 15288, 2008:39) which are

central to this study. Each process is described in terms

of its purpose, outcomes, and activities and tasks. The

descriptions are written at a high level of abstraction,

establishing essentially a framework to which detailed

process information can be appended. IEEE Std 1220 (2005)

is specifically cited as a standard to be used with ISO/IEC

15288 and updates of these two documents are synchronized.

There is no mention of the use of architectures in the

accomplishment of stakeholder requirements definition or

requirements analysis. The section that follows

“Requirements Analysis Process” is “Architecture Design

Process,” (ISO/IEC 15288:40) but its stated purpose is “to

 15

synthesize a solution that satisfies system requirements,”

which is beyond the requirements definition phase and

outside the scope of this study.

2. IEEE Std 1220 (2005), IEEE Standard for
Application and Management of the Systems
Engineering Process

This Standard provides more detailed process

requirements than ISO/IEC 15288 and can be used in

conjunction with that standard. The “System Definition

Stage” defined in IEEE Std 1220 (2005:21) aligns with the

aforementioned “Stakeholder Requirements Definition

Process” and “Requirements Analysis Process” from ISO/IEC

15288 (2008), however that stage goes beyond development of

a system requirements document and includes the product

specification (i.e. allocated baseline) and preliminary

subsystem specifications. The IEEE Std 1220 addresses the

process of system definition and associated specifications,

configuration baselines, and technical reviews. Verified

functional and design architectures (IEEE Std 1220,

2005:21) are identified as products of this

process, but the latter pertains to a product specification

and the former is not presented as a means of facilitating

requirements analysis.

3. EIA 632 (1999), Processes for Engineering a
System

Among the five processes identified by this standard

as comprising the engineering process are thirteen sub-

processes. A total of 33 requirements address those sub-

processes. The standard is organized around those 33

requirements. Under the sub-process Requirements Definition

 16

Process Requirements are three requirements: Acquirer

Requirements, Other Stakeholder Requirements, and System

Technical Requirements. The descriptions of and outputs for

those three requirements align with the subject of this

study. In particular, the output of System Technical

Requirements, the System Requirements Document, aligns with

this study. Each requirement section includes tasks to

consider, and related outcomes are defined in Annex C.

Annex G defines requirements relationships, e.g.,

hierarchy, dependency, etc. The “how-to” of tasks is noted

as being beyond the scope of the standard. Although the

data, analysis, configuration management, and product

elements involved in completion of the tasks supports

system architecture development, architectures as part of

the Requirements Definition Process Requirements are only

mentioned in the context of “open systems architecture.”

D. INDUSTRY, DOD, AND NASA SYSTEMS ENGINEERING GUIDEBOOKS

In addition to systems engineering standards, the

Defense Acquisition Guidebook (2004) cites systems

engineering handbooks and guides including: Naval Systems

Engineering Guide (2004), INCOSE S.E. Handbook (2007), NASA

S.E. Handbook (2007), DAU Systems Engineering Fundamentals

(2001), ISO/IEC TR 19760, Systems Engineering – A Guide for

the Application of ISO/IEC 15288 (System Life Cycle

Processes), First Edition, 2003-11-15 (2008), and SMC

Systems Engineering Primer and Handbook (2005). All of

these guides and handbooks are specifically or generally

based on the previously-mentioned ISO/IEC-IEEE and EIA

standards, but they add Service or Agency specific process

 17

information and in some cases provide implementation

information that is beyond the scope of the ISO/IEC-IEEE

and EIA standards.

The Naval Systems Engineering Guide specifically cites

EIA-632 as its standards basis and presents the processes

from that standard, adapted for DoN use. The intent of its

creation and signature by all major Navy acquisition

commands (MARCORSYSCOM, NAVAIR, NAVSEA, NAVSUP, and

SPAWAR,) was to establish a single, documented, systems

engineering process for DoN. Starting with EIA-632, the

systems commands added command-specific content. The result

was addition of consideration for DoN policies and

procedures, and specific implementation guidance for EIA-

632 processes. Descriptions of engineering artifacts

provided apply to NAVAIR systems command but not other

systems commands. Notably, the guide does not try to index

the systems engineering process to an acquisition process

timeline context. Also, references are made to the use of

architectures during the requirements definition phase.

The INCOSE Systems Engineering Handbook (2007) is

intended to provide descriptions of key systems engineering

process activities. It is written to be consistent with

ISO/IEC 15288-2002 (Note: This standard was superseded by

ISO/IEC 15288-2008). As such it is not tailored to the

engineering of DoD or DoN systems. The handbook is

structured around context diagrams to augment ISO/IEC

15288, showing inputs, outputs, controls and enablers for

each ISO/IEC 15288 process. Portions of the standard

pertinent to this study are: Section 4.2, Stakeholder

Requirements Definition Process, Section 4.3, Requirements

 18

Analysis Process, Section 4.4, Architectural Design

Process, and Appendices I and K, “Requirements Definition

Process” and “System Architecture Synthesis” respectively.

These appendices add considerably more detail regarding how

to perform these processes. The handbook asserts that

“Architectural design begins from the baseline functional

and performance requirements, architectural constraints,

and traceability matrix.” (INCOSE Handbook, 2007), i.e.,

well into the requirements development process. However,

Appendix I, Requirements Definition Process, discusses

description of system behavior, system interfaces, flow-

down of requirements and, creating models, i.e., activities

associated with architecture development. Therefore, while

development of architectures to support requirements

definition and analysis is not specifically called out in

the standard, their use in this manner is consistent with

the guidance in the standard.

The NASA Systems Engineering Handbook (2007) is based

on high-level NASA systems engineering policy, systems

engineering best practices collected across the NASA

organization, and Government, industry and academic

sources. The bibliography is extensive and includes EIA-632

(1999), ISO/IEC 15288 (2008), the DoD Architecture

Framework (2007) and many other sources which also form the

basis for DoN systems engineering policy and processes. The

two sections of the handbook most pertinent to this study

are sections 4.2, Technical Requirements Definition, and

4.3, Logical Decomposition. The former describes a process

of interactively and recursively translating stakeholder

expectations into a set of validated technical requirements

with measures of performance, taking into consideration

 19

constraints and the operational concept. The recommended

means of documenting these requirements is “…in acceptable

‘shall’ statements, which are complete sentences with a

single ‘shall’ per statement.” The latter prescribes as a

first step, establishment of a system architecture model.

These two NASA process steps align well with ISO/IEC

15288’s “Stakeholder Requirements Definition” and

“Requirements Analysis” process steps with the notable

exception of the NASA handbook including architecture

development.

The U.S. Air Force SMC Systems Engineering Primer &

Handbook (2005) is sponsored by the Space and Missile

Systems Center, Los Angeles Air Force Base, Los Angeles,

CA. The close relationship of Air Force and NASA

engineering for Air Force space systems explains the SMC

S.E. Primer (2005) citation of NASA documents such as the

NASA Systems Engineering Handbook. Other references include

military, industrial and academic sources frequently cited

by DoD and DoN guidance such as DAU’s System Engineering

Fundamentals (2001), EIA 632 (1999), IEEE Std 1220 (2005),

The INCOSE Systems Engineering Handbook (2007), and Systems

Engineering and Analysis (Blanchard, 2006). However, for

the portion of references most specifically pertinent to

this study, those in Appendix D, References and

Bibliography, “Mission Requirements,” the references are

NASA references. The USAF handbook is laid out somewhat

differently than the other handbooks, with a major chapters

dedicated to: systems engineering “primer,” how the

systems engineering process works, system life cycles

phases, systems engineering management, system engineering

tools, “companion disciplines to systems engineering,” and

 20

validation and verification. As a result, material

addressing requirements analysis is spread across major

chapters in the handbook.

The primer establishes some semantic basis for terms

used throughout the text. Chapter II discusses requirements

analysis and includes development of a functional

architecture, “…how the functions will operate together to

perform the system mission(s).” A figure on page 51 of the

text shows a notional functional architecture for a space

system, including depiction of system functions provided by

existing space assets. This notion of incorporating

existing architectures in new system development is an

important point that is further discussed, later in this

study. Chapter III focuses on relating the U.S.A.F-specific

National Security Space (NSS) system development process to

the acquisition process described in DoD Instruction 5000.2

(2008). Chapter IV is a treatise on systems engineering

management. It does not provide further discussion of

requirements analysis. Chapter V discusses systems

engineering tools. There are references to sources that

provide comparisons of specific software-based tools, i.e.,

software products, but this section’s emphasis is on

analytical techniques commonly found useful, arranged by

systems engineering process phase. Such tools as they apply

to architecture development are discussed as are

requirements management tools. The U.S.A.F. has developed a

Government-owned tool called “Requirements Development and

Validation” (RDAV) for maintaining a database of

requirements, specifications and constraints. Chapter VI,

“What are the Companion Disciplines to Systems Engineering”

discusses primarily engineering specialty disciplines such

 21

as producibility, reliability, and safety. This chapter

does not augment the discussion of requirements analysis,

nor does Chapter VII, “Validation and Verification.”

Among the four appendices included is 111 page,

Appendix C, “Templates and Examples,” which contains

templates and examples for common systems engineering

tasks. Section C5 of this appendix, “Techniques of

Functional Analysis,” includes the methodologies and

rationale for functional flow block diagrams and timeline

analysis.

E. CHAPTER SUMMARY

Figure 3 summarizes the attributes of the major

standards and handbooks used by the DoN, allowing a more

direct comparison of major similarities and differences.

Figure 3 Comparison of SE Standards, From Langford, 2006.

The oldest standard, Mil-Std-499B has the narrowest scope,
the newest, ISO 15288, has the broadest scope. IEEE 1220 is
complementary to ISO 15288 and adds process detail.

The standards in general provide a framework of tasks,

but not enough process detail, examples, or explanation of

process variations for different product types to serve as

 22

stand-alone source references from which a detailed,

systems engineering plan (SEP) could be developed. For

requirements analysis, the use of architectures is neither

precluded nor prescribed. Systems engineering guides add

detail, implementation considerations, and examples, and

should be used as an adjunct to chosen standards. Among

standards and guides, there are common threads. Semantics

are often not well-defined and vary among standards and

guides. A “performance specification” in one guide may have

a subtly different meaning in another guide. Further,

products such as performance specifications allow for

variation in implementation. This allowable variation,

together with the iterative and recursive nature of the

requirements analysis makes it difficult to form a specific

view of the sequence of process steps from user need

through finalization of a performance specification that

fits all product development situations.

 23

III. ESTABLISHING USER NEED

A. INTRODUCTION

In discussing the systems engineering process, a

description was presented wherein the customer would

present a statement of need to the developer. Through an

iterative process between user and developer, that

requirement, including operational considerations and

constraints is further developed to form a comprehensive

set of system requirements from which product design

begins. This chapter discusses the initial steps of the

requirements setting process.

In 2003, DoD implemented the Joint Capabilities

Integration and Development System (JCIDS), a top-down,

joint capabilities (i.e., requirements) generation,

validation, and prioritization system intended to reduce

functional redundancy resulting from Service-specific

systems as well as inadequate intra-Service and inter-

Service interoperability among Services’ systems. The JCIDS

process interjects additional steps between the statement

of user need and the development of a system specification

relative to a typical systems engineering process as

described in Fabrycky (2006). This chapter places the JCIDS

process in the context of a systems engineering process and

discusses its effectiveness.

B. THE JCIDS PROCESS

Figure 4 (Gonzales, 2007) shows the relationship of

the JCIDS to the acquisition process. Tenets of the JCIDS

are that it is a top-down requirements process within an

 24

operational context and that requirements analysis is done

in a joint context. The impetus for creation of the JCIDS

was based on evidence that previously, when requirements

analysis was performed at the Service level, Services

developed Service-specific systems that were sometimes

functionally redundant with other Services’ systems and

sometimes were not interoperable with other Services’

systems. Previous to the JCIDS, requirements were also

developed from the top, down, and consideration for Joint

requirements is not new. However, then, as now,

requirements were sometimes initiated by the Services from

the bottom-up, based on operational need. The JCIDS, with a

more rigorous, and Joint-led requirements analysis process,

is intended to strengthen the top-down, Joint approach.

To illustrate the difference between bottom up and top

down requirements generation, in a bottom up system, a

numbered Fleet Commander might, in response to recognized

projections for adversary, quiet, diesel-electric

submarines designed to operate in shallow water, identify a

need for improved, surface anti-submarine warfare (ASW)

capability in the littorals. The appropriate Navy sponsor

would consider that requirement, its cost to implement, and

perhaps other expediencies, and decide whether to invest in

a surface ship-based system or system upgrade to provide

the improved ASW capability. If the Joint Requirements

Oversight Council (JROC) concurred with the requirement,

the Navy would proceed with the requirement. Such a process

might not have taken into account airborne ASW capability,

projected operational environments and operational

scenarios in the timeframe the capability would be fielded,

 25

or whether other Services’ sensor capabilities (e.g. space-

based) might offer part of a solution.

Figure 4 JCIDS; Preface to Acquisition, From Gonzales,
2007.

Top-down requirements approach, interrelationship of JCIDS
and the acquisition process, and requirements artifacts are
illustrated.

The JCIDS is a top-down requirements process, starting

at the National Security Strategy (2006) level, and flowing

down to a required capability, from which a product

requirement can be derived. In concert with this is a

capabilities assessment component to allow comparison of

current and projected capability relative to the proposed

capability improvement. In essence, the JCIDS process

interjects a requirements definition and validation

component between the user and the developer that assesses

and aligns all Services’ requirements, providing back to

the Services a validated operational requirement from which

product development can begin. The objectives are to find

 26

the most efficient way to address an operational

requirement and in the process, improve interoperability

among the Services’ systems.

C. RELATIONSHIP OF JCIDS TO THE SYSTEMS ENGINEERING
PROCESS

Reviewing the JCIDS process as documented in CJCSI

3170.01F (2007) and CJCSM 3170.01C (2007), and referenced

in the Defense Acquisition Guidebook (2004), indicates

activities and products of the JCIDS process map to the

requirements analysis portion of the systems engineering

process. Since there is implementation flexibility built

into the JCIDS, Defense Acquisition, and systems

engineering processes, it is not possible to precisely

describe a singular, linear sequence or timing of events

and products that would be appropriate in all cases.

However, each of the processes is defined in terms of an

overall series of phases whose intent is to ensure

subsequent phase does not begin until prerequisite products

from a preceding phase are complete. Figure 5 is a

simplified, notionalized representation of acquisition,

requirements, and systems engineering process alignment.

This graphically illustrates the role and positioning of

JCIDS in the systems engineering and acquisition processes.

It also serves to illustrate that the DoD acquisition

process is not the same as a systems engineering process

though there is overlap and interdependencies.

 27

R
ef

in
e

A
na

ly
si

s

Figure 5 Alignment of Acquisition, JCIDS, and Systems
Engineering Processes

These are the three, key, interrelated processes that play
roles in the timing and development of system requirements.

JCIDS products are based on analysis and outputs of

Capability-Based Assessment (CBA) which in turn are

supported by high-level, national, military, and joint

guidance, policy, and data. A CBA is composed of Functional

Area Analysis (FAA), Functional Needs Analysis (FNA), and

Functional Solutions Analysis (FSA). These three components

can be summarized respectively as providing answers to the

three questions: What is the military problem to be

studied? How well does DoD address the problem with its

current program? What should the DoD do to address any

shortfalls? (Joint Chiefs of Staff, J-8, 2006). The answers

to these questions comprise a validated user need.

Typically, an Initial Capabilities Document (ICD) is

developed based on results from the CBA. Per CJCSI

3170.01F, 2007) an ICD:

 28

Documents the requirement for a materiel or non-
materiel approach, or an approach that is a
combination of materiel and non-materiel, to
satisfy specific capability gap(s). It defines
the capability gap(s) in terms of the functional
area, the relevant range of military operations,
desired effects, time and doctrine, organization,
training, materiel, leadership and education,
personnel, and facilities (DOTMLPF) and policy
implications and constraints. The ICD summarizes
the results of the DOTMLPF and policy analysis
and the DOTMLPF approaches (materiel and non-
materiel) that may deliver the required
capability. The outcome of an ICD could be one or
more joint DCRs or capability development
documents. (p. GL-9)

Subsequently, additional requirements analysis and

refinement leads to development of a Capability Development

Document (CDD). The CDD defines authoritative, measurable,

and testable capabilities as a prerequisite for a Milestone

B (DoDI5000.02, 2008) decision allowing entry into the

System Development and Demonstration (SDD) program phase.

It provides the basis for development of a system design

(CJCSM 3170.01C, 2007).

The correlation of the CDD with the acquisition

process’ SDD indexes the JCIDS process to the acquisition

process. For the systems engineering process, logical index

points could be the functional baseline or the allocated

baseline, the points of initiation of preliminary design

and detailed design respectively. This study proposes that

the CDD could be indexed to either baseline or some

intermediate point, depending on the nature of the

requirement. For instance, many major DoN programs comprise

upgrades to existing systems. For ship programs, cruiser

modernization, i.e., “CG Modernization,” would be one

 29

example. In this case, functional allocation, at least at

the system or subsystem level, is preordained by the legacy

architecture. For “new design” programs such as Zumwalt

Class Destroyer, i.e., DDG-1000, a function such as

survivability could be allocated during the SDD phase to

(notionally) some combination of stealth technologies and

the ability of the ship to maintain seaworthiness if struck

by an adversary’s weapon. In the former case, the CDD would

be indexed closer to the allocated baseline. In the latter

case, the CDD would be indexed closer to the functional

baseline.

The Naval Systems Engineering Guide (2004)

incorporates JCIDS’ activities and outputs into a systems

engineering context. Three of the 33 normative processes

adapted from ANSI/EIA-632 (1999), are the most pertinent to

the JCIDS process. They are: “Acquirer Requirements,”

“Other Stakeholder Requirements,” and “System Technical

Requirements.” Details of inputs, activities, and outputs

from those processes can be found in the Naval Systems

Engineering Guide (2004).

D. JCIDS AND INTEGRATED ARCHITECTURES

Maier (2002) defines architecture as “The structure –

in terms of components, connections, and constraints – of a

product, process, or element.” The JCIDS process is

intended to utilize integrated architectures (CJCSI

3170.01F, 2007). The glossary in that document defines

integrated architectures as “…consisting of multiple views

or perspectives (operational view, systems view, and

technical standards view) that facilitates integration and

promotes interoperability across capabilities and among

 30

related integrated architectures.” So really, the term

integrated architectures refers to integration of views as

opposed to two or more separate architectures that have

been integrated into one architecture. The meaning of the

different views, simply stated, is the operational view

describes what a system does, the systems view describes

how a system performs, and the technical view comprises

applicable technical standards that constrain the solution.

Overall, the JCIDS instruction does not suggest how

integrated architectures should be used nor does it provide

any guidance regarding the expected level of detail, or the

information it might capture from the CBA or overarching

strategic guidance that flows down to a Joint Integrating

Concept (JIC), utilized in performing a CBA.

CJCSM 3170.01C (2007), in its guidelines and

procedures, both prescribes the use of existing

architectures to support CBA’s and suggests results of the

FSA can influence the future direction of integrated

architectures. So, there is the implication of an evolution

of integrated architectures that is interdependent with the

requirements, i.e., JCIDS, process.

To illustrate, architecture products specified by

CJCSM 3170.01C (2007) as required for an ICD comprise OV-1

and others if desired, while architecture products

specified as required for a CDD include AV-1, OV-1, OV-2,

OV-4, OV-5, OV-6C, SV-2, SV-4, SV-5, SV-6 and TV-1. These

products are defined in the DoD Architecture Framework

(2007). AV refers to All Views, OV refers to Operational

Views, SV refers to System Views, and TV refers to

Technical Views. OV’s correlate to operational

 31

requirements, SV’s correlate to system requirements, and

TV’s correlate to standards that constrain the design

solution, e.g., industry standards for data interfaces.

What is not explained in either JCIDS policy or the

Naval Systems Engineering Guide (2004) is the manner in

which architectures, as “a communication tool…presenting a

common set of information with multiple views” (Richards,

2007) can be used as a systems engineering tool, that is,

the concept of using architectures to organize, analyze,

and manage the data that comprises CBA inputs and outputs.

The importance of capturing and preserving the data is

recognized, but not the value of capturing and preserving

the interrelationships of the data, an essential element of

architectures.

E. JCIDS IMPLEMENTATION INSIGHTS

GAO Report GAO-08-1060, Defense Acquisitions; DoD’s

Requirements Determination Process Has not Been Effective

in Prioritizing Joint Capabilities (2008) concluded: “The

JCIDS process has not yet met its objective to identify and

prioritize warfighting needs from a joint capabilities

perspective.” The report goes on to say DoD lacks an

effective analytic framework to assess and prioritize

warfighting needs. The GAO report further cited poor inter-

service coordination and inadequate resources applied to

JCIDS analysis. The DoD partially concurred with the

framework finding and concurred with the resourcing

finding. Though use of architectures is not mentioned in

the report, architectures can in fact constitute a

framework for analysis, though the cross-domain, cross-

service architectural infrastructure currently in place is

 32

not adequate to support such analysis. A recent Rand

National Defense Institute Report (Gonzales, 2007) notes

“…DoD uses a bottom-up architectural development process.

This bottom-up approach can result in much duplication of

effort across the entire acquisition system and thus make

the development of a single, integrated architecture that

summarizes DoD interoperability requirements difficult to

achieve.”

The 2007 Rand report (Gonzales, 2007) also offers two

criticisms of JCIDS. First, it states that the JCIDS

processes and products are described ambiguously as are

their relationships with acquisition process products.

While ambiguity is apparent in some of the descriptions of

processes and products (e.g., one product being listed as

both an input and an output of an activity), it is noted

that the authors of the Rand paper, written at the

direction of the DoN, did not acknowledge or reference the

Naval Systems Engineering Guide (2004) or the CJCSI White

Paper (White paper on CBA, 2006). The former places the

JCIDS process in a systems engineering context, albeit not

a systems acquisition context, and the latter provides

significant insight on practical approaches to planning and

executing JCIDS analysis, based on experience. The second

criticism of the report (Gonzales, 2007) cites lack of

formal traceability from the source of a user need through

the JCIDS process to disposition.

A report by the Institute for Defense Analysis

(Hanley, 2006) was performed under contract to the

Director, Force Structure and Resources (J8), the Joint

Staff. The stated objective of the study documented by the

 33

report was to produce an analytic framework for

“capabilities-based planning” processes in the DoD. The

stated premise was that there are multiple, capabilities-

based planning processes in use, JCIDS being one, that are

not synchronized with one another. The report concludes

with a series of recommendations, including “next steps”

for taxonomies and data that notes a dichotomy between

analytical and taxonomic breadth, agility, and stability,

versus depth, complexity, and rigor. The report notes that

ease of implementation and holistic analysis favors the

former while analytical fidelity and valid insights favors

the latter. The report presents no conclusion on the

possibility of establishing a standardized capability

taxonomy that could serve all needs of all stakeholders.

F. CHAPTER SUMMARY

The JCIDS process, as incorporated into systems

engineering processes described in the Naval Systems

Engineering Guide (2004) offers the potential for a cross-

service requirements analysis and prioritization capability

necessary to truly implement capability-based acquisition.

It could also use architectures as an analytical and

management framework. However, research for this study

indicates the use of architectures in conjunction with

JCIDS, while prescribed, is not really explained in policy

or guidance, and to date, the Services’ approaches to

warfighting requirements continue to align to Service

perspective rather than a Joint perspective.

 34

THIS PAGE INTENTIONALLY LEFT BLANK

 35

IV. DOD ARCHITECTURE FRAMEWORK

A. INTRODUCTION

To define “architecture framework” first requires

differentiation of the term “architectures” from the term

“frameworks.” An architecture does not require a framework.

The definition of “architecture” cited in the DoD

Architecture Framework Version 1.5 (2007) is: “the

structure of components, their relationships, and the

principles and guidelines governing their design and

evolution over time.” Every existing system embodies an

architecture yet relatively few architectures of existing

systems were developed using an architecture framework.

Conversely, the term “frameworks” need not be related to

architectures as is evident from Webster’s II Dictionary

(1984) definition of the term: “a basic arrangement, form,

or system.” Rolf Siegers (2005) defined architecture

framework simply as “a resource that aids in the

development or description of an architecture.” Maier

(2004) asserts that an architecture framework exhibits one

or more of the following five characteristics:

1. A definition of the word “architecture”

2. A conceptual framework explaining key concepts or
terms

3. An approach to describing architectures

4. Architectural methods (e.g., creating, analyzing,
interpreting, realizing)

5. A theory of how architectures and architectural
descriptions fit into a larger context (e.g.,
systems engineering, design, etc.)

 36

Motivation to establish and implement architecture

frameworks can be characterized as either driven by

business considerations, technical considerations, or both.

An architecture framework used for enterprise product

development can for example facilitate shorter product

development cycles, lower manufacturing, support and

upgrade costs, and a reduced number of functionally

duplicative products. This can be explained by a

framework’s ability to make individual product

architectures comparable and integrable, facilitating

cross-product insights that would be difficult otherwise.

From a technical perspective, and for the same reasons

cited in the business perspective, products developed in

conformance with an architecture which is in turn developed

in conformance with an architecture framework potentially

exhibit a greater degree of interoperability, a simpler

logistics support infrastructure, and in systems of

systems, a greater ability to be reconfigured to adapt to

changes in mission needs. The DoD architecture framework

(2007) underlies DoD requirements, acquisition, and systems

engineering policy and guidance for both business and

technical reasons.

B. ORIGINS OF THE DOD ARCHITECTURE FRAMEWORK

According to a GAO report on Defense information

superiority, (1998) the DoD, as a result of communication

interoperability problems during the Viet Nam War, has been

trying since 1967 to establish some form of Department-wide

Command, Control, Communications, Computers, Intelligence,

Surveillance, and Reconnaissance (C4ISR) architecture. In

the intervening years through the early 1990’s, efforts to

 37

establish architecture frameworks for C4ISR continued, but

primarily at the Service level with the expectation but not

the requisite management structure that Joint

interoperability would follow. Continuing interoperability

issues during operations Urgent Fury, (Grenada, 1982), Just

Cause, (Panama, 1989-90), and Desert Shield/Desert Storm

(Kuwait, 1991) led to a concept documented in the Joint

Staff paper “C4I for the Warrior” (1992) and endorsed by

then-Chairman of the Joint Chiefs, Colin Powell. The paper

laid out near-term, mid-term, and long-term plans and

objectives to provide the battlefield commander “access to

all information needed to win in war…when, where, and how

he wants it.” The paper did not explicitly call for a DoD

architecture framework but discussion of utilizing “common

information exchange standards” and “migration from unique

military standards to commercial national and international

standards” showed intent to at least establish a standards-

based framework.

The Defense Information Systems Agency (DISA) in

October 1991 issued a set of Adopted Information Technology

Standards (AITS) as the DoD Technical Architecture

Framework (TAFIM) for Information Management, a technical

i.e., standards-based, architecture framework. The TAFIM

was in turn based on a National Institute of Standards and

Technology (NIST) product called the “Application

Portability Profile” (DoD Technical Architecture Framework,

1994). The Joint Technical Architecture (JTA) supplanted

the TAFIM which was cancelled in January, 2000. The JTA has

since been replaced by the current DoD IT Standards

Registry (DISR).

 38

The Deputy Secretary of Defense in October, 1995

directed an effort to improve processes to ensure adequate,

Joint C4I for warfighters. Under the direction of ASD(C3I)

the C4ISR Integrated Task Force was established, and

subordinate to the task force was the Integrated

Architectures Panel. That group undertook the task of

establishing an architecture framework based on three

architectural views: operational, systems, and technical.

The group incorporated substantial content from previous

and ongoing Joint and Service architecture efforts such as

TAFIM. The panel’s product, the C4ISR Architecture

Framework, Version 1.0, was approved on 7 June 1996.

Shortly thereafter, the C4ISR Architecture Working Group

was established to continue and build upon the work begun

by the Integrated Architecture Panel. The resulting product

was Version 2.0 of the C4ISR Architecture Framework,

approved on 18 December 1997.

C. EVOLUTION TO THE DOD ARCHITECTURE FRAMEWORK

The Clinger-Cohen Act of 1996 was intended to improve

acquisition management of Government Information Technology

(IT) systems. It established the term “National Security

System” to mean essentially IT-related defense systems, and

waived many of the provisions of the act for National

Security Systems. However, it did require establishment of

an Information Technology Architecture for National

Security Systems and responsibility for that was assigned

to the DoD Chief Information Officer (CIO). The term

“National Security System” was significantly more inclusive

than the term C4ISR. From this grew the more broadly-scoped

 39

DoD Architecture Framework, using Version 2.0 of the DoD

C4ISR Architecture Framework as a basis.

Under the auspices of the DoD Architecture Framework

Working Group, DoD Architecture Framework Version 1.0 was

approved on 15 August 2003. Significant changes relative to

DoD C4ISR Architecture Framework Version 2.0 included:

• Guidance provided to tailor product selection
based on the intended use of the architecture.

• Greater emphasis on the architecture data rather
than just architecture products.

• Content (techniques, processes, and examples) was
added to provide some explanation of architecture
development and use.

A revised DoD Architecture Framework, Version 1.5, was

approved on 23 April 2007. The Version 1.5 document notes

among significant changes, more emphasis on architecture

data rather than architecture products, introduction of the

concept of federated architectures, and incorporation of

the Core Architecture Data Model (CADM) as an integral

component of the DoDAF. It is noted that Version 1.0 of the

framework also asserted greater emphasis on architectural

data and also presented CADM as “the DoD standard

architecture data model for Framework-based architecture

data elements” (DoDAF Version 1.0, 2003) though in that

version, CADM compliance was not directive. This may be

explained by the fact that at the time of Version 1.0

issuance, the Defense Architecture Repository (DAR) which

requires CADM compliance, was still under development.

D. REQUIREMENTS TO USE THE DODAF

DoD policy, which requires use of integrated

architectures, flows down to DoN policy. In DoDD 5000.1

 40

(2003), integrated architectures are mentioned only in the

context of ensuring interoperability requirements are met.

There is no direct citation of the DoDAF as a reference or

requirement. DoDI 5000.2 (2008) also does not directly cite

the DoDAF as a reference or requirement. DoD 5000.2 (2008)

does stipulate “…The capability needs and acquisition

management systems shall use…integrated architectures…in an

integrated, collaborative process to define needed

capabilities to guide the development of affordable

systems” It further stipulates operational, systems, and

technical views, and the use of the DISR for selection of

standards. The primary emphasis regarding use of

architectures is on requirements validation and

interoperability, not as a vehicle for translating user

needs into system requirements.

SECNAVINST 5000.2D (2008) notes that the Defense

Acquisition Guidebook (DAG 2004) provides “…best practices

and lessons learned…” to augment DoDI 5000.2 (2008).

However, Chapter 4 of the guidebook, “Systems Engineering”

is silent on the use of integrated architectures and does

not list the DoDAF as a resource. Chapter 7 of the

guidebook “Acquiring Information Technology and National

Security Systems” does address the development and use of

DoDAF-compliant, integrated architectures and cites

specific architecture products required by policy. However,

the focus of Chapter 7 is on successful development of net-

centric systems. While net-centricity is a highly valued

attribute of emergent warfare systems, it is only one facet

of the overall set of requirements and therefore represents

only a portion of the requirements analysis process.

 41

DoDD 4630.5 (2004), Interoperability and

Supportability of Information Technology (IT) and National

Security Systems (NSS) and DoDI 4630.8 (2004), Procedures

for Interoperability and Supportability of Information

Technology (IT) and National Security Systems (NSS) provide

specific direction with regard to the development and use

of integrated architectures. DoDI 4630.8 (2004) notes

“Integrated architectures are the common foundation for

capability-focused, effects-based IT and NSS

interoperability and supportability processes…”.

SECNAV Instruction 5000.2D (2008) says about

integrated architectures: “All DoN new start IT systems,

including NSS, that exchange information with external

systems shall comply with NR KPP (Net Ready Key Performance

Parameters) and FORCEnet integrated architecture and other

elements of the FORCEnet Consolidated Compliance Checklist

(FCCC) guide as described by the CDD at program

initiation,” i.e., normally Milestone B. The Net-ready KPP

stipulation requires production of specific DoDAF-compliant

architecture products. The document also stipulates use of

a Systems Engineering Plan (SEP) and references OSD SEP

preparation guide, Version 2.01 (2008). SECNAVINST 5000.2D

(2008) states “SEP shall address development of a systems

architecture using the DoDAF, the FORCEnet integrated

architecture, and the Naval open architecture.”

The Naval Systems Engineering Guide (2004), based on

EIA 632 (1999), does not directly specify development or

use of DoDAF architecture products, though by inclusion of

the JCIDS process in the systems engineering process, ICDs,

CDDs and CPDs are included and so, by extension, are DoDAF

 42

architecture products. The Naval Systems Engineering Guide

(2006) takes a holistic, DOTMLPF, i.e., doctrine,

organization, training, materiel, leadership and education,

personnel, and facilities, perspective to systems

engineering. Interoperability requirements are not singled

out from the rest of systems engineering considerations as

they are in other DoD and DoN policy and guidance

previously discussed in this chapter.

E. DEMONSTRATED UTILITY AND VALUE OF DODAF

This section reviews and analyzes literature that

explains and summarizes application of the DoDAF and the

insights it provides or decisions it supports. It also

provides some overall characterization of the use of the

DoDAF, the reported benefits and shortcomings in content or

application, and the means by which practitioners have been

able to improve application of the DoDAF or the value it

provides. A substantial, systems engineering literature

search from five years ago to the present, and a selective

search of the last 10 years, did not identify significant

“case study” type literature reporting DoDAF successes.

This might be construed as evidence that among systems

engineering researchers and practitioners DoDAF success

stories are not widespread. A success story for the

purposes of this study would be defined as implementation

of DoDAF that results in improvement of the systems

engineering process, measureable in terms of cost or

schedule improvement or risk mitigation to a degree that

more than offsets the cost and time required to develop,

maintain, and utilize a DoDAF-compliant architecture.

 43

Although significant literature addressing specific

DODAF use and effectiveness was not found, a Microsoft

PowerPoint presentation from an OASD, NII-sponsored,

Government, DoD, and industry-wide survey (OASD (NII)

Architecture Survey, 2005) was found that characterized

DoDAF architecture usage in general, and summarized survey

comments pertaining to specific instances of DoDAF

application and the consequent value accrued. There were

120 respondents. Demographics of DoD architects were

presented, types of decisions enabled by DoDAF

architectures were identified, and DoDAF strengths,

weaknesses, and suggestions for improvement were presented.

A review of salient insights from that survey offers

insight on the “state of the practice” and practitioners’

beliefs of the value of DoDAF architectures.

Almost half of the architects were contractors, i.e.,

performing architecture work in support of Government

customers or Government contracts, half had one-to-five

years experience, and almost half worked on teams of one to

five. The most frequently used training source was tool

vendors, i.e., tools in the sense of software supporting

documentation and development of architectures. The

predominance of contractors as architects, the relative

inexperience of architects, and the bias toward small

architecture teams may be indicative of lack of commitment

to architecture development and use at the program level by

the Government, and a tendency for architects to learn how

to develop architectures through their own experience

instead of building on a knowledge base of others’

experience.

 44

Respondents represented 53 organizations and over 80

architecture projects. Almost 75% of respondents used

Telelogic’s “System Architect” tool. Telelogic’s web site

indicates more than 1000 commercial, government and

military users of their software product line world-wide.

The software product line includes System Architect as well

as other engineering tools. These figures lie in contrast

to the scarcity of case study literature. The numbers in

fact indicate architecture development is being conducted

on a fairly broad scale. One explanation of this contrast

is that development of DoDAF architecture products is

mandated for most DoD programs, yet they are often

developed in isolation of the system engineering process,

undermining much of the potential value of architectures

and therefore explaining why “success stories” are hard to

find. The survey did not address what the effect might be

if DoDAF architectures were developed solely at the

discretion of a program manager or chief systems engineer.

Some of the most interesting survey data derives from

answers to open-ended questions. Three questions in

particular provide insight on architects’ beliefs of the

utility and value of architectures:

• What values, Benefits, and Impacts are

attributable to their organization’s Use of
Architectures?

• What decisions are expected to be made based on
architecture analysis?

• What are your architecture Successes; where
architectures made a difference?

 45

In the context of the survey, key among listed values,

benefits, and impacts were: “Common frame of reference for

all manner of discussions and decision-making” and

“Supports decision-making and identification of issues.”

Both of those benefits correlate to the use of

architectures during the requirements definition process.

Among expected decisions supported, “…negotiate MOAs (i.e.,

Memoranda Of Agreement) and communicated requirements with

contractors and users” and “Identify capability gaps…report

capabilities based on requirements…prioritize projects” are

germane to this study. Some of the most significant,

architectural successes listed were those asserting that

architectures provided objective justification for initial

or continuation of funding for a project or program. That

suggests use of architectures to support the requirements

definition process, consistent with the intent of the JCIDS

process.

Survey respondents commented on DoDAF strengths and

weaknesses. Themes expressed in “strengths” were maturity,

wide acceptance as a standard, and the consequent ability

to compare and analyze architectures on a common basis.

Weaknesses expressed concerned both development and use of

architectures. With regard to development, there was

concern that in spite of the standardized structure of

DoDAF, there was too much variability in lexicon, taxonomy,

metadata and other attributes to allow integration or

comparison of architectures, above-mentioned strengths

notwithstanding. There was also concern that architectures

were not capability-focused, in other words, not inclusive

of the breadth of DOTMLPF. Finally, among significant

 46

weaknesses listed was lack of clear guidance and policy for

what to do with architectures that have been developed.

Russell (2005) notes:

…the output of most architecture efforts tends to
be a three ring binder that weighs five pounds or
so which no one ever reads. This has given a bad
name to the architecting process and has left
many decision makers asking why they spent their
limited money and time producing architectures.

F. NEXT STEPS IN THE EVOLUTION OF THE DODAF

Update of the DoDAF to Version 2.0 is being managed by

the Architecture and Interoperability Directorate, under

the Office of the DoD CIO. The organizational structure, as

presented by Mr. Brian Wilcynski of the DoD CIO is shown in

Figure 6 (Wilcynski, 2007).

Figure 6 DoDAF Development Organizational Structure, From
Wilcynski, 2007.

Development of this update to DoDAF Version 1.5 is ongoing.

 47

The vision statement for the DoDAF 2.0 is: “To enable

the development of architectures that are meaningful,

useful, and relevant to the DoD Requirements, Planning,

Budgeting, Systems Engineering, and Acquisition decision

processes” (Wilcynski, 2007). The stated (Wilcynski, 2007),

high-level areas of focus are:

• Focus on information requirements versus products
as in previous versions

• Be driven by decision process requirements

• Support DoD shift to service orientation of
architectures

• Support a federated enterprise architecture
approach

In terms of scope, six DoD processes the DoDAF is

intended to support are: JCIDS, Systems Engineering,

Operations, Portfolio Management, Program, Planning,

Budgeting, and Execution, and Defense Acquisition System.

As of April, 2008, requirements-gathering workshops had

been conducted in support of the first three of those

processes.

Publication of the DoDAF Version 2.0 is expected

before the end of Fiscal Year 2009. During development, a

series of plenary sessions is being held to keep the

architecture community in general apprized, and to solicit

feedback and comments. Briefs are provided at the working

group level: Data, Method, and Presentation, as shown in

Figure 5.

G. CHAPTER SUMMARY

In the introduction of this chapter, reference was

made to five attributes that could be used to characterize

 48

an architecture framework: An architecture definition, key

terms, an approach for describing architectures,

architectural methods, and where architectures fit in a

larger context (Maier, 2004). From the first standards-

based framework through the in-development DoDAF Version

2.0, those attributes capture both the intent of framework

development efforts and the continuing shortfalls. By

virtue of the fact that DoDAF use is embedded in DoN policy

and guidance, it is the standard for architectures in DoN.

However, considerable variation in DoDAF architecture

implementation is evident within the boundaries of DoDAF

compliance, such that architectures for different but

related systems in many cases cannot be effectively

compared or integrated. The current framework is necessary

but not sufficient to ensure the effective use of

architectures in acquisition and systems engineering. The

DoDAF Version 2.0 is intended to address some long-standing

shortcomings, but the framework is only one part of what

should be a multi-faceted approach to realizing the

potential of architectures in the systems engineering

process.

 49

V. INTEGRATING KEY PROCESSES WITH THE OVERALL
SYSTEMS ENGINEERING PROCESS

A. INTRODUCTION

Previous chapters discussed the systems engineering

process, the DoD requirements process, i.e., JCIDS, the DoD

architecture framework, and to a limited extent, the DoD

acquisition process. These processes in effect constitute a

complex system-of-systems. The objective of this study is

to examine the portions of the processes that relate to

translation of user needs to a comprehensive, unambiguous,

verifiable set of system requirements. This chapter

identifies the critical components for successful

requirements translation in a systems engineering context,

the necessary elements of a good system specification, and

considers how best to integrate necessary process

components that lie both inside and outside DoD systems

engineering process. Weaknesses in the current processes

and recommendations for improvement are identified and

involve both technical and managerial components. This

study is primarily focused on the technical aspect, though

key, high level management issues are recognized.

B. TRANSLATING USER NEEDS TO SYSTEM REQUIREMENTS

In its simplest form, a user need can be expressed in

a single requirement that embodies a set of requirements

clearly understood by the person receiving the requirement.

For example, if someone asks “Do you have a pencil I can

borrow?” that is an easily understood user need. The user

needs a pencil. Not stated, but understood with a

reasonable degree of certainty are the following: The user

 50

wants a pencil with a point on it, i.e., not broken. The

user wishes to use the pencil for some task and at the

completion of the task, will return the pencil. The user

does not particularly care whether the pencil is a

mechanical or “wooden” pencil. Does that leave any

uncertainty? Yes. Maybe the receiver of the request has

only a red marking pencil. In all likelihood, that person

will say “I’ve only got a red pencil. Is that OK?” At that

point, there has been a statement of user need and the

“developer” has communicated back to develop a more precise

understanding of the need. After all, the user may have

wanted a pencil only to scratch a spot in the middle of his

back, in which case the type of pencil and whether it had a

point is inconsequential. Nonetheless, “user” and

“developer” must communicate to ensure the product

satisfies the need. Communication must be in clear and

unambiguous terms. The developer either identifies a

solution that fully satisfies the user need, or a solution

is negotiated that provides a lesser, but acceptable

solution, or, the developer indicates there is no feasible

solution, i.e., no pencil or other implement of inscription

is available.

If the object of the example is changed from a pencil

to $500, immediately the requirements definition and

feasibility of a solution become more complex. How long

will the loan be for? Will it be interest-free? Can the

“user” be depended on to pay off the loan? Maybe the user

really doesn’t need $500 but is simply unaware of other

means of financing that would not require a large down-

payment. Maybe the intended use of the money is an

important factor. Is the money to pay for medicine for a

 51

sick child or to bet on horse-racing? Communications with

the user might break down if the user and developer cannot

reach a common understanding of the need. Thus, even this

trivial example can easily be made complex.

The previous example, though trivial in comparison

with typical DoN warfighting requirements, still embodies

some important principles and concepts. The user need can

usually be expressed singularly or in a very small number

of statements. Chief of Naval Operations Admiral Roughead’s

CNO Guidance (Roughead, 2008) at the top level, is simply:

“Build the Future Force, Maintain Warfighting Readiness,

and Develop and Support our Sailors, Navy Civilians, and

Families.” That is the CNO’s requirement.

The rest of the Navy’s operational requirements are

subordinate and should be traceable, noting that as

requirements are flowed down from the CNO guidance level to

the system requirement level, complexity increases by

orders of magnitude. Only in trivial cases will a statement

of user need be sufficiently comprehensive and complete to

fully define system requirements and establish a basis for

product development. As stated in Systems Engineering and

Analysis (Blanchard, 2006):

Accomplishing the needs analysis in a
satisfactory manner can best be realized through
a team approach involving the customer, the
ultimate consumer or user (if different from the
customer), the prime contractor or producer, and
major suppliers, as appropriate. The objective is
to ensure that the proper communications exist
between all parties involved in the process;
i.e., the ‘voice of the customer’ must be heard,
and the system developer(s) must respond
accordingly.

 52

There is a well-known and accepted systems engineering

model first documented in the U.S. by Forsberg and Mooz in

1991 (Forsberg, 1991), referred to as the “Vee” model,

shown in Figure 7. The process starts at the upper left

hand leg of the vee with “understanding customer

requirements” and progresses downward toward the bottom of

the vee through a process of decomposition and definition

from which system synthesis can begin. However, there can

be a step in the system engineering process that precedes

the beginning of the “Vee” model and is a process of

composition rather than decomposition.

Figure 7 Engineering Vee Model, From Blanchard, 2006.

System requirement development is a process of
decomposition. Synthesis of a solution is a process of
composition. The “Vee” Model illustrates the progressively
more detailed system requirements followed by the
aggregation and integration of solution elements.

 53

Mr. Michael Collins, president of Advantage

Development, Inc., in a presentation to the NDIA (Collins,

2008), asserted that engineering requires an “initial

point,” defined by him as “Engineerable Requirements: the

set of engineering requirements necessary and sufficient to

initiate the successful engineering and production of the

system.” He further argues that architecting is a means of

forming separate elements into a “coherent whole” that can

serve as that initial point. The concept of needs analysis

through a team-based series of communications described by

Blanchard (2006) can be combined with the architecture

process mentioned above to create a more rigorous,

assessable process to derive a set of system requirements

that tightly coupled to stated user needs.

The fundamental concept of translating user needs to

developer’s requirements, as well as where this step lies

in an overall systems engineering model have been

considered to this point at a high level of abstraction. In

order to characterize an actionable process however, more

detail is needed. For example: How are stakeholders

identified? How are user needs captured in a logical,

consistent manner? How is it known when this step is

complete and correct? How is this most critical step

performed with rigor and discipline? Recent systems

engineering literature offers some answers to these

questions. Bahill (1997) presents an overview of what he

terms the “requirements discovery process.” He asserts

“…there is a uniform and identifiable process for logically

discovering the system requirements regardless of system

purpose, size, or complexity,” and credits that belief to

other authors. The steps (Bahill 97) identifies are:

 54

Identify Customers and Stakeholders

1. Understand the Customer’s Needs

2. Define and State the Problem

3. Write System Requirements

4. Review Requirements with Customer

5. Define Figures of Merit

6. Validate System Requirements

7. Verify Requirements

8. Identify Technical Performance Measures (i.e.,
Key Performance Parameters in DoD parlance)

9. Continue to review requirements with the customer
throughout the development process.

This study is primarily concerned with steps “1”

through “7.” The first step, identifying customers and

stakeholders, is sometimes discussed superficially in

general systems engineering texts, simply saying it is very

important. The terms “customer” and “stakeholder” are

closely related. Bahill (1997) defines a customer as

“…anyone who has a right to impose requirements on a

system.” Carson (2004) defines a stakeholder as “…anyone or

any organization involved with or affected by the system

lifecycle…”. The group defined by the former, more

restrictive definition can be considered a subset of the

group defined by the latter definition. That is, all who

have a right to impose requirements on a system presumably

are affected by the system, but not all those who are

affected by the system have a right to impose requirements.

To illustrate, consider in light of Bahill’s (1997)

definition of customer, the following example of a failed

system from Bahill (2005): Management at Ford in the 1950’s

 55

overrode marketing recommendations and imposed requirements

resulting in the Edsel automobile, an automobile without a

market, and therefore a failed design. By Bahill’s

definition, management acted as a customer while marketing

did not. Management withheld from marketing the right to

impose requirements, leaving marketing as a stakeholder but

not a customer. Management failed to recognize marketing’s

role as a representative for the end customer, those who

would or would not buy the automobile. Next, consider

Carson’s (2004) definition of stakeholder. He specifically

identifies and includes “nature” and those not allowed to

approve requirements as stakeholders. Those categories

would not fit Bahill’s customer definition, but Carson is

suggesting those members of the larger stakeholder set

should be treated as customers; their requirements should

be considered. In his view, someone must play the role of

spokesperson for those stakeholders.

An example of failure to engage stakeholders was

evident in a 2001 FBI project, a three year development

contract to upgrade the Federal Bureau of Investigation’s

(FBI’s) IT infrastructure and to design what was called the

“Virtual Case File” which would allow the FBI to move from

its antiquated paper-based investigation and records to

computer-based investigation and records. A National

Research Council letter report (McGroddy, 2004) provided a

status of the project and concluded in part: "In essence,

the FBI has left the task of defining and identifying its

essential operational processes and its IT concept of

operations to outsiders." The software-based system lacked

some essential capabilities. It appeared that among other

issues the FBI used contractors as FBI stakeholders, not

 56

agency stakeholders themselves. The system developer in

turn may not have exercised due diligence in validating the

requirements. The program, nominally a $170M program, was

cancelled and begun over with a new development contractor,

eventually costing an additional two times the original

program cost.

Carson (2004) suggests identifying stakeholders

through a process of examining the system in its

environment through all parts of its life cycle,

development to disposal. For U.S. Navy warfare systems, it

should be possible to establish a standard “menu” of

stakeholders, though consideration should be given to any

possible emergent stakeholders, particularly in the public

domain. For instance, a requirement for a nuclear power

plant on a ship will affect where a ship can be home-

ported. The community adjacent to the proposed home port

becomes a stakeholder. Or, if it was known that a ship

would ultimately become an artificial reef (i.e. wildlife

management or tourism stakeholder), consideration might be

given in its design to ease its preparation for that final

role. The associated state department of natural resources

might be a stakeholder.

The developer’s understanding of customer needs is

also critical and depends on effective, iterative,

communication between customer and developer utilizing

commonly agreed-upon semantics. This process of

communication, translation, and negotiation merits further

discussion. One component of the process is establishing a

framework of requirements, e.g., hierarchy and categories.

 57

Among the ways to categorize requirements, one is

differentiating functional requirements from non-functional

requirements. Functional requirements represent something

the system must do. Non-functional requirements typically

represent how well the system must do something. Among non-

functional requirements, some pertain to one or a limited

number of functions and others are overarching, such as

satisfying operator safety standards.

There are several, well-documented methods of

capturing user requirements in a manner that provides some

assurance of completeness and correctness; Carson, (2004)

summarizes them. They include checklist approaches, Quality

Function Deployment-type approaches, use case and other

functional analysis, series of reviews, and “context

analysis,” the primary topic of that paper. Each has

strengths and weaknesses and each is likely to be

effective, depending on the application. One method stands

out as being fundamentally different: Use cases. Use cases

have the ability to capture the required functional

behavior of a system; the other methods generally result in

“shall” statements.” Defining required behavior with “shall

statements” can be cumbersome and lacking in context.

However, use cases alone will not capture all requirements.

Daniels (2005) has suggested a hybrid approach that

augments use cases to provide a comprehensive set of

requirements, and uses shall-type (i.e., plain language)

requirements to add detail missing from use cases.

The hybrid approach appears both sound and robust,

giving consideration to both the effective communication

element of translating user needs into system requirements

 58

as well as the need for comprehensive requirements that

capture the required behavior of a system, i.e., what the

system has to do under conditions of use. Furthermore, this

approach supports the use of architectures as a vehicle to

communicate and reconcile user needs into system

requirements. Daniels (2005) recognizes both the need for

capturing a complex set of requirements in its entirety, as

well as communicating requirements between user and

developer in terms both understand. That is a strength of

architectures, when applied properly. Cole (2006) asserts:

The complexity of the SoS environment makes it
difficult (if not impossible) to describe the
problem with requirements alone. Architectures is
a critical aspect of describing the problem,
especially when user needs, technologies,
organizational dynamics and external interfaces
are continuously changing.

Cole (2006) focuses on the system engineering

complexities that accompany systems-of-systems (SoS)

development. While SoS is not the focus of this study,

practically all non-trivial, Naval warfare system, systems

engineering problems are SoS problems. In other words, U.S.

Navy warfare systems are rarely standalone systems. They

are part of or directly interact with other systems.

Operational and systems architectures are implicit if not

explicit.

Schindel (2005) discusses requirements statements as

transfer functions and describes the necessary roles of

“requirements prose” engineering models in describing

complex systems, again reinforcing the idea that models,

i.e., architectures, and prose, i.e., shall statements,

 59

must be used together to describe a set of requirements and

communicate those requirements between user and developer.

Referring back to Bahill’s (1997) 10 steps to

translate user needs into system requirements, the last six

steps all contribute to ensuring completeness and

correctness of the requirements. Discussion to this point

has focused on requirements capture, essentially the first

four steps, recognizing opportunities exist after that

point to update or correct requirements. Determination of

requirements completeness and correctness is the objective

of validation and verification processes. Bahill (1997)

described validation as ensuring requirements are

consistent with one another, that a feasible solution

exists, and that it can be demonstrated that the system

fulfills its requirements. He describes requirements

verification as determination that a requirement has been

met, using testing, examination, or analytical methods.

Requirements validation and verification are necessary but

may not be sufficient to ensure requirements completeness.

Validation and verification processes operate only on those

requirements that have been recorded. Although validation

and verification may lead to discovery of “missing”

requirements, it is not assured.

Procedures exist to review requirements for

completeness and correctness. Carson’s (2004) objective was

to “Develop and validate a methodology that can produce a

complete set of requirements and that can determine the

completeness of a set of requirements.” Note that in this

case, completeness is defined to include correctness. That

is, if requirements are complete, they are correct. Carson

 60

(2004) cites Mar (1994) when listing the following five

characteristics of requirements completeness. Mar (1994)

notes that among those five, numbers “1” and “3” are

hardest to ensure:

1. All categories of requirements are addressed

2. All impositions of higher level requirements are
accounted for

3. All scenarios and states are recognized and
described

4. All assumptions are documented

5. Requirements are understandable and unambiguous

Carson (2004) also identifies two requirements cases:

Those that do not inherit higher level requirements and

those for which a complete set of requirements can be

derived from higher level requirements. Typically, Naval

warfare system requirements represent a third, hybrid case.

In all cases there will be higher level requirements

levied, but some higher level requirements cannot be

decomposed or allocated in such a way that all lower level

requirements can be unambiguously shown to support the

higher level requirement. This precludes the use of

allocation and traceability for determining completeness.

For example, a ship’s signature, e.g., radar, acoustic, IR,

etc., a ship’s electronic countermeasure capability, a

ship’s ability to withstand weapon strikes, and a ship’s

missile and torpedo weaponry all affect a ship’s self-

defense capability. But, even at the “ship self-defense”

level of abstraction, it may not be possible to

quantitatively trace lower level requirements upward due to

limitations in modeling. In this case, determination of

 61

requirements completeness may have to be conducted in the

manner the manner of Carson’s (2004) first case; as if

higher level requirements are not inherited.

Carson (2004) focuses on the instance where higher

level requirements are not inherited and suggests a set of

requirements is complete if all stakeholders approve the

requirements. His assertion is if all stakeholders are

identified, approval of the requirements assures

requirements completeness. This leads back to the issue of

communication and understanding. What constitutes a

stakeholder review? How can a stakeholder be assured his

judgment to approve a set of requirements is well-founded?

Carson offers a “formal approach to completeness,” the

details of which are beyond the scope of this study.

However it is important to note this approach incorporates

requirements modeling and requirements prose as previously

discussed. His approach also adds the stipulation that

pragmatically, only a subset of the entirety of

combinations of interface behavior and conditions can be

analyzed. Those sets of conditions that do not affect

required behavior are set aside.

Thus, an argument is made that for Naval Warfare

systems, methods exist to translate user needs to system

requirements utilizing models requirements and architecture

models and plain language, and, that methods exist to

ascertain completeness of system requirements. The

scalability of this approach has not been shown and the

specific models or the basis for selecting models has not

been addressed. There have been instances where modeling of

requirements was used to generate prose requirements,

 62

therefore assuring consistency between the two. Next, this

hybrid, model and prose type of approach will be compared

with DoD and DoN policy and guidance to determine the

viability, practicality, and issues that would be

associated with employing this approach in a DoN context.

C. TRANSLATION OF USER NEEDS IN THE CONTEXT OF DON POLICY
AND GUIDANCE

In the previous section, a high-level procedural basis

for translating user needs into a complete set of system

requirements was described. Requirements completeness

across the DOTMLPF spectrum, analytical rigor, and

effective communications between the user and the developer

were emphasized. In this section, the JCIDS process and the

DoN requirements definition process (Naval Systems

Engineering Guide, 2004) are examined to assess the extent

to which they facilitate translation of user need to system

requirements in the manner described in the previous

section.

A complete statement of user need should contain, or

reference, the following:

1. Traceability of the user need to higher level

requirements (e.g., CNO guidance) and Joint
warfighting taxonomy (i.e. JOCs).

2. Definition of concept of operation for the system

3. Operational conditions for the system;
environmental, threat, and other

4. Definition of the architecture within which the
system must operate.

 63

Functional Area Analysis (FAA), part of the JCIDS

Capability-Based Assessment, is described in CJCSM 3170.01B

(2007) in the following manner:

… identifies the mission area or military problem
to be assessed, the concepts to be examined, the
timeframe in which the problem is being assessed,
and the scope of the assessment. …The FAA
describes the relevant objectives and CONOPs or
concepts, and lists the relevant effects to be
generated. Since a capability is the ability to
generate an effect, the FAA connects capabilities
to the defense strategy via objectives, concepts,
and CONOPs.

The White Paper on CBA (2006) also notes the

importance of scenario selection as part of the Capability

Based Assessment (CBA) to provide a range of enemies,

environments, and access challenges. Therefore, FAA

addresses high-level requirements traceability, CONOPS and

operational conditions, but not architecture.

Subsequently, Functional Needs Analysis (FNA) and

Functional Solutions Analysis (FSA) assess current

capabilities, determine whether gaps exist, and develop

potential approaches to resolve identified capability gaps.

The White Paper on CBA (2006) notes in reference to the

entirety of JCIDS analysis:

Architectures are useful (and probably essential)
once you have decided what to do, as they provide
a framework to help determine how to do it. JCIDS
capability assessments, however, tend to be
concerned more with what to do…

This statement is inconsistent with a statement made

later in the same document: “Your statement of needs has to

be tempered by rough feasibility, cost, and schedule

estimates, and you have to have some idea of what the DoD

 64

is willing to tolerate for additional investments in your

areas.” This statement indirectly suggests architectures

are needed during the JCIDS process, as they provide

constraints, conditions, interfaces and other information

that are important in the development of feasible,

potential approaches to address capability gaps.

Following the statement of user need, effective,

iterative communication between the user and developer is

needed to successfully evolve the user need into a compete

set of system requirements. The next consideration then, is

whether the JCIDS process facilitates this dialog, taking

into account the volume and complexity of the information

being exchanged and the differences between user and

developer lexicons. JCIDS analyses are typically based on a

number of different and changing requirements documents and

analytical databases. While the prescribed structure of

JCIDS-required analytical artifacts embodies some rigor in

terminology, content, and underlying requirements, there is

no data structure required that would maintain data

relationships, data currency, or data source and

credibility. Architectures based on a standard framework,

e.g., DoDAF, could serve this function. DoD and DoN policy

and guidance do not preclude it, but neither do they

prescribe it.

The development of system requirements is part of the

Navy Systems Engineering Guide (2006) “Requirements

Definition Process” and its three sub-processes: “Acquirer

Requirements,” “Other Stakeholder Requirements,” and

“System Technical Requirements.” The primary product of

this portion of the systems engineering process is a System

 65

Requirements Document (SRD). This process can also be

indexed in a generic systems engineering sense to the

“conceptual design phase” (Blanchard, 2006) whose output is

a system specification or “A spec.”

Before examining the adequacy of DoD/DoN policy and

guidance for development of system requirements, a brief

discussion of the term “system requirements” is warranted.

SECNAV Instruction 5002.D (2008) refers to a “System Design

Specification” and describes it as flowing down from the

Capability Development Document and providing basic

functional requirements as well as major program

requirements of the preferred solution alternative.

SECNAVINST 5000.2D (2008) is DoN acquisition policy. The

Navy Systems Engineering Guide (2006) uses the term “System

Requirements Document,” noting that it evolves into a

system specification. In the guide, the tasks necessary to

produce a System Requirements Document and its content are

described. The guide is based on EIA 632 (1999).

Other policy and guidance documents use various terms

for specifications and requirements, some well defined,

e.g., DoD-Std-961E, and others not. The IEEE Guide for

Developing System Requirements Specifications (IEEE Std

1233, 1998) is noteworthy for several reasons. First, it

provides definitions for terms which comprise the metadata

for requirements and specifications. Many of those terms

are linked to their own IEEE standards. Understanding and

agreement between user and developer on the metadata and

their definitions, is a prerequisite to users and

developers being able to successfully communicate about a

specific set of system requirements. Second, IEEE Std 1233

 66

(1998) specifically recognizes the importance and challenge

of communicating requirements between user and developer.

Specifically:

A System Requirements Specification (SRS) has
traditionally been viewed as a document that
communicates the requirements of the customer to
the technical community who will specify and
build the system. The collection of requirements
that constitutes the specification and its
representation acts as the bridge between the two
groups and must be understandable by both the
customer and the technical community. One of the
most difficult tasks in the creation of a system
is that of communicating to all of the subgroups
within both groups, especially in one document.
This type of communication generally requires
different formalisms and languages.

Finally, while IEEE Std 1233 (1998) provides detailed

guidance for developing system requirements specifications,

it does not prescribe an industry-wide specification

standard. It states: “This guide is written under the

premise that the current state of the art of system

development does not warrant or support a formal standards

document.” Experience has shown and research supports the

difficulty of creating specific templates for requirements

and specification types. The recursive and iterative nature

of the engineering development process leads to a continuum

of specification and requirement types. Unfortunately this

causes difficulty when trying to synchronize requirements,

acquisition, and systems engineering processes.

Returning to the question of adequacy of policy and

guidance for development of system requirements, (Naval

Systems Engineering Guide, 2004) does provide the following

details for each of the three previously discussed sub-

 67

processes which comprise the Requirements Definition

Process: Preceding Processes, Inputs, Entry Criteria,

Tasks, Outputs, Exit Criteria, Next Processes, Agents,

Tools, References, and Metrics and Measures. In many cases,

details are found in other, cross-referenced (Naval Systems

Engineering Guide, 2004) processes or appendices. However,

as with JCIDS, there is no guidance for organizing or

managing the metadata or data which comprise the

requirements, use of tools or models, or translating

between models and prose-based documents. IEEE Std 1233

(1998), while it does not address the use of architectures,

provides substantial guidance on approaches to development

and management of system requirements between user and

developer communities. DoD and DoN guidance lack this

detail.

D. CHAPTER SUMMARY

DoD and DoN requirements, acquisition, and systems

engineering processes and associated guidance and standards

comprise a substantial amount of interrelated data, even

when limited to discussion of requirements development as

in this study. Research performed for this study has

revealed semantic inconsistencies and ambiguities as well

as a multiplicity of system engineering processes, guidance

and standards. It is difficult to trace data and process

relationships in a systems engineering context. As a

consequence it is difficult to rigorously and unambiguously

identify a user need and translate it into a comprehensive

and complete set of system requirements. Just the lack of

specificity of roles and accountability for each of the

 68

necessary activities in the requirements translation

process represents a significant challenge for successful

requirements development.

 69

VI. APPLICATION TO NAVAL WARFARE SYSTEMS

A. INTRODUCTION

The premise for this study is the assertion that for

Naval warfare systems, the process of translation of user

needs to system requirements is not sufficiently rigorous

and repeatable to ensure consistently complete and valid

system requirements. This results in significant increases

to program cost, schedule and risk as requirements issues

are resolved later in development. Support for this

assertion is found in a recent Government Accounting Office

Report (GAO-08-782T, 2008):

At the strategic level, DOD does not prioritize
weapon system investments and the department’s
processes for matching warfighter needs with
resources are fragmented and broken. Furthermore,
the requirements and acquisition processes are
not agile enough to support programs that can
meet current operational requirements. At the
program level, programs are started without
knowing what resources will truly be needed and
are managed with lower levels of product
knowledge at critical junctures than expected
under best practices standards. In the absence of
such knowledge, managers rely heavily on
assumptions about system requirements,
technology, and design maturity, which are
consistently too optimistic. This exposes
programs to significant and unnecessary
technology, design, and production risks, and
ultimately damaging cost growth and schedule
delays.

Previous chapters discussed DoN requirements and

systems engineering processes, suggested system

architectures are under-utilized as a means of facilitating

and integrating those processes, and described conceptually

 70

how and when architectures should be used and the benefits

that would accrue from their use. This chapter provides a

discussion of the use of architectures with consideration

for typical constraints and characteristics of warfare

systems employed by U.S. Navy surface combatants, e.g.,

cruisers and destroyers.

B. CHARACTERIZATION OF U.S. NAVY SURFACE WARFARE SYSTEMS

Current warfare system development efforts for surface

combatants are predominantly modifications, i.e.,

evolutions of existing systems. Even the warfare systems

being developed for the DDG 1000, Zumwalt class destroyer

will be predominantly evolutionary. The following

illustrates the degree to which the Navy will be using

currently fielded systems for many years to come.

There are currently 62, DDG 51, Arleigh Burke class

destroyers either in the Fleet, under construction, or

under contract. The earliest any of those ships is planned

for decommissioning is 2026. Of the 22 (of 27 constructed)

Ticonderoga class cruisers remaining in commission, none is

planned for decommissioning before 2026. Currently, only

three Zumwalt class destroyers are planned. A follow-on

cruiser requirement i.e., CGX, is underway but has not

reached Milestone B, the point at which it becomes an

acquisition program.

In addition to the length of time current ship classes

will continue to form the backbone of the surface fleet,

the time required to modernize a ship class is

considerable. The time required for construction of a

cruiser/destroyer and the annual production rate promotes

significant configuration differences among ships from

 71

oldest to newest. This adds further complexity to upgrade

plans. Cruiser and destroyer modernization programs already

underway, during which warfare systems will be upgraded,

will span over 20 years from the first ship modernized to

the last.

The Navy’s current investment in surface combatant

warfare systems, the cycle time for development and

deployment, and the number of systems with which it must

interoperate has created a type of system “inertia” and

infrastructure that significantly constrains and adds

complexity to warfare system development. Further

constraints are applied by requirements for Joint and

coalition-level interoperability. This stands in dramatic

contrast to average, commercial product development and

life cycle times.

The Apple iPod began development in February 2001,

starting with a partially-developed design from another

company, and was brought to market during the Christmas

season the same year. Subsequently, new generations of

iPods have been released almost annually.

Another study in contrast to commercial product

development is cell phones. According to an Environmental

Protection Agency brochure (2005), cell phones are used for

only 18 months on average before being discarded. iPODs and

cell phones are orders of magnitude simpler in design and

integration relative to typical DoN warfare systems, but

some of the commercial technologies they incorporate are

representative of those sought after in DoN warfare

systems.

 72

In spite of the Navy’s overall, long product

development cycle and longer product life cycle, warfare

systems employ significant amounts of commercially-based

computer hardware and software that follow shorter,

commercial product cycles. The Navy’s need to take

advantage of rapidly evolving computer technology within a

more slowly evolving warfare system, within slower-still

platform (i.e., surface combatant) development, adds

further to product development complexity.

The dynamic nature of warfare capability requirements

adds yet another dimension of complexity. Requirements are

reviewed and changes are made at least every two years and

often more frequently. The pattern of incremental

improvements to capability over time together with periodic

requirements changes form a metaphorical moving target.

C. TOP-DOWN REQUIREMENTS DEVELOPMENT

Integrated Air and Missile Defense (IAMD), an example

of required U.S. Navy capability, exists in the Fleet

today. The DoN Enterprise Architecture Hierarchy (2008) is

consistent with and maps to the DoD Enterprise

Architecture. The DoN IAMD capability component flows down

as follows: Force Protection, to Sea Shield, to Joint

Protection, to Protect Against Conventional Weapons, to

Integrated Air and Missile Defense. IAMD for surface

combatants is predominantly performed by radar (i.e.,

detect), a command and decision (C&D) system (i.e.,

control) and missiles (i.e., engage).

Establishment of a Fleet need for a new or improved

combat C&D system can be initiated via dissemination of

Fleets’ prioritized operational needs and validation by the

 73

JCIDS process. To validate the requirement, the operational

need should be traced from high level documents starting

with the President’s National Security Strategy (2006) and

flowing down to the National Defense Strategy (2008) which

“informs” the National Military Strategy (2004). While

these requirements documents are hierarchical, some others

are complementary rather than hierarchical. The following

paragraphs discuss some aspects of these key, policy

documents.

Nine essential tasks comprise The National Security

Strategy (2006). Some, such as “Champion Aspirations for

Human Dignity” do not substantially involve military

capability. Others such as “Work with Others to Defuse

Regional Conflicts” clearly involve military capability.

However, most should be expected to involve multi-

dimensional solutions, involving military capability,

diplomacy, and politics. Use of military force is

typically, though not always, employed as a course of last

resort when objectives cannot be achieved by non-military

means. Therefore, while it is possible to map National

Defense Strategy (2008) objectives (i.e., Defend the

Homeland, Win the Long War, Promote Security, Deter

Conflict, and Win our Nation’s Wars) to the National

Security Strategy, it is only abstractly possible to

decompose the National Security Strategy into the National

Defense Strategy. From a requirements analysis standpoint,

it is more useful to begin requirements flow-down from the

National Defense Strategy.

Examination of the National Defense Strategy (2008)

does reveal a linkage to the National Security Strategy

 74

(2006). But, it also illustrates that even within the

Defense strategy, the types of capabilities and the levels

of capabilities necessary to achieve objectives cannot be

derived from those documents. In other words, they are

functional statements of user need. From the National

Defense Strategy: “We will work with and through like-

minded states to help shrink the ungoverned areas of the

world and thereby deny extremists and other hostile parties

sanctuary.” Also: “…arguably the most important military

component of the struggle against violent extremists is not

the fighting we do ourselves, but how well we help prepare

our partners to defend and govern themselves.”

The National Military Strategy (2004):

…provides focus for military activities by
defining a set of interrelated military
objectives and joint operating concepts from
which the Service Chiefs and combatant commanders
identify desired capabilities and against which
the Chairman of the Joint Chiefs of Staff
assesses risk.

The National Military Strategy (2004) establishes

three objectives that support the National Defense

Strategy: Protect the United States, prevent conflict and

surprise attack, and prevail against adversaries. Related

Joint Operating Concepts (JOCs) describe how the Joint

Force conducts missions and supports the Joint Functional

Concepts of: Force application, protection, focused

logistics, battlespace awareness, and command and control.

Note that “Force Protection” is the top tier capability

discussed in the requirements flow-down to IAMD.

Realization of IAMD capability requires a system of

systems. It cannot deliver required warfighting capability

 75

without its constituent systems. Furthermore, the system of

systems exists operationally as parts of surface combatant

platforms. When mapping between required capability and

supporting systems, many-to-one and one-to-many

relationships are revealed.

Consider the basis for initiation of a Fleet

requirement for a new or upgraded combat C&D system.

Capability shortfalls when mapped to functions can run the

gamut of DOTMLPF. Obsolescence or reliability issues might

exist; or, old or proprietary software may not be

maintainable. Training may require high-cost, specialized

equipment. Issues of this nature can be expressed in terms

of either cost of ownership or system availability. If no

performance improvements are warranted, the user

requirement can be expressed in terms of reducing cost of

ownership and increasing availability. This illustrates the

point that user needs do not necessarily translate into

requirements for system development, i.e., a materiel

solution.

However, performance improvement may be required. For

example processor speed or the computing architecture might

not support the level of performance needed for the

projected threat environment. Or, the current C&D, or

combat system as a whole, may not be designed to counter an

emergent threat, for instance small, high-speed craft,

e.g., Rubber Inflatable Boats. Though improving processing

speed might be one solution, improvements to detection or

weapon systems as well as changes to doctrine might also

 76

provide viable solutions. There is significant tradeoff

analysis required to determine which requirements comprise

the trade space.

A Fleet requirement as initially expressed may in some

cases convey an implicit or explicit solution. In other

cases, there may be only a generalized statement of

operational need. In either case, for complex systems and

systems-of-systems, use of some analytical methodology can

help ensure:

• The system is properly defined (e.g., bounded)

• The trade space is properly defined

• Fleet requirements are posed in a “what” form
versus a “how” form, i.e., the requirement should
not contain the solution.

• All significant aspects of the system, i.e.,
DOTMLPF, its environment, and systems it
interoperates with are considered.

A requirements model or combination of models should

be used to support requirements development, and both

direct and indirect requirements imposed by legacy systems

must be captured in a comparable form.

Any U.S. Navy warfare system being considered for

development or improvement must be integrated into existing

architectures, whether or not those architectures are well

documented. So, to some degree an architecture is imposed

on a proposed system long before a solution, i.e., design,

is conceived. Even for an unprecedented system on an

unprecedented platform, the sailors who man the ship,

environmental and navigations standards, the weapons, the

communications networks, and other interoperating platforms

 77

comprise an architecture into which the new system must

fit. If the architecture is undocumented, it is incumbent

upon the system developer to ensure accurate documentation

is produced. If the architecture is documented, the

adequacy must be assessed and any shortfalls addressed.

Different approaches exist to model requirements. In

choosing an approach, two key questions are: Will the

model(s) used result in a complete requirement’s set? That

is, does the model fully and accurately describe all

behaviors of the system? These questions are particularly

critical to DoN warfare systems considering the array of

threats, operating environments, modes of operation, and

the speed with which combat operations are conducted.

Often, a ship’s required response to a threat is measured

in seconds.

Use case modeling is frequently used as the basis for

architecture development, particularly for software-

intensive systems, as exemplified by U.S. Navy warfare

systems. On this subject, Daniels (2005) speaks to the

first question above: Will the chosen approach capture all

requirements? His assertion is that in spite of the

popularity and utility of use cases as a basis for

customer-developer communications and the resultant system

requirements set, there are shortcomings including the fact

that use cases do not contain all of the requirements. He

notes: “To keep use cases simple, readable, and manageable,

they can only tell a fraction of the complete story without

becoming unwieldy and difficult to understand.” He proposes

combining a use case approach with a more traditional

specification of “shall statements,” a natural language-

 78

based model. Shall statements can add detail to and

complement use cases and are better suited for capturing

non-functional requirements such as how well a system must

do something versus simply what a system must do.

Hatley (1987) presents a system requirements

development process that views a system from process and

control aspects. The process component of the model shows

what functions the system must perform. The control

component describes the circumstances under which the

function will be performed. The author suggests the use of

“data flow diagrams” (DFDs) and “process specifications”

(PSPECs) for modeling processing and “control flow

diagrams” (CFDs) and “control specifications” (CSPECs) to

model system control.

A simple example to illustrate the importance of

modeling system control processes is the automated checkout

stations in grocery and other retail stores. There are a

number of such systems in use but they perform mostly the

same functions. Data is taken from the customer (e.g.,

selection of language, telephone number or zip code, etc.),

instruction is given to scan items, then the customer is

prompted to select a method of payment and follow a series

of steps to complete the transaction. The data flow is not

particularly complex. However, the systems have subtle

timing and sequencing controls. If an item is laid in the

wrong area before scanning, the process will not proceed.

If a scanned item sits too long without being moved to the

bagging area, scanning cannot proceed. If one’s telephone

 79

number (possibly a basis for product discounts) is not

entered when prompted at the beginning of the process, that

opportunity is lost.

Implicit in the design of the self-check-out system

are expectations of customer behavior (e.g., how long will

it take for a customer to bag an item) and constraints on

customer behavior (e.g., certain timing or sequences of

actions may be indicative of attempts to pilfer and are

therefore not allowed). The success with which these

requirements are modeled directly affects customer

throughput, customer satisfaction, and likely the rate of

pilferage, so it is clearly an important aspect of the

system requirements. U.S. Navy warfare systems have

extensive timing and sequence dependencies in order to

ensure safe and effective operation.

D. REQUIREMENTS AND ARCHITECTURE DEVELOPMENT PROCESS
EXAMPLE

The U.S. Navy’s next generation cruiser is currently

designated “CGX.” Among its required capabilities is IAMD.

A much-simplified decomposition of this capability is a

sequence of three processes: detect, control, and engage.

Incoming threats are sensed, a decision is made on how best

to prosecute the target, and then weapons are utilized to

defeat the threat. A similar process model is the “Observe,

Orient, Detect, Act” or “OODA loop” model conceived by USAF

Colonel John Boyd (Fein, 2003) to describe the air-to-air

combat process. These functional models describe what a

system has to do. A complete specification of user need

would include what the system must do, e.g., detect-

 80

control-engage, how well it must perform e.g., Probability

of Raid Annihilation, and what constraints are imposed,

e.g., open architecture design.

This example facilitates discussion of key aspects of

requirements and architecture development. The objectives

of the example are:

• Show how requirements can be captured and

organized with a structured process that
facilitates completeness as well as understanding
by both user and developer

• Show how requirements and architecture models
facilitate integration of a developmental
system’s requirements with those of legacy
systems with which it interoperates.

The approach used combines aspects of a hybrid

approach described in Daniels (2005) with the Process for

System Architecture and Requirements Engineering (PSARE),

(Hatley, 2000). It is primarily the PSARE process, but

plain language use cases are employed as the means of

initial requirements collection due to their ability to

facilitate effective communication between user and

developer. Daniel’s suggestion to incorporate plain

language requirements with linkages to requirements models

is also adopted.

1. Process for System Architecture and Requirements
Engineering (PSARE)

Hatley (1987) describes a formal process for

development of system specifications that utilizes

requirements and architecture models that are consistent

with one another. Though Hatley only refers to one of the

 81

models as an architecture model, the two models can be

considered as two views of a system architecture. The

requirements model represents the operational view and the

architecture model represents the systems view. The PSARE

is applicable to both hardware and software, is

specifically applicable to real-time systems, and can

facilitate development of DoN-mandated DoDAF products.

Table 1 summarizes features and benefits.

Table 1 PSARE Features and Benefits, From Haggerty, 2008.

This table captures attributes of PSARE that make it widely
applicable, objective, and comprehensive in a modeling
sense. It is not however, necessarily easy to implement.

The methodology of PSARE is not the only viable

approach for DoN warfare systems. However, Hatleys (2000)

process-oriented approach as well as PSARE’s real-time

system application heritage make it more straightforward to

apply and more suitable than some others.

Requirements and architecture models comprise the

PSARE products. The requirements model captures functional

and non-functional requirements as well as system control

behavior. The architecture model describes how the system

 82

will fulfill the requirements. A requirements-to-

architecture template provides a structure for allocation

of requirements to architecture modules. Though the

architecture model accommodates description of a system

solution which goes beyond the scope of this study, the

extensive presence of legacy systems even in new, U.S. Navy

system development makes it germane to the requirements

development discussion. The PSARE is non-sequential,

meaning it does not have to move from requirements to

architectures. It accommodates pre-existing portions of an

architecture and allows for derivation of requirements from

architectures when expedient. Figure 8 summarizes the

interaction among models. The Enhanced Requirements Model

depicted in the lower right-hand corner accounts for

technological and other constraints imposed on the system.

Figure 8 System Specification Models, From Hatley, 2000.

The recursive approach to development of the models which
comprise PSARE are illustrated by the curves arrows to and
from the models in each of the three corners. The spiral in
the center indicates hierarchical layers of the models.

 83

The requirements model, with enhancements, is

developed through a series of process steps whereby:

• Customer requirements are organized into

functional groups
• External systems with which the system must

communicate are identified
• Information flowing between the system and

external entities is identified
• A top-level flow diagram, showing the functional

groups as processes, the external entities as
terminator, and information groups as data flows
is drawn

• A context diagram is derived from the top-level
flow diagram

• A level 1 diagram is constructed from the top-
level flow diagram without terminators

• Control signals are added as required
• Each process in the level 1 diagram is decomposed

into a child diagram.
• Performance Specifications (PSPECS) and Control

Specifications (CSPECS) are created at the last
level of decomposition.

• A requirements dictionary catalogs data flows and
control flows (i.e., requirements)

The architecture model is developed using the

architecture template to enhance the requirements model and

then allocating the requirements to physical entities

(Hatley, 1987).

The example follows these steps with some changes to

accommodate Daniel’s (2005) hybrid process. Use cases, if

developed at the initial step in the requirements model

development, help communication between user and developer

and help ensure an accounting of the full range of required

behavior of the system. The use cases also help in

 84

development of subsequent requirements model diagrams and

serve as a cross-checking mechanism for diagrams’

correctness.

2. Problem Statement

Figure 9 shows a notional, joint, operational view of

IAMD including the integration of weapons, sensors and

command and control systems necessary to execute a detect-

control-engage process for IAMD.

Figure 9 Joint IAMD Operational View, From Baldwin, 2006.

This view, though it depicts systems, is not solution
specific. The spacecraft, ships, aircraft, and ground-based
systems should be viewed as operational nodes where
activity occurs.

To provide IAMD, the cruiser must detect and track

multiple targets, both aircraft and missiles, prioritize

the threats, assign weapons or countermeasures based on

 85

threat characteristics and kinematics, and prosecute the

threats. This follows the aforementioned detect-control-

engage functional construct.

3. Requirements Model

The requirements model can begin with construction of

use cases. Use cases, as defined in Cockburn (2001)

“…describes the system’s behavior under various conditions

as the system responds to a request from one of the

stakeholders…”. Although charts, diagrams and automated

tools can be used in the construction of use cases,

Cockburn suggests a fundamentally text form helps

communication between user and developer, or stakeholder

and developer, without imposing any special training

requirements to be able to understand uses cases.

Development of use cases requires involvement or

representation of most or all of the stakeholders, to the

extent different stakeholders have different goals. For

example, the goal of a stakeholder who is a system

maintainer would be interested in system attributes that

support a low mean time to repair, and probably also

infrequent scheduled maintenance. The goal of a system

manufacturing stakeholder might be concerned with system

attributes that ensure high production rates, avoidance of

specialized manufacturing labor, use of proven

technologies, etc.

The process can begin with a general description of a

scenario where all goals are satisfied. Cockburn (2001)

defines this as the main success scenario. He views all

other ways to succeed, or fail, as extensions of the main

success scenario. The scenario is written as a series of

 86

actions or activities required to achieve the goal. It is

not the intent of this study to present a detailed

description of the use case development process. Rather,

the objective is to illustrate the advantage of

incorporating use cases into the PSARE. Use case

development can add an intuitive structure to the process

of identifying the requirements model elements, their

relationships, and what purpose they really serve, as well

as initiating a set of plain language requirements to

complement graphical and tabular models.

A Main Success Scenario for IAMD could be written as

follows:

• The operator engages the ship’s sensors to scan a

3D volume for hostile aircraft and missiles.

• The search portion of the detect function
provides radar and IFF data to the control
function.

• Off-board target track data is received by the
control function.

• The control function initiates and maintains
target tracks.

• The control function determines if targets are
engageable.

• The control function assigns weapons to
engageable, hostile targets.

• The engage function prosecutes hostile targets
with weapons.

This sequence, when reviewed by stakeholders would

likely be revised, as each subject matter expert brings a

different perspective and set of experiences. It is also

evident that most of the steps can be decomposed. There is

a great deal of complexity underlying the control function

 87

initiates and maintains target tracks. The decomposition of

use cases parallels decomposition as part of PSARE. To

accommodate particular threat targets that cause the system

to behave differently, or to accommodate different

environments or states of readiness, extensions can be

appended onto the main success scenario at branch points.

Having begun with development of a use case, or set of

use cases, the construction of the requirements model then

proceeds as described in Hatley (1987). The details of

model development occupy a significant portion of that book

and will not be reiterated here. Instead, examples of the

graphical and tabular model elements are shown and comments

are provided to explain the progression and relationship of

model elements.

Building an environment model requires representation

of both the system processes and those processes outside

the system, i.e., the environment. The environment

comprises those entities beyond the boundary of the IAMD

system that play a role in IAMD and exchange information,

energy or material. The detect function generates sensor

data from both hostile targets and friendly forces. The

control function receives track data from remote sources,

i.e., other platforms. The control function also receives

data from and contributes to onboard C4I (Command, Control,

Communications, Computers, and Intelligence). The engage

function passes data to and from the control function and

also interacts with the target in terms of target signature

and weapon homing sensors. This model is shown graphically

in Figure 10.

 88

COMMAND &
CONTROL

Detect EngageControl

Target
Signature

Offboard
Detection

Onboard
C4I

Identify
Friend/Foe

AIMD (and internal to platform)

External to platform

Internal to platform

RAW & PROCESSED
SENSOR DATA

RAW
SENSOR DATA

PROCESSED
SENSOR DATA

TARGET &
WEAPON

POSITION DATA &
WEAPON

MOVEMENT

COMMAND &
CONTROL

COMMAND &
CONTROL

COMMAND &
CONTROL

Environmental Model

Offboard
C4I

Figure 10 IAMD Environment Model.

The environment model includes all functions affecting
system behavior and is the first step in identifying system
boundaries.

The exchanges of information, energy or material among

processes can be categorized as data or control exchanges.

Continuous signals, such as target signatures, are data

exchanges. Discrete signals such as commanding a weapon

launch are usually control exchanges. In Figure 10, data

from the control process is, logically, predominantly

control-oriented. Sensor data is typically data-oriented,

and engage data is a mixture of data and control exchanges.

Figure 9 is a Level 1 diagram. Its component processes and

data flows can be decomposed as necessary to achieve

sufficient requirements detail.

From the environment model construction of a context-

level model Hatley (2000) is begun by bounding those

portions of the environmental model that are included in

 89

the system. This is shown in Figure 11. The bounded portion

comprises the beginning of a system specification.

COMMAND &
CONTROL

Detect EngageControl

Target
Signature

Offboard
Detection

Onboard
C4I

Identify
Friend/Foe

AIMD (and internal to platform)

External to platform

Internal to platform

RAW & PROCESSED
SENSOR DATA

RAW
SENSOR DATA

PROCESSED
SENSOR DATA

TARGET &
WEAPON

POSITION DATA &
WEAPON

MOVEMENT

COMMAND &
CONTROL

COMMAND &
CONTROL

COMMAND &
CONTROL

Environmental Model with Context Definition

Offboard
C4I

Figure 11 Environment Model with System Boundary Applied.

The closed curve represents decisions regarding what to
include in the system under study.

The context process is derived by collapsing all

processes inside the bounded area into one process.

Processes outside the boundary are replaced by terminators,

the physical agents that perform the processes. Making

these changes, a requirements context diagram for IAMD can

be constructed. In Figure 12, the detect-control-engage

processes have been collapsed into a single IAMD process

and terminators have replaced external processes such as

offboard detection.

 90

IAMD
RADAR
SIGNAL/

REFLECTION

TARGET
TRACK DATA

COMMAND &
CONTROL

Requirements Context Diagram

Target Offboard C4I

Friendly
Forces

Offboard
Sensors

RADAR
SIGNAL/

REFLECTION

IFF SIGNAL

Figure 12 IAMD Requirements Context Diagram.

The context diagram aggregates all of the activities inside
the system boundary into one activity, “IAMD.” Activities
outside the system boundary are replaced with the actors
that perform the activities.

Next, the system’s functionality is reviewed to

determine if any data/material/energy flows did not get

incorporated into the environment model. The resultant Data

Flow Diagram (DFD) is shown in Figure 13. Earlier, control

and data processes and flows were differentiated and it was

stated that the IAMD process exhibited both. To simplify

this example, all processes and flows are shown as data. In

practice, Control Flow Diagrams (CFDs) would be constructed

in addition to the DFDs. Each would depict the same

processes, but one would show control flows and the other

data flows.

 91

Detect

Control

Engage

TRACK DATA C4ISR DATA

Detect-Control-Engage Data Flow

IFF Data

Radar Data
From Target

Weapon C2 Data Weapon Position and Status

Target Kinematic DataSensor Control
Data

Target Homing
Data

Figure 13 IAMD Data Flow Diagram.

This diagram shows processes in circles, data stores as
labels with lines above and below, and data flows as arrows
between processes and stores.

The last level of decomposition of DFDs is Process

Specifications or PSPECs. According to Hatley (1987) “The

primary role of the process specification…is to describe

how its inputs and outputs are generated from its inputs;

it must do nothing more and nothing less.” PSPECs can

contain textual, tabular, graphical and mathematical

elements. A notionalized example is shown below, based on a

decomposed element of the detect process.

PSPEC1: Detect Filter
Radar returns (i.e., signatures) of airborne objects are
input to the IAMD sensor. The signal strength relative to
the calculated object’s range is assessed. If the signal
strength correlates to aircraft or missiles, the object is
reported as a detected object.

Table 2 IAMD Process Specifications.

This is a process description at the lowest level of
decomposition.

 92

If it is determined that the system requirement model

must include control flow diagrams, then Control

Specifications, i.e., CSPECs, also need to be generated. An

example CSPEC is not presented but in one form can be

visualized as a decision table or Boolean equation.

A requirements dictionary, typically instantiated in a

database, contains definitions of all the elements used in

the models. Per Hatley (2000), “Every data flow, control

flow, and store used anywhere in the DFDs, CFDs, and CSPECs

must be defined in the dictionary.” Table 3 provides some

notional definitions as well as metadata, i.e., the column

headings.

Name
Meaning &

Composition
Type Units Rate

IFF Data
Friendly A/C ID and

position

Data Aircraft ID

digital msg

Once per

second

Radar Data
From Target Range, bearing,

elevation

Data Feet, polar
coordinates

Once
every 4
seconds

Sensor
Control Data Wave form commands,

cuing, power level

commands, etc.

Control Once per
second

Target Homing
Data Target Position,

Target signature

Data Feet,
seconds,
polar
coordinates

10 times
per
second

Target
Kinematic
Data

Position, velocity,

acceleration

Data Feet,
seconds,
polar
coordinates

Once
every 4
seconds

Table 3 IAMD Data Requirements Dictionary Content.

This is a list of data flow definitions.

 93

4. Architecture Model

The architecture model represents a system’s design,

which is beyond the scope of this study. However, in most

instances of DoN warfare system development, at least

portions of an architecture exist at the outset of system

development. They can be interfacing systems or subsystems,

standards, which create constraints on the system

requirement, or they can take the form of direct

constraints such as size, weight, power consumption,

safety, reliability, etc. System requirements can be

derived from these architectural elements and incorporated

into the requirements model. Therefore, construction of an

architecture model supports development of a comprehensive

requirements model and system specification.

Hatley (1987) describes a Requirements-to-Architecture

Template that places the requirements model in a context of

physical modules as shown in Figure 14. The requirements

model resides in the portion entitled Main Processing (Core

Functions). The development of architecture model elements

involves creation of architecture context diagrams,

architecture flow diagrams, architecture interconnect

diagrams, an architecture dictionary, and module

specifications. Their forms are analogous to elements of

the requirements model, but from a physical rather than

operational perspective. The PSARE process maintains

consistency and traceability between requirements and

architecture models.

 94

Figure 14 PSARE Architecture Template, from Hatley, 1987.

“Main processing” represents the physical system under
study. The surrounding blocks represent physical modules
that interact with the system under study.

Considering the IABM example, system development is

certain to involve already-existing sensors, software,

processors, weapons, or services infrastructure. The Navy’s

objectives of achieving open system design, use of

Commercial, Off-The-Shelf hardware, and maximization of

hardware and software re-use among systems imposes a large

set of standards. Therefore, in beginning an IABM system

development, major portions of the system specification can

be derived from the architecture model.

E. CHAPTER SUMMARY

This chapter presents the fundamental characteristics

of U.S. Navy warfare systems that affect the systems

engineering and architecture processes. It further shows,

utilizing a blended use case and PSARE process, that

requirements and architectures models can be constructed in

an integrated, structured, repeatable manner that when

complete, provide the basis for a complete set of system

requirements. Furthermore, the requirements model is in

fact an operational view of the system’s architecture and

 95

the architecture model represents the system view of the

architecture, enabling generation of required DoDAF

products, but having been created by and for the systems

engineering process. It is done in a way that provides a

full accounting of requirements in a design.

This type of process is not provided as part of the

DoD Architecture Framework (DoDAF, 2007) or the Naval

Systems Engineering Guide (2004).

 96

THIS PAGE INTENTIONALLY LEFT BLANK

 97

VII. CONCLUSIONS

A. KEY POINTS AND RECOMMENDATIONS

A substantial body of work among Government and

industry exists regarding system engineering standards and

processes. Standards and practices have been evolved,

refined, interpreted, and exercised over a period of

approximately 50 years. The value of systems engineering

has been shown to lie in its ability to manage complexity

in system development such that systems produced will

predictably satisfy user needs. Yet, numerous examples

exist of warfare systems that exceed schedule and cost

requirements and do not meet operational requirements.

Shortcomings appear to exist in the application and

management of systems engineering principles.

Development of architectures to support DoD system

development has a significantly shorter history than

systems engineering, dating back only to the early 1990’s,

and the initial objective was solely to improve

interoperability of C4I systems. The more broadly scoped

DoD Architecture Framework Version 1.0 was approved in

2003, less than six years ago.

The JCIDS process, also less than six years old, is

ostensibly dependent on architectures as an analytical

basis, but has not resulted in desired levels of

improvement in terms of ensuring Joint solutions,

supporting capability acquisition, and reducing redundant

or excess capability, while reliability identifying

capability gaps.

 98

Though efforts are underway to establish and maintain

a DoN Enterprise architecture and to capture system-of-

system level architectures, to date most architectures are

developed independently at the system level. Governance,

i.e., approval and configuration control, is weak beyond

the system level. Responsibility for operational

architecture and system architecture development is split,

and funding for architecture development is fragmented and

inconsistent from year to year. The consequence of all this

is a lack of higher-level architectures to support JCIDS

analysis. This problem is compounded by JCIDS’ dependency

on the Programming, Planning, Budgeting, and Execution

(PPBE) process, which follows a biannual cycle. The JCIDS

process cannot alter its rhythm to “wait” for architecture

products.

In spite of mandated systems engineering and

architecture standards, the relationship between system

architecting and system engineering is poorly defined in

DoD policy and instructions, and processes for development

of architecture models as part of a systems engineering

process are not prescribed. System engineering and

architecture artifacts required by the DoN acquisition

process do not promote or ensure integration of systems

engineering with system architecting. The process and

purpose of system architecting is poorly understood by

system acquisition managers and decision-makers. And, as in

the case of the JCIDS process, higher level, i.e., above

product level, architecture development often does not keep

pace with the acquisition process.

 99

Translation of operational requirements to a set of

system requirements is a vitally important part of the

systems engineering process. Yet, ambiguity exists in

definition of roles across DoN organizations, in terms and

definitions, and in the necessary order and timing of

events in this process. As a result, demonstration of

system requirements completeness and traceability of system

requirements to operational requirements is not

consistently practiced.

Most significant among the causes for process

disconnects are management-related and organizational. To

make policy and resource decisions necessary for better

process integration requires better understanding of system

engineering and architectures than currently exists at the

management level. Once policy and resource positions are

developed, a DoN organization whose size and fragmentation

by product line, near-term or long-term vision, and

operational versus acquisition communities makes consensus

difficult to achieve. Maintaining a Joint perspective adds

yet another dimension of complexity.

Technical reasons are among the lesser for poor

integration and execution of systems engineering, JCIDS,

and architecture processes. Rigorous methods exist to model

system requirements and architectures in a manner that

supports mandated DoD Architecture Framework products while

maintaining close-coupling with the systems engineering

process. These methods can capture the behavior of complex,

Naval warfare systems, maintain traceability to higher

level requirements, and incorporate plain language views of

 100

requirements. The community of skilled practitioners may

not be large enough to rapidly increase the use of these

methods.

There are several initiatives underway that could

improve both integration and effectiveness of systems

engineering, architecture, and JCIDS processes. Systems

engineering both at the DoD and DoN level has received

increased attention in policy and guidance over the last

several years. The Defense Acquisition Guidebook (2004)

devotes 98 of 520 pages to systems engineering. Most other

Service and industry standards and guidebooks are less than

five years old. The DoN recently adopted a common systems

engineering technical review guide for all acquisition

programs. Systems Engineering Plans are being given more

attention.

In Joint Staff Instruction CJCSI 3170.01F (2007) which

documents JCIDS policy, the Summary of Changes section

notes that changes from the last version reflect “…lessons

learned and changes as a result of implementation of the

JCIDS process.” Both the instruction and related manual

(CJCSM 3170.01C, 2007) have been updated frequently in an

effort to improve effectiveness of the process.

DoD Architecture Framework 2.0, currently in draft,

was begun before issuance of the current, DoD Architecture

Framework Version 1.5 (2007). Committees working on those

documents recognized areas in need of change, but the large

community of stakeholders and the large investment in the

current framework slows the process of revision.

As the previous three paragraphs illustrate,

significant effort is being expended updating and improving

 101

policy and guidance for systems engineering, JCIDS, and

architectures. And, effective systems engineering methods

have been demonstrated on significantly complex systems. In

light of remaining acquisition issues at least partially

traceable to systems engineering failures, there must still

be hindrances to improved effectiveness of the

abovementioned processes.

The systems engineering competency needs to be

strengthened. A recent collaborative initiative between the

ASN(RD&A) and the Naval Postgraduate School will

significantly increase opportunities for DoN engineers to

pursue Master’s degrees in systems engineering. However,

competence in systems engineering, perhaps more than some

other engineering disciplines, requires a wealth of

experience typically acquired over many years. DoN

engineers need experience as systems engineering

practitioners in addition to education.

The increased emphasis on Joint, network-centric

warfare results in systems-of-systems that cross boundaries

of Services, organizations within Services, funding,

requirements, political, and more. This type of construct

hampers the effective integration and implementation of

systems engineering, JCIDS, and architecture processes

simply by making decision-making among a diverse community

of stakeholders, considerably more difficult. A solution to

this problem must address, among other things, the

political process of funding appropriation and an ever-

increasing desire by the Congress to perform DoD management

functions. To the extent a way can be found to parse

 102

complex systems-of-systems for system development and still

maintain requirements and funding integrity, this problem

can be mitigated.

Overall, a plan to improve integration and

effectiveness of systems engineering, requirements, and

architecture processes must be treated holistically and

with a long-term vision. There is an enormous investment in

fielded systems as well as those currently under

development. Future systems cannot completely escape the

effects of those systems’ paradigms. Progress will be

evolutionary, not revolutionary.

B. AREAS FOR FURTHER RESEARCH

The DoD Architecture Framework is currently under

revision. Once issued, analysis of the revised framework

for improvements in the areas of integration with systems

engineering, and inclusion of architecture development

process guidance would be useful.

System architecting for highly complex systems is not

inexpensive. Justification of funding for system

architecting is made more difficult by a cost-benefit

relationship that is difficult to quantify and validate.

Exploration of cost justification methods for system

architecting would contribute to a more rational basis for

investing in this area.

The analytical basis for system architecting is

challenging for practitioners to master and even more

challenging for practitioners to discuss with managers and

customers. This is true to the extent that just the

inclusion of the term “architecture” in a management-level

 103

brief is often a carefully considered decision. Yet, a

means of successfully communicating the concepts of system

architecting to varied audiences is critical to maintaining

support for this type of work. An area for further research

could be exploration of alternative means to discuss system

architecting among less technical audiences.

The architecture modeling example presented in Chapter

VI was simplified by orders of magnitude relative to

actually modeling a warfare system with enough fidelity to

support system development. Research for this paper did not

reveal significant information pertaining to estimation of

time or resources to perform architecture models. Some

historical data for architecture product development has

been collected among U.S. Navy Systems commands.

 104

THIS PAGE INTENTIONALLY LEFT BLANK

 105

LIST OF REFERENCES

Assistant Secretary of the Navy for Research, Development,
& Acquisition, Chief Systems Engineer. (2006). Naval
"Systems of Systems" Systems Engineering Guidebook
Office of the Secretary of the Navy.

Bahill, A. T., & Henderson, S. J. (2005). Requirements
development, verification, and validation exhibited in
famous failures. Systems Engineering, 8(1), 1-14.

Bahill, T., & Dean, F. (1997). The requirements discovery
process. Proceedings of the Seventh Annual
International Council on Systems Engineering, Los
Angeles, CA, USA.

Blanchard, B., & Fabrycky, W. (2006). Systems engineering
and analysis (4th ed.). Upper Saddle River, NJ, USA:
Pearson Prentice Hall.

C4 Architecture & Integration Division, J-6, The Joint
Staff. (1992). C4I for the warrior. Washington, D.C.

Carson, R., Aslaksen, E., Caple, G., Davies, P., Griego,
R., Kohl, R., et al. (2004). Requirements
completeness. Proceedings of the Fourteenth Annual
International Symposium of the International Council
on Systems Engineering, Toulouse, France.

Chairman of the Joint Chiefs of Staff. (2007). CJCS
Instruction 3170.01F: Joint Capabilities Integration
and Development System.

Chairman of the Joint Chiefs of Staff. (2007). CJCS Manual
3170.01C: Operation of the Joint Capabilities
Integration and Development System.

Chairman of the Joint Chiefs of Staff. (2006). CJCS
Instruction 3010.02B: Joint operations concepts
development process (JOPSC-DP).

Cockburn, A. (2001). Writing effective use cases. New York:
Addison-Wesley.

 106

Cole, R. (2006). The changing role of requirements and
architecture in systems engineering. System of Systems
Engineering, 2006 IEEE/SMC International Conference
on, Los Angeles, CA, USA. 5 pp.

Collins, M. (2008). Enabling systems engineering with an
integrated approach to knowledge discovery and
architecture framework. 1-2-20.

Daniels, J., Botta, R., & Bahill, T. (2005). A hybrid
requirements capture process. Proceedings of the
Fifteenth Annual International Symposium of the
International Council on Systems Engineering,
Rochester, New York, USA. 1-14.

Daniels, J., & Bahill, T. (2004). The hybrid process that
combines traditional requirements and use cases.
Systems Engineering, 7(4), 303-319.

Defense Acquisition University. (2001). Systems engineering
fundamentals.

Defense Information Systems Agency. (1994). Department of
Defense technical architecture framework for
information management, volume 7).

Department of Defense. (2004). Defense acquisition
guidebook.

Department of Defense. (2003). DoD architecture framework,
version 1.0.

Department of Defense. (2007). DoD architecture framework,
version 1.5.

Department of Defense. (2004). DoD directive 4630.5,
Interoperability and supportability of Information
Technology (IT) and National Security Systems (NSS).

Department of Defense. (2003). DoD directive 5000.1, The
Defense Acquisition System.

Department of Defense. (2004). DoD instruction 4630.8,
Procedures for Interoperability and Supportability of
Information Technology (IT) and National Security
Systems (NSS).

 107

Department of Defense. (2008). DoD instruction 5000.2,
Operation of the Defense Acquisition System.

Department of Defense. (2008). National defense strategy.

Joint Chiefs of Staff. (2004). The national military
strategy of the United States of America.

Joint Chiefs of Staff, J-8, Force Application Assessment
Division. (2006). White paper on conducting a
capabilities-based assessment (CBA) under the Joint
Capabilities Integration and Development System
(JCIDS).

Department of the Navy.(2004). Naval systems engineering
guide.

Department of the Navy, Assistant Secretary of the Navy,
RDA, Chief Systems Engineer. (2008). Department of the
Navy enterprise architecture hierarchy version 0.2
(working draft).

Environmental Protection Agency. (2004). The life of a cell
phone.

Fein, G. S. New meaning for 'OODA' loop. National Defense
Magazine, 2003(October), 12/30/08.

Forsberg, K., & Mooz, H. (1991). The relationship of
systems engineering to the project cycle. Proceedings
of the First Annual Conference on NCOSE, Los Angeles,
CA.

GEIA EIA 632 - processes for Engineering a System(1999).
Government Electronics Information Technology
Association.

Gonzales, D., Landree, E., Hollywood, J., Berner, S., &
Wong, C. (2007). Navy/OSD collaborative review of
acquisition policy for DoD C3I and weapons programs.
Santa Monica, CA: Rand National Defense Research
Institute.

Government Accountability Office. (2008). Defense
acquisitions; DoD's requirements determination process
has not been effective in prioritizing joint
capabilities. GAO-08-1060.

 108

Government Accountability Office. (1998). Defense
information superiority; progress made, but
significant challenges remain. GAO/NSIAD/AIMD-98-257.

Haggerty, K., & Haggerty, L. J. Introduction to structured
methods. El Segundo, CA: H&A System Engineering.
Retrieved December, 2008 from www.hasys.com

Hanley, J. T., Fitzsimmons, M. F., Kurtz, J. H., Roark, L.
M., Roske, V. P., & Cuda, D. L. (2006). Improving
integration of department of defense processes for
capabilities development planning No. IDA Paper P-
4154). Alexandria, VA: Institute for Defense Analysis.

Hatley, D., Hruschka, P., & Pirbhai, I. (1987). Process for
system architecture and requirements engineering

Hatley, D., Hruschka, P., & Pirbhai, I. (2000). Process for
system architecture and requirements engineering
(First ed.). New York: Dorset House.

IEEE std 1233, 1998 edition, IEEE guide for developing
system requirements specifications (1998). New York,
NY, USA: IEEE.

ISO/IEC 15288 (IEEE std 15288-2008), systems and software
engineering - system life cycle processes.(2008).
(Second Edition, 2008-02-01 ed.). New York, NY, USA:
IEEE.

International Council on Systems Engineering (INCOSE).
(2007). Systems engineering handbook, a guide for
system life cycle processes and activities (Version
3.1 ed.).

ISO/IEC 26702 (IEEE std 1220-2005), systems engineering -
application and management of the systems engineering
process (2007). (First edition 2007-07-15 ed.). New
York, NY: IEEE.

ISO/IEC 42010 (IEEE std 1471-2000), systems and software
engineering - recommended practice for architectural
description of software-intensive systems(2007).
(First Edition, 2007-07-15 ed.). New York, NY, USA:
IEEE.

 109

Langford, G. (2006). Systems engineering for product
development (SI4021) course notes. Monterey, CA: Naval
Postgraduate School.

Maier, M., Emery, D., & Hilliard, R. (2004). ANSI/IEEE 1471
and systems engineering. Systems Engineering Journal,
7(3), 257-270.

Maier, M., & Rechtin, E. (2002). The art of systems
architecting (2nd ed.) CRC Press.

Mar, B. W. (1994). Requirements for development of software
requirements. Proceedings of INCOSE 1994, San Jose,
CA.

McGroddy, J. C. (2004). Letter report to the FBI.
Washington, D.C.: National Academies Press.

National Aeronautics and Space Administration. (2007). NASA
systems engineering handbook. (Revision 1 ed.).

Office of the Assistant Secretary of Defense, Networks &
Information Integration (OASD, NII). (2005).
Architecture development and analysis survey; the
state of DoD architecting. Command Information
Superiority Architectures (CISA) Worldwide Conference,
Omaha, NE. 1-2-44.

Office of the Deputy Under Secretary of Defense for
Acquisition and Technology, Systems and Software
Engineering Enterprise Development. (2008). Systems
engineering plan preparation guide (Version 2.01 ed.)

Office of Secretary of the Navy. (2008). SECNAV Instruction
5000.2D: Implementation and operation of the Defense
Acquisition System and the Joint Capabilities
Integration and Development System.

Osvalds, G. (2006). Use of architecture for engineering
systems; the good, the bad, and the ugly. Proceedings
of the 16th Annual International Symposium of the
Infternational Council on Systems Engineering,
Orlando, Florida, USA. 1-9.

 110

Rhodes, D., Hastings, D., Richards, M., & Shah, N. (2007).
Architecture frameworks in system design: Motivation,
theory, and implementation. Proceedings of the 17th
Annual International Symposium of the International
Council on Systems Engineering, San Diego, California,
USA. 1-10.

Richards, M. G., Shah, N. B., Hastings, D. E., & Rhodes, D.
H. (2007). Managing complexity with the department of
defense architecture framework: Development of a
dynamic system architecture model. Cambridge,
Massachusetts: Massachusetts Institute of Technology
Engineering Systems Division.

Riverside Publishing Company. (1984). Webster's II new
riverside dictionary. New York: Berkley Books.

Roughead, G. (2008). CNO guidance for 2009; executing our
maritime strategy

Schindel, W. (2005). Requirements statements are transfer
functions: An insight from model-based systems
engineering. Proceedings of the Fifteenth Annual
International Symposium of the International Council
on Systems Engineering, Rochester, New York, USA. 1-
15.

Sheard, S. A. The frameworks quagmire. Crosstalk, the
Journal of Defense Software Engineering, 1997
(September). Retrieved 12/29/08 from
http://www.stsc.hill.af.mil/crosstalk/1997/09

Siegers, R. (2005). The ABCs of AFs: Understanding
architecture frameworks. Proceedings of the Fifteenth
Annual International Symposium of the International
Council on Systems Engineering, Rochester, New York,
USA. 1-13.

Space & Missile Systems Center, U.S. Air Force. (2005). SMC
systems engineering primer & handbook; concepts,
processes, and techniques.

U.S. Senate. (2008). Defense acquisitions; better weapon
program outcomes require discipline, accountability,
and fundamental changes in the acquisition
environment.

 111

Wilcynski, B. (2007). DoDAF v2.0. McLean, VA.

The White House. (2006). The national security strategy of
the United States of America.

 112

THIS PAGE INTENTIONALLY LEFT BLANK

 113

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Mr. Carl Siel
 ASN(RD&A) Chief Systems Engineer

Washington, D.C.

4. Ms. Patricia Hamburger
Director, SEA 05H, HSI and Warfare Systems Engineering
Naval Sea Systems Command
Washington, D.C.

