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ABSTRACT 

Department of the Navy system acquisition begins with 

a statement of user need. Delivery of required capability 

depends heavily on the effective translation of user need 

to system requirements. Failure typically results in 

program cost overruns, schedule slippage, and sometimes 

partial or complete failure to deliver needed capability. 

Architectures as part of systems engineering were 

created to cope with the growing complexity of modern 

systems. The Navy develops and operates some of the most 

complex systems in the world. Yet, architecture 

development, while mandated, remains largely ancillary to 

the systems engineering process. As a result, much of the 

engineering advantage of architectures remains untapped. 

This study examined U.S. Navy policy, process, and 

current engineering and architectures standards and 

identified recommendations to improve the process of 

translating user needs to system requirements while 

facilitating the use of architectures. 
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EXECUTIVE SUMMARY 

Successful translation of user needs to system 

requirements is foundational to successful product 

development. This translation occurs during the concept 

phase of the systems engineering process, “pre-Milestone B” 

per (DoD Instruction 5000.2, 2008). 

Requirements definition for DoN warfighting systems 

predominantly involves upgrades or modifications of 

existing systems. Even unprecedented systems have to 

integrate and interoperate with existing or “legacy” 

systems. Legacy requirements may be incomplete, ambiguous, 

out-of-date, or in conflict with other requirements. 

Similarly, legacy architectures may not be sufficiently 

developed to support requirements definition. 

Systems engineering principles and processes and 

system architecting methods were established in large 

measure to facilitate successful development of complex 

systems (INCOSE Systems Engineering Handbook v. 3.1, 2007), 

(Rhodes, 2007). DoN requirements for planning and 

implementation of systems engineering are based on 

Government and industry standards and best practices. DoN 

also requires for major systems acquisitions, development 

of architecture products in accordance with the DoD 

Architecture Framework (DoD Architecture Framework, version 

1.5, 2007). However, DoN acquisition policy (SECNAVINST 

5000.2D, 2008) does not describe a relationship or 

dependency between architecture requirements and systems 

engineering requirements. Programs frequently develop 

architecture products through a process that is essentially 
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separate from the systems engineering process. This 

practice marginalizes the utility of architectures 

(Osvalds, 2006). 

The purpose of this research is to review and 

correlate systems engineering standards, the Joint 

Capabilities Integration and Development System (CJCSI 

3170.01F, 2007), (CJCSM 3170.01C, 207), and system 

architecting policy and standards, then, to formulate and 

present recommendations for improving the integration of 

systems engineering with system architecting, and the 

contribution of architectures to requirements definition. 

At the time of this writing, the JCIDS process, as 

well as DoN acquisition policy, require programs to develop 

DoDAF-compliant architecture products. For a typical, 

complex warfare system, substantial time and resources are 

required to develop those products. In spite of 

requirements to develop architecture products, there is 

substantial evidence that the architecture products are 

poorly executed. Architecture products form part of the 

foundation for requirements definition. Poor execution of 

system architecting and requirements definition leads to 

program delays, cost overruns, and products whose 

performance does not provide required capability. 

Therefore, better alignment and implementation of 

architecture development and systems engineering processes 

holds the potential to deliver greater value from 

architecture products and for those products to improve the 

output of the requirements definition process. Achievement 

of these objectives will facilitate more effective program 

management and will contribute to improved system 
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performance, system supportability, system 

interoperability, and system-of-systems integration. 

The systems engineering process spans the entirety of 

a product’s life cycle, from identification of a user need 

to system retirement and disposal. Descriptions of the 

systems engineering process life cycle phases in different 

standards are generally well correlated at a high level, 

with some semantic differences. The standards provide a 

framework of tasks, but do not provide the process detail, 

examples, or accommodation of differences among product 

types necessary to be sufficient as stand-alone source 

references from which a detailed, systems engineering plan 

(SEP) can be developed and implemented. System engineering 

standards neither preclude nor prescribe the use of 

architectures to support requirements analysis. System 

engineering guides and handbooks produced by the Services 

and by industry complement and augment the standards. Among 

both standards and guides, terminology is often not well-

defined and varies among standards and guides. For example, 

a “performance specification” in one guide may have a 

subtly different meaning in another guide. Variations and 

lack of implementation specificity among systems 

engineering process standards and guides can make it 

difficult to implement a uniform, auditable systems 

engineering process within an organization. 

To begin the systems engineering process, a customer 

presents a statement of need to a system developer. Through 

an iterative process between user and developer, a 

comprehensive set of system requirements is formed, 
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establishing the basis for design. The DoD has its own 

system for requirements generation. 

In 2003, the DoD implemented the Joint Capabilities 

Integration and Development System (JCIDS), a top-down, 

joint capabilities (i.e., requirements) generation, 

validation, and prioritization system intended to reduce 

functionally overlapping, Service-specific systems as well 

as inadequate intra-Service and inter-Service 

interoperability among systems. The JCIDS process 

interjects additional steps between the statement of user 

need and the development of a system specification in 

comparison with a typical commercial systems engineering 

process as described in Fabrycky (2006). 

The JCIDS process, as incorporated into systems 

engineering processes described in the Naval Systems 

Engineering Guide (2004) offers the potential for a cross-

service requirements analysis and prioritization capability 

necessary to achieve the DoD’s mandate for capability-based 

acquisition. It could also use architectures as an 

analytical and management framework. However, research for 

this study indicates the use of architectures in 

conjunction with JCIDS is neither explicitly described nor 

explained in policy, and to date, the Services’ approaches 

to warfighting requirements continue to align to Service 

perspective rather than a Joint perspective. 

Understanding the role of system architecting as part 

of the system engineering process first requires definition 

of terms. To define “architecture framework” the terms 

“architecture” and “framework” must each be defined. The 

definition of architecture cited in the DoD Architecture 
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Framework Version 1.5 (2007) is: “the structure of 

components, their relationships, and the principles and 

guidelines governing their design and evolution over time.” 

Every existing system embodies an architecture. Webster’s 

II Dictionary (1984) defines framework as: “a basic 

arrangement, form, or system.” Rolf Siegers (2005) defined 

architecture framework simply as “a resource that aids in 

the development or description of an architecture.” Maier 

(2004) asserts that an architecture framework exhibits one 

or more of the following five characteristics: 

 
1. A definition of the word “architecture” 

2. A conceptual framework explaining key concepts or 
terms 

3. An approach to describing architectures 

4. Architectural methods (e.g., creating, analyzing, 
interpreting, realizing) 

5. A theory of how architectures and architectural 
descriptions fit into a larger context (e.g., 
systems engineering, design, etc.) 

 

Motivation to establish and utilize architecture 

frameworks can derive from business considerations, 

technical considerations, or both. An architecture 

framework used for enterprise product development can for 

example facilitate shorter product development cycles, 

lower manufacturing, support and upgrade costs, and a 

reduced number of functionally duplicative products. This 

accrual of benefits can be explained by a framework’s 

ability to make individual product architectures comparable 

and integratable, facilitating cross-product insights that 

would be otherwise difficult. From a technical perspective, 

and for the same reasons cited for the business 
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perspective, products developed in conformance with an 

architecture that is in turn developed in conformance with 

an architecture framework potentially exhibit a greater 

degree of interoperability, a simpler logistics support 

infrastructure, and in systems of systems, a greater 

ability to be reconfigured to adapt to changes in mission 

needs. The DoD architecture framework (2007) is cited in 

DoD requirements, acquisition, and systems engineering 

policy and guidance for both business and technical 

reasons. 

DoDAF use, specified in DoN policy and guidance, is 

the framework standard for architectures in DoN. However, 

considerable variation in DoDAF architecture implementation 

is evident within the boundaries of DoDAF compliance, such 

that architectures for different but related systems may 

not be effectively comparable or integratable. The current 

framework is necessary but not sufficient to ensure the 

effective use of architectures in acquisition and systems 

engineering. The DoDAF Version 2.0, currently in 

development, is intended to address some long-recognized 

limitations of the DoDAF, but the framework is only one 

part of what should be a multi-faceted approach to 

realizing the potential of architectures in the systems 

engineering process. 

The systems engineering process, the DoD requirements 

process, i.e., JCIDS, the DoD architecture framework, and 

to a limited extent, the DoD acquisition process constitute 

a complex system-of-systems in and of themselves. Process 

components critical to successful requirements translation 

in a systems engineering context and the necessary elements 
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of a good system specification can be identified in this 

system-of-systems. In turn, an approach for how best to 

integrate necessary process components can be developed. 

DoD and DoN requirements, acquisition, and systems 

engineering processes and associated guidance and standards 

comprise a substantial amount of interrelated data, even 

when limited to discussion of requirements development as 

in this study. Research performed for this study has 

revealed semantic inconsistencies and ambiguities as well 

as a multiplicity of system engineering processes, guidance 

and standards. This makes it difficult to trace data and 

process relationships in a systems engineering context. As 

a consequence it is difficult to rigorously and 

unambiguously trace a top-level operational requirement to 

a comprehensive and complete set of system requirements. 

This study asserts that for Naval warfare systems, the 

process of translation of user needs to system requirements 

is not sufficiently rigorous and repeatable to ensure 

consistently complete and valid system requirements. The 

result is significant increases to program cost, schedule 

and risk when requirements issues are resolved later in 

development. Government Accounting Office Report (GAO-08-

782T, 2008) states: 

At the strategic level, DOD does not prioritize 
weapon system investments and the department’s 
processes for matching warfighter needs with 
resources are fragmented and broken. Furthermore, 
the requirements and acquisition processes are 
not agile enough to support programs that can 
meet current operational requirements. At the 
program level, programs are started without 
knowing what resources will truly be needed and 
are managed with lower levels of product 
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knowledge at critical junctures than expected 
under best practices standards. In the absence of 
such knowledge, managers rely heavily on 
assumptions about system requirements, 
technology, and design maturity, which are 
consistently too optimistic. This exposes 
programs to significant and unnecessary 
technology, design, and production risks, and 
ultimately damaging cost growth and schedule 
delays. 

Typical U.S. Navy surface combatants systems involve a 

number of constraints and characteristics that lead to 

significant complexity and difficulty in the requirements 

analysis process. However, this study illustrates a 

“blended” use case and Process for System Architecture and 

Requirements Engineering (PSARE) process, from which  

requirements and architectures models can be constructed in 

an integrated, structured, repeatable manner that when 

complete, provide the basis for a complete set of system 

requirements for complex systems. Furthermore, the 

requirements model is in fact an operational view of the 

system’s architecture and the architecture model represents 

the system view of the architecture, enabling generation of 

required DoDAF products. Importantly, the products are 

created by and for the systems engineering process. It is 

done in a way that provides a full accounting of 

requirements in a design. This type of process is not 

provided as part of the DoD Architecture Framework (DoDAF, 

2007) or the Naval Systems Engineering Guide (2004). 

In summary, a substantial body of work among 

Government and industry exists regarding system engineering 

standards and processes. Standards and practices have been 

evolved, refined, interpreted, and exercised over a period 
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of approximately 50 years. The value of systems engineering 

has been shown to lie in its ability to manage complexity 

in system development such that systems produced will 

consistently satisfy user needs. Yet, numerous examples 

exist of warfare systems that exceed schedule and cost 

requirements and do not meet operational requirements. 

Shortcomings appear to exist in the application and 

management of systems engineering principles. 

The JCIDS process, ostensibly dependent on 

architectures as an analytical basis, has not resulted in 

desired levels of improvement in terms of ensuring Joint 

solutions, supporting capability acquisition, and reducing 

redundant or excess capability, while reliability 

identifying capability gaps. This may be partly a result of 

insufficiently developed architectural bases for the 

necessary analysis. 

In spite of mandated systems engineering and 

architecture standards, the relationship between system 

architecting and system engineering is poorly identified in 

DoD policy and instructions, and processes to develop 

architecture models as part of a systems engineering 

process are not prescribed. Until a better connection 

between system architecting and systems engineering is 

made, architecture development efforts will be 

significantly challenged to demonstrate a clear return on 

investment. 

Translation of operational requirements to a set of 

system requirements is a vitally important part of the 

systems engineering process. However, ambiguity exists in 

definition of engineering and analytical roles, in terms 



 xxii

and definitions, and in the dependencies of timing of 

events in this process. As a result, demonstration of 

system requirements completeness and linkage of system 

requirements to operational requirements are not 

consistently established. 

Rigorous methods exist to model system requirements 

and architectures in a manner that supports mandated DoD 

Architecture Framework products while maintaining close-

coupling with the systems engineering process. These 

methods can capture the behavior of complex, Naval warfare 

systems, maintain traceability to higher level 

requirements, and incorporate plain language views of 

requirements. However, the community of skilled 

practitioners may not be large enough to increase the use 

of these methods to the point of becoming standard 

practices. 
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I. INTRODUCTION 

A. BACKGROUND: 

Department of Navy (DoN) warfare systems are becoming 

more complex. At the same time, the DoN is also moving 

toward implementation of network-centric warfare and 

increasingly complex systems-of-systems. One effect of 

these trends on systems acquisition is significantly 

greater requirements complexity. Proper identification of 

requirements is a tenet of systems engineering. Based on 

statistical analysis of Department of Defense (DoD) 

programs performed by the Defense Acquisition University 

(DAU), 80% of a system’s life cycle cost is determined by 

the time 20% of a system’s actual cost is accrued. Within 

that first 20% of cost lies the concept phase of a program, 

accounting for, on average, 8% of the cost. It is during 

that concept phase, “pre-Milestone B” per (DoD Instruction 

5000.2, 2008) that user requirements are translated to 

system requirements (INCOSE Systems Engineering Handbook v. 

3.1, 2007). Some well-known examples of failures resulting 

from poorly defined, verified, or validated requirements 

sets are discussed by Bahill (2004). 

Specifically, the complexity of requirements is 

dependent upon required functionality, the number and 

nature of nodes with which the system will interoperate, 

the extent to which the system, or system-of-systems can be 

reconfigured, and the range of environments and conditions 

in which the system is expected to operate. Note that 

operational flexibility, high interconnectivity and high  
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reconfigurability are all considered valuable attributes by 

the DoN and are typically required design attributes of new 

systems or system upgrades. 

For DoN warfighting systems the requirements 

definition challenge is compounded by the fact that 

development programs predominantly involve upgrades of 

existing systems. Even truly new systems have to 

interoperate with existing or “legacy” systems. Legacy 

requirements may be incomplete, ambiguous, out-of-date, in 

conflict with other requirements, or un-testable. 

Similarly, legacy architectures may not be sufficiently 

developed to support requirements or interface analysis. 

Systems engineering principles and processes and 

architecture frameworks were established in large measure 

to facilitate successful development of complex systems 

(INCOSE Systems Engineering Handbook v. 3.1, 2007), 

(Rhodes, 2007). DoN requires the planning for and use of 

systems engineering based on Government and industry 

standards and best practices. For major acquisition 

programs, DoN also requires the development of architecture 

products in accordance with DoD Architecture Framework (DoD 

Architecture Framework, version 1.5, 2007). DoN acquisition 

policy (SECNAVINST 5000.2D, 2008) does not however 

recognize a relationship or dependency between required 

architectures and systems engineering requirements. DoN 

guidance (Naval systems engineering guide, 2004), (Naval 

“systems of systems” systems engineering guidebook, 2006) 

does recognize and describe the contribution of 

architectures in the requirements definition process. 

However guidance, by definition, cannot mandate use of 
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architectures for the requirements definition part of the 

system engineering process. Programs frequently develop 

architectures through a process that is essentially 

separate from the systems engineering process. This 

practice marginalizes the utility of architectures 

(Osvalds, 2006). 

B. PURPOSE: 

The purpose of this research is to: 

• Correlate systems engineering industry standards, 
Department of the Navy standards, the Joint 
Capabilities Integration and Development System 
(CJCSI 3170.01F, 2007), (CJCSM 3170.01C, 207), 
and recent systems engineering research as 
evidenced in published technical papers; and 
similarly, architecture and architecture 
framework industry and defense policy, standards, 
guidance, and technical papers. The research 
focuses on the portion of the systems engineering 
process leading up to and including system 
requirements definition. This correlation should 
reveal the extent to which Navy system 
engineering and architecture policy and guidance 
reflects best industry standards and practices 
and current research efforts. It should also 
provide insight on the potential versus realized 
utility of architectures in the requirements 
definition process, and the extent to which DoN 
policy and guidance support the use of 
architectures for requirements definition. 

• Present recommendations for improving the 
contribution of architectures to requirements 
definition. 

C. RESEARCH QUESTIONS: 

Question: Within DoN, how can system architecting, 

e.g., architectures described in compliance with DoD 

Architecture Framework version 1.5 (2007), be better 

integrated with the systems engineering process to improve 
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requirements analysis and system requirements generation. 

In order to answer that question, the following questions 

and others concerning DoD policy, industry standards, 

system engineering and architecture semantics, and the 

engineering experience of others are also considered: 

• What is an architecture framework and what is the 
intended purpose(s)? 

• What are the advantages and objectives of system 
architecting for DoN systems during and as part 
of the requirements definition process? 

• How do system architecting processes relate to 
the systems engineering process? 

• What strategies, methodologies, or tools exist 
for integration of architecture development and 
requirements generation processes? 

D. BENEFITS OF STUDY 

At the time of this writing, the JCIDS process, as 

well as DoN acquisition policy, require programs to develop 

DoDAF-compliant architecture products. For a typical, 

complex warfare system, substantial time and resources are 

required to develop those products. In spite of 

requirements to develop architecture products there is 

substantial evidence that the architecture products are 

poorly executed. The architecture products should form the 

analytical framework for the requirements definition 

process. Poor execution of system architecting and 

requirements definition leads to program delays, cost 

overruns, and products whose performance does not provide 

the required capability. Therefore, better alignment and 

implementation of architecture development and systems 

engineering processes holds the potential for the DoN to 

derive greater value from architecture products and for 
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those products to improve the output of the requirements 

definition process. Achievement of these objectives will 

facilitate more effective program management and will 

contribute to improved system performance, system 

supportability, system interoperability, and system-of-

systems integration. 

E. SCOPE AND METHODOLOGY 

1. Scope 

This study focuses on Department of Navy warfare 

system requirements development. As such, it emphasizes 

software-intensive and complex systems, systems-of-systems, 

and integration and interoperability of new systems and 

newly modified legacy systems with legacy systems. 

Incorporation of Joint and coalition architectures and 

requirements is included to the extent required by 

discussion and analysis of the JCIDS process and DoN 

policy. 

Although the systems engineering process and 

architecture framework requirements derived from DoD 

requirements and imposed by DoN are a primary topic, other 

established, in-development, and conceptualized processes 

and frameworks are included to better understand and 

illustrate where improvements or changes to DoN standards 

may merit consideration. As one example, the DoD 

Architecture Framework (DoDAF) version 2.0 is under 

development and its goals and objectives are considered. 



 6

2. Methodology 

This study is primarily composed of the results of 

researching and analyzing documents from DoD, DoN, 

industry, and academia. Process steps include: 

1. Conduct literature review and analysis of 
architecture frameworks, architecture development 
and use, and the requirements definition portion 
of systems engineering processes. 

2. Correlate established systems engineering and 
architecture standards and processes with DoN 
requirements and guidance. 

3. Research and discuss the state of practice of the 
requirements definition portion of the systems 
engineering process and the architecture 
development process in DoN or DoD. 

4. Develop recommendations to improve integration of 
architecture development with requirements 
development. 

5. Demonstrate by example, better integration of 
architectures with system engineering processes. 

F. CHAPTER SUMMARY 

The fundamental premise of this paper is that 

understanding a problem is the most important step toward a 

solution. The structure of this paper overall, is to 

examine systems engineering, requirements-setting, and 

architecture standards, guidance and processes, observe 

their strengths and weaknesses, consider where process gaps 

or lack of process synchronization may exist and recommend 

improvements. 

Chapter II focuses on the systems engineering process, 

both in the DoD, industry, and academia. Chapter III 

reviews the initiation of user requirements, particularly 

from a DoD perspective. Chapter IV provides an overview of 

the evolution of the DoD Architecture Framework (2007). 
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Chapter V considers the integration of component processes, 

and Chapter VI presents development of system requirements 

and architectures in a DoN warfare system context. The last 

chapter, Chapter VII, presents conclusions and 

recommendations for further study. 
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II. SYSTEMS ENGINEERING PROCESS 

A. INTRODUCTION 

This section begins with an overview of the systems 

engineering life cycle. Subsequent sections present a 

literature review of industry standards and DoD and DoN 

policy and standards. Emphasis is placed on the beginning 

of the systems engineering process; the requirements 

definition phase. 

B. SYSTEMS ENGINEERING PROCESS LIFE CYCLE 

The systems engineering process spans the entirety of 

a product’s life cycle, from identification of a user need 

to system retirement and disposal. In texts commonly used 

for university-level system engineering education, 

descriptions of the systems engineering process life cycle 

phases are generally well correlated at a high level, 

albeit with some semantic differences. In Blanchard and 

Fabrycky’s Systems Engineering and Analysis (2006), the 

phases, in sequence, are identified as: Conceptual Design, 

Preliminary Design, Detail Design and Development, 

Production/Construction, and Operational Use and System 

Support. These phases are structured to follow a system’s 

life cycle. The sequence is shown graphically in Figure 1 

(Blanchard, 2006:31). By comparison, Figure 2 (INCOSE 

Systems Engineering Handbook, 2007) shows alternative 

definitions of life cycle phases. 
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Figure 1 Systems Engineering Process, From Blanchard, 
2006. 

This shows systems engineering activities, milestones, and 
products in a product, life cycle framework. 
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Figure 2 System Life Cycles, From INCOSE SE Handbook v3.1, 
2007. 

High-level similarities of various standards, and 
differences at a more detailed level are illustrated. 

 

Systems engineering process models, for example the 

“Vee” model, the spiral model, and the waterfall model 

(Blanchard, 2006), provide systems engineering activity 

timing, logic, and sequence structure for the systems 

engineering process. They are applied to each of the life 

cycle phases to establish an agreed-to structure for 

product development and to facilitate understanding of 

development progress, status, and risk. 

The objective of this section is to identify the life 

cycle phases, typical associated activities and engineering 

products, and to highlight the requirements analysis 

portion of the life cycle, a focus of this study. To manage 

the scope and complexity of this study, the systems 
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engineering process is predominantly described linearly and 

progress is discussed in terms of requirements development 

maturity and detail. Consequently, differences in system 

engineering process models and bases for selection are 

beyond the scope of this study. 

This linear simplification makes comparison of the 

systems engineering process with other related processes 

easier, i.e., the DoN acquisition process (SECNAVINST 

5000.2D), the DoN Requirements/Acquisition Two Pass, Six 

Gate Review Process (SECNAVINST 5000.2D, 2008), and the 

JCIDS process (CJCSM 3170.01C, 2007). 

For this study, discussion of the systems engineering 

process is primarily concerned with what Blanchard (2006) 

describes as the Conceptual Design phase. As seen in Figure 

1, an output of this phase is an “A spec” or system 

specification, or functional baseline, all taken to be 

equivalent in systems engineering terms. The system 

specification is defined as “…the top ‘technical-

requirements’ document that provides overall guidance for 

system design from the beginning” (Blanchard, 2006: 86). 

Placement of system specification development in the 

timeline of the DoN acquisition process is after the 

Capabilities Definition Document (CDD). The CDD, defined in 

CJCSM 3170.01C (2007) is an entrance criterion for 

Milestone B which leads into System Development & 

Demonstration (DoDI 5000.02, 2008) or “Preliminary Design” 

per Figure 1. It follows that the system specification 

represents the top of the specification hierarchy or 

“specification tree” for product development. 
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C. REQUIREMENTS ANALYSIS CHARACTERIZATION OF ESTABLISHED 
SYSTEMS ENGINEERING STANDARDS 

Several key systems engineering standards exist. Some 

have been developed from or in coordination with others. 

Problems arising from multiple frameworks and standards are 

addressed in Sheard (1997). That paper discusses framework 

trends that include: evolution, proliferation, integration 

and coordination, and consolidation. Although the value of 

evolution, i.e., improvement, is recognized, continually 

changing and overlapping frameworks and standards create a 

burden on companies required to comply with different 

frameworks for different programs. Also, from the 

standpoints of both the invoking organization and the 

complying organization, a succession of changing frameworks 

and standards whose page counts typically number in the 

hundreds makes it more difficult to establish and maintain 

individual and organizational expertise and experience with 

requirements, compliant processes, and products. 

In the 11 years since Sheard (1997), the cited trends 

have for the most part continued. More recently, there has 

been some increased focus on consolidation of hardware and 

software frameworks and standards. As is pointed out by 

Sheard, “…frameworks define characteristics of good 

processes but do not prescribe how they should be enacted.” 

Most Services have attempted to address this “gap” by 

publishing more prescriptive systems engineering guides 

based on a small number of established frameworks and 

standards. 

The primary standards cited by the Defense Acquisition 

Guidebook, Chapter 4, (DAG, 2004) are: 
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• ISO/IEC 15288, Systems Engineering – System Life 
Cycle Processes (2008) 

• EIA 632, Processes for Engineering a System 
(1999) 

• IEEE 1220, Application Management of the Systems 
Engineering Process (2007). 

The systems engineering framework standard for the 

Naval Systems Engineering Guide is EIA 632. 

1. ISO/IEC 15288 (2008) 

This standard is written with a broad scope, 

identifying the following four system life cycle process 

groups: Agreement processes, Organizational Project-

Enabling Processes, Project Processes, and Technical 

Processes. Within the Technical Processes life cycle 

process group lie the “Stakeholder Requirements Definition 

Process” (ISO/IEC 15288, 2008:36) and “Requirements 

Analysis Process” (ISO/IEC 15288, 2008:39) which are 

central to this study. Each process is described in terms 

of its purpose, outcomes, and activities and tasks. The 

descriptions are written at a high level of abstraction, 

establishing essentially a framework to which detailed 

process information can be appended. IEEE Std 1220 (2005) 

is specifically cited as a standard to be used with ISO/IEC 

15288 and updates of these two documents are synchronized. 

There is no mention of the use of architectures in the 

accomplishment of stakeholder requirements definition or 

requirements analysis. The section that follows 

“Requirements Analysis Process” is “Architecture Design 

Process,” (ISO/IEC 15288:40) but its stated purpose is “to  
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synthesize a solution that satisfies system requirements,” 

which is beyond the requirements definition phase and 

outside the scope of this study. 

2. IEEE Std 1220 (2005), IEEE Standard for 
Application and Management of the Systems 
Engineering Process 

This Standard provides more detailed process 

requirements than ISO/IEC 15288 and can be used in 

conjunction with that standard. The “System Definition 

Stage” defined in IEEE Std 1220 (2005:21) aligns with the 

aforementioned “Stakeholder Requirements Definition 

Process” and “Requirements Analysis Process” from ISO/IEC 

15288 (2008), however that stage goes beyond development of 

a system requirements document and includes the product 

specification (i.e. allocated baseline) and preliminary 

subsystem specifications. The IEEE Std 1220 addresses the 

process of system definition and associated specifications, 

configuration baselines, and technical reviews. Verified 

functional and design architectures (IEEE Std 1220, 

2005:21) are identified as products of this  

process, but the latter pertains to a product specification 

and the former is not presented as a means of facilitating 

requirements analysis. 

3. EIA 632 (1999), Processes for Engineering a 
System 

Among the five processes identified by this standard 

as comprising the engineering process are thirteen sub-

processes. A total of 33 requirements address those sub-

processes. The standard is organized around those 33 

requirements. Under the sub-process Requirements Definition 
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Process Requirements are three requirements: Acquirer 

Requirements, Other Stakeholder Requirements, and System 

Technical Requirements. The descriptions of and outputs for 

those three requirements align with the subject of this 

study. In particular, the output of System Technical 

Requirements, the System Requirements Document, aligns with 

this study. Each requirement section includes tasks to 

consider, and related outcomes are defined in Annex C. 

Annex G defines requirements relationships, e.g., 

hierarchy, dependency, etc. The “how-to” of tasks is noted 

as being beyond the scope of the standard. Although the 

data, analysis, configuration management, and product 

elements involved in completion of the tasks supports 

system architecture development, architectures as part of 

the Requirements Definition Process Requirements are only 

mentioned in the context of “open systems architecture.” 

D. INDUSTRY, DOD, AND NASA SYSTEMS ENGINEERING GUIDEBOOKS 

In addition to systems engineering standards, the 

Defense Acquisition Guidebook (2004) cites systems 

engineering handbooks and guides including: Naval Systems 

Engineering Guide (2004), INCOSE S.E. Handbook (2007), NASA 

S.E. Handbook (2007), DAU Systems Engineering Fundamentals 

(2001), ISO/IEC TR 19760, Systems Engineering – A Guide for 

the Application of ISO/IEC 15288 (System Life Cycle 

Processes), First Edition, 2003-11-15 (2008), and SMC 

Systems Engineering Primer and Handbook (2005). All of 

these guides and handbooks are specifically or generally 

based on the previously-mentioned ISO/IEC-IEEE and EIA 

standards, but they add Service or Agency specific process  
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information and in some cases provide implementation 

information that is beyond the scope of the ISO/IEC-IEEE 

and EIA standards. 

The Naval Systems Engineering Guide specifically cites 

EIA-632 as its standards basis and presents the processes 

from that standard, adapted for DoN use. The intent of its 

creation and signature by all major Navy acquisition 

commands (MARCORSYSCOM, NAVAIR, NAVSEA, NAVSUP, and 

SPAWAR,) was to establish a single, documented, systems 

engineering process for DoN. Starting with EIA-632, the 

systems commands added command-specific content. The result 

was addition of consideration for DoN policies and 

procedures, and specific implementation guidance for EIA-

632 processes. Descriptions of engineering artifacts 

provided apply to NAVAIR systems command but not other 

systems commands. Notably, the guide does not try to index 

the systems engineering process to an acquisition process 

timeline context. Also, references are made to the use of 

architectures during the requirements definition phase. 

The INCOSE Systems Engineering Handbook (2007) is 

intended to provide descriptions of key systems engineering 

process activities. It is written to be consistent with 

ISO/IEC 15288-2002 (Note: This standard was superseded by 

ISO/IEC 15288-2008). As such it is not tailored to the 

engineering of DoD or DoN systems. The handbook is 

structured around context diagrams to augment ISO/IEC 

15288, showing inputs, outputs, controls and enablers for 

each ISO/IEC 15288 process. Portions of the standard 

pertinent to this study are: Section 4.2, Stakeholder 

Requirements Definition Process, Section 4.3, Requirements 
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Analysis Process, Section 4.4, Architectural Design 

Process, and Appendices I and K, “Requirements Definition 

Process” and “System Architecture Synthesis” respectively. 

These appendices add considerably more detail regarding how 

to perform these processes. The handbook asserts that 

“Architectural design begins from the baseline functional 

and performance requirements, architectural constraints, 

and traceability matrix.” (INCOSE Handbook, 2007), i.e., 

well into the requirements development process. However, 

Appendix I, Requirements Definition Process, discusses 

description of system behavior, system interfaces, flow- 

down of requirements and, creating models, i.e., activities 

associated with architecture development. Therefore, while 

development of architectures to support requirements 

definition and analysis is not specifically called out in 

the standard, their use in this manner is consistent with 

the guidance in the standard. 

The NASA Systems Engineering Handbook (2007) is based 

on high-level NASA systems engineering policy, systems 

engineering best practices collected across the NASA 

organization, and Government, industry and academic 

sources. The bibliography is extensive and includes EIA-632 

(1999), ISO/IEC 15288 (2008), the DoD Architecture 

Framework (2007) and many other sources which also form the 

basis for DoN systems engineering policy and processes. The 

two sections of the handbook most pertinent to this study 

are sections 4.2, Technical Requirements Definition, and 

4.3, Logical Decomposition. The former describes a process 

of interactively and recursively translating stakeholder 

expectations into a set of validated technical requirements 

with measures of performance, taking into consideration 
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constraints and the operational concept. The recommended 

means of documenting these requirements is “…in acceptable 

‘shall’ statements, which are complete sentences with a 

single ‘shall’ per statement.” The latter prescribes as a 

first step, establishment of a system architecture model. 

These two NASA process steps align well with ISO/IEC 

15288’s “Stakeholder Requirements Definition” and 

“Requirements Analysis” process steps with the notable 

exception of the NASA handbook including architecture 

development. 

The U.S. Air Force SMC Systems Engineering Primer & 

Handbook (2005) is sponsored by the Space and Missile 

Systems Center, Los Angeles Air Force Base, Los Angeles, 

CA. The close relationship of Air Force and NASA 

engineering for Air Force space systems explains the SMC 

S.E. Primer (2005) citation of NASA documents such as the 

NASA Systems Engineering Handbook. Other references include 

military, industrial and academic sources frequently cited 

by DoD and DoN guidance such as DAU’s System Engineering 

Fundamentals (2001), EIA 632 (1999), IEEE Std 1220 (2005), 

The INCOSE Systems Engineering Handbook (2007), and Systems 

Engineering and Analysis (Blanchard, 2006). However, for 

the portion of references most specifically pertinent to 

this study, those in Appendix D, References and 

Bibliography, “Mission Requirements,” the references are 

NASA references. The USAF handbook is laid out somewhat 

differently than the other handbooks, with a major chapters 

dedicated to:  systems engineering “primer,” how the 

systems engineering process works, system life cycles 

phases, systems engineering management, system engineering 

tools, “companion disciplines to systems engineering,” and 
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validation and verification. As a result, material 

addressing requirements analysis is spread across major 

chapters in the handbook. 

The primer establishes some semantic basis for terms 

used throughout the text. Chapter II discusses requirements 

analysis and includes development of a functional 

architecture, “…how the functions will operate together to 

perform the system mission(s).” A figure on page 51 of the 

text shows a notional functional architecture for a space 

system, including depiction of system functions provided by 

existing space assets. This notion of incorporating 

existing architectures in new system development is an 

important point that is further discussed, later in this 

study. Chapter III focuses on relating the U.S.A.F-specific 

National Security Space (NSS) system development process to 

the acquisition process described in DoD Instruction 5000.2 

(2008). Chapter IV is a treatise on systems engineering 

management. It does not provide further discussion of 

requirements analysis. Chapter V discusses systems 

engineering tools. There are references to sources that 

provide comparisons of specific software-based tools, i.e., 

software products, but this section’s emphasis is on 

analytical techniques commonly found useful, arranged by 

systems engineering process phase. Such tools as they apply 

to architecture development are discussed as are 

requirements management tools. The U.S.A.F. has developed a 

Government-owned tool called “Requirements Development and 

Validation” (RDAV) for maintaining a database of 

requirements, specifications and constraints. Chapter VI, 

“What are the Companion Disciplines to Systems Engineering” 

discusses primarily engineering specialty disciplines such 
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as producibility, reliability, and safety. This chapter 

does not augment the discussion of requirements analysis, 

nor does Chapter VII, “Validation and Verification.” 

Among the four appendices included is 111 page, 

Appendix C, “Templates and Examples,” which contains 

templates and examples for common systems engineering 

tasks. Section C5 of this appendix, “Techniques of 

Functional Analysis,” includes the methodologies and 

rationale for functional flow block diagrams and timeline 

analysis. 

E. CHAPTER SUMMARY 

Figure 3 summarizes the attributes of the major 

standards and handbooks used by the DoN, allowing a more 

direct comparison of major similarities and differences. 

 

Figure 3 Comparison of SE Standards, From Langford, 2006. 

The oldest standard, Mil-Std-499B has the narrowest scope, 
the newest, ISO 15288, has the broadest scope. IEEE 1220 is 
complementary to ISO 15288 and adds process detail. 
 

The standards in general provide a framework of tasks, 

but not enough process detail, examples, or explanation of 

process variations for different product types to serve as 
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stand-alone source references from which a detailed, 

systems engineering plan (SEP) could be developed. For 

requirements analysis, the use of architectures is neither 

precluded nor prescribed. Systems engineering guides add 

detail, implementation considerations, and examples, and 

should be used as an adjunct to chosen standards. Among  

standards and guides, there are common threads. Semantics 

are often not well-defined and vary among standards and 

guides. A “performance specification” in one guide may have 

a subtly different meaning in another guide. Further, 

products such as performance specifications allow for 

variation in implementation. This allowable variation, 

together with the iterative and recursive nature of the 

requirements analysis makes it difficult to form a specific 

view of the sequence of process steps from user need 

through finalization of a performance specification that 

fits all product development situations. 
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III. ESTABLISHING USER NEED 

A. INTRODUCTION 

In discussing the systems engineering process, a 

description was presented wherein the customer would 

present a statement of need to the developer. Through an 

iterative process between user and developer, that 

requirement, including operational considerations and 

constraints is further developed to form a comprehensive 

set of system requirements from which product design 

begins. This chapter discusses the initial steps of the 

requirements setting process. 

In 2003, DoD implemented the Joint Capabilities 

Integration and Development System (JCIDS), a top-down, 

joint capabilities (i.e., requirements) generation, 

validation, and prioritization system intended to reduce 

functional redundancy resulting from Service-specific 

systems as well as inadequate intra-Service and inter-

Service interoperability among Services’ systems. The JCIDS 

process interjects additional steps between the statement 

of user need and the development of a system specification 

relative to a typical systems engineering process as 

described in Fabrycky (2006). This chapter places the JCIDS 

process in the context of a systems engineering process and 

discusses its effectiveness. 

B. THE JCIDS PROCESS 

Figure 4 (Gonzales, 2007) shows the relationship of 

the JCIDS to the acquisition process. Tenets of the JCIDS 

are that it is a top-down requirements process within an 
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operational context and that requirements analysis is done 

in a joint context. The impetus for creation of the JCIDS 

was based on evidence that previously, when requirements 

analysis was performed at the Service level, Services 

developed Service-specific systems that were sometimes 

functionally redundant with other Services’ systems and 

sometimes were not interoperable with other Services’ 

systems. Previous to the JCIDS, requirements were also 

developed from the top, down, and consideration for Joint 

requirements is not new. However, then, as now, 

requirements were sometimes initiated by the Services from 

the bottom-up, based on operational need. The JCIDS, with a 

more rigorous, and Joint-led requirements analysis process, 

is intended to strengthen the top-down, Joint approach. 

To illustrate the difference between bottom up and top 

down requirements generation, in a bottom up system, a 

numbered Fleet Commander might, in response to recognized 

projections for adversary, quiet, diesel-electric 

submarines designed to operate in shallow water, identify a 

need for improved, surface anti-submarine warfare (ASW) 

capability in the littorals. The appropriate Navy sponsor 

would consider that requirement, its cost to implement, and 

perhaps other expediencies, and decide whether to invest in 

a surface ship-based system or system upgrade to provide 

the improved ASW capability. If the Joint Requirements 

Oversight Council (JROC) concurred with the requirement, 

the Navy would proceed with the requirement. Such a process 

might not have taken into account airborne ASW capability, 

projected operational environments and operational 

scenarios in the timeframe the capability would be fielded, 
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or whether other Services’ sensor capabilities (e.g. space-

based) might offer part of a solution. 

 
Figure 4 JCIDS; Preface to Acquisition, From Gonzales, 
2007. 

Top-down requirements approach, interrelationship of JCIDS 
and the acquisition process, and requirements artifacts are 
illustrated. 
 

The JCIDS is a top-down requirements process, starting 

at the National Security Strategy (2006) level, and flowing 

down to a required capability, from which a product 

requirement can be derived. In concert with this is a 

capabilities assessment component to allow comparison of 

current and projected capability relative to the proposed 

capability improvement. In essence, the JCIDS process 

interjects a requirements definition and validation 

component between the user and the developer that assesses 

and aligns all Services’ requirements, providing back to 

the Services a validated operational requirement from which 

product development can begin. The objectives are to find  
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the most efficient way to address an operational 

requirement and in the process, improve interoperability 

among the Services’ systems. 

C. RELATIONSHIP OF JCIDS TO THE SYSTEMS ENGINEERING 
PROCESS 

Reviewing the JCIDS process as documented in CJCSI 

3170.01F (2007) and CJCSM 3170.01C (2007), and referenced 

in the Defense Acquisition Guidebook (2004), indicates 

activities and products of the JCIDS process map to the 

requirements analysis portion of the systems engineering 

process. Since there is implementation flexibility built 

into the JCIDS, Defense Acquisition, and systems 

engineering processes, it is not possible to precisely 

describe a singular, linear sequence or timing of events 

and products that would be appropriate in all cases. 

However, each of the processes is defined in terms of an 

overall series of phases whose intent is to ensure 

subsequent phase does not begin until prerequisite products 

from a preceding phase are complete. Figure 5 is a 

simplified, notionalized representation of acquisition, 

requirements, and systems engineering process alignment. 

This graphically illustrates the role and positioning of 

JCIDS in the systems engineering and acquisition processes. 

It also serves to illustrate that the DoD acquisition 

process is not the same as a systems engineering process 

though there is overlap and interdependencies. 
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Figure 5 Alignment of Acquisition, JCIDS, and Systems 
Engineering Processes 

These are the three, key, interrelated processes that play 
roles in the timing and development of system requirements.  

 

JCIDS products are based on analysis and outputs of 

Capability-Based Assessment (CBA) which in turn are 

supported by high-level, national, military, and joint 

guidance, policy, and data. A CBA is composed of Functional 

Area Analysis (FAA), Functional Needs Analysis (FNA), and 

Functional Solutions Analysis (FSA). These three components 

can be summarized respectively as providing answers to the 

three questions: What is the military problem to be 

studied? How well does DoD address the problem with its 

current program? What should the DoD do to address any 

shortfalls? (Joint Chiefs of Staff, J-8, 2006). The answers 

to these questions comprise a validated user need. 

Typically, an Initial Capabilities Document (ICD) is 

developed based on results from the CBA. Per CJCSI 

3170.01F, 2007) an ICD: 



 28

Documents the requirement for a materiel or non-
materiel approach, or an approach that is a 
combination of materiel and non-materiel, to 
satisfy specific capability gap(s). It defines 
the capability gap(s) in terms of the functional 
area, the relevant range of military operations, 
desired effects, time and doctrine, organization, 
training, materiel, leadership and education, 
personnel, and facilities (DOTMLPF) and policy 
implications and constraints. The ICD summarizes 
the results of the DOTMLPF and policy analysis 
and the DOTMLPF approaches (materiel and non-
materiel) that may deliver the required 
capability. The outcome of an ICD could be one or 
more joint DCRs or capability development 
documents. (p. GL-9) 

Subsequently, additional requirements analysis and 

refinement leads to development of a Capability Development 

Document (CDD). The CDD defines authoritative, measurable, 

and testable capabilities as a prerequisite for a Milestone 

B (DoDI5000.02, 2008) decision allowing entry into the 

System Development and Demonstration (SDD) program phase. 

It provides the basis for development of a system design 

(CJCSM 3170.01C, 2007). 

The correlation of the CDD with the acquisition 

process’ SDD indexes the JCIDS process to the acquisition 

process. For the systems engineering process, logical index 

points could be the functional baseline or the allocated 

baseline, the points of initiation of preliminary design 

and detailed design respectively. This study proposes that 

the CDD could be indexed to either baseline or some 

intermediate point, depending on the nature of the 

requirement. For instance, many major DoN programs comprise 

upgrades to existing systems. For ship programs, cruiser 

modernization, i.e., “CG Modernization,” would be one 
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example. In this case, functional allocation, at least at 

the system or subsystem level, is preordained by the legacy 

architecture. For “new design” programs such as Zumwalt 

Class Destroyer, i.e., DDG-1000, a function such as 

survivability could be allocated during the SDD phase to 

(notionally) some combination of stealth technologies and 

the ability of the ship to maintain seaworthiness if struck 

by an adversary’s weapon. In the former case, the CDD would 

be indexed closer to the allocated baseline. In the latter 

case, the CDD would be indexed closer to the functional 

baseline. 

The Naval Systems Engineering Guide (2004) 

incorporates JCIDS’ activities and outputs into a systems 

engineering context. Three of the 33 normative processes 

adapted from ANSI/EIA-632 (1999), are the most pertinent to 

the JCIDS process. They are: “Acquirer Requirements,” 

“Other Stakeholder Requirements,” and “System Technical 

Requirements.” Details of inputs, activities, and outputs 

from those processes can be found in the Naval Systems 

Engineering Guide (2004).  

D. JCIDS AND INTEGRATED ARCHITECTURES 

Maier (2002) defines architecture as “The structure – 

in terms of components, connections, and constraints – of a 

product, process, or element.” The JCIDS process is 

intended to utilize integrated architectures (CJCSI 

3170.01F, 2007). The glossary in that document defines 

integrated architectures as “…consisting of multiple views 

or perspectives (operational view, systems view, and 

technical standards view) that facilitates integration and 

promotes interoperability across capabilities and among 
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related integrated architectures.” So really, the term 

integrated architectures refers to integration of views as 

opposed to two or more separate architectures that have 

been integrated into one architecture. The meaning of the 

different views, simply stated, is the operational view 

describes what a system does, the systems view describes 

how a system performs, and the technical view comprises 

applicable technical standards that constrain the solution. 

Overall, the JCIDS instruction does not suggest how 

integrated architectures should be used nor does it provide 

any guidance regarding the expected level of detail, or the 

information it might capture from the CBA or overarching 

strategic guidance that flows down to a Joint Integrating 

Concept (JIC), utilized in performing a CBA. 

CJCSM 3170.01C (2007), in its guidelines and 

procedures, both prescribes the use of existing 

architectures to support CBA’s and suggests results of the 

FSA can influence the future direction of integrated 

architectures. So, there is the implication of an evolution 

of integrated architectures that is interdependent with the 

requirements, i.e., JCIDS, process. 

To illustrate, architecture products specified by 

CJCSM 3170.01C (2007) as required for an ICD comprise OV-1 

and others if desired, while architecture products 

specified as required for a CDD include AV-1, OV-1, OV-2, 

OV-4, OV-5, OV-6C, SV-2, SV-4, SV-5, SV-6 and TV-1. These 

products are defined in the DoD Architecture Framework 

(2007). AV refers to All Views, OV refers to Operational 

Views, SV refers to System Views, and TV refers to 

Technical Views. OV’s correlate to operational 
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requirements, SV’s correlate to system requirements, and 

TV’s correlate to standards that constrain the design 

solution, e.g., industry standards for data interfaces. 

What is not explained in either JCIDS policy or the 

Naval Systems Engineering Guide (2004) is the manner in 

which architectures, as “a communication tool…presenting a 

common set of information with multiple views” (Richards, 

2007) can be used as a systems engineering tool, that is, 

the concept of using architectures to organize, analyze, 

and manage the data that comprises CBA inputs and outputs. 

The importance of capturing and preserving the data is 

recognized, but not the value of capturing and preserving 

the interrelationships of the data, an essential element of 

architectures. 

E. JCIDS IMPLEMENTATION INSIGHTS 

GAO Report GAO-08-1060, Defense Acquisitions; DoD’s 

Requirements Determination Process Has not Been Effective 

in Prioritizing Joint Capabilities (2008) concluded: “The 

JCIDS process has not yet met its objective to identify and 

prioritize warfighting needs from a joint capabilities 

perspective.” The report goes on to say DoD lacks an 

effective analytic framework to assess and prioritize 

warfighting needs. The GAO report further cited poor inter-

service coordination and inadequate resources applied to 

JCIDS analysis. The DoD partially concurred with the 

framework finding and concurred with the resourcing 

finding. Though use of architectures is not mentioned in 

the report, architectures can in fact constitute a 

framework for analysis, though the cross-domain, cross-

service architectural infrastructure currently in place is 



 32

not adequate to support such analysis. A recent Rand 

National Defense Institute Report (Gonzales, 2007) notes 

“…DoD uses a bottom-up architectural development process. 

This bottom-up approach can result in much duplication of 

effort across the entire acquisition system and thus make 

the development of a single, integrated architecture that 

summarizes DoD interoperability requirements difficult to 

achieve.” 

The 2007 Rand report (Gonzales, 2007) also offers two 

criticisms of JCIDS. First, it states that the JCIDS 

processes and products are described ambiguously as are 

their relationships with acquisition process products. 

While ambiguity is apparent in some of the descriptions of 

processes and products (e.g., one product being listed as 

both an input and an output of an activity), it is noted 

that the authors of the Rand paper, written at the 

direction of the DoN, did not acknowledge or reference the 

Naval Systems Engineering Guide (2004) or the CJCSI White 

Paper (White paper on CBA, 2006). The former places the 

JCIDS process in a systems engineering context, albeit not 

a systems acquisition context, and the latter provides 

significant insight on practical approaches to planning and 

executing JCIDS analysis, based on experience. The second 

criticism of the report (Gonzales, 2007) cites lack of 

formal traceability from the source of a user need through 

the JCIDS process to disposition. 

A report by the Institute for Defense Analysis 

(Hanley, 2006) was performed under contract to the 

Director, Force Structure and Resources (J8), the Joint 

Staff. The stated objective of the study documented by the 
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report was to produce an analytic framework for 

“capabilities-based planning” processes in the DoD. The 

stated premise was that there are multiple, capabilities-

based planning processes in use, JCIDS being one, that are 

not synchronized with one another. The report concludes 

with a series of recommendations, including “next steps” 

for taxonomies and data that notes a dichotomy between 

analytical and taxonomic breadth, agility, and stability, 

versus depth, complexity, and rigor. The report notes that 

ease of implementation and holistic analysis favors the 

former while analytical fidelity and valid insights favors 

the latter. The report presents no conclusion on the 

possibility of establishing a standardized capability 

taxonomy that could serve all needs of all stakeholders. 

F. CHAPTER SUMMARY 

The JCIDS process, as incorporated into systems 

engineering processes described in the Naval Systems 

Engineering Guide (2004) offers the potential for a cross-

service requirements analysis and prioritization capability 

necessary to truly implement capability-based acquisition. 

It could also use architectures as an analytical and 

management framework. However, research for this study 

indicates the use of architectures in conjunction with 

JCIDS, while prescribed, is not really explained in policy 

or guidance, and to date, the Services’ approaches to 

warfighting requirements continue to align to Service 

perspective rather than a Joint perspective. 
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IV. DOD ARCHITECTURE FRAMEWORK 

A. INTRODUCTION 

To define “architecture framework” first requires 

differentiation of the term “architectures” from the term 

“frameworks.” An architecture does not require a framework. 

The definition of “architecture” cited in the DoD 

Architecture Framework Version 1.5 (2007) is: “the 

structure of components, their relationships, and the 

principles and guidelines governing their design and 

evolution over time.” Every existing system embodies an 

architecture yet relatively few architectures of existing 

systems were developed using an architecture framework. 

Conversely, the term “frameworks” need not be related to 

architectures as is evident from Webster’s II Dictionary 

(1984) definition of the term: “a basic arrangement, form, 

or system.” Rolf Siegers (2005) defined architecture 

framework simply as “a resource that aids in the 

development or description of an architecture.” Maier 

(2004) asserts that an architecture framework exhibits one 

or more of the following five characteristics: 

1. A definition of the word “architecture” 

2. A conceptual framework explaining key concepts or 
terms 

3. An approach to describing architectures 

4. Architectural methods (e.g., creating, analyzing, 
interpreting, realizing) 

5. A theory of how architectures and architectural 
descriptions fit into a larger context (e.g., 
systems engineering, design, etc.) 
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Motivation to establish and implement architecture 

frameworks can be characterized as either driven by 

business considerations, technical considerations, or both. 

An architecture framework used for enterprise product 

development can for example facilitate shorter product 

development cycles, lower manufacturing, support and 

upgrade costs, and a reduced number of functionally 

duplicative products. This can be explained by a 

framework’s ability to make individual product 

architectures comparable and integrable, facilitating 

cross-product insights that would be difficult otherwise. 

From a technical perspective, and for the same reasons 

cited in the business perspective, products developed in 

conformance with an architecture which is in turn developed 

in conformance with an architecture framework potentially 

exhibit a greater degree of interoperability, a simpler 

logistics support infrastructure, and in systems of 

systems, a greater ability to be reconfigured to adapt to 

changes in mission needs. The DoD architecture framework 

(2007) underlies DoD requirements, acquisition, and systems 

engineering policy and guidance for both business and 

technical reasons. 

B. ORIGINS OF THE DOD ARCHITECTURE FRAMEWORK 

According to a GAO report on Defense information 

superiority, (1998) the DoD, as a result of communication 

interoperability problems during the Viet Nam War, has been 

trying since 1967 to establish some form of Department-wide 

Command, Control, Communications, Computers, Intelligence, 

Surveillance, and Reconnaissance (C4ISR) architecture. In 

the intervening years through the early 1990’s, efforts to 
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establish architecture frameworks for C4ISR continued, but 

primarily at the Service level with the expectation but not 

the requisite management structure that Joint 

interoperability would follow. Continuing interoperability 

issues during operations Urgent Fury, (Grenada, 1982), Just 

Cause, (Panama, 1989-90), and Desert Shield/Desert Storm 

(Kuwait, 1991) led to a concept documented in the Joint 

Staff paper “C4I for the Warrior” (1992) and endorsed by 

then-Chairman of the Joint Chiefs, Colin Powell. The paper 

laid out near-term, mid-term, and long-term plans and 

objectives to provide the battlefield commander “access to 

all information needed to win in war…when, where, and how 

he wants it.” The paper did not explicitly call for a DoD 

architecture framework but discussion of utilizing “common 

information exchange standards” and “migration from unique 

military standards to commercial national and international 

standards” showed intent to at least establish a standards-

based framework. 

The Defense Information Systems Agency (DISA) in 

October 1991 issued a set of Adopted Information Technology 

Standards (AITS) as the DoD Technical Architecture 

Framework (TAFIM) for Information Management, a technical 

i.e., standards-based, architecture framework. The TAFIM 

was in turn based on a National Institute of Standards and 

Technology (NIST) product called the “Application 

Portability Profile” (DoD Technical Architecture Framework, 

1994). The Joint Technical Architecture (JTA) supplanted 

the TAFIM which was cancelled in January, 2000. The JTA has 

since been replaced by the current DoD IT Standards 

Registry (DISR). 
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The Deputy Secretary of Defense in October, 1995 

directed an effort to improve processes to ensure adequate, 

Joint C4I for warfighters. Under the direction of ASD(C3I) 

the C4ISR Integrated Task Force was established, and 

subordinate to the task force was the Integrated 

Architectures Panel. That group undertook the task of 

establishing an architecture framework based on three 

architectural views: operational, systems, and technical. 

The group incorporated substantial content from previous 

and ongoing Joint and Service architecture efforts such as 

TAFIM. The panel’s product, the C4ISR Architecture 

Framework, Version 1.0, was approved on 7 June 1996. 

Shortly thereafter, the C4ISR Architecture Working Group 

was established to continue and build upon the work begun 

by the Integrated Architecture Panel. The resulting product 

was Version 2.0 of the C4ISR Architecture Framework, 

approved on 18 December 1997. 

C. EVOLUTION TO THE DOD ARCHITECTURE FRAMEWORK 

The Clinger-Cohen Act of 1996 was intended to improve 

acquisition management of Government Information Technology 

(IT) systems. It established the term “National Security 

System” to mean essentially IT-related defense systems, and 

waived many of the provisions of the act for National 

Security Systems. However, it did require establishment of 

an Information Technology Architecture for National 

Security Systems and responsibility for that was assigned 

to the DoD Chief Information Officer (CIO). The term 

“National Security System” was significantly more inclusive 

than the term C4ISR. From this grew the more broadly-scoped 
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DoD Architecture Framework, using Version 2.0 of the DoD 

C4ISR Architecture Framework as a basis. 

Under the auspices of the DoD Architecture Framework 

Working Group, DoD Architecture Framework Version 1.0 was 

approved on 15 August 2003. Significant changes relative to 

DoD C4ISR Architecture Framework Version 2.0 included: 

• Guidance provided to tailor product selection 
based on the intended use of the architecture. 

• Greater emphasis on the architecture data rather 
than just architecture products. 

• Content (techniques, processes, and examples) was 
added to provide some explanation of architecture 
development and use. 

A revised DoD Architecture Framework, Version 1.5, was 

approved on 23 April 2007. The Version 1.5 document notes 

among significant changes, more emphasis on architecture 

data rather than architecture products, introduction of the 

concept of federated architectures, and incorporation of 

the Core Architecture Data Model (CADM) as an integral 

component of the DoDAF. It is noted that Version 1.0 of the 

framework also asserted greater emphasis on architectural 

data and also presented CADM as “the DoD standard 

architecture data model for Framework-based architecture 

data elements” (DoDAF Version 1.0, 2003) though in that 

version, CADM compliance was not directive. This may be 

explained by the fact that at the time of Version 1.0 

issuance, the Defense Architecture Repository (DAR) which 

requires CADM compliance, was still under development. 

D. REQUIREMENTS TO USE THE DODAF 

DoD policy, which requires use of integrated 

architectures, flows down to DoN policy. In DoDD 5000.1 
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(2003), integrated architectures are mentioned only in the 

context of ensuring interoperability requirements are met. 

There is no direct citation of the DoDAF as a reference or 

requirement. DoDI 5000.2 (2008) also does not directly cite 

the DoDAF as a reference or requirement. DoD 5000.2 (2008) 

does stipulate “…The capability needs and acquisition 

management systems shall use…integrated architectures…in an 

integrated, collaborative process to define needed 

capabilities to guide the development of affordable 

systems” It further stipulates operational, systems, and 

technical views, and the use of the DISR for selection of 

standards. The primary emphasis regarding use of 

architectures is on requirements validation and 

interoperability, not as a vehicle for translating user 

needs into system requirements. 

SECNAVINST 5000.2D (2008) notes that the Defense 

Acquisition Guidebook (DAG 2004) provides “…best practices 

and lessons learned…” to augment DoDI 5000.2 (2008). 

However, Chapter 4 of the guidebook, “Systems Engineering” 

is silent on the use of integrated architectures and does 

not list the DoDAF as a resource. Chapter 7 of the 

guidebook “Acquiring Information Technology and National 

Security Systems” does address the development and use of 

DoDAF-compliant, integrated architectures and cites 

specific architecture products required by policy. However, 

the focus of Chapter 7 is on successful development of net-

centric systems. While net-centricity is a highly valued 

attribute of emergent warfare systems, it is only one facet 

of the overall set of requirements and therefore represents 

only a portion of the requirements analysis process. 
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DoDD 4630.5 (2004), Interoperability and 

Supportability of Information Technology (IT) and National 

Security Systems (NSS) and DoDI 4630.8 (2004), Procedures 

for Interoperability and Supportability of Information 

Technology (IT) and National Security Systems (NSS) provide 

specific direction with regard to the development and use 

of integrated architectures. DoDI 4630.8 (2004) notes 

“Integrated architectures are the common foundation for 

capability-focused, effects-based IT and NSS 

interoperability and supportability processes…”. 

SECNAV Instruction 5000.2D (2008) says about 

integrated architectures: “All DoN new start IT systems, 

including NSS, that exchange information with external 

systems shall comply with NR KPP (Net Ready Key Performance 

Parameters) and FORCEnet integrated architecture and other 

elements of the FORCEnet Consolidated Compliance Checklist 

(FCCC) guide as described by the CDD at program 

initiation,” i.e., normally Milestone B. The Net-ready KPP 

stipulation requires production of specific DoDAF-compliant 

architecture products. The document also stipulates use of 

a Systems Engineering Plan (SEP) and references OSD SEP 

preparation guide, Version 2.01 (2008). SECNAVINST 5000.2D 

(2008) states “SEP shall address development of a systems 

architecture using the DoDAF, the FORCEnet integrated 

architecture, and the Naval open architecture.” 

The Naval Systems Engineering Guide (2004), based on 

EIA 632 (1999), does not directly specify development or 

use of DoDAF architecture products, though by inclusion of 

the JCIDS process in the systems engineering process, ICDs, 

CDDs and CPDs are included and so, by extension, are DoDAF 
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architecture products. The Naval Systems Engineering Guide 

(2006) takes a holistic, DOTMLPF, i.e., doctrine, 

organization, training, materiel, leadership and education, 

personnel, and facilities, perspective to systems 

engineering. Interoperability requirements are not singled 

out from the rest of systems engineering considerations as 

they are in other DoD and DoN policy and guidance 

previously discussed in this chapter. 

E. DEMONSTRATED UTILITY AND VALUE OF DODAF 

This section reviews and analyzes literature that 

explains and summarizes application of the DoDAF and the 

insights it provides or decisions it supports. It also 

provides some overall characterization of the use of the 

DoDAF, the reported benefits and shortcomings in content or 

application, and the means by which practitioners have been 

able to improve application of the DoDAF or the value it 

provides. A substantial, systems engineering literature 

search from five years ago to the present, and a selective 

search of the last 10 years, did not identify significant 

“case study” type literature reporting DoDAF successes. 

This might be construed as evidence that among systems 

engineering researchers and practitioners DoDAF success 

stories are not widespread. A success story for the 

purposes of this study would be defined as implementation 

of DoDAF that results in improvement of the systems 

engineering process, measureable in terms of cost or 

schedule improvement or risk mitigation to a degree that 

more than offsets the cost and time required to develop, 

maintain, and utilize a DoDAF-compliant architecture. 
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Although significant literature addressing specific 

DODAF use and effectiveness was not found, a Microsoft 

PowerPoint presentation from an OASD, NII-sponsored, 

Government, DoD, and industry-wide survey (OASD (NII) 

Architecture Survey, 2005) was found that characterized 

DoDAF architecture usage in general, and summarized survey 

comments pertaining to specific instances of DoDAF 

application and the consequent value accrued. There were 

120 respondents. Demographics of DoD architects were 

presented, types of decisions enabled by DoDAF 

architectures were identified, and DoDAF strengths, 

weaknesses, and suggestions for improvement were presented. 

A review of salient insights from that survey offers 

insight on the “state of the practice” and practitioners’ 

beliefs of the value of DoDAF architectures. 

Almost half of the architects were contractors, i.e., 

performing architecture work in support of Government 

customers or Government contracts, half had one-to-five 

years experience, and almost half worked on teams of one to 

five. The most frequently used training source was tool 

vendors, i.e., tools in the sense of software supporting 

documentation and development of architectures. The 

predominance of contractors as architects, the relative 

inexperience of architects, and the bias toward small 

architecture teams may be indicative of lack of commitment 

to architecture development and use at the program level by 

the Government, and a tendency for architects to learn how 

to develop architectures through their own experience 

instead of building on a knowledge base of others’ 

experience. 
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Respondents represented 53 organizations and over 80 

architecture projects. Almost 75% of respondents used 

Telelogic’s “System Architect” tool. Telelogic’s web site 

indicates more than 1000 commercial, government and 

military users of their software product line world-wide. 

The software product line includes System Architect as well 

as other engineering tools. These figures lie in contrast 

to the scarcity of case study literature. The numbers in 

fact indicate architecture development is being conducted 

on a fairly broad scale. One explanation of this contrast 

is that development of DoDAF architecture products is 

mandated for most DoD programs, yet they are often 

developed in isolation of the system engineering process, 

undermining much of the potential value of architectures 

and therefore explaining why “success stories” are hard to 

find. The survey did not address what the effect might be 

if DoDAF architectures were developed solely at the 

discretion of a program manager or chief systems engineer. 

Some of the most interesting survey data derives from 

answers to open-ended questions. Three questions in 

particular provide insight on architects’ beliefs of the 

utility and value of architectures: 

 
• What values, Benefits, and Impacts are 

attributable to their organization’s Use of 
Architectures? 

• What decisions are expected to be made based on 
architecture analysis? 

• What are your architecture Successes; where 
architectures made a difference? 
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In the context of the survey, key among listed values, 

benefits, and impacts were: “Common frame of reference for 

all manner of discussions and decision-making” and 

“Supports decision-making and identification of issues.” 

Both of those benefits correlate to the use of 

architectures during the requirements definition process. 

Among expected decisions supported, “…negotiate MOAs (i.e., 

Memoranda Of Agreement) and communicated requirements with 

contractors and users” and “Identify capability gaps…report 

capabilities based on requirements…prioritize projects” are 

germane to this study. Some of the most significant, 

architectural successes listed were those asserting that 

architectures provided objective justification for initial 

or continuation of funding for a project or program. That 

suggests use of architectures to support the requirements 

definition process, consistent with the intent of the JCIDS 

process. 

Survey respondents commented on DoDAF strengths and 

weaknesses. Themes expressed in “strengths” were maturity, 

wide acceptance as a standard, and the consequent ability 

to compare and analyze architectures on a common basis. 

Weaknesses expressed concerned both development and use of 

architectures. With regard to development, there was 

concern that in spite of the standardized structure of 

DoDAF, there was too much variability in lexicon, taxonomy, 

metadata and other attributes to allow integration or 

comparison of architectures, above-mentioned strengths 

notwithstanding. There was also concern that architectures 

were not capability-focused, in other words, not inclusive 

of the breadth of DOTMLPF. Finally, among significant 
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weaknesses listed was lack of clear guidance and policy for 

what to do with architectures that have been developed. 

Russell (2005) notes: 

…the output of most architecture efforts tends to 
be a three ring binder that weighs five pounds or 
so which no one ever reads. This has given a bad 
name to the architecting process and has left 
many decision makers asking why they spent their 
limited money and time producing architectures. 

F. NEXT STEPS IN THE EVOLUTION OF THE DODAF 

Update of the DoDAF to Version 2.0 is being managed by 

the Architecture and Interoperability Directorate, under 

the Office of the DoD CIO. The organizational structure, as 

presented by Mr. Brian Wilcynski of the DoD CIO is shown in 

Figure 6 (Wilcynski, 2007). 

 

 
Figure 6 DoDAF Development Organizational Structure, From 
Wilcynski, 2007. 

Development of this update to DoDAF Version 1.5 is ongoing. 
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The vision statement for the DoDAF 2.0 is: “To enable 

the development of architectures that are meaningful, 

useful, and relevant to the DoD Requirements, Planning, 

Budgeting, Systems Engineering, and Acquisition decision 

processes” (Wilcynski, 2007). The stated (Wilcynski, 2007), 

high-level areas of focus are: 

• Focus on information requirements versus products 
as in previous versions 

• Be driven by decision process requirements 

• Support DoD shift to service orientation of 
architectures 

• Support a federated enterprise architecture 
approach 

In terms of scope, six DoD processes the DoDAF is 

intended to support are: JCIDS, Systems Engineering, 

Operations, Portfolio Management, Program, Planning, 

Budgeting, and Execution, and Defense Acquisition System. 

As of April, 2008, requirements-gathering workshops had 

been conducted in support of the first three of those 

processes. 

Publication of the DoDAF Version 2.0 is expected 

before the end of Fiscal Year 2009. During development, a 

series of plenary sessions is being held to keep the 

architecture community in general apprized, and to solicit 

feedback and comments. Briefs are provided at the working 

group level: Data, Method, and Presentation, as shown in 

Figure 5. 

G. CHAPTER SUMMARY 

In the introduction of this chapter, reference was 

made to five attributes that could be used to characterize 
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an architecture framework: An architecture definition, key 

terms, an approach for describing architectures, 

architectural methods, and where architectures fit in a 

larger context (Maier, 2004). From the first standards-

based framework through the in-development DoDAF Version 

2.0, those attributes capture both the intent of framework 

development efforts and the continuing shortfalls. By 

virtue of the fact that DoDAF use is embedded in DoN policy 

and guidance, it is the standard for architectures in DoN. 

However, considerable variation in DoDAF architecture 

implementation is evident within the boundaries of DoDAF 

compliance, such that architectures for different but 

related systems in many cases cannot be effectively 

compared or integrated. The current framework is necessary 

but not sufficient to ensure the effective use of 

architectures in acquisition and systems engineering. The 

DoDAF Version 2.0 is intended to address some long-standing 

shortcomings, but the framework is only one part of what 

should be a multi-faceted approach to realizing the 

potential of architectures in the systems engineering 

process. 
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V. INTEGRATING KEY PROCESSES WITH THE OVERALL 
SYSTEMS ENGINEERING PROCESS 

A. INTRODUCTION 

Previous chapters discussed the systems engineering 

process, the DoD requirements process, i.e., JCIDS, the DoD 

architecture framework, and to a limited extent, the DoD 

acquisition process. These processes in effect constitute a 

complex system-of-systems. The objective of this study is 

to examine the portions of the processes that relate to 

translation of user needs to a comprehensive, unambiguous, 

verifiable set of system requirements. This chapter 

identifies the critical components for successful 

requirements translation in a systems engineering context, 

the necessary elements of a good system specification, and 

considers how best to integrate necessary process 

components that lie both inside and outside DoD systems 

engineering process. Weaknesses in the current processes 

and recommendations for improvement are identified and 

involve both technical and managerial components. This 

study is primarily focused on the technical aspect, though 

key, high level management issues are recognized. 

B. TRANSLATING USER NEEDS TO SYSTEM REQUIREMENTS 

In its simplest form, a user need can be expressed in 

a single requirement that embodies a set of requirements 

clearly understood by the person receiving the requirement. 

For example, if someone asks “Do you have a pencil I can 

borrow?” that is an easily understood user need. The user 

needs a pencil. Not stated, but understood with a 

reasonable degree of certainty are the following: The user 
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wants a pencil with a point on it, i.e., not broken. The 

user wishes to use the pencil for some task and at the 

completion of the task, will return the pencil. The user 

does not particularly care whether the pencil is a 

mechanical or “wooden” pencil. Does that leave any 

uncertainty? Yes. Maybe the receiver of the request has 

only a red marking pencil. In all likelihood, that person 

will say “I’ve only got a red pencil. Is that OK?” At that 

point, there has been a statement of user need and the 

“developer” has communicated back to develop a more precise 

understanding of the need. After all, the user may have 

wanted a pencil only to scratch a spot in the middle of his 

back, in which case the type of pencil and whether it had a 

point is inconsequential. Nonetheless, “user” and 

“developer” must communicate to ensure the product 

satisfies the need. Communication must be in clear and 

unambiguous terms. The developer either identifies a 

solution that fully satisfies the user need, or a solution 

is negotiated that provides a lesser, but acceptable 

solution, or, the developer indicates there is no feasible 

solution, i.e., no pencil or other implement of inscription 

is available. 

If the object of the example is changed from a pencil 

to $500, immediately the requirements definition and 

feasibility of a solution become more complex. How long 

will the loan be for? Will it be interest-free? Can the 

“user” be depended on to pay off the loan? Maybe the user 

really doesn’t need $500 but is simply unaware of other 

means of financing that would not require a large down-

payment. Maybe the intended use of the money is an 

important factor. Is the money to pay for medicine for a 
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sick child or to bet on horse-racing? Communications with 

the user might break down if the user and developer cannot 

reach a common understanding of the need. Thus, even this 

trivial example can easily be made complex. 

The previous example, though trivial in comparison 

with typical DoN warfighting requirements, still embodies 

some important principles and concepts. The user need can 

usually be expressed singularly or in a very small number 

of statements. Chief of Naval Operations Admiral Roughead’s 

CNO Guidance (Roughead, 2008) at the top level, is simply: 

“Build the Future Force, Maintain Warfighting Readiness, 

and Develop and Support our Sailors, Navy Civilians, and 

Families.” That is the CNO’s requirement. 

The rest of the Navy’s operational requirements are 

subordinate and should be traceable, noting that as 

requirements are flowed down from the CNO guidance level to 

the system requirement level, complexity increases by 

orders of magnitude. Only in trivial cases will a statement 

of user need be sufficiently comprehensive and complete to 

fully define system requirements and establish a basis for 

product development. As stated in Systems Engineering and 

Analysis (Blanchard, 2006): 

Accomplishing the needs analysis in a 
satisfactory manner can best be realized through 
a team approach involving the customer, the 
ultimate consumer or user (if different from the 
customer), the prime contractor or producer, and 
major suppliers, as appropriate. The objective is 
to ensure that the proper communications exist 
between all parties involved in the process; 
i.e., the ‘voice of the customer’ must be heard, 
and the system developer(s) must respond 
accordingly. 
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There is a well-known and accepted systems engineering 

model first documented in the U.S. by Forsberg and Mooz in 

1991 (Forsberg, 1991), referred to as the “Vee” model, 

shown in Figure 7. The process starts at the upper left 

hand leg of the vee with “understanding customer 

requirements” and progresses downward toward the bottom of 

the vee through a process of decomposition and definition 

from which system synthesis can begin. However, there can 

be a step in the system engineering process that precedes 

the beginning of the “Vee” model and is a process of 

composition rather than decomposition. 

 

Figure 7 Engineering Vee Model, From Blanchard, 2006. 

System requirement development is a process of 
decomposition. Synthesis of a solution is a process of 
composition. The “Vee” Model illustrates the progressively 
more detailed system requirements followed by the 
aggregation and integration of solution elements. 
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Mr. Michael Collins, president of Advantage 

Development, Inc., in a presentation to the NDIA (Collins, 

2008), asserted that engineering requires an “initial 

point,” defined by him as “Engineerable Requirements: the 

set of engineering requirements necessary and sufficient to 

initiate the successful engineering and production of the 

system.” He further argues that architecting is a means of 

forming separate elements into a “coherent whole” that can 

serve as that initial point. The concept of needs analysis 

through a team-based series of communications described by 

Blanchard (2006) can be combined with the architecture 

process mentioned above to create a more rigorous, 

assessable process to derive a set of system requirements 

that tightly coupled to stated user needs. 

The fundamental concept of translating user needs to 

developer’s requirements, as well as where this step lies 

in an overall systems engineering model have been 

considered to this point at a high level of abstraction. In 

order to characterize an actionable process however, more 

detail is needed. For example: How are stakeholders 

identified? How are user needs captured in a logical, 

consistent manner? How is it known when this step is 

complete and correct? How is this most critical step 

performed with rigor and discipline? Recent systems 

engineering literature offers some answers to these 

questions. Bahill (1997) presents an overview of what he 

terms the “requirements discovery process.” He asserts 

“…there is a uniform and identifiable process for logically 

discovering the system requirements regardless of system 

purpose, size, or complexity,” and credits that belief to 

other authors. The steps (Bahill 97) identifies are: 
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Identify Customers and Stakeholders 

1. Understand the Customer’s Needs 

2. Define and State the Problem 

3. Write System Requirements 

4. Review Requirements with Customer 

5. Define Figures of Merit 

6. Validate System Requirements 

7. Verify Requirements 

8. Identify Technical Performance Measures (i.e., 
Key Performance Parameters in DoD parlance) 

9. Continue to review requirements with the customer 
throughout the development process. 

 

This study is primarily concerned with steps “1” 

through “7.” The first step, identifying customers and 

stakeholders, is sometimes discussed superficially in 

general systems engineering texts, simply saying it is very 

important. The terms “customer” and “stakeholder” are 

closely related. Bahill (1997) defines a customer as 

“…anyone who has a right to impose requirements on a 

system.” Carson (2004) defines a stakeholder as “…anyone or 

any organization involved with or affected by the system 

lifecycle…”. The group defined by the former, more 

restrictive definition can be considered a subset of the 

group defined by the latter definition. That is, all who 

have a right to impose requirements on a system presumably 

are affected by the system, but not all those who are 

affected by the system have a right to impose requirements. 

To illustrate, consider in light of Bahill’s (1997) 

definition of customer, the following example of a failed 

system from Bahill (2005): Management at Ford in the 1950’s 
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overrode marketing recommendations and imposed requirements 

resulting in the Edsel automobile, an automobile without a 

market, and therefore a failed design. By Bahill’s 

definition, management acted as a customer while marketing 

did not. Management withheld from marketing the right to 

impose requirements, leaving marketing as a stakeholder but 

not a customer. Management failed to recognize marketing’s 

role as a representative for the end customer, those who 

would or would not buy the automobile. Next, consider 

Carson’s (2004) definition of stakeholder. He specifically 

identifies and includes “nature” and those not allowed to 

approve requirements as stakeholders. Those categories 

would not fit Bahill’s customer definition, but Carson is 

suggesting those members of the larger stakeholder set 

should be treated as customers; their requirements should 

be considered. In his view, someone must play the role of 

spokesperson for those stakeholders. 

An example of failure to engage stakeholders was 

evident in a 2001 FBI project, a three year development 

contract to upgrade the Federal Bureau of Investigation’s 

(FBI’s) IT infrastructure and to design what was called the 

“Virtual Case File” which would allow the FBI to move from 

its antiquated paper-based investigation and records to 

computer-based investigation and records. A National 

Research Council letter report (McGroddy, 2004) provided a 

status of the project and concluded in part: "In essence, 

the FBI has left the task of defining and identifying its 

essential operational processes and its IT concept of 

operations to outsiders." The software-based system lacked 

some essential capabilities. It appeared that among other 

issues the FBI used contractors as FBI stakeholders, not 
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agency stakeholders themselves. The system developer in 

turn may not have exercised due diligence in validating the 

requirements. The program, nominally a $170M program, was 

cancelled and begun over with a new development contractor, 

eventually costing an additional two times the original 

program cost. 

Carson (2004) suggests identifying stakeholders 

through a process of examining the system in its 

environment through all parts of its life cycle, 

development to disposal. For U.S. Navy warfare systems, it 

should be possible to establish a standard “menu” of 

stakeholders, though consideration should be given to any 

possible emergent stakeholders, particularly in the public 

domain. For instance, a requirement for a nuclear power 

plant on a ship will affect where a ship can be home-

ported. The community adjacent to the proposed home port 

becomes a stakeholder. Or, if it was known that a ship 

would ultimately become an artificial reef (i.e. wildlife 

management or tourism stakeholder), consideration might be 

given in its design to ease its preparation for that final 

role. The associated state department of natural resources 

might be a stakeholder. 

The developer’s understanding of customer needs is 

also critical and depends on effective, iterative, 

communication between customer and developer utilizing 

commonly agreed-upon semantics. This process of 

communication, translation, and negotiation merits further 

discussion. One component of the process is establishing a 

framework of requirements, e.g., hierarchy and categories. 
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Among the ways to categorize requirements, one is 

differentiating functional requirements from non-functional 

requirements. Functional requirements represent something 

the system must do. Non-functional requirements typically 

represent how well the system must do something. Among non-

functional requirements, some pertain to one or a limited 

number of functions and others are overarching, such as 

satisfying operator safety standards. 

There are several, well-documented methods of 

capturing user requirements in a manner that provides some 

assurance of completeness and correctness; Carson, (2004) 

summarizes them. They include checklist approaches, Quality 

Function Deployment-type approaches, use case and other 

functional analysis, series of reviews, and “context 

analysis,” the primary topic of that paper. Each has 

strengths and weaknesses and each is likely to be 

effective, depending on the application. One method stands 

out as being fundamentally different: Use cases. Use cases 

have the ability to capture the required functional 

behavior of a system; the other methods generally result in 

“shall” statements.” Defining required behavior with “shall 

statements” can be cumbersome and lacking in context. 

However, use cases alone will not capture all requirements. 

Daniels (2005) has suggested a hybrid approach that 

augments use cases to provide a comprehensive set of 

requirements, and uses shall-type (i.e., plain language) 

requirements to add detail missing from use cases. 

The hybrid approach appears both sound and robust, 

giving consideration to both the effective communication 

element of translating user needs into system requirements 
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as well as the need for comprehensive requirements that 

capture the required behavior of a system, i.e., what the 

system has to do under conditions of use. Furthermore, this 

approach supports the use of architectures as a vehicle to 

communicate and reconcile user needs into system 

requirements. Daniels (2005) recognizes both the need for 

capturing a complex set of requirements in its entirety, as 

well as communicating requirements between user and 

developer in terms both understand. That is a strength of 

architectures, when applied properly. Cole (2006) asserts: 

The complexity of the SoS environment makes it 
difficult (if not impossible) to describe the 
problem with requirements alone. Architectures is 
a critical aspect of describing the problem, 
especially when user needs, technologies, 
organizational dynamics and external interfaces 
are continuously changing. 

Cole (2006) focuses on the system engineering 

complexities that accompany systems-of-systems (SoS) 

development. While SoS is not the focus of this study, 

practically all non-trivial, Naval warfare system, systems 

engineering problems are SoS problems. In other words, U.S. 

Navy warfare systems are rarely standalone systems. They 

are part of or directly interact with other systems. 

Operational and systems architectures are implicit if not 

explicit. 

Schindel (2005) discusses requirements statements as 

transfer functions and describes the necessary roles of 

“requirements prose” engineering models in describing 

complex systems, again reinforcing the idea that models, 

i.e., architectures, and prose, i.e., shall statements, 
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must be used together to describe a set of requirements and 

communicate those requirements between user and developer. 

Referring back to Bahill’s (1997) 10 steps to 

translate user needs into system requirements, the last six 

steps all contribute to ensuring completeness and 

correctness of the requirements. Discussion to this point 

has focused on requirements capture, essentially the first 

four steps, recognizing opportunities exist after that 

point to update or correct requirements. Determination of 

requirements completeness and correctness is the objective 

of validation and verification processes. Bahill (1997) 

described validation as ensuring requirements are 

consistent with one another, that a feasible solution 

exists, and that it can be demonstrated that the system 

fulfills its requirements. He describes requirements 

verification as determination that a requirement has been 

met, using testing, examination, or analytical methods. 

Requirements validation and verification are necessary but 

may not be sufficient to ensure requirements completeness. 

Validation and verification processes operate only on those 

requirements that have been recorded. Although validation 

and verification may lead to discovery of “missing” 

requirements, it is not assured. 

Procedures exist to review requirements for 

completeness and correctness. Carson’s (2004) objective was 

to “Develop and validate a methodology that can produce a 

complete set of requirements and that can determine the 

completeness of a set of requirements.” Note that in this 

case, completeness is defined to include correctness. That 

is, if requirements are complete, they are correct. Carson 



 60

(2004) cites Mar (1994) when listing the following five 

characteristics of requirements completeness. Mar (1994) 

notes that among those five, numbers “1” and “3” are 

hardest to ensure: 

 
1. All categories of requirements are addressed 

2. All impositions of higher level requirements are 
accounted for 

3. All scenarios and states are recognized and 
described 

4. All assumptions are documented 

5. Requirements are understandable and unambiguous 

 

Carson (2004) also identifies two requirements cases: 

Those that do not inherit higher level requirements and 

those for which a complete set of requirements can be 

derived from higher level requirements. Typically, Naval 

warfare system requirements represent a third, hybrid case. 

In all cases there will be higher level requirements 

levied, but some higher level requirements cannot be 

decomposed or allocated in such a way that all lower level 

requirements can be unambiguously shown to support the 

higher level requirement. This precludes the use of 

allocation and traceability for determining completeness. 

For example, a ship’s signature, e.g., radar, acoustic, IR, 

etc., a ship’s electronic countermeasure capability, a 

ship’s ability to withstand weapon strikes, and a ship’s 

missile and torpedo weaponry all affect a ship’s self-

defense capability. But, even at the “ship self-defense” 

level of abstraction, it may not be possible to 

quantitatively trace lower level requirements upward due to 

limitations in modeling. In this case, determination of 
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requirements completeness may have to be conducted in the 

manner the manner of Carson’s (2004) first case; as if 

higher level requirements are not inherited. 

Carson (2004) focuses on the instance where higher 

level requirements are not inherited and suggests a set of 

requirements is complete if all stakeholders approve the 

requirements. His assertion is if all stakeholders are 

identified, approval of the requirements assures 

requirements completeness. This leads back to the issue of 

communication and understanding. What constitutes a 

stakeholder review? How can a stakeholder be assured his 

judgment to approve a set of requirements is well-founded? 

Carson offers a “formal approach to completeness,” the 

details of which are beyond the scope of this study. 

However it is important to note this approach incorporates 

requirements modeling and requirements prose as previously 

discussed. His approach also adds the stipulation that 

pragmatically, only a subset of the entirety of 

combinations of interface behavior and conditions can be 

analyzed. Those sets of conditions that do not affect 

required behavior are set aside. 

Thus, an argument is made that for Naval Warfare 

systems, methods exist to translate user needs to system 

requirements utilizing models requirements and architecture 

models and plain language, and, that methods exist to 

ascertain completeness of system requirements. The 

scalability of this approach has not been shown and the 

specific models or the basis for selecting models has not 

been addressed. There have been instances where modeling of 

requirements was used to generate prose requirements, 



 62

therefore assuring consistency between the two. Next, this 

hybrid, model and prose type of approach will be compared 

with DoD and DoN policy and guidance to determine the 

viability, practicality, and issues that would be 

associated with employing this approach in a DoN context. 

C. TRANSLATION OF USER NEEDS IN THE CONTEXT OF DON POLICY 
AND GUIDANCE 

In the previous section, a high-level procedural basis 

for translating user needs into a complete set of system 

requirements was described. Requirements completeness 

across the DOTMLPF spectrum, analytical rigor, and 

effective communications between the user and the developer 

were emphasized. In this section, the JCIDS process and the 

DoN requirements definition process (Naval Systems 

Engineering Guide, 2004) are examined to assess the extent 

to which they facilitate translation of user need to system 

requirements in the manner described in the previous 

section. 

A complete statement of user need should contain, or 

reference, the following: 

 
1. Traceability of the user need to higher level 

requirements (e.g., CNO guidance) and Joint 
warfighting taxonomy (i.e. JOCs). 

2. Definition of concept of operation for the system 

3. Operational conditions for the system; 
environmental, threat, and other 

4. Definition of the architecture within which the 
system must operate. 
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Functional Area Analysis (FAA), part of the JCIDS 

Capability-Based Assessment, is described in CJCSM 3170.01B 

(2007) in the following manner: 

… identifies the mission area or military problem 
to be assessed, the concepts to be examined, the 
timeframe in which the problem is being assessed, 
and the scope of the assessment. …The FAA 
describes the relevant objectives and CONOPs or 
concepts, and lists the relevant effects to be 
generated. Since a capability is the ability to 
generate an effect, the FAA connects capabilities 
to the defense strategy via objectives, concepts, 
and CONOPs. 

The White Paper on CBA (2006) also notes the 

importance of scenario selection as part of the Capability 

Based Assessment (CBA) to provide a range of enemies, 

environments, and access challenges. Therefore, FAA 

addresses high-level requirements traceability, CONOPS and 

operational conditions, but not architecture. 

Subsequently, Functional Needs Analysis (FNA) and 

Functional Solutions Analysis (FSA) assess current 

capabilities, determine whether gaps exist, and develop 

potential approaches to resolve identified capability gaps. 

The White Paper on CBA (2006) notes in reference to the 

entirety of JCIDS analysis: 

Architectures are useful (and probably essential) 
once you have decided what to do, as they provide 
a framework to help determine how to do it. JCIDS 
capability assessments, however, tend to be 
concerned more with what to do… 

This statement is inconsistent with a statement made 

later in the same document: “Your statement of needs has to 

be tempered by rough feasibility, cost, and schedule 

estimates, and you have to have some idea of what the DoD 
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is willing to tolerate for additional investments in your 

areas.” This statement indirectly suggests architectures 

are needed during the JCIDS process, as they provide 

constraints, conditions, interfaces and other information 

that are important in the development of feasible, 

potential approaches to address capability gaps. 

Following the statement of user need, effective, 

iterative communication between the user and developer is 

needed to successfully evolve the user need into a compete 

set of system requirements. The next consideration then, is 

whether the JCIDS process facilitates this dialog, taking 

into account the volume and complexity of the information 

being exchanged and the differences between user and 

developer lexicons. JCIDS analyses are typically based on a 

number of different and changing requirements documents and 

analytical databases. While the prescribed structure of 

JCIDS-required analytical artifacts embodies some rigor in 

terminology, content, and underlying requirements, there is 

no data structure required that would maintain data 

relationships, data currency, or data source and 

credibility. Architectures based on a standard framework, 

e.g., DoDAF, could serve this function. DoD and DoN policy 

and guidance do not preclude it, but neither do they 

prescribe it. 

The development of system requirements is part of the 

Navy Systems Engineering Guide (2006) “Requirements 

Definition Process” and its three sub-processes: “Acquirer 

Requirements,” “Other Stakeholder Requirements,” and 

“System Technical Requirements.” The primary product of 

this portion of the systems engineering process is a System 
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Requirements Document (SRD). This process can also be 

indexed in a generic systems engineering sense to the 

“conceptual design phase” (Blanchard, 2006) whose output is 

a system specification or “A spec.” 

Before examining the adequacy of DoD/DoN policy and 

guidance for development of system requirements, a brief 

discussion of the term “system requirements” is warranted. 

SECNAV Instruction 5002.D (2008) refers to a “System Design 

Specification” and describes it as flowing down from the 

Capability Development Document and providing basic 

functional requirements as well as major program 

requirements of the preferred solution alternative. 

SECNAVINST 5000.2D (2008) is DoN acquisition policy. The 

Navy Systems Engineering Guide (2006) uses the term “System 

Requirements Document,” noting that it evolves into a 

system specification. In the guide, the tasks necessary to 

produce a System Requirements Document and its content are 

described. The guide is based on EIA 632 (1999). 

Other policy and guidance documents use various terms 

for specifications and requirements, some well defined, 

e.g., DoD-Std-961E, and others not. The IEEE Guide for 

Developing System Requirements Specifications (IEEE Std 

1233, 1998) is noteworthy for several reasons. First, it 

provides definitions for terms which comprise the metadata 

for requirements and specifications. Many of those terms 

are linked to their own IEEE standards. Understanding and 

agreement between user and developer on the metadata and 

their definitions, is a prerequisite to users and 

developers being able to successfully communicate about a 

specific set of system requirements. Second, IEEE Std 1233 
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(1998) specifically recognizes the importance and challenge 

of communicating requirements between user and developer. 

Specifically: 

A System Requirements Specification (SRS) has 
traditionally been viewed as a document that 
communicates the requirements of the customer to 
the technical community who will specify and 
build the system. The collection of requirements 
that constitutes the specification and its 
representation acts as the bridge between the two 
groups and must be understandable by both the 
customer and the technical community. One of the 
most difficult tasks in the creation of a system 
is that of communicating to all of the subgroups 
within both groups, especially in one document. 
This type of communication generally requires 
different formalisms and languages. 

Finally, while IEEE Std 1233 (1998) provides detailed 

guidance for developing system requirements specifications, 

it does not prescribe an industry-wide specification 

standard. It states: “This guide is written under the 

premise that the current state of the art of system 

development does not warrant or support a formal standards 

document.” Experience has shown and research supports the 

difficulty of creating specific templates for requirements 

and specification types. The recursive and iterative nature 

of the engineering development process leads to a continuum 

of specification and requirement types. Unfortunately this 

causes difficulty when trying to synchronize requirements, 

acquisition, and systems engineering processes. 

Returning to the question of adequacy of policy and 

guidance for development of system requirements, (Naval 

Systems Engineering Guide, 2004) does provide the following 

details for each of the three previously discussed sub-
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processes which comprise the Requirements Definition 

Process: Preceding Processes, Inputs, Entry Criteria, 

Tasks, Outputs, Exit Criteria, Next Processes, Agents, 

Tools, References, and Metrics and Measures. In many cases, 

details are found in other, cross-referenced (Naval Systems 

Engineering Guide, 2004) processes or appendices. However, 

as with JCIDS, there is no guidance for organizing or 

managing the metadata or data which comprise the 

requirements, use of tools or models, or translating 

between models and prose-based documents. IEEE Std 1233 

(1998), while it does not address the use of architectures, 

provides substantial guidance on approaches to development 

and management of system requirements between user and 

developer communities. DoD and DoN guidance lack this 

detail. 

D. CHAPTER SUMMARY 

DoD and DoN requirements, acquisition, and systems 

engineering processes and associated guidance and standards 

comprise a substantial amount of interrelated data, even 

when limited to discussion of requirements development as 

in this study. Research performed for this study has 

revealed semantic inconsistencies and ambiguities as well 

as a multiplicity of system engineering processes, guidance 

and standards. It is difficult to trace data and process 

relationships in a systems engineering context. As a 

consequence it is difficult to rigorously and unambiguously 

identify a user need and translate it into a comprehensive 

and complete set of system requirements. Just the lack of 

specificity of roles and accountability for each of the  
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necessary activities in the requirements translation 

process represents a significant challenge for successful 

requirements development. 
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VI. APPLICATION TO NAVAL WARFARE SYSTEMS 

A. INTRODUCTION 

The premise for this study is the assertion that for 

Naval warfare systems, the process of translation of user 

needs to system requirements is not sufficiently rigorous 

and repeatable to ensure consistently complete and valid 

system requirements. This results in significant increases 

to program cost, schedule and risk as requirements issues 

are resolved later in development. Support for this 

assertion is found in a recent Government Accounting Office 

Report (GAO-08-782T, 2008): 

At the strategic level, DOD does not prioritize 
weapon system investments and the department’s 
processes for matching warfighter needs with 
resources are fragmented and broken. Furthermore, 
the requirements and acquisition processes are 
not agile enough to support programs that can 
meet current operational requirements. At the 
program level, programs are started without 
knowing what resources will truly be needed and 
are managed with lower levels of product 
knowledge at critical junctures than expected 
under best practices standards. In the absence of 
such knowledge, managers rely heavily on 
assumptions about system requirements, 
technology, and design maturity, which are 
consistently too optimistic. This exposes 
programs to significant and unnecessary 
technology, design, and production risks, and 
ultimately damaging cost growth and schedule 
delays. 

Previous chapters discussed DoN requirements and 

systems engineering processes, suggested system 

architectures are under-utilized as a means of facilitating 

and integrating those processes, and described conceptually 
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how and when architectures should be used and the benefits 

that would accrue from their use. This chapter provides a 

discussion of the use of architectures with consideration 

for typical constraints and characteristics of warfare 

systems employed by U.S. Navy surface combatants, e.g., 

cruisers and destroyers. 

B. CHARACTERIZATION OF U.S. NAVY SURFACE WARFARE SYSTEMS 

Current warfare system development efforts for surface 

combatants are predominantly modifications, i.e., 

evolutions of existing systems. Even the warfare systems 

being developed for the DDG 1000, Zumwalt class destroyer 

will be predominantly evolutionary. The following 

illustrates the degree to which the Navy will be using 

currently fielded systems for many years to come. 

There are currently 62, DDG 51, Arleigh Burke class 

destroyers either in the Fleet, under construction, or 

under contract. The earliest any of those ships is planned 

for decommissioning is 2026. Of the 22 (of 27 constructed) 

Ticonderoga class cruisers remaining in commission, none is 

planned for decommissioning before 2026. Currently, only 

three Zumwalt class destroyers are planned. A follow-on 

cruiser requirement i.e., CGX, is underway but has not 

reached Milestone B, the point at which it becomes an 

acquisition program. 

In addition to the length of time current ship classes 

will continue to form the backbone of the surface fleet, 

the time required to modernize a ship class is 

considerable. The time required for construction of a 

cruiser/destroyer and the annual production rate promotes 

significant configuration differences among ships from 
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oldest to newest. This adds further complexity to upgrade 

plans. Cruiser and destroyer modernization programs already 

underway, during which warfare systems will be upgraded, 

will span over 20 years from the first ship modernized to 

the last. 

The Navy’s current investment in surface combatant 

warfare systems, the cycle time for development and 

deployment, and the number of systems with which it must 

interoperate has created a type of system “inertia” and 

infrastructure that significantly constrains and adds 

complexity to warfare system development. Further 

constraints are applied by requirements for Joint and 

coalition-level interoperability. This stands in dramatic 

contrast to average, commercial product development and 

life cycle times. 

The Apple iPod began development in February 2001, 

starting with a partially-developed design from another 

company, and was brought to market during the Christmas 

season the same year. Subsequently, new generations of 

iPods have been released almost annually. 

Another study in contrast to commercial product 

development is cell phones. According to an Environmental 

Protection Agency brochure (2005), cell phones are used for 

only 18 months on average before being discarded. iPODs and 

cell phones are orders of magnitude simpler in design and 

integration relative to typical DoN warfare systems, but 

some of the commercial technologies they incorporate are 

representative of those sought after in DoN warfare 

systems. 
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In spite of the Navy’s overall, long product 

development cycle and longer product life cycle, warfare 

systems employ significant amounts of commercially-based 

computer hardware and software that follow shorter, 

commercial product cycles. The Navy’s need to take 

advantage of rapidly evolving computer technology within a 

more slowly evolving warfare system, within slower-still 

platform (i.e., surface combatant) development, adds 

further to product development complexity. 

The dynamic nature of warfare capability requirements 

adds yet another dimension of complexity. Requirements are 

reviewed and changes are made at least every two years and 

often more frequently. The pattern of incremental 

improvements to capability over time together with periodic 

requirements changes form a metaphorical moving target. 

C. TOP-DOWN REQUIREMENTS DEVELOPMENT 

Integrated Air and Missile Defense (IAMD), an example 

of required U.S. Navy capability, exists in the Fleet 

today. The DoN Enterprise Architecture Hierarchy (2008) is 

consistent with and maps to the DoD Enterprise 

Architecture. The DoN IAMD capability component flows down 

as follows: Force Protection, to Sea Shield, to Joint 

Protection, to Protect Against Conventional Weapons, to 

Integrated Air and Missile Defense. IAMD for surface 

combatants is predominantly performed by radar (i.e., 

detect), a command and decision (C&D) system (i.e., 

control) and missiles (i.e., engage).  

Establishment of a Fleet need for a new or improved 

combat C&D system can be initiated via dissemination of 

Fleets’ prioritized operational needs and validation by the 
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JCIDS process. To validate the requirement, the operational 

need should be traced from high level documents starting 

with the President’s National Security Strategy (2006) and 

flowing down to the National Defense Strategy (2008) which 

“informs” the National Military Strategy (2004). While 

these requirements documents are hierarchical, some others 

are complementary rather than hierarchical. The following 

paragraphs discuss some aspects of these key, policy 

documents. 

Nine essential tasks comprise The National Security 

Strategy (2006). Some, such as “Champion Aspirations for 

Human Dignity” do not substantially involve military 

capability. Others such as “Work with Others to Defuse 

Regional Conflicts” clearly involve military capability. 

However, most should be expected to involve multi-

dimensional solutions, involving military capability, 

diplomacy, and politics. Use of military force is 

typically, though not always, employed as a course of last 

resort when objectives cannot be achieved by non-military 

means. Therefore, while it is possible to map National 

Defense Strategy (2008) objectives (i.e., Defend the 

Homeland, Win the Long War, Promote Security, Deter 

Conflict, and Win our Nation’s Wars) to the National 

Security Strategy, it is only abstractly possible to 

decompose the National Security Strategy into the National 

Defense Strategy. From a requirements analysis standpoint, 

it is more useful to begin requirements flow-down from the 

National Defense Strategy. 

Examination of the National Defense Strategy (2008) 

does reveal a linkage to the National Security Strategy 
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(2006). But, it also illustrates that even within the 

Defense strategy, the types of capabilities and the levels 

of capabilities necessary to achieve objectives cannot be 

derived from those documents. In other words, they are 

functional statements of user need. From the National 

Defense Strategy: “We will work with and through like-

minded states to help shrink the ungoverned areas of the 

world and thereby deny extremists and other hostile parties 

sanctuary.” Also: “…arguably the most important military 

component of the struggle against violent extremists is not 

the fighting we do ourselves, but how well we help prepare 

our partners to defend and govern themselves.” 

The National Military Strategy (2004): 

…provides focus for military activities by 
defining a set of interrelated military 
objectives and joint operating concepts from 
which the Service Chiefs and combatant commanders 
identify desired capabilities and against which 
the Chairman of the Joint Chiefs of Staff 
assesses risk. 

The National Military Strategy (2004) establishes 

three objectives that support the National Defense 

Strategy: Protect the United States, prevent conflict and 

surprise attack, and prevail against adversaries. Related 

Joint Operating Concepts (JOCs) describe how the Joint 

Force conducts missions and supports the Joint Functional 

Concepts of: Force application, protection, focused 

logistics, battlespace awareness, and command and control. 

Note that “Force Protection” is the top tier capability 

discussed in the requirements flow-down to IAMD. 

Realization of IAMD capability requires a system of 

systems. It cannot deliver required warfighting capability 
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without its constituent systems. Furthermore, the system of 

systems exists operationally as parts of surface combatant 

platforms. When mapping between required capability and 

supporting systems, many-to-one and one-to-many 

relationships are revealed. 

Consider the basis for initiation of a Fleet 

requirement for a new or upgraded combat C&D system. 

Capability shortfalls when mapped to functions can run the 

gamut of DOTMLPF. Obsolescence or reliability issues might 

exist; or, old or proprietary software may not be 

maintainable. Training may require high-cost, specialized 

equipment. Issues of this nature can be expressed in terms 

of either cost of ownership or system availability. If no 

performance improvements are warranted, the user 

requirement can be expressed in terms of reducing cost of 

ownership and increasing availability. This illustrates the 

point that user needs do not necessarily translate into 

requirements for system development, i.e., a materiel 

solution. 

However, performance improvement may be required. For 

example processor speed or the computing architecture might 

not support the level of performance needed for the 

projected threat environment. Or, the current C&D, or 

combat system as a whole, may not be designed to counter an 

emergent threat, for instance small, high-speed craft, 

e.g., Rubber Inflatable Boats. Though improving processing 

speed might be one solution, improvements to detection or 

weapon systems as well as changes to doctrine might also  

 

 



 76

provide viable solutions. There is significant tradeoff 

analysis required to determine which requirements comprise 

the trade space. 

A Fleet requirement as initially expressed may in some 

cases convey an implicit or explicit solution. In other 

cases, there may be only a generalized statement of 

operational need. In either case, for complex systems and 

systems-of-systems, use of some analytical methodology can 

help ensure: 

 
• The system is properly defined (e.g., bounded) 

• The trade space is properly defined 

• Fleet requirements are posed in a “what” form 
versus a “how” form, i.e., the requirement should 
not contain the solution. 

• All significant aspects of the system, i.e., 
DOTMLPF, its environment, and systems it 
interoperates with are considered. 

 

A requirements model or combination of models should 

be used to support requirements development, and both 

direct and indirect requirements imposed by legacy systems 

must be captured in a comparable form. 

Any U.S. Navy warfare system being considered for 

development or improvement must be integrated into existing 

architectures, whether or not those architectures are well 

documented. So, to some degree an architecture is imposed 

on a proposed system long before a solution, i.e., design, 

is conceived. Even for an unprecedented system on an 

unprecedented platform, the sailors who man the ship, 

environmental and navigations standards, the weapons, the 

communications networks, and other interoperating platforms 
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comprise an architecture into which the new system must 

fit. If the architecture is undocumented, it is incumbent 

upon the system developer to ensure accurate documentation 

is produced. If the architecture is documented, the 

adequacy must be assessed and any shortfalls addressed. 

Different approaches exist to model requirements. In 

choosing an approach, two key questions are: Will the 

model(s) used result in a complete requirement’s set? That 

is, does the model fully and accurately describe all 

behaviors of the system? These questions are particularly 

critical to DoN warfare systems considering the array of 

threats, operating environments, modes of operation, and 

the speed with which combat operations are conducted. 

Often, a ship’s required response to a threat is measured 

in seconds. 

Use case modeling is frequently used as the basis for 

architecture development, particularly for software-

intensive systems, as exemplified by U.S. Navy warfare 

systems. On this subject, Daniels (2005) speaks to the 

first question above: Will the chosen approach capture all 

requirements? His assertion is that in spite of the 

popularity and utility of use cases as a basis for 

customer-developer communications and the resultant system 

requirements set, there are shortcomings including the fact 

that use cases do not contain all of the requirements. He 

notes: “To keep use cases simple, readable, and manageable, 

they can only tell a fraction of the complete story without 

becoming unwieldy and difficult to understand.” He proposes 

combining a use case approach with a more traditional 

specification of “shall statements,” a natural language-
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based model. Shall statements can add detail to and 

complement use cases and are better suited for capturing 

non-functional requirements such as how well a system must 

do something versus simply what a system must do. 

Hatley (1987) presents a system requirements 

development process that views a system from process and  

control aspects. The process component of the model shows 

what functions the system must perform. The control 

component describes the circumstances under which the 

function will be performed. The author suggests the use of 

“data flow diagrams” (DFDs) and “process specifications” 

(PSPECs) for modeling processing and “control flow 

diagrams” (CFDs) and “control specifications” (CSPECs) to 

model system control. 

A simple example to illustrate the importance of 

modeling system control processes is the automated checkout 

stations in grocery and other retail stores. There are a 

number of such systems in use but they perform mostly the 

same functions. Data is taken from the customer (e.g., 

selection of language, telephone number or zip code, etc.), 

instruction is given to scan items, then the customer is 

prompted to select a method of payment and follow a series 

of steps to complete the transaction. The data flow is not 

particularly complex. However, the systems have subtle 

timing and sequencing controls. If an item is laid in the 

wrong area before scanning, the process will not proceed. 

If a scanned item sits too long without being moved to the 

bagging area, scanning cannot proceed. If one’s telephone  
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number (possibly a basis for product discounts) is not 

entered when prompted at the beginning of the process, that 

opportunity is lost. 

Implicit in the design of the self-check-out system 

are expectations of customer behavior (e.g., how long will 

it take for a customer to bag an item) and constraints on 

customer behavior (e.g., certain timing or sequences of 

actions may be indicative of attempts to pilfer and are 

therefore not allowed). The success with which these 

requirements are modeled directly affects customer 

throughput, customer satisfaction, and likely the rate of 

pilferage, so it is clearly an important aspect of the 

system requirements. U.S. Navy warfare systems have 

extensive timing and sequence dependencies in order to 

ensure safe and effective operation. 

D. REQUIREMENTS AND ARCHITECTURE DEVELOPMENT PROCESS 
EXAMPLE 

The U.S. Navy’s next generation cruiser is currently 

designated “CGX.” Among its required capabilities is IAMD. 

A much-simplified decomposition of this capability is a 

sequence of three processes: detect, control, and engage. 

Incoming threats are sensed, a decision is made on how best 

to prosecute the target, and then weapons are utilized to 

defeat the threat. A similar process model is the “Observe, 

Orient, Detect, Act” or “OODA loop” model conceived by USAF 

Colonel John Boyd (Fein, 2003) to describe the air-to-air 

combat process. These functional models describe what a 

system has to do. A complete specification of user need 

would include what the system must do, e.g., detect- 

 



 80

control-engage, how well it must perform e.g., Probability 

of Raid Annihilation, and what constraints are imposed, 

e.g., open architecture design.  

This example facilitates discussion of key aspects of 

requirements and architecture development. The objectives 

of the example are: 

 
• Show how requirements can be captured and 

organized with a structured process that 
facilitates completeness as well as understanding 
by both user and developer 

• Show how requirements and architecture models 
facilitate integration of a developmental 
system’s requirements with those of legacy 
systems with which it interoperates. 

 

The approach used combines aspects of a hybrid 

approach described in Daniels (2005) with the Process for 

System Architecture and Requirements Engineering (PSARE), 

(Hatley, 2000). It is primarily the PSARE process, but 

plain language use cases are employed as the means of 

initial requirements collection due to their ability to 

facilitate effective communication between user and 

developer. Daniel’s suggestion to incorporate plain 

language requirements with linkages to requirements models 

is also adopted. 

1. Process for System Architecture and Requirements 
Engineering (PSARE) 

Hatley (1987) describes a formal process for 

development of system specifications that utilizes 

requirements and architecture models that are consistent 

with one another. Though Hatley only refers to one of the 
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models as an architecture model, the two models can be 

considered as two views of a system architecture. The 

requirements model represents the operational view and the 

architecture model represents the systems view. The PSARE 

is applicable to both hardware and software, is 

specifically applicable to real-time systems, and can 

facilitate development of DoN-mandated DoDAF products. 

Table 1 summarizes features and benefits. 

 

Table 1 PSARE Features and Benefits, From Haggerty, 2008. 

This table captures attributes of PSARE that make it widely 
applicable, objective, and comprehensive in a modeling 
sense. It is not however, necessarily easy to implement. 
 

The methodology of PSARE is not the only viable 

approach for DoN warfare systems. However, Hatleys (2000) 

process-oriented approach as well as PSARE’s real-time 

system application heritage make it more straightforward to 

apply and more suitable than some others. 

Requirements and architecture models comprise the 

PSARE products. The requirements model captures functional 

and non-functional requirements as well as system control 

behavior. The architecture model describes how the system 



 82

will fulfill the requirements. A requirements-to-

architecture template provides a structure for allocation 

of requirements to architecture modules. Though the 

architecture model accommodates description of a system 

solution which goes beyond the scope of this study, the 

extensive presence of legacy systems even in new, U.S. Navy 

system development makes it germane to the requirements 

development discussion. The PSARE is non-sequential, 

meaning it does not have to move from requirements to 

architectures. It accommodates pre-existing portions of an 

architecture and allows for derivation of requirements from 

architectures when expedient. Figure 8 summarizes the 

interaction among models. The Enhanced Requirements Model 

depicted in the lower right-hand corner accounts for 

technological and other constraints imposed on the system. 

 

Figure 8 System Specification Models, From Hatley, 2000. 

The recursive approach to development of the models which 
comprise PSARE are illustrated by the curves arrows to and 
from the models in each of the three corners. The spiral in 
the center indicates hierarchical layers of the models. 
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The requirements model, with enhancements, is 

developed through a series of process steps whereby: 

 
• Customer requirements are organized into 

functional groups 
• External systems with which the system must 

communicate are identified 
• Information flowing between the system and 

external entities is identified 
• A top-level flow diagram, showing the functional 

groups as processes, the external entities as 
terminator, and information groups as data flows 
is drawn 

• A context diagram is derived from the top-level 
flow diagram 

• A level 1 diagram is constructed from the top-
level flow diagram without terminators 

• Control signals are added as required 
• Each process in the level 1 diagram is decomposed 

into a child diagram. 
• Performance Specifications (PSPECS) and Control 

Specifications (CSPECS) are created at the last 
level of decomposition. 

• A requirements dictionary catalogs data flows and 
control flows (i.e., requirements) 

 

The architecture model is developed using the 

architecture template to enhance the requirements model and 

then allocating the requirements to physical entities 

(Hatley, 1987). 

The example follows these steps with some changes to 

accommodate Daniel’s (2005) hybrid process. Use cases, if 

developed at the initial step in the requirements model 

development, help communication between user and developer 

and help ensure an accounting of the full range of required 

behavior of the system. The use cases also help in  
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development of subsequent requirements model diagrams and 

serve as a cross-checking mechanism for diagrams’ 

correctness. 

2. Problem Statement 

Figure 9 shows a notional, joint, operational view of 

IAMD including the integration of weapons, sensors and 

command and control systems necessary to execute a detect-

control-engage process for IAMD. 

 

Figure 9 Joint IAMD Operational View, From Baldwin, 2006. 

This view, though it depicts systems, is not solution 
specific. The spacecraft, ships, aircraft, and ground-based 
systems should be viewed as operational nodes where 
activity occurs. 
 

To provide IAMD, the cruiser must detect and track 

multiple targets, both aircraft and missiles, prioritize 

the threats, assign weapons or countermeasures based on  
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threat characteristics and kinematics, and prosecute the 

threats. This follows the aforementioned detect-control-

engage functional construct. 

3. Requirements Model 

The requirements model can begin with construction of 

use cases. Use cases, as defined in Cockburn (2001) 

“…describes the system’s behavior under various conditions 

as the system responds to a request from one of the 

stakeholders…”. Although charts, diagrams and automated 

tools can be used in the construction of use cases, 

Cockburn suggests a fundamentally text form helps 

communication between user and developer, or stakeholder 

and developer, without imposing any special training 

requirements to be able to understand uses cases. 

Development of use cases requires involvement or 

representation of most or all of the stakeholders, to the 

extent different stakeholders have different goals. For 

example, the goal of a stakeholder who is a system 

maintainer would be interested in system attributes that 

support a low mean time to repair, and probably also 

infrequent scheduled maintenance. The goal of a system 

manufacturing stakeholder might be concerned with system 

attributes that ensure high production rates, avoidance of 

specialized manufacturing labor, use of proven 

technologies, etc.  

The process can begin with a general description of a 

scenario where all goals are satisfied. Cockburn (2001) 

defines this as the main success scenario. He views all 

other ways to succeed, or fail, as extensions of the main 

success scenario. The scenario is written as a series of 
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actions or activities required to achieve the goal. It is 

not the intent of this study to present a detailed 

description of the use case development process. Rather, 

the objective is to illustrate the advantage of 

incorporating use cases into the PSARE. Use case 

development can add an intuitive structure to the process 

of identifying the requirements model elements, their 

relationships, and what purpose they really serve, as well 

as initiating a set of plain language requirements to 

complement graphical and tabular models. 

A Main Success Scenario for IAMD could be written as 

follows: 

 
• The operator engages the ship’s sensors to scan a 

3D volume for hostile aircraft and missiles. 

• The search portion of the detect function 
provides radar and IFF data to the control 
function. 

• Off-board target track data is received by the 
control function. 

• The control function initiates and maintains 
target tracks. 

• The control function determines if targets are 
engageable. 

• The control function assigns weapons to 
engageable, hostile targets. 

• The engage function prosecutes hostile targets 
with weapons. 

This sequence, when reviewed by stakeholders would 

likely be revised, as each subject matter expert brings a 

different perspective and set of experiences. It is also 

evident that most of the steps can be decomposed. There is 

a great deal of complexity underlying the control function 
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initiates and maintains target tracks. The decomposition of 

use cases parallels decomposition as part of PSARE. To 

accommodate particular threat targets that cause the system 

to behave differently, or to accommodate different 

environments or states of readiness, extensions can be 

appended onto the main success scenario at branch points. 

Having begun with development of a use case, or set of 

use cases, the construction of the requirements model then 

proceeds as described in Hatley (1987). The details of 

model development occupy a significant portion of that book 

and will not be reiterated here. Instead, examples of the 

graphical and tabular model elements are shown and comments 

are provided to explain the progression and relationship of 

model elements. 

Building an environment model requires representation 

of both the system processes and those processes outside 

the system, i.e., the environment. The environment 

comprises those entities beyond the boundary of the IAMD 

system that play a role in IAMD and exchange information, 

energy or material. The detect function generates sensor 

data from both hostile targets and friendly forces. The 

control function receives track data from remote sources, 

i.e., other platforms. The control function also receives 

data from and contributes to onboard C4I (Command, Control, 

Communications, Computers, and Intelligence). The engage 

function passes data to and from the control function and 

also interacts with the target in terms of target signature 

and weapon homing sensors. This model is shown graphically 

in Figure 10. 
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Figure 10 IAMD Environment Model. 

The environment model includes all functions affecting 
system behavior and is the first step in identifying system 
boundaries. 
 

The exchanges of information, energy or material among 

processes can be categorized as data or control exchanges. 

Continuous signals, such as target signatures, are data 

exchanges. Discrete signals such as commanding a weapon 

launch are usually control exchanges. In Figure 10, data 

from the control process is, logically, predominantly 

control-oriented. Sensor data is typically data-oriented, 

and engage data is a mixture of data and control exchanges. 

Figure 9 is a Level 1 diagram. Its component processes and 

data flows can be decomposed as necessary to achieve 

sufficient requirements detail. 

From the environment model construction of a context-

level model Hatley (2000) is begun by bounding those 

portions of the environmental model that are included in 
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the system. This is shown in Figure 11. The bounded portion 

comprises the beginning of a system specification. 
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Figure 11 Environment Model with System Boundary Applied. 

The closed curve represents decisions regarding what to 
include in the system under study. 
 

The context process is derived by collapsing all 

processes inside the bounded area into one process. 

Processes outside the boundary are replaced by terminators, 

the physical agents that perform the processes. Making 

these changes, a requirements context diagram for IAMD can 

be constructed. In Figure 12, the detect-control-engage 

processes have been collapsed into a single IAMD process 

and terminators have replaced external processes such as 

offboard detection. 
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Figure 12 IAMD Requirements Context Diagram. 

The context diagram aggregates all of the activities inside 
the system boundary into one activity, “IAMD.” Activities 
outside the system boundary are replaced with the actors 
that perform the activities. 
 

Next, the system’s functionality is reviewed to 

determine if any data/material/energy flows did not get 

incorporated into the environment model. The resultant Data 

Flow Diagram (DFD) is shown in Figure 13. Earlier, control 

and data processes and flows were differentiated and it was 

stated that the IAMD process exhibited both. To simplify 

this example, all processes and flows are shown as data. In 

practice, Control Flow Diagrams (CFDs) would be constructed 

in addition to the DFDs. Each would depict the same 

processes, but one would show control flows and the other 

data flows.  



 91

Detect

Control

Engage

TRACK DATA C4ISR DATA

Detect-Control-Engage Data Flow

IFF Data

Radar Data
From Target

Weapon C2 Data Weapon Position and Status

Target Kinematic DataSensor Control 
Data

Target Homing
Data

 

Figure 13 IAMD Data Flow Diagram. 

This diagram shows processes in circles, data stores as 
labels with lines above and below, and data flows as arrows 
between processes and stores. 

 

The last level of decomposition of DFDs is Process 

Specifications or PSPECs. According to Hatley (1987) “The 

primary role of the process specification…is to describe 

how its inputs and outputs are generated from its inputs; 

it must do nothing more and nothing less.” PSPECs can 

contain textual, tabular, graphical and mathematical 

elements. A notionalized example is shown below, based on a 

decomposed element of the detect process. 

 
PSPEC1: Detect Filter 
Radar returns (i.e., signatures) of airborne objects are 
input to the IAMD sensor. The signal strength relative to 
the calculated object’s range is assessed. If the signal 
strength correlates to aircraft or missiles, the object is 
reported as a detected object. 

Table 2 IAMD Process Specifications. 

This is a process description at the lowest level of 
decomposition. 
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If it is determined that the system requirement model 

must include control flow diagrams, then Control 

Specifications, i.e., CSPECs, also need to be generated. An 

example CSPEC is not presented but in one form can be 

visualized as a decision table or Boolean equation. 

A requirements dictionary, typically instantiated in a 

database, contains definitions of all the elements used in 

the models. Per Hatley (2000), “Every data flow, control 

flow, and store used anywhere in the DFDs, CFDs, and CSPECs 

must be defined in the dictionary.” Table 3 provides some 

notional definitions as well as metadata, i.e., the column 

headings. 

 

Name 
Meaning & 

Composition 
Type Units Rate 

IFF Data 
Friendly A/C ID and 

position 

Data Aircraft ID 

digital msg 

Once per 

second 

Radar Data 
From Target Range, bearing, 

elevation 

Data Feet, polar 
coordinates 

Once 
every 4 
seconds 

Sensor 
Control Data Wave form commands, 

cuing, power level 

commands, etc. 

Control  Once per 
second 

Target Homing 
Data Target Position, 

Target signature 

Data Feet, 
seconds, 
polar 
coordinates 

10 times 
per 
second 

Target 
Kinematic 
Data 

Position, velocity, 

acceleration 

Data Feet, 
seconds, 
polar 
coordinates 

Once 
every 4 
seconds 

Table 3 IAMD Data Requirements Dictionary Content. 

This is a list of data flow definitions. 
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4. Architecture Model 

The architecture model represents a system’s design, 

which is beyond the scope of this study. However, in most 

instances of DoN warfare system development, at least 

portions of an architecture exist at the outset of system 

development. They can be interfacing systems or subsystems, 

standards, which create constraints on the system 

requirement, or they can take the form of direct 

constraints such as size, weight, power consumption, 

safety, reliability, etc. System requirements can be 

derived from these architectural elements and incorporated 

into the requirements model. Therefore, construction of an 

architecture model supports development of a comprehensive 

requirements model and system specification. 

Hatley (1987) describes a Requirements-to-Architecture 

Template that places the requirements model in a context of 

physical modules as shown in Figure 14. The requirements 

model resides in the portion entitled Main Processing (Core 

Functions). The development of architecture model elements 

involves creation of architecture context diagrams, 

architecture flow diagrams, architecture interconnect 

diagrams, an architecture dictionary, and module 

specifications. Their forms are analogous to elements of 

the requirements model, but from a physical rather than 

operational perspective. The PSARE process maintains 

consistency and traceability between requirements and 

architecture models. 
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Figure 14 PSARE Architecture Template, from Hatley, 1987. 

“Main processing” represents the physical system under 
study. The surrounding blocks represent physical modules 
that interact with the system under study. 
 

Considering the IABM example, system development is 

certain to involve already-existing sensors, software, 

processors, weapons, or services infrastructure. The Navy’s 

objectives of achieving open system design, use of 

Commercial, Off-The-Shelf hardware, and maximization of 

hardware and software re-use among systems imposes a large 

set of standards. Therefore, in beginning an IABM system 

development, major portions of the system specification can 

be derived from the architecture model. 

E. CHAPTER SUMMARY 

This chapter presents the fundamental characteristics 

of U.S. Navy warfare systems that affect the systems 

engineering and architecture processes. It further shows, 

utilizing a blended use case and PSARE process, that 

requirements and architectures models can be constructed in 

an integrated, structured, repeatable manner that when 

complete, provide the basis for a complete set of system 

requirements. Furthermore, the requirements model is in 

fact an operational view of the system’s architecture and 
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the architecture model represents the system view of the 

architecture, enabling generation of required DoDAF 

products, but having been created by and for the systems 

engineering process. It is done in a way that provides a 

full accounting of requirements in a design. 

This type of process is not provided as part of the 

DoD Architecture Framework (DoDAF, 2007) or the Naval 

Systems Engineering Guide (2004). 
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VII. CONCLUSIONS 

A. KEY POINTS AND RECOMMENDATIONS 

A substantial body of work among Government and 

industry exists regarding system engineering standards and 

processes. Standards and practices have been evolved, 

refined, interpreted, and exercised over a period of 

approximately 50 years. The value of systems engineering 

has been shown to lie in its ability to manage complexity 

in system development such that systems produced will 

predictably satisfy user needs. Yet, numerous examples 

exist of warfare systems that exceed schedule and cost 

requirements and do not meet operational requirements. 

Shortcomings appear to exist in the application and 

management of systems engineering principles. 

Development of architectures to support DoD system 

development has a significantly shorter history than 

systems engineering, dating back only to the early 1990’s, 

and the initial objective was solely to improve 

interoperability of C4I systems. The more broadly scoped 

DoD Architecture Framework Version 1.0 was approved in 

2003, less than six years ago. 

The JCIDS process, also less than six years old, is 

ostensibly dependent on architectures as an analytical 

basis, but has not resulted in desired levels of 

improvement in terms of ensuring Joint solutions, 

supporting capability acquisition, and reducing redundant 

or excess capability, while reliability identifying 

capability gaps. 
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Though efforts are underway to establish and maintain 

a DoN Enterprise architecture and to capture system-of-

system level architectures, to date most architectures are 

developed independently at the system level. Governance, 

i.e., approval and configuration control, is weak beyond 

the system level. Responsibility for operational 

architecture and system architecture development is split, 

and funding for architecture development is fragmented and 

inconsistent from year to year. The consequence of all this 

is a lack of higher-level architectures to support JCIDS 

analysis. This problem is compounded by JCIDS’ dependency 

on the Programming, Planning, Budgeting, and Execution 

(PPBE) process, which follows a biannual cycle. The JCIDS 

process cannot alter its rhythm to “wait” for architecture 

products. 

In spite of mandated systems engineering and 

architecture standards, the relationship between system 

architecting and system engineering is poorly defined in 

DoD policy and instructions, and processes for development 

of architecture models as part of a systems engineering 

process are not prescribed. System engineering and 

architecture artifacts required by the DoN acquisition 

process do not promote or ensure integration of systems 

engineering with system architecting. The process and 

purpose of system architecting is poorly understood by 

system acquisition managers and decision-makers. And, as in 

the case of the JCIDS process, higher level, i.e., above 

product level, architecture development often does not keep 

pace with the acquisition process. 
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Translation of operational requirements to a set of 

system requirements is a vitally important part of the 

systems engineering process. Yet, ambiguity exists in 

definition of roles across DoN organizations, in terms and 

definitions, and in the necessary order and timing of 

events in this process. As a result, demonstration of 

system requirements completeness and traceability of system 

requirements to operational requirements is not 

consistently practiced. 

Most significant among the causes for process 

disconnects are management-related and organizational. To 

make policy and resource decisions necessary for better 

process integration requires better understanding of system 

engineering and architectures than currently exists at the 

management level. Once policy and resource positions are 

developed, a DoN organization whose size and fragmentation 

by product line, near-term or long-term vision, and 

operational versus acquisition communities makes consensus 

difficult to achieve. Maintaining a Joint perspective adds 

yet another dimension of complexity. 

Technical reasons are among the lesser for poor 

integration and execution of systems engineering, JCIDS, 

and architecture processes. Rigorous methods exist to model 

system requirements and architectures in a manner that 

supports mandated DoD Architecture Framework products while 

maintaining close-coupling with the systems engineering 

process. These methods can capture the behavior of complex, 

Naval warfare systems, maintain traceability to higher 

level requirements, and incorporate plain language views of  
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requirements. The community of skilled practitioners may 

not be large enough to rapidly increase the use of these 

methods. 

There are several initiatives underway that could 

improve both integration and effectiveness of systems 

engineering, architecture, and JCIDS processes. Systems 

engineering both at the DoD and DoN level has received 

increased attention in policy and guidance over the last 

several years. The Defense Acquisition Guidebook (2004) 

devotes 98 of 520 pages to systems engineering. Most other 

Service and industry standards and guidebooks are less than 

five years old. The DoN recently adopted a common systems 

engineering technical review guide for all acquisition 

programs. Systems Engineering Plans are being given more 

attention. 

In Joint Staff Instruction CJCSI 3170.01F (2007) which 

documents JCIDS policy, the Summary of Changes section 

notes that changes from the last version reflect “…lessons 

learned and changes as a result of implementation of the 

JCIDS process.” Both the instruction and related manual 

(CJCSM 3170.01C, 2007) have been updated frequently in an 

effort to improve effectiveness of the process. 

DoD Architecture Framework 2.0, currently in draft, 

was begun before issuance of the current, DoD Architecture 

Framework Version 1.5 (2007). Committees working on those 

documents recognized areas in need of change, but the large 

community of stakeholders and the large investment in the 

current framework slows the process of revision. 

As the previous three paragraphs illustrate, 

significant effort is being expended updating and improving 
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policy and guidance for systems engineering, JCIDS, and 

architectures. And, effective systems engineering methods 

have been demonstrated on significantly complex systems. In 

light of remaining acquisition issues at least partially 

traceable to systems engineering failures, there must still 

be hindrances to improved effectiveness of the 

abovementioned processes. 

The systems engineering competency needs to be 

strengthened. A recent collaborative initiative between the 

ASN(RD&A) and the Naval Postgraduate School will 

significantly increase opportunities for DoN engineers to 

pursue Master’s degrees in systems engineering. However, 

competence in systems engineering, perhaps more than some 

other engineering disciplines, requires a wealth of 

experience typically acquired over many years. DoN 

engineers need experience as systems engineering 

practitioners in addition to education. 

The increased emphasis on Joint, network-centric 

warfare results in systems-of-systems that cross boundaries 

of Services, organizations within Services, funding, 

requirements, political, and more. This type of construct 

hampers the effective integration and implementation of 

systems engineering, JCIDS, and architecture processes 

simply by making decision-making among a diverse community 

of stakeholders, considerably more difficult. A solution to 

this problem must address, among other things, the 

political process of funding appropriation and an ever-

increasing desire by the Congress to perform DoD management 

functions. To the extent a way can be found to parse  
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complex systems-of-systems for system development and still 

maintain requirements and funding integrity, this problem 

can be mitigated. 

Overall, a plan to improve integration and 

effectiveness of systems engineering, requirements, and 

architecture processes must be treated holistically and 

with a long-term vision. There is an enormous investment in 

fielded systems as well as those currently under 

development. Future systems cannot completely escape the 

effects of those systems’ paradigms. Progress will be 

evolutionary, not revolutionary.   

B. AREAS FOR FURTHER RESEARCH 

The DoD Architecture Framework is currently under 

revision. Once issued, analysis of the revised framework 

for improvements in the areas of integration with systems 

engineering, and inclusion of architecture development 

process guidance would be useful. 

System architecting for highly complex systems is not 

inexpensive. Justification of funding for system 

architecting is made more difficult by a cost-benefit 

relationship that is difficult to quantify and validate. 

Exploration of cost justification methods for system 

architecting would contribute to a more rational basis for 

investing in this area. 

The analytical basis for system architecting is 

challenging for practitioners to master and even more 

challenging for practitioners to discuss with managers and 

customers. This is true to the extent that just the 

inclusion of the term “architecture” in a management-level 
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brief is often a carefully considered decision. Yet, a 

means of successfully communicating the concepts of system 

architecting to varied audiences is critical to maintaining 

support for this type of work. An area for further research 

could be exploration of alternative means to discuss system 

architecting among less technical audiences. 

The architecture modeling example presented in Chapter 

VI was simplified by orders of magnitude relative to 

actually modeling a warfare system with enough fidelity to 

support system development. Research for this paper did not 

reveal significant information pertaining to estimation of 

time or resources to perform architecture models. Some 

historical data for architecture product development has 

been collected among U.S. Navy Systems commands.   
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