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ABSTRACT

In this thesis, the impacts of transforming the coordinate system of an existing

x-z mesoscale model to x-σz are analyzed and discussed as they were observed in

three test cases. The three test cases analyzed are: A rising thermal bubble, a

linear hydrostatic mountain, and a linear nonhydrostatic mountain. The methods

are outlined for the transformation of two sets (set 1, the non-conservative form

using Exner pressure, momentum, and potential temperature; and set 2, the non-

conservative form using density, momentum, and potential temperature) of the x-z

Navier-Stokes equations to x-σz and their spatial (Continuous Galerkin) and temporal

(Runge-Kutta 35) discretization methods are shown in detail. For all three test cases

evaluated, the x-σz models performed worse than their x-z counterparts, yielding

higher RMS errors, which were observed predominantly in intensity values and not

in placement of steady state features. Since the models did converge to a fairly

representative steady-state solution the results found by this project are promising,

even though they did indicate that x-σz coordinates are not as accurate or efficient

as x-z coordinates. With further fine-tuning of the model environment, these issues

could be made minimal enough to warrant their utility with semi-implicit methods.
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I. INTRODUCTION

Numerical Weather Prediction (NWP) models are the work horse of mod-

ern atmospheric condition forecasting and as such have been the focus of numerous

studies, aiming to develop more accurate models with longer deterministic forecast

periods. There are countless areas in which to focus this research (spatial and tem-

poral discretization methods, non-reflecting boundary conditions, data assimilation,

prognostic equations, physical parameterizations, etc....), and for this project the fo-

cus will be on the transformation of the prognostic or governing equations from x-z

coordinates to terrain following x-σz coordinates using a specific spatial (continu-

ous Galerkin) and temporal (Runge-Kutta 35) discretization method. This thesis is

necessary in order for future research to be able to evaluate and compare various

coordinates systems while varying the temporal discretization methods, allowing for

larger time steps while maintaining stability (i.e., semi-implicit methods).

Various mature mesoscale models such the Coupled Ocean/Atmosphere Meso-

scale Prediction System (COAMPS) [2] and the Weather Research and Forecasting

(WRF) modeling system [3] use a variation of the x-σ coordinate transformation. By

studying the works of Gal-Chen and Somerville [4] and analyzing the transforma-

tion methods used in COAMPS and WRF, a similar x-σz coordinate transformation

was applied to the governing equations of interest employing continuous Galerkin

techniques.

The governing equations selected for this thesis consist of two forms of the

Navier-Stokes equations. The Navier-Stokes equations, along with their variations,

form the most widely used and accepted sets of equations for numerically resolving

atmospheric flow. The first specific formulations of the equation sets selected (set

1) was the non-conservative form using Exner pressure, momentum, and potential

temperature, which is used in the operational NWP model COAMPS [2]. The second

formulation chosen (set 2) was the non-conservative form using density, momentum,

1



and potential temperature. The operational NWP model WRF [3] also uses set 2,

but in a conservative form. Building on the work of Giraldo [1] who by implementing

continuous Galerkin techniques, developed a 2-D (x-z slice) mesoscale model using

Non-Hydrostatic Equations (Euler and Navier-Stokes Equations), the original con-

struct was transformed from x-z coordinates to x-σz coordinates to test the impacts

on resolving atmospheric motion in a continuous Galerkin (CG) framework. Cur-

rently, most operational non-hydrostatic models use finite difference (FD) methods

(i.e., structured grids), which then rely on x-σ in order to resolve atmospheric flow

in the presence of terrain. CG methods, on the other hand, can use various types

of grids (unstructured grids, x-z grids, x-σz grids, etc....). For this reason, the CG

method is well positioned to judge the effects of the coordinate system on the solution

accuracy and efficiency, which is the goal of this thesis.

After the modifications were made to the model, three test cases were run: ris-

ing thermal bubble, linear hydrostatic mountain, and linear non-hydrostatic moun-

tain. The numerical solutions were either evaluated against other model solutions

(case 1) or the analytic approximations (case 2 and case 3) using root mean squared

error and normalized momentum flux. The resultant data was also compared to

the unmodified solutions. Additionally, the initial conditions for the test cases were

pre-defined for each case, maintaining uniform initial conditions from which both

coordinate systems numerical solutions can be compared.

With x-σz coordinates that are proven to function properly using fully explicit

time integration, future research will be able to evaluate x-σz coordinates using semi-

implicit methods. NWP models are already taking advantage of semi-implicit time

integration methods, which optimize the horizontal and vertical resolutions and their

associated time sets while maintaining stability. The 2-D semi-implicit method (x-

z formulation) can use very large time-steps sizes since the Courant-Friedrichs-Lewy

(CFL) condition is no longer constrained by acoustic and gravity waves; the penalty is

that a global 2-D implicit problem must be solved. In contrast, the 1-D semi-implicit

2



x-σz formulation can use large time-steps, but it must adhere to the CFL condition

due to gravity and acoustic waves in the horizontal; the advantage is that only a 1-D

matrix problem needs to be solved. A model using x-σz can exploit semi-implicit

methods along the vertical (σ) direction, which is the inspiration of this thesis topic.

Both COAMPS and WRF are currently using semi-implicit methods (only along σ),

but are constrained by FD spatial discretization methods.

Though only explicit time integration was used in this thesis, it is now possible

to observe if the implementation of x-σz coordinates significantly improves or dimin-

ishes the solution of the Navier-Stokes equations over x-z coordinates when using a

CG framework. Giraldo [5] has already developed semi-implicit methods for the 2-D

model in the x-z framework and tested their impacts. With the model coordinates

transformed to x-σz, future research will be able to extent the time integration to

semi-implicit methods for x-σz and compare the results with the semi-implicit results

derived using x-z coordinates. The relevant governing equations for this project, the

coordinate transformation theory, and the discretization methods are discussed in

Chapter II. The application of the coordinate transforms are discussed in Chapter

III. The three test cases are explained and outlined in Chapter IV. A discussion and

interpretation of the resulting impacts from the transformation is in Chapter V. The

conclusions found and recommendations are presented in Chapter VI.

3
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II. BACKGROUND

A. GOVERNING EQUATIONS

1. Equation Set 1: Navier-Stokes Equations with

Exner Pressure

The first set of equations chosen was the Navier-Stokes equations that uses

Exner pressure, of which there has been extensive amounts of documented work (i.e.

this is the formulation used in COAMPS) for comparison. This set can only be writ-

ten in non-conservative form and consists of a system of three equations. The first

equation is the pressure tendency equation:

∂π

∂t
+ $u ·∇π +

R

cv

π∇ · $u = 0 (2.1)

π =
(

P

Po

)

R
cp

where π is Exner pressure, $u represents the velocity field (u, w), R is the gas con-

stant, cv is the specific heat for constant volume, cp is the specific heat for constant

pressure, P is pressure, and P0 is pressure at the surface. The second equation is the

momentum equation:

∂$u

∂t
+ $u ·∇$u + cpθ∇π = −g$k + µ∇2$u (2.2)

where θ is potential temperature, g is the gravitational constant, $k is a vector (0, 1)T ,

and µ is the dynamic viscosity. The third equation is the thermodynamic energy

equation:

5



∂θ

∂t
+ $u ·∇θ = µ∇2θ (2.3)

For the scope of this project, only inviscid flow will be considered (i.e. µ = 0) and the

equations further reduce to the Euler equations which will be used in the following

sections.

2. Equation Set 2: Navier-Stokes Equations with Den-

sity

The second set of equations chosen was a version of the Navier-Stokes equa-

tions that is now used in contemporary NWP models (i.e. this is the formulation

used by WRF) and uses density, momentum, and potential temperature as the pri-

mary state variables. Unlike set 1, this set can be written in both conservative and

non-conservative form. Though neither form can conserve energy, using the non-

conservative form can still conserve mass and more sophisticated time integration

strategies can be used [6]. Thus for this thesis the non-conservative form will be used,

which consists of a system of three equations. The first equation is the mass equation:

∂ρ

∂t
+ ∇ · (ρ$u) = 0 (2.4)

where ρ is density. The second equation is the momentum equation:

∂$u

∂t
+ $u ·∇$u +

1

ρ
∇P = −g$k + µ∇2$u (2.5)

P = P0

(

ρRθ

P0

)γ

6



where P is pressure, P0 is pressure at the surface, and γ is cp

cv
. The third equation is

the thermodynamic energy equation:

∂θ

∂t
+ $u ·∇θ = µ∇2θ (2.6)

Similar to set 1, only inviscid flow will be considered (i.e. µ = 0) and the equations

further reduce to the Euler equations which will be used in the following sections.

B. X-Z TO X-σZ COORDINATE SYSTEM TRANSFORM

1. Gal-Chen and Somerville

In 1975, Gal-Chen and Somerville took the anelastic approximation of the

Navier-Stokes Equation (in the cartesian form) and transformed the coordinated sys-

tem to sigma-z coordinates [4]. An expanded set of prognostic equations was used

for Gal-Chen and Somerville’s derivation and only the first three equations and the

resulting transform will be used for comparison in this project. The first equation

was the continuity equation:

(ρ0u
j),j = 0. (2.7)

where ρ0 is density, u is the velocity components (u, v, w )T , and j is the derivative

operator where:

(ρ0u
j),j ≡

∂

∂xj
(ρ0u

j)

7



The second equation was the momentum equation:

(

∂

∂t

)

(ρ0u
i) + (ρ0u

iuj),j = −(δijp′),j +δi3ρ′g + τ ij ,j . (2.8)

where δij is the Kronecker delta, ρ′ is the density perturbation, p′ is the pressure

perturbation, and τ ij is the eddy viscosity. The third equation used was the thermo-

dynamic energy equation:

(

δ

δt

)

(ρ0θ
′) + (ρ0θ

′uj),j = Hj,j . (2.9)

where θ′ is the perturbation in potential temperature and Hj is the eddy diffusion.

Using equations 2.7 - 2.9, Gal-Chen and Somerville derived the following set

of transformations [4]:

x̄ = x, ȳ = y, z̄ =
H(z − zs)

(H − zs)

∂z̄

∂x
=

∂zs

∂x

z̄ − H

H − zs

,
∂z̄

∂y
=

∂zs

∂y

z̄ − H

H − zs

,
∂z̄

∂z
=

H

H − zs















ū

v̄

w̄















=















1, 0, 0

0, 1, 0

∂zs

∂x
z̄−H
H−zs

, ∂zs

∂y
z̄−H
H−zs

, z̄−H
H−zs





























u

v

w















where the variables with the¯represent the variables that have been transformed, H

is the height at the top of model space, and zs is the height at the surface of the

model.
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Figure 1. x-z to x-σz coordinate transformation: (i) traditional x-z coordinates, (ii)
x-σz coordinates, and (iii) x-σz coordinates mapped back to x-z space.

These transformation functions are used to convert traditional x-z (see figure

1.i) to x-σz coordinates (see figure 1.ii), which when mapped back to x-z space are

terrain following (see figure 1.iii). The derived inverse transformations are:

x = x̄, y = ȳ, z = [
z̄(H − zs)

H
] + zs















u

v

w















=















1, 0, 0

0, 1, 0

−∂zs

∂x
z̄−H

H
, −∂zs

∂y
z̄−H

H
, H−zs

H





























ū

v̄

w̄















2. Basic Transformation Machinery

This section will outline the basic equations used to transform the x-z coordi-

nates of the Navier-Stokes Equations to x-σz, which are similar to the transformations

derived by Gal-Chen and Somerville in the previous section, but in two dimensions.

The first concept used was the total differential:

dx̃ =
∂x̃

∂x
dx +

∂x̃

∂z
dz

9



dσz =
∂σz

∂x
dx +

∂σz

∂z
dz

where the˜notation indicates the transformed variable. The two total derivatives can

then be written as a system of equations:







dx̃

dσz





 =















∂x̃
∂x

∂x̃
∂z

∂σz

∂x
∂σz

∂z





















dx

dz





 (2.10)

Using vector notation ($ ) the above system can be simplified to:

d$̃x = Jd$x (2.11)

where J is the Jacobian of the transformation. Considering that the velocity $u is

defined by d#x
dt

, the transformation can then be manipulated to become:

$̃u = J$u (2.12)

Using basic linear algebra and assuming that J is invertible, which is true for an affine

(one-to-one) mapping, the inverse transform for velocity can be written as:

$u = J−1$̃u (2.13)

The next major mathematical concept derived for the transformation was the gradi-

ent operator (∇) which, as a system of equations, can be written as:

10



∂

∂x
=

∂

∂x̃

∂x̃

∂x
+

∂

∂σz

∂σz

∂x

∂

∂z
=

∂

∂x̃

∂x̃

∂z
+

∂

∂σz

∂σz

∂z

which when put into matrix form becomes:















∂
∂x

∂
∂z















=















∂x̃
∂x

∂σz

∂x

∂x̃
∂z

∂σz

∂z





























∂
∂x̃

∂
∂σz















Similar to the total derivative, the gradient, using vector notation, was the defined as:

∇ = JT ∇̃ (2.14)

The last major concept used for the coordinate transformation is the linear algebra

identity:

(AB)T = BT AT (2.15)

where A ∈ Rm×n and B ∈ Rn×l. The matrices were multiplied together and then

transposed and also rearranged, transposed, and then multiplied to show equality:

(AB)T =





























a1,1 ... a1,n

:̇ ˙ · . :̇

am,1 ... am,n





























b1,1 ... b1,l

:̇ ˙ · . :̇

bn,1 ... bn,l





























T
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=















a1,1b1,1 + ... + a1,nbn,1 ... a1,1b1,l + ... + a1,nbn,l

:̇ ˙ · . :̇

am,1b1,1 + ... + am,nbn,1 ... am,1b1,l + ... + am,nbn,l















T

=















a1,1b1,1 + ... + a1,nbn,1 ... am,1b1,1 + ... + am,nbn,1

:̇ ˙ · . :̇

a1,1b1,l + ... + a1,nbn,l ... am,1b1,l + ... + am,nbn,l















BT AT =















b1,1 ... bn,1

:̇ ˙ · . :̇

b1,l ... bn,l





























a1,1 ... am,1

:̇ ˙ · . :̇

a1,n ... am,n















=















a1,1b1,1 + ... + a1,nbn,1 ... am,1b1,1 + ... + am,nbn,1

:̇ ˙ · . :̇

a1,1b1,l + ... + a1,nbn,l ... am,1b1,l + ... + am,nbn,l















3. Transformation Functions

For the transformations from x-z coordinates to x-σz, the x̄ and z̄ coordinates

from Gal-Chen and Somerville [4] were rewritten using new notation which will be

seen through the remainder of the thesis:

x̃ = x, σz =
H(z − zs)

(H − zs)
(2.16)

where x̄ is now x̃ and z̄ is σz . Using Eqs. (2.16) their derivatives were evaluated,

yielding:

∂σz

∂x
=

∂zs

∂x

σz − H

H − zs

,
∂σz

∂z
=

H

H − zs

(2.17)
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which matched the derivatives found by Gal-Chen and Somerville [4]. The derivatives

were then applied to various forms of the Jacobian from Eq. (2.10), which yielded:

J =







1, 0

∂zs

∂x
σz−H
H−zs

, H
H−zs






(2.18)

JT =







1, ∂zs

∂x
σz−H
H−zs

0, H
H−zs





 (2.19)

J−1 =







1, 0

−∂zs

∂x
σz−H

H
, H−zs

H





 (2.20)

(J−1)T =







1, −∂zs

∂x
σz−H

H

0, H−zs

H





 (2.21)

Applying Eq. (2.18) to Eq. (2.12) gives the transformation functions for the velocity

field:






ũ

w̃





 =







1, 0

∂zs

∂x
σz−H
H−zs

, H
H−zs













u

w





 (2.22)

Using Eq. (2.20) and some algebraic manipulation the inverse transformation func-

tions can be constructed:

x = x̃, y = ỹ, z = [
σz(H − zs)

H
] + zs (2.23)







u

w





 =







1, 0

−∂zs

∂x
σz−H

H
, H−zs

H













ũ

w̃





 (2.24)
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C. SPATIAL DISCRETIZATION: CONTINUOUS GALERKIN

Continuous Galerkin (CG) methods are the general family of methods that

include: finite element (FE), spectral element (SE), and spectral methods. CG meth-

ods take complex geometries (elements) from physical space to computational space,

using continuous basis functions that are used to approximate the solution to a given

partial differential equation (PDE). To construct the problem relevant to this project,

the generalized 2-D hyperbolic-elliptic PDE was first considered [7]:

∂q

∂t
+ $u ·∇q = ν∇2q

where q = q($x, t), $u = $u($x), $x = (x, z)T , and ν is the viscosity coefficient. Using

Galerkin machinery, q and $u were approximated using basis function expansions:

qN($x, t) =
MN
∑

j=1

ψj($x)qj(t) (2.25)

$uN($x, t) =
MN
∑

j=1

ψj($x)$uj(t) (2.26)

where MN represents the number of points inside the quadrilateral elements (MN =

(N + 1)2), N is the order of the polynomial approximation, and ψj is the Lagrange

polynomial basis functions. The approximations for qN and $uN were then substituted

into the PDE, multiplied by a test function, ψI , and integrated across the global

domain, Ω, to get (weak integral form):

∫

Ω
ψI

∂qN

∂t
dΩ +

∫

Ω
ψI($u ·∇qN)dΩ = ν

∫

Ω
ψI∇2qNdΩ ∀Ψ ∈ H1 (2.27)
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Instead of solving the global problem directly, 2-D local basis functions were con-

structed. The 2-D local basis functions are defined as:

ψi(ξ, η) = hj(ξ) ⊗ hk(η)

j, k = 0, 1, ..., N i = 1, 2, ..., (N + 1)2

where h is a 1-D local basis function and ⊗ is the tensor/outer product of the 1-

D local basis functions. The 1-D Lagrange polynomial local basis function, using

Legendre-Gauss-Lobatto interpolation points, was defined by:

hj(ξ) =
N
∏

l = 0

l '= j

(

ξ − ξl

ξj − ξl

)

Additionally, in order to construct the basis functions and transition between physi-

cal space (x, z) and computational space (ξ, η) requires knowledge of the metric terms:

∂ξ

∂x
=

1

|J |
∂z

∂η
,

∂ξ

∂z
=

−1

|J |
∂x

∂η

∂η

∂x
=

−1

|J |
∂z

∂ξ
,

∂η

∂z
=

1

|J |
∂x

∂ξ

|J | =
∂x

∂ξ

∂z

∂η
− ∂x

∂η

∂z

∂ξ

With Eq. (2.27) in local form it can now be converted using integration by parts

15



(IBP) giving:

∫

Ωe

ψi∇2qNdΩe =
∫

Ωe

∇ · (ψi∇qN )dΩe −
∫

Ωe

∇ψi ·∇(qN )dΩe (2.28)

then using the divergence theorem on Eq. (2.28) yields:

∫

Ωe

ψi∇2qNdΩe =
∫

Γe

$n · (ψi∇qN )dΓe −
∫

Ωe

∇ψi ·∇(qN)dΩe (2.29)

The result from Eq. (2.29) is then substituted back into the original PDE seen in Eq.

(2.27), which produces:

∫

Ωe

ψi
∂qN

∂t
dΩe +

∫

Ωe

ψi($u ·∇qN)dΩe = ν
∫

Γe

$n · (ψi∇qN)dΓe − ν
∫

Ωe

∇ψi ·∇(qN )dΩe

Substituting the summation approximation for qN and $uN (Eqs. 2.25 and 2.26) yields:

∫

Ωe

ψi





MN
∑

j=1

ψj

∂qj

∂t



 dΩe +
∫

Ωe

ψi





MN
∑

k=1

ψk$uk



 ·




MN
∑

j=1

∇ψjqj



 dΩe

= ν
∫

Γe

ψi$n ·




MN
∑

j=1

∇ψjqj



 dΓe − ν
∫

Ωe

∇ψi ·




MN
∑

j=1

∇ψjqj



 dΩe

The resulting matrix problem is:

M (e)
ij

∂qj

∂t
+ $uTD(e)

ij qj = B(e)
ij qj − L(e)

ij qj

16



where M (e)
ij is the mass matrix, D(e)

ij is the differentiation matrix (a discrete repre-

sentation of ∇̄), B(e)
ij is the boundary matrix, and L(e)

ij is the Laplacian matrix. The

discretized matrices are:

M (e)
ij =

MN
∑

l=1

ωl |Jl|ψi,lψj,l

$uT
k D(e)

ij =
MN
∑

l=1

ωl |Jl|ψi,l





MN
∑

k=1

ψk,l$uk



 ·∇ψj,l

B(e)
ij =

Q+1
∑

l=1

ωl |Jl|ψi,l$n ·∇ψj,l

L(e)
ij =

MN
∑

l=1

ωl |Jl|∇ψi,l ·∇ψj,l

where Q represents the quadrature used for evaluation of the integrals, which when

using inexact integration is equal to N. Direct stiffness summation (DSS) was then

used to construct the global problem:

MIJ =
Ne
∧

e=1

M (e)
ij

LIJ =
Ne
∧

e=1

L(e)
ij

DIJ =
Ne
∧

e=1

D(e)
ij

where MIJ reduces to a diagonal matrix MI when using inexact integration.
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1. Equation Set 1

Applying these operators to the Navier-Stokes Equation Set 1 (2.2-2.3) yields:

∂πI

∂t
= −$uT

I M−1
I DIJπJ − R

cv

πIM
−1
I DT

IJ$uJ

∂$uI

∂t
= −$uT

I M−1
I DIJ$uJ − cpθM

−1
I DIJπJ − gM−1

I
$k

∂θI

∂t
= −$uT

I M−1
I DIJθJ

2. Equation Set 2

Similarly to Set 1, the operators applied to the Navier-Stokes Equation Set 2

(2.4-2.6) yield:

∂ρI

∂t
= −M−1

I DIJ(ρ$u)J

∂$uI

∂t
= −$uT

I M−1
I DIJ$uJ − 1

ρI

M−1
I DIJPJ − gM−1

I
$k

∂θI

∂t
= −$uT

I M−1
I DIJθJ
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D. TEMPORAL DISCRETIZATION RUNGE-KUTTA 35

Integrating nonlinear PDEs forward in time can lead to numerous problems

(i.e. spurious oscillations, overshoots, progressive smearing, etc...) if the proper time

integration scheme is not used [8]. For the proposed test cases, a strong stability pre-

serving (SSP) Runge-Kutta (RK) method was selected and implemented as outlined

in Ruuth and Spiteri [8]. SSP time integration methods have strong nonlinear stabil-

ity properties, which make them optimal, for this thesis, for temporal discretization

because of the nonlinearities present in the Euler and Navier-Stokes equations. The

particular method used for time integration was an explicit third-order five-stage RK

method (RK35). This method was chosen for its large stability region relative to

other explicit methods of equal order. The RK35 method can be represented by:

Q0 = Q(n)

QI =
I−1
∑

k=0

(αI,kQk) + βI∆t(RHS(I−1)), I = 1, 2, ..., s

Qn+1 = Q(s)

where I is the stage (5 for RK35) and the coefficients αi,j and βi are listed in the

Appendix.
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III. APPLIED COORDINATE

TRANSFORMS

A. EQUATION SET 1

1. Perturbation Method

This section will outline the expansion of the terms (application of the pertur-

bation method) of set 1 of the Navier-Stokes Equations, where both π and θ will be

split/decomposed into two components, the mean values (π̄ and θ̄) and their associ-

ated perturbations (π′ and θ′) such that:

π = π̄(z) + π′(x, z, t)

and

θ = θ̄(z) + θ′(x, z, t)

where the mean values satisfy a hydrostatically balanced atmosphere. After lineariza-

tion, the pressure tendency Eq. (2.2) becomes:

∂(π̄ + π′)

∂t
+ $u ·∇(π̄ + π′) +

R

cv

(π̄ + π′)∇ · $u = 0

which, after simplification, becomes:

∂π′

∂t
+ $u ·∇π′ + w

∂π̄

∂z
+

R

cv

(π̄ + π′)∇ · $u = 0 (3.1)

21



Expansion of the terms of the momentum Eq. (2.2) yields:

∂$u

∂t
+ $u ·∇$u + cp(θ̄ + θ′)∇(π̄ + π′) = −g$k

which can be expanded to:

∂$u

∂t
+ $u ·∇$u + cp(θ̄ + θ′)

[(

∂π̄

∂x
,
∂π̄

∂z

)

+

(

∂π′

∂x
,
∂π′

∂z

)]

= −g$k

from which, using the hydrostatic approximation dπ̄
dz

= − g
cp θ̄

yields:

∂$u

∂t
+ $u ·∇$u + cp(θ̄ + θ′)

[

− g

cpθ̄
$k +

(

∂π′

∂x
,
∂π′

∂z

)]

= −g$k

which can be simplified to:

∂$u

∂t
+ $u ·∇$u + cp(θ̄ + θ′)

(

∂π′

∂x
,
∂π′

∂z

)

− g$k − g
θ′

θ̄
$k = −g$k

and finally becomes:

∂$u

∂t
+ $u ·∇$u + cp(θ̄ + θ′)∇π′ = g

θ′

θ̄
$k (3.2)

Expansion of the terms of the thermodynamic energy Eq. (2.3) yields:

∂(θ̄ + θ′)

∂t
+ $u ·∇(θ̄ + θ′) = 0

22



which further leads to:

∂θ′

∂t
+ $u ·∇θ′ + w

∂θ̄

∂z
= 0 (3.3)

2. Transform

Using the basic machinery prescribed in Eqs. (2.13) - (2.22), the set of non-

conservative Navier-Stokes Eq. (3.1 - 3.3) were transformed from x-z coordinates

to x-σz coordinates. The first machinery applied to the pressure tendency Eq. (3.1)

was to change the vector dot products to transposes (i.e. $u·∇ to $uT∇), which yielded:

∂π′

∂t
+ $uT∇π′ + w

∂π̄

∂z
+

R

cv

(π̄ + π′)∇ · $u = 0

substituting in Eq. (2.13) and Eq. (2.14) leads to:

∂π′

∂t
+ (J−1$̃u)T (JT ∇̃)π′ + w

∂π̄

∂z

∂σz

∂σz

+
R

cv

(π̄ + π′)(JT ∇̃)T (J−1$̃u) = 0

applying the linear algebra identity in Eq. (2.15) and the transformation for (w)

yields:

∂π′

∂t
+ ($̃u)T (J−1)T (JT )(∇̃)π′ +

(

−ũ
∂zs

∂x

σz − H

H
+ w̃

H − zs

H

)

∂π̄

∂σz

∂σz

∂z

+
R

cv

(π̄ + π′)(∇̃)T (JT )T (J−1)($̃u) = 0
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which simplifies to:

∂π′

∂t
+ ($̃u)T (∇̃)π′ +

(

−ũ
∂zs

∂x

σz − H

H
+ w̃

H − zs

H

)

∂π̄

∂σz

(

H

H − zs

)

+
R

cv

(π̄ + π′)(∇̃)T ($̃u) = 0

and then to:

∂π′

∂t
+ $̃u · ∇̃π′ − ũ

(

σz − H

H − zs

)

∂zs

∂x

∂π̄

∂σz

+ w̃
∂π̄

∂σz

+
R

cv

(π̄ + π′)∇̃ · $̃u = 0

and then further simplified to:

∂π′

∂t
+ $̃u · ∇̃π′ − ũ

(

σz − H

H − zs

)

∂zs

∂σz

∂π̄

∂x
+ w̃

∂π̄

∂σz

+
R

cv

(π̄ + π′)∇̃ · $̃u = 0

to finally yield:

∂π′

∂t
+ $̃u · ∇̃π′ + w̃

∂π̄

∂σz

+
R

cv

(π̄ + π′)∇̃ · $̃u = 0 (3.4)

Applying the same machinery as above to the momentum Eq. (3.2), the dot products

were replaced, which yields:

∂$u

∂t
+ $uT∇$u + cp(θ̄ + θ′)∇π′ = g

θ′

θ̄
$k

then $u and ∇ were replaced by their transforms (Eq. (2.13) and Eq. (2.14)) leading to:

∂$u

∂t
+ (J−1$̃u)T (JT ∇̃)$u + cp(θ̄ + θ′)(JT ∇̃)π′ = g

θ′

θ̄
$k
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applying the linear algebra identity in Eq. (2.15) yields:

∂$u

∂t
+ ($̃u)T (J−1)T (JT )(∇̃)$u + cp(θ̄ + θ′)(JT ∇̃)π′ = g

θ′

θ̄
$k

which simplifies to:

∂$u

∂t
+ ($̃u)T (∇̃)$u + cp(θ̄ + θ′)(JT ∇̃)π′ = g

θ′

θ̄
$k

to finally yield:

∂$u

∂t
+ $̃u · ∇̃$u + cp(θ̄ + θ′)(JT ∇̃)π′ = g

θ′

θ̄
$k (3.5)

Applying the machinery to thermodynamic energy, Eq. (3.3) yields:

∂θ′

∂t
+ $uT∇θ′ + w

∂θ̄

∂z
= 0

substituting in Eq. (2.13) and Eq. (2.14) leads to:

∂θ′

∂t
+ (J−1$̃u)T (JT ∇̃)θ′ + w

∂θ̄

∂z

∂σz

∂σz

= 0

applying the linear algebra identity in Eq. (2.15) and the transformation for (w)

yields:

∂θ′

∂t
+ ($̃u)T (J−1)T (JT )(∇̃)θ′ +

(

−ũ
∂zs

∂x

σz − H

H
+ w̃

H − zs

H

)

∂θ̄

∂σz

∂σz

∂z
= 0
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which simplifies to:

∂θ′

∂t
+ ($̃u)T (∇̃)θ′ +

(

−ũ
∂zs

∂x

σz − H

H
+ w̃

H − zs

H

)

∂θ̄

∂σz

(

H

H − zs

)

= 0

and simplifies further, yielding:

∂θ′

∂t
+ $̃u · ∇̃θ′ − ũ

σz − H

H − zs

∂zs

∂x

∂θ̄

∂σz

+ w̃
∂θ̄

∂σz

= 0

and then to:

∂θ′

∂t
+ $̃u · ∇̃θ′ − ũ

σz − H

H − zs

∂zs

∂σz

∂θ̄

∂x
+ w̃

∂θ̄

∂σz

= 0

to finally yield:

∂θ′

∂t
+ $̃u · ∇̃θ′ + w̃

∂θ̄

∂σz

= 0 (3.6)

3. Decomposition

In order to discretize the governing equations and code them into Fortran

90/95, the vector fields had to be decomposed into scalar components. The decom-

position of the pressure tendency Eq. (3.4) became:

∂π′

∂t
+

[

ũ
∂π′

∂x
+ w̃

∂π′

∂σz

]

+ w̃
∂π̄

∂σz

+
R

cv

(π̄ + π′)

[

∂ũ

∂x
+

∂w̃

∂σz

]

= 0 (3.7)
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The momentum Eq. (3.5) decomposes into two separate equations (u and w), with

the first equation (u) taking the form:

∂u

∂t
+

[

ũ
∂u

∂x
+ w̃

∂u

∂σz

]

+ cp(θ̄ + θ′)

[

∂π′

∂x
+

(

∂zs

∂x

σz − H

H − zs

)

∂π′

∂σz

]

= 0 (3.8)

and the representation for (w) taking the form:

∂w

∂t
+

[

ũ
∂w

∂x
+ w̃

∂w

∂σz

]

+ cp(θ̄ + θ′)

[

(

H

H − zs

)

∂π′

∂σz

]

= g
θ′

θ̄
(3.9)

The decomposed thermodynamic energy Eq. (3.6) yields:

∂θ′

∂t
+

[

ũ
∂θ′

∂x
+ w̃

∂θ′

∂σz

]

+ w̃
∂θ̄

∂σz

= 0 (3.10)

4. Application of the Galerkin Statement

Using the Galerkin machinery outlined in the previous chapter, Eq. (3.7) -

(3.10) were discretized yielding the continuous Galerkin Set 1 using x-σz coordinates

(CG1 x-σz):

MN
∑

l=1

ωl |Jl|ψi,lψj,l

∂π′

j

∂t
=

MN
∑

l=1

ωl |Jl|ψi,l



−
MN
∑

k=1

ψk,l

(

ũk

∂ψj,l

∂x
π′

j + w̃k

∂ψj,l

∂σz

π′

j − w̃k

∂ψj,l

∂σz

π̄j

)

−R

cv





MN
∑

k=1

ψk,l(π̄k + π′

k)





(

∂ψj,l

∂x
ũj +

∂ψj,l

∂σz

w̃j

)



 (3.11)
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MN
∑

l=1

ωl |Jl|ψi,lψj,l
∂uj

∂t
=

MN
∑

l=1

ωl |Jl|ψi,l



−
MN
∑

k=1

ψk,l

(

ũk
∂ψj,l

∂x
uj + w̃k

∂ψj,l

∂σz

uj

)

−cp





MN
∑

k=1

ψk,l(θ̄k + θ′k)









∂ψj,l

∂x
π′

j +





(

∂zs

∂x

)

j

σz,j − H

H − zs,j





∂ψj,l

∂σz

π′

j







 (3.12)

MN
∑

l=1

ωl |Jl|ψi,lψj,l

∂wj

∂t
=

MN
∑

l=1

ωl |Jl|ψi,l



−
MN
∑

k=1

ψk,l

(

ũk

∂ψj,l

∂x
wj + w̃k

∂ψj,l

∂σz

wj

)

−cp





MN
∑

k=1

ψk,l(θ̄k + θ′k)





([

H

H − zs,j

]

∂ψj,l

∂σz

π′

j

)

+ g
θ′j
θ̄j



 (3.13)

MN
∑

l=1

ωl |Jl|ψi,lψj,l

∂θ′j
∂t

=

MN
∑

l=1

ωl |Jl|ψi,l



−
MN
∑

k=1

ψk,l

(

ũk
∂ψj,l

∂x
θ′j + w̃k

∂ψj,l

∂σz

θ′j

)

− w̃j
∂ψj,l

∂σz

θ̄j



 (3.14)

The existing CG1 x-z code (in Fortran 90/95) [1] was modified using Eqs. (3.11) -

(3.14) and then used for the test cases outlined in the next chapter.
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B. EQUATION SET 2

1. Perturbation Method

This section will outline the expansion of the terms of set 2 of the Navier-

Stokes Equations, where (as seen in set 1) both ρ and θ will be split/decomposed into

two components, the reference values (ρ̄ and θ̄) and their associated perturbations (ρ′

and θ′). As seen in set 1:

ρ = ρ̄(z) + ρ′(x, z, t)

and

θ = θ̄(z) + θ′(x, z, t)

where the reference values again satisfy a hydrostatically balanced atmosphere. In

order to linearize, the mass Eq. (2.4) the product rule is first applied, yielding:

∂ρ

∂t
+ $u ·∇ρ + ρ∇ · $u = 0

followed by expansion of the terms, becomes:

∂(ρ̄ + ρ′)

∂t
+ $u ·∇(ρ̄ + ρ′) + (ρ̄ + ρ′)∇ · $u = 0

which, after simplification, yields:
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∂ρ′

∂t
+ $u ·∇ρ′ + w

∂ρ̄

∂z
+ (ρ̄ + ρ′)∇ · $u = 0 (3.15)

By setting µ = 0, the momentum Eq. (2.6) becomes:

∂$u

∂t
+ $u ·∇$u +

1

ρ
∇P = −g$k

and followed by an expansion of the terms, yields:

∂$u

∂t
+ $u ·∇$u +

1

(ρ̄ + ρ′)
∇(P̄ + P ′) = −g$k

which leads to:

∂$u

∂t
+ $u ·∇$u +

1

(ρ̄ + ρ′)
∇P ′ +

1

(ρ̄ + ρ′)

∂P̄

∂z
$k = −g$k

from which, using the hydrostatic approximation dρ̄
dz

= −ρ̄g yields:

∂$u

∂t
+ $u ·∇$u +

1

(ρ̄ + ρ′)
∇P ′ − ρ̄g

(ρ̄ + ρ′)
$k = −g$k

which, after simplification, becomes:

∂$u

∂t
+ $u ·∇$u +

1

(ρ̄ + ρ′)
∇P ′ +

ρ′g

(ρ̄ + ρ′)
$k = 0
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and finally:

∂$u

∂t
+ $u ·∇$u +

1

(ρ̄ + ρ′)
∇P ′ = − ρ′g

(ρ̄ + ρ′)
$k (3.16)

By setting µ = 0, the thermodynamic energy Eq. (2.6) becomes:

∂θ

∂t
+ $u ·∇θ = 0

and followed by an expansion of the terms, yields:

∂(θ̄ + θ′)

∂t
+ $u ·∇(θ̄ + θ′) = 0

which further leads to:

∂θ′

∂t
+ $u ·∇θ′ + w

∂θ̄

∂z
= 0 (3.17)

2. Transform

Using the basic machinery described in Eq. (2.13) - (2.22), the set of non-

conservative Navier-Stokes Eq. (3.15 - 3.17) were transformed from x-z coordinates

to x-σz coordinates. The first machinery applied to the pressure tendency Eq. (3.15)

was to change the vector dot products to transposes (i.e. $u·∇ to $uT∇), which yielded:

∂ρ′

∂t
+ $uT∇ρ′ + w

∂ρ̄

∂z
+ (ρ̄ + ρ′)∇T$u = 0
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substituting in Eq. (2.13) and Eq. (2.14) leads to:

∂ρ′

∂t
+ (J−1$̃u)T (JT ∇̃)ρ′ + w

∂ρ̄

∂z

∂σz

∂σz

+ (ρ̄ + ρ′)(JT ∇̃)T J−1$̃u = 0

applying the linear algebra identity in Eq. (2.15) and the transformation for (w)

yields:

∂ρ′

∂t
+ ($̃u)T (J−1)T (JT ∇̃)ρ′ +

(

−ũ
∂zs

∂x

σz − H

H
+ w̃

H − zs

H

)

∂ρ̄

∂σz

∂σz

∂z

+(ρ̄ + ρ′)(∇̃)T (JT )T J−1$̃u = 0

which simplifies to:

∂ρ′

∂t
+ ($̃u)T ∇̃ρ′ +

(

−ũ
∂zs

∂x

σz − H

H
+ w̃

H − zs

H

)

∂ρ̄

∂σz

(

H

H − zs

)

+ (ρ̄ + ρ′)(∇̃)T $̃u = 0

to finally yield:

∂ρ′

∂t
+ $̃u · ∇̃ρ′ + w̃

∂ρ̄

∂σz

+ (ρ̄ + ρ′)∇̃ · $̃u = 0 (3.18)

Applying the same machinery as above to the momentum Eq. (3.16), the dot prod-

ucts were replaced, which yields:

∂$u

∂t
+ $uT∇$u +

1

(ρ̄ + ρ′)
∇P ′ = − ρ′g

(ρ̄ + ρ′)
$k
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then $u and ∇ were replaced by their transforms (Eq. (2.13) and Eq. (2.14)) leading to:

∂$u

∂t
+ (J−1$̃u)T JT ∇̃$u +

1

(ρ̄ + ρ′)
JT ∇̃P ′ = − ρ′g

(ρ̄ + ρ′)
$k

applying the linear algebra identity in Eq. (2.15) yields:

∂$u

∂t
+ $̃u

T
(J−1)T JT ∇̃$u +

1

(ρ̄ + ρ′)
JT ∇̃P ′ = − ρ′g

(ρ̄ + ρ′)
$k

which simplifies to:

∂$u

∂t
+ $̃u

T ∇̃$u +
1

(ρ̄ + ρ′)
JT ∇̃P ′ = − ρ′g

(ρ̄ + ρ′)
$k

to finally yield:

∂$u

∂t
+ $̃u · ∇̃$u +

1

(ρ̄ + ρ′)
JT ∇̃P ′ = − ρ′g

(ρ̄ + ρ′)
$k (3.19)

Applying the machinery to thermodynamic energy Eq. (3.17) yields:

∂θ′

∂t
+ $uT∇θ′ + w

∂θ̄

∂z
= 0

substituting in Eq. (2.13) and Eq. (2.14) leads to:

∂θ′

∂t
+ (J−1$̃u)T JT ∇̃θ′ + w

∂θ̄

∂z

∂σz

∂σz

= 0
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applying the linear algebra identity in Eq. (2.15) and the transformation for (w)

yields:

∂θ′

∂t
+ ($̃u)T (J−1)T JT ∇̃θ′ +

(

−ũ
∂zs

∂x

σz − H

H
+ w̃

H − zs

H

)

∂θ̄

∂σz

∂σz

∂z
= 0

which simplifies to:

∂θ′

∂t
+ ($̃u)T ∇̃θ′ +

(

−ũ
∂zs

∂x

σz − H

H
+ w̃

H − zs

H

)

∂θ̄

∂σz

(

H

H − zs

)

= 0

to finally yield:

∂θ′

∂t
+ $̃u · ∇̃θ′ + w̃

∂θ̄

∂σz

= 0 (3.20)

3. Decomposition

Similar to CG1, in order to discretize the governing equations and code them

into Fortran 90/95, they had to be decomposed into scalar components. The decom-

position of the mass Eq. (3.18) became:

∂ρ′

∂t
+

[

ũ
∂ρ′

∂σz

+ w̃
∂ρ′

∂σz

]

+ w̃
∂ρ̄

∂σz

+ (ρ̄ + ρ′)

[

∂ũ

∂x
+

∂w̃

∂σz

]

= 0 (3.21)

The momentum Eq. (3.19) decomposes into two separate equations (u and w), with
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the first equation (u) taking the form:

∂u

∂t
+

[

ũ
∂u

∂x
+ w̃

∂u

∂σz

]

+
1

(ρ̄ + ρ′)

[

∂P ′

∂x
+

(

∂zs

∂x

σz − H

H − zs

)

∂P ′

∂σz

]

= 0 (3.22)

and the representation for (w) taking the form:

∂w

∂t
+

[

ũ
∂w

∂x
+ w̃

∂w

∂σz

]

+
1

(ρ̄ + ρ′)

[

(

H

H − zs

)

∂P ′

∂σz

]

= − ρ′g

(ρ̄ + ρ′)
(3.23)

The decomposed thermodynamic energy Eq. (3.20) yields:

∂θ′

∂t
+

[

ũ
∂θ′

∂x
+ w̃

∂θ′

∂σz

]

+ w̃
∂θ̄

∂σz

= 0 (3.24)

4. Application of the Galerkin Statement

Using the Galerkin machinery outlined in the previous chapter, Eqs. (3.21) -

(3.24) were discretized yielding the continuous Galerkin Set 2 using x-σz coordinates

(CG2 x-σz):

MN
∑

l=1

ωl |Jl|ψi,lψj,l

∂ρ′

j

∂t
=

MN
∑

l=1

ωl |Jl|ψi,l



−
MN
∑

k=1

ψk,l



ũk





∂ψj,l

∂x
+





(

∂zs

∂x

)

j

σz,j − H

H − zs,j





∂ψj,l

∂σz



 ρ′

j

+w̃k

(

H

H − zs,j

)

∂ψj,l

∂σz

ρ′

j − w̃k

∂ψj,l

∂σz

ρ̄j

)

−




MN
∑

k=1

ψk,l(ρ̄k + ρ′

k)





(

∂ψj,l

∂x
ũj +

∂ψj,l

∂σz

w̃j

)



 (3.25)
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MN
∑

l=1

ωl |Jl|ψi,lψj,l
∂uj

∂t
=

MN
∑

l=1

ωl |Jl|ψi,l



−
MN
∑

k=1

ψk,l

(

ũk
∂ψj,l

∂x
uj + w̃k

∂ψj,l

∂σz

uj

)

−




MN
∑

k=1

ψk,l

(

1

(ρ̄j + ρ′

j)

)









∂ψj,l

∂x
P ′

j +





(

∂zs

∂x

)

j

σz,j − H

H − zs,j





∂ψj,l

∂σz

P ′

j







 (3.26)

MN
∑

l=1

ωl |Jl|ψi,lψj,l

∂wj

∂t
=

MN
∑

l=1

ωl |Jl|ψi,l



−
MN
∑

k=1

ψk,l

(

ũk

∂ψj,l

∂x
wj + w̃k

∂ψj,l

∂σz

wj

)

−




MN
∑

k=1

ψk,l

(

1

(ρ̄j + ρ′

j)

)





([

H

H − zs,j

]

∂ψj,l

∂σz

P ′

j

)

−
ρ′

jg

(ρ̄j + ρ′

j)



 (3.27)

MN
∑

l=1

ωl |Jl|ψi,lψj,l

∂θ′j
∂t

=

MN
∑

l=1

ωl |Jl|ψi,l



−
MN
∑

k=1

ψk,l

(

ũk
∂ψj,l

∂x
θ′j + w̃k

∂ψj,l

∂σz

θ′j

)

− w̃j
∂ψj,l

∂σz

θ̄j



 (3.28)

The existing CG2 x-z code (in Fortran 90/95) was modified using Eq. (3.25) - (3.28)

and then used for the test cases outlined in the next chapter.
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IV. TEST CASES

A. OVERVIEW

Three specific cases where chosen to evaluate the σ-coordinate transforma-

tions: the rising thermal bubble, the linear hydrostatic mountain, and the linear non-

hydrostatic mountain. The rising thermal bubble, case 1, was chosen as a benchmark

in order to insure that in the absence of terrain the model dynamics still functioned

properly (i.e. the σ-coordinate transformed equations reduce to the original govern-

ing equations) yielding the same results as the unmodified source code [1]. The linear

hydrostatic mountain, case 2, and the linear non-hydrostatic mountain, case 3, were

chosen to evaluate the advantages and disadvantages of the x-σ governing equation

in relation to their x-z formulation in both hydrostatic and non-hydrostatic environ-

ments using the same terrain. This chapter will outline the test case assumptions,

additional information derived for the σ-coordinates, and previous results that will

be used for comparison.

B. CASE 1: RISING THERMAL BUBBLE

This test case represents a highly nonlinear non-hydrostatic flow problem, by

demonstrating the evolution of an initially at rest warm air bubble, relative to the

surrounding environment, in a hydrostatic constant potential temperature environ-

ment as resolved by the Navier-Stokes equations. As the warm air bubble rises, it will

deform, taking the shape of a mushroom cloud, due to the shearing motion caused by

the resulting differential vertical velocity field. The initial distribution of potential

temperature perturbations in order to drive vertical motion is defined by:

θ′ =











0 for r > rc,

θc

2

[

1 + cos
(

πcr
rc

)]

for r ≤ rc,
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where θc = 0.5oC, πc is the trigonometric constant, r =
√

(x − xc)2 + (z − zc)2 with

the constants: θ̄ = 300 K, rc = 250 m, and (xc, zc) = (500,350) m. [1] The domain

of interest is (x,z) ∈ [0, 1000]2 m integrated over the time interval, t ∈ [0, 700] s.

Additionally, the boundary conditions for all boundaries are no-flux.

The utility of running this case is to insure that the σ transformed governing

equations yield the same results as the x-z set of the governing equations when the

terrain is flat:

zsurf = 0

where zsurf is the height of the surface. The surface heights are vital in deriving the

σ-coordinates (see equation 2.16). The slope of the surface must also be calculated

for the transformation, which in this case leads to:

∂zsurf

∂x
= 0

With a flat surface in combination with a slope of 0, the transformation of the coor-

dinate system (x-zσ) reduces to x-z, making both the modified and unmodified codes

yield identical results.

The unmodified source code was run in order to establish a baseline to evaluate

the transformed source code. Three resolutions were used: 20 m (2601 grid points), 10

m (10201 grid points), and 5 m (40401 grid points). The resulting data for potential

temperature perturbations was then plotted for each resolution after 700 s of model

integration (see Figures 2 and 3). As seen in Figures 2 and 3, the warm air bubble

did deform into a mushroom type formation, while maintaining symmetry.
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Figure 2. Case 1: Rising Thermal Bubble. Resulting potential temperature pertur-
bations using unmodified CG1 source codes [1] after 700 s for resolutions: (a) 20, (b)
10, and (c) 5 m. All cases were run using 10th order polynomials, with contours from
-0.05 to 0.525 K with an interval of 0.025 K.
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Figure 3. Case 1: Rising Thermal Bubble. Resulting potential temperature pertur-
bations using unmodified CG2 source codes [1] after 700 s for resolutions: (a) 20, (b)
10, and (c) 5 m. All cases were run using 10th order polynomials, with contours from
-0.05 to 0.525 K with an interval of 0.025 K.
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C. CASE 2: LINEAR HYDROSTATIC MOUNTAIN

This test case was chosen in order to evaluate the model performance when

a simple terrain feature is introduced in a linear hydrostatic flow environment with

steady inflow and outflow lateral boundary conditions. Over time, a steady-state

mountain wave over a single peak should form if the model dynamics are resolving

the scenario accurately. Initially, the constant mean horizontal velocity is set to ū =

20 m/s, the mean vertical velocity is set to w̄ = 0 m/s, and the atmosphere is set

to isothermal with a constant mean temperature of T̄ = 250 K.[1] Since this case

is isothermal, the buoyancy frequency or Brunt-Väisälä frequency N 2 = g d
dz

(lnθ̄)

reduces to N = g√
cpT̄

, which simplifies the Exner pressure to:

π̄ = e
−

g

cpT̄

The domain of interest is (x,z) ∈ [0, 240,000]× [0, 30,000] m integrated over the time

interval, t ∈ [0, 10] h. For this test case, the terrain (the versiera di Agnesi mountain

profile) is represented by:

zsurf =
hc

(

1 +
(

x−xc
ac

)2
)

where zsurf is the height of the surface, and hc, xc, and ac are constants (hc = 1 m, xc

= 120,000 m, and ac = 10,000 m). Additionally, the bottom boundary conditions are

no-flux, while the top and lateral boundaries use a non-reflecting boundary condition

[1]. For further information on such boundary conditions, see the papers by Durran

and Klemp [9], Giraldo and Restelli [1], and Dea, Giraldo, and Neta [10]. However

non-reflecting boundary conditions are outside the scope of this thesis and will not be

mentioned further. Unlike the previous case, the surface heights do vary with x and

are even more vital in deriving the σ-coordinates. The surface plot can be seen in
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Figure 4.a, on which it can be seen (noticing the z-axis scale) that the peak is fairly

low and has smooth geometry. Since the surface height does vary with x, the slope of

the surface must also be calculated for the transformation, which in this case leads to:

zsurf = hc

(

1 +
(

x − xc

ac

)2
)

−1

zsurf = hc

[

(ac)2 + (x2 − 2(xc)(x) + (xc)2)

(ac)2

]

−1

zsurf = (hc)(ac)2
[

(ac)2 + x2 − 2(xc)(x) + (xc)2
]

−1

∂zsurf

∂x
=

(−1)(hc)(ac)2(2x − 2(xc))

[(ac)2 + x2 − 2(xc)(x) + (xc)2]2

∂zsurf

∂x
=

(−2)(hc)(ac)2(x − xc)

[(ac)2 + (x − xc)2]2

where the surface slope (∂zsurf

∂x
) plot can be seen in Figure 4.b, on which it can be

seen (noticing the z-axis scale) that the slope of the peak is fairly flat and again has

smooth geometry.

The unmodified source code was run (colored lines) and compared with the

analytic solutions (black lines), generated for the unmodified source code and de-

veloped by Giraldo and Restelli [1], in order to establish a baseline to evaluate the

transformed source code. One resolution was used: 1200 m (in x) and 240 m (in z)

(20301 grid points). The resulting data for vertical and horizontal velocity was then

plotted for the resolution after 10 h (see Figure 5). As seen in Figure 5, a steady-state

mountain wave did form in the appropriate region and will be compared against the

transformed governing equation sets.
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Figure 4. Case 2: Linear Hydrostatic Mountain. The single mountain peak zsurf , (a),

and the associated slope of the peak ∂zsurf

∂x
, (b).
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Figure 5. Case 2: Linear Hydrostatic Mountain. Resulting horizontal velocity (a) and
vertical velocity (b) using unmodified (i) CG1 and (ii) CG2 source codes [1] after 10
h for the resolution of 1200 m (in x) and 240 m (in z) (colored lines) plotted with the
analytic solution (black lines). All cases were run using 10th order polynomials, with
contours from -0.025 to 0.025 ms−1 with an interval of 0.005 ms−1, (a), and -0.005 to
0.005 ms−1 with an interval of 0.0005 ms−1, (b).
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D. CASE 3: LINEAR NON-HYDROSTATIC MOUNTAIN

The final test case was chosen in order to evaluate the model performance when

a simple terrain feature is introduced in a linear non-hydrostatic flow environment

with steady inflow and outflow lateral boundary conditions. Over time, a steady-state

mountain wave over a single peak should form if the model dynamics are resolving the

scenario accurately. Initially, the constant mean horizontal velocity is set to ū = 10

m/s, the mean vertical velocity is set to w̄ = 0 m/s, and the atmosphere is uniformly

stratified with a Brunt-Väisälä frequency of N = 0.01 /s. This test case uses the

same terrain as case 2 (see Figure 4). The constants used for this case were hc = 1

m, xc = 72,000 m, ac = 1,000 m, and θ0 = 280K. The domain of interest is (x,z) ∈ [0,

144,000] × [0, 30,000] m integrated over the time interval, t ∈ [0, 5] h. Like case 2,

the bottom boundary conditions are no-flux and the top and lateral boundaries are

non-reflecting.[1]

The unmodified source code was again run (colored lines) and compared with

the analytic solution [1] (black lines) in order to establish a baseline to evaluate the

transformed source code. One resolution was used: 360 m (in x) and 300 m (in z)

(40501 grid points). The resulting data for vertical and horizontal velocity was then

plotted after 5 h (see Figure 6). As seen in Figure 6, a steady-state mountain wave

did form in the appropriate region and will be compared against the transformed

governing equation sets.
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Figure 6. Case 3: Linear Non-Hydrostatic Mountain. Resulting horizontal velocity
(a) and vertical velocity (b) using unmodified (i) CG1 and (ii) CG2 source codes [1]
after 5 h for the resolution of 360 m (in x) and 300 m (in z) (colored lines) plotted with
the analytic solution (black lines). All cases were run using 10th order polynomials,
with contours from -0.025 to 0.025 ms−1 with an interval of 0.005 ms−1, (a), and
-0.005 to 0.005 ms−1 with an interval of 0.0005 ms−1, (b).
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V. RESULTS

A. CASE 1: RISING THERMAL BUBBLE

1. Accuracy and Comparison

The modified source code (containing the σ-coordinate transformed governing

equations) was run using the same three resolutions that were used for the unmodified

code: 20 m (2601 grid points), 10 m (10201 grid points), and 5 m (40401 grid points).

The resulting data for potential temperature was then plotted for each resolution after

integrating forward 700 s (see Figure 7). As seen in Figure 7, the warm air bubble

did deform into a mushroom type formation, while maintaining symmetry, appearing

to duplicate the results seen by the x-z code (see figure 2).

To further evaluate the similarities in the x-z and x-σz model solutions nine

variables (using 5 m resolution) were compared: the maximum Exner pressure pertur-

bation (π′

max (unitless)), the minimum Exner pressure perturbation (π′

min (unitless)),

the maximum horizontal wind velocity (umax (ms−1)), the minimum horizontal wind

velocity (umin (ms−1)), the maximum vertical wind velocity (wmax (ms−1)), the mini-

mum vertical wind velocity (wmin (ms−1)), the maximum potential temperature per-

turbation (θ′max (K)), the minimum potential temperature perturbation (θ′min (K)),

and CPU time (s). These values were compare to better observe the relative maxi-

mum and minimum values occurring for each model run. In order to have consistent

CPU constraints both x-z and x-σz for set 1 code were run in parallel on the same

machine (NPS Math Department 32 Processor Apple Cluster: Riemann) and started

at the same time, and then repeated for set 2. The resulting values can be seen in Ta-

ble I. All four sets of code converge to nearly identical solutions. The only difference

are the following: minor differences in the π′

max for set 1 and set 2; and differences in

θ′max and θ′min between x-z coordinates and x-σz coordinates for both sets. The major

difference between the models is the CPU time (in seconds), which was consistently
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slower for the x-σz ( 28.24 % increase in time for set 1 and 15.58 % increase in time

for set 2) relative to their x-z counterparts. This difference is caused by the additional

x-σz data being passed between program functions and additional calculations being

performed ( O(5 ∗ [NT ] ∗ [NE ] ∗ [MN ]2 ∗ [8 ∗ (N + 1) + 26])), where NT is the number

of time steps, NE is the number of elements, and MN is the number of quadrature

points or order N +1). For the 5 m resolution case, there were 5.2101×1019 additional

operations. The horizontal velocities umax and umin also indicate that symmetry is

maintained for all four model sets.

To further evaluate the performance of the four model runs, the Root Mean

Squared Error (RMSE) was determined for each run in relation to the analytic solu-

tion (see Table II) for the four variables: π, u, w, and θ. The RMSE was calculated

using:

‖$q ‖RMS =

√

√

√

√

1

Np

Np
∑

i=1

($q numerical − $q analytic)2

where $q represents the given state variable vector, Np is the number of points, and the

analytic solution for this case was defined by the unmodified source code numerical

Table I. Case 1: Rising Thermal Bubble. Comparison of modified and unmodified
CG1 and CG2 using 5 m resolution after 700s.

Model CG1 x-z CG1 x-σz CG2 x-z CG2 x-σz

π′

max 0.9364×10−5 0.9364×10−5 0.9365×10−5 0.9365×10−5

π′

min -0.1195×10−4 -0.1195×10−4 -0.1195×10−4 -0.1195×10−4

umax (ms−1) 0.2079×101 0.2079×101 0.2079×101 0.2079×101

umin (ms−1) -0.2079×101 -0.2079×101 -0.2079×101 -0.2079×101

wmax (ms−1) 0.2536×101 0.2536×101 0.2536×101 0.2536×101

wmin (ms−1) -0.1912×101 -0.1912×101 -0.1912×101 -0.1912×101

θ′max (K) 0.5713×100 0.5715×100 0.5713×100 0.5715×100

θ′min (K) -0.9736×10−1 -0.9735×10−1 -0.9736×10−1 -0.9735×10−1

CPU time (s) 0.1027×105 0.1317×105 0.1322×105 0.1528×105
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Table II. Case 1: Rising Thermal Bubble RMSE. Root-mean-squared errors for the
four primary state variables, for the modified codes using the unmodified code so-
lutions as the analytic solutions, after 700 s using 5 m resolution and 10th order
polynomials.

Model π u (ms−1) w (ms−1) θ (K)
CG1 x-σz 2.5931×10−15 9.2434×10−10 1.6068×10−9 1.8639×10−9

CG2 x-σz 2.2034×10−16 5.2908×10−12 8.5529×10−12 9.6233×10−12

solutions in order to better compare x-z solution to the x-σz solution. Both sets 1

and 2 exhibited a smaller error for all four variables of interest, with set 2 having the

lower RMSE values overall.

In addition to comparing extremes of the selected fields, a one-dimensional

vertical temperature profile along the centerline (x = 500 m) was plotted for each

resolution to better discern the differences between the various models (see Figure

9). As the resolution increased from 20 m to 5 m, there is a noticeable increase in

the sharpness of the temperature distributions. As expected, for all three resolutions,

there is no significant difference between the temperatures along the centerline for

each model at that specific resolution.

2. Conclusions

All four model runs for the rising thermal bubble did deform into a mushroom

type formation, while maintaining symmetry (as indicated by the distribution of hor-

izontal velocities). Additionally, the models converged to nearly identical solutions,

as demonstrated by the min and max values and the RMSE. Overall, for both sets 1

and 2 of the Navier-Stokes equations, the x-σz coordinates do reduce to x-z, showing

that in the absence of terrain that the model dynamic still function properly, but did

show a noticeable increase in computational expense. These results validate the first

stage of the code evaluation.
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Figure 7. Case 1: Rising Thermal Bubble. Resulting potential temperature pertur-
bations using modified CG1 source codes [1] after 700 s for resolutions: (a) 20, (b)
10, and (c) 5 m. All cases were run using 10th order polynomials, with contours from
-0.05 to 0.525 K with an interval of 0.025 K.
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Figure 8. Case 1: Rising Thermal Bubble. Resulting potential temperature pertur-
bations using modified CG2 source codes [1] after 700 s for resolutions: (a) 20, (b)
10, and (c) 5 m. All cases were run using 10th order polynomials, with contours from
-0.05 to 0.525 K with an interval of 0.025 K.
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Figure 9. Case 1: Rising Thermal Bubble. Resulting potential temperature perturba-
tions for all four models along the vertical axis (x = 500 m) after 700 s for resolutions:
(a) 20, (b) 10, and (c) 5 m. All cases were run using 10th order polynomials.
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B. CASE 2: LINEAR HYDROSTATIC MOUNTAIN

1. Accuracy and Comparison

The modified source code was run and the numerical solution after 10 hours

(colored lines) was plotted with and compared to the analytic solution [1] (black lines)

(see Figure 10). Only one resolution was used: 1200 m (in x) and 240 m (in z) (20301

grid points). The resulting data for the vertical and horizontal velocity was then used

for the comparison (see Table III). As seen in Figure 10, a steady-state mountain

wave did form in the appropriate region closely modeling the analytic solution.

Visually comparing Figure 5 to Figure 10, indicated fairly identical solutions,

and to further evaluate the similarities in the x-z and x-σz model solutions nine

variables were again compared: π′

max, π′

min, umax, umin, wmax, wmin, θ′max, θ′min, and

CPU time (in seconds). Similar to case 1, both x-z and x-σz for set 1 code were run

in parallel and started at the same time, and then repeated for set 2. The resulting

values can be seen in Table III. All four sets of code converge to similar solutions, with

only minor differences overall, and the most predominate differences in the wmax and

wmin between x-z coordinates and x-σz coordinates, where x-z had greater magnitude

values for wmin and x-σz had greater magnitude values for wmax. As seen in case 1,

another major difference between the models is the CPU time, which was consistently

slower for the x-σz ( 30.03 % increase in time for set 1 and 15.67 % increase in time

for set 2) relative to their x-z counterparts. This difference is again being caused

by the additional x-σz data being passed between program functions and additional

calculations being performed ( O(5 ∗ [NT ] ∗ [NE ] ∗ [MN ]2 ∗ [8 ∗ (N + 1) + 26])). For

this case, there were 1.8793×1015 additional operations.

To further evaluate the performance of the four model runs, the RMSE was

determined for each run in relation to the analytic solution (see Table IV) for the four

variables: π, u, w, and θ. The analytic solution was interpolated to the model grid

using a cubic approximation. Once the domain of interest was defined and the nu-
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Table III. Case 2: Linear Hydrostatic Mountain. Comparison of modified and un-
modified CG1 and CG2 using 1200 m (in x) and 240 m (in z) resolution after 10
hours.

Model CG1 x-z CG1 x-σz CG2 x-z CG2 x-σz

π′

max 0.1792×10−5 0.1786×10−5 0.1781×10−5 0.1785×10−5

π′

min -0.1859×10−5 -0.1859×10−5 -0.1840×10−5 -0.1846×10−5

umax (ms−1) 0.4072×10−1 0.4070×10−1 0.4034×10−1 0.4044×10−1

umin (ms−1) -0.3506×10−1 -0.3484×10−1 -0.3474×10−1 -0.3473×10−1

wmax (ms−1) 0.4229×10−2 0.4656×10−2 0.4245×10−2 0.4686×10−2

wmin (ms−1) -0.5199×10−2 -0.4279×10−2 -0.5214×10−2 -0.4313×10−2

θ′max (K) 0.2400×10−1 0.2386×10−1 0.2380×10−1 0.2382×10−1

θ′min (K) -0.3184×10−1 -0.3124×10−1 -0.3157×10−1 -0.3115×10−1

CPU time (s) 0.4519×104 0.5876×104 0.6463×104 0.7476×104

merical and analytic solutions were on matching grids a bootstrap (random sampling)

method was used to calculate the 95 % confidence interval (CI) [11]. The 95% CI

was needed in order to determine if the differences observed in the RMSE values were

indeed significant. The bootstrap method built the 95% CI by creating a domain (of

equal size to the domain of interest) that was populated with random samples from

the original numerical and analytic solution pairs, and then the RMSE for the new

domain was calculated and stored. This process was iterated 10,000 times, storing

the RMSE from each iteration. The derived RMSE values were then sorted and the

values at 2.5% and 97.5% of the distribution were taken and compared to the original

RMSE in order to establish the 95% CI. The resulting confidence intervals indicate

that the differences between the state variable RMS errors are significant, since the

ranges do not overlap. For set 1, x-z coordinates exhibited a significantly smaller

error for all four variables of interest. For set 2, x-σz had lower RMSE values for π

and u, but larger RMSE values for w and θ. Taking a closer look at the w RMSE

with respect to wmax shows that CG1 x-z has a 1.32% error as compared to 4.24%
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Table IV. Case 2: Linear Hydrostatic Mountain RMSE. Root-mean-squared errors for
the four primary state variables, for both the modified and unmodified codes, after
10 h using 1200 m (in x) and 240 m (in z) resolution and 10th order polynomials.

Model π 95% Confidence Interval
CG1 x-z 1.2263×10−7 + 8.9354×10−10 - 8.9757×10−10

CG1 x-σz 1.2898×10−7 + 9.5565×10−10 - 9.9149×10−10

CG2 x-z 1.2121×10−7 + 9.1186×10−10 - 9.1327×10−10

CG2 x-σz 1.2200×10−7 + 9.0255×10−10 - 9.1227×10−10

Model u (ms−1) 95% Confidence Interval
CG1 x-z 2.2561×10−3 + 1.7930×10−5 - 1.8157×10−5

CG1 x-σz 2.4089×10−3 + 1.9437×10−5 - 1.9878×10−5

CG2 x-z 2.2481×10−3 + 1.8488×10−5 - 1.8337×10−5

CG2 x-σz 2.2808×10−3 + 1.8327×10−5 - 1.8985×10−5

Model w (ms−1) 95% Confidence Interval
CG1 x-z 6.8468×10−5 + 6.6744×10−7 - 6.6389×10−7

CG1 x-σz 1.9757×10−4 + 2.1074×10−6 - 2.1468×10−6

CG2 x-z 5.1424×10−5 + 5.0225×10−7 - 5.0915×10−7

CG2 x-σz 1.9311×10−4 + 2.0131×10−6 - 2.0667×10−6

Model θ (K) 95% Confidence Interval
CG1 x-z 1.6565×10−3 + 1.3026×10−5 - 1.3132×10−5

CG1 x-σz 1.8506×10−3 +1.4243×10−5 - 1.4748×10−5

CG2 x-z 1.6360×10−3 + 1.4812×10−5 - 1.4410×10−5

CG2 x-σz 1.7208×10−3 + 1.4790×10−5 - 1.5027×10−5

for CG1 x-σz and that CG2 x-z has a 0.99% error as compared to 4.12% for CG2

x-σz, which is substantial for both sets.

In order to verify that a steady-state solution for the linear hydrostatic moun-

tain case was achieved, the momentum flux was derived using:

m(z) =

∞
∫

−∞

ρ̄(z)u(x, z)w(x, z)dx (5.1)

where ρ̄(z) is the reference density as a function of height (z). [12] Additionally, the

analytic hydrostatic momentum flux (from linear theory) is given by:
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mH(z) = −πc

4
ρ̄sūsNh

c (5.2)

where mH denotes the analytic hydrostatic momentum flux, ρ̄s is the reference density

at the surface, ūs is the horizontal velocity values at the surface, N is the Brunt-

Väisälä frequency, and hc is the height of the mountain. [1] The momentum flux was

then normalized by m(z)/mH(z), and will be the value discussed in this thesis. In

Figure 11, the normalized momentum flux for all four model runs, using 1200 m (in

x) and 240 m (in z) resolution, was plotted for 2 h, 4 h, 6 h, 8 h, and 10 h. As seen in

Figure 11, all four model runs converge to a steady state solution after 10 h. Of the

four model simulations, the CG1 x-z and CG2 x-z models yielded results that were

far better than the x-σz models, with values between 0.95 and 1.01 versus between

0.65 and 1.15 as seen for the x-σz runs.

2. Conclusions

All four model runs for the linear hydrostatic mountain case did develop a

steady-state mountain wave over a single peak indicating that the model dynamics

are resolving the scenario accurately. Additionally, the models converged to nearly

identical solutions. Overall, for both set 1 and set 2 of the Navier-Stokes equations,

the x-σz coordinates performed slightly worse than their x-z counterparts (reflected

in the RMSE, the normalized momentum flux, and most pronounced in w with an

approximately four times larger RMSE with respect to wmax ) and as seen in the

previous case did show a noticeable increase in computational expense. These results

appear to indicate that when the model dynamics are resolved using purely explicit

time integration methods that there is no clear advantage in using x-σz over x-z and

will be further explored into the next case.
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Figure 10. Case 2: Linear Hydrostatic Mountain. Resulting horizontal velocity (a)
and vertical velocity (b) using modified (i) CG1 and (ii) CG2 source codes [1] after 10
h for the resolution of 1200 m (in x) and 240 m (in z) (colored lines) plotted with the
analytic solution (black lines). All cases were run using 10th order polynomials, with
contours from -0.025 to 0.025 ms−1 with an interval of 0.005 ms−1, (a), and -0.005 to
0.005 ms−1 with an interval of 0.0005 ms−1, (b).
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Figure 11. Case 2: Linear Hydrostatic Mountain. Normalized momentum flux for
the resolution of 1200 m (in x) and 240 m (in z), at times 2 h, 4 h, 6 h, 8 h, and 10 h
for the four model runs: (i) CG1 x-z, (ii) CG1 x-σz, (iii) CG2 x-z, and (iv) CG2 x-σz.
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C. CASE 3: LINEAR NON-HYDROSTATIC MOUNTAIN

1. Accuracy and Comparison

For the final case, both CG1 x-σz and CG2 x-σz were run and the numerical

solution after 5 hours (colored lines) was plotted and compared to the analytic solution

[1] (black lines) (see Figure 12). Similar to case 2, only one resolution was used: 360

m (in x) and 300 m (in z) (40501 grid points). The resulting data for the vertical

and horizontal velocity was then used for the comparison (see Table V). As seen in

Figure 12, a steady-state mountain wave did form in the appropriate region, there

were some apparent contrasts with the analytic solution for CG1 x-σz and CG2 x-σz.

Visually comparing Figure 12.i.a,b to Figure 12.ii.a,b indicated fairly similar

solutions for the horizontal velocities (a). Comparing the vertical velocities (b) re-

vealed a similar pattern in the placement of the steady state waves between x-z and

x-σz, but the x-σz coordinates appear to have significantly stronger oscillations than

the x-z coordinates. To further evaluate the x-z and x-σz model solutions nine vari-

ables were again compared: π′

max, π′

min, umax, umin, wmax, wmin, θ′max, θ′min, and CPU

time (in seconds). Similar to case 1 and case 2, both x-z and x-σz for set 1 code

were run in parallel and started at the same time, and then repeated for set 2. The

resulting values can be seen in Table V. All four sets of code converge to steady state

solutions, with larger differences than what were observed in case 2, but had only

minor differences in π′

max, π′

min, umax, and umin. The most predominate differences

were observed in the wmax and wmin between x-z coordinates and x-σz coordinates,

where x-σz had greater magnitude values for both state variables. There was also a

noticeable difference in θ′max and θ′min between x-z coordinates and x-σz coordinates

for both sets. Consistent with the previous two cases, the CPU time was slower for

both x-σz model simulations ( 52.06 % increase in time for set 1 and 15.12 % increase

in time for set 2) relative to the x-z simulations. This difference is again being caused
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by the additional x-σz data being passed between program functions and additional

calculations being performed ( O(5 ∗ [NT ] ∗ [NE ] ∗ [MN ]2 ∗ [8 ∗ (N + 1) + 26])). For

this case, there were 1.8700×1016 additional operations.
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Figure 12. Case 3: Linear Non-Hydrostatic Mountain. Resulting horizontal velocity
(a) and vertical velocity (b) using both modified, (ii), and unmodified, (i), CG1 source
codes [1] after 5 h for the resolution of 360 m (in x) and 300 m (in z) (colored lines)
plotted with the analytic solution (black lines). All cases were run using 10th order
polynomials, with contours from -0.025 to 0.025 ms−1 with an interval of 0.005 ms−1,
(a), and -0.005 to 0.005 ms−1 with an interval of 0.0005 ms−1, (b).
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Figure 13. Case 3: Linear Non-Hydrostatic Mountain. Resulting horizontal velocity
(a) and vertical velocity (b) using both modified, (ii), and unmodified, (i), CG2 source
codes [1] after 5 h for the resolution of 360 m (in x) and 300 m (in z) (colored lines)
plotted with the analytic solution (black lines). All cases were run using 10th order
polynomials, with contours from -0.025 to 0.025 ms−1 with an interval of 0.005 ms−1,
(a), and -0.005 to 0.005 ms−1 with an interval of 0.0005 ms−1, (b).

To further evaluate the performance of the four model runs, the Root Mean

Squared Error (RMSE) was determined for each run in relation to the analytic solution

(see Table VI) for the four variables: π, u, w, and θ. Once again, with the domain

of interest defined and the numerical and analytic solutions on matching grids a
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Table V. Case 3: Linear Non-Hydrostatic Mountain. Comparison of modified and
unmodified CG1 and CG2 using 360 m (in x) and 300 m (in z) resolution after 5 h.

Model CG1 x-z CG1 x-σz CG2 x-z CG2 x-σz

π′

max 0.2281×10−6 0.2059×10−6 0.2276×10−6 0.2045×10−6

π′

min -0.2631×10−6 -0.2628×10−6 -0.2599×10−6 -0.2654×10−6

umax (ms−1) 0.8257×10−2 0.8194×10−2 0.8229×10−2 0.8191×10−2

umin (ms−1) -0.7163×10−2 -0.6910×10−2 -0.7120×10−2 -0.6903×10−2

wmax (ms−1) 0.6035×10−2 0.6696×10−2 0.6035×10−2 0.6694×10−2

wmin (ms−1) -0.6037×10−2 -0.7989×10−2 -0.6037×10−2 -0.7988×10−2

θ′max (K) 0.2962×10−2 0.4275×10−2 0.2969×10−2 0.4262×10−2

θ′min (K) -0.2846×10−2 -0.3987×10−2 -0.2846×10−2 -0.3991×10−2

CPU time (s) 0.6166×104 0.9376×104 0.1720×105 0.1980×105

bootstrap (random sampling) method, using 10,000 iterations, was used to calculate

the 95 % CI [11]. The resulting confidence intervals again indicate that the differences

between the state variable RMS errors are significant, since the ranges do not overlap.

Both CG1 x-z and CG2 x-z exhibited a smaller error for all four variables of interest,

with the most significant difference in RMSE values for w and θ. Similar to the

previous case, taking a closer look at the w RMSE with respect to wmax shows that

CG1 x-z has a 2.17% error as compared to 20.25% for CG1 x-σz and that CG2 x-z

has a 2.17% error as compared to 20.26% for CG2 x-σz, which is even larger than

observed in the linear hydrostatic case.

Similar to the previous case, in order to verify that a steady-state solution for

the linear non-hydrostatic mountain case was achieved, the momentum flux was again

derived using Eq. (5.1). [12] For this case, the analytic non-hydrostatic momentum

flux is given by:

mNH(z) = −0.457mH(z)

where mNH denotes the analytic non-hydrostatic momentum flux and mH denotes
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the analytic hydrostatic momentum flux (Eq. (5.2)). [13] The momentum flux was

then normalized by m(z)/mNH(z), and will be the value discussed in this thesis. In

Figure 14, the normalized momentum flux for all four model runs, using 360 m (in x)

and 300 m (in z) resolution, was plotted for 1 h, 2 h, 3 h, 4 h, and 5 h. The resulting

momentum flux for this case resembled the same pattern as seen in case 2. Figure 14

indicates that all four models converge to a steady state solution after 5 h. Of the

four model simulations, the CG1 x-z and CG2 x-z models yielded results that were

far better than the x-σz models, with values between 0.95 and 1.0 versus between

0.85 and 1.18 as seen for the x-σz runs.

2. Conclusions

All four model runs for the linear non-hydrostatic mountain case did develop

a steady-state mountain wave over a single peak indicating that the model dynamics

are resolving the scenario. Additionally, the models converged to nearly identical

patterns, but with varying oscillation intensities. Similar to the results seen in case 2,

for both set 1 and set 2 of the Navier-Stokes equations, the x-σz coordinates performed

worse than their x-z counterparts (reflected in the RMSE, the normalized momentum

flux , and most pronounced in w with an approximately nine times larger RMSE

with respect to wmax ) and did show a noticeable increase in computational expense.

These results further indicate that when the model dynamics are resolved using purely

explicit time integration methods that there is no significant benefit in using x-σz over

x-z and that there is a significant degradation, but the results are promising since the

models are converging to a fairly representative steady-state solution. Although the

filters and boundary conditions are designed to be independent of z and σz , it cannot

be ruled out that a special treatment could be explored. With more research into the

filters and boundary conditions, the degradation could be made minimal enough that

x-σz is worth using with semi-implicit methods.
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Table VI. Case 3: Linear Non-Hydrostatic Mountain RMSE. Root-mean-squared er-
rors for the four primary state variables, for both the modified and unmodified codes,
after 5 h using 360 m ( in x) and 300 m (in z) resolution and 10th order polynomials.

Model π 95% Confidence Interval
CG1 x-z 1.5939×10−8 + 1.0987×10−10 - 1.1296×10−10

CG1 x-σz 2.2354×10−8 + 1.8145×10−10 - 1.8058×10−10

CG2 x-z 1.6391×10−8 + 1.1292×10−10 - 1.1720×10−10

CG2 x-σz 2.2931×10−8 + 1.8913×10−10 - 1.8253×10−10

Model u (ms−1) 95% Confidence Interval
CG1 x-z 4.6827×10−4 + 3.5124×10−6 - 3.5127×10−6

CG1 x-σz 5.3962×10−4 + 4.3611×10−6 - 4.3393×10−6

CG2 x-z 4.8941×10−4 + 3.6237×10−6 - 3.6915×10−6

CG2 x-σz 5.3838×10−4 + 4.3711×10−6 - 4.3818×10−6

Model w (ms−1) 95% Confidence Interval
CG1 x-z 1.3125×10−4 + 1.2912×10−6 - 1.3101×10−6

CG1 x-σz 1.6180×10−3 + 1.2733×10−5 - 1.2822×10−5

CG2 x-z 1.3105×10−4 + 1.3205×10−6 - 1.3154×10−6

CG2 x-σz 1.6180×10−3 + 1.2727×10−5 - 1.2691×10−5

Model θ (K) 95% Confidence Interval
CG1 x-z 1.6683×10−4 + 1.3953×10−6 - 1.4053×10−6

CG1 x-σz 5.3367×10−4 + 4.7779×10−6 - 4.7821×10−6

CG2 x-z 1.7285×10−4 + 1.4982×10−6 - 1.4429×10−6

CG2 x-σz 5.3364×10−4 + 4.7514×10−6 - 4.7686×10−6
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Figure 14. Case 3: Linear Non-Hydrostatic Mountain. Normalized momentum flux
for the resolution of 360 m (in x) and 300 m (in z), at times 1 h, 2 h, 3 h, 4 h, and
5 h for the four model runs: (i) CG1 x-z, (ii) CG1 x-σz, (iii) CG2 x-z, and (iv) CG2
x-σz.
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VI. CONCLUSIONS AND

RECOMMENDATIONS

The results from the three test cases yielded promising results. The first of

which was that the x-σz coordinates functioned properly and did in fact reduce to x-z

coordinates in the absence of terrain, as demonstrated in case 1. With the introduc-

tion of terrain, all four models converged to nearly identical steady state patterns for

both case 2 and case 3 respectively, but had varying oscillation intensities between

coordinate systems. Additionally, both case 2 and case 3 x-σz model runs did de-

velop a steady-state mountain wave over a single peak (reflected in the normalized

momentum flux) indicating that the model dynamics are resolving the scenarios for

a linear hydrostatic mountain and a linear non-hydrostatic mountain. In general, the

CG1 x-σz and CG2 x-σz models performed worse than their x-z counterparts. The

x-σz models had higher RMS errors (as large as nine times greater RMSE values with

respect to associated maximum vertical velocities), which were observed predomi-

nantly in intensity values and not in placement of steady state features. All three

cases for x-σz also showed a noticeable increase in computational expense, due to

the additional calculations and variables required by the coordinate transformation.

These results indicate that though x-σz coordinates are not as accurate or efficient

as x-z and that there is a significant degradation, with further fine-tuning of the

model environment these issues could be made minimal enough that it justifies their

use in semi-implicit methods, especially in the vertical, as is already done by various

operational mesoscales models.

Past research has demonstrated the utility of using Continuous Galerkin meth-

ods, in a x-z framework, for resolving computational fluid dynamics using both fully

explicit and semi-implicit time integration methods. This thesis brought Giraldo’s

2-D (x-z slice) mesoscale Non-Hydrostatic model one step closer to evaluating and

exploiting the full strength of x-σz coordinates by transforming the Navier-Stokes
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Equations and testing their impacts using fully explicit time integration. Now that

the x-σz models are functional, the next stage of development will be to implement a

semi-implicit time integration method in the vertical (1-D) and compare the results

against the 2-D semi-implicit x-z model. Without the work done in this project to

transform the x-z equations to x-σz , one could not construct semi-implicit methods in

the vertical since in x-z, the terrain is coupled to box coordinates and so the coordi-

nates cannot be decoupled. Additionally, the mathematically machinery outlined in

this thesis can be used to transform any equation set to any other coordinate system.

The value of this study is far reaching in determining the usefulness of ap-

plying a specific coordinate system in the future when developing meteorological and

oceanographic models for the U.S. Naval Research Laboratory (NRL) by constituents

at the Naval Postgraduate School. In addition, the successful conversion of the non-

hydrostatic x-z models to x-σz will allow for the straightforward extension of these

models to global non-hydrostatic models, since σ will represent the height of the

model and x will then represent the spherical shell at each value of σ.
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APPENDIX. COEFFICIENTS FOR RK35

METHOD

Coefficient Value

stage 1:

α0 1
β0 0.377268915331368

stage 2:

α0 0
α1 1
β0 0.377268915331368

stage 3:

α0 0.355909775063327
α1 0
α2 0.644090224936674
β0 0.242995220537396

stage 4:

α0 0.367933791638137
α1 0
α2 0
α3 0.632066208361863
β0 0.238458932846290

stage 5:

α0 0
α1 0
α2 0.237593836598569
α3 0
α4 0.762406163401431
β0 0.287632146308408
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