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Abstract— A technique for classifying objects based on mod-
eling the transient characteristics of their impulse response is
developed and tested. A set of targets identical in geometry and
differing in shell and filler material were constructed. The targets
were manually struck exciting an impulse response which was
sampled and recorded. The impulse response of each target was
decomposed via windowed short-time Fourier transform into a
set of feature vectors. The feature vectors were quantized via
the LBG VQ algorithm, and the sets of quantized vectors were
used to estimate the parameters of a discrete-output hidden
Markov model (HMM) for each class of object. A blind test
set was evaluated against the trained HMMs and the results are
presented along with a discussion of the generalization ability of
the individual classifiers.

I. INTRODUCTION

The acoustic impulse response of a geometrically-
complicated object is composed of many sinusoidal modes,
each with different damping coefficients and fundamental
frequencies. This impulse response can be difficult to predict
if the object’s dimensions cannot be precisely predicted, the
construction materials are not homogeneous, or the impinging
location of the excitation pulse is highly variable. However,
repeatable time-evolving frequency features can be observed
in the impulse response even when the underlying generating
physical phenomena are not well understood.

Acoustic signal pattern classification techniques such as
those used in speech recognition are a natural fit for classi-
fying underwater objects using these time-evolving frequency
features. Among these pattern classification methods, hidden
Markov model (HMM) classifiers have been used to success-
fully classify speech signals for many years [1], [2]. In many
speech applications, the speech signal is modeled as a con-
catenation of primitive speech elements called phonemes and
the classification task is to estimate the transition probabilities
of these underlying primitives and encode them as states in
the HMM.

The approach described in this paper similarly treats the
time-frequency decomposition of the acoustic impulse re-
sponse as a time-evolving set of emissions from an underlying
hidden state sequence that is unique to each class of object.
This approach has been successfully used in other underwater
acoustic signal classification tasks in discriminating tonal sig-
nals from chirp and continuous-wave pulses [3]. Additionally,
rather than use a standard time-frequency decomposition of
the acoustic return, others have used different basis functions

Fig. 1. Graphical representation of a left-right hidden Markov model. The
nodes labeled with variables S1, S2, and S3 represent the underlying state
sequence. The nodes labeled o1, o2, and o3 represent the possible output
states.

matched to predicted scattering wave physics as feature inputs
to HMM classifiers [4], [5].

The following sections briefly introduce the reader to the
HMM classifier and describe the acoustic impulse response
experiment, classifier training and evaluation, and test results.

II. HIDDEN MARKOV MODEL CLASSIFIER

A discrete-output hidden Markov model is defined by the
three parameters: A the state transition matrix, B the state
emission probability matrix, and π the vector of initial state
probabilities. As the term Markov implies, the conditional
probability of transition from the current state s1 to state s2,
P (S = s2|s1) depends solely on the current state s1. These
discrete transition probabilities populate the state transition
matrix A where the entry aij is the conditional probability
P (S = sj |si). If the labels of each state are known by observ-
ing the data, A can be estimated directly. However, usually the
labels of each state are unknown or ”hidden” and the entries
of A are estimated by iterative Expectation-Maximization
techniques such as the Baum-Welch algorithm [1]. The state
emissions probabilities can be modeled as either discrete or
continuous random variables conditioned on the underlying
state. In the discrete case, B is a matrix where entry bij is the
conditional probability of emitting observation oi given state
sj or P (oi|S = sj).

Figure 1 illustrates the concepts described in the previous
paragraph. The nodes labeled S1, S2, and S3 in the top of
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the figure represent the underlying state sequence. The state
transition probabilities are denoted by a11, a12, a22, a23,
and a33. The state emission probabilities for the observations
o1, o2, and o3 are denoted b11, b22, and b33 respectively.
(Note that the emission probabilities are depicted only for the
given observation sequence o1, o2, and o3, the other emission
probabilities are not shown. Had the output sequence been
ordered o2, o3, o1, the emission probabilities would be labeled
b12, b23, and b31 respectively.)

Additionally, this particular figure illustrates a subclass of
HMMs that are called left-right HMMs. In a left-right HMM
a current state can only transition to another state with an
index greater than or equal to the current index. The left-
right constraint is a realistic assumption when previous states
cannot be revisited due to a phonetic or physical limitation. For
example, when modeling the utterance of the word ”cat”, it is
a reasonable assumption that the state that emits the primitive
associated with the hard /k/ sound cannot follow the state
that emits the primitive associated with the /ă/ sound. This
assumption reduces the number of entries in the A matrix,
thus simplifying the estimation process.

In a typical speech processing application, many utterances
of a word or sequence of words are digitally sampled and
recorded. The time series for each utterance is in turn parsed
into a series of representative features such as spectral or
linear predictive coding coefficients to form a sequence of
N observation vectors O = {o1,o2, . . .oN}. To train the
HMM, maximum likelihood estimates of the parameters A,
B, and π are found that maximize the product of evaluation
probabilities,

∏M
i=1 P (Oi|A,B, π), across the ensemble of M

observation sequences, where P (O|A,B, π) is the probability
an observation sequence O is generated by the HMM with
parameters A, B, and π . Once the appropriate number of
HMMs have been trained, new observation sequences can
evaluated for classification. When evaluating an unknown
observation sequence O against a set of k trained HMMs,
O is associated with the HMM that evaluates to the largest
probability P (O|Ak,Bk, πk) ∀ k.

This section briefly described the key HMM parameters
and equations that are directly related to the experiment
in this paper. For an in-depth review of HMM parameter
estimation via the Baum-Welch algorithm and the algorithmic
steps to evaluating the expression P (O|A,B, π) the reader
is directed to Rabiner’s excellent tutorial and Rabiner’s and
Juang’s textbook listed in the bibliography [1], [2].

III. ACOUSTIC IMPULSE CLASSIFICATION

For the experiment, a set of 9 geometrically identical objects
were constructed by placing end caps on hollow cylinders
made of three different shell materials which were filled to
capacity with three different filler materials. The different ob-
ject classes will hereafter be labeled according to a two number
system, where Object ij means the object with shell material
Type i and filler material Type j. The shell and filler materials
are numbered from 1 to 3 in order of increasing density. To
generate a data set for training and evaluating each object’s

Fig. 2. Block diagram of Acoustic Impulse Classification. A time series is
preprocessed, decomposed via windowed STFT and quantized, then evaluated
against several trained HMMs. The class label of the HMM that evaluates to
the highest probability is assigned to the input observation sequence.

HMM, each object is struck 15 times near its lengthwise
midpoint and the acoustic response is sampled and recorded
following each strike. Each time series is then preprocessed
and parsed into a set of quantized feature vectors using time-
frequency decomposition followed by vector quantization. For
the task of training each HMM, a subset of 8 time series are
used to estimate the HMM parameters for each object class.
For the case of object classification, an unknown test pattern is
associated with the object whose HMM evaluates to the largest
probability over the set of all possible HMMs. Figure 2 depicts
the block diagram of the evaluation process described above.

A. Preprocessing

Each time series is prepared for time-frequency decompo-
sition and vector quantization by three preprocessing steps.
Since most of the discriminating target information was found
to be in lower frequency bands, each time series is first filtered
and downsampled to simplify computation and storage require-
ments. Second, each down-sampled time series is normalized
to unit energy. The striking energy for each generated time
series is highly variable, thus making total energy of the
acoustic impulse response an unreliable discriminating feature.
Finally, the ”dead zone” that exists before the strike occurs is
removed by ignoring samples until the total integrated energy
rises above a certain threshold.

B. Time-Frequency Feature Vectors

As shown in Figure 3, the time-frequency plot of an object’s
acoustic impulse response is composed of several clustered
distinct events with varying frequency and time characteristics.
This plot gives insight into why one would use a time-evolving
stochastic model such as an HMM to discriminate between
such signals. These time-frequency events are unique to each
class of object and can be modeled directly by the state-
sequence transition and state emission matrices of the HMM.

To put the time-frequency information into a format that is
compatible with discrete-output HMM training and evaluation,
a windowed short-time Fourier transform (STFT) followed
by vector quantization is performed on each time series.
Following preprocessing, the time series data is parsed into
40 overlapping frames of 100 time samples. Each frame is
then windowed by a Gaussian window to reduce spectral
leakage and the DFT magnitude of each frame is recorded.
Additionally, since the time series signal is real, only the
first 50 DFT magnitude coefficients are retained since the
remaining 50 are redundant. In more compact notation, the
observation sequence O is encoded as a set of 40 vectors of
DFT magnitude O = {o1,o2, . . .o40} where 40 is the number
of STFT frames.



Fig. 3. Time-Frequency decomposition of an acoustic impulse response.
Note the several distinct events identified by the white arrow.

In a discrete-output HMM, the emission of the underlying
states has a discrete probability distribution, meaning each vec-
tor in the sequence O must be quantized into a representative
symbol that relates the underlying DFT magnitude vector to
a possible output of the hidden state. To accommodate this
requirement the LBG vector quantization (VQ) algorithm was
used to quantize the observation feature vector space into 32
discrete states for all possible targets using the 2880 (9 objects
× 8 training sequences

object × 40 vectors
training sequence ) feature vectors

generated from the training sequences of time series data [6].

C. HMM Training

The quantized time series training sequences of feature
vectors are separated according to class and used to train class-
specific HMMs. Prior to parameter estimation, the entries of
A and B are initialized to random values and the π vector is
assigned the value {1, 0, . . . , 0} since it is a left-right HMM
and therefore must begin at the first state. What remains is
to specify the number of hidden states in the state sequence
and thus the sizes of the A and B matrix prior to maximum
likelihood estimation using the Baum-Welch algorithm. An
empirical method was used to determine the number hidden
states by training each HMM using an increasing number of
hidden states until a training objective function increased to a
reasonable value and remained steady. The training objective
function for an HMM of the j-th class over a series of N
observations is defined as

Φ(j) �
1
N

N∑
i=1

(
argmin

k

[
ln P (O(i)

j |λj) − ln P (O(i)
j |λk)

]
∀ k �= j

)
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Fig. 4. Stacked bar graph of the training object function values for a given
number of HMM hidden states. The size of each element in the stack indicates
how well the trained HMM discriminates between objects.

where λ = {A,B, π}. This function estimates the mean
value of a difference of log probabilities between all training
sequences associated with Object j evaluated on Object j’s
HMM and the HMM that gives the next largest output. This
function is more useful than strictly relying on the training
misclassification error, especially when the misclassification
error is extremely low and there a small number of training
sequences. The larger the value, the better the trained HMM
is at correctly classifying the training sequences. A very small
or negative value of Φ(j) indicates the trained HMM has a
high misclassification rate with the training sequences.

The vertically stacked bar graph in Figure 4 depicts the
training objective function values for a given number of HMM
hidden states in ascending class order starting at object class
11 at the bottom of the stack and ending with object class
33 at the top of the stack. As the number of hidden states
increases from 1 to 4 the overall training objective function
contributions trend upward. Different numbers of hidden states
were chosen to set HMM training parameters for each object
class based on the lowest number of states for which the value
of Φ(j) failed to increase appreciably. Based on this criterion
Objects 11, 21, 22, and 23 were assigned 2 hidden states, and
Objects 12, 13, 31, 32, and 33 were assigned 3 hidden states.
This approach favors simpler models for each class, which is
crucial when estimating entries in the state transition matrix
A in a scenario with so few training examples. Although the
plot shows objective function values for up to 4 hidden states,
the Φ(j) values in column 4 become less reliable due to the
extra training sequences needed to estimate the A matrix. No
4-hidden-state models were chosen for this reason.

While not mentioned above, the use of 1 hidden state
is a special case of the HMM where predictably, A = 1,
and the evaluation probability of an observation sequence is
solely dependent upon its emission probabilities defined by



B. The classification task with single state HMMs is similar
to other single-input single-output classifiers such as those
implemented by neural networks or Bayesian classifiers. As is
shown in Figure 4, classification performance on the training
examples with a single state HMM is actually quite good. This
indicates the different object classes’ observation sequences do
not intersect over many quantized feature vectors.

D. HMM Evaluation

After each HMM is trained by estimating the parameters
A and B from the training data, the classifier is ready to
receive unknown test patterns. Referring again to Figure 2,
the time series data is preprocessed by downsampling and
then decomposed via a windowed STFT. The STFT frames
are quantized by assigning them the discrete symbol that is
closest in Euclidean distance to the VQ centers determined
in Subsection III-B to form the observation sequence O =
{v1,v2, . . .v40}, where vi is the symbol associated with the i-
th VQ output cluster. This observation sequence is in turn used
to evaluate each trained HMM, and the object class label k that
evaluates to the largest probability in the evaluation equation
P (O|Ak,Bk, πk) is assigned to the unknown pattern.

IV. RESULTS

A set of 7 blind test examples were evaluated against the
trained HMMs. The tabulated results of the object classifi-
cations are presented as fractions of correct classifications to
total test sequences in Table I. While the results were good for
the test sequences listed in the table below, with so few test
examples it is difficult to draw meaningful conclusions about
the classifiers’ generalization abilities. As another measure of
performance, the calculation of the objective function Φ(j)
was repeated for the test patterns to create the stacked bar
graph shown in Figure 5. The graph is plotted using the
same axes of Figure 4 to give some intuition of how robust
each trained HMM is to novel test patterns. As can be
expected, the margin of the evaluation probabilities between
correct and incorrect classes has shrunk considerably across
all class labels. Additionally, in the 4-state column the perfor-
mance behavior of some HMMs becomes erratic, suggesting
overtraining or lack of training data to sufficiently estimate
the HMM parameters. By cross-comparing the classification
results in one cell of Table I to the size of the corresponding
bar graph element, one can gain a sense of how well the correct
model is separated from the other models for a given set of
test sequences. For example, Object 11 was correctly classified

TABLE I

FRACTION OF CORRECT CLASSIFICATION TO TOTAL TEST SEQUENCES

Shell Type 1 Shell Type 2 Shell Type 3

Filler Type 1 7
7

6
7

7
7

Filler Type 2 6
7

7
7

7
7

Filler Type 3 6
7

7
7

5
7
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Fig. 5. Stacked bar graph of the test object function values for a given number
of HMM hidden states. The size of each element in the stack indicates how
well the trained HMM discriminates between objects in the test set.

in all test cases and has a large bar graph element in the 2-
state column of Figure 5. This suggests the mean separation of
evaluation probabilities was very large and consistent between
HMM 11 and all other HMMs for the given test set and also
implies good performance against new test patterns. However
Object 31, which was also correctly classified in all test cases,
has a small bar element in the 3-state column of Figure 5.
This means there is little separation between the correct and
incorrect evaluation probabilities and this particular model
may not generalize well to new patterns.

V. CONCLUSIONS AND FUTURE WORK

The promising results from this paper suggest that HMMs
are a useful pattern classification scheme to discriminate
between different acoustic returns generated by striking or
other impulse excitation methods. Additionally, this approach
worked well despite the restrictions of a small number of
training sequences and the identical geometry of the targets.
The two important areas this study did not address are: 1)
intraclass feature variation and 2) signature aspect dependency.
It is useful to know how well a given HMM can distinguish
multiple objects of the same class from other object classes
and what features have a low within-class variance. By using
only one object to characterize a given object class, it is
difficult to assert that another HMM trained on features
gathered from multiple objects of the same class will have the
same discrimination ability. It is well known that the acoustic
signature of an object is aspect-dependent. Multiaspect HMM
acoustic classification is addressed in [4] and [5] and involves
training HMMs with acoustic returns taken over a sequence of
different aspects. Addressing these two concerns for the case
of acoustic impulse response classification is a topic of future
work.

Finally, the time-frequency decomposition method dis-
cussed in this paper was not the only one explored in the work



of this research. The wave-based matching pursuits algorithm
presented by McClure and Carin [7] was attempted with
varying degrees of success for this application. If the impulse
response can be calculated from a good understanding of
the generating physics and more importantly these calculated
effects can be observed in the striking experiments, then
these customized basis decompositions show great promise.
Future work will continue to explore the use of different
basis decompositions that more compactly define the acoustic
impulse response.
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