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Abstract 

(a) Objective: Participants performed a tracking task and system monitoring task while aided by 
diagnostic automation.  The goal of the study was to examine operator compliance and reliance 
as affected by automation failures, and to clarify claims regarding independence of these two 
constructs. (b) Background: Background data revealed a trend towards non-independence of the 
compliance-reliance constructs. (c) Method: Thirty-two undergraduate students performed the 
simulation that presented the visual display and collected dependent measures. (d) Results: False 
alarm prone automation hurt overall performance more than miss-prone automation. False alarm 
prone automation also clearly affected both operator compliance and reliance, while miss-prone 
automation only appeared to affect operator reliance. (e) Conclusion: Compliance and reliance 
do not appear to be entirely independent of each other. (f) Application: False alarms appear to 
be more damaging to overall performance than misses, and designers must take the compliance-
reliance constructs into affect. 
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Introduction 

 For the past few decades, designers have attempted to reduce operator workload levels by 
introducing automated aids that assist or replace human functions. One example is the diagnostic 
aid that alerts operators to potential problems in the environment. The current study examines the 
effects of diagnostic aids on benefit human performance in a supervisory control situation. 

Imperfect Automation 

It is sometimes tempting to assume that automation is a panacea for reducing workload 
levels and improving performance, but not all forms of automation are perfectly reliable. This is 
particularly true of diagnostic automation, which must make diagnoses and long-range 
predictions in a world of imperfect probabilistic information (Wickens & Dixon, in press). 
Diagnostic automation designed to detect a state of the world can produce two forms of errors—
false alarms and misses. A diagnostic aid’s performance can be measured using signal detection 
theory (Green & Swets, 1988). The automation can have a liberal criterion (or beta) or a 
conservative criterion; that is, it can either commit more false alarms or more misses, 
respectively, or it can be neutral.  

Since beta is typically set at the discretion of the system designer, it is critical for 
designers to understand the effects of different forms of automation errors before implementing a 
new automated system. This includes understanding the effects of the drivers of optimal beta; 
that is, how the probability of a signal, the costs of error, and the payoffs of correct responses 
interact with the operators’ determination as where to set their criterion. The goal of the current 
study was to provide data that allow system designers to better make these judgments during the 
design process. 

Compliance and Reliance 

Recent theory has postulated that automation false alarms and misses affects have 
qualitatively different effects on operator dependence (Meyer, 2001; 2004), respectively. 
Compliance is what the operator does when the automation diagnoses a signal in the world, 
while reliance is what the operator does when the automation diagnoses noise in the world. An 
increase in false alarms is posited to reduce compliance, resulting in longer response times to 
automation alerts, or, in extreme cases, a tendency to disregard of those alerts entirely – the “cry 
wolf” effect. (Dixon & Wickens, in press; Wickens, Dixon, Goh, & Hammer, 2005). An increase 
in the automation’s miss rate reduces reliance, causing the operator to allocate more attention to 
monitoring the raw data behind the automation in order to catch the possible automation misses.  
This diverts attentional resources from the concurrent task, and a subsequent deterioration in 
performance in that task (Dixon & Wickens, in press; Wickens, Dixon, Goh, & Hammer, 2005). 

Previously, it had been implied, although not explicityly, that compliance and reliance 
may be independent constructs (Meyer, 2004); that is, an increase in false alarms should only 
affect compliance and an increase in misses should only affect reliance, and indeed this could be 
seen to be an optimal cognitive response.  

Dixon and Wickens (in press) reported data partially consistent with this assertion. They 
had pilots fly a simulated unmanned aerial vehicle (UAV) mission, which consisted of tracking 
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the UAV through a series of waypoints while searching for targets of opportunity along the way. 
Concurrently, the pilots were responsible for monitoring a set of four system gauges for possible 
system failures, aided by the implementation of a diagnostic aid that sounded an auditory alert 
when it determined (correctly or incorrectly) that a system failure had occurred. Importantly, the 
system gauges were perceptual in nature (green and red zones) and required very little, if any, 
cognitive resources to analyze the raw data behind the alarms. The data revealed that increasing 
the automation miss rate only affected measures of reliance, while increasing the automation 
false alarm rate appeared to affect both compliance and reliance. However, due to the low power 
and sensitivity of the concurrent task measures, the authors were unable to find strong statistical 
evidence of the non-independence of the constructs. 

Wickens, Dixon, Goh and Hammer (2005) replicated a portion of the previous 
experiment, and added eye tracking data to their analyses. They found behavioral data consistent 
with the previous findings, and their measures of visual scanning provided further evidence for 
the possible non-independence of reliance and compliance. Specifically, the investigators noted 
that high false alarm rates induced a significant shift of attention toward the raw data in the 
alerted domain, and therefore away from concurrent tasks. This should have been solely a 
symptom of a high automation miss rate according to the independence model. However, the 
same issues of low statistical power prevented the authors from making strong claims of non-
independence.  

Wickens, Dixon and Johnson (2005) repeated a similar version of the UAV paradigm, but 
instead provided an unreliable diagnostic aid to the more difficult target search task, while also 
providing a perfectly reliable aid to the system gauge task. They found that the disruptive effects 
of automation false alarms on the concurrent task was at least as strong as the automation misses, 
yet another finding inconsistent with the independence model of reliance-compliance. Similar 
effects have been found recently in a multiple-UAV paradigm (Levinthal & Wickens, 2005).  

Collectively, these studies suggest that false-alarm prone automation may be, overall, 
more disruptive of multi-task performance than miss-prone automation (Bliss, 2003), because of 
the former’s effect on concurrent task performance as well as automated task performance. 
However, this conclusion is based on only marginally significant performance trends with a low 
power measure (Dixon & Wickens, in press), or on visual scanning data (Wickens, Dixon, Goh 
& Hammer, 2005). Furthermore, some of these findings may be a function of the perceived cost 
of false alarms and misses on total human-machine output. 

The Current Study 

The current study addresses the weaknesses of the experiments described above by 
providing a continuous and sensitive measure of concurrent task performance, hence allowing 
greater statistical power and experimental control. Furthermore, in the automated task, 
participants encounter over 35 examples of one class of automation error (misses or false 
alarms), whereas in the prior studies the disparity was far less (typically 2 or 3 of one class). 
Given these changes, the current study provides a stronger opportunity to examine the 
relationship between reliance and compliance in a way that was not available in the previous 
studies. To the extent that reliance and compliance are independent constructs influenced by 
automation misses and false alarms respectively, then performance in the concurrent tracking 
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task during non-alert periods should be equivalent between a perfectly reliable automation 
condition and a FA-prone condition, since the operator should not be monitoring the systems 
gauge if there is no automated alert (i.e. unaffected reliance).  

The second important addition to this study is that it continues to extend the conclusions 
beyond the relatively simple perceptual monitoring task used in the early UAV studies to one 
with highly demanding cognitive elements—a manipulation also subsequently done by Levinthal 
and Wickens (2005) and Wickens, Dixon, and Johnson (2005). 

The current study involved two concurrent tasks: a continuous compensatory tracking 
task and a cognitively demanding systems monitoring task. In the latter, participants were 
required to calculate current values and report when the needle of the system gauge exceeded a 
certain acceptable range. Some participants performed the task unaided, while others performed 
the task with the aid of an automated diagnostic system that was either perfectly reliable, FA-
prone, or miss-prone. 

We hypothesized that: a) perfect automation would benefit both the tracking task and 
systems monitoring task; b) the system prone to automation misses would harm the tracking task 
due to a reduction in operator reliance, causing a shift of attention away from the tracking task in 
order to catch the automation misses in the systems monitoring task; c) an increase in the 
automation miss rate should not affect measures of operator compliance (e.g., speed of response 
to an alert); d) the system prone to automation false alarms would harm the system monitoring 
task due to a reduction in operator compliance; e) automation false alarms would also harm the 
tracking task, even when the alarm is silent, due to a reduction in operator reliance; and f) as a 
consequence of the previous hypotheses, automation false alarms would be more harmful to 
overall performance than automation misses. 

Method 

Participants 

Thirty-two undergraduate students from the University of Illinois participated in the 
experiment, and were paid $9 per hour, plus performance bonuses. Participants were made aware 
of the incentives, and were told that the two tasks should receive equal priority. 

Apparatus and Stimuli 

The experimental simulation ran on a Dell GX270 computer, with a 21” Dell monitor, 
using 1280x1024 resolution. Figure 1 presents a sample display for the experiment, with verbal 
explanations for each display window and task.  
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Figure 1. Sample screenshot of experimental display. 
 
 

The experimental display was subdivided into two areas of interest, separated by 
approximately 12 degrees of visual angle (center to center). In the top portion of the display was 
the two dimensional tracking task. Participants used a joystick with first order dynamics to track 
the target disturbed by a quasi random input with a bandwidth of 0.43 Hz. A negative drift in 
error was added so that if the participant did not exert feedback on the joystick, the ball would 
quickly float towards the outer edges of the box.   

The system monitoring gauge was located in the bottom display, and represented the 
value of a generic real-world variable (e.g., altitude). The gauge had ten small white ticks spaced 
equidistantly around the outside of an imaginary circle. A yellow bar that “filled” the outside of 
the gauge denoted units of 1000, 2000, etc. A yellow needle that rotated around the inside of the 
gauge denoted units of 100, 200, etc. Thus, the value of the sample gauge depicted in Figure 1 is 
approximately 5975. The yellow needle was driven by the sum of four sine waves ranging in 
bandwidth from 0.04 Hz to 0.43 Hz. The yellow bar “filled” the gauge in a linear fashion, 
according to whatever the current value was, as dictated by the random movements of the needle. 

Above the gauge were located two white boxes with white numerical values. The number 
in the left box denoted the ideal value for a ‘safe’ system. The number in the right box denoted 
the range of ‘safety’ for the system. Thus, for the example shown in Figure 1, the participant had 
to keep the gauge within 5500 +/- 800. If the gauge went out of this range, it denoted a system 
failure (SF). If a SF occurred, the participant was expected to press a button on the keyboard as 
quickly as possible. When a SF occurred, the needle stayed out of the acceptable value range 
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until it was either detected or the trial ended. The SF task was purposely designed to be a 
challenging task that required both visual and cognitive (working memory) resources. While in a 
real-world application, the system gauge might be considered a poorly designed gauge, in that it 
is difficult to read, it was designed for this experiment as much for its theoretical value as for its 
practical value, and in recognition of the fact that many real-world gauges indeed are poorly 
designed. 

For some participants, performance on the systems monitoring task was aided by 
automation. The automated aid sounded an auditory alert (i.e. a synthesized human voice 
pronouncing the word “one”) when a SF occurred. The automation, expressed in the framework 
of signal detection theory (SDT), could provide hits (alarm with true SF), misses (no alarm with 
true SF), false alarms (alarm with no SF), or correct rejections (no alarm with no SF).  

Trials 

There were 100 trials that each lasted exactly 30 seconds. At the beginning of each trial, 
the target value (in the left numeric box above the SF gauge) changed to a new random value 
between 1000 and 9000, rounded to the nearest 100. The target range (in right numeric box 
above the SF gauge) changed to a new random value between 100 and 900, rounded to the 
nearest 100. The SF gauge itself reset to the target value and then immediately began oscillating. 

A system failure occurred on 50 trials, with SF and non-SF trials randomly ordered. SFs 
(and automation false alarms) always occurred within a temporal window beginning 5 seconds 
and ending 12 seconds from the start of the 30-second trial interval, thus giving the participant at 
least 18 seconds to detect the failure. There was never more than one SF or alert from the 
automation per trial. Trials lasted the entire 30 seconds, regardless of whether or not an SF 
occurred or was detected. During each trial, the participant was allowed to make only one SF 
response (e.g. if they responded “yes” before a SF actually occurred, then it would be classified 
as an operator false alarm), and were not allowed to retract a response once executed. Once the 
30-second trial ended, participants were no longer able to respond to that particular trial. At the 
end of each trial, the screen either flashed green or red to inform participants whether their 
response was correct or incorrect, respectively. 

Procedure and Design 

After filling out a consent form and reading the instructions, each participant completed 
20 practice trials followed by 80 experimental trials. There were four experimental conditions: a) 
Baseline condition (no automated aid), b) A100 condition (40 hits, 0 FAs, 0 Misses, 40 CRs), c) 
FA60 condition (40 Hits, 32 FAs, 0 Misses, 8 CRs), and d) M60 condition (8 Hits, 0 FAs, 32 
Misses, 40 CRs). Participants were told that the automation would either be perfectly reliable or 
“not perfectly reliable”, and in the latter case, which way the automation criterion would be set. 
Thus, it can be assumed that the participants were immediately aware of the potential for 
automation failures, as well as which type of failure they would encounter. 

Results 

One subject in the M60 condition was dropped due to unusually poor performance levels 
(beyond the third standard deviation below the group mean) in the tracking task. For the most 
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part, analysis entailed a one-way omnibus ANOVA, followed by three planned comparisons: a) 
Baseline vs. A100, b) Baseline vs. the combination of FA60 and M60 in a planned comparison 
(i.e. weights of -1, 0.5, 0.5), and c) FA60 vs. M60. Because only three a priori comparisons were 
made, familywise error rates were not adjusted (see Keppel, 1982, for more details). Any post-
hoc tests used a Bonferroni correction. 

Tracking Error 

Tracking error was calculated only during the period of time between the beginning of a 
trial and the onset of either a system failure or an automation false alarm, since this was the 
period of time where variations in attentional reliance caused by the different conditions were 
expected. These data represented between 5-12 seconds of time at the beginning of each trial. 
Figure 2 presents these data as a function of condition, using the solid black bars. 

Tracking Error

0

100

200

300

Baseline A100 FA60 M60

Condition

All Trials

Non-alarm
noise trials

 
Figure 2. Tracking error as a function of condition.  The solid black bars represent all trials in the 
experiment, while the diagonal pattern bars represent only non-alarm noise trials.  SE bars are 
included. 
 
 

A one-way ANOVA revealed a reliable main effect of condition, F(3,27) = 6.64, p < .01. 
Planned comparisons showed that automation (M = 131) may have improved performance over 
Baseline (M = 98) at a level approaching significance, t(14) = 1.53, p = .07. The Baseline 
condition showed better performance relative to the average of the two unreliable conditions, 
t(14) = 2.55, p = .01, while the difference between the FA60 (M = 243) and M60 conditions (M = 
182) was not statistically significant, t(13) = 1.32, p > .10.  

Effect of False Alarms on Reliance 

Because tracking error was measured during the time before a SF or alert occurred, 
we can assume that any performance deficits in the tracking task for the FA60 condition indicate 
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a reduction in operator reliance. That is, such deficits would demonstrate that the operator was 
putting attentional resources into the SF task even when there was no alert, causing an increase 
in tracking error. A separate analysis done only on trials in which there was no SF and the 
automation was silent revealed the same results. These data are shown with the hatched bars of 
Figure 2. A one-way ANOVA on these data revealed a main effect of condition, F(3,27) = 5.09, 
p < .01, and a post hoc comparison between the FA60 and the A100 conditions, t(14) = 3.78, p < 
.01, provides clear evidence that operator reliance was reduced. 

SF Detection Rate 

There were no significant differences found in operator beta across conditions, F(3, 27) = 
2.3, p > .10. For all other detection rate analyses, the signal detection measure d’ was used. 
Perfect scores (e.g. zero misses or false alarms) were adjusted by assuming ½ of a miss or FA. 

A one-way ANOVA revealed a main effect of condition, F(3, 27) = 8.84, p < .001. 
Planned comparisons revealed no significant difference between the Baseline condition (M = 
3.03) and A100 condition (M = 3.20), t(14) < 1.0. The Baseline condition produced performance 
better than the average of the two unreliable conditions, t(14) = 2.43, p = .01. The FA60 
condition (M = 2.04) performed worse than the M60 condition (M = 2.61), t(13) = 3.08, p < .01. 
Post hoc tests revealed that the Baseline condition performed better relative to the FA60 
condition, t(14) = 3.15, p < .01, but did not differ significantly from the M60 condition, t(13) = 
1.38, p > .10. 

Further analysis was done in the automation conditions to determine the likelihood of a 
yes/no operator response based on the type of automation response, helping to shed light on 
operator agreement or disagreement with the automation. Table 1 presents these data.  

Table 1. Operator response as a function of automation accuracy. Operator agreement rates are 
shown. The first and third columns tend to be measures of compliance, while the second and 
fourth columns tend to be measures of reliance. 
 

Automation Correct Automation Incorrect 

Auto Hit Auto CR Auto FA Auto Miss   

Compliance Reliance Compliance Reliance 

A100 0.96 0.93 * * 

FA60 0.93 0.92 0.35 * 

M60 1.00 0.82 * 0.05 

 

These data indicate that operators generally agree less when automation is wrong than 
when it is right. When automation is right, compliance is appropriately lowered in the FA60 
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condition (M = .93) compared to the M60 condition (M = 1.00), t(14) = 3.75, p < .01, and 
reliance is appropriately lowered in the M60 condition (M = .82) compared to the FA 60 
condition (M = .92), t(13) = 2.14, p < .05.  When automation is wrong, the level of agreement is 
much less (override the faulty automation) when a miss-prone system makes an error (it misses a 
true signal: reliance M = 0.05) than when a false-alarm prone system makes an error (it alerts a 
noise trial: compliance M = 0.35). Thus participants monitor the raw data in a miss-prone system, 
more than they check the faultiness of an alert, in the FA-prone system. 

SF Response Times 

SF response times are presented in Figure 3. The solid black bars represent all trials in the 
experiment while the hatched bars represent only true-alarm signal trials (to be discussed 
below). Note that the Baseline condition did not have any true alarms, but the corresponding 
trials were included as a measure of what “baseline” results were. 

SF Response Time
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Figure 3. SF response times as a function of Condition.  The solid black bars represent all trials 
in the experiment, while the diagonal pattern bars represent only true-alarm signal trials. SE bars 
are included. 
 
 

A one-way ANOVA on the data for all trials revealed a main effect of condition, F(3, 27) 
= 9.85, p < .001. Planned comparisons revealed that participants in the Baseline condition (M = 
0.82 s) performed more poorly than those in the A100 condition (M = 0.42 s), t(14) = 2.26, p < 
.05, but better than the average of the two unreliable automation conditions, t(14) = 2.48, p = .01. 
The FA60 condition (M = 1.91) performed much more poorly than the M60 condition (M = 
0.88), t(13) = 2.71, p < .01. Post hoc tests revealed that performance in the Baseline condition 

9 



was better than in the FA60 condition, t(14) = 3.35, p < .001, but was not significantly different 
from that in the M60 condition, t(13) < 1.0. 

Effect of Misses on Compliance 

The following analysis was done to determine if automation misses had any effect on 
operator compliance. Applying the logic used to examine accuracy, if compliance in the M60 
condition was perfect, then on trials where the automation alert sounded, the response times to 
the SFs should have been equivalent to those in the A100 condition; that is, the operators would 
have known that the automation did not commit false alarms and that when it sounded, it was 
always correct. To test the effects of compliance, data for trials on which an alarm occurred were 
analyzed separately. 

A one-way ANOVA on these SF response times revealed a main effect of condition, F(3, 
27) = 7.54, p < .01. Planned comparisons between the M60 condition (M = 0.37) and A100 
condition (M = 0.41), t(13) < 1.0, revealed that the misses in the M60 condition did not appear to 
affect operator compliance at all, and that performance in the M60 condition following a true 
alarm was better than performance in the Baseline condition (M = 0.91), t(13) = 2.10, p < .05. As 
expected, the FA60 condition (M = 1.69) did degrade operator compliance, t(14) = 3.53, p < .01.   

Discussion 

Previous studies have indicated that automation false alarms and automation misses have 
qualitatively different effects on operator performance (Meyer, 2004; Dixon & Wickens, in 
press); that is, automation false alarms tend to adversely affect operator compliance, while 
automation misses tend to adversely affect operator reliance. The current study was able to 
provide a stronger opportunity to examine the degree of independence of the reliance-compliance 
constructs implied by Meyer (2001, 2004) and expanded upon by Dixon and Wickens (in press).   

The current study replicated the finding that perfect automation is beneficial to overall 
human-automation performance, as predicted in Hypothesis A. Hypothesis B predicted that the 
miss-prone automation would harm the tracking task by causing operators to shift attention away 
from the tracking task in order to catch the potential automation misses. This proved to be 
correct, as the performance in the miss-prone condition suffered relative to the perfectly reliable 
condition, matching previous findings by Dixon and Wickens (in press). Consistent with 
Hypothesis C, the data showed that automation misses had no significant effect on operator 
compliance.   

Hypothesis D predicted that the false-alarm prone automation would damage the systems 
monitoring task by reducing operator compliance. The data agreed strongly with this hypothesis, 
as both the SF detection rates and response times suffered relative to the perfectly reliable 
automation condition, and even dropped far below Baseline performance. Although the data in 
Table 1 show that operators were inclined to agree with the automation when it correctly 
detected a system failure, the increased response times suggest that this agreement was only after 
double-checking the raw data. When the automation presented a false alarm, operators 
incorrectly agreed only a third of the time. These two factors indicate low operator compliance.  
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Importantly, FA-prone automation also adversely affected operator reliance, as predicted 
by Hypothesis E, and confirming what Wickens et al. (2005) and Dixon and Wickens (in press) 
suggested based on trends seen in their data. When the automation was silent, operators in the 
false-alarm condition should have completely ignored the systems monitoring gauge and focused 
their entire attention on the tracking task. Instead, the data revealed that the tracking task 
performance in the false-alarm condition was not only worse than the reliable automation 
condition, but was also worse than Baseline. This implies that the reliance-compliance constructs 
may not be entirely independent of each other. 

Thus, our Hypothesis F, that the FA-prone condition would be more harmful to overall 
performance relative to the miss-prone condition, proved to be correct both qualitatively and 
quantitatively. First, the FA-prone automation adversely affected both operator compliance and 
reliance, while the miss-prone automation only appeared to reduce operator reliance. Second, 
FA-prone automation hurt performance more on the automated task than did miss-prone 
automation, (e.g., the “cry wolf” effect) and hurt performance (both speed and accuracy) at least 
as much as miss-prone automation on the concurrent task. The current data provide convincing 
evidence that automation false alarms not only produce qualitatively different effects on operator 
trust than do automation misses, but that they are also quantitatively more harmful to 
performance than misses. 

There are at least three potential explanations for why automation false alarms also affect 
operator reliance. First, the false-alarm prone condition had a considerably larger number of 
discrete attention-grabbing events than any other condition, which could be particularly 
disruptive due to a form of auditory onset preemption (Spence & Driver, 1997). It may be 
possible to negate the reduction in operator reliance by equalizing the number of attention-
grabbing events across conditions. 

Second, automation false alarms are often more salient than automation misses (Maltz & 
Shinar, 2003). When an automation false alarm occurs, the operator can immediately detect the 
error, while an automation miss might not be noticed until the end of the trial, if at all. Because 
false alarms are so salient, and often annoying, it may be that they affect the operator’s global 
trust such that the operator comes to believe that the automation is simply error prone and does 
not distinguish between the two types of errors (e.g. Wickens, Dixon, & Johnson, 2005). 
Importantly, designers need to be aware that operators may be more affected by the perceptual 
salience of information than by the rational consequences of the information. Therefore, 
designers should avoid the assumption that operators will notice information simply because it 
has high consequences. It may be that they instead notice such information due to high salience. 

A third potential explanation may have to do with attentional preemption of the 
automation errors. That is, operators are previewing the system gauges prior to an alert in order 
to gain some understanding of the current status of the display so that when an alert sounds, they 
will already have some information with which to make a quicker decision. However, the current 
data reveals that the decision-making time is actually longer than in other conditions, so it may 
be that when the alert sounds, the operator spends even more time double-checking the raw data 
behind the automation to make sure of the decision. This confusion could potentially lead to 
longer response times with more incorrect decisions. 
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More research needs to be done to determine whether these three explanations, which are 
not necessarily in opposition to each other, are viable explanations for why automation false 
alarms appear to affect operator reliance. Further research also needs to be done to determine 
whether the two types of automation errors affect different cognitive processes, or whether a 
single-process model is sufficient in explaining the data. Our data has suggested that the two 
constructs are not entirely independent of each other; however, this single dissociation in the data 
is not sufficient to reject a single-process model (Dunn & Kirsner, 1988). 

By expanding on the findings from previous studies, and providing a more sensitive 
analysis of the qualitative differences between automation false alarm and misses, the 
implications of the current study allow us to generalize beyond that of the specific UAV 
paradigm. Subsequently, the current data allow designers of automated systems to more 
accurately weigh the impact of automation false alarms and misses on operator performance 
when deciding where to set the bias threshold in future systems.   
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