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ABSTRACT 

During mission execution in military applications, the TRADOC Pamphlet 525-66 Battle Command and Battle Space 
Awareness capabilities prescribe expectations that networked teams will perform in a reliable manner under changing 
mission requirements, varying resource availability and reliability, and resource faults. In this paper, a Command and 
Control (C2) structure is presented that allows for computer-aided execution of the networked team decision-making 
process, control of force resources, shared resource dispatching, and adaptability to change based on battlefield 
conditions.  A mathematically justified networked computing environment is provided called the Discrete Event Control 
(DEC) Framework.  DEC has the ability to provide the logical connectivity among all team participants including 
mission planners, field commanders, war-fighters, and robotic platforms. The proposed data management tools are 
developed and demonstrated on a simulation study and an implementation on a distributed wireless sensor network.  The 
results show that the tasks of multiple missions are correctly sequenced in real-time, and that shared resources are 
suitably assigned to competing tasks under dynamically changing conditions without conflicts and bottlenecks.  

Keywords: Discrete event control (DEC), military battlefield command and control, mission execution and resource 
assignment, rule-based control. 

1. INTRODUCTION 
U.S. Army Training and Doctrine Command (TRADOC) Pamphlet 525-66 identifies Force Operating Capabilities 
required for the Army to fulfill its mission for a networked Warfighter concept.  Two such capabilities are Battle 
Command and Battle-Space Awareness for which there are expectations that networked teams will perform in a reliable 
manner under changing mission requirements, varying resource reliability, and resource faults.  Battlefield or disaster 
area teams may be heterogeneous networks consisting of interacting humans, ground sensors, and unmanned airborne or 
ground vehicles (UAV, UGV).  Such scenarios should provide intelligent task sequencing for multiple missions, 
synchronization of efforts for multiple missions, and shared services of resources to augment the capabilities of the 
remote-site mission commander and on-site war-fighter.  This requires a scalable, deployable and mobile networking 
capability that supports mission tailoring, force responsiveness and agility, ability to change missions without 
exchanging forces, and general adaptability to changing battlefield conditions. 

In this paper we present a computer programmable Command and Control (C2) structure that allows for execution 
of the decision-making process, control of force resources, and adaptability to change.  We describe a rigorous 
mathematically justified networked computing environment that has the potential to provide the logical connectivity 
among all team participants including mission planners, field commanders, warfighters, and robotic platforms.  Included 
are data management tools to ensure that the tasks of multiple missions are correctly sequenced in real-time and that 
shared resources are suitably assigned to competing tasks under dynamically changing conditions.  

A rule-based Discrete Event Controller (DEC) has been developed1 and applied to various engineering and 
manufacturing applications ranging from schedule planning2,3,4 to reducing the product life-cycle in prototype designs, as 
well as Wireless Sensor Networks (WSNs)5. The DEC matrix-based formulation6 is portable and easily implemented on 
                                                 
1 Supported by ARO grant ARO W91NF-05-1-0314 and the Army National Automotive Center 
2 F. L. Lewis: E-mail: lewis@uta.edu, Telephone: +1 817 272 5972 
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any platform.  It facilitates industries adapting quickly to fast-evolving market conditions for transition between 
inventory and products with minimal human intervention7. 

 Based on this DEC, we develop here a C2 structure.  DEC is easily programmed on a laptop digital computer.  DEC 
is based on matrices that contain two types of information.  Mission task requirements are prescribed by mission 
commanders in terms of a Task Sequencing Matrix.  This allows commanders to convey purpose without providing 
detailed direction on how to perform the task or mission.  Resource assignments to the tasks are prescribed by field 
commanders or the warfighter in terms of a Resource Assignment Matrix.  As missions change or are added, the task 
sequencing matrices are easily reconfigured.  Multiple missions can be programmed by multiple mission commanders 
into the same networked team.  As resources fail or are added, the resource assignment matrices are easily reconfigured 
in real-time time.   

The discrete event controller (DEC) allows for synchronizing forces and warfighting functions in time, space, and 
purpose to accomplish multiple simultaneous missions that may change dynamically.  The matrix formulation of DEC 
allows for rigorous mathematical analysis of the performance of the networked team, and reveals problems such as 
bottleneck resources and shared-resource blocking phenomena.  DEC guarantees proper sequencing of the competing 
tasks of multiple missions, assigning appropriate resources immediately as they become available and resolving conflict 
situations.  DEC can be programmed into networked microprocessors using a novel ‘or/and’ matrix Boolean algebra that 
allows programming of rule-based decisions in streamlined software algorithms.  Computer or PDA user interfaces can 
allow automatic generation of the Task Sequencing Matrices given the requirements of mission commanders, and of the 
Resource Assignment Matrices by field commanders. 

2. A DISCRETE EVENT C2 STRUCTURE FOR DISTRIBUTED TEAMS 
In this section and the next we describe a command and control (C2) structure for programming multiple missions into 
heterogeneous teams of distributed agents, and controlling the performance of these missions in real-time.  This is a 
decision-making DEC that contains rules to sequence the tasks in each mission, and to assign resources to those tasks.  
DEC has a message-passing architecture that is in conformance with Joint Architecture for Unmanned Ground Systems 
(JAUGS)10, and is an efficient means to realize the high-level OODA loops (observe, orient, decide, act) of 4D/RCS11.  
DEC is able to coordinate the sequencing of operations between multiple Soldiers and robots efficiently and without 
conflict, thus contributing to the concept of Safeops. 
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Fig. 1. C&C Rule-Based Discrete Event Controller for Distributed Networked Teams. 
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DEC allows fast mission programming of distributed teams, and facilitates rapid deployment of man/machine teams, 
wireless sensor networks, and other event-based systems.  DEC provides a seamless C&C architecture that facilitates 
quickly turning any deployed team into a tactical unit12.  The DEC runs on a C2 computer and functions as a feedback 
controller in real-time.  See Fig. 1.  As a feedback controller, DEC obtains information from each networked agent about 
which tasks that agent has just completed, and which of its resources are currently available.  This information about 
team status can be transmitted via a message-passing protocol over a wireless sensor network (WSN), or over the 
internet5. Then, given such information from all active nodes, DEC computes which mission tasks could be performed 
next.  Then, based on priority measures or war-fighter decision input, DEC decides which tasks the team should perform 
next.  Based on this, it sends message-based commands to each agent to perform certain tasks or release certain 
resources.  All this is accomplished efficiently using a computer software DEC tool to be described.  

The commands sent by DEC to the team agents could be command inputs into semi-autonomous machine nodes, 
and could be in the form of messages for decision assistance over a PDA for human agents. 

The DEC can be programmed on a digital computer and requires very small code for implementation. The key to the 
ease of use and implementation of DEC1 are formal mathematical computations based on matrices that contain two types 
of information (TSM and RAM below), and the use of a nonstandard matrix or/and algebra. The functionality of DEC 
has two phases: 

1. Planning/Programming Phase, Mission task requirements are prescribed by mission commanders in terms of a 
Task Sequencing Matrix (TSM). This allows commanders to convey purpose without providing detailed 
direction on how to perform the task or mission.  Next, resource assignments to the missions tasks are 
prescribed by field commanders or the warfighter in terms of Resource Assignment Matrices (RAM). All this 
information could be entered via Graphical User Interfaces on laptops, handheld PDA, etc.  As missions change 
or are added, these matrices are easily reconfigured in real time. Multiple missions can be programmed by 
multiple mission commanders into the same networked team that shares the same resources. This is effectively 
the world modeling phase of 4D/RCS11. 

2. Operational Phase, the DEC will automatically poll active agents for their status at each event update and 
properly sequence the tasks of all programmed missions, and assign the required resources. Conflicting requests 
for resources are automatically handled so as to avoid blocking phenomena. During operation, as resources fail 
or are added, the resource assignment matrix is easily reconfigured in real-time time to allow uninterrupted 
mission performance in spite of resource failures. At any time, additional missions may be programmed into the 
team or deleted. 

Fig. 2. Sample mission scenario from J. Albus talk, ASC Orlando, Dec. 2008. 

The Programming Phase is 
discussed in this section, and the 
Operational Phase in the next. 

2.1 Missions 

A mission should achieve desired 
goal states that are triggered by 
external events occurring within the 
frame of discernment of the 
distributed team.  Mission task 
requirements are specified by 
mission commanders in terms of 
desired responses to special trigger 
events, and accomplishment of 
required goals.  A mission is 
defined as a sequence of script 
behaviors13, here called tasks, that is 
triggered by prescribed events and 
results in prescribed goal states.  
Mission commanders should be able 
to convey purpose without 
providing detailed direction on how 
to perform the tasks of the mission 
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[U.S. Army Training and Doctrine Command (TRADOC) Pamphlet 525-66]. A sample mission scenario, taken from11, 
is shown in the figure. 

2.2 Programming the Missions: Task Sequencing Matrix (TSM) 

Given the basic mission requirements specified by mission commanders, a sequence of scripts or tasks that perform the 
mission is constructed.  A grammar-based method for doing this is given13, where the sequence of tasks for a mission is 
determined using a planning function such as A-Star search.  In 4D/RCS11 a task analysis is used to create a task 
decomposition tree.  In fact, given basic elemental tasks and the required high-level goals, there are many software 
planners that can fill in the detailed sequence of steps needed to attain the goals.  Notably effective are the so-called 
Hierarchical Task Network (HTN) planners2,3,4, which decompose goals into sequences of primitive actions and 
compound actions, e.g. tasks, that are required to attain those goals.  On the other hand, detailed task sequences could 
also be constructed by aids to the mission commander. 

Each mission task has a well-defined initial state and start event, and ends with a well-defined exit13.  The tasks are 
fired by rules of the form 

Rule i: IF (the tasks required as immediate precursors to task i are compete) 
            AND (the resources required for task i are available)    THEN    perform task i 

Therefore, each mission can be considered as a sequence of rules prescribing under what conditions each of its tasks can 
be fired.  This is a semi-autonomous rule-base14 in the sense that it has hard-programmed rules which can nevertheless 
be interrupted or re-sequenced in real-time by input from the war-fighter. 

We define a mission as a set of tasks that is triggered by events, and results in a prescribed goal state(s).  The 
mission is prescribed in terms of a strict partial ordering of tasks that begins with detected trigger events and ends up 
with the goal states.  A binary relation P is a strict partial ordering on a set {ti} if: (1) (irreflexive), (2) If 

 and  then ti=tj (antisymmetry), (3) If 

( , )i it t P∉
( , )i jt t P∈ ( , )j it t P∈ ( , )i jt t P∈  and ( ,  then ( ,)j kt t P∈ )i kt t P∈  
(transitive).  We interpret this strict partial order on the set of tasks as specifying the temporal relations between tasks, 
e.g.  if task ti is required to occur immediately prior to task tj, e.g., task tj can only occur if task ti has just 
completed. 

( , )i jt t ∈P

The intent of this partial order in time is that missions should consist of tasks, some of which should occur when 
others have just finished, but many of which are not required to be in any definite temporal order with respect to each 
other (e.g. see Fig. 2).  This gives the mission commander great freedom to prescribe only those causal relations between 
tasks which are tactically important. This allows commanders to convey purpose without providing detailed direction on 
how to perform the task or mission.  Since the missions consist only of partial orderings of tasks, then it will be the 
responsibility of the DEC to decide the actual ordering of tasks in real time as the events unfold and the resources needed 
for the tasks become available.  The mechanisms for performing this during the Operational Phase are described in the 
next section. 

To capture the mission and its tasks in a convenient and computable form, define the task sequencing matrix (TSM), 
which has element (i,j) equal to 1 if task tj is a required immediate precursor for task ti.  Note that multiple 1’s in a single 
row i indicate that multiple tasks are required as immediate precursors for task ti.  TSM was used by Steward15, 
Warfield16, and Wolter et al.17, and others to sequence the tasks required in manufacturing assembly and part processing.   

TSM is a mapping from tasks to tasks.  We would like to construct a mathematically formal rule-based DEC that 
runs as software code on a C2 computer and is capable of sequencing the tasks and assigning resources dynamically in a 
networked team. In the next section it is shown that this is possible if each task is fired by a rule. Therefore, to introduce 
the rule base, decompose the TSM as 

v vTSM S F= ⋅  

where the input TSM Fv (loosely called simply the TSM) is a mapping from the tasks to the set of rules, and the output 
TSM Sv is a mapping from the rules back to the task space.   

This matrix multiplication denoted by the small dot is not the standard matrix multiply, but occurs in the or/and 
algebra, where multiply means .and. and addition means .or.  It is easy to write a programming function to multiply 
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matrices in or/and.  This function is part of the simple computational machinery of DEC and is shown in the next section 
(see Fig. 3). 

The input TSM Fv maps the tasks {tj} to a rule base consisting of a set of rules {xi} .  It has entry (i,j) of 1 if rule i 
requires task j as a immediate precursor to its firing.  Multiple ones in a row lead to rules of the form 

IF (task j1  and task j2 and task j3 have just finished) THEN fire rule i 

Output TSM Sv maps the rule base {xj} to the tasks {ti}.  It has entry (i,j) of 1 if task i is to be started when rule j fires.  
Often, there is one rule to fire each task, so that Sv is essentially the identity matrix. 

Networked Team Example.  To illustrate, a sample mission is shown in Table 1.  This mission could be programmed 
by any user of the networked sensor team.  This scenario has a wireless sensor network (WSN) consisting of unattended 
ground sensors (UGS) and mobile robots (R), possibly UGV or UAV. When the trigger event u1 (e.g. here, a chemical 
attack) is detected by a UGS (specifically, sensor UGS1 here), a prescribed sequence of tasks is carried out that includes 
taking further sensor readings and dispatching mobile robots to gather additional information.  The mission ends when 
sensor S2 takes a measurement, either verifying a threat or declaring a false alarm.  Each task has a label, displayed in 
the second column. 

Table 1. Mission 1- Task sequence for deployed WSN 

Mission 1 Task label Task description 

Input 1 EVENT u1 UGS1 launches chemical alert 

Task 1 S4m1 UGS4 takes measurement 

Task 2 S5m1 UGS5 takes measurement 

Task 3 R1gS21 R1 goes to UGS2 

Task 4 R2gA1 R2 goes to location A 

Task 5 R1rS21 R1 retrieves UGS2 

Task 6 R1lis1 R1 listens for interrupts 

Task 7 R1gS11 R1 gores to UGS1 

Task 8 R2m1 R2 takes measurement 

Task 9 R1dS21 R1 deploys UGS2 

Task 10 R1m1 R1 takes measurement 

Task 11 S2m1 S2 takes measurement 

output y1 Mission 1 completed 

 

The input task sequencing matrix Fv corresponding to this mission 1 is 
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where the 11 columns are labeled in order corresponding to the tasks.  Each row of input TSM corresponds to a rule, e.g. 
the second row says  

If (task 1 and task 2 have just been completed) then (fire rule 2). 

Note that the trigger event u1 that caused the mission to initiate firing of its tasks is considered as an external input and 
has its own input matrix Fu. This allows the trigger events to be considered as external inputs to the DEC in the next 
section.  

The output TSM matrix Sv for this example is detailed in5, and tells which tasks to perform when each rule fires.  It 
is close to an identity matrix, since essentially task i is fired by rule i. 

Though TSM is the matrix considered in15,16, we have decomposed it into two portions, namely v vTSM S F= ⋅ , 
with Fv the (input) TSM and Sv the output TSM. The input TSM Fv, and output TSM Sv capture all the temporal 
precedence relations between the tasks in a mission. Moreover, they map to a rule base that corresponds to the rows of 
the former and the columns of the latter. As we shall see in the next section, this mapping to a rule base is one of the key 
ideas responsible for our DEC formulation, which allows formal computations for efficient on-line real-time task 
sequencing and dynamic resource assignment in team networks.  Moreover, it was shown in2,3,4 that the outputs of HTN 
planners can in fact be directly placed into the format of matrices Fv and Sv.   

2.3 Assigning the Resources:  Resource Assignment Matrix (RAM)  

As just shown, mission commanders indicate intent by prescribing certain task precedences needed to perform a mission 
with desired goals.  As such, missions consist of partially ordered tasks, whose orderings capture the tactically important 
aspects of a mission.  The details of actual task sequencing are left to the DEC to perform during the Operational Phase 
in real time as events unfold and resources become available.  That is, during the Operational Phase the DEC converts 
the partial ordering provided by mission commanders into a total ordering that directs the actual sequencing of the tasks 
performed by the networked team in real time.  This Operational Phase mechanism will be described in the next section. 

Meanwhile, to complete the Programming Phase, resources must be assigned to the tasks.  The resources capable of 
performing the tasks are assigned by field commanders or the war-fighter, who are familiar with the onsite situation. 
Task capabilities of robotic resources are also available in ARL CIP Agent Registry, a database holding information 
about the services that registered devices offer in the network community18. In this section we detail how the resources 
capable of performing the tasks are prescribed. 

To capture the assignments of the available resources to the mission tasks in a convenient and computable form, 
define the resource assignment matrix (RAM), which has element (i,j) equal to 1 if resource rj may be used to 
accomplish task ti. Note that multiple 1’s in a single row i indicate that multiple resources are required for task ti. RAM 
has been used by19 and others in manufacturing and elsewhere. 

Multiple 1’s in column j of RAM indicate that resource rj is needed for multiple tasks. Such shared resources are 
important in the team, as they may be competent or versatile resources that are in high demand. However, shared 
resources can lead to bottlenecks or catastrophic failures of the team if they are not properly assigned in real time to 
tasks, or properly dispatched. The dispatching of shared resources has been considered under many topics including 
bottlenecks, deadlocks, and other blocking phenomena20. DEC presented in this paper can accommodate the dispatching 
of shared resources to avoid conflicts and blocking, as discussed in the next section. 

RAM can be assigned by field commanders who know which resources can perform which tasks.  RAM could also 
be constructed by software tools that use pricing strategies or payoff matrix ideas, which result in the optimal assignment 
of resources to tasks given certain prescribed cost functions21.   

As situations change and resources fail or additional resources become available, the resources capable of 
performing the tasks may change.  The DEC framework presented in the next section can accommodate time-varying 
RAM.  Thus, RAM can be modified as resources fail or are added to the team. 

To construct a mathematical formulation for a DEC that has guaranteed performance and can work in real-time, we 
must introduce a rule base.  Therefore, factor the RAM matrix into two portions according to 

v rRAM S F= ⋅  
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with Sv the output TSM matrix defined above and dot denoting or/and matrix multiply. The input RAM Fr maps the 
resources {rj} to a rule base {xi} as defined in the previous subsection. Thus, Fr has entry (i,j) equal to 1 if resource j is 
required to fire rule i. Output matrix Sv maps the rule base {xj} to the tasks {ti}.  It has entry (i,j) of 1 if task i is to be 
stared when rule j fires.   

Though others have used RAM in analysis19, we have further decomposed it to map from resources to tasks through 
a rule base. As seen in the next section, this is one of the keys that makes our DEC useful for real-time control of 
networked teams. 

Networked Team Example.  The input RAM for the Mission 1 in Table 1 is 
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where the columns correspond to the available resources and the rows to the rules. Thus, to fire rule 1, one requires 
sensors S4 and S5 to be currently available, etc.  That is, rule 1 fires when the event u1 occurs (as detected by sensor S1, 
see Fu matrix) and if resources S4 and S5 are available. 

Define likewise an output RAM Sr that maps from the rule base to the resources. This matrix has entry (i,j) of 1 if 
resource i is to be released when rule j fires. Then a matrix that maps from resources to resources given by  

r rG S Fr= ⋅  

is the resource dependency matrix. Gr defines the so-called resource graph, whose nodes are the resources and whose 
edges (j,i) correspond to entries of 1 in entry (i,j) of Gr. This graph is indispensable in studying conflict and deadlock 
avoidance in systems with shared resources22,20. 

2.4 Programming Multiple Missions 

Multiple missions can be programmed into the same networked team of agents and resources. Using DEC, the various 
missions in a team can be programmed by different mission commanders. Each one does not need to know about other 
missions running in the network, or about the resources required by the other missions. All missions use the same 
common pool of networked team resources.  

At any time, additional missions can be programmed by other mission commanders, without having to know which 
missions are already programmed to the resource network. At any time, the resources assigned to the tasks can be 
changed as resources fail or are added to the network. 

As seen in the next section, during the Operational Phase DEC effectively and fairly sequences the tasks of all 
programmed missions and assigns the required resources on-line in real time as events occur and as resources become 
available. DEC programs multiple missions into a heterogeneous team of multiple networked resources. 

Suppose several missions are prescribed, with Mission i having its task ordering given by input TSM  and its 
required resources for the tasks given by the input RAM . Then the overall TSM and RAM are given by the block 
matrix compositions  

i
vF

i
rF

1 1

2 2

0 0
0 0 ,
0 0

v r

v v r r

F F
F F F
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and similarly for Sv, Sr. Note that the mission task sequences are independent, each using its own tasks, so that Fv is 
block diagonal.  However, all the missions use the same resources available in the networked team, and so have 
commensurate columns of their resource assignment matrices. 

DEC facilitates mission transferability between teams by capturing mission information in the TSM, which can 
easily be moved and programmed into another network. 

Networked Team Example.  In illustration, consider the same WSN of UGS and mobile robots used in the example 
above for Mission 1. Suppose the network maintenance technician programs into the same network a Mission 2 that is 
involved with charging the batteries of the nodes. Such a Mission 2 appears in Table 2.  Trigger event u2 is a low battery 
event. 

Table 2. Mission 2-Task sequence for deployed WSN 

Mission 2 Task label Task description 

input EVENT u2 UGS3 batteries are low 

Task 1 S1m2 UGS1 takes measurement 

Task 2 R1g S32 R1 goes to UGS3 

Task 3 R1cS32 R1 charges UGS3 

Task 4 S3m2 UGS3 takes measurement 

Task 5 R1dC2 R1 docks the charger 

output y2 Mission 2 completed 

 

 The input TSM and input RAM for this mission are 

1 2 3 4 5

2 0 0 0 0 0
t t t t t

x ⎛ ⎞

⎟

1
2
2
2

2 3
2
4
2
5
2
6

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

v

x
x

F
x
x
x

⎜ ⎟
⎜
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

,  

2
1
2
2
2

2 3
2
4
2
5
2
6

1 2 1 2 3 4 5
0 0 1 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0

r

R R S S S S S
x
x
x

F
x
x
x

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 

The overall TSM and RAM for both the missions now in the wireless sensor network are 
1 1

2 2

0
,

0
v r

v r
v r

F F
F F

F F
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

 

 In similar fashion, additional missions are easily programmed into this WSN. 

3. RULE-BASED DISCRETE EVENT CONTROLLER (DEC) 
This section describes the DEC software controller that runs in the Operational Phase to sequence the tasks and assign 
the team resources in real time.  This is a decision-making DEC that contains rules to sequence the tasks in each mission, 
and to assign resources to those tasks.  See Fig. 1. DEC has a message-passing architecture that is in conformance with 
Joint Architecture for Unmanned Ground systems (JAUGS)10, and is an efficient means to realize the OODA loops 
(observe, orient, decide, act) of 4D/RCS11.  DEC is able to coordinate the sequencing of operations between Soldiers and 
robots efficiently and without conflict, thus contributing to the concept of Safeops.    

In the previous section we saw that missions are programmed into the network by specifying task sequencing 
matrices Fv, Sv and resource assignments matrices Fr, Sr. The TSMs give a partial order for the tasks in each mission, 
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however, the tasks are coupled through the shared resources as captured in RAM. Based on those constructions, it is now 
desired to construct a rule-based discrete event controller that can be programmed in software and which effectively 
reacts to external events sensed, sequences the tasks of a networked team, and assigns their available resources in such a 
way that the missions are accomplished without interference or blocking phenomena. Tasks of priority missions should 
have priority assignment of requisite resources.  How is this to be done? 

3.1 DEC State Equation 

In terms of the constructions just given we are now in a position to define such a DEC. Define the task vector v, resource 
vector r, and rule state vector x 

1 2 1 2 1 2, ,
t r

T TT

N Nv t t t r r r r x x x x⎡ ⎤ ⎡⎡ ⎤= = =⎣ ⎦⎣ ⎦ ⎣L L
xN ⎤⎦L  

where the set of tasks is { }; 1,it i N= t , the set of resources is { }; 1,ir i N= r , and the set of rules is { }; 1,i xx i N=

]T

.  
The rule state vector x has 1’s in positions i corresponding to the rules that are currently enabled to fire.  Define vc as the 
task completion vector which contains 1’s in positions i corresponding to the tasks ti that have just been accomplished, 
and rc as the resource available vector containing 1’s in positions i corresponding to the resources ri that are currently 
available.  These are the outputs of the networked team passed through messages to the DEC.  See Fig. 1.  For instance, 

 signifies that tasks 1 and 4 have just been performed, while  signifies that 
resources 4 and 5 are currently available.  Define the external trigger event vector  

[10 010 ]T
cv = L [0 0110cr = L

[ ]1 2
T

nuu u u u= L  

to contain 1’s in positions corresponding to trigger events ui that have just occurred. 

In terms of the TSM and RAM matrices defined above, define the DEC rule base state equation 

 v c r c u D Dx F v F r F u F u= ⋅ ⊕ ⋅ ⊕ ⋅ ⊕ ⋅  (1) 

where Fu is an input matrix that specifies which external trigger events are to be used to launch each mission. The input 
uD is a conflict resolution control input that decides which task to perform in the event that multiple tasks are enabled at 
a given time. It allows real-time interrupts and priority dispatching for urgent missions, and assigns shared resources in 
such a way as to avoid blocking phenomena including deadlocks and bottlenecks. See20. 

In this equation, all matrices and vectors are binary, i.e. 
having entries of either 0 or 1.  Dot denotes matrix multiply, 
and  denotes matrix addition, with all operations carried 
out in the or/and algebra, where multiplication is replaced 
by .and., and addition by .or.

⊕
Matrix Multiply 
C A B= ⋅  
for i= 1,I 
   for j= 1,J 
      c(i,j)=0 
      for k= 1,K 
          c(i,j)= c(i,j) .OR. ( a(i,k) .AND. b(k,j) ) 
      end 
    end 
end 

Fig. 3. Matrix multiply in the or/and algebra. 

.

x

 The overbar denotes negation 
of all entries of a vector. Operations in the or/and algebra 
are easily programmed, and a routine that carries out a 
matrix multiply in the or/and algebra is given in Fig. 3.   

The DEC equation contains the required mission task 
partial orderings and the resources required for each task, 
and essentially captures the world model in 4D/RCS11. 

 

3.2 DEC Output Equations 

Based on the rule state vector, the task start equation  

 s vv S= ⋅    (2) 

computes the task start vector vs, which has 1’s in positions i corresponding to those tasks that can now be started.  The 
resource release equation 
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 s rr S x= ⋅    (3) 

computes the resource release vector rs, which has 1’s in positions i corresponding to those resources that can now be 
released as their tasks have ben completed.  These output equations are also computed in the or/and algebra. 

3.3 DEC as a Feedback Controller 

DEC functions as a feedback controller, as shown in Fig. 1.  It runs as a software tool on a laptop or other computer.  It 
is very easy, for instance, to program DEC in software. Basic code is given in6.  The operation of DEC is as follows. At 
each event iteration, all active agents in the team send updates of their tasks just completed and resources currently 
available over the internet or via WSN.  The current task completion vector vc and the current resource available vector 
rc  are constructed by taking this information from all active agents in the team.  They are considered as the outputs of 
the networked team to the DEC.  The DEC then uses state equation (1) to compute the rule state vector x.  The resulting 
entries of 1 in the rule state vector show which rules are enabled to fire, as having all their requisite precursor tasks done 
and all their required resources available.  Thus, the tasks (2) corresponding to these active rules could now be 
performed.  Now among all the tasks that could fire, DEC selects the tasks to actually fire by consulting the mission 
priorities, or by querying local field commanders via PDA.  Finally, command inputs are sent by the DEC telling agents 
which tasks to start (vs) and which resources to release and make available (rs).  For autonomous machines, this 
information is sent as commands to their internal controllers.  For human nodes, the information can be sent as decision 
assistance via a handheld PDA- e.g. ‘go to point A’, ‘contact node B and provide certain information’, etc. 

Note that agent nodes need only communicate to DEC when they have a change in tasks completion status, or a 
change in resource availability; i.e. when an event occurs.  On the other hand, DEC only communicates to those nodes 
which should next fire tasks or release resources. 

3.4 Properties of DEC 

The intent of the DEC is that it should provide a mathematically rigorous software tool for implementing a rule-based 
supervisory controller that sequences the tasks and assigns the resources of a networked team all in real time as events 
unfold, given at each event iteration the measured network information about which tasks have just completed and which 
resources are available.  This is all governed by the TSM Fv and the RAM Fr, which have been programmed into the 
DEC software respectively by the mission commanders and the field commanders. 

3.4.1 Functionality of the DEC 

The first result shows that DEC state equation (1) actually does compute which tasks to start based on rules of the form 

IF (all tasks required as immediate precursors to rule i have just been completed)  
    AND (all resources required by rule i are available) THEN fire rule i 

Define the tasks as { }; 1,j tt j N= , i.e. the elements of task vector v, and the resources as { }; 1,j rr j N= , the 

elements of resource vector r.  Define Ti as the set of tasks that are immediate precursors to rule i, and Ri as the set of 
resources required to fire rule i.  The next result verifies the proper functioning of DEC equation (1), while also showing 
the need for the negation overbars on the vectors in (1). 

Theorem 1.  Proper Functioning of DEC 

The i-th rule (i.e. i-th row) of (1) is equivalent to 

i i

i j
j T j R

jx t r
∈ ∈

= II I  

where  denotes logical and.  That is, rule state xi is true (equal to 1) if all task vector elements tj required for rule i are 
true and all resource vector elements rj required for rule i are true. 

I

Proof: Let  denote and and  denote or. Overbar denotes negation. Define the elements of matrix Fv by I U v
ijf  and of 

Fr by r
ijf .  By the definition of matrix operations in the or/and algebra, one has  

 10



 
 

 
 

1 1

T RN N
v r

i ij j ij
j j

jx f t f r
= =

⎛ ⎞ ⎛
= ⎜ ⎟ ⎜
⎝ ⎠ ⎝

I U IU U
⎞
⎟
⎠

 

Now successive applications of de Morgan’s laws yields 

1 1 1 1

T R T RN N N N
v r v

i ij j ij j ij j ij j
j j j j

rx f t f r f t f r
= = = =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛
= =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝

I U I I I IU U U U
⎞
⎟
⎠

 

1 1 1 1

T R T RN N N N
v r v

i ij j ij j ij j ij j
j j j j

rx f t f r f t f r
= = = =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛
= =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝

I I I U I UI I I I
⎞
⎟
⎠

 

But elements ,v r
ij ijf f  are equal to zero if task tj, resp. resource rj, is not needed to fire rule i.  Then, ,v r

ij ijf f  are equal 

to 1, so that for those elements one has 1v
ij jf t =U  and 1r

ij jf t =U  whether the corresponding task or resource 

element is true or not.  On the other hand, elements ,v r
ij ijf f  are equal to 1 if task tj, resp. resource rj, is needed to fire 

rule i.  Then, ,v
ij ij

rf f  are equal to 0, so that for those elements one has 1v
ij jf t =U  and 1r

ij jf r =U  only if the 
corresponding task or resource element is true.  Therefore the last equation is equivalent to  

 
i i

i j
j T j R

jx t
∈ ∈

= II I r      QED 

3.4.2 Properness of the DEC Rule Base and Fairness of the DEC 

The next result shows that the rule base constructed by programming the mission tasks into the TSM and the task 
resources into RAM produces a rule base of good structure if and only if each mission is properly defined.  It is shown 
that improper definition of a single mission assigned to the team can cause improper execution of all missions assigned 
to the team.  Then, the DEC cannot fairly assign the team resources and ensure sequential execution of the tasks in the 
missions.  In extreme cases, improper definition of one mission can tie up resources so that other missions are blocked.  

A rule has the form 

IF antecedent THEN consequent 

where the antecedent consists of task clauses and resource clauses such as 

(all tasks required as immediate precursors to rule i are done)  
    AND (all resources required by rule i are available) 

and the consequent consists of a single clause such as 

fire rule i. 

Problems with rule bases fall into three categories: consistency, completeness, and conciseness [Gursaran 1999].  

Consistency of a rule base is compromised by circularity and conflicts.   

Lemma 1.  The DEC rule base has no circularity or conflicts. 

Proof Outline:  The rule base is based on clauses such as task completion, and resource availability, and does not 
contain any of their negations.  Therefore it cannot have conflicts.  Matrix Fv is block diagonal.  Each block defines a 
strict partial ordering and so is lower block triangular with zero diagonal.  Therefore there are no circular chains of rules.  
QED. 

Conciseness is compromised by the presence of rules that logically serve no purpose.  These include redundant 
rules, subsumed rules, and unnecessary IF conditions. 

Lemma 2.  The overall rule base defined by all the missions is concise if and only if task sequencing matrix of each 
mission corresponds to a concise rule base for the tasks.  
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Proof Outline:  Matrix Fv is block diagonal, each block of which defines a rule base.  Therefore, two rules in different 
blocks cannot be redundant as they cannot have the same antecedent.  No two rules in a single block are redundant by 
hypothesis.  Therefore there are no redundant rules in DEC.  The antecedent of a rule in one block cannot contain the 
antecedent of a rule in another block.  By hypothesis, the antecedent of a rule in one block does not contain the 
antecedent of a rule in the same block.  Therefore, there are no subsumed rules.  There are no unnecessary IF conditions 
since, by construction, no clause is the negation of any other.  QED. 

Completeness refers to knowledge gaps in the rule base.  Such gaps make it impossible to achieve the prescribed 
goals given the triggering events that have occurred.  Knowledge gaps include unreachable conclusions, dead end goals, 
dead end if conditions, and missing rules.  By using the block diagonal structure of Fv it is straightforward to prove the 
following. 

Lemma 3.  The overall rule base defined by all the missions is complete if and only if task sequencing matrix of each 
mission corresponds to a complete rule base for the tasks. 

These results make it clear that each mission planner has a great responsibility in properly defining his task prior to 
programming it into the team.  Improper definition of one mission among many assigned to a team can cause blocking, 
thereby tying up resources and making it impossible to complete other missions in the team.  

3.5 Shared Resource Dispatching: Blocking, Bottlenecks, and Deadlocks 

It has just been shown that if each mission individually is properly defined, the DEC (1) guarantees proper sequencing of 
tasks in each mission and proper assignment of the required resources.  However, the resources of the team are shared by 
all the missions.  Therefore, there may exist bottlenecks or blocking phenomena if the resources are not properly 
assigned in real time.  This is called the shared resource dispatching problem.  Particularly detrimental is the occurrence 
of deadlocks, where some tasks cannot gain access to their required resources because those resources are indefinitely 
held up by other tasks.  This indefinitely halts the involved missions and will not allow their completion. 

It is shown in20 that DEC allows easy analysis of potential deadlocks.  Then the dispatching or conflict resolution 
input uD in (1) (see Fig. 1) may be selected to avoid deadlock situations.  In this fashion, the DEC can guarantee proper 
performance and completion of all missions, as long as each mission is properly defined in the sense shown above in 
Lemmas 1-3 above.   

4. DEC SIMULATION AND IMPLEMENTATION 
DEC is easy to implement using computer simulation software. The basic code necessary to implement the DEC shown 
in Fig. 1 is based on the or/and multiply routine in Fig. 3, and is given in6. Messages are passed (using Wifi, internet, 
WSN, PDA, etc.) from team nodes to the C2 computer whenever an event occurs: i.e., any node finishes a task or has a 
new resource made available. New task events are placed into task completion vector vc, while new resource events are 
placed into resource available vector rc. Then the DEC state equation (1) is evaluated using the software, and the tasks to 
be started are computed using (2), while resources to be released are computed using (3). If several tasks are enabled, 
user-specified priority decisions or deadlock considerations are used to select which task to actually fire. Messages are 
passed back to the team nodes detailing which tasks to perform next vs and which resources to release rs, as commands 
into machine nodes, or as decision aids via PDA to human agents.  

4.1 Simulation of Networked Team Example 

The DEC was run on the networked team example whose TSM and RAM were shown above. This is a simulation on a 
digital computer. The resulting event traces are seen in Fig. 4. Chemical attack event u1 occurred at time 8 min, and the 
low battery event at time 3 min. The progress of the two missions through the team as the resources are assigned and the 
tasks are performed is clearly seen. In the task traces, ‘up’ means a task is being performed, while in the resource traces, 
‘down’ means the resource is being used. 

In the figure, Mission 1 terminates at 128 min, while Mission 2 terminates at 87 min. In Fig. 5, the priority of the 
missions in changed, so that Mission 1 is given a higher priority. Thus, when there is a request for the same resource by 
two tasks, one from each mission, DEC will now assign the Mission 1 task first. This is accomplished in DEC by proper 
choice of the conflict resolution input uD in (1) (See also Fig. 1).  Details are given in5.  Now, Mission 1 takes less time 
and terminates at 62 min. 
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Fig. 4. DEC sequencing mission tasks in the Networked Team Example.  Simulation. 
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Fig. 5. DEC sequencing mission tasks with increased Mission 1 priority.  Simulation. 

4.2 Implementation of Networked Team Example on Actual WSN 

It is very easy to implement DEC on an actual networked team. In fact, the same code is used for both simulation and 
implementation. The DEC was implemented on a WSN team of mobile robots and UGS at the UTA Automation & 
Robotics Institute.  Details of the hardware are given in5. A VR 3D user interface depicted the motions of the robots 
during the mission execution. The panoramic view during the mission execution is shown in Fig. 6. The actual event 
traces observed during the experimental implementation are shown in Fig. 7. They bear a close resemblance to the 
simulated event traces above.   
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Fig. 6.  DEC VR interface panoramic view of the configuration of the mobile WSN during real-world experiments. 
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Fig. 7.  Task event trace of the WSN- Experimental results. 
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