

Discrete event command & control for networked teams with multiple
missions1

Frank L. Lewis2a, Greg Hudasb, Chee Khiang Panga,c, Matthew B. Middletona,

and Christopher Mcmurrougha
and

aAutomation & Robotics Research Institute, University of Texas at Arlington, Fort Worth, TX, USA
bU.S. Army RDECOM-TARDEC, Joint Center for Robotics (JCR), Warren, MI, USA

cDepartment of Electrical & Computer Engineering, National University of Singapore, Singapore

ABSTRACT

During mission execution in military applications, the TRADOC Pamphlet 525-66 Battle Command and Battle Space
Awareness capabilities prescribe expectations that networked teams will perform in a reliable manner under changing
mission requirements, varying resource availability and reliability, and resource faults. In this paper, a Command and
Control (C2) structure is presented that allows for computer-aided execution of the networked team decision-making
process, control of force resources, shared resource dispatching, and adaptability to change based on battlefield
conditions. A mathematically justified networked computing environment is provided called the Discrete Event Control
(DEC) Framework. DEC has the ability to provide the logical connectivity among all team participants including
mission planners, field commanders, war-fighters, and robotic platforms. The proposed data management tools are
developed and demonstrated on a simulation study and an implementation on a distributed wireless sensor network. The
results show that the tasks of multiple missions are correctly sequenced in real-time, and that shared resources are
suitably assigned to competing tasks under dynamically changing conditions without conflicts and bottlenecks.

Keywords: Discrete event control (DEC), military battlefield command and control, mission execution and resource
assignment, rule-based control.

1. INTRODUCTION
U.S. Army Training and Doctrine Command (TRADOC) Pamphlet 525-66 identifies Force Operating Capabilities
required for the Army to fulfill its mission for a networked Warfighter concept. Two such capabilities are Battle
Command and Battle-Space Awareness for which there are expectations that networked teams will perform in a reliable
manner under changing mission requirements, varying resource reliability, and resource faults. Battlefield or disaster
area teams may be heterogeneous networks consisting of interacting humans, ground sensors, and unmanned airborne or
ground vehicles (UAV, UGV). Such scenarios should provide intelligent task sequencing for multiple missions,
synchronization of efforts for multiple missions, and shared services of resources to augment the capabilities of the
remote-site mission commander and on-site war-fighter. This requires a scalable, deployable and mobile networking
capability that supports mission tailoring, force responsiveness and agility, ability to change missions without
exchanging forces, and general adaptability to changing battlefield conditions.

In this paper we present a computer programmable Command and Control (C2) structure that allows for execution
of the decision-making process, control of force resources, and adaptability to change. We describe a rigorous
mathematically justified networked computing environment that has the potential to provide the logical connectivity
among all team participants including mission planners, field commanders, warfighters, and robotic platforms. Included
are data management tools to ensure that the tasks of multiple missions are correctly sequenced in real-time and that
shared resources are suitably assigned to competing tasks under dynamically changing conditions.

A rule-based Discrete Event Controller (DEC) has been developed1 and applied to various engineering and
manufacturing applications ranging from schedule planning2,3,4 to reducing the product life-cycle in prototype designs, as
well as Wireless Sensor Networks (WSNs)5. The DEC matrix-based formulation6 is portable and easily implemented on

1 Supported by ARO grant ARO W91NF-05-1-0314 and the Army National Automotive Center
2 F. L. Lewis: E-mail: lewis@uta.edu, Telephone: +1 817 272 5972

 1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
16 MAR 2009

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Discrete event command & control for networked teams with multiple
missions

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Frank L. Lewis; Greg Hudas; Matthew B. Middleton; Christopher
Mcmurrough; Chee Khiang Pang

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
US Army RDECOM-TARDEC 6501 E 11 Mile Rd Warren, MI
48397-5000 Automation & Robotics Research Institute University of
Texas at Arlington, Fort Worth, TX Department of Electrical &
Computer Engineering, National University of Singapore, singapore

8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
TACOM/TARDEC

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)
19665RC

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE) Defense, Security, and Sensing
Symposium, 13-17 April 2009, Orlando, Florida, USA, The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT

SAR

18. NUMBER
OF PAGES

15

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

any platform. It facilitates industries adapting quickly to fast-evolving market conditions for transition between
inventory and products with minimal human intervention7.

 Based on this DEC, we develop here a C2 structure. DEC is easily programmed on a laptop digital computer. DEC
is based on matrices that contain two types of information. Mission task requirements are prescribed by mission
commanders in terms of a Task Sequencing Matrix. This allows commanders to convey purpose without providing
detailed direction on how to perform the task or mission. Resource assignments to the tasks are prescribed by field
commanders or the warfighter in terms of a Resource Assignment Matrix. As missions change or are added, the task
sequencing matrices are easily reconfigured. Multiple missions can be programmed by multiple mission commanders
into the same networked team. As resources fail or are added, the resource assignment matrices are easily reconfigured
in real-time time.

The discrete event controller (DEC) allows for synchronizing forces and warfighting functions in time, space, and
purpose to accomplish multiple simultaneous missions that may change dynamically. The matrix formulation of DEC
allows for rigorous mathematical analysis of the performance of the networked team, and reveals problems such as
bottleneck resources and shared-resource blocking phenomena. DEC guarantees proper sequencing of the competing
tasks of multiple missions, assigning appropriate resources immediately as they become available and resolving conflict
situations. DEC can be programmed into networked microprocessors using a novel ‘or/and’ matrix Boolean algebra that
allows programming of rule-based decisions in streamlined software algorithms. Computer or PDA user interfaces can
allow automatic generation of the Task Sequencing Matrices given the requirements of mission commanders, and of the
Resource Assignment Matrices by field commanders.

2. A DISCRETE EVENT C2 STRUCTURE FOR DISTRIBUTED TEAMS
In this section and the next we describe a command and control (C2) structure for programming multiple missions into
heterogeneous teams of distributed agents, and controlling the performance of these missions in real-time. This is a
decision-making DEC that contains rules to sequence the tasks in each mission, and to assign resources to those tasks.
DEC has a message-passing architecture that is in conformance with Joint Architecture for Unmanned Ground Systems
(JAUGS)10, and is an efficient means to realize the high-level OODA loops (observe, orient, decide, act) of 4D/RCS11.
DEC is able to coordinate the sequencing of operations between multiple Soldiers and robots efficiently and without
conflict, thus contributing to the concept of Safeops.

Sensor
outputs
Tasks
complete
Resources
available

Mission
complete

Start
tasks
Release
resources

Trigger events

Team
Status Commands

C2 Rule-Based Discrete Event Controller
Rule State equation

Task start equation
Resource release equation

Real-Time Decision Interrupts and Mission priority

Distributed Team

Message
passingMessage

passing

Real-time
Operational
Phase

Planning
Phase

vs

rs

vc

rc

u

uD

x vc , rc

vs, rs

JFACC Goal Priorities
High-level Planning

Mission Commander
Mission plan & goals
Required operations

Battalion Commander
Resources available
Assign manpower & platforms
Material requirements planning

program Fv

Chain of
Command

PC, Laptop, PDA

PC, Laptop, PDA

PC, Laptop, PDA program Fr

Sensor
outputs
Tasks
complete
Resources
available

Mission
complete

Start
tasks
Release
resources

Trigger events

Team
Status Commands

C2 Rule-Based Discrete Event Controller
Rule State equation

Task start equation
Resource release equation

Real-Time Decision Interrupts and Mission priority

Distributed Team

Message
passingMessage

passing

Real-time
Operational
Phase

Planning
Phase

vs

rs

vc

rc

u

uD

x vc , rc

vs, rs

JFACC Goal Priorities
High-level Planning

Mission Commander
Mission plan & goals
Required operations

Battalion Commander
Resources available
Assign manpower & platforms
Material requirements planning

program Fv

Chain of
Command

PC, Laptop, PDA

PC, Laptop, PDA

PC, Laptop, PDA program Fr

Fig. 1. C&C Rule-Based Discrete Event Controller for Distributed Networked Teams.

 2

DEC allows fast mission programming of distributed teams, and facilitates rapid deployment of man/machine teams,
wireless sensor networks, and other event-based systems. DEC provides a seamless C&C architecture that facilitates
quickly turning any deployed team into a tactical unit12. The DEC runs on a C2 computer and functions as a feedback
controller in real-time. See Fig. 1. As a feedback controller, DEC obtains information from each networked agent about
which tasks that agent has just completed, and which of its resources are currently available. This information about
team status can be transmitted via a message-passing protocol over a wireless sensor network (WSN), or over the
internet5. Then, given such information from all active nodes, DEC computes which mission tasks could be performed
next. Then, based on priority measures or war-fighter decision input, DEC decides which tasks the team should perform
next. Based on this, it sends message-based commands to each agent to perform certain tasks or release certain
resources. All this is accomplished efficiently using a computer software DEC tool to be described.

The commands sent by DEC to the team agents could be command inputs into semi-autonomous machine nodes,
and could be in the form of messages for decision assistance over a PDA for human agents.

The DEC can be programmed on a digital computer and requires very small code for implementation. The key to the
ease of use and implementation of DEC1 are formal mathematical computations based on matrices that contain two types
of information (TSM and RAM below), and the use of a nonstandard matrix or/and algebra. The functionality of DEC
has two phases:

1. Planning/Programming Phase, Mission task requirements are prescribed by mission commanders in terms of a
Task Sequencing Matrix (TSM). This allows commanders to convey purpose without providing detailed
direction on how to perform the task or mission. Next, resource assignments to the missions tasks are
prescribed by field commanders or the warfighter in terms of Resource Assignment Matrices (RAM). All this
information could be entered via Graphical User Interfaces on laptops, handheld PDA, etc. As missions change
or are added, these matrices are easily reconfigured in real time. Multiple missions can be programmed by
multiple mission commanders into the same networked team that shares the same resources. This is effectively
the world modeling phase of 4D/RCS11.

2. Operational Phase, the DEC will automatically poll active agents for their status at each event update and
properly sequence the tasks of all programmed missions, and assign the required resources. Conflicting requests
for resources are automatically handled so as to avoid blocking phenomena. During operation, as resources fail
or are added, the resource assignment matrix is easily reconfigured in real-time time to allow uninterrupted
mission performance in spite of resource failures. At any time, additional missions may be programmed into the
team or deleted.

Fig. 2. Sample mission scenario from J. Albus talk, ASC Orlando, Dec. 2008.

The Programming Phase is
discussed in this section, and the
Operational Phase in the next.

2.1 Missions

A mission should achieve desired
goal states that are triggered by
external events occurring within the
frame of discernment of the
distributed team. Mission task
requirements are specified by
mission commanders in terms of
desired responses to special trigger
events, and accomplishment of
required goals. A mission is
defined as a sequence of script
behaviors13, here called tasks, that is
triggered by prescribed events and
results in prescribed goal states.
Mission commanders should be able
to convey purpose without
providing detailed direction on how
to perform the tasks of the mission

 3

[U.S. Army Training and Doctrine Command (TRADOC) Pamphlet 525-66]. A sample mission scenario, taken from11,
is shown in the figure.

2.2 Programming the Missions: Task Sequencing Matrix (TSM)

Given the basic mission requirements specified by mission commanders, a sequence of scripts or tasks that perform the
mission is constructed. A grammar-based method for doing this is given13, where the sequence of tasks for a mission is
determined using a planning function such as A-Star search. In 4D/RCS11 a task analysis is used to create a task
decomposition tree. In fact, given basic elemental tasks and the required high-level goals, there are many software
planners that can fill in the detailed sequence of steps needed to attain the goals. Notably effective are the so-called
Hierarchical Task Network (HTN) planners2,3,4, which decompose goals into sequences of primitive actions and
compound actions, e.g. tasks, that are required to attain those goals. On the other hand, detailed task sequences could
also be constructed by aids to the mission commander.

Each mission task has a well-defined initial state and start event, and ends with a well-defined exit13. The tasks are
fired by rules of the form

Rule i: IF (the tasks required as immediate precursors to task i are compete)
 AND (the resources required for task i are available) THEN perform task i

Therefore, each mission can be considered as a sequence of rules prescribing under what conditions each of its tasks can
be fired. This is a semi-autonomous rule-base14 in the sense that it has hard-programmed rules which can nevertheless
be interrupted or re-sequenced in real-time by input from the war-fighter.

We define a mission as a set of tasks that is triggered by events, and results in a prescribed goal state(s). The
mission is prescribed in terms of a strict partial ordering of tasks that begins with detected trigger events and ends up
with the goal states. A binary relation P is a strict partial ordering on a set {ti} if: (1) (irreflexive), (2) If

 and then ti=tj (antisymmetry), (3) If

(,)i it t P∉
(,)i jt t P∈ (,)j it t P∈ (,)i jt t P∈ and (, then (,)j kt t P∈)i kt t P∈
(transitive). We interpret this strict partial order on the set of tasks as specifying the temporal relations between tasks,
e.g. if task ti is required to occur immediately prior to task tj, e.g., task tj can only occur if task ti has just
completed.

(,)i jt t ∈P

The intent of this partial order in time is that missions should consist of tasks, some of which should occur when
others have just finished, but many of which are not required to be in any definite temporal order with respect to each
other (e.g. see Fig. 2). This gives the mission commander great freedom to prescribe only those causal relations between
tasks which are tactically important. This allows commanders to convey purpose without providing detailed direction on
how to perform the task or mission. Since the missions consist only of partial orderings of tasks, then it will be the
responsibility of the DEC to decide the actual ordering of tasks in real time as the events unfold and the resources needed
for the tasks become available. The mechanisms for performing this during the Operational Phase are described in the
next section.

To capture the mission and its tasks in a convenient and computable form, define the task sequencing matrix (TSM),
which has element (i,j) equal to 1 if task tj is a required immediate precursor for task ti. Note that multiple 1’s in a single
row i indicate that multiple tasks are required as immediate precursors for task ti. TSM was used by Steward15,
Warfield16, and Wolter et al.17, and others to sequence the tasks required in manufacturing assembly and part processing.

TSM is a mapping from tasks to tasks. We would like to construct a mathematically formal rule-based DEC that
runs as software code on a C2 computer and is capable of sequencing the tasks and assigning resources dynamically in a
networked team. In the next section it is shown that this is possible if each task is fired by a rule. Therefore, to introduce
the rule base, decompose the TSM as

v vTSM S F= ⋅

where the input TSM Fv (loosely called simply the TSM) is a mapping from the tasks to the set of rules, and the output
TSM Sv is a mapping from the rules back to the task space.

This matrix multiplication denoted by the small dot is not the standard matrix multiply, but occurs in the or/and
algebra, where multiply means .and. and addition means .or. It is easy to write a programming function to multiply

 4

matrices in or/and. This function is part of the simple computational machinery of DEC and is shown in the next section
(see Fig. 3).

The input TSM Fv maps the tasks {tj} to a rule base consisting of a set of rules {xi} . It has entry (i,j) of 1 if rule i
requires task j as a immediate precursor to its firing. Multiple ones in a row lead to rules of the form

IF (task j1 and task j2 and task j3 have just finished) THEN fire rule i

Output TSM Sv maps the rule base {xj} to the tasks {ti}. It has entry (i,j) of 1 if task i is to be started when rule j fires.
Often, there is one rule to fire each task, so that Sv is essentially the identity matrix.

Networked Team Example. To illustrate, a sample mission is shown in Table 1. This mission could be programmed
by any user of the networked sensor team. This scenario has a wireless sensor network (WSN) consisting of unattended
ground sensors (UGS) and mobile robots (R), possibly UGV or UAV. When the trigger event u1 (e.g. here, a chemical
attack) is detected by a UGS (specifically, sensor UGS1 here), a prescribed sequence of tasks is carried out that includes
taking further sensor readings and dispatching mobile robots to gather additional information. The mission ends when
sensor S2 takes a measurement, either verifying a threat or declaring a false alarm. Each task has a label, displayed in
the second column.

Table 1. Mission 1- Task sequence for deployed WSN

Mission 1 Task label Task description

Input 1 EVENT u1 UGS1 launches chemical alert

Task 1 S4m1 UGS4 takes measurement

Task 2 S5m1 UGS5 takes measurement

Task 3 R1gS21 R1 goes to UGS2

Task 4 R2gA1 R2 goes to location A

Task 5 R1rS21 R1 retrieves UGS2

Task 6 R1lis1 R1 listens for interrupts

Task 7 R1gS11 R1 gores to UGS1

Task 8 R2m1 R2 takes measurement

Task 9 R1dS21 R1 deploys UGS2

Task 10 R1m1 R1 takes measurement

Task 11 S2m1 S2 takes measurement

output y1 Mission 1 completed

The input task sequencing matrix Fv corresponding to this mission 1 is

1 2 3 4 5 6 7 8 9 10 11

1
1 0 0 0 0 0 0 0 0 0 0 0

t t t t t t t t t t t

x ⎛ ⎞
1
2
1
3
1
4

1 1
5
1
6
1
7
1
8
1
9

1 1 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1

v

x
x
x

F x
x
x
x
x

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 ,

1
1
1
2
1
3
1
4

1 1
5
1
6
1
7
1
8
1
9

1
1
0
0
0
0
0
0
0
0

u

u
x
x
x
x

F x
x
x
x
x

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 5

where the 11 columns are labeled in order corresponding to the tasks. Each row of input TSM corresponds to a rule, e.g.
the second row says

If (task 1 and task 2 have just been completed) then (fire rule 2).

Note that the trigger event u1 that caused the mission to initiate firing of its tasks is considered as an external input and
has its own input matrix Fu. This allows the trigger events to be considered as external inputs to the DEC in the next
section.

The output TSM matrix Sv for this example is detailed in5, and tells which tasks to perform when each rule fires. It
is close to an identity matrix, since essentially task i is fired by rule i.

Though TSM is the matrix considered in15,16, we have decomposed it into two portions, namely v vTSM S F= ⋅ ,
with Fv the (input) TSM and Sv the output TSM. The input TSM Fv, and output TSM Sv capture all the temporal
precedence relations between the tasks in a mission. Moreover, they map to a rule base that corresponds to the rows of
the former and the columns of the latter. As we shall see in the next section, this mapping to a rule base is one of the key
ideas responsible for our DEC formulation, which allows formal computations for efficient on-line real-time task
sequencing and dynamic resource assignment in team networks. Moreover, it was shown in2,3,4 that the outputs of HTN
planners can in fact be directly placed into the format of matrices Fv and Sv.

2.3 Assigning the Resources: Resource Assignment Matrix (RAM)

As just shown, mission commanders indicate intent by prescribing certain task precedences needed to perform a mission
with desired goals. As such, missions consist of partially ordered tasks, whose orderings capture the tactically important
aspects of a mission. The details of actual task sequencing are left to the DEC to perform during the Operational Phase
in real time as events unfold and resources become available. That is, during the Operational Phase the DEC converts
the partial ordering provided by mission commanders into a total ordering that directs the actual sequencing of the tasks
performed by the networked team in real time. This Operational Phase mechanism will be described in the next section.

Meanwhile, to complete the Programming Phase, resources must be assigned to the tasks. The resources capable of
performing the tasks are assigned by field commanders or the war-fighter, who are familiar with the onsite situation.
Task capabilities of robotic resources are also available in ARL CIP Agent Registry, a database holding information
about the services that registered devices offer in the network community18. In this section we detail how the resources
capable of performing the tasks are prescribed.

To capture the assignments of the available resources to the mission tasks in a convenient and computable form,
define the resource assignment matrix (RAM), which has element (i,j) equal to 1 if resource rj may be used to
accomplish task ti. Note that multiple 1’s in a single row i indicate that multiple resources are required for task ti. RAM
has been used by19 and others in manufacturing and elsewhere.

Multiple 1’s in column j of RAM indicate that resource rj is needed for multiple tasks. Such shared resources are
important in the team, as they may be competent or versatile resources that are in high demand. However, shared
resources can lead to bottlenecks or catastrophic failures of the team if they are not properly assigned in real time to
tasks, or properly dispatched. The dispatching of shared resources has been considered under many topics including
bottlenecks, deadlocks, and other blocking phenomena20. DEC presented in this paper can accommodate the dispatching
of shared resources to avoid conflicts and blocking, as discussed in the next section.

RAM can be assigned by field commanders who know which resources can perform which tasks. RAM could also
be constructed by software tools that use pricing strategies or payoff matrix ideas, which result in the optimal assignment
of resources to tasks given certain prescribed cost functions21.

As situations change and resources fail or additional resources become available, the resources capable of
performing the tasks may change. The DEC framework presented in the next section can accommodate time-varying
RAM. Thus, RAM can be modified as resources fail or are added to the team.

To construct a mathematical formulation for a DEC that has guaranteed performance and can work in real-time, we
must introduce a rule base. Therefore, factor the RAM matrix into two portions according to

v rRAM S F= ⋅

 6

with Sv the output TSM matrix defined above and dot denoting or/and matrix multiply. The input RAM Fr maps the
resources {rj} to a rule base {xi} as defined in the previous subsection. Thus, Fr has entry (i,j) equal to 1 if resource j is
required to fire rule i. Output matrix Sv maps the rule base {xj} to the tasks {ti}. It has entry (i,j) of 1 if task i is to be
stared when rule j fires.

Though others have used RAM in analysis19, we have further decomposed it to map from resources to tasks through
a rule base. As seen in the next section, this is one of the keys that makes our DEC useful for real-time control of
networked teams.

Networked Team Example. The input RAM for the Mission 1 in Table 1 is

1
1
1
2
1
3
1
4

1 1
5
1
6
1
7
1
8
1
9

1 2 1 2 3 4 5
0 0 0 0 0 1 1
1 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0

r

R R S S S S S
x
x
x
x

F x
x
x
x
x

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

where the columns correspond to the available resources and the rows to the rules. Thus, to fire rule 1, one requires
sensors S4 and S5 to be currently available, etc. That is, rule 1 fires when the event u1 occurs (as detected by sensor S1,
see Fu matrix) and if resources S4 and S5 are available.

Define likewise an output RAM Sr that maps from the rule base to the resources. This matrix has entry (i,j) of 1 if
resource i is to be released when rule j fires. Then a matrix that maps from resources to resources given by

r rG S Fr= ⋅

is the resource dependency matrix. Gr defines the so-called resource graph, whose nodes are the resources and whose
edges (j,i) correspond to entries of 1 in entry (i,j) of Gr. This graph is indispensable in studying conflict and deadlock
avoidance in systems with shared resources22,20.

2.4 Programming Multiple Missions

Multiple missions can be programmed into the same networked team of agents and resources. Using DEC, the various
missions in a team can be programmed by different mission commanders. Each one does not need to know about other
missions running in the network, or about the resources required by the other missions. All missions use the same
common pool of networked team resources.

At any time, additional missions can be programmed by other mission commanders, without having to know which
missions are already programmed to the resource network. At any time, the resources assigned to the tasks can be
changed as resources fail or are added to the network.

As seen in the next section, during the Operational Phase DEC effectively and fairly sequences the tasks of all
programmed missions and assigns the required resources on-line in real time as events occur and as resources become
available. DEC programs multiple missions into a heterogeneous team of multiple networked resources.

Suppose several missions are prescribed, with Mission i having its task ordering given by input TSM and its
required resources for the tasks given by the input RAM . Then the overall TSM and RAM are given by the block
matrix compositions

i
vF

i
rF

1 1

2 2

0 0
0 0 ,
0 0

v r

v v r r

F F
F F F

⎡ ⎤
⎢ ⎥= =⎢ ⎥
⎢ ⎥⎣ ⎦O M

F
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.

 7

and similarly for Sv, Sr. Note that the mission task sequences are independent, each using its own tasks, so that Fv is
block diagonal. However, all the missions use the same resources available in the networked team, and so have
commensurate columns of their resource assignment matrices.

DEC facilitates mission transferability between teams by capturing mission information in the TSM, which can
easily be moved and programmed into another network.

Networked Team Example. In illustration, consider the same WSN of UGS and mobile robots used in the example
above for Mission 1. Suppose the network maintenance technician programs into the same network a Mission 2 that is
involved with charging the batteries of the nodes. Such a Mission 2 appears in Table 2. Trigger event u2 is a low battery
event.

Table 2. Mission 2-Task sequence for deployed WSN

Mission 2 Task label Task description

input EVENT u2 UGS3 batteries are low

Task 1 S1m2 UGS1 takes measurement

Task 2 R1g S32 R1 goes to UGS3

Task 3 R1cS32 R1 charges UGS3

Task 4 S3m2 UGS3 takes measurement

Task 5 R1dC2 R1 docks the charger

output y2 Mission 2 completed

 The input TSM and input RAM for this mission are

1 2 3 4 5

2 0 0 0 0 0
t t t t t

x ⎛ ⎞

⎟

1
2
2
2

2 3
2
4
2
5
2
6

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

v

x
x

F
x
x
x

⎜ ⎟
⎜
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

,

2
1
2
2
2

2 3
2
4
2
5
2
6

1 2 1 2 3 4 5
0 0 1 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0

r

R R S S S S S
x
x
x

F
x
x
x

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

The overall TSM and RAM for both the missions now in the wireless sensor network are
1 1

2 2

0
,

0
v r

v r
v r

F F
F F

F F
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

 In similar fashion, additional missions are easily programmed into this WSN.

3. RULE-BASED DISCRETE EVENT CONTROLLER (DEC)
This section describes the DEC software controller that runs in the Operational Phase to sequence the tasks and assign
the team resources in real time. This is a decision-making DEC that contains rules to sequence the tasks in each mission,
and to assign resources to those tasks. See Fig. 1. DEC has a message-passing architecture that is in conformance with
Joint Architecture for Unmanned Ground systems (JAUGS)10, and is an efficient means to realize the OODA loops
(observe, orient, decide, act) of 4D/RCS11. DEC is able to coordinate the sequencing of operations between Soldiers and
robots efficiently and without conflict, thus contributing to the concept of Safeops.

In the previous section we saw that missions are programmed into the network by specifying task sequencing
matrices Fv, Sv and resource assignments matrices Fr, Sr. The TSMs give a partial order for the tasks in each mission,

 8

however, the tasks are coupled through the shared resources as captured in RAM. Based on those constructions, it is now
desired to construct a rule-based discrete event controller that can be programmed in software and which effectively
reacts to external events sensed, sequences the tasks of a networked team, and assigns their available resources in such a
way that the missions are accomplished without interference or blocking phenomena. Tasks of priority missions should
have priority assignment of requisite resources. How is this to be done?

3.1 DEC State Equation

In terms of the constructions just given we are now in a position to define such a DEC. Define the task vector v, resource
vector r, and rule state vector x

1 2 1 2 1 2, ,
t r

T TT

N Nv t t t r r r r x x x x⎡ ⎤ ⎡⎡ ⎤= = =⎣ ⎦⎣ ⎦ ⎣L L
xN ⎤⎦L

where the set of tasks is { }; 1,it i N= t , the set of resources is { }; 1,ir i N= r , and the set of rules is { }; 1,i xx i N=

]T

.
The rule state vector x has 1’s in positions i corresponding to the rules that are currently enabled to fire. Define vc as the
task completion vector which contains 1’s in positions i corresponding to the tasks ti that have just been accomplished,
and rc as the resource available vector containing 1’s in positions i corresponding to the resources ri that are currently
available. These are the outputs of the networked team passed through messages to the DEC. See Fig. 1. For instance,

 signifies that tasks 1 and 4 have just been performed, while signifies that
resources 4 and 5 are currently available. Define the external trigger event vector

[10 010]T
cv = L [0 0110cr = L

[]1 2
T

nuu u u u= L

to contain 1’s in positions corresponding to trigger events ui that have just occurred.

In terms of the TSM and RAM matrices defined above, define the DEC rule base state equation

 v c r c u D Dx F v F r F u F u= ⋅ ⊕ ⋅ ⊕ ⋅ ⊕ ⋅ (1)

where Fu is an input matrix that specifies which external trigger events are to be used to launch each mission. The input
uD is a conflict resolution control input that decides which task to perform in the event that multiple tasks are enabled at
a given time. It allows real-time interrupts and priority dispatching for urgent missions, and assigns shared resources in
such a way as to avoid blocking phenomena including deadlocks and bottlenecks. See20.

In this equation, all matrices and vectors are binary, i.e.
having entries of either 0 or 1. Dot denotes matrix multiply,
and denotes matrix addition, with all operations carried
out in the or/and algebra, where multiplication is replaced
by .and., and addition by .or.

⊕
Matrix Multiply
C A B= ⋅
for i= 1,I
 for j= 1,J
 c(i,j)=0
 for k= 1,K
 c(i,j)= c(i,j) .OR. (a(i,k) .AND. b(k,j))
 end
 end
end

Fig. 3. Matrix multiply in the or/and algebra.

.

x

 The overbar denotes negation
of all entries of a vector. Operations in the or/and algebra
are easily programmed, and a routine that carries out a
matrix multiply in the or/and algebra is given in Fig. 3.

The DEC equation contains the required mission task
partial orderings and the resources required for each task,
and essentially captures the world model in 4D/RCS11.

3.2 DEC Output Equations

Based on the rule state vector, the task start equation

 s vv S= ⋅ (2)

computes the task start vector vs, which has 1’s in positions i corresponding to those tasks that can now be started. The
resource release equation

 9

 s rr S x= ⋅ (3)

computes the resource release vector rs, which has 1’s in positions i corresponding to those resources that can now be
released as their tasks have ben completed. These output equations are also computed in the or/and algebra.

3.3 DEC as a Feedback Controller

DEC functions as a feedback controller, as shown in Fig. 1. It runs as a software tool on a laptop or other computer. It
is very easy, for instance, to program DEC in software. Basic code is given in6. The operation of DEC is as follows. At
each event iteration, all active agents in the team send updates of their tasks just completed and resources currently
available over the internet or via WSN. The current task completion vector vc and the current resource available vector
rc are constructed by taking this information from all active agents in the team. They are considered as the outputs of
the networked team to the DEC. The DEC then uses state equation (1) to compute the rule state vector x. The resulting
entries of 1 in the rule state vector show which rules are enabled to fire, as having all their requisite precursor tasks done
and all their required resources available. Thus, the tasks (2) corresponding to these active rules could now be
performed. Now among all the tasks that could fire, DEC selects the tasks to actually fire by consulting the mission
priorities, or by querying local field commanders via PDA. Finally, command inputs are sent by the DEC telling agents
which tasks to start (vs) and which resources to release and make available (rs). For autonomous machines, this
information is sent as commands to their internal controllers. For human nodes, the information can be sent as decision
assistance via a handheld PDA- e.g. ‘go to point A’, ‘contact node B and provide certain information’, etc.

Note that agent nodes need only communicate to DEC when they have a change in tasks completion status, or a
change in resource availability; i.e. when an event occurs. On the other hand, DEC only communicates to those nodes
which should next fire tasks or release resources.

3.4 Properties of DEC

The intent of the DEC is that it should provide a mathematically rigorous software tool for implementing a rule-based
supervisory controller that sequences the tasks and assigns the resources of a networked team all in real time as events
unfold, given at each event iteration the measured network information about which tasks have just completed and which
resources are available. This is all governed by the TSM Fv and the RAM Fr, which have been programmed into the
DEC software respectively by the mission commanders and the field commanders.

3.4.1 Functionality of the DEC

The first result shows that DEC state equation (1) actually does compute which tasks to start based on rules of the form

IF (all tasks required as immediate precursors to rule i have just been completed)
 AND (all resources required by rule i are available) THEN fire rule i

Define the tasks as { }; 1,j tt j N= , i.e. the elements of task vector v, and the resources as { }; 1,j rr j N= , the

elements of resource vector r. Define Ti as the set of tasks that are immediate precursors to rule i, and Ri as the set of
resources required to fire rule i. The next result verifies the proper functioning of DEC equation (1), while also showing
the need for the negation overbars on the vectors in (1).

Theorem 1. Proper Functioning of DEC

The i-th rule (i.e. i-th row) of (1) is equivalent to

i i

i j
j T j R

jx t r
∈ ∈

= II I

where denotes logical and. That is, rule state xi is true (equal to 1) if all task vector elements tj required for rule i are
true and all resource vector elements rj required for rule i are true.

I

Proof: Let denote and and denote or. Overbar denotes negation. Define the elements of matrix Fv by I U v
ijf and of

Fr by r
ijf . By the definition of matrix operations in the or/and algebra, one has

 10

1 1

T RN N
v r

i ij j ij
j j

jx f t f r
= =

⎛ ⎞ ⎛
= ⎜ ⎟ ⎜
⎝ ⎠ ⎝

I U IU U
⎞
⎟
⎠

Now successive applications of de Morgan’s laws yields

1 1 1 1

T R T RN N N N
v r v

i ij j ij j ij j ij j
j j j j

rx f t f r f t f r
= = = =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛
= =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝

I U I I I IU U U U
⎞
⎟
⎠

1 1 1 1

T R T RN N N N
v r v

i ij j ij j ij j ij j
j j j j

rx f t f r f t f r
= = = =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛
= =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝

I I I U I UI I I I
⎞
⎟
⎠

But elements ,v r
ij ijf f are equal to zero if task tj, resp. resource rj, is not needed to fire rule i. Then, ,v r

ij ijf f are equal

to 1, so that for those elements one has 1v
ij jf t =U and 1r

ij jf t =U whether the corresponding task or resource

element is true or not. On the other hand, elements ,v r
ij ijf f are equal to 1 if task tj, resp. resource rj, is needed to fire

rule i. Then, ,v
ij ij

rf f are equal to 0, so that for those elements one has 1v
ij jf t =U and 1r

ij jf r =U only if the
corresponding task or resource element is true. Therefore the last equation is equivalent to

i i

i j
j T j R

jx t
∈ ∈

= II I r QED

3.4.2 Properness of the DEC Rule Base and Fairness of the DEC

The next result shows that the rule base constructed by programming the mission tasks into the TSM and the task
resources into RAM produces a rule base of good structure if and only if each mission is properly defined. It is shown
that improper definition of a single mission assigned to the team can cause improper execution of all missions assigned
to the team. Then, the DEC cannot fairly assign the team resources and ensure sequential execution of the tasks in the
missions. In extreme cases, improper definition of one mission can tie up resources so that other missions are blocked.

A rule has the form

IF antecedent THEN consequent

where the antecedent consists of task clauses and resource clauses such as

(all tasks required as immediate precursors to rule i are done)
 AND (all resources required by rule i are available)

and the consequent consists of a single clause such as

fire rule i.

Problems with rule bases fall into three categories: consistency, completeness, and conciseness [Gursaran 1999].

Consistency of a rule base is compromised by circularity and conflicts.

Lemma 1. The DEC rule base has no circularity or conflicts.

Proof Outline: The rule base is based on clauses such as task completion, and resource availability, and does not
contain any of their negations. Therefore it cannot have conflicts. Matrix Fv is block diagonal. Each block defines a
strict partial ordering and so is lower block triangular with zero diagonal. Therefore there are no circular chains of rules.
QED.

Conciseness is compromised by the presence of rules that logically serve no purpose. These include redundant
rules, subsumed rules, and unnecessary IF conditions.

Lemma 2. The overall rule base defined by all the missions is concise if and only if task sequencing matrix of each
mission corresponds to a concise rule base for the tasks.

 11

Proof Outline: Matrix Fv is block diagonal, each block of which defines a rule base. Therefore, two rules in different
blocks cannot be redundant as they cannot have the same antecedent. No two rules in a single block are redundant by
hypothesis. Therefore there are no redundant rules in DEC. The antecedent of a rule in one block cannot contain the
antecedent of a rule in another block. By hypothesis, the antecedent of a rule in one block does not contain the
antecedent of a rule in the same block. Therefore, there are no subsumed rules. There are no unnecessary IF conditions
since, by construction, no clause is the negation of any other. QED.

Completeness refers to knowledge gaps in the rule base. Such gaps make it impossible to achieve the prescribed
goals given the triggering events that have occurred. Knowledge gaps include unreachable conclusions, dead end goals,
dead end if conditions, and missing rules. By using the block diagonal structure of Fv it is straightforward to prove the
following.

Lemma 3. The overall rule base defined by all the missions is complete if and only if task sequencing matrix of each
mission corresponds to a complete rule base for the tasks.

These results make it clear that each mission planner has a great responsibility in properly defining his task prior to
programming it into the team. Improper definition of one mission among many assigned to a team can cause blocking,
thereby tying up resources and making it impossible to complete other missions in the team.

3.5 Shared Resource Dispatching: Blocking, Bottlenecks, and Deadlocks

It has just been shown that if each mission individually is properly defined, the DEC (1) guarantees proper sequencing of
tasks in each mission and proper assignment of the required resources. However, the resources of the team are shared by
all the missions. Therefore, there may exist bottlenecks or blocking phenomena if the resources are not properly
assigned in real time. This is called the shared resource dispatching problem. Particularly detrimental is the occurrence
of deadlocks, where some tasks cannot gain access to their required resources because those resources are indefinitely
held up by other tasks. This indefinitely halts the involved missions and will not allow their completion.

It is shown in20 that DEC allows easy analysis of potential deadlocks. Then the dispatching or conflict resolution
input uD in (1) (see Fig. 1) may be selected to avoid deadlock situations. In this fashion, the DEC can guarantee proper
performance and completion of all missions, as long as each mission is properly defined in the sense shown above in
Lemmas 1-3 above.

4. DEC SIMULATION AND IMPLEMENTATION
DEC is easy to implement using computer simulation software. The basic code necessary to implement the DEC shown
in Fig. 1 is based on the or/and multiply routine in Fig. 3, and is given in6. Messages are passed (using Wifi, internet,
WSN, PDA, etc.) from team nodes to the C2 computer whenever an event occurs: i.e., any node finishes a task or has a
new resource made available. New task events are placed into task completion vector vc, while new resource events are
placed into resource available vector rc. Then the DEC state equation (1) is evaluated using the software, and the tasks to
be started are computed using (2), while resources to be released are computed using (3). If several tasks are enabled,
user-specified priority decisions or deadlock considerations are used to select which task to actually fire. Messages are
passed back to the team nodes detailing which tasks to perform next vs and which resources to release rs, as commands
into machine nodes, or as decision aids via PDA to human agents.

4.1 Simulation of Networked Team Example

The DEC was run on the networked team example whose TSM and RAM were shown above. This is a simulation on a
digital computer. The resulting event traces are seen in Fig. 4. Chemical attack event u1 occurred at time 8 min, and the
low battery event at time 3 min. The progress of the two missions through the team as the resources are assigned and the
tasks are performed is clearly seen. In the task traces, ‘up’ means a task is being performed, while in the resource traces,
‘down’ means the resource is being used.

In the figure, Mission 1 terminates at 128 min, while Mission 2 terminates at 87 min. In Fig. 5, the priority of the
missions in changed, so that Mission 1 is given a higher priority. Thus, when there is a request for the same resource by
two tasks, one from each mission, DEC will now assign the Mission 1 task first. This is accomplished in DEC by proper
choice of the conflict resolution input uD in (1) (See also Fig. 1). Details are given in5. Now, Mission 1 takes less time
and terminates at 62 min.

 12

Fig. 4. DEC sequencing mission tasks in the Networked Team Example. Simulation.

Mission/Task 1 jobs

Mission/Task 2 jobs

Resources

0 20 40 60 80 100 120 140 0 20 40 60 80 100 120

10

20

30

40

50

60

70 1S4m
1S5m
1R1gS2
1R2gA
1R1rS2
1R1lis
1R2m
1R1gS1
1R1dS2
1R1m
1S2m

2S1m
2R1gS3
2R1cS3
2S3m
2R1dC

R1
R2
UGS1
UGS2
UGS3
UGS4
UGS5

Time [s]

mobile wireless sensor network DE simulation priority1-->2

Re
so

ur
ce

s

 M
is

si
on

2

M

is
si

on
1

u1

u2

Mission/Task 1 jobs

Mission/Task 2 jobs

Resources

0 20 40 60 80 100 120 140 0 20 40 60 80 100 120

10

20

30

40

50

60

70 1S4m
1S5m
1R1gS2
1R2gA
1R1rS2
1R1lis
1R2m
1R1gS1
1R1dS2
1R1m
1S2m

2S1m
2R1gS3
2R1cS3
2S3m
2R1dC

R1
R2
UGS1
UGS2
UGS3
UGS4
UGS5

Time [s]

mobile wireless sensor network DE simulation priority1-->2

Re
so

ur
ce

s

 M
is

si
on

2

M

is
si

on
1

u1

u2

[m]

Mission/Task 1 jobs

Mission/Task 2 jobs

Resources

0 20 40 60 80 100 120 140 0 20 40 60 80 100 120

10

20

30

40

50

60

70 1S4m
1S5m
1R1gS2
1R2gA
1R1rS2
1R1lis
1R2m
1R1gS1
1R1dS2
1R1m
1S2m

2S1m
2R1gS3
2R1cS3
2S3m
2R1dC

R1
R2
UGS1
UGS2
UGS3
UGS4
UGS5

Time [s]

mobile wireless sensor network DE simulation priority1-->2

Re
so

ur
ce

s

 M
is

si
on

2

M

is
si

on
1

u1

u2

Mission/Task 1 jobs

Mission/Task 2 jobs

Resources

0 20 40 60 80 100 120 140 0 20 40 60 80 100 120

10

20

30

40

50

60

70 1S4m
1S5m
1R1gS2
1R2gA
1R1rS2
1R1lis
1R2m
1R1gS1
1R1dS2
1R1m
1S2m

2S1m
2R1gS3
2R1cS3
2S3m
2R1dC

R1
R2
UGS1
UGS2
UGS3
UGS4
UGS5

Time [s]

mobile wireless sensor network DE simulation priority1-->2

Re
so

ur
ce

s

 M
is

si
on

2

M

is
si

on
1

u1

u2

[m]

Fig. 5. DEC sequencing mission tasks with increased Mission 1 priority. Simulation.

4.2 Implementation of Networked Team Example on Actual WSN

It is very easy to implement DEC on an actual networked team. In fact, the same code is used for both simulation and
implementation. The DEC was implemented on a WSN team of mobile robots and UGS at the UTA Automation &
Robotics Institute. Details of the hardware are given in5. A VR 3D user interface depicted the motions of the robots
during the mission execution. The panoramic view during the mission execution is shown in Fig. 6. The actual event
traces observed during the experimental implementation are shown in Fig. 7. They bear a close resemblance to the
simulated event traces above.

 13

Fig. 6. DEC VR interface panoramic view of the configuration of the mobile WSN during real-world experiments.

S4m

R1gS2

R1rS2

R2m

R1dS2

S2m

R1gS3

S3m

S5m

R2gA

R1lis

R1gS1

R1m

S1m

R1cS3

R1dC

S4m

R1gS2

R1rS2

R2m

R1dS2

S2m

R1gS3

S3m

S4m

R1gS2

R1rS2

R2m

R1dS2

S2m

R1gS3

S3m

S5m

R2gA

R1lis

R1gS1

R1m

S1m

R1cS3

R1dC

S5m

R2gA

R1lis

R1gS1

R1m

S1m

R1cS3

R1dC

Fig. 7. Task event trace of the WSN- Experimental results.

ACKNOWLEDGEMENTS

This work is supported in part by ARO grant ARO W91NF-05-1-0314 and the Army National Automotive Center.

REFERENCES

[1] F.L. Lewis, A. Gurel, S. Bogdan, A. Doganalp, O. Pastravanu, “Analysis of deadlock and circular waits using a
matrix model for flexible manufacturing systems,” Automatica, vol. 34, no. 9, pp. 1083-1100, 1998.

[2] Harris, B., Cook, D. J., and Lewis, F. L., “Automatically generating plans for manufacturing,” Journal of Intelligent
Systems 10, 279-319 (2000).

[3] Harris, B., Cook, D. J., and Lewis, F. L., “Combining representations from manufacturing, machine planning, and
manufacturing resource planning (MRP),” Proc. AAAI Workshop on Representational Issues for Real-World
Planning Systems (2000).

[4] Harris, B., Lewis, F. L., and Cook, D. J., “Machine planning for manufacturing: dynamic resource allocation and
on-line supervisory control,” Journal of Intelligent Manufacturing 9(5), 413-430 (1998).

 14

 15

and implementation,” IEEE Trans. Syst., Man, Cybern. B 36(4), 806-819

stems: application to simulation," IEEE

stems control design: a matrix based

cation using a digraph-based modelling

of knowledge-based system: foundation and

15, Orlando, 128-138 (2002).

. SPIE 4715, Orlando, 161-177 (2002).

urity checkpoints,” in Unmanned Ground Vehicle Technology IV, Proc. SPIE

“Methods of knowledge representation for assembly planning,” Proc.

2).

.), Intelligent Design and Manufacturing, John

ass finite buffer

and Lewis, F. L., “Combining matrix formulation and agent-oriented
techniques for conflict resolution in manufacturing systems,” Proc. ACME, Chicago, 66-79 (1996).

[22] Wysk, R. A., Yang, N. S., and Joshi, S., “Detection of deadlocks in flexible manufacturing cells,” IEEE Trans.
Robot. Automat. 7(6), 853-859 (1991).

[5] Giordano, V., Ballal, P., Lewis, F. L., Turchiano, B., and Zhang, J. B., “Supervisory control of mobile sensor
networks: math formulation, simulation,
(2006).

[6] Tacconi, D. A., and Lewis, F. L., “A new matrix model for discrete event sy
Control Syst. Mag. 17(5), 62-71 (1997).

[7] Bogdan, S., Lewis, F. L., Kovacic, Z., and Mireles Jr., J., Manufacturing sy
approach (advances in industrial control), Springer-Verlag, London (2006).

[8] Gursaran, G. S., Kanungo, S., and Sinha, A. K., “Rule-base content verifi
approach,” Artificial Intelligence in Engineering 13(3), 321-336 (1999).

[9] Guida, G., and Mauri, G., “Evaluating performance and quality
methodology,” IEEE Trans. Knowledge Data Eng. 5(2), 204-224 (1993).

[10] Thibadoux, S. A., “Robotic acquisition programs- technical and performance challenges,” in Unmanned Ground
Vehicle Technology IV, Proc. SPIE 47

[11] Albus, J. S., “Intelligent systems design,” Plenary Talk, Army Science Conf., Orlando (2008).
[12] Bornstein, J. A., “Army ground robotics research program,” in Unmanned Ground Vehicle Technology IV, Proc.

SPIE 4715, Orlando, 118-127 (2002).
[13] Shah, H. K., Bahl, V., Martin, J., Flan, N. S., and Moore, K. L., “Intelligent behavior generator for autonomous

mobile robots using planning-based AI decision-making and supervisory control logic,” in Unmanned Ground
Vehicle Technology IV, Proc

[14] Smuda, W., Muench, P., Gerhart, G., and Moore, K. L., “Autonomy and manual operation in a small robotic system
for under-vehicle inspections at sec
4715, Orlando, 1-12 (2002).

[15] Steward, D. V., “The design structure system: a method for managing the design of complex systems," IEEE Trans.
Eng. Manage. 28(3), 71-74 (1981).

[16] Warfield, J. N., “Binary matrices in system modeling,” IEEE Trans. Syst., Man, Cybern. 3(5), 441-449 (1973).
[17] Wolter, J. D., Chakrabarty, S., and Tsao, J.,

18th Annual NSF Conference on Design and Manufacturing Systems Research, Atlanta, GA, USA, 463-469 (1992).
[18] Young, S. H., and Nguyen, H. M., “System design for robot agent team,” in Unmanned Ground Vehicle Technology

IV, Proc. SPIE 4715, Orlando, 31-42 (200
[19] Kusiak, A., and Ahn, J., “Intelligent scheduling of automated machining systems,” Computer-Integrated

Manufacturing Systems 5(1), 3-14(1992), Reprinted in A. Kusiak (Ed
Wiley, New York , NY, 421-447 (1992).

[20] Gurel, A., Bogdan, S., and Lewis, F. L., “Matrix approach to deadlock-free dispatching in multi-cl
flowlines,” IEEE Trans. Automat. Contr. 45(11), 2086-2090 (2000).

[21] Huang, H.-H., Gmytrasiewicz, P. J.,

	1. INTRODUCTION
	2. A DISCRETE EVENT C2 STRUCTURE FOR DISTRIBUTED TEAMS
	2.1 Missions
	2.2 Programming the Missions: Task Sequencing Matrix (TSM)
	2.3 Assigning the Resources: Resource Assignment Matrix (RAM)
	2.4 Programming Multiple Missions

	3. RULE-BASED DISCRETE EVENT CONTROLLER (DEC)
	3.1 DEC State Equation
	3.2 DEC Output Equations
	3.3 DEC as a Feedback Controller
	3.4 Properties of DEC
	3.4.1 Functionality of the DEC
	3.4.2 Properness of the DEC Rule Base and Fairness of the DEC
	3.5 Shared Resource Dispatching: Blocking, Bottlenecks, and Deadlocks

	4. DEC SIMULATION AND IMPLEMENTATION
	4.1 Simulation of Networked Team Example
	4.2 Implementation of Networked Team Example on Actual WSN

