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Abstract

Hyperspectroscopy for fast transient events such as battlefield explosions is an
undeveloped area of spectral imaging. This thesis is an examination and analysis
of issues involved with taking a laboratory design for a rotating prism hyperspectral
chromotomographic (CT) instrument and producing a first approximation satellite
payload design, operating scheme and orbit to demonstrate this technology in low-
earth orbit. This instrument promises the capability of adding a time dimension
to the normal spatial and spectral data produced by most hyperspectral imagers.
The ultimate goal is to conduct experiments showing spectral definition of transient

combustion events on the ground from space.

This thesis examines the overall design requirements for operation of this instru-
ment in a space environment. It begins with a discussion of spectroscopy, the current
literature on the topic of hyperspectral imagers, and a review of some representative
hyperspectral imagers currently in operation. This is followed by an examination of
the laboratory instrument, identifying key components and operating principles of
that instrument. Then a definition of some general instrument requirements to con-
duct the experiment is presented. This continues with a trade-space analysis of major
instrument components to include: front-end optics, the rotating prism, focal plane
array, on-orbit calibration, and data production, storage and downlink. An opera-
tional analysis of a notional test event encompasses Chapter IV. The thesis concludes
with a summary of the major issues presented and recommendations for further work
leading towards the actual construction and employment of the proposed space-based

instrument.
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AN ENGINEERING TRADE SPACE ANALYSIS FOR A
SPACE-BASED HYPERSPECTRAL CHROMOTOMOGRAPHIC SCANNER

I. Introduction

This thesis will present a trade-space analysis for an engineering design of an
experimental chromotomography-based hyperspectral imager (Chromotomographic
Imaging Experiment - CTEx). The basis for this instrument is a current laboratory
instrument, the Chromotomographic Hyperspectral Imaging System (CTHIS), which,
as the name implies, employs chromotomographic techniques for data extraction from
images. The objective of this study is to provide a first-order engineering trade-space
analysis for such an instrument. The design will address issues involved in launching
and operating this instrument in space. It will take into account the stresses of launch,
the challenges of the space environment such as heating, cooling and solar radiation,
and the much greater distances between the target and the instrument Focal Plane
Array (FPA) for example. In the end, the instrument will be designed, built, launched
and operated in low-earth orbit. It will provide proof-of-concept validation of the
practicality and effectiveness of hyperspectral chromotomographic remote sensing of

the Earth’s surface from space.

Spectral data analysis is already widely used in both military and civilian ap-
plications. Examples include defeating camouflage, categorizing mineral deposits,
tracking climate change and analyzing the growth and health of vegetation for agri-
cultural or forestry use. CTEx promises to add additional capabilities for analyzing
fast changing events such as battlefield explosions, rocket engine tests, or the smoke
plume resulting from industrial fires. Measuring spectral changes from imagery of
these types of situations will enhance users’ ability to determine the chemical content

of the explosive, smoke plume or any other transient event.



1.1 Spectroscopy

Spectroscopy is the use of variations in the spectral signature of an observed ge-
ometric space, object or event to extract data about that target which is not apparent
in traditional electro-optical imagery. In remote sensing an image may be analyzed
within a single spectral band (monochromatic), several spectral bands (multispectral)
or many spectral bands (hyperspectral). Although there is no authoritative differen-
tiation between multi- and hyperspectral imaging, there is a general consensus that
image analysis in more than about a dozen spectral bands qualifies as “hyperspec-
tral”. In addition, multispectral instruments, such as the LandSat Thematic Mapper,
which is discussed below, usually do not use contiguous bands, rather using selected
specific bands and bandwidths at various points in the electro-magnetic spectrum for
particular applications. In other words, if the entire spectral area of interest is from
400 - 1000 nm, a hyperspectral imager will collect data over that entire spectral band-
width and break up that width into a dozen or more smaller bands. By contrast, a
multispectral imager will collect data on only a few specific parts of the entire band,
and those parts will not necessarily lie next to each other; there will be large gaps over
the entire bandwidth where no data is taken at all. For reference, the EM spectrum

with the visible light portion highlighted is presented in Figure 1.1.

The advantages of using spectral imaging data as opposed to more familiar,
visible light images (panchromatic), i.e. photography, is that many objects can be
distinguished from their surroundings by strong reflection, or lack thereof, in specific
parts of the spectrum but are washed out in a panchromatic view. The distinguishing
reflectance (or emittance) in a small portion of the EM spectrum may be undetectable
when an entire portion of the spectrum, such as the visible light portion, is observed
as a whole. Further, hyperspectral imagery provides much more data, with finer

resolution, than can be gathered through multispectral or panchromatic imaging.

As pointed out above, an example of the use of hyperspectroscopy is in the

detection and identification of camouflaged equipment. This application is illustrated
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Figure 1.1: The EM spectrum [41]

below in Figure 1.2. This is a side-on, close-up view of a camouflaged tent. Cam-
ouflage generally works on the principle of masking an object’s color (visible light
reflectance) and shape by matching it to the background. However, when the same
camouflaged object is observed in many narrow spectral bands, the differences in sig-
nature between it and that background become much more apparent. Observe the
same tent in an overhead panchromatic and then in multispectral and hyperspectral
imagery (Figure 1.3). In the multispectral image more detail is apparent, but the tent
is still not noticeable. The hyperspectral image clearly shows an anomalous feature
that can be further investigated. Note that the color in these images is not true color
but is a processing technique that contrasts parts of the spectral signature with others
to highlight differences. This is another advantage of hyperspectroscopy. Post-image

processing can be used to focus on different spectral wavelengths in order to distin-



guish particular features of interest. This is especially advantageous where the analyst
knows the areas of the spectrum where a particular type of material has the strongest
reflectance, i.e. a tank may be most strongly reflectant in the near infrared band. An
analyst looking for tanks in an image can highlight that area of the spectrum to see

if anything stands out in stark contrast to the background.

Figure 1.2: Camouflaged tent [4]

1.2 Example Spectrographic I'magers

In order to better illustrate the concepts introduced here a brief examination of
two representative imagers is presented. Although several space-borne hyperspectral
imagers are discussed in detail in the next chapter, it will be advantageous to use the
Thematic Mapper and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)

instruments to clarify some of the basic terminology at this point.

1.2.1 Thematic Mapper.  Remote sensing of the Earth’s surface using multi-
and hyperspectral instruments is not a new concept. Examples of both air and space
borne instruments are readily available. These include the Thematic Mapper (TM),
which is a Landsat satellite-based multispectral instrument using seven different spec-
tral bands to analyze the same geography or to maximize the information that can
be collected on a particular area. The TM uses seven spectral bands from the visible

to the mid-IR regions.

The Thematic Mapper (TM) is a seven channel sensor mounted on the
Landsat platform which is maintained in a sun-synchronous, near-polar



Panchromatic ~ Multispectral

(a) Panchromatic image of camouflaged tent  (b) Multispectral image of camouflaged tent

(c) Hyperspectral image of camouflaged tent

Figure 1.3: Camouflaged tent in three spectral views [4].



orbit at an altitude of 705 km. This provides for global repeat coverage
every 16 days. TM data are recorded at 30-m ground resolution across a
swath of 185 km, except for the thermal data that are recorded at 120-m
ground resolution.

Band description:

1. BLUE (0.45-0.52 m): Designed for water body penetration, making it
useful for coastal water mapping. Also useful for soil/vegetation discrim-
ination, forest type mapping and cultural feature identification.

2. GREEN (0.52-0.60 m): Designed to measure green reflectance peak of
vegetation for vegetation discrimination and vigor assessment. Also useful
for cultural feature identification.

3. RED (0.63-0.69 m): Designed to sense in a chlorophyll absorption re-
gion aiding in plant species differentiation. Also useful for cultural feature
identification.

4. NEAR INFRARED (0.76-0.90 m): Useful for determining vegetation
types, vigor, and biomass content, for delineating water bodies, and for
soil moisture discrimination.

5. MID-INFRARED (1.55-1.75 m): Indicative of vegetation moisture con-
tent and soil moisture. Also useful for differentiation of snow from clouds.
6. THERMAL INFRARED (10.4-12.5 m): Useful in vegetation stress
analysis, soil moisture discrimination, and thermal mapping applications.
7. MID-INFRARED (2.08-2.35 m): Useful for discrimination of mineral
and rock types. Also sensitive to vegetation moisture content.

10

This particular instrument uses a diffraction grating and bandpass filters to sep-
arate light reflected from the Earth’s surface into several spectral bands and then pass
those specific bands of electromagnetic radiation onto a focal plane array (FPA) which
is sensitive to light in that band (or bands). The FPA(s) form part of an instrument
cluster for collecting, storing and transmitting (with possibly some processing as well)

images in electronic form.

As can be seen from the band descriptions, the Thematic Mapper uses rather
broad spectral bands. This is well illustrated in Figure 1.5 where the TM bands and

spectrum are shown graphically:
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The purpose of the Thematic Mapper is to provide data for the study of vege-
tation, soil, geography and climate on the Earth. As such, these broad bands work
relatively well. Of course the TM was also a relatively early operational employment

of spectroscopy in space-based remote sensing.

Since Landsat TM first became operational in the 1970s there have been many
air- and space-based applications of multi- and hyperspectral imaging instruments
used in the private and public sectors. Chapter II will provide background on some
of these instruments to help illustrate their design and capabilities. However, AVIRIS
will be briefly discussed here as an aide in clarifying important basic concepts associ-

ated with hyperspectral imaging.

1.2.2 AVIRIS. AVIRIS is a true hyperspectral imager. It produces imagery
in 224 contiguous bands from 400 to 2500 nanometers, thereby offering spectral res-
olution of 9.375 nm or .0094 pm. This resolution is good enough to identify various
surface and atmospheric constituents at the particle or molecular level, but not good
enough to separate molecular isotopes of the same compounds or elements in most
cases. Nevertheless, as the AVIRIS mission is to study processes of global environ-
mental and climate change, this resolution is certainly sufficient [5]. In relation to the
spectral resolution and bandwidth, it is important to note the relationship that exists
and the tradeoffs presented. A wide bandwidth, in this case covering from the begin-
ning of visible light all the way through short wave infrared (SWIR), .400 - 2.5 um,
covers a greater portion of the EM spectrum and thereby provides more data. This
is particularly important when imaging through the Earth’s atmosphere as radiation
absorption, especially by water and carbon dioxide, create gaps in the imagers ability
to collect target data. This is illustrated in Figure 1.6. Broad spectrum coverage

helps to mitigate the effects of these gaps in data analysis.

Conversely, the larger the spectral bandwidth, the more spectral bands are
required to achieve the same spectral resolution. For AVIRIS, with 224 bands over

2100 nm of bandwidth, spectral resolution is about 10 nm. If the entire bandwidth
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Figure 1.6: Absorption of reflected solar radiation by atmospheric components such
as water create gaps in an imagers ability to collect spectral data. [39]

was only in the visible portion of the spectrum the instrument would require 30
bands to achieve the same spectral resolution. Spectral resolution requirements drive
requirements for the size, sensitivity and data throughput of the instrument’s light
detecting focal plane array. The size of the target bandwidth as a whole determines
the materials required for the FPA and whether more than one FPA will be required.
This is due to the limits on EM sensitivity for various materials. For example, silicon
based photoelectric FPA elements can be used for the visible light and some near
infrared (NIR) parts of the spectrum. While longer wavelengths from NIR on up may
be better matched with indium antimonide (InSb) or mercury cadmium telluride
(HgCdTe) based FPAs. Obviously multiple FPAs or very large FPAs will in turn
drive costs, complexity and instrument geometry. This can be seen in the AVIRIS
instrument itself. In order to cover the broad spectral range that it does, AVIRIS uses
three different detector materials, silicon for visible light, gallium arsenide for NIR

and indium antimonide for short wave infrared (SWIR). The instrument scans along



the path of flight using what is known as a “whisk broom” or side-to-side technique

providing a total of 34 degrees field-of-view with a 12 Hz scan rate. (see Fig 1.7).

One of the most challenging aspects of hyperspectral imaging can be the rate
of data throughput from the focal plane array. The data rate for AVIRIS is over 20.4
Mbps. Data is stored on a 76GB hard drive. AVIRIS uses air breathing platforms for
its data collection flights, so it is easy to download the data taken after each flight.
A space-based platform will obviously not have that luxury and data will need to be
transmitted to the ground after a collection pass. The other issue that is driven by
the data rate is the image processing speed of the focal plane array as well as other
important aspects of the mission that rely on the FPA. These will be discussed in

detail in subsequent chapters.
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Figure 1.7: The AVIRIS hyperspectral imager [6]

To go further in the discussion of hyperspectral imagery, a representative output

from one pixel of the AVIRIS FPA can be examined (Figure 1.8).

10
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Figure 1.8: One pixel’s spatial dimension is repeated over the entire spectral band [§]
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The image shows the radiance, the received power, on one pixel of the AVIRIS
FPA. The radiance is shown across the entire bandwidth of the instrument from 400
to 2500 nm in each of the 224 spectral bands. Notice that there is both a spatial and
spectral extent for each pixel. The spatial extent of the image remains constant but
is represented in 224 separate spectral bands. The sum total of all pixels in the 2-D
FPA creates a 3-dimensional data cube with x and y spatial components and A as the
spectral extent as shown below. It is important to remain aware of this relationship;
that each pixel in the 2-dimensional focal plane array corresponds with a particular
portion of the overall image and therefore with a particular piece of geography that
is in the optical field of view (FOV) for the instrument as a whole. This does not
mean that the FOV corresponds to the size of the FPA. If the light that is incident
on the system aperture is not fully focused on the FPA but either extends beyond the
edges of the FPA or does not entirely fill the length or width of the FPA, the image
produced will not match the instrument field of view. Clearly the greater the number
of spectral bands, the better the fidelity of the resulting spectrograph. The end result
being a better or poorer ability to identify substances or objects whose reflected or

emitted light makes up some portion of the image under consideration.

1.3 Temporal Dimension

Thus far the thesis has described the uses of hyperspectroscopy with a three
dimensional hyperspectral cube, two dimensions of physical extent and one of spectral
bandwidth. These three dimensions can also be extended to a fourth, time. As already
discussed, the spectral content of an image can provide analysts with a great deal of
information about the imaged scene. Vegetation, water in liquid or frozen form,
geologic minerals, man-made structures and so on can be identified and analyzed
through a single hyperspectral image. Certain types of scenes also lend themselves to
providing significant additional data through the temporal dimension. Those objects

or activities of interest that change rapidly with time produce a changing spectral

12
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signature in addition to any spatial changes that may occur. Examples of this include

jet or rocket engine plumes, explosion fireballs, or any other combustion event.

The detonation of an artillery shell creates a fireball that will rapidly expand
and then dissipate. A single hyperspectral image at some point in that progression
will capture a snapshot in time of the size and spectral content of the fireball at that
instant. However, much more information about the type and quantity of explosive
as well as the packaging (shell) of that munition would be discernable if, instead of
a single hyperspectral image, a large series of such images over the entire lifetime of
the event were available. This would be, in essence, a hyperspectral movie of the
event. This application could be used to analyze the evolution of the spectra that the
fireball produces over time, in each of however many spectral bands our instrument
resolves. This is the essential idea behind the Chromotomographic Hyperspectral

Imaging Sensor (CTHIS) as described by Murgia et al. [36]

1.4 Problem Statement and Organization

This thesis uses the CTHIS instrument as a baseline concept for the first-order,
engineering trade-space analysis of a proof-of-concept, space based CTHIS instrument.
The thesis will be segmented into five chapters. The first, this one, introduces the
concepts involved and lays out the problem to be examined. Chapter II provides a
background literature and representative instrument review. It goes on to describe
the physical layout and concept of operation of the baseline instrument as explained
by Murgia et al. as well as a laboratory specimen in use at the Air Force Institute
of Technology (AFIT). The third chapter will comprise the majority of the design
study. At this point objectives, constraints and restraints for this project will be
noted. There will be no assumptions made that any particular launch vehicle will
be used to place the instrument into orbit, but that the instrument will be launched
to low earth orbit (LEO). The assumption is that the instrument will be placed on
the Japanese Experiment Module (JEM) Exposed Facility (EF) on the International

Space Station (ISS) and will be constrained by the size, mass and other restrictions
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of that facility. This is to be a proof-of-concept experiment and therefore is not
expected to be extremely long lived (about one year) and should be designed with
budget constraints in mind (< $1,000,000). Where possible, commercial off-the-shelf

(COTS) components should be used to reduce technology risks and lower costs.

Playing “follow the photon” a walk through of the optical and digital path of the
instrument from light gathering aperture to data storage/offload will be conducted.
This thesis will address the issues, problems and tradeoffs presented at each stage,
discuss the merits of each and endeavor to make realistic recommendations for the

instrument design.

The fourth chapter will propose a concept-of-operations for the instrument and
walk through a hypothetical data collection event. The final chapter will summa-
rize the thesis, pointing out areas that may not be adequately covered and make

recommendations for areas of additional study or attention.
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II. Hyperspectral Imaging Background Review

In order to ultimately design the instrument under consideration, the basic operation
it is intended to perform and how this is accomplished must first be understood. CTEx
is to be based on the Chromotomographic Hyperspectral Imaging System (CTHIS)
which uses the spectral dispersion characteristics of a prism as a foundation for hyper-
spectral imaging. CTHIS or similar hyperspectral imaging systems have been studied
and written on by several authors since at least 1998 [1]. Indeed, at the time of this
writing there is an on-going study of various aspects of the basic system [1]. However,
the instrument has never really been examined from an engineering perspective. As
this study is aimed at taking a first step towards that end, a sampling of existing
space-based multi-and hyperspectral imaging instruments and their operating prin-
ciples will be discussed. The most recent studies and academic papers focused on
CTHIS or similar theoretical or existing hyperspectral instruments will serve as a ba-
sis for studying design trade-offs for CTEx. A walk through of the major components
of the prism-based CTHIS design will follow to provide more specific explanations of
how this instrument is intended to function. This process along with user require-
ments will provide a baseline of requirements for CTEx. In other words, examining
the existing experimental and prototype instruments along with recent academic stud-
ies on hyperspectral imagers will help establish a context within which CTEx design

trade-space options can be developed.

2.1 Collection Techniques

The first topic to discuss is the general design and operating options for hyper-
spectral imagers at the present time. There are three general data collection tech-
niques for imaging systems, the whiskbroom method, the pushbroom method and the
step stare technique. The whiskbroom method in which the scanner or a mirror as-
sembly scans the scene from side-to-side, perpendicular to the direction of instrument

flight, is used by the AVIRIS instrument (Figure 2.1). There are no recent Hyper-
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spectral Imager (HSI) designs that use whiskbroom scanning. The preferred method

at this time is the pushbroom technique.

The pushbroom scanning technique is by far the most common. Space and
airborne systems normally use a two-dimensional focal plane array. In the pushbroom
technique light passes through a narrow slit and is focused onto the FPA, matching
the field-of-view width. Here the spatial dimension is collected along the direction of
the motion of the platform while the spectral dimension is simultaneously collected

along the second dimension of the FPA (see Figure 2.1).

A third method of collecting HSI is the step stare technique. In this case the
sensor is fixed on a specific ground scene for a period of time before being “stepped”
to the next scene. This technique allows for much better signal-to-noise ratio (SNR)
since the scene is kept in view for a longer period of time. Some form of this technique
is necessary if the objective is to collect on a rapidly changing scene or scene feature as
CTEx is designed to do. This method normally requires either a gimballed platform
or a moveable mirror to keep a particular FOV under scrutiny while the platform

moves along its track [29].

Any HSI system must have some method for separating out the collected light
spectrum into the required bands. For this purpose there are three general classes
of device: Dispersive spectrometers, Fourier transform interferometers, and narrow
band adaptive filters. Dispersive devices use either a diffraction grating or a prism to
separate collected light into a continuous spectrum. Fourier transform interferometers
split incoming radiation into two beams and then introduce a controlled phase shift
before recombining the beams. The combined beam is focused on a detector where the
intensity of the light has been modulated by the phase difference between the beams.
Since EM waves obey the law of superposition, the result is an additive combination
of the two. The amplitude of the recombined beam is sampled at an appropriate

rate and a Fourier transform is used to convert the amplitude modulated signal into
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a frequency spectrum [45]. This is simply an adaptation of the familiar Michelson

interferometer.

There are several different types of spectral filters. The key idea is that EM
radiation passes through a filtering material which can be adjusted to allow specific
wavelengths through while blocking others. They all operate on some principle of
altering a material’s diffraction coefficient properties through either stress applied to
the material, movement along a wedge, or application of a current or acoustic wave
to rapidly change the spectral band of light allowed to pass through that material.
Control of these properties allows spectral separation of desired EM bandwidths [40,
45].

Any of these techniques, or combinations of them, can be used for a spectro-
graphic instrument. In practice however, prism or diffraction grating instruments are
the most prevalent since these are the simplest, most mature and most reliable tech-
niques. (See table of available devices in Appendix A) Less often seen are filter-based
HSIs, although they are not uncommon. It is not unusual to see a combination of
spectral filter with a prism or grating. Fourier transform interferometer-based in-
struments provide good performance, but are rarely used in space-borne applications.
This is due to the fact that they have generally been very heavy compared with prism
or grating-based HSIs and mass is a serious concern for space flight. One exception
to this generalization is the Geostationary Imaging Fourier Transform Spectrome-
ter (GIFTS) on-board NASA’s Earth Observer (EO)-3 mission. GIFTS, as the name
implies, uses Fourier interferometer techniques for HSI but mass issues have been con-
trolled through the use of cutting edge, lightweight materials such as silicon carbide

for the mirrors and other composites in the telescope structure [34].

2.2 Literature Review

An important background study to consider is the paper written by Fisher et
al. in 1998, “Comparison of Low-cost Hyperspectral Sensors” [21]. The authors
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provide an analysis of the relative merits of an all-reflective spectrograph using a
convex grating in an Offner (the Offner spectrometer is discussed in detail below)
configuration as well as two off-the-shelf transmission grating spectrographs using
volume holograms. The authors conclude that the Offner spectrograph’s advantages
in lower smile (change of dispersion angle with field position, a type of abberation),
larger aperture, fewer components, larger field and broader spectral range outweigh
the disadvantages. Disadvantages include the immaturity of the technology for blazing
on convex substrates while retaining low polarization and scatter (curved grating
production). Fisher proves to be a good judge of developing technology as the Offner
configuration is adopted in several proposed and actual instrument designs during the
2000s. As will also be seen, the issue of curved grating production has advanced as
well, so the technical maturity disadvantage, as seen by Fisher et al., has diminished

over time [21].

The Offner spectrograph, also called the Offner Interferometer, is a compact
method of using a diffraction grating to disperse light onto an FPA. Although there
are many variations, in general light is introduced through a slit opening and uses a
primary mirror to divert the light onto a reflecting, curved grating. The grating is
the diffracting element in the optical system. It is configured as a convex reflector to
direct the light to the next optical element and to broaden the diffraction pattern. This
allows for greater spectral resolution. The diffracted light is then reflected off another,
secondary, mirror and sent, usually via some type of collimator, to a focusing lens and
hence to the FPA. Besides the curved diffraction grating, an important feature of the
Offner design is that the mirrors are spherical mirrors. Spherical mirrors, as opposed
to parabolic or hyperbolic mirrors, are much easier to design and manufacture. The
wave equations detailing the optical system is far simpler with spherical mirrors. In
addition, spherical mirrors generally have shorter focal length and thus the system
as a whole is much more compact. Figure 2.2 is a simple schematic of the Offner
configuration. The most challenging aspect of this configuration is the manufacture

of the convex grating as noted by Fisher in 1998. By 2007 these difficulties were being
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overcome, “. . . progress in electron-beam technology has permitted fabrication of
the required high performance convex gratings for the relatively difficult design of the
Offner spectrometer.” [45] The advantages of using a grating in a small volume design
make the Offner configuration an attractive option for hyperspectral instrumentation.
Beyond this, using an all reflective Offner design (actually any all reflective design)

eliminates chromatic aberration [32]. This is an important consideration.

Slit

Figure 2.2: Offner interferometer [45]

In surveying the currently proposed or fully designed space-based hyperspectral
imaging instruments there are several design characteristics that most of these instru-

ments share. The first is that most incorporate a pushbroom scan technique to gather
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spatial and spectral data using a 2-D FPA and gather spatial data in the crosstrack
dimension and spectral in the direction of motion [17,21, 26, 30, 33,40]. Pushbroom
scanning is favored because it is more efficient than whiskbroom and less complicated
than low orbit step stare methods. It should be mentioned that there is a subset
of the step stare method, simple staring. When an instrument is at geosynchronous
orbit and is concerned with continuing surveillance of a fixed piece of terrain it stares
at its field-of-view without moving. In this case the instrument would not need to
“step” obviously and so would be less complicated since no slewing is involved. Of
course at approximately 36,000 km distance from the earth’s surface the optics must
be considerably more powerful or grossly poorer resolution must be accepted. As
mentioned above, one hyperspectral imager that is planned for geosynchronous orbit
at this time is the GIFTS instrument on NASA’s EO-3 mission. There is no set date
for the launch of this satellite.

Advances in optical manufacture have made the Offner type of assembly a very
attractive option. Of the proposed constructs since about 2003, use of a convex
diffraction grating of some type is by far the most common as documented in studies
by Fisher, Murguia, Johnson, and Yiqun et al [21,30,32,36]. These constructs have
the advantages of using a reflective optical assembly in a configuration that minimizes
the instruments mass and volume, offers good performance and is less complex than

a traditional reflecting telescope optic.

This is not to say that the Offner-convex grating is the only type of hyperspectral
design being proposed. For example, Chowdhury and Murali’s 2006 proposal for a
selectable band compact hyperspectral imager uses a very complex combination of lens
optics for light gathering and collimation. A two dimensional Linear Variable Filter
for spectral separation and selection and an Active Pixel Sensor area array are also
employed (Figure 2.3). The authors argue that this design will result in an instrument
of less than 4 Kg mass and < 10W power requirement with a spectral resolution

capability of approximately 6nm in 512 contiguous bands from .4 — .9um [17].
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Several other recent papers bring up other intriguing possibilities for space-
based hyperspectral remote sensing. T'wo of these are the 2004 Johnson et al. paper
and the very recent (2008) work by Kaiser et al [31,33]. The Kaiser work discusses
the design for the Environmental Mapping and Analysis Program (EnMAP) HSI.
EnMAP is a German hyperspectral space mission for environmental monitoring and

data collection. It is currently scheduled for launch in 2012.

EnMAP uses an Offner design derivative, but employs a curved prism with a
reflective backside rather than a grating as the dispersive element (Figure 2.4). The
authors argue that while the Offner design offers very compact dimensions, excellent
linearity and low distortion, diffraction gratings are plagued by low optical throughput
due to limited diffraction efficiency. Gratings also suffer from high sensitivity to
polarization and ghosting due to higher order aberration effects. Prism spectrometers
by contrast offer high throughput over a wide spectral range and lower sensitivity
to polarization. If used in a double-pass configuration, they also offer high angular
dispersion, and therefore greater spectral resolution in a given image space. For this
particular instrument the light is split into two bands, VNIR from 400 - 900nm, and
SWIR covering 900 - 2450nm. It is designed for a high spectral resolution of about
6.5nm in the VNIR. The use of the Offner design allows the EnMAP spectrometer to
be so compact that there is no need for separate collimator and prisms placed in the

collimated light beam. Rather, “the prisms are arranged in the diverging and in the
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converging beam. This requires the prisms to have curved surfaces as the angles of

incidence must be kept constant for single field points and wavelengths.” [33]

Entrance Slit

Reflectively Coated

Detector "{:T____ 2. Fery Prism

Figure 2.4: Offner spectrograph with curved prisms as the diffractive element [33].

The overall EnNMAP system configuration can be seen in Figure 2.5. The front
end telescope provides the object radiance to the rest of the instrument. The light
is then split, with part going to the VNIR spectrometer and part going to the SWIR

spectrometer. Each spectrometer uses two curved prisms and three mirrors as shown.

The Kaiser work is highlighted here to illustrate the rapid and innovative de-
velopments that are taking place in the optics field in general, and in hyperspectral
imager design specifically. High capability, compact, low power and lightweight in-
struments are becoming more and more of the norm. These developments must be
closely tracked due to their potential to impact design choices for the CTEx and

especially any possible follow-on instruments.

The other paper of particular significance is the work of Johnson et al. “An All-
Reflective Computed Tomography Imaging Spectrometer,” published in 2004. The

authors describe the design and laboratory results of an instrument they call the
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Figure 2.5: EnMAP optical system design [33]

“computed tomographic imaging spectrometer (CTIS),” [32]. They go on to charac-
terize CTIS as an instrument which simultaneously captures spectral and 2-D spatial
content. Noting that this implies a temporal capability for the instrument, the au-
thors write, “CTIS accomplishes this by feeding incident scene radiation through a
computer generated hologram (CGH) in Fourier space.” [32, 88] The paper describes
the “standard” CTIS as an objective assembly that images a scene and collimates the
light from that scene onto a CGH. A CGH is a type of diffraction grating designed so
that light of a particular wavelength band is reflected while another is passed through.
Using materials of differing index of refraction, part of the light is split onto paths
of varying optical path distance - enabling the use of Fourier techniques as described
earlier in this chapter. Figure 2.6 shows an example of the “generalized CTIS” as

presented by Johnson et al.
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Figure 2.6: Generalized CTIS layout [32, 89

The Johnson paper goes on to explain how the authors have taken this general-
ized CTIS layout and adapted it to an Offner spectrometer design (Figure 2.7). This
design and its laboratory output appears to provide similar data to CTHIS. However,
it is difficult to make direct comparisons between the instruments (see section 2.4 for
a full description of the CTHIS laboratory instrument.) The system evaluation pro-
vided in the Johnson paper does not provide enough information to form an objective
judgment. The evidence suggests there is merit to this form of chromotomographic
imaging. Figure 2.8 demonstrates laboratory results of the CTIS laboratory instru-
ment. The image displayed illustrates angular/spectral dispersion of three sources
imaged simultaneously: a Mercury Argon source, a red light emitting diode, and a
white light source. This result proves the capability of this instrument to perform to-
mographic projections, the same spectral reconstruction technique used by the CTHIS
instrument. Therefore, the Computed Tomography Imaging Spectrometer may be a
viable option for gathering rapidly changing spectral data for a dynamic event. How-

ever, the fact that the laboratory CTIS instrument uses a Coupled Charge Device
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(CCD) for the focal plane array, as noted in the figure, means data throughput is
probably limited to relatively slow speed. This would bound its utility for capturing
very fast transient events such as explosions. At this time though, there is not enough

data to fully evaluate CTIS in comparison with the CTHIS instrument.

Resolution Chart Visible CCD Camera

Concave Mirrors

Convex Grating

Figure 2.7: Laboratory model of the CTIS spectrometer. Note that the camera is
CCD-based [32, 93].

2.3 Operational Instrument Review

The operations of the LandSat Thematic Mapper multispectral and the AVIRIS
hyperspectral satellite/instruments were introduced in Chapter I to demonstrate some
basic concepts in spectral imaging. Both of these instruments use the “whisk broom”

side-to-side sweep for collection and spectral filters with diffraction gratings to sep-
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Figure 2.8: Lab result of Offner CTIS showing a Mercury Argon source, red LED, and
white light background imaged simultaneously. This image demonstrates
high quality tomographic projection [32, 94].
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arate spectral bands. While the TM is a multispectral instrument and AVIRIS is
hyperspectral, both of these instruments cover a very broad total spectral band, from
visible to short or mid wave IR. This being the case, a fairly complicated physical
arrangement is necessary since multiple focal plane arrays based on different materi-
als are required. Focal plane array materials are selected depending on the area of
the EM spectrum that must be observed. This is due to the fact that photodiode

materials have finite areas of the EM spectrum in which they are sensitive.

Silicon-based FPAs, for example, are sensitive from about 300 - 1000 nm, al-
though that range can be extended slightly with the application of particular reflective
coatings or through customized physical arrangements. Other common infrared pho-
todiode materials include Indium Antiminide (InSb), Germanium (Ge) and Mercury
Cadmium Telluride (HgCdTe). Figure 2.9 shows the spectral ranges of several detec-
tors based on some of these materials. The y-axis of the graph is essentially a scale
of signal-to-noise sensitivity. There are multiple HgCdTe detectors shown since the
spectral range of this photodiode material can be varied depending on the relative

percentages of the three elements making up the material.

There are numerous multi and hyperspectral imagers in use today (Appendix
A). To provide a baseline representation for operational instruments and a context for
the CTEx instrument, two specific, representative operational hyperspectral imagers
will be introduced. One is the Hyperion imager and the other the Mars Observer

spectrometer.

The Hyperion hyperspectral instrument was specifically chosen for closer scrutiny
in the background section of this thesis because of its clear analogous connections with
CTEx. Built by TRW corporation for NASA, Hyperion was designed and operated as
an important demonstration and flight-validation instrument for hyperspectral Earth
observation. Launched in 2000, it was the first imaging spectrometer to routinely
collect science-grade hyperspectral data from orbit [38]. Its mission was to demon-

strate and evaluate the capabilities of space-based imaging spectrometry for earth
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Figure 2.9: Example IR photodiode ranges [39].

observation, to include geological, agricultural, environmental and other earth science

fields.

Hyperion is a diffraction-grating based, pushbroom collection type of imager.
Its total spectral coverage is from .4 - 2.5 um broken into VNIR and SWIR bands.
The VNIR coverage is from 400 - 1000 nm while the SWIR runs from 900 - 2500 nm.
The 100 nm overlap was intentional to allow cross calibration. Each spectral band,
VNIR and SWIR, has its own grating spectrometer and focal plane array. There
is a common fore-optic telescope that serves both spectrometers. This telescope is
a three-mirror anastigmat design. The mirrors, as well as all optical structure, are
constructed from the same material, aluminum, to minimize the possibility of induced
internal structural stress from variations in material coefficients of thermal expansion.

This point will figure prominently in discussions of CTEx issues in Chapter III.

Both of Hyperion’s spectrometers use an Offner optical configuration with a

convex grating on the secondary element [38]. The SWIR detector is a HgCdTe array

30



Table 2.1: Hyperion design parameters and on-orbit performance

Parameter Hyperion | Characteristic On-Orbit
Volume(L x W x Hyem) | 39 x 75 x 66 | GSD(m) 30.38
Mass(kg) 49 Swath(km) 7.6

Avg Power(W) 51 VNIR MTF@630nm 0.23-0.27
Aperture(cm) 12 SWIR MTF@1650nm 0.28

[FOV (mrad) 0.043 Spatial Co-Reg:VNIR 18@Pix # 126
Crosstrack FOV (deg) 0.63 Abs. Radiometry(1 Sigma) | 3.40%
Wavelength Range(nm) | 400-2500 VNIR SNR (550-700m) 140-190
Spectral Resolution(nm) | 10 No. of Spectral Channels 198 Processed
Spectral Bands 220 VNIR (bands 8-57) 427-925nm
Digitization 12 VNIR Bandwidth(nm) 10.19-10.21
Frame Rate(Hz) 223.4 VNIR X-trk Spec. error 2.2nm

cooled to 115 K with a cryocooler during data collection. The significance of this is
that detectors in the IR range require cooling for good performance and the addition
of cooling increases complexity, power requirements and risk. This will be taken into

account in recommended choices for CTEx operating parameters.

The Hyperion’s EO-1 host satellite is in a polar, circular, sun-synchronous or-
bit at 98.7 inclination. The orbit follows that of Landsat-7 by one minute. This
orbital configuration was chosen to provide validation and comparison between the
two instruments. The close proximity allows Hyperion to image the same scenes as

the Landsat TM under essentially the same conditions, providing valid, comparable

samples.

Hyperion was designed for a one-year lifetime, although it served for over two
before the “Hyperion Validation Report,” by Pearlman was written [38]. The design
characteristics and on-orbit performance of Hyperion are listed in Table 2.1. One of
the most relevant aspects of the Hyperion instrument in relation to the planned de-
sign and operation of CTEx is that of calibration. Extensive pre-launch spectral and
optical radiometric calibration using National Institute of Standards (NIST) trace-
able sources/detectors were completed in a thermal vacuum chamber. Additionally,

four techniques for on-orbit radiometric calibrations were including in the Hyperion
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design/planning. These techniques were solar, lunar, on-board lamps, and vicarious
Earth observations. The spacecraft, EO-1, was able to slew to point the Hyperion
instrument at the sun or moon which provided known baselines for comparison and
biasing of the raw spectral image data being output by the instrument. Internal cal-
ibration lamps were included in the system design as well, although many of these
failed early in the flight. Vicarious calibration was a technique whereby the instru-
ment would image a characterized test area on the earth’s surface. These calibrations
were performed using ground instruments to provide on-site surface measurement
and atmospheric characterization [38, 6-29]. The author refers to this type of calibra-
tion as “vicarious” because the earth imaging calibration was only a substitute and

supplement for the other, more precise, methods.

One of the most important lessons to be taken from the Hyperion instrument is
that for a technology demonstration, such as with Hyperion or CTEx, it is crucial that
some means for precise calibrations are including in the planning. Comparison of the
instrument’s design capabilities with actual performance against a reliable yardstick
is necessary if the experimental results are to be interpreted in a valid, quantifiable

way.

One other instrument that is currently in use and is also very relevant to the
CTEx design trade-space study is the Compact Reconnaissance Imaging Spectrometer
for Mars (CRISM). CRISM is a hyperspectral imager on board the Mars Reconnais-
sance Orbiter (MRO), launched in August 2005. The MRO entered its science orbit
around Mars 13 months after launch. The orbit is a near circular (apogee of 320 km,
perigee of 255 km), near polar, sun-synchronous orbit. The expected lifetime of the

MRO is about five and a half years on orbit.

CRISM’s primary mission is detection and characterization of geological mineral
deposits on Mars’ surface. It uses a 441-mm focal length Ritchey-Chretien telescope
with a 10-cm instrument aperture that brings light to a focus along a slit for its front-

end optic. It is designed to use a pushbroom collection technique, where the slit, as
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normal, separates the scene into spectral (along flight path) and spatial (crosstrack)
elements to create a hyperspectral cube as the instrument operates in orbit. The
spectral range is from 383 to 3960nm. Collected light is split by a dichroic into VNIR
and SWIR bands (383 - 1071nm and 988 - 3960nm). The instrument uses a mod-
ified Offner spectrometer design to spectrally disperse each beam onto its own 2-D
FPA. The VNIR FPA is a 640 X 480 pixel silicon photodiode detector array, indium-
bump-bonded to a readout integrated circuit (ROIC). The IR FPA is a 640 X 480
pixel HgCdTe detector, also indium-bump-bonded to a ROIC. These CMOS (Compli-
mentary Metal Oxide Semiconductor) FPAs were both designed and produced by the
Rockwell Science Center (now part of Teledyne Scientific and Imaging, LLC). Spectral
resolution is better than 7 nm per channel with spatial resolution averaging about
17 m (61.5 prad IFOV) depending on altitude [43]. A schematic of the instrument

layout is presented in Figure 2.10.
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Figure 2.10: CRISM optical design [1]

As for Hyperion, the focus of attention will mainly be directed at the VNIR
application. The IR requirement for CRISM makes the instrument much more com-

plicated since it demands active cooling with the inherent supporting structure and
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control electronics. One of the aspects of CRISM that is particularly interesting is its
optional collection regime. CRISM is designed so that it can perform basic surface
mapping with limited resolution through pixel binning (5:1 or 10:1). Pixel binning
is an electronic technique whereby groups of pixels in the focal plane array are read
as one. This lowers the data throughput requirement (i.e. the reset speed needed
for the FPA) at a cost in spatial resolution. In this way CRISM can conduct large
scale mapping in a timely manner at a reasonable resolution. When a particular area
elicits greater interest, the instrument can be switched to a targeted mode where
the full resolution capability, using all pixels separately, is used. In targeted mode,
CRISM also has a 60° along track slewing capability. The slewing allows the optics
to maintain a particular IFOV and uses a staring collection technique. Staring allows
for much better integration and signal-to-noise (SNR) for the area of interest. It also
eliminates along-track motion in the field-of-view and so reduces aberration due to

smearing. CRISM uses a rotating gimbal to perform slewing maneuvers.

CRISM consists of three main components, the Optical Sensor Unit (OSU), the
Gimbal Motor Electronics (GME), and the Data Processing Unit (DPU) Figure 2.12.
The optical assembly uses all-aluminum mirrors and structure like Hyperion, to min-
imize thermal expansion induced-optical misalignment. Even though this material
design feature was incorporated into the instrument, thermal vacuum testing was still
conducted on the optical subassembly. This testing consisted of six cycles between
30 and —90°C for the telescope and 30 to —115°C for the spectrometers, with dwell
time of one hour at each extreme. Results of thermal testing were that focal plane
position repeatability was < 0.1mrad in roll and < 0.18mrad in tilt, both of which
were better than required. “Decenter repeatability was within 20 microns, and focus
repeatability was within 30 microns, both also meeting requirements.” [43, 101-102]
The authors of the Silverglate et al. study on CRISM characterization results con-
cluded that, “The excellent performance of the OMS (Opto-Mechanical Subsystem)
at temperature may be attributed to the use of an all aluminum structure and all

aluminum mirrors.” [43, 102]
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Figure 2.11: CRISM slewing strategy [35]

Other pre-flight testing included vibration testing at 28 g’s rms in the lateral

axes and 30.5 g’s in the thrust axis for one minute [43, 102]. These tests were designed

to assess system survivability under the stresses of launch, to include both lift-off as-

sociated acceleration and acoustics induced vibration. Ground calibration occurred

in a series of stages where the detector arrays were characterized, optical distortion

and other biases catalogued, subsystems and the system as a whole were tested at

temperature, and system collimation was tested. Several on-orbit calibration capa-

bilities are also incorporated into CRISM. These include shutter-closed “black body”

measurements of IR noise, spectral measurements using an internal integrating sphere

and internal lamps, as well as the capability to conduct calibration using star mea-

surements.
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Figure 2.12: CRISM subassemblies [43]

A full schematic of the CRISM design is provided in Figure 2.13. Note how the

cooling requirement adds size and complexity to this design.

Even with cooling, the entire instrument has a total mass of only 32.92 kg and
power draw during operation of 44.4 - 47.3 W [1]. A view of the optical assembly
and a blow up drawing of the entire instrument is provided in Figure 2.14. The light
weight and compact size of CRISM are important considerations for design of any

space-based hyperspectral imager.

To summarize, Hyperion and CRISM are two examples of space-based hyper-
spectral imagers which provide excellent baseline trade-space analysis that can be

applied to CTEx. The Hyperion an CRISM HSIs both use a polar, near circular, low
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Figure 2.14: CRISM optical assembly and component blow up [43]
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orbit, although CRISM is orbiting Mars rather than Earth. The spectral and spa-
tial resolution requirements for these imagers are comparable with CTEx as well. In
addition Hyperion and CRISM are designed to produce science-grade hyperspectral
data.

The most important aspects of Hyperion and CRISM of which to take note are
the compact optical designs, the careful attention paid to structural materials used
to mitigate thermal cycling problems, the extensive on-ground testing and calibra-
tion performed pre-flight, and the on-orbit calibration capabilities. All of these are
directly applicable to design considerations for CTEx and will be discussed in depth
in Chapters III and IV of this thesis.

2.4 CTHIS prototype

The CTHIS is in large part a system of optical devices (Figure 2.15). Light is
collected and collimated through a front-end optic consisting of two converging lenses
with an intervening field stop. That light column then passes through a direct vision
prism where it is dispersed according to its wavelength, with one wavelength passing
through undeviated. The dispersed light then passes through a converging lens, which
focuses the light onto a focal plane array. The FPA is an array of photovoltaic
elements which react to the intensity and location of the light, converting the EM
energy into electrical signals which are ultimately transferred and stored as digital
readout information. The amount of deviation from the central point, the undeviated
wavelength, on the array provides information on the wavelength of the light, since

the deviation is a function of the wavelength and the prism characteristics.

As the prism rotates, the FPA collects the scene information as described above
for each prism rotation angle depending on the reset, or frame rate, of the FPA. One
complete revolution of the prism will then constitute a complete hyperspectral cube.

Mathematical reconstruction of the multiplexed imaged scene is then possible in any
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Figure 2.15: CTHIS laboratory design

or all of the spectral bands for which the instrument is designed, that is, according to

the spectral resolution. This process is demonstrated in Figure 2.16.

One important aspect that differentiates CTHIS from other hyperspectral im-
agers is the action of the prism. In this device the prism is rotated at some specified
rate over time. This rotation provides a tomographic imaging capability which is
important in reconstructing an entire scene. Assuming the device is staring at a par-
ticular scene, there are many objects present in that scene and many of them will be
reflecting light in the same spectral bands. For example, for simplicities sake assume
the scene being imaged consists of a tree, some grass, and a shed. Clearly there will
be more than one source of EM energy over the “green” portion of the spectrum. In
a single image the light reflected from the scene reaches the prism and is dispersed

into its spectrum, which is then focused on the FPA. The spectrum is spread around
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Figure 2.16: Chromotomographic reconstruction of number figures. The original im-
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spectral band. The demultiplexing of the gathered image data allows
reconstruction of each number as a separate image according to its spec-
tra [15].

the undeviated wavelength of the direct vision prism, the angle of diffraction being a
function of wavelength and the prism characteristics. Since there are multiple wave-
lengths at, say 550 nm, how can the image scene be reconstructed? This is where
the tomographic aspects of the instrument come into play. As the prism rotates
wavelength dependent circles are imaged around the central wavelength point. The
process is analogous to medical tomography where, for example, x-rays are passed
through the body along varying angles; the images taken along varying planes are
multiplexed on top of one another. Through Fourier analysis, the scene in our case,
or a particular slice of the body in the medical case, can be reconstructed - pulled
out of the multiplexed data. Whereas in the medical case this is accomplished for
numerous spatial planes in the body, chromotomography uses the same principles to

process data spectrally, reconstructing the scene in any bandwidth of interest.
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Depending on the rate of rotation of the prism and the matching camera frame
rate, rapidly evolving spatial and spectral events such as explosions or a rocket motor
firing can be characterized. As an example, hypothesize that the imager is tracking a
plot of ground where there is an explosion. As the fireball expands it changes in both
size, the spatial dimension, and in its spectral signature. Both the spatial and spectral
changes can now be tracked over time, which provides much more information on
which analysis can be done. Aspects of these changing parameters can be analyzed
to determine characteristics such as the type, amount, and placement (i.e. above
ground, underground etc.) of the explosive. In other words, this instrument adds a
temporal dimension to the two spatial and one spectral dimension already present in
a “typical” hyperspectral cube. Instead of just a cube, the fourth dimension, time,
converts the cube into a segmented, three dimensional rectangle. Rather than a single
image, the collected data is more like a movie, where changes in one, several or all

spectral bands can be tracked and plotted over time.

Each rotation of the prism provides one complete hyperspectral cube. Therefore
the temporal resolution that can be achieved by the instrument is a function of prism
rotation rate. If the prism is rotating at 10Hz the temporal segmentation will be
.1 second chunks. At 100Hz rotation rate .01 second time steps will be discernable.
It is important to understand this time dependent relationship since various events
will present different demands for temporal clarity. An explosion may require .01 or
smaller time segments to allow for data analysis of such a rapid event. A test rocket
motor firing may only require .1 second steps since the rocket plume maintains a more

steady state over time than the explosion fireball.

As can be seen in Figure 2.15 after dispersal into its spectrum the light is focused
onto the 2-D focal plane array of a fast framing camera. This is the point at which the
image data is taken into digital form and recorded for processing. One of the limiting
factors for the instrument will be the refresh rate of the FPA. The speed at which
optical information can be transformed from photonic to an electric potential and

then to analog or digital information is the throughput rate of the FPA. The angular
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image capture rate then is equal to the camera frame rate. This defines the amount
of image data taken for each hyperspectral cube. To illustrate, if the rotation rate of
the prism is 1Hz and the camera frame rate is 4Hz, then each hyperspectral cube will
be constructed from image data taken at 90, 180, 270 and 360 degrees of rotation,
or four images. The greater the frame rate for a given prism rotation rate, the more
images available for convolution and tomographic processing. Thus, the faster the

FPA throughput capability, the better the fidelity of the resulting data cube.

Besides data throughput, the size, pixel center-to-center distance, material and
type of processing of the FPA are crucially important for defining maximum spectral
and spatial resolution, bandwidth sensitivity, and cost for the instrument as a whole.
The raw data from CTHIS is stored on a normal hard disk. At the time of this writing
there is no commercially available software for conducting the image reconstruction
and spectral analysis. However, several researchers have written or outlined algo-
rithms for doing so [19,23]. Hyperspectral imagery tends to generate large amounts
of data very rapidly so another important aspect to performing these operations is
having a data bus capable of transferring data off the imaging system to storage, and
of course adequate storage capability for reasonable amounts of imaging time before

processing or data compression.

2.4.1 Geometric Optics.  The system being used as the basis for the instru-
ment design, as seen in Figure 2.17, begins with a converging lens, followed by a stop

then another converging lens.

The essential principles for the use and placement of this lens configuration become
clearer upon briefly examining some basic geometric optics. The essential relationship

for thin lenses is noted in Equation 2.1

(2.1)
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Figure 2.17: CTHIS lab instrument front-end optics

where s, is the object distance from the lens, s; is the image distance and f is the
focal length. If an object is placed a great distance away from a converging lens
in comparison with the lens’ focal length, the image distance will converge to that
focal length. Similarly if an object is placed at the focal length, its image distance
approaches infinity - meaning that the light from the object will be collimated after
passing through the lens. So using two thin converging lenses, if the image from the
first lens serves as the object for the second (that is their focal points are coincident)
the light passing through the optical system will be collimated. The stop between the
two lenses serves to isolate the desired object/image from stray light. These principles

are demonstrated in Figure 2.18
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Figure 2.18: Thin lens optics for light collimation

As can be seen in Figure 2.17, the actual optics in the CTHIS are rather more com-

plicated.

The primary and secondary lenses are not, in fact, thin lenses. Instead they are
achromatic doublets. Because the index of refraction of any given material is based
on the wavelength of light passing through it, light of different wavelengths will be
refracted by different amounts in the same material. Thus the focal length of a lens
changes slightly with the wavelength of the light passing through it. As shown by the
Lens Maker’s Equation below (2.2) the focal length of a lens depends on the difference
in index of refraction between two media where light is passing from one to the other.
As index of refraction is dependent on wavelength, light of differing wavelengths will
be refracted by different amounts passing through the same lens; therefore the focal

plane will also be different for different wavelengths.

— = = () (2= (22)
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Figure 2.19 demonstrates this phenomena graphically. As shown, when white
light passes through the lens, the focal length for the blue wavelength (Fp) is shorter
than that for the red (Fg).

Figure 2.19: Chromatic Aberration [28§]

As a result, optical systems using lenses often use an achromatic doublet lens design.
Here material of two different indices of refraction are mated together in order to
produce a coincident focal point for both red and blue wavelengths. Obviously this
is still not a perfect solution since wavelengths of light between red and blue will still
not have the same focal point. The yellow focal point in Figure 2.20 below illustrates
this problem. The lens in the figure is a compound mating of two materials, labeled
H, and H,. In fact more than two materials can be used to further reduce chromatic
aberration, however it can never be completely eliminated and the bonding surfaces

between materials introduce their own aberrations as well.

Figure 2.20: Achromatic Doublet [28]
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From the second lens, the collimated light passes into and through the direct
vision prism as in the schematic in Figure 2.15. A direct vision prism, like an achro-
matic doublet, is made from two different materials with different indices of refraction.
In this case though, the desired effect is to have one wavelength pass directly through
the prism with no deviation from the optical axis. All other wavelengths will be re-
fracted according to their wavelength by the angle of refraction of the prism. Prism
characteristics can be customized to provide a greater or lesser angular deviation. The
angular deviation - 9, as shown is Figure 2.21, is wavelength dependent. The unique
property of the direct vision prism is that for one specific wavelength the angular de-
viation is zero. This is the key operating principle that enables chromotomographic

reconstruction.

Figure 2.21: Dispersing prism

In the laboratory CTHIS instrument the direct vision prism is a custom-made piece
from Schott Optisches Glas of Germany. Prism characteristics are available in Ap-

pendix B.

From the direct vision prism the dispersed light is passed through a focusing
lens which directs the image onto the focal plane array of the instrument. In the
laboratory instrument the focusing lens and FPA are contained in a single fast-framing

video camera, seen in Figure 2.22 to the left of the prism instrument. The image is
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transferred as digital data from the camera to a desk top computer where it can

be demultiplexed and manipulated according with Fourier transform algorithms as

discussed by Dearinger, Gould and Bostick [16,19,23]

Figure 2.22: Direct vision prism in rotator

This prototype laboratory device then forms the basis upon which the CTEx instru-

ment will be designed. The first order engineering analysis is presented in Chapter

I1I.
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III. CTEx Design and Trade Space

The objective of this chapter is to take the principles for chromotomographic imaging
as described for the CTHIS laboratory model in the last chapter and translate them
into a proposed design for the space-based experiment, the CTEx. The requirements
for the CTEx instrument are rather straightforward and would seem to allow for a
great deal of design choice. Fundamentally, there a several requirements that will

tend to override most other considerations. These are discussed in the next section.

3.1 Requirements and Assumptions

The CTEx is required to demonstrate multispectral chromotomographic imag-
ing from orbit using a rotating prism as the dispersive element. It will operate in orbit,
taking imagery of selected ground-based targets to determine if the instrument can
gather useful hyperspectral data. It should also demonstrate unique capabilities, or
the potential for those capabilities, which will distinguish it from other hyperspectral

imagers already in operation. There are three goals defining success for CTEx:

1. Obtain hyperspectral imagery of a static scene.

2. Obtain hyperspectral imagery of a large-scale event that changes spectrally and

spatially in time, but at a relatively moderate rate.
3. Collect hyperspectral data on a very rapidly changing target.

Examples of each of these are:

a) A single hyperspectral image of a basically static scene such as a farm field.

b) Hyperspectral data that changes moderately over time on the scale of seconds,

such as with a forest fire.

¢) Hyperspectral data that changes rapidly over time using a small scale event

such as an explosion.

Of these three goals the one that chiefly distinguishes CTEx from all predecessors is
the third, the ability to obtain hyperspectral data with a temporal dimension of very
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rapid, transient events. This will be the main area of focus for all following discussion

of CTEx design requirements and trade-space analysis.

While accomplishing these goals one of the major driving design parameters is
that CTEx must be a very simple design. In practical terms this means that the
instrument needs to be able to be assembled to a large degree in a university lab by
students, professors and lab technicians. Also, related to these requirements is that of
cost. Although it will not be possible to cite precise cost figure at this initial stage of
design, most components for the instrument should be either commercial off-the-shelf
(COTS) pieces, or already available through other U.S. governmental entities such as
the Air Force Research Laboratories. A nominal figure for design and construction of

the instrument (though not of launch) is less than $1,000,000.

Further, because this is already an experimental instrument, it is highly desir-
able that those instrument functions that are outside of the direct experimental aspect
(i.e. front-end optics or slewing mechanism) be proven, low technical risk items. This
strategy should help keep costs down and overall reliability high. It will also help
ensure that the basic experiment is the focus of experimental operations rather than

other aspects of instrument operation.

Defining requirements for spatial and spectral resolution are somewhat subjec-
tive. However, 10nm spectral resolution should provide enough fidelity to allow for
definitive experimental results demonstrating the utility of this form of hyperspectral
imaging. The choice of a spatial resolution goal of 10m, meaning two objects which
are 10 meters apart will be discernable as two separate objects, may be somewhat
overambitious. Given an instrument aperture of 10cm and an operating altitude of
400km, the diffraction limited ground resolution should be well under 10 meters, as

shown in Equation 3.1:

6= 1.22(%) (3.1)
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where A\ is the specific wavelength and D is the aperture diameter. Using 550 nm as

a representative wavelength,

550nm

1.22(
Ocm

) = 6.7T1prad (3.2)

Multiplying by the altitude provides the diffraction limited ground resolution:

400km * 6.71prad =~ 2.7m (3.3)

which would appear to be well within the spatial resolution goal of 10m. However,
as the actual spatial resolution figures for CRISM in Figure 3.1 shows, spatial res-
olution is not necessarily a simple function of diffraction, but of the projection of
the Instantaneous Field of View (IFOV) onto the focal plane array. There, the pixel
size and density as well as the overall focal plane array dimensions define the ground
resolution. The smallest piece of the projected ground area that can be resolved is
that corresponding to an individual pixel. This is what limits the ground resolution
of the CRISM instrument to approximately an order of magnitude greater than would

be the case purely with diffraction limits.

Using the CRISM requirements as a general model, preliminary CTEx require-
ments have been formulated. Overall top-level requirements for CTEx are listed in
Table 3.1. Among the assumptions being taken into account for this project are that
CTEx will be deployed on the International Space Station (ISS). There are several op-
tions for placement available on the ISS. The Japanese Experimental Module-Exposed
Facility (JEM-EF) on the ISS is used throughout the remainder of this thesis as the
representative deployed site for CTEx. There is no significant impact on CTEx be-
tween choice of one ISS experiment berth and another. Deploying CTEx on the
ISS itself, of course, imposes bounds on available power, communications links with
ground stations, heating or cooling, platform stability, vibration and orbit parame-
ters. It also has the overwhelming advantage of greatly simplifying questions of “care

and feeding” of the instrument since external support is provided. Since a specific

50



Requirement | Required Value | Achieved | Comment/Justification
Primary requirements, driven by the MRO Project
400-3600 nm Misalignment of IR order-sorting filter;
Spectal Range to 4050 goal S~ allows carbonate band to be measured
; VNIR = 6.55 nm . ;
Spectral Sampling Better than 10 nm IR = 6.63 nm Measured dispersion
Swath Width > 7.5 km at 300 km 9.4 to 11.9 km Slit 2.12° wide, MRO Orbit

Spatial Sampling

Resolve 50-m spot

15.7 to 19.7 m/pixel

IFOV = 61.5 prad,
MRO orbit (nominal) 255 km x 320 km

Lifetime

1.8 years; goal 5.4

4 years

Estimate based on heat load, MTTF of
12000 hrs per cryocooler

Selected secondary requirements, internal to CRISM

IR detector temperature <120K ~100K attainable Operational temperature commandable
Spec:mme‘er housing <198K <194K 184K to 194K depending on orbit
emperature
SNR > 400 at 2300 nm 450 at 2300 nm Best estimate from calibration data
. Analysis uses as built measurements of
System MTF 0.2 8025 0.73 VIR PSF, pointing jitter, estimate of orbital
cycles/mm 04 IR
smear
Pomtl.ng +60° Along Track +60° Along Track Filghibaubliniont Sid dhurnivy set
Scan Jitter 48 urad (30) 25 urad (30)
; Better than 20 nm; 8.5-11.8 nm VNIR : ; 2
Spectral Full Width Half-Max goal <8 nm 9.3-15.2 nm IR Diffraction, FOV effects; acceptable
Spectral Smile (VNIR) <1.2 pixels 1.3 pixels Stepped monochromator point source
Keystone (VNIR) < + 0.4 pixels <+ 0.42 pxls Measured point source dispersion
Smile (IR) <1.2 pixels 1.3 pixels Stepped monochromator point source
Keystone (IR) < + 0.4 pixels <+ 0.42 pxls Measured point source dispersion
ERSCHN P, vien S R — 11N Measured response to monochromator
Spectral Profile, IR peak 2% i
Out of Field Stray Light <2% <1% Quartz halogen lamp out of field

Figure 3.1: Requirements for the CRISM Hyperspectral Instrument [35]

launch vehicle for the instrument cannot be projected at this time, generic standards

of survivability for launch will be applied. Service life for CTEx is set at one year

from placement on the ISS. The operating demands are not well defined at this point

beyond successfully taking data in the three regimes discussed at the beginning of

this section.

3.2 Front-end Optics

The front-end optics for this instrument amounts to some sort of telescope

form of mirrored, reflecting telescope.

mechanism. There are essentially two choices here.
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Table 3.1: CTEx Driving Requirements

Requirement

Requirement Value

Comment /Justification

Spectral Range

400 - 900 nm

VNIR coverage allows single
FPA

Spectral Sampling

Better than 5 nm/channel

Provides for useful discrim-
ination between chemical
salts

Ground Sample Distance <10 m Diffraction limited resolu-
tion = 1.9 m @ 400 km, 10
cm aperature

# Spectral Bands 100 Derived from spectral reso-
lution
Data Cube production 10 Hz 10Hz prism rotation and
1000 frames per second
Scan Jitter Surad (30) Testing needed
Lifetime > lyr On-orbit
Data Volume 1Tb Nominal on-instrument
data storage
Collection time/event > 10sec One ground target
Max Mass <550 kg JEM-EF Standard site
Max Volume 1.5 m? JEM-EF Standard site
Power < 3kW JEM-EF Standard site

3.2.1 Reflection vs Refraction.

There are many advantages to using a re-

flecting versus a refracting telescope. As discussed in Chapter II, refracting lenses,

even achromatics, will introduce chromatic aberration into the resulting image. Al-

though this may be small enough (and the degree of chromatic dispersion is a function

of lens index of refraction and focal length), experience shows that in this application

chromatic aberration is a real concern. Bostick, in his research on the function of the

CTHIS instrument, has noted that chromatic aberration is a problem in obtaining

high fidelity results [16]. Mirrored surfaces do not introduce any chromatic aberra-

tions since the angle of reflection is not dependent on wavelength and is therefore the

same for all A (Equation 3.4) as shown in Figure 3.2.
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Law of Reflection

Angle of incidence = Angle of Reflection

i 0

r

O,

Figure 3.2: Incident angle equals reflected angle for all wavelengths [28]

Another advantage of using reflection is that the mirrored surface provides a
more stable structure than lenses. Since the light does not pass through a mirror,
a fully supporting structure on the mirror’s backside can be designed that provides
much greater stability. A lens must allow light to pass through with as little structural
impediment as possible. So a lens is normally only supported and attached to the
telescope structure along the lens’ outer edge. An important aspect of the space-based
instrument, and for any space-based optic, is that alignment along the optical axis
must be maintained as closely as possible since it is either impossible, or very difficult
and expensive, to align the optical elements (collimate them) once the instrument is
in orbit. The greatest stresses that will be applied to the instrument are at launch.
The better supported the optical elements are, the better chances of surviving launch

within collimation tolerances.

A third possible reason for selecting a reflecting telescope over refracting lenses

for our application is that the mirror(s) and the structural elements can be constructed
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of the same or very similar materials. In this case the use of polished aluminum for
the mirrors and the tube structure allows maintenance of a low or zero differential
for coefficients of thermal expansion for the various telescope parts. In the space
regime where the instrument may experience a range of temperature from -40 to
+80 C or even greater, any significant differences in materials’ thermal expansion
properties may result in asymmetric expansion or contraction resulting in internal
stresses that can distort the optical system. This has clearly been identified as a
significant issue in currently employed space-based instruments as exemplified in the
CRISM hyperspectral instrument orbiting Mars. Though noted in Chapter 11, it bears
repeating that in CRISM the opto-mechanical subsystem was tested for consistency
over six thermal cycles between 30C and -90C with a dwell time of one hour at each
extreme per cycle. There was no measurable change in instrument interferograms
taken before and after the cycling. This was attributed to the use of an all aluminum
structure and all aluminum mirrors [42,43]. In a design using lenses, the lenses must be
made with an optical material like crown glass while the structure is constructed with
something else. Differences in thermal expansion properties between these elements

are unavoidable.

Finally, mirrored elements do not increase in weight with size at nearly the
rate of refracting lenses. With mirrors, the reflecting surface only needs to be a thin
film applied over a base substrate. Even if the material required for the reflection
is relatively dense, it can be kept quite thin and still provide the needed optical
properties. Lenses must allow light to pass through and quickly begin to distort under
their own weight as size grows. Physical sagging then results in optical distortion.
This would not likely be a problem for the proposed CTEx instrument, given its
expected modest size. However it is still a factor to take into consideration since
CTEx is a proof-of-concept that may lead to a similar, larger operational instrument

sometime in the future.

Mirrors have been used extensively in space for many years. Reflective optics

for space is a mature technology and its use in CTEx provides good advantages at no

o4



increased risk. Although design of the CTEx instrument, as in the current lab models
with refracting lenses, could certainly be accomplished, the advantages of changing
over to reflection for the telescope front-end outweigh the very minor disadvantage of
making this change. In fact, there may be no disadvantage at all since the instrument
would have to be resized in any case to take into account the instrument’s operating

altitude over the ground.

The one advantage refractive lenses might hold over using a reflecting design
is that the current laboratory instrument uses refracting lenses and is a straightfor-
ward design where all elements are centered along a single optical axis. A specific
disadvantage of this design involves problems with achromatic lenses in a space en-
vironment. Achromats, as discussed in the previous chapter, partially compensate
for chromatic abberation by bonding two or more materials with differing indices of
refraction. The inherent problem with this is that the same properties which are used
to reduce chromatic aberration in achromatic lenses, that is different materials with
different indices of refraction, also means the materials have different coefficients of
thermal expansion. Thermal cycling, which is a condition expected to occur with the
CTEx instrument as it orbits the Earth on the ISS, will then produce expansion and
contraction stress along the bonding plane between the two materials. This results in
an unacceptable risk of lens separation, which would mean mission failure. This issue
will surface again in the next section on the prism. The overwhelming advantages of
reflecting over refracting telescopes for space operations clearly leads to the conclusion

that a reflecting telescope in the CTEx design is the better design choice.

3.2.2  Telescope Design. There are many options available for reflecting
telescopes. So many in fact that it is beyond the scope of this thesis to provide a
detailed analysis of the universe of possibilities. Some general characteristics of any
telescope used for CTEx will include a compact design, yet as simple as possible. The
light must be brought to a focus at a point where a field stop can be incorporated.

Light will also need to be collimated prior to passing through the direct vision prism.

95



Some preliminary optical design study has been accomplished and a viable and
practical choice which incorporates the characteristics above has been made. An off-
axis Mersenne telescope design provides the desirable characteristics of using an all-
reflective optic to bring light to the rotating prism, to include collimation of that light.
It is relatively compact, yet provides a space for the field stop, which is absolutely
necessary to limit the bounds of the image. A graphic of the proposed design is

provided here in Figure 3.3 for illustration [25].

| Rotating Prism ” Focusing Lens I

|

A |

LN

Secondary Mirror

Primary Mirror

Figure 3.3: Proposed Mersenne Telescope Design.

3.3 Prism

The rotating prism is a key element of the CTEx instrument. It goes to the heart
of the operating principles for hyperspectral chromotomography. For the application
in CTEx, a nominal rotation rate of 10 Hz for the prism is specified. The prism
rotation rate defines the number of hyperspectral cubes produced in a given time
frame - 1 cube per full rotation. At 10 Hz the instrument is producing 10 data cubes
a second. This means transient changes can be tracked over .1 second increments. The
trade-space issues this brings up are considerations of rotating speed versus transient

event capture. In other words, while .1 sec time capture increments may be perfectly
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satisfactory for some events, such as a rocket engine test, it may not be nearly fast
enough for others, like an explosion due to the much quicker rate of change in both

the spatial and spectral dimensions for an expanding fireball over an engine plume.

A controllable variable rotation rate would be very useful then. However this
would also increase the complexity of the instrument versus a single set speed. A
good compromise would be to have a small number of set rotation rates that could
be selected depending on the users requirements for a particular collection event. A
reasonable base line would be an exponential scale of 0 - 2 corresponding to rotation
rates of 1, 10 and 100 Hz. This will provide flexibility to adapt the instrument
operation to varying test events while maintaining enough simplicity to keep costs

down and reliability high.

The prism itself, as used in the laboratory CT instrument, is quite small - only
38 mm in diameter. The small mass of the prism means that rapid spin up and
slow down is possible and should allow for precise rotation rate control. This is very
important since the rate of prism rotation along with the camera frame rate will be
needed for solving the tomographic Fourier transform used to ultimately extract the
desired spectral data. Knowledge of the exact prism position at any time is also
important in matching the prism angle with each frame during operation. It will be
highly desirable to have some form of feedback either to provide on-orbit calibration
capability or simply to have the true rotation rate and position for input into the

algorithm as mentioned.

There is another inherent problem however, with the laboratory CT prism. As
described in Chapter II, this is a direct vision prism. So, just as with the achromatic
lenses, it consists of two different materials bonded together, as shown in Appendix
B which provides the optical properties of both parts of the prism. The direct vision
prism uses two bonded materials of differing indices of refraction to allow one wave-
length of light to pass through the prism undeviated. The undeviated wavelength

then passes through the focusing lens onto the focal plane array. The result is illus-
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trated in Figure 3.4, where the undeviated green wavelength is in the image center.
Other wavelengths of light form a circle around the undeviated wavelength and the
angle of dispersion () and distance from center (x,y) provide spectral and spatial

information.

S0 100 180 200 250 300 30 400

Figure 3.4: Spectral dispersion around undeviated green wavelength [15]

It is apparent then that having an undeviated light wavelength to provide a
reference frame is essential to the operation of the instrument. Therefore the direct
vision prism is an absolutely essential optical component in the instrument. There is
a problem of differing coefficients of thermal expansion between the materials making
up the prism, as with achromatic lenses, which may be fatal to CTEx operation if
not addressed. The specific problem is that the materials used in the prism expand
or contract with changes in their temperature at different rates. The orbit of the ISS
around the Earth will take CTEx in and out of sunlight repeatedly every day. Not
knowing precisely where the instrument will be positioned on the space station it isn’t
possible to determine the exact time periods of sunlight /shadow. There is bound to
be some measure of thermal cycling in any case. As temperature changes, the prism

materials (SFL6 and LaSF 30; properties listed in Appendix B) differences in size
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will create stresses on the materials but particularly along the bonding plane between
the two. This stress will cycle periodically with the thermal fluctuations related to
the orbit. Even if a single application of this stress presents no significant danger of
prism failure, the repeated cycling of that stress may result in a high probability of
failure. If the prism were to separate along the bonding plane, the functionality of

CTEx would be severely degraded.

Equations leading to the total force along the bonding plane in the prism are
presented below. Coefficients of thermal expansion and Young’s Modulus are taken
from the cited references. The dimensions of the CTHIS instrument prism are used
for these calculations. Assumptions were made on the temperature differences as
follows: It was assumed that baseline temperature of the prism, the temperature
at which bonding was applied and stress between materials was zero, was about
25°C'. Extensive NASA reporting on the Hubble Space Telescope indicates that Teflon
thermal shielding on direct sunlight exposed surfaces reach temperatures of 130°C' on-
orbit [24, 1]. Using this as a “worst case” figure that temperature was modified and
a maximum temperature of 85°C' was used in the stress calculations. This was done
because the prism itself will probably not be exposed to direct sunlight. Cooling
below 25°C' was also not taken into account. A temperature cycle of 60°C' is used as

a compromise figure in these calculations.

Given the coefficients of thermal expansion for the materials making up the
direct vision prism, the level of stress that may be applied to the bonded interface
can be determined. This is demonstrated mathematically here and graphically in

Figure 3.5.
asrg = 976 - Coefficient of Thermal Expansion for SF6 (°C')~! [3]
Qrasr3o = 6.2E76 - Coefficient of Thermal Expansion for LaSF30 (°C')~* [46]
Ysre = 531 - Young’s Modulus for SF6 (103N /m?) [3]

L; = 38mm - Initial prism diameter (length)
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AT = 25°C' — 85°C' == 60°C - Temperature change assuming initial temp on
Earth of 25°C

AL = aL;AT - Formula for determining material change in length with tem-

perature
ALgpe = (9E76)(38mm)(60) = .02052mm - Length change for SF6 material

ALpusrs0 = (6.2E76)(38mm)(60) = .0014136mm - Length change for LaSF30

material

ALr = ALgr¢ — ALpysrzo = .006348mm - Difference in length change between
SF6 and LaSF30

Tensile Stress

ALy
L;

6.35L6m

Y 38E~3m

) = 531E8(N/m?)(

) = 8.873E6(N/m?) (3.5)

Cross Sectional Area of Prism

~ r? = 1(19E73m)? ~ 1.134E~3m?

Shear Force Along the Bonding Plane

1.134E~3m? - 8.873E6(N/m?) = 10,061N (3.6)

Although there is no empirical data specifying the strength of the bonded layer
between the two prism materials it seems clear that at this level of stress it would be
prudent to assume there is a significant danger of shear failure at some point during
the instrument lifetime. The ISS orbit altitude is between 350 - 400 km. Using the

higher altitude to calculate a conservative orbital period:

P=2//E&

where a ~ r ~ 6350 + 400km
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Figure 3.5: Differing coefficients of thermal expansion cause the two materials making
up the prism to expand at different rates. This results in large stresses
across the bonding plane even for small differences in expansion.

then P =~ 92mins meaning the instrument would orbit the earth approximately 15
times/day. If it’s assumed this is the rate of thermal cycling for the instrument there
appears to be a need to take measures to ensure that the prism has a high probability

of surviving these conditions.

In addition to the stresses of thermal cycling, any imperfections in the bonding
surface between the materials may also introduce further stresses due to trapped air
pressure in the near vacuum environment of low-earth orbit. Microbubbles within the
bonded material interface will add to the thermal stress. The first action that should
be taken is to conduct thorough vacuum and thermal cycling of the prism to obtain
empirical data on the likelihood of failure. Testing will be specifically addressed in a

later section of this chapter.

Making the assumption that the prism, as constructed in the laboratory in-
strument, would present a significant risk of failure through the mechanism discussed

above, options for mitigating that risk must be explored. One option is to control
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for instrument temperature through heating/cooling devices. A passive approach
using insulation around the entire instrument may significantly limit the range of
temperatures across which the prism would cycle, although Groh’s study on insu-
lation degradation on Hubble indicates a substantial reduction in effectiveness over
time [24]. More active devices such as on-board cryo-coolers or radiative heaters is a
further possibility. This option would greatly increase the cost and complexity of the

instrument which in itself increases the risk of overall failure.

Addressing the problem with the prism directly, the prism can be designed as
a two-piece element with space gap between the elements. This gap would eliminate
the possibility of bonding failure completely. The prism design would increase in
complexity and therefore probably in cost too, but the final product would not be
more complex and reliability would be enhanced. Another essential feature of the
prism portion of the CTEx instrument is the rotation of that prism. Since the prism
is held in a rotating assembly in any case, using a two-piece element the assembly will
serve to rigidly hold each piece, ensuring that alignment is maintained. The difficulty
of the gapped materials prism is that the prism halves will need to be installed in
the rotation ring extremely precisely. Not only will each piece have to be positioned
accurately such that the vertical plane of the prisms are aligned to that of the rotation

stage, the prisms must be accurately aligned with one another.

The spin rate requirement for the rotation mechanism was addressed above. One
other aspect of this rotation is the precision requirement. Examples of high-accuracy
rotation stages with direct reading encoder and better than 0.00001° resolution are
available from Newport Corporation. Unfortunately, while these rotation stages of-
fer outstanding precision, they are not designed for continuous rotation nor for the
angular velocities required for the CTEx instrument. Maximum rotation rates are
720°/sec, 2 Hz, which is nowhere near the rates of 10 - 100 Hz required. Specifica-
tions for a high precision Rotation Table manufactured by Newport are available in
Appendix F. Computer Optical Products does produce a rotation stage and optical

encoder (position readout) that appears to meet requirements. Their CM-5000 series
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is a high performance brushless DC motor with integral optical encoder. It offers a
maximum rotation speed of 1500 rpm, well above our maximum requirement of 1000
rpm. Specification for this product are available in Appendix G. However, as with
many of the COTS components the CM-5000 is not space-rated. This issue will be

discussed further in the concluding chapter of the thesis.

3.4 Focal Plane Array and Camera

The focal plane array (FPA) lies at the heart of any electro-optical imaging
instrument. All imagers require some form of optic to bring the light that has passed
through the front-end instrumentation into focus on a two-dimensional array of pho-
tosensitive elements (pixels). There are two major classes of FPAs in use today. These
are charge-coupled devices (CCDs) and complementary metal oxide semiconductors

(CMOS).

CCDs fundamentally work like a bucket brigade. Rain falls on an array of
buckets in a given time frame. By passing the bucket contents horizontally until it
reaches the end of each line, and then vertically down the array, the overall content
is then measured. Figure 3.6. In a similar fashion, photosensitive pixels making up a
CCD array are bombarded with photons, which they convert to a charge as depicted
in Figure 3.7.

CCD focal plane arrays offer many good characteristics for imaging. Among
these are: good spatial resolution; very high quantum efficiency (often 90% or bet-
ter); a large spectral window; low noise; high dynamic range (ability to handle
large variations in signal strength); high photometric precision; and very good lin-
earity [13,14,20]. CCDs were developed in the 1960s and have been used extensively
for over three decades. This maturity is also an attractive factor for limiting technical

risk.

CMOS imaging arrays are a more recent development. However, technological

improvements in this array type have been proceeding at a very rapid pace over the last
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Figure 3.6: As rain fills the buckets the water is passed horizontally, then vertically
at the end of each line. [20]

five or six years. Issues that were once serious disadvantages, such as low quantum
efficiency, have largely been addressed and the capability contrast between CMOS
and CCD arrays has been substantially reduced. An example is the comparison in
quantum efficiency between commercially available CCDs and CMOS arrays. The

CMOS silicon array with visible antireflectance coating is quite competitive with the

backside illuminated CCD (Figure 3.8).

The major difference in operation between a CMOS array and a CCD is that
in a CMOS array the photoelectric elements are connected directly with a Read Out
Integrated Circuit (ROIC). What this means is that each pixel in the array is read
independently of the others, directly into output. There are two major types of CMOS
arrays, monolithic and hybrid. Monolithic arrays have the integrated circuit on the
same chip as the pixel array. The hybrid design uses a 3-D scheme where the pixels

are bonded to the integrated circuit in a sandwich arrangement (Figure 3.9).

As can be seen in Figure 3.10 the differences between CCD and CMOS arrays

are founded at the most fundamental level. The pixel readout technique defines the
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Figure 3.7: (a) For the charge collection process during an exposure the central elec-
trode of each pixel is maintained at a higher potential (yellow) than the
others (green). (b) At the end of the exposure, the electrodes potentials
are changed and the charges transferred from one electrode to the other.
(¢) By changing the potential of the electrodes in a synchronized way,
electrons are transferred from pixel to pixel. Charges on the right are
guided to the output register. (d) The horizontal transfer of charges is
then stopped and each charge package at the output register is trans-
ferred vertically to an output amplifier and then read one by one. The
cycle starts again until all the charges have been read. The reading time
amounts to about one minute for a large CCD. [20, 5-6]
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Figure 3.8: CCD vs CMOS quantum efficiency [9, 27].
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Figure 3.9: Monolithic CMOS chip (left) and hybrid (right). [27, 130]

operating principles of these two array types and characterizes the advantages and

disadvantages of each relative to a given application.

For designing the CTEx FPA, there are some significant advantages of the
CMOS array over the CCD. Because the photodiode and integrated circuit are on
the same chip, various processes such as amplification, timing and analog-to-digital
conversion (ADC) can be accomplished right on the chip (Figure 3.11). On-chip in-
tegration results in low power requirements, smaller system dimensions and higher
speeds. In addition, because of the individual pixel readout capabilities of the CMOS
architecture, it is easy to implement various scanning strategies to isolate or enhance
particular aspects of the scene under consideration. Examples of these include win-
dowing, subsampling, random access and pixel binning (Figure 3.12). Windowing in
particular will provide options for data collection that will be discussed further later

in this chapter.

One of the major difficulties in developing an operational CT instrument is the
demand for high data throughput. The nominal requirement is for 1000 frames per
second (fps). This speed far exceeds that of any hyperspectral imager ever launched.
This alone virtually requires the use of a CMOS-based FPA due to the reset speeds
involved. In addition, the low power requirement, resistance to radiation, including

Single Event Upset (SEUs), and compact size strongly recommend a CMOS versus
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Figure 3.10: Comparison between CCD and CMOS at the pixel level. [27, 112]
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Figure 3.12: In window mode a particular scene feature can be isolated and tracked
as it passes under an overhead imager. Subsampling allows a scene to
be roughly imaged using only a percentage of the total array. Random
access allows multiple, particular features to be imaged while background
is ignored. Pixel binning convolves groups of pixels which may be used
to improve signal-to-noise for poorly illuminated scenes. [27, 114-115]

CCD FPA for CTEx. One final determining factor is the commercial availability of
appropriate, high-speed cameras. While there are two major companies that pro-
duce very high-speed, CMOS-based cameras no CCD-based equipment can produce

anywhere near the required FPA reset rate.

For the best spectral and spatial resolution it is desirable to have as large a
physical array as possible with the smallest pixel size. However, it is also the case
that larger pixels are more sensitive to light since they provide a larger surface area for
photon detection (larger total photon flux). For CTEx the image on the focal plane
should be oversampled, that is the image size is smaller than the array dimensions.
Although at first glance this appears to be wastefully inefficient, it is necessary for
several reasons. The first is that perfect sampling, where the image size exactly
matches the FPA, at the zero prism angle will mean lost data (undersampling) on the
edges as the prism and thus the image rotates. Secondly, if electronic windowing is
used to collect event data as illustrated in Figure 3.12, large numbers of pixels within

the array is essential. A hypothetic may better illustrate this idea.

Assume the total IFOV is 50 km?. CTEx is taking data on a rocket engine

test in a known location at a know time. In order to capture the imagery data from
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the engine plume, the actual target of interest is the 10 m? area encompassing the
engine test. As the instrument passes directly over the target area, the 10 m? area of
interest enters the far left side of the IFOV. The IFOV will be translating to the left
at the ground speed of the instrument. As the instrument passes over, the target area
of interest will enter the IFOV, essentially “move” through it, and then exit at the
far right. Through windowing and precise knowledge of the instrument and target
locations and the instrument orbit the target engine test can be tracked across the

FPA (Figure 3.13).

Using representative numbers it is possible to analyze the practicality of using
the windowing method for data collection. Starting with the ground sample distance
(GSD) of 10 m, which is driven by the instrument ground resolution requirement, the
total IFOV can be determined. By definition of the GSD, each pixel will correspond
to 10 m on the ground. The minimum number of pixels required for determining a
two-color source spectral separation is two pixels. So for purposes of hypothetical
demonstration, assume a 2X2 pixel block for the window of interest. The total block
size doesn’t matter for the following calculation though, as long there are enough
“windows” across the array to amount to a useable data collection event.

1Qm X 2048pixels = 20.5km
pizel array

The velocity of the ISS at an altitude of 357 km is determined by:

v= /&
where
= Farth gravitional constant x Earthmass

r = circular orbit radius (although the ISS orbit is not perfectly circular, it is

a reasonable approximation since its eccentricity is only .0008)

[ 398600km3/s2
v = —673BEkm 7.69km/sec

At that velocity the instrument will move from one end of any particular IFOV to

the other in about 2.5 seconds.

20.5km =+ 7.69km/s = 2.666sec
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Figure 3.13: Hypothetical Windowing concept. The image of the rocket test moves
across the focal plane as the instrument passes overhead.
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The problem with windowing, as illustrated, is the desired data event time of 10
seconds cannot be met. The most direct option is to reduce the data take time to 2.5
seconds. The next option is a trade-off between data take time and spatial resolution.
As GSD increases to, for example 20 m, the IFOV grows and there is a doubling
of the time the test event will be in view. This trade-off though, is not dynamic.
Because the GSD is a function of the focal length of the instrument’s focusing lens,

once designed into the instrument and launched it cannot be changed.

The discussion above begs the question of other methods for taking event data.
The obvious solution is designing a slewing ability into the instrument so staring at a
field-of-view as the ISS passes over is possible. For this option either the instrument
itself or just the FOV must be able to slew at the angular rate of the ISS passing over
a spot on the Earth. Assuming an altitude of 350 km and ignoring the curvature and
rotation of the Earth since these will be very small for a five second data pass, the
angular slewing speed will be:

w=t
where

v = velocity in direction of motion = 7.69km/sec

r = distance to earth surface = 350km

then

w= %’Zﬁec = .0022rad/sec or about 1.22 degrees/sec

To slew the entire instrument will require CTEx to be mounted on a slewing
table with precision control for rate and position and total along-axis motion of 4+6°
for the capability to collect for roughly 10 seconds at a time. The Navy Research
Laboratory’s Hyperspectral Imager for the Coastal Ocean (HICO) uses this type of
slewing table, but for cross-track collection opportunities, not along track staring [18].
The HICO design with slew table emphasized is shown here in Figure 3.14. It is
scheduled to be launched in June, 2009.
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Figure 3.14: HICO instrument design [18]

The more elegant mechanical slewing option is to use a rotating mirror assembly
at the optic aperture to accomplish the same along-track scene staring function. This
is the design option exercised on the Landsat Thematic Mapper. As shown here in
Figure 3.15 in two views, this application is used for cross-track collection. There
are serious issues involved with use of a scanning mirror that also must be taken into
account. Referring back to the CRISM Mars Orbiter instrument, a single scanning
flat mirror was considered for this very application in its design. This option was

rejected:

It was found that the required field of regard ..., coupled with an aperture
diameter of 10 cm, and the required FOV of > 1.75° resulted in scan
mirrors with diameters in excess of 60 cm, with little hope of adequate
stray light baffling. Size and mass constraints would also not be met. [43,
284]

It is noteworthy that although the optical engineering for CTEx has not been
completed at this point, preliminary estimates are that its optical aperture will be in
the range of twice the diameter of CRISM. This may mean a scanning mirror solution

to the slewing question will result in a prohibitively large mirror.
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Figure 3.15: Thematic Mapper Scan Mirror Design [41]

Either of the two mechanical slewing options provide CTEx with the capability
of meeting the desired collection time per test event of 10 seconds. Against this
advantage though, there are considerable disadvantages to be considered. First, both
options increase the complexity of the instrument enormously. Mechanical slewing
rates must match the angular velocity of the ISS with extremely high precision or
smearing of the image will occur. The slewing must take place during data collection.
This means vibration and resulting jitter on the focal plane. Both mechanisms, the
mirror and the rotation table, require some form of drive motor, leading to more power
required, greater mass and greater risk of mechanical failure. Both mechanisms will
also increase control, position sensor, and calibration requirements. The mirror option
will introduce additional aberration into the optical system and will lower the SNR
since no mirror has 100% reflectance efficiency. There are no cost figures available
for these options, but it is reasonable to expect adding either to the design will
significantly increase the instrument costs monetarily, in design-time, and in build-

time.

Overall it would be preferable to rely on the software-driven collection, win-

dowing, over either of the mechanical slewing options. The cost of reduced collection
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time per event and/or reduced spatial resolution are outweighed by the numerous

disadvantages of slewing listed above.

3.4.1 Cameras. The next issue with the FPA involves the readout speed. As
noted, there are several commercially available high speed cameras that easily provide
the required number of frames per second (see Appendix 3 for camera specifications).
One tradeoff that must be considered here is the signal-to-noise function. At this
time the optical engineering for the instrument has not been completed so there are
no specific figures. Even when the design is finished, actual hardware testing will be
needed to accurately characterize instrument SNR. Nonetheless it is certain that as
the fps rate increases the same total signal per unit time is divided into smaller and
smaller increments. This means that the SNR will drop as frame rate increases. In
fact this may not even be a linear function since electronic shutter produced noise may
increase with frame rate as well, resulting in an even greater drop in SNR as a function
of frame rate. Factors involved in determining the minimum acceptable SNR include:
pixel sensitivity (quantum efficiency), pixel size, minimum acceptable frame rate, total
signal produced at the source, total signal transmitted through the atmosphere, and
signal loss along the instrument optical path length due to inefficiencies in the optical

elements.

Although the requirement for CTEx is set at 1000 fps, since the principle differ-
entiating factor between this instrument and other hyperspectral imagers is speed, it
may be that higher frame rates will be a desirable option. Higher frame rate options
is actually a no-cost result of the high-speed camera requirement. As is clear from
the camera specifications detailed in Appendix C, all of these cameras are capable of
frame rates much higher than 1000 fps. The trade-off for going to higher rates, in
addition to lower SNR, is poorer resolution. The specifications show that as frame
rates are increased, active pixel use goes down. Between the two main choices of
camera, the Phantom V12.1 and the Fastcam SA2, both have reduced resolution at

higher frame rates. There are some interesting differences between the two which
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will require trade-space choices by the end user. The Fastcam model has better pixel
pitch, 10um versus 20pum for the Phantom. This results in the Fastcam having 2048
X 2048 pixels on virtually the same size CMOS versus a maximum of 1280 X 800
for the Phantom. At maximum resolution the Fastcam SA2 can operate at 1080 fps.
This is an excellent match for the CTEx requirements. However, as frame rate is
increased, the Fastcam resolution drops precipitously, from 2048 X 2048 at 1080 fps
to 1024 X 512 at 6250 fps to 384 X 512 at 10800. The Phantom V12.1 offers reso-
lutions of 800 X 1280 at 6242 fps and 512 X 1024 at 11,854. So the Phantom offers
better resolution at higher frame rates, but at the required frame rate, 1000 fps, the
Fastcam SA2 performs better. If higher rates are considered better for the purposes
of the CTEx demonstration, the higher resolution at high frame rates of the Phantom
are more advantageous. If this is indeed the case though, then the Fastcam SA5 must
be considered. It has the same pixel pitch as the Phantom, but better resolution at

higher frame rates: 1024 X 1024 at 7000 fps and 760 X 760 at 12,500 fps.

Other factors that must be considered in the COTS camera choice include
ruggedness, and thermal operating regime. All of the cameras are ruggedized to
an ability to survive over 30 G in non-operating mode. The Fastcam cameras are
rated by their manufacturer at a bit better temperature range than the Phantom,
0 - 40°C versus 10 - 40°C. Neither of these meet the requirements for space use at
the low end though. So although the Fastcam cameras are marginally better in this
arena, it may not matter if any camera chosen will require substantial customization

to meet temperature range operating requirements.

Beyond this, there is little to differentiate the choices for high-speed cameras.
They all offer remote control that should be adaptable to a hands-off environment,
they use silicon-based hybrid CMOS FPAs, solid-state DRAM memory with options
up to 32GB, and 12 bit data conversion as a standard. One area that needs to
be carefully examined, and may provide a quantifiable measure of merit, is quantum
efficiency. Specific test results under strict conditions for specific wavelengths over the

instrument spectral range would be invaluable in comparing one camera to another.
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This would also help by providing data which could be used to get some idea of the
SNR required to acquire usable data.

3.5 Data Handling

The collection of data through hyperspectral imaging is only one step in a
process. That data must be stored, downlinked to a ground station and processed
for the imagery to have any utility. While CTEx data handling will be similar to
other space-borne imagers in some respects, there are aspects to high frame rate
chromotomographic imagery that present unique challenges in getting the information

to the end users.

3.5.1 Data Generation. One of the problematic characteristics of the CT
scanner is its prodigious rate of data production. Data rate is a function of the camera
frame rate, focal plane array size (number of pixels) and digital data encoding. Data

rate is calculated by:

Frame rate x total number of pixels x pixel encoding per pizel = Sbits per byte =

bytes per second

If the Photron Fastcam SA2 at full resolution and 1000 fps is used to exemplify, the

figures take an alarming turn:

1000 fps x 2048%pizels x 12t - 1ie _ 6 999G B /sec

pizel " Bbits

or roughly 63GB for a 10 second data event.

The maximum solid state memory offered for this camera is 32GB. The data pro-
duction rate calculated above would quickly swamp this amount of memory. There-
fore, trade-space analysis of the available options is in order. First, and simplest, the
required time of data take can be reduced. The 32GB of available memory would
provide a maximum of 5 seconds of operating time. This option has the great ad-
vantage of requiring no changes to the instrument at all. The next option is to take

data at a reduced resolution. At the same frame rate, 1000 fps, but using 1024X1024
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pixels the data rate drops to 1.57GB/sec. Using these parameters the available time
delta jumps to over 20 seconds. A third option is to order a custom design adding
additional solid state memory to the camera to allow for 10 seconds of data at the full
resolution rate. This option is the most costly in terms of design and manufacture

time, monetary cost, and added complexity and technical risk.

The first two options offer the tremendous advantage of being implementable on-
orbit through software-based control. Frame rate and resolution are both controllable
through the camera’s standard control selection capability. Therefore, if a particular
collection event requires the highest resolution, this can be chosen if the end users are
willing to trade-off collection time. Likewise, a test event demanding greater lengths
of data collection can be accomplished at the cost of lower resolution. This trade-
space then is a dynamic variable that can be adjusted after CTEx is operational to

changing customer requirements for different events.

There is no way to move data off the camera fast enough to add storage capacity
while it is in operation. Nevertheless, additional on-board storage capacity is desirable
in order to: a) provide longer term data storage and redundancy; b) provide the
opportunity to clear the camera’s intrinsic memory cache so that it is ready to collect
again as quickly as possible; and c) serve as a data buffer between the collecting
instrument and the downlink communications - that is, the additional storage holds
the data and reads it out to communications downlink so the camera memory doesn’t
have to do that itself. This is an important point since the dedicated downlink channel
is only 1Mbps (refer to Appendix H, ISS External Research Capabilities). Assuming
an average data collection of only 15GB, it will take over 33 hours to downlink the
data from one collection event. Clearly it will be important to be able to hold and
downlink data from a secondary storage unit rather than directly from the camera’s
cache itself. The data hold requirement of 100 - 400 GB can be met fairly easily
and given the data assumptions developed here, provide more than adequate storage
capacity even in a worst case scenario where data cannot be downloaded for some

period of time.
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3.5.2  Data Storage.  There are a few options to consider with regard to the
additional, off-camera, or secondary, data storage. These options resolve to either
hard disk drive, flash-based solid state drive, or DRAM (Dynamic Random Access
Memory)-based solid state drive. Hard disk drives (HDD) use a magnetic disk and
reader which must physically spin and move to operate. Solid state disks (SSD) on
the other hand have no moving parts and are inherently more robust for aerospace
applications. For reference, open hard disk and solid state drives are pictured in

Figure 3.16.
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Figure 3.16: Open HDD (left) and SSD (right).

Figure 3.17 provides the results of benchmark average performance capabilities
for the three types of data storage devices mentioned. The DRAM-based solid state
drive clearly enjoys an immense performance advantage over the other two in all

categories of data read and write.

Of these data storage types the SSD offers many advantages, particularly for

our application, over traditional HDD.
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RANDOM READ BENCHMARK

Block Avg Service Block Avg Service
Size Read IO/s Read MB/s Time - ms Size Write IO/s Write MB/s Time - ms

5128 5128 290 ;
1K 1K 290 0.29 6.5
2K 2K 283 0.57 6.9

280 1.12 6.3
284 227 6.2
264 4.23 6.3
237 7.58 6.6
211 13.51 6,5
183 23.48 8.0

(a) HDD
RANDOM READ BENCHMARK OM WRITE BENCHMARK

Block Avg Service Block Avg Service
Size ReadlO/s Read MB/s Time -ms Size Write lO/s Write MB/s Time - ms

512B ] 512B 22 0.01 92.5
1K 3 1K 22 0.02 91.7
2K : 2K 21 0.04 92.3

21 0.09 94.5
21 0.17 92.5
21 0.34 93.7
21 0.68 102.1
19 1.23 106.7
18 237 1132

(b) Flash-based SSD
RANDOM READ BENCHMARK

Block Avg Service Block Avg Service
Size ReadlO/s Read MB/s Time - ms Size Write I0/s Write MB/s Time - ms
512B 512B

1K 1K

2K ) 2K

(c) DRAM-based SSD

Figure 3.17: Memory performance comparison [44]
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e Faster start up since there is no spin up time

e Faster random access

e Very fast read times

e Much lower noise and vibration since there are no moving parts

e High mechanical reliability with ability to endure extreme shock, vibration and

temperature extremes

Disadvantages are as follows:

e Considerably higher cost per GB of storage, especially with DRAM
e Lower capacity than that offered by HDD

e Limited write cycles for flash-based SSD, although this doesn’t apply to DRAM-
based

e Slower write speeds for flash-based, but again not for DRAM-based
e Lower storage density

e DRAM-based requires more power and must be supplied with power continu-

ously, even when not operating

For a space-based application it is clear that the reliability and robustness of
solid state drive is the option of choice. Furthermore, although cost is an important
factor, the additional speed and capability of DRAM-based SSD recommends it over
flash-based SSD.

3.5.3 CPU. CTEx will naturally require on-board computing capability
for control of the instrument component functions such as prism rotation and cam-
era operation. The computer must be compact, radiation hardened and capable of
withstanding the stresses of launch and thermal cycling. In contrast with most of the
other instrument components discussed to this point there are commercially available
computers which meet all these criteria and have a track record of performance in

space.
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As a representative sample, BAE Systems of Manassas, Virginia makes sev-
eral space-rated computers that appear to be well suited for use on CTEx. The full
company reported specifications are available in Appendix I. Some of the more sig-
nificant information on these products is that versions of them are currently in use
on the Mars rovers, Spirit and Opportunity, the Mars Reconnaissance Orbiter, and
almost 500 other space applications [11]. The small size, low power requirement and
high performance of the BAE RAD750 6U single-board computer make this an excel-
lent choice for CTEx. In addition the computer offers 1553 interfaces which make it

compatible with the ISS.

Besides the actual on-board strengths of the RAD750, BAE also produces a
software package called Virtutech Simics that can simulate the actual computer. This
virtual platform allows software to be developed and tested for the on-board computer

to ensure proper functioning before operations [11].

3.6 On-orbit Calibration

The capability to calibrate the CTEx instrument remotely in its operating en-
vironment is crucial for evaluation of whatever data is taken during the experimental
tests. Calibration means taking sample data readings from a well-defined, well known
control sample. This allows the development of a baseline against which can be mea-
sured the instrument’s performance. In this way, any biases or anomalies introduced
by the instrument in the produced data can be identified and taken into account
when actual test data is analyzed. Calibration from a sample of known size, radiance,
position and distance provides surety for the instrument’s optical path, prism spin
rate, focus on the focal plane array, FPA positioning, number and location of dead
pixels in the FPA, data read-out and transfer, and data processing on-instrument
or on-ground. It also provides a benchmark against which the instrument controls
can be measured, i.e. if a command is uplinked for the prism to spin at 10 Hz, is it
actually spinning at that rate and if not, does the issue lie with the rotation stage or

the control electronics? A well designed calibration capability is essential to confident
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operation of the instrument and confidence in the data returned to the ground. Given
that this is an experimental proof-of-concept, calibration is even more crucial to the

integrity of the data.

Ground or air-breathing based hyperspectral instruments offer the convenience
of hands-on testing. Not so for our space-based application. Since the CTEx instru-
ment will be based on the ISS our calibration control sampling options are going to
be limited. With other space-based hyperspectral (or really any imaging) instruments
a common method for performing calibration is to rotate the satellite so the imager
can take readings off of the sun, specific stars, or less commonly the moon. These
methods cannot be used since the space station cannot be turned and the instrument

is limited to pointing at the Earth.

There are two general methods that can be considered for calibration specimens.
One is to use a particular swath of earth or earth-based targets of will known spectral
and illumination signature. Possibilities in this arena include polar regions of flat
ice, homogenous desert regions, or placid water regions. This option has the advan-
tage of requiring no additional capabilities for the instrument and thus less cost and
complexity. This advantage probably does not outweigh the disadvantages which are
that the spectral signature is probably not going to be know to the resolution wanted
for instrument calibration. Optimally, the calibration test bed would provide known
spectral signature within the bounds of the desired spectral resolution expected in the
experiment. This hasn’t been completely defined at this time, but a good measure

would be no more than two times the FPA’s pixel pitch, or approximately 20 pm.

The second method to consider is an on-instrument test bed. This would entail
incorporating a light emitting array with elements emitting at well-defined wave-
lengths over the FPA’s designed spectral range onto the instrument. This test array
will need to be designed in such a way that when the instrument is being calibrated
it is looking only at the test array, with no other noise (stray light) passing through

the optical path. Some existing instruments perform this function by using a design
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that allows the imposition of a mirror into the normal optical path, changing the
source from the normal aperture to the control elements. For the CTEx instrument,
a better way to do this might be to incorporate an array of light emitting diodes
(LEDs) onto the inner surface (facing into the instrument) of a mechanical aperture
shutter. Although this will increase the complexity of the instrument, it also provides
the required calibration capability and allows selection of very specific wavelength pa-
rameters to test against. The shutter, being closed when calibrating the instrument,
eliminates stray light contamination thereby providing a clean sample. Further, since
the exact positions of the LEDs relative to the instrument optical axis will be known,
this arrangement will also serve to ensure the optical elements in the instrument have

maintained correct position (optical collimation is maintained).

LEDs provide the advantages of low power requirements (several miliwatts per
LED), small size (3mm or smaller), and the ability to be engineered to specific wave-
lengths across our spectral band. They also have excellent mean time before failure
rates and operate well across a broad temperature range. Figure 3.18 provides a set of
performance data for one particular commercial LED series to illustrate these points.
Beyond this, a single LED can be engineered to emit in one of several bands at a time

if desired.

3.7 OQwerall Design Space

CTEx design trade-space analysis up to this point has been a component-by-
component exercise. In the end, these separate parts will have to work together as
a unit and will have to be oriented in a way that allows the instrument to fit into
the available space on the ISS JEM-EF platform. Specific component selection has
not yet taken place, nor has optical design been completed, much less finalized. That
being the case, it is not yet possible to produce an instrument model with any kind
of spatial fidelity. Regardless, the analysis performed leads to some conclusions on
components that must be included in the instrument. A notional graphic of these

components and placement is included in Figure 3.19.
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Figure 3.18: Forge Europa LED product data sheet.
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Figure 3.19: Instrument Configuration Space

Referring to the support capabilities on the JEM-EF, or any of the exposed
facilities on the ISS (Appendix H), it appears that CTEx will be well within support
parameters in power requirements and mass. Size, length in particular, may prove to
be a more problematic. This depends a great deal on the final telescope design. A

mechanical slewing mechanism, if chosen, will complicate the matter.

3.7.1 Materials and Structure.  An issue that has appeared in discussions of
several component trade-spaces is that of thermal effects. These effects were particu-
larly troublesome with regard to the direct vision prism and achromatic focusing lens
due to asymmetric material expansion rates. Thermal issues must also be considered

in design choices for the CTEx instrument as a whole. CTEx on the ISS will be
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passing into and out of Earth’s shadow about 15 times per sidereal day. It is difficult
to estimate the effects this may have on the instrument until the final configuration
and positioning are known. Still, it is prudent to take thermal effects into account in
a precautionary sense. In the case of the CTEx instrument as a whole, differential
heating could pose significant problems with optical collimation and joint tolerances

if a slewing mechanism is involved.

When the Hubble Space Telescope (HST) was initially released into orbit in
April 1990 a large, unexpected pointing disturbance quickly became apparent. This
disturbance was far greater than the tolerances required for the pointing control sys-
tem and coincided with HST moving into or out of shadow. This coincidence is readily

apparent in Figure 3.20.

Investigation by NASA revealed the disturbances were caused primarily by dif-
ferential heating of the front and back sides of the solar array frames. A temperature
gradient of 20°C' was established after only 30 seconds of exposure to the Sun. The
temperature gradient induced a slip/stick condition in joints related to solar array
slewing. As it turned out resulting vibrations overwhelmed the pointing control sys-
tems ability to compensate [22, 15-21]. The solar arrays were redesigned and replaced

during the servicing mission which corrected the HST mirror aberration.

This cautionary tale was related here to emphasize the catastrophic effects that
can result from failure to take into account space environment effects. Choice of
materials and component placement are essential elements for dealing with rapid

heating and cooling effects in space.

87



POINTING ERROR, arcsec

21 217 219 22.1 223 22.5 22.7
TIME, decimal hr
. Orbital day disturbance profile.

0'4-5 —_"‘"'" ‘‘‘‘‘‘‘ i Nidﬂf___z
V1 0.0? —
g s -
5 0.4
L
3 0.13
e 3
o= =
2 V2 003
14 =
Z 0.1=
= 3
&
<)
-9

11.11 11.31 11.51 11.71 11.91
TIME, decimal hr

Orbital night disturbance profile.

Figure 3.20: The HST experienced significant pointing disturbances in all three axes
coinciding with the instrument moving into or out of sunlight [22]
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IV. Concept of Operations

4.1 Platform and Orbit

The basic operational assumptions for this experiment are that CTEx will be
operated from the ISS Japanese Experimental Module (JEM) Exposed Facility (EF),
although there are other options on the ISS as pointed out in Chapter III. This
places the CTEx in a low-Earth orbit of about 350 km altitude. Figure H provides
a description and graphics of the JEM. Figure 4.2 provides resource data available
for operations on the JEM-EF. The maximum mass budget of 550kg should be more
than enough to handle CTEx. The same is true for available power, which at 3kW is
probably at least six times CTEx demand. The size constraint of 1.5m? is, by far, the
biggest concern, but should be manageable. The entire set of ISS orbital ephemeris

data can be found in Appendix D.

Since the CTEx is tied to the ISS there is no real trade-space to speak of. The
orbit is fixed, as is the space station itself. One of the advantages of having an imager
that is the payload of its own satellite bus is the ability to adjust orientation or even
orbit to some extent if desired. In the case of CTEx those options are not available.
On the other hand, the support functions offered on the ISS are reasonable trade offs
for the freedom of movement with a dedicated satellite bus. Power, stability, attitude

control, and communications are all essentially free for the CTEx instrument.

As discussed in the previous chapter, the ISS is orbiting at an altitude of ap-
proximately 350km, with a velocity of 7.69km/s and an orbital period of about 90
minutes. Using these and the ephemeris data for the ISS, once the CTEx instrument is

in place on the JEM-EF and system checks are completed operations can commence.

4.2 System Check

Upon placement onto the JEM-EF there are a series of checkouts that will have
to be conducted to ensure it is ready to operate. The assumption being made here
is that the control network for the instrument will be designed to include sensors to

provide instrument health and status information which can be read and interpreted
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Figure 4.1: The Japanese Experimental Module provides an excellent platform for an
experimental space-based instrument [2].
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JEM-EF Resources

Mass capacity 550kg (1,150 Ib) at standard site
2,250 kg (5,550 Ib) at large site

Volume 15m3

Power 3-6kW, 113-126 VDC

Thermal 3-6 kW cooling

Low-rate data 1 Mbps (MIL-STD-1553)

High-rate data 43 Mbps (shared)

Figure 4.2: The JEM exposed platform provides plenty of power, space, capability to
handle mass, and enough communications to accommodate CTEx. [2]

at a ground control station. These checkout actions are listed in Table 4.1. This is
not an all inclusive list; there are likely to be additional actions needed during this

period.

As noted above, the systems check out table is not exhaustive, and each checkout
event listed will require checklists of specific subsets of actions needed to accomplish
those checks. If the CTEx instrument follows the average historical path it will
probably take between one and two months for full system checkout to be completed

and the instrument ready for actual test event collection.

4.3 Collection Event

The orbit of the ISS provides a short orbital period and therefore good oppor-
tunities to arrange test events at almost any location between 63°North and South.
Running simulations in Satellite Tool Kit provides confidence that data collection

opportunities will be available. Selecting Wright Patterson AFB as a hypothetical
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Table 4.1: On-orbit Systems Check Items

Check-out Item

Purpose/Justification

Data uplink

Ensure ground-to-
CTEx communications;
command-and-control

Data downlink

Ensure CTEx-to-ground
communications; command
receipt; proper feedback

Data in-out with ISS

Ensure proper communica-
tions between instrument
and ISS support/GPS posi-
tioning data/timing

Sensors Read

Check health and welfare -

power, temperature, timing,

position(s)
Command & Control boot up Start computer processor
Software check Ensure processes are

functioning /responding
correctly

Calibration LEDs

Ensure proper functioning,
on/off

FPA

Use LEDs to check photons
in/voltage out; check pixel
health

Secondary Memory

Check on/off; read/write

functions

Data routing and storage

Ensure proper data routing
to camera memory and to
secondary solid-state stor-
age; check camera memory
clear capability

Prism rotation table and optical encoder

Check functioning; posi-

tioning; control

Camera Electronic Aperture

Test ability to vary frame
rate; check read rate

Prism Rotation Table and Camera Electronic Aperture

Check synchronization;
data/feedback merge;
control

Telescope Aperture

Ensure open/close

Telescope

Check control; component
alignment;  optical path
throughput; nadir pointing

Integrated System
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test site, and using baseline requirements for the CTEx instrument and a focal length
for the primary mirror of 625mm, these simulations indicate acceptable instrument
coverage and good probability of a collectable time period (Figure 4.3) during any

representative month.

Coverage for ISS-CTEx

Access Access Start (UTCG) Access End (UTCG) Duration (seec) Asset Full Name
1 1 Jul 2009 21:43:52.487 1 Jul 2009 21:43:53.381 0.894 Wright-Patterson
2 15 Jul 2009 15:54:09.293 15 Jul 2009 15:54:15.669 6.375 Wright-Patterson

Min Duration 1 1 Jul 2009 21:43:52.487 1 Jul 2009 21:43:53.381 0.894 Wright-Patterson
Max Duration 2 15 Jul 2009 15:54:09.293 15 Jul 2009 15:54:15.669 6.375 Wright-Patterson
Mean Duration 3.635
Total Duration 7.269

Probability of Coverage

Collection Probability for ISS-CTEx

Time From Reqguest (hr) Probability of Collection
0.000 0.00

9.731 4.19

330.171 96.28

356.096 100.00

Figure 4.3: CTEx coverage times and coverage probability for Wright-Patterson over
one month.

4.3.1 Test Plan. A collection event for CTEx will begin with choice of
location and target. Knowing the orbital elements for the ISS, the test site can be
set many months in advance with good confidence of exactly when the instrument
will pass overhead. For each experimental event a detailed test plan will need to be
developed. As a first step, an overall test director must be appointed who has the

knowledge and authority to deal with all the disparate elements that will be involved.

In conjunction with the location and test event choices, particular considera-
tions must be taken into account. These include the ability of the site to host the

desired event and the amount of time needed to apply for authorizations, gather and
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arrange logistics, and arrange for needed personnel to include any training (safety,
certifications, etc) they may require. If testing is taking place at an actual Air Force
or other Service test range, many of these things will be provided as a matter of
course. Nevertheless, they will have to be accounted for in planning. Keeping in
mind that the purpose of CTEx is to demonstrate the utility and uniqueness of par-
ticular Chromotomographic imaging principles, arrangements must also be made to
take ground-truth data at the test. Equipment and personnel must be present at
the test site to provide baseline measurements of the spectral and spatial information

against which the CTEx data can be compared.

4.8.2  CTEzx Data Collection. Once a test plan has been implemented and
the test site prepared, the data collection event can commence. Prior to the actual
test event calibration needs to take place for the reasons set forth in Section 3.6.
A specific time period for calibration is hard to estimate at this point. The actual
calibration actions on the instrument should be able to be accomplished fairly rapidly.
The greater time demand will be in downlinking and analyzing the calibration data.
This could be approached in one of two ways. The data from calibration could be
downlinked and analyzed prior to the actual test event collection. Due to the limited
downlink speed this may take considerable time depending on the data cube size
taken for calibration. The other option would be take and hold calibration data in
secondary storage and examine it after the test event. Since the closer in time the
calibration is taken to the test event the more validity it will have, the second option

is probably the better.

After calibration, the telescope aperture doors will be opened and the prism
spun up to the desired setting for that particular event. Software driven collection
(windowing) will be initiated to coincide with the instrument FOV as the test event
enters the scene. Timing is obviously crucial for a successful collection. Fortunately a
readily available source of precise timing is GPS. GPS timing is available on the ISS

so it can be used for a ¢, common timing mark to synchronize camera operation and
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test event. Timing synchronization is more of an issue in a very fast transient event
like an explosion rather than a relatively long combustion source such as a rocket
engine or flare. Even for these less demanding events though, timing markers will be
important since the data taken from the event on the ground will need to match up
with the data taken from CTEx to make valid comparisons. The criticality of timing
between the event, the ground truth instrumentation and the CTEx raises another
issue. Because the data generation rates are so high the CTEx cannot be run for long
periods of time. This means that the timing of the command to begin data collection
will be very important. This being the case there is a communication latency issue
which must also be taken into account. The time it takes between issuing a command,
its uplink to the ISS, transfer to the CTEx command computer, and actually executed
must be well established and accounted for in the event time line. Again, this is less
of an issue for a long duration event like a fire, but it still must be budgeted for to
ensure the instrument hasn’t partially or fully overflown the test position before data
collection actually begins. But if the command is issued too early, the instrument
may run low on available memory before the area of interest enters the FOV. Pre-
loading a sequence of commands to be executed at set times will help to mitigate
these latency issues. Nevertheless, even under those circumstances the relative times
of execution between the CTEx instrument and instrumentation on the ground is
necessary. Understanding and management of the sequence of event timing then is

imperative to experimental succuss.

To establish good spectral, radiometric and spatial data for each test event there
are several pieces of equipment that should be prepared to take data on the ground in
conjunction with the CTEx space-borne instrument. Among those already used for
these types of events are several spectral-radiometers and imagers. A list of these is
provided in Figure 4.4, all of which have been used for fast transient explosive tests
as shown in Figure 4.5. At least three instruments should be taking ground-level data
during each test to include an F'TS (Fourier Transform Spectrometer) with at least one

silicon-based FPA to collect data in the visible wavelength band, a terrestrial version of
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the CTEx instrument, and a high speed imaging camera. The F'TS will provide base-
line spectral and radiometric data which will be important for establishing a control
for the experiment. The ground-based CT instrument provides a direct comparison
data base against which to measure CTEx. This comparison will be important in
helping to determine whether anomalous data from CTEx is a factor of the instrument
itself or transmission through the atmosphere/space environment effects. The third
instrument, the high speed camera, will help by giving a well defined time versus
spatial dimension information for the test event. This will ensure reconstruction of
the event in time with high precision. Doing this will allow data reconstruction with
high confidence that any particular data block is in the right sequence with others.
That is an important check since our downlinked data may not arrive in the correct
time order. Beyond this, having a precise time-spatial profile of the explosion fireball,

for example, is a good control for the spatial data coming from CTEx.

Once the test event has taken place, the CTEx camera and prism rotation will
be turned off. The telescope aperture doors will be closed and data transferred from
the camera on-board memory to secondary storage. When that has been completed,
instrument health sensors will be checked to ensure the CTEx is back in its nominal
configuration with camera off, aperture doors shut, and prism in initial position (0°
angle or “straight up”). Then a post-event calibration should also be conducted us-
ing the on-board calibration set up. All data will need to be partitioned in secondary
storage and then downlinked in chunks to the ground station(s) where it will eventu-
ally be analyzed. The data taken from the ground instruments will also need to be

exported to the analysis site.

Chapter III (Section 3.5.1) makes clear that data downlink is likely to be a
lengthy affair, over 30 hours for 15GB of data. Although it will be possible to take
data from another test event before the first data set is fully off-loaded, it would be
better to do at least a preliminary analysis before starting another run. In the event

that there are problems with the first data set, these can be identified and addressed
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Figure 4.4: Characteristics of equipment that has been used in characterizing fast
transient events in the past [39].
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Sensor
FOV

Figure 4.5: Clockwise: (a) Artillery shell on site for a ground explosion test event.
Note the measurement equipment on the plateau above.(b) Explosion
event from artillery shell test. (c¢) A longer event is this rocket engine
test. [39]

98



so they are not repeated. Otherwise time and effort may be wasted executing another

collection that has the same problems as the first.

Once all data is collected and examined for validity the test director should
convene some sort of after action panel to go over the test event, identify problems
and issues, and make recommendations for improvement. These then should be im-
plemented for the next round of testing through an upgraded test plan. Testing then

continues in an iterative fashion.

4.4 Space Environment Considerations

The ISS orbit is a low-earth orbit. It is well within the Earth’s magnetosphere
and is even within the ionosphere by most definitions. Therefore there is not a great
deal of threat to the CTEx instrument from high energy particles carried by the solar
wind, under most circumstances. The orbit is well out of the Van Allen radiation
belts, which range from roughly 2.5 to 6 earth radii in altitude. CTEx will still
be subject, as all electronics in space are, to the possibility of Single Event Upsets
(SEUs). SEUs result in a bit flip caused by an energetic charged particle interacting
with processors or other electronic components at the bit level. There is little that
can be done to protect against these events, but CMOS based devices are inherently
more resistant to them than CCDs. The ISS orbit does not pass through the polar
cap areas, where high energy particle flow into lower altitudes is most prevalent, but
it does regularly pass through the South Atlantic Anomaly. This region, located
off the coast of Argentina, is another region where Earth’s magnetic field is weak
(see Figures 4.6and 4.7). This weaker geomagnetic field strength results in charged
particles flowing down magnetic field lines in that area. Spacecraft passing through
the South Atlantic Anomaly have a higher probability of SEUs, some of which may
cause electronic malfunctions or data corruption. The bottom graphic in Figure 4.6
dramatically demonstrates the high rate of SEUs in the area. The positioning of
more susceptible components, such as the CPU or FPA, can be taken into account

to provide some level of shielding, but the risk cannot be totally alleviated. It will
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be prudent to limit CTEx active operations as much as possible during periods when

the instrument is passing through this area in its orbit.

Another threat from the space environment is the possibility of differential
charging between components or areas of the instrument as it orbits. Different mate-
rials and /or positioning as the instrument moves from sunlight to shadow can result
in the buildup of positive charge on some surface areas and negative on others due
to photoelectric effects. If a great enough charge differential is allowed, an arcing
discharge may be initiated. This tends to have very deleterious effects on electronics
nearby. These electrostatic discharge effects can be minimized through instrument
cover design. Another possibility is the addition of a Faraday cage to redistribute
surface charge and negate electrostatic buildup. This option will add weight and cost

to the instrument.

To summarize, the biggest issues facing CTEx operations once on orbit are pri-
marily organizational and timing. Careful planning and precise coordination between
instrument operations and ground-based test events will be critical to producing good
data. This is particularly the case for test events, such as explosions, where rapidly
changing spatial and spectral signatures are to be captured. The predictability of
the ISS orbit and use of GPS-based timing synchronization should help to ameliorate

these challenges.
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Figure 4.6: (Top) The South Atlantic Anomaly is an area of weak geomagnetic field
that allows charged particles to concentrate and penetrate to lower alti-
tudes resulting in higher incidents of SEU. (Bottom) Data from two LEO
satellites illustrates the high rate of SEU over the Anomaly. [12,37]
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Figure 4.7: The ISS regularly passes through the South Atlantic Anomaly in its orbit.
A higher chance of SEUs results. [12]
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V. Conclusions
5.1 Thesis Summary

There are a great many considerations that must be taken into account in trans-
lating a lab-based device into a transportable, operating instrument. This is true in
just designing a terrestrial instrument much less one that must be operated in space.
In producing this thesis the design and key operating principles of the rotating prism
chromotomography scanner were examined. The principles and background of spec-
troscopy in general and hyperspectral imaging in particular were studied. Examples
of early and more recent hyperspectral designs were used to both illustrate some of
the concepts involved and to provide models from which the CTEx instrument could
borrow. Concentrating on space-based instruments helped to frame a lot of issues that
had to be addressed in trade space analysis for CTEx. These areas were discussed in

Chapters I and II.

Chapter III was dedicated to the trade-space analysis for the planned space-
borne instrument. Areas that were specifically studied were the front-end system
optics, the prism itself and its rotation component, the focal plane array and issues
associated with rapid data capture and reset, data generation and handling to include
storage, data downlink and general communications, and system calibration. Beyond
straight forward trade-space analysis, instances of possible design problems were also

identified.

Chapter IV walked through requirements for actual CTEx data collection. A
general time-line of sequences of events was used to introduce and discuss the major
considerations for conducting the actual experimental tests. Although the primary
focus of this thesis is the instrument itself, the interactions between the space in-
strument and the ground were explored. Those interactions illustrated the very close
dependence of events taking place in space and on the ground which must be coordi-
nated for successful testing. There are three basic criteria defining success for CTEx.
These are collecting usable data from test events that include: a single hyperspec-

tral image with no time component (a snapshot), a large, relatively slow changing
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transient event, and a rapidly changing transient event. Of these, the fast transient
event will demonstrate the capability of CTEx that differentiates it from all other
space-borne hyperspectral imagers operating through 2009.

5.2 Issues

This thesis has brought to light several trade-space issues that will need to be
decided upon for the design to move forward. Some of these can only be resolved
through testing while others will require choices to be made by the end-users of the
expected data. One of the most comprehensive issues is that of operating the various
components in a space environment. Options for existing hardware for the front-end
optics, prism and prism rotation table, camera and FPA, and data storage devices
have been presented. The one common factor to all of these components is that none
of them have been used in space nor have any been tested for ability to operate in
space where near vacuum and thermal considerations must be taken into account.
COTS hardware was specifically considered for this project to limit cost and risk, the
fact is that some of these components will require significant customization because of
the space environment. Customization will partly negate the advantages of choosing

COTS components in the first place.

Specific components that will need customization are the telescope, the prism
and its associated rotation mechanism, the camera, and possibly the secondary mem-
ory. Beyond the capacity to operate in space, all of these components, in their off-the-
shelf forms, assume an ability for the operator to access and adjust them by hand if
needed. The requirement to be able to remotely operate this instrument and address
problems without hands-on intervention is not a trivial one. Just one example is the
front-end telescope. It appears at this point that these optics will be engineered and
produced by RC Optical Systems. A brief visit to the company’s web pages provides
a strong indication of the requirements for optical collimation. Technical articles on

how to accomplish this collimation with their existing products illustrate the absolute
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necessity of collimation and also assume hands-on capability to do so. The article on

collimation procedures for Ritchey-Chretien telescopes is included in Appendix E.

Another possible problem that presented itself during the course of this study is
that of thermal stresses on the direct vision prism. This also applies to the achromatic
focusing lens. Thermal cycling testing will need to be done to determine if there is
a real risk of the prism or lens separating due to differences in thermal expansion
and contraction between the materials used in these components. The possibility of
thermal gradient differences between structural members must also be considered to

avoid issues such as that which affected Hubble as related in Section 3.7.1.

A trade-space decision that must be addressed by the data customer is the
method used to stare at a test event for data collection. The windowing method
described in Chapter III is less costly, probably more precise, and presents less risk of
hardware failure. It also only allows for very limited data collection time per event.
Mechanical slewing, whether using a rotation bench or a slewing mirror greatly in-
creases the mechanical complexity of the instrument, adds mass, and presents greater
risk. It also will allow the instrument to achieve the full 10 second data collection
requirement. The end user will have to make an assessment as to whether the short
data collection (on the order of 2-3 seconds) is sufficient or it is worth the additional

costs of mechanical slewing.

Although there are a number of issues that will need to be resolved in the design
and construction of CTEx, this is not unexpected. One of the primary purposes of
this thesis was to identify these issues so they can be addressed early in the design
process. Proper design study and testing should successfully settle the problems that

have been noted.

5.3 Further Study Needed

This thesis is the first study undertaken to identify the major engineering issues

and tradeoffs involved with designing the CTEx and using it. However, this is by no
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means an exhaustive nor comprehensive analysis. There are a number of areas that
have yet to be examined before this instrument can be built, much less launched and

operated in space.

Among these areas still to be worked are instrument control, structural design
and fit of specific components, and testing and certification for space operations.
Control is a very complicated problem. The controls mechanism for CTEx will have
to include synchronization between the prism rotation table and optical encoder and
the camera. It will require some sort of position feedback data loop for the prism
position. It must be able to operate the telescope, the camera, the front-end aperture
doors, the calibration LEDs, and, if mechanical slewing is employed, be able to control
those movements with extreme precision. Software will have to be written to execute
these functions as well as to move data from the camera to secondary storage, perform
any pre-downlink processing such as data compression, downlink large masses of data
with reliability and some form of data packet encoding to ensure all packets are
sent and arrive and are able to be reconstructed in the proper sequence. Electrical
power will have to be distributed to various components such as the camera, rotation
table and LEDs at the proper voltages, cycles and wattage. There will need to be
system health and status sensors that, at a minimum, will report on temperature,
power, and instrument component position. Timing will be essential to coordinate
operations between CTEx and the ground, and for proper operation of the CMOS
FPA, particularly if the windowing data capture method is used since rapid pixel
readout and electronic control of specific pixel activation will be paramount. All of

this must be taken into account under the heading of “control”.

Analysis of major issues trade-offs for various major components for the CTEx
instrument has been completed. What has not, and cannot be done until specific
components are actually selected is modeling and fitment for the instrument as a
whole. As a reminder, as much COTS equipment as possible is being used to hold
down costs and lower risk by buying more mature technology. The downside, or trade-

space, of this strategy is that the various components, i.e. telescope and prism rotation
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table, have never been incorporated into a single design to work together as a whole.
This being the case, work will need to be done on exactly how to fabricate CTEx
with all the parts working in conjunction with each other. The overall packaging to
fit onto the JEM-EM, or other ISS platform, and correctly connect with the supplied
power and communications links will also have to be modeled. Part of this design
work will need to consider the materials used for structure and housing. As discussed
in Sections 3.3 and 3.7.1, care must be taken to account for differences in material
properties that could result in problems due to thermal cycling or even differential
charging between parts as the ISS orbits and passes through high particle energy

portions of the ionosphere.

This trade-space analysis is only an initial step in the design and construction
of CTEx. Engineering design and analysis of each of the instrument components,
followed by overall instrument design and construction is a natural progression for
the project. It is inevitable that as these steps are taken further challenges will

present themselves and be resolved in turn.

5.4 Testing

A crucial area of further work on CTEx will be extensive testing. Not only will
the instrument need to be tested to ensure it works as designed and produces the data
needed, but very stringent requirements for operation in space must be met to satisfy
NASA and ESA (European Space Agency) space qualifications. This is the sin quo

non of this instrument. If it isn’t space rated, it doesn’t fly.

The actual regulations are too numerous and beyond the scope of this thesis to
go into in any detail. Suffice it to say that safety standards for strength, electrical
hazard, overheating, and others will have to be tested for. Each component must be

tested and the instrument as a whole must be tested, under all operating regimes.

Therefore, a well designed, planned, and executed test regime must be accom-

plished. The test program completion will naturally be one of the last steps prior
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to launch. This being the case, actual testing must wait not only until specific com-
ponents are selected and fitted, but produced and delivered. The test planning and
design can be accomplished earlier though. Some of the main components a compre-
hensive test program will have to include are: G-testing (mainly for launch survivabil-
ity), vibration, noise production by the instrument, thermal cycling effects, operation
in a vacuum, and software testing. It cannot be stressed enough that testing will be a
major undertaking and require significant time and resources in man hours, lab time,

logistics and analysis.

Finally, there is specific instrument information that will be needed that can
only be gathered through empirical testing. Besides the vibration and thus jitter data,
one of the most important data sets is that of system noise. This can be estimated
through modeling to some extent, but one never really knows what the system noise
will be until it is actually tested. Once system noise is known, and having data for
pixel sensitivity (quantum efficiency), floors for signal-to-noise ratio (SNR) can be
derived. Thus minimum signal strength for data capture can be established. One
must keep in mind that the faster the prism revolves and the faster the camera frame
rate, the less signal per unit time reaches the focal plane array, assuming radiance is
constant. Using radiometric data the required radiant power for an event to register
with CTEx under various operating conditions will be established. This is important
to avoid wasting time and resources trying to collect on a test event if there is no
hope of the pixels in the FPA being able to register the incoming photons because

there are too few of them.

Testing is going to be a major component in the overall production of CTEx.
The safety requirements and the ability of the instrument to perform as expected must

be thoroughly vetted to ensure success. This is true though of any space experiment.
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5.5 Conclusion

The CTEx instrument is a bold initiative that promises to introduce new ca-
pabilities in the field of hyperspectral imaging. There are significant challenges in
designing, constructing and operating this HSI. This thesis has investigated these
challenges and identified problem areas and design trade-spaces that must be resolved
as an initial step towards launching and operating CTEx in space. A summarization
of the major instrument component decision areas is presented in Table 5.1. The
successful resolution of these issues as CTEx is engineered will, in the end, lead to a
successful instrument and successful experiment. Hyperspectral analysis of fast tran-
sient events is in its infancy. The successful fielding of CTEx will open up numerous
areas of research in Physics, Earth Science, Meteorology and others, as well as proving
a technology with direct, immediate applications for the Department of Defense and

possibly Homeland Security.
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Table 5.1: Summary of Trade-Space Issues

Issue

Choices

Comments

Front-end Optics

Refractive vs Reflective

Reflective optics offer great ad-
vantages in less aberration, bet-
ter stability, less susceptibility
to thermal distortion and better
scalability

Telescope Design

Complexity vs Available Space

An off-axis Mersenne design pro-
vides a good compromise be-
tween compactness and the nec-
essary placement of a field stop
and light collimation leading into
the prism. A simple Ritchey-
Chretian may not fit the avail-
able space.

Direct Vision Prism

Bonded materials vs customized,
gapped design

Thermal cycling may break
bonded layer. A space-gapped
DV prism would avoid this.
Testing is needed to determine
prism susceptibility to thermal
failure. The issue may be alle-
viated through passive thermal
protection.

Rotation Table

Rate vs Accuracy

Recommend prism rotation con-
trol in increments of 10V Hz; N
=0, 1, 2, 3. This provides a
range of rotation rate while of-
fering precise set points for well
defined controllability.

Focal Plane

CCD vs CMOS

Requirements for focal plane
throughput strongly indicates in
favor of CMOS.

Camera

Frame Rate vs Resolution

User input required: 1000 frames
per second requirement favors
Photron Fastcam SA2; higher
rates favor Phantom v12.1.

Memory

Hard Disk vs Flash-Solid State
vs DRAM-Solid State

DRAM-SSD is more expensive
but clearly has superior perfor-
mance and is more robust for
space environment.

CPU

Capability

BAE systems RAD750 family
of single-board computers is
space-rated off-the-shelf, mature,
proven and compatible with ISS
data architecture.

Scene Staring Technique

Mechanical vs Electronic Slewing

User input required: Mechani-
cal slewing adds complexity and
risk but meets time requirements
for data collection per test event.
Electronic slewing requires no
additional components but only
provides 25% of requested data
collection and may be difficult
to accomplish due to demanding
precision timing.

Calibration

External vs Internal

LED lights mounted on aperture
doors provide good spectral and
spatial calibration.




Appendiz A.  Operational Hyperspectral Imagers [45]
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Appendix B.  Prism Specifications
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N 546.1 1.80730 435.8 0.992 0.960
ne 486.1 1.81530 420 0988 .94
ng 480.0 1.81630 4047 |. 0981 0.91 Abweich lativer Telidi i
nNg 4358 1.82495 400 0.977 0.89 nen AP von der ,Normalgerad:
On 2047 | 183308 390 0.970 0.86 APy 0.0099
ni 365.0 1.84717 380 0.950 0.79 APgs 0.0058
N3ga.1 3341 1.86273 370 092 0.68 APggq -0.0021
N3126 3126 .0 0.90 0.61 APge -0.0084
N2ge7 296.7 350 0.81 0.35 AP gy -0.0522
N2g0.4 280.4 334.1 0.60 0.08
No4sa 2483 320 0.39
810 0.26 Sonstige Eigenschaften
Konstanten der Dispersi mel 300 017 @-30/+70°c [10-8/K] 6.2
By 1.78301085 290 @ z0/3000c [10-5/K] 7.3
B2 3.88068350 - 10-1 280 Ta PC) 566
Ba 1.30150440 270 T30 [°C] 864
C B.72506277 - 10-2 260 T1o76 [°C] 740
Cz 3.08085023 - 10-2 250 o /(@K
Ca 9.27743824 - 10! A W/ (m - K))
K ten der Formel firdn/dT | [ Farbcode b [g/cmd] 146
Do 332106 [Feo2s [ 4032 E [10° N/mmz] 124
Dy 112108 m 0.293
D2 -8.52 - 10-12 B. r K [10-8 mm2/N] 1.41
Cy 588-107 HK p1s20 770
Ey 7.13-10-10
e (pm] 0.209 B 0
Temp koeffizi der CR 1
An e/ AT [10-8/ K] An aps / AT [10-8/ K] FR 1
[°C] 1060.0 e g 1060.0 [ g SR 4.3
- 40/~20 4.0 5.1 6.1 1.6 286 386 AR 1.0
+20/+40 4.0 ‘53 6.5 25 37 4.9 PR 1.3
+ 60/ + 80 42 56 6.9 3.0 4.4 57
Nr. 10000 9192

SCHOTT Optisches Glas
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ng = 1.80518 wvyq = 2539 ng — g = 0.031708
SF LB 805254 ne = 181265 v, = 2519 ne — ng = 0.032260
Brechzahlen Reintransmissionsgrad t; Relative Teildispersionen
A [nm] A [nm] . (5mm) | 1 (25 mm) Pst 0.2075
N23azs 4 2325.4 1.74897 2500.0 Pc.s 0.4611
N1970.1 1970.1 1.75544 2325.4 0.965 0.84 Pac 0.2867
Nis296 15296 1.76311 19701 0.989 0.950 Pad 0.2355
N1060.0 1060.0 1.77345 1529.6 0.998 0.995 Py 0.6159
n 1014.0 1.77489 1060.0 0.998 0.988 Pin
Ng 852.1 178147 700 0.998 0.989
ny 706.5 179116 660 0.998 0.988 Pt 0.2040
ng 656.3 1.79609 620 0.997 0.983 P'es 0.4870
ne 6438 1.79751 580 0.996 0.980 Plac 0.2380
Ngacs 632.8 1.79884 546.1 0994 0970 Ped 02315
np 5803 1.80491 500 0.987 0.94 Par 0.6444
Ng 5876 1.80518 460 0.979 0.90 P'in
Ne 546.1 1.81265 435.8 0.970 0.86
Ne 486.1 1.82780 420 0956 0.81
ng: 480.0 1.82977 404.7 093 0.72 Abweichung relativer Teildispersio-
ng 435.8 1.84733 400 092 0.67 nen A P von der ,Normalgeraden
Nk 404.7 1.86500 390 087 052 APcy 0.0032
n; 365.0 380 076 0.25 APcs -0.0010
Naz4.1 334.1 370 0.45 0.02 APre 0.0027
N3126 3126 365.0 0.22 APgr 0.0148
N2gg 7 296.7 350 AP!.Q
Nzgo4 2804 334.1
N24g4 2483 320
310 Sonstige Eigenschaften
Konstanten der Dispersionsformel 300 a_3g/+70°c [10-6/K] 9.0
By - 1.78922056 290 & 20/300°c [10-6/K] 10.3
B 3.28427448 - 101 280 Tg [°C] 605
Ba 201639441 270 Tip180 [°C] 592
Cy 1.35163537 - 10-2 260 T1p76 [°C]
[ 6.22729599 - 10-2 250 cp W/g-K)]
Cs 168014713 - 102 A W/(m-K)]
Konstanten der Formel filr dn/dT Farbcode o [g/cm?d] 3.37
Dy -5.26 - 109 Agofhs | 45/37 E {103 N/mm2] 93
Dy 741-109 n 0.260
Da -1.89.10-11 Bemerkungen K [10-6 mm2/N] 279
Es 1.02-10-8 HK garz0 570
Ey 1.62-10-9
Atk [um] 0.288 B 0
Temperaturkoeffizienten der Lichtbrechung CR 1
An g/ AT [10-6/K] An gps/ AT [10-8/ K] FR 0
[°C] 1060.0 e g 1060.0 e g SR 2
—40/—-20 -0.8 1.1 38 -3.2 -1.4 1.2 AR 1.0*
+ 20/ +40 -1.0 1.4 4.7 -2.5 -0.1 3.1 PR 1.0
+ 60/ + 80 -0.9 18 5.4 -2.1 05 4.2
SCHOTT Optisches Glas Nr. 10 000 9/92

L
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Appendix C. Fast Frame-Rate Camera Specifications

e N PHANTOM VI2.]

Farv Sepnumber 2008

Al spocrficatiors subect 1 charge

Key Fealures:

Up to 6242 frames -persecond
(ips) at full resolution

Maximum fps: 680,000 standard,
1,000,000 optional

12805800 CMOS sensor

Exposure Time (shutter speed)
1ps standard
Sub-microsecond shuttering:
300ns, programmable in 18ns
increments (optionall

High-resolution timing system:
Better than 200 resolution

Extreme Dynamic Range (EDR):
two different CXpOo SUres within a
single frame

Internal Shuttering: session-
specific black reference (CSR

Memory Segmentation :
Up to b4 segments

BLCEEEEEECIN O!S!A

High-Definition, 1280x800, 1 million fps, sub-ps shutter,
Phantom CineMag™ compatible

WHEN IT°S TOD FAST TO SEE, AND TOD IMPORTANT NOT TO™

One million fps is the new benchmark in high-speed imaging.
Introducing the Phantom V12.1-a megapixel camera capable
of taking 1,000,000 pictures-per-second.

With the Phantom V12 camera, Visjon Research broke the
high-speed digital imaging speed barrier. With the V12.1, the
fastest camera now adds remote/automatic black referencing,
dual independent HD-SDI outputs, a component viewfinder
port, high-speed synchronization and range data input.

Take the wide view with our custom-designed 1280x800 CMOS
sensor. The wide aspect ratio of the V12.1 allows you to see
more of the event you are recording with a “widescreen” view.

Get 6,242 frames-per-second (fps) at full resolution. At lower
resolutions, you will get even higher frame rates, up o
1,000,000 fps (optional).

117




S W PHANTOM VI21

More Key Features:

Non-volatile, hot-swappable
Phantom CineMag™ memory
magazines (256GB & 512GB)

CineMag™ o CineStation™
Range Data input

Built-in Memory: BGB, 16GB,
32GB

1SO (ISO-12232 SAT):

6400 Mono

1600 Color

Pixel Bit-depth: 8- and 12-bit
GH ethemet

View recordings immediately via
video-out port

Al specificators subed 1o charge Fev Sapternbar 2008

With an active pixel size of 20 microns and improved quantum
efficiency, the Phantom V12.1 camera has sensitivity superior to our
acclaimed V7.3, So, even if you are using our sub-microsecond
shuttering, you'll get the highest sensitivity with the lowest noise
possible.

That's right. You can eliminate blur and see the most minute detail
by using our optional sub-microsecond shuttering. Down 1o 300
nanoseconds, programmable in 18ns increments.

Each camera supports 8- and 12-bit pixel depth. Smaller bit-depth gives
vou more recording time and smaller files. Greater bit-depth gives you
more gray levels and finer detail. With the greater latitude of 12-bits,
you can pull more detail out of the image.

The V12.17 high-resolution timing system yields a timing resolution

of better than 20ns. Frame rate, frame synchronization and exposure
accuracy are all improved over previous generations of high-speed
cameras. And, a frame synchronization signal is now available via a
dedicated BNC for easier cabling and increased signal integrity. This
makes the camera perfect for PIV applications with a 500 nanosecond
straddle time and no image lag.

Of course, the V12.1 offers our unique Extreme Dynamic Range (EDR)
feature giving you the ability to get two different exposures within a
single frame. And, with auto exposure, the camera adjusts to changing
lighting conditions automatically.

There is an internal shutter for shading the lens when doing a session-
specific black reference (CSR). You can now do remote CSRs through
software control, or set the camera 1o take a CSR at the end of each
shot — automatically applying the reference to the shot!

The V12.1 comes with 8GB of high-speed dynamic RAM standard, but
you can order 16GB or 32GB versions. Our segmented memory allows
you 1o divide this into up to 64 segments so you can take multiple
shots back-to-back without the need to download data from the
camera.

Or, record directly to our Phantom CineMag™ non-volatile, hot-
swappable memory magazines (available late 2008.) They mount on
the CineMag compatible version of the camera. Continuously record
full resolution cines into non-volatile memory at up to 1000 fps.

That's up to 256 seconds into the 256GB CineMag or 512 seconds
into the 512GB CineMag. Or, record at higher speeds into camera
RAM, then manually or automatically move your cine to the CineMag.
With CineMag storage you get maximum data protection and an ideal
storage medium for secure environments.
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e W PHANTOM VI2.

Resolution/Speed Charis*
| FPS
1280 800 6.242
1280 20 6533
1024 768 78
w52 e
800 600 1,354
™ s 1S
640 40 18,768
2 M2 2097
512 384 27,865
2 % 4B
512 128 81,004
s M s
512 2 284171
25 256 66,9497
% m ;e
25 B4 240,0%
% 2 423190
5% 18 68394
%% 8 %032
128 128 183,250
128 & 330,468
128 18 852514
8 8 1000000

Ml soncficators submdt 1o charge Few Saptember 2008

10000085 980382  TE3SA1 651 SATSS 463N
560224 43190  BAIT1 2M88 150 1434R
26239 168067 1063N en 6142 5078
BN G S We a2 N
o4 M0 00 15186 184 75
B R ML 101M £74 6,501

HiII e

Move the CineMag from the camera to a CineStation™ connected to

a PC and view, edit, and save your cines using the Phantom Software
supplied with the camera. Keep them in their original cine raw format,
or convert them to TIFF, QuickTime, AVI, or a number of other
formats. Move the files from the CineStation to a disk or tape deck

via GB Ethernet, dual HD-SDI, or Component Video outputs. (A 10GB
Ethernet interface will be available as an option in late 2008.)

When used on a tracking mount, elevation and azimuth data can be
transfered to the camera and associated with image frames through
our unique Range Data input.

A video-out port on the camera allows you to connect to a component
video monitor and view your recordings immediately in a variety of
formats including NTSC, PAL, SDI and high-definition 720p. And,
there are two HD-SDI ports that can be used together for 4:4:4 video
out, or used independently (giving you one for playback while the
other is used for live preview.) A component video viewfinder port

has been added so any viewfinder compatible with our Phantom HD
camera can now be used

with the V12.1.

The V12.1 is controlled by the feature-rich Phantom Software. If
you've used any Phantom camera before, you will know how to run
the V12.1. And, we'll ship you a trial version of Image System’s TEMA
Starter for Phantom for motion analysis applications.

The V12.1 comes in two base models, either with or without a
CineMag interface. The base models operate at up to 680,000 fps
and 1us exposure. An option is available to enable 1,000,000 fps and
300ns exposure. All models come in either color or monochrome
configurations.

* Assymes oononal 1,000,000 fos. J0nwc upgrade 8 nstalied.

119




e W PHANTOM V121

N T A0k N hatge Rew SeskaToe 2006

Additional Features:

Analog video out: PAL, NTSC & HD Component (720p)
HD-SDI: 720p

lms#g: F-mour, C-mount, PL-mount

Size (without lens): 12.25 x 5.5 x 5.0 in.
LLW,H 31.1 x 14 x 1.7 cm

Weight (without lens): 12 Ibs (5.4 Kg)

Power: 90 Watts @ 24 VDC, without CineMag

Operating Temperature: 10°C to 40°C @ 8% to 80% RH
Storage Temperature: -10°C to 55°C

Non-Operational Shock: 33G, half sine wave, 11ms, all axes
Operational Shock: 5.56G, half sine wave, 11ms, all axes
Operational Vibration: 0.25G, 5-500 Hz, all axes

Focused
Since 1050 Vision Research fan bein shoding. desgreg. and manutacung high-speed camerss.
Cur single Yorus 5 to mwert, build, and sppon the most adanced cameras possible.

HE =~ Vision Research
ViSiO N. e o
Wayne, NJ 07470 USA
+1.973.696.4500

www.visienresearch.com

An AMETENC Corgany
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The Photron FASTCAM SA1 will meet the imaging requirements of the mast
" b it s sl dosakcpuu i 10 1 i
sensitivity, speed and resolution.

The FASTCAM SA1 uses the latest CMOS sensor to achieve sensitivity and
speeds previously unattainable. With a top speed in excess of 600,000 fps
(frames per second) and with true 12-bit dynamic range, the FASTCAM SA1

once again establshes Photron as the true leader of high speed imaging
innovation

With a global shutter operating independenty of the frame rate selected;
from 1/60th of a second to 1us, and with the dead time between sequential
frames less than a micrasecond, the FASTCAM SA1 provides everything,
yes, everything, even an SDI output as standard, that true high speed users
demand

For thosa not wanting to use a PC to control and operate the camera
through the Gigabit Ethernet port, the FASTCAM SA1 can be contralled by
an R5-422 remote control keypad with built-in 5° LCD monitor for complete
camera set-up and operation

For applications where ingress of dust or moisture would be hazardous, 3
sealed version (FASTCAM SAI RV) is available

+ Balistics
*  Astospace

*  Materials research
+  Fluid dynamics

+ Defence
= PV

" Performance:

1,024 x 1,024 pinels @ 5,400 fps
832 x 608 pixels @ 10,800 fps
640 x 480 pixels @ 18,000 fps
512 x 512 pixels @ 20,000 fps
256 x 256 pixels @ 67,500 fps
256 x 16 pixels @ 500,000 fps
&4 x 16 pixels @ 675,000 fps

Variable Region of Interest (ROI)

Capture 12-bit uncompressed data

One microsecond global shutter

Composite and SDI video output for real time monitoring during set
up, recording and playback

Memory options incdude 8GB, 16GB and 3268

Phase lock to IRIG/GPS
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Speciicatons Frame Rate / Recordng Duration Tabie

FRAME RATE MAXIMUM RESOLUTION , RECORD DURATION (12-81T)
SHUTTER - ——
hi T —— A EXPOSURE

i 1M + :
3 1098
10K Y ; 2 1058

L 5 IR L]
10918

1o 9a

15410

s, ne

%W-mw““ Operating Temp.  0-40 decrees C (Range version increases upper limit 10 35C)
w Four user selectable camera function control mountedon  Mounting 1x %20 UNC, 1x 3/8-16 UNC, 6x M6

the cameras rear panel Dimensions and ﬁmm:%%w&ﬁ%
—1 o 100V - 240V AC ~ 1.54, 50-60Hz o 2

SEETRTTEIET Ml SRRt

camera

Triggering Selectable positive or negative TTL 5Vp-p or switch dosure
TriggerDetay  Programmeble deley 00 selected ingut and cutput
Timing Intemal dock or external source such a5 IRIG or GPS

PHOTRON USA, INC. PHOTRON (EUROPE) LIMITED PHOTRON LIMITED
9520 Padgett Street, Suite 110 The Barn, Bottom Road Fupmi 1-1-8
San Diego, CA 92126-4446 West Wycombe, Bucks, HP14 485 Chiyodsa-Ku, Tokyo 102-0071

Usa United Kingdom lapan
Tel: 858.684.3555 or 800.585.2129 Tel: 441; (0) 1494 48101 Tel: +81(0)33238-2106 Ph 0 t ru n

Fax: B58.684.3558 Fax: +44 (0) 1494 487011 fax; +81 (0) 3 3238-2109
Email: image@photron.com
“W.DM tron.com 1 ,' BLOW MOTION IMAGING SOLUTIONS
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FASTCAM SA-2

FASTCAM SA-2: High-Speed Video System
2,048 x 2,048 [AMEGA pixel) resolution,

developed for a broad range of applications
including automotive safety testing, defenc

fluid dynamics and materials research

Tha FASTCAM SA-2 has bean

enginaered to parmit detailed

observation and analysis of large spatial

araas in the fields of automotiva safety

testing, fluid dynamics and solid FEATURES

machanics. With full HD (1920 x 1080 -

pixals) resolution at up to 2.000fps this 2,048 x 2,048 pixels @ 1,000fps

systam has also the potential to be 3
1,920 x 1,080 pixels @ 2,000fps (Full HD 1080i

appliad to broadcast applications in " @ ( )

Sports, Advaertising and Entertainment 12-bit A-D

= A ight sensitive CMOS imaging sensor Monochrome or colour sensor
allowwng images to be captured in the

fiald with littie or no additional lighting 8.16 or 32GB
12-bit AL yeids axcellent dynarmc Gigabit Ethemnet (1000BASE-T) interface

rangs
Simple to OPErEts via the intuitive Phatron Optional handheld remote controller with integrated
Faxtrewn Viewer [PFV) soltosen video monitor for simple control of all functions and
viewing of live and recorded images.

iIntegration with exstng mobon analyaas, ! = ;
PIV or DIC systerms & achieved through Lowdight mode for initial set up of camera position
usa of the suppled STIK and focus

Optional RS422 remata keypad control Rugged design for use in industial environments
offers added vercatlty with busiten Snch

LCD color dsplay Intuitive Photron Fastcam Viewer (PFV) software
with comprehensive range of functions for camera
GigE interface to user networks set-up, image acquisition, replay and storage.

Photron
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Vertcal

Specificat FASTCAM SA2
550l s/ PP Photron

for clar®y some cotions Aave heor omitta)

PIXELS 2048 12 1636 1280 1024 768 612 266
2048 1.082 1,126 1,250 1440 1600 1,800 2,160 2.500
1920 1.126 1.260 1,350 1.600 1500 1.876 2250 2700
1me2 1.200 1.360 1420 1.600 1.800 2.000 2400 2.880
1664 1.260 1,420 1,600 1.600 2000 2260 2,800 3,000
1636 T ALl 1,600 1,600 1878 2,160 2400 2830 3376
14c8 1.500 1,600 1.876 2.000 2280 2700 3,000 3,780
1280 1.600 1.876 2,000 2260 2500 2880 3,376 4,000
162 1875 2.00C 2,280 2500 2883 32% 3,780 480
1088 2.000 2,160 2400 2.700 3,000 3,376 4,000 4800
1024 2.160 2260 2.600 2880 3200 3,60 4,000 6,000
896 2400 2700 2,880 3200 3600 4,000 4800 6400
768 2880 3,000 3,376 3780 4000 4800 5.400 6760
(224 3,378 3,760 200 2500 5,000 5400 6,750 8000
E76 3.760 4,000 4,600 5,000 6400 6,250 7.500 8,000
612 4000 4800 5,000 5400 6280 7.200 8,000 5.500
184 6.400 6,000 6,750 7500 8,000 9,000 10,800 12,500
266 8.000 9.000 3.600 10,800 12.000 13,600 16.000 18.000
128 16.000 16,000 18.000 20.000 22 600 26,000 28.800 30,000

32 50,000 54,000 64,000 62,500 &L000 72,000 80.000 86400

Serpcr 1208 CUO3 (Bayer nyzier Codr, Snge sevicr W 10U Dl

Shuae Gioba cechonic thusier Por 18.7ms 0 1.7us independent of Pame rae

| ere. Mount miechangeabie S-rrount ond C-moert ysng tpoied sdeowes tefons Bl and B en: mourt

| atenod syname: nanE Twert; presets preeet anl emeecture
108 ctandeT
1838 spee
1206 kR

Viseo Outpant 21 HD SDI Apimy © 2907 e 051 T af7® Fje A LeD8d Lve V6 BoPRj Csrlng.

Camota Conrol TResogh 20208 1ey3d MFT MBS sewrnde o GCadt ETemet o R IIIA

Usar presst sastcres 4 camers mounEd use Sefmed ANCIon Dt

Low lagft moce Lom IGTE TO5E SHETI0N 17 TITOE 3ET BOLITTRE! ANET ATARY; T Om BTSEN 7L SigT SETE MR I IhOR SoTure e

1 Seiscabie poahe o regatve TTL S3p-5 o sele Comare

Tryger setay Pugmmmabe iy ¥ eC] N3 878 Ut e 1 00n: mounon

Taming el

Phase Lack Eralsr: Comerms © be SynSvOned peecie)y WOEReT D § MESier (TS I ETETE S0UTE

| voret marken Tem Zer —srirved retl TS TEN SECFC TS WP T DS JETUETCE P TS Tre. Irrredensy stiemite Proul
e

lus Racordng TEA

S-lh 3%, 251 Ce=ir Werusl Sardom Fandom Cever Sandon Vanae

Sevest Image Formats JPED LWL TR IR RAN compremed o grcoerpresdedt P40 and FTIF mages o be doved o o 0fPout mage o Cormment
Y

Deta Disgrtay nﬂ:-u.mm’wu-.n--h.mnwl.mmmomum

Dtz Acqurimpee TEL

ks N 48 togees ¢

m 10 %38 UNC, Tn 36-18 UNC. B e

Dwmensicns ane: Rogre 260mm L v *50mer W r S3mm N, weigee £.0ug

Powet mgurenenty 100V - 2407 AC - 1,54, 50-80-3 cpticral 0T cperetion 438 VOC, Y00WA [P p—
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FASTCAM-S5AS5

FASTCAM-SAS: High-Speed Video System
Next generation CMOS sensor technology
providing 7.000fps. 1024 x 1024 pixels

Tha Photron FASTCAM-SAS will mest the
requirements of the most demanding
apphcations n resaarch and developmant
due to its unrivaled sensitivity, frame rata
and resolution.

This high spacification will parmit the SAS

to be applied to areas of ressarch once

dicmicsed as unsuitable for digital high- FEATURES
spaad vwidao

Performance examples
Building on the success of the Uima APX

range of systems our sensor design 1.024 X 1,000 pixels @ 7.500fps
improves sencitivity, image quality and 512 x 512 pels @ 25.000fps
color reproduction 258 x 256 pixels @ 57.500fps
128 x 128 pixels @ 282.5 s

Tha Fastcam SAS delivers magapixel
recolution at 7.500fps. an impressive Up to 1,000,000 fps a1 reduced resolution
magmum frame rate of 1.,000.000fps

i f { )
and a 1 microsacond axposure tima Vanable Region of Interest (RO

Capture 12-bt uncompressed data
Target applications includa o o P

20um pixels ensure best ight sensitivity for
demanding high-speed or low ight applicatons

1us global shutter can be set ndependent of
salected frame rate

Composte and SDI video output for real time
monitoring during set up, recording and playback

Optional remote keypad control wih integrated
vewfinder

8GB. 186GB or 32GB memory options

Gigabit Ethemnet interface
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Specifications FASTCAM-SAS Ph otron

Partial frame rate / resolution table:
Variable frame rate clepc &4 1 8
Some cptiont omitted for clarty Honzontd rescluton
PXELS | 1024 096 760 840 512 304 256 128 sa

1024 | 7000 7.500 3,300 10000 | 12500 | 18800 | 21000 | 37500 | S4250
0se 7500 S300 10000 | 12500 | 15000 | 18800 | 25000 | 42000 | 82000
760
B4ac

S300 10000 | 12500 | 14000 | 17500 | 21000 | 31000 | SODO0O | 70000
10000 | 12500 | 15000 | 17500 | 21.000 | 25000 | 37,500 | 80000 | B4.000
512 14000 | 1S000 | 18200 | 21000 | 25000 | 31000 | 48500 | 70000 | 105000
304 18,200 | 21000 | 25000 | 28000 | 35000 | 42000 | 62000 | 93000 | 131220
256 | 28,000 | 31000 | 37500 | 42000 | SO000 | €5,100 | 87500 | 140000 | 198000
g 120 | S42S0 | 82000 | 70000 | ©4A000 | 100000 | 124000 | 182750 | 282500 | 350000
712 | 82000 | 70000 | 7S000 | 93000 | 105000 | 140000 | 168000 | 282.500 | 372000
75000 | 24000 | 23000 | 105000 | 131250 | 182750 | 210000 | 325500 | 420000
= 105,000 | 105,000 | 140000 | 182750 | 188,000 | 232500 | 30000C | 420000 | S31.2850
32 188.000 | 210,000 | 232500 | 282500 | 325500 2000 | S25,000C | 700000
16 | 350000 | 372,000 | 420000 | 485,000 | S25,000 | 820000 | 775000
a
Sermor

561.250 | 820,000 | 700000 | 700000

1208 CMO3 (Baye yTiee (OO, SiNge see0r o 0L pinet

Sragtne cba ethon: thufer Yom 147me 1 YU Independent of e e
| err. Moare FEchargeatie F-rrount e C-m0Grt JSPG SDDiS] 13e0ET

[ rencied dymams range Twert) psets preveet DT SverIICIUT

Wemory 108 (standeed, 5457 emes (2541 %004 x 1200 378 seconds

1608 (oston 10,511 Memes (1004 « 1004 x 120, T 54 seconds
1208 (ophomy, 17,847 Merses (V334 1 1024 x 120030, 3.7 second

Video Output £ 1 NTEL PAL composie VB3 (BNCI 228% 1 200n, 08r 00 IF R Mage 48 E001 Uve 4000 dutng mcosing.
Video Outpust £ 7 301D Sgfal comporent 1 chenvel (BNC) Industy Singed SR oulpet, 20 1 57T PAL TI0 1 SBONTEC
Camers Cormed Theough 00800 107308 #FP NEYINE Jowfnde and Ogadt Eemet o B3210
linar prewet samictes 4 tareen MR S36 JETRE] WACIO DT
| ow igrs mose Lom IR Mole 32TI0 T HITOIE SaMETE BLIITET! AReR ATAN] £ Ju BTSN IgL g™ YT MR 30 SRR SSasure Modet
Trggenng SeECEbE IOUNE O Pejhe TTL Fil- O TaNh OSSRt
1rgger actay STt Bty P 3eC0d PRI 000 AV VPR 1000T RIS
Timeng RERY SO0 I 1ERE 10408 NI B FIG & 35T (mutes (0100 300me NOdue)
Prms Lock Erate: tamees: 1 be NTWIACED JMiney DOEMET T 8 MEEF IATIENR I SO L0uRCe
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Appendixz D. ISS Orbital Data

ISS TRAJECTORY DATA

Lift off time (UTC) N/A
Area (sq ft) 9902.8
Drag Coefficient (Cd) 2.00
Monthly MSEC 50% solar flux (F10.7-jansky) 72.1
Monthly MSFC 50% earth geomagnetic index (Kp) :  2.19
ET - UTC (sec) 66.18
UT1 - UTC (sec) 0.00
Vector Time (GMT): 2009/019/12:30:00.000
Vector Time (MET): N/A
Weight (LBS) 639525.7
M50 Cartesian M50 Keplerian
x = -859769.88 A = 6730277.74 meter
vy o= -4099237.52 meter E 0007386
z = -5274263.00 I = 51.54805
XDOT = 7514.656335 Wwp = 73.91166
YDOT = -1633.687561 meter/sec RA 347.45781 deg
ZDOT = 46.809239 ™™ = 196.52163
MA 196.54571
Ha = 194.186 n.mi
Hp = 192.517
M50 Cartesian J2K Cartesian
X = -2820767.31 -788246.44
Yy o = -13448942.00 feet -4108451.62 meter
z = -17304012.48 -5278266.34
XDOT = 24654.384302 7532.138605
YDOT = -5359.867325 feet/sec -1549.556570 meter/sec
ZDOT = 153.573620 ZDOT = 83.357444
TDR Cartesian TDR Cartesian
x = 9320903.81 2841011.48
Yy o= -10069934.11 feet -3069315.92 meter
z = -17319838.23 ~5279086. 69
XDOT = 18026.440118 5494.458948
YDOT = 16188.538540 feet/sec 4934.266547 meter/sec
ZDOT = 295.751854 90.145165
The mean element set is posted at the UTC for which position is
just north of the next ascending node relative to the above
vector time
TWO LINE MEAN ELEMENT SET
Iss
1 25544U 98067A  09019.53659256 .00010596 00000-0 82463-4 0 9000
2 25544 51.6402 347.8788 0008205 285.4453 74.5802 15.70436401 22574
Satellite: ISS
Catalog Number: 25544
Epoch time: 09019.53659256 =  yrday.fracday
Element set: 900
Inclination: 51.6402 deg
RA of node: 347.8788 deg
Eccentricity: 0008205
Arg of perigee:  285.4453 deg
Mean anomaly: 74.5802 deg
Mean motion: 15.70436401 rev/day
Decay rate: 1.05960E-04 rev/day”2

Epoch rev: 2257
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Appendix E. RC Telescope Optical Collimation Procedures

RC OPTICAL SYSTEMS TECH SHEET

Ritchey-Chrétien Alignment & Collimation

Authored by John Smith exclusively for RC Optical Systems

Introduction

In order to obtain optimum performance from a Ritchey-Chrétien design, the primary and secondary mirrors
must have their optical axes aligned with each other such that the optical axis of one mirror lies along that
of the other. This is called collimation. Additionally, some optics sets require a rotational alignment
(indexing) between the primary and secondary mirrors. Stan Moore has developed an excellent collimation
methodology using the Takahashi collimation telescope in concert with a dot in the center of the secondary
mirror that is highly recommended and quite successful. It is summarized on the RC Optical Systems web

site at: http//www rcopticalsystems com/collimation html. Stan’s method is incorporated into this alignment
procedure.
Tools

The following tools are needed to perform this alignment:

Takahashi Collimating Telescope

Tak-2-AP adapter or T-2-AP adapter from RCOS
Allen wrenches (T-handle preferred)

Small flashlight

Laser collimator (optional)

lote that T-handle Allen wrenches provide more precise control and allow a screw to be tightened securely
without introducing a bending or twisting force on the assembly being tightened.

Indexing (if required)

RC Optical Systems » 4025 E. Huntington Drve, Suite 105 « Flagstafl, Arizona 86004 » Pnone 828-526-5380 » Email - info@rcopticalsystems com

L t r ¥ reatad on May pymght X3 RC Opt

128



RC Opfical Systems Tech Sheet Rilchey-Chrélien Alignment & Collimation

Refer to Figure 1, above. Looking in the scope from front, you should see a white dot on the back of the
secondary mirror assembly. This is the secondary index. Looking at the primary, you should see a black
mark on the edge of the mirror. This is the primary index. (If you do not have these index marks, then your
optics do not require indexing.) How locate your eye approximately in the center of the telescope from the
secondary end. Keeping your eye close to the center, move closer to or further from the scope until you
can see the primary mirror mark close to the secondary mirror mark. When the perceived size of the
secondary is close to the size of the primary, you will see the two marks very close to each other and can
best judge the primary alignment.

If the mirrors are not rotationally aligned, you need to rotate the primary mirror so that the two index
marks are very close to each other rotationally. The primary is held in position by a locking collar, which
secures the mirror snugly. You can rotate the mirror without excessive force. The object is to get the
primary index and secondary index rotationally aligned by rotating the primary. For the truss model, you
can reach in and rotate the primary and review the alignment. For the closed tube model, you need to
remove the back plate, rotate the primary, secure the back plate and review the alignment. Do not touch
the front surface of the mirror as finger oils can damage the coatings. After you have rotated the primary
mirror, check the indexing again as described above. You should try to get this as close as you can.

Collimation

Collimation is done in two parts - in daylight and then with a star test. The more precise the daylight
alignment, the easier the star test adjustments will be, if needed at all. The star test is always a good
check on collimation to see if anything has changed significantly.

The secondary mirror has a dot in the center. This dot is very precisely located to define the mirror center.
To distinguish it from other reference marks, it is called a “blot” (contraction of “black dot™). It is not
completely black but has an appearance as if drawn by a felt pen (it was!) This blot is the key to successful
alignment. Before proceeding, look at the secondary through the back of the telescope to see this blot and
note its appearance. It is important to identify its texture, as this will be a good visual cue later in the
collimation process

1. Daylight Alignment

Collimation is best done with a Takahashi Collimating Telescope and an adapter, which mates this scope to
the 2.7" extension tubes. Additionally a suitable measuring tool is useful for checking the spider centering.
Using the long end of an Allen wrench of the appropriate size as a feeler gauge can work equally well. The
Optical Tube Assembly (OTA) should be herizontal to minimize the possibility of dropping tools on the
primary. Also, the OTA should be pointed at a flat illumination. This can be the sky, a sheet hung up a
short distance away, or any relatively uniform illumination source. Also, before beginning, be sure the
secondary mirror position is set as close to the spider assembly as possible, i.e., as far from the primary
mirror as possible. This is the home position on the Telescope Command Center (TCC) or, if you have the
RoboFocus set up properly, it should be close to the zero position.

1.1 Spider Centering

At each of the four spider mounting points, note that there is a gap between the secondary support ring and
the spider rib. The spider is under tension by the four screws that mount it to the secondary support ring.
The four gaps should be as equal as possible, say within an Allen wrench size (.016"). To adjust these gaps
if necessary, tighten one screw and loosen the opposite one until they are equal. See what Allen wrench fits
snugly into a gap and adjust the others similarly. Check the pair at right angles to the first pair and adjust
them if necessary. Check all four gaps after adjustment and repeat if necessary. This is a reasonably
precise way to achieve secondary centering with the camera axis.
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RC Opfical Systems Tech Sheet Ritchey-Chréfien Alignment & Collimation

Another and perhaps better way to do this adjustment is to insert a laser collimator in the 2" eyepiece
adapter. It is important to insure the laser is bore sighted accurately by rotating the laser in the 2” holder,
locking it down every 90 degrees or so and noting the position of the laser dot on the secondary mirror.
Observe all laser cautions if you try this. If the position of the laser relative to the blot is consistent as you
rotate the laser collimator in the holder, then it may be used to center the secondary mirror. If not, then
you must determine an “average center position” for the laser and adjust the secondary spider to that
position. Once the laser collimator bore sight accuracy is established, you should see an image as shown
below,

Figure 2 is a photo of the front of the scope. The red light towards the bottom is the laser light emanating
from the back of the scope and through the primary baffle. The small red dot at the center is the laser
beam landing on the secondary mirror. Figure 3 is a close-up of the red laser dot landing on the secondary
blot. The laser is very slightly to the right of the center of the blot. This represents very good alignment
and was achieved by the gap measurement method. Again, a laser collimator is not necessary. However, if
you happen to have a laser collimator with good centration, it can be used effectively.

1.2 Secondary Mirror Tip-Tilt

This step adjusts secondary de-centering to the viewing axis more precisely, albeit via tip/tilt adjustments.
Again refer to Figure 1. Looking at the secondary assembly, you will note three sets of two screws spaced
120 degrees around the assembly. The outer three are labeled “A” in Figure 1 and are the “pull
adjustments” - they pull the secondary toward the mounting plate. The inner three, labeled “B” in Figure |
are “push adjustments” - they push against the secondary mounting plate to the degree the pull
adjustments allow and lock the secondary mounting plate. The push adjustments are essentially locking
SCrews.

If the telescope has been shipped uncollimated (14.5" and larger), the pull adjusters are fully clockwise.
You need to loosen these to get some adjustment range. After mounting the mirror, unscrew each of the
three adjusters equally around 1.5 to 2 turns. The push adjusters will now be loose and no longer
contacting the mirror mounting plate.

Screw all the 2.7 extension tubes that came with your telescope together and screw them into the Fixed
Instrument Adapter (FIA) plate. (If you do not have the Fixed Instrument Adapter, extend the draw tube all
the way out and add any 2.7" extension tubes you may have. If the Takahashi collimating scope is not
extended far enough from the back plate, you may not see the light annulus, as shown in Figure 5.) Look
through the back plate and observe the blot in the center of the secondary mirror. This blot should be close
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RC Opfical Systems Tech Sheet Ritchey-Chrétien Alignment & Collimation

to the center of the extension tube. If not, adjust the pull adjusters until it is. This step roughly aligns the
optical axis of the secondary to the extension tube/instrument axis.

llow, thread in the Tak-2-AP adapter and then the Takahashi collimation telescope into the adapter. llote
that the Takahashi scope has a white frosted area partway down the scope. This is a diffuser that can be
illuminated with a flashlight to make the secondary dot more distinct.

llote that the Takahashi scope uses a sliding action for focusing. Start with the sliding all the way in. While
looking in the Takahashi scope, slowly slide to tube out while keeping a flashlight on the diffuser.

Eventually you will see the blot come into sharp focus. It may or may not be in the center of the
illuminated area. Continue to slide the tube out and then another dot will come into sharp focus. This is
the outline of the end of the Takahashi collimating scope. Slide the tube back in to refocus the blot. Ignore
any other light and dark patterns for the moment. The goal of adjusting the secondary is to get the blot
centered on the Takahashi collimating scope dot. Do not be concerned with the centering of the blot in the
light area. The goal is to get the blot and the dot on top of each other.

.

Tak Scope Image

Figure 4 is an image taken through the Takahashi scope. Figure 5 is a blow-up of that image. llote the blot
(secondary dot) is less dark than the image of the Takahashi scope, the latter being better defined. This
image shows the blot and the dot being very well centered. When you begin, the blot will most likely be
well off the center.

This adjustment is done by trial and error adjustment of the pull screws to center the secondary dot. As
you get clase, it is helpful to focus the Takahashi scope alternately on the dot and the ring to fine-tune your
centering. Once this is close, snug up the push screws but do not over tighten them. Check centering after
doing this and make smaller adjustments if necessary by loosening the push screw and tightening the pull
Screws.
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1.3 Primary Mirror Tip-Tilt

llow that the secondary mirror optical axis is aligned with the viewing axis, this step adjusts the primary
tip/tilt to line up with the secondary. Look at the back plate of the OTA as shown in Figure 6. Again you
will note three sets of two screws spaced 120 degrees around the back plate. The outer three, labeled “A”
in Figure 6, are “pull adjustments” - they pull the primary mounting plate toward the back plate. The inner
three, labeled “B" in Figure 6, are “push adjustments" - they push the primary mounting plate away from
the back plate to the degree the pull adjustments allow. The push adjustments are essentially locking
screws.

If the telescope has been shipped uncollimated (14.5" and larger), the pull adjusters are fully clockwise.
You need to loosen these to get some adjustment range. Unscrew each of the three adjusters equally
around 1.5 turns. The push adjusters will now be loose and no longer contacting the mirror mounting plate.

Again look in the Takahashi scope. Moving radially out from the secondary dot, you will see a light area, the
image of the end of the Takahashi scope and another much larger dark area, which is comprised of the
primary baffle and primary mirror locking collar. lext, a small annulus of light should be visible and finally
an outer dark ring, which is the secondary baffle. The object of the primary tip/tilt adjustment is to have
this annulus of light as symmetrical (equal width around the circumference) as you can possibly make it.
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e

Figure 7 identifies the gap that is to be made symmetrical. (As an aside, note the mark in the gap at |
o'clock. This is the secondary indexing mark that is applied on the mirror itself. The white secondary index
mark shown in Figure 1 refers this mark to the back of the secondary mounting plate for alignment ease.)

This symmetry adjustment is achieved by adjusting the pull screws while looking in the Takahashi scope.
Adjust these screws in small increments to get this annulus of light as symmetrical as possible. Once you
are satisfied with this adjustment, snug up the push screws. As before, again check the symmetry of the
annulus and adjust if necessary by loosening the appropriate push screw and tightening the corresponding
pull screw.

lHow recheck the secondary dot and Takahashi scope dot for symmetry. If it is no longer symmetrical,
repeat the secondary tip/tilt adjustment, followed by the primary tip/tilt adjustment. Repeat as necessary
until the symmetry is as good as you can make it.

As you are doing these final steps, you may find it useful to walk away from the OTA once you have it done
as well as you can for a few minutes. When you return, you may see some asymmetry that you didn’t see
before. Adjust as needed and be sure the push screws are all snug before you are done.

When you are satisfied with the symmetrical appearance of the blot, dot and annulus ring, you can proceed
to the star test. Do not make any further adjustments to the secondary focuser during the star test. You
will rapidly go away from the correct secondary alignment and must return to the daylight collimation to re-
establish the correct the secondary alignment.

2. Star Test

A star test consists of looking at a moderately bright star with good seeing conditions after the scope has
come to thermal equilibrium. With your telescope mounted and tracking, you are ready to begin final
collimation using a star. Locate a bright star near the zenith and center it visually in the eyepiece field of
view. Use a moderate to high power. Slightly defocus the star and look for asymmetry in the rings
surrounding the star. Slightly adjust the primary tip-tilt adjustments to minimize the asymmetry. Move the
star back to the center of the field of view after any adjustment. The adjustments should be very small,
1/6 of a turn or less, if you were successful on the daylight collimation. Don’t be surprised if no further
adjustment is needed on the star test. If you were very exacting in the daylight test, this could be the case.
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If the seeing is exceptionally good, you may begin to see the Airy disk and the first ring. Critically focus the
star and look carefully for the first ring. If it is continuous and unbroken, you are perfectly adjusted; if not,
you may make very small adjustments to the primary tip/tilt.

There is an excellent web page on Collimation written by Thierry Legault at http.//perso.club-
intemet fr/legault/collim.html. This site is highly recommended for the fine points of star testing and some
examples of collimated and uncollimated stars, both in focus and out of focus.
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Appendixz F. Newport Rotation Table

RGV100BL

High-Speed Precision Rotation Stage

* Brushless direct-drive provides faster rotating speeds. high
torque. superior reliability, and enhanced position sensitivity

+ Ultra-compact footprint - only 115 mm x 115 mm
+ Precision glass scale encoder ensures 0.0003° repeatability
*» 30 mm diameter through-hale for convenient cable routing

\NEW

The RGVIOOBL is a very compact direct-drive rotation stage
that provides ultra-fast rotation with very high resolution and
outstanding positioning performance. Applications include
semiconductor waler inspection. micro-robotics. and
precision metrology.

The direct-drive technology of the RGVI00BL eliminates the
worm gear of traditional rotation stages. The advantages are
higher speeds. superior reliability, and enhanced position
sensitivity. Speed. resolution. and repeatability are increased by
a factor of up to ten times compared to worm-driven rotation
stages of the same size.

A high efficiency brushless DC torque motor with rare earth
magnets supplies an optimum ratio of torque per inertia for
high acceleration. with minimal stage heating. At maximum
continuous torque, the temperature of the motor increases by
only 30°C. This is significantly less than other stage designs and
guarantees high perfformance and high reliability for the most
demanding applications

Precision is ensured by a high-resolution glass scale with
15.000 line pairs per revolution that directly measures the

position of the rotating platen. The flat encoder is mounted on
a precision ground reference surface and is perfectly aligned
with the stage’s rotation axis to minimize position errors
induced by eccentricity, wobble, or axial runout. The encoder
signals are interpolated by the XPS motion controller with less
than 0.1 arcsec resolution for outstanding position sensitivity
and stability.

The RCV100BL features a proprietary 4-point contact ball bearing,
This unique. 2-piece design takes advantage of Newport's
excellent and proven capabilities in the design. manufacturing
and assembly of precision mechanics and integrates multiple
functions. like the bearing ways and the direct drive motor.
minimizing the number of parts. The result is a more compact
rotation stage with superior stiffness, high reliability and
outstanding wobbile and eccentricity specifications.

A 30 mm diameter through-hole allows convenient routing of
cables and vacuum lines through the stage. A once-per
revolution index pulse permits precision homing 1o a unique
home position. The RGVID0BL also features two limit switches
that can be enabled or disabled by an external switch.

Design Details Specifications
Base Materml  Alumenum Travel Range 1) 360 continuous
Bearngs Large diameter steel hall bearings. Resohgtion () 0.00001"
Mator High-torgue brushiess DC motor with rare earth magnets. Urs- o ) 00003
M:_nur_ mnum;mhrmmm-uﬁsw Reversal Value fHysteress), typical (7} 0.0001
Initiatiz ation motion durng metialzation and that does not require Hall effect sensors Rccuacy, guaranesd [ (1]
Motor Done by the {PS controfler on encodes sagnals. Wamimum Speed (oo toad) [75) T
Tocck Glass scaie encodor wth 16,000 Ine pars por fevolmon | Ve, e .. 11
12768 fold sagral subsivrsion when used with XPS controler Maximum Torque (Nm) ]
Limit Switches  Two oplical il switches at approx. /- 160, Inertia (no load) kg ) 00116
Disabled by extetral switch Wobbie guerantoed (jufad) x
COrign Optical. fixed at posstion 07 inc 00 sapral Eccentricity. guarameed jum) ]
Cable Length {mj 5 MTBF i) 20,000 with 5 kg load. 720°/s speed and a
duty cycle of 30%
Weight [ (kg A28
* The resal ssed intemally by the XPS is below 0.0] arcsac

Phone: 1-800-222-6440 » Fax: 1-949.253-1680
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Motorized Positioning

Load Characteristics and Stiffness Dimensions
. Mormal conered oo capasity 1o e LT
K. Transversal comphiance 15 jar acl/Nm
M. Mazimum lorgue 042 Nm ® 0 /5
e, Maxsmigm iretia 0032 kg’
Q. Off-center load 0 = C2/(1+ 035 and O Jz- Jg)0;
Where: D = Cantibever distance in mm iq - inestia of payload
-—’;;‘,——I M
EUR TN TN TN
oo ¥
— v 1
! -
i
K
4 | i |
Ordering Information n : Bes
il
Model Description . p——
RGNI0DEL RGVI00BL Rotation stage
Recommended Motion Controller: XPS see page 844 = [ ]
b'i |© @|i@
[V, See our wehsiie e =
lirisd for CAD files © | ®
|
|
! | @)
& T T -ﬁ_'
Q@ ells
AHHLR 19/ s CEORED e & (005 N W VD M SO B e
0N AT 1 (M0El GEA T RPTH O
Email: sales@nawport.com - Web: newport.com c‘) W

136




Appendix G. Computer Optical Products CM-5000

Hollow shaft motor/encoder

-5000 series, 5" brushless DC

2.0" ID through shaft

Description:

The CM-5000 is a high performance brushless DC

motor with integral optical encoder charactenzed by

a very high togue 10 inertia ratio. Six different sizes

are available with peak torques from 1010 oz.in

through 6654 oz.in @ 100 V. For different motor

The motor was specifically designed for high speed,
fution positioni lications and

- ultra low distortion incremental sinefcosine,
specifically designed for use with interpolators,
yielding up to 144 million measuring steps

- digital incremental up to 36,000 cfr (144,000
measuring steps)

- high resiotion digital incremental from 50,000 cir
(200,000 measuring steps) 1o 2,250,000 o/r (9
million measuring steps)

- 18/20 bit absolute in parallel format (extemal
electronics necessary)

Appilications include semiconductor robots, turret
scanners, capstan drives, spinners etc

Ordering information:

CM-5000-(1}{2). sine/cosine output encoder.
(1) motor size, see specsheet
(2) standard linecounts: 2,000 cfr, 9,000 cir

CM-5050-(1-2): digital output encoder.

(1) motor size, see specsheet

(2)standard linecounts: 2,000, 4.000, 9.000. 18,000
& 36,000 ofr

CM-5050-HHCA{142): digital output, high resolution
(1) motor size, see specsheet

(2)standard linecounts: 50,000, 62 500, 100,000,
125,000, 200,000, 225,000, 250,000, 281,000,
400.000, 450,000, 500,000, 562,500, 900,000,
1,125,000, 1,800,000 & 2,250,000 cir.

For absolute output. please consult factory.

F

Mechanical Data:

1.997- 2.003"

40 Ibs axial, 35 Ibs radial
0002" TIR
450zinmax @20°C
continuous, reversible
1,500 RPM max

416 stainless

aluminum (stainless optional)
manufacturer's specs
0.07 oz.in.sec®

approx 5 Ibs

operating: -20°C to+90°C

50Gs@11ms
5-2000 Hz @ 20 G's
98% without condensation

Allied Motion Technologies Corporationscomputer cprea Prosucs. inc +(800)340
(Spech cavors Subyect to (hange)

08 B WS
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Hollow shaft motor/encoder

CM-5000 series, 5" brushless DC , 2.0 ID through shaft 2

Motor specificavons size constants @ 25°C ambient:
parameter symbol  unit -1 -2 -3 -
maximum rated torque Tr n-0z 1313 a0 4405 5780
@ temperature rise of B0*C Nm 9.2 213 3. 408
Manmum continuous stall wrque Te in-oz m 418 623 TR0
(& rermperature rise of 80°C Nm LS 298 4.40 387
Max. CONBNUOUS power outpul Pout Watt mn 380 454 482
motor constant Km in-oz/ W 30.2 812 es e 1086
Nn/W o 043 [:X.1} 07e
electrical time constant Te ms 1.56 3.00 414 505
machanical ime constant ™m ms 45 24 1.8 18
thermal resistance” TPR *C'Wan 1.3 12 11 1.0
MAnMum cogging toraue T in-oF 55 134 18.1 237
Mm 004 ooe c.14 a7
wscous damping Fi n-ozfrpm 3663 TS5E3 001 0.015
Nmirpm 2BE-5 53E5 BD0ES 10E4
hysterasis drag torgue Th n-oz 48 10.3 158 208
Nm 003 o.07 [RL 045
FOLOF INertia Jm oz.in.s® 20E-2 B63E2 GTEZ 13E-1
Kg.m* 20E-4 45E4 GBE4 9I2E4
number of poles P 12 12 12 12
weight los ig 5.7 15 82
kg 18 28 34 42

‘Winging constanis @ design voitage Vp = 100 V, 25° ambient

peak orque. £ 25% T in-oz 1010 2323 3380 4431
M 713 184 2303 31.20
peak current, £15% Ip Ampers 11.1 14.4 15.2 188
torque sensitivity, £10% Kt in-ozlA s 1811 2233 2065
N A 084 1.14 1.58 188
no-ioad speed Snl mem 477 B33 802 504
rad's 158 87 &3 53
voltage constant Kb \Vikrpm 70 119.2 185.1 1871
Viradis 064 1.14 1.58 188
werminal resistance. £ 12% Rm Ohm a7 L2 650 802

terminal nductance, $+30%

5

mH 4.0 o8 273 304

7156
508

704

-1

128.0
o%0

563
1.4
oe

208
02

o8
1.3E4

265
0.8

1.0E-1
1.1E-3

12

5505
38687

®ws

207.7
210

451
47

2201
210

541

aza

8651
61.0

1182
B41

1482
1.03

887
13
0.8

30.2
0.26

0.021
154

4.8
021

2.0E41
1.4E-3
12

128
58

47.0
207

211
227

418
2375
227
483

332

Allied Motion Technologies Corporation Computer Cpres Procucts, Ine +200)340-0404 - SHESEOP
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Hollow shaft motor/encoder

CM-5000 series, 5" brushless DC , 2.0° ID through shaft 3

Encoder specifications
— oot smetasine. CM-5000 Model
e power supply: +5 Vdc @ 60 mA max.
T P 1o pusth, wacking - bttar than Th output format:.  A/B sine/cosine, incremental
| e — output: default Vout =+ 0.5V , zero-centered

O M O B el gy

frequency response: flat up to 100 kHz
ion: less than 5% (Rmax/Rmin)

' CM-5050 Model
- +5Vdc + 10% @ 100 mA max (no load)

 linedriver 26L.S31 EIA std. RS 422 & DIN
66259 compatible

- CM-5050-HHC Model
. +5Vdr+1ﬂ'ﬁa250mmxﬂ10bad}

: MWEGLSSTEMM RS 422 & DIN
66255 compatible

- 18, 20 & 22 bits
Consult factory
Motor wire color code
red phase A
white phase B
black phase C
“Hall" switch color code:
brown Cci
A - - meotor lead
uh"r:EI; t * * + » excitation orange c2
Black (C) - - . * sequence yeliow c3
blue +5Vio+ 24V
c green ground
commutaton
c2 1 l | |_channeis
I
1
4I I i _L
Allied Motion Technologies Corporation computer Optical Products. ing +500)340-0454 - sMesFopic cof WOOET COM
60088 Row  DETUWDS (Specifications Subyeet 1o Change)
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Appendixz H. International Space Station

g L £ ¢ Y=la Express Logistics Carrier (ELC) Resources
nodatione 4,445 kg (9,800 1)

30 m*

Many locations are available for the mounting of payloads or experiments on the ourside 3kW maximum, 113-126 VDC
of the Station: on the U.S. Truss, on the Russian elements, and addivional accommoda-
tions will be provided when the Japanese Experiment Module (JEM) Exposed Facility w-rate data 1 Mbps [MIL-STD-1553)
{EF) and Columbus modules are artached.
95 Mbps (shared)

European Columbus Research

Laberatery external meunting - ) e 6 Mbps (B02.3 Ethernet)
locaticns onthe starboard endcone. o

ELC Single Adapter Resources

227 kg (500 1)

Columbus External
Mounting Locations

1m?*

750W,113-126 VDT
SO0W st 28 VDC per sdapter

Active heating, passive cooling
1 Mbps (MIL-STD-1553)

6 Mbps (shared)

550 kg (1,150 b) at standard site
2,250 kg (5,550 1b) at large site

15m*

- - i . 3-6 kW, 113-126VDC
External Payload Accommodations

3-6 kW cooling
External payloads may be accommodared ar several locations onthe U.S. 53 and P3 Truss
segments. Exrernal pag‘!mds are accommodared on an Expedi‘re the Prucessing of Experi- e e 1 Mbps [MIL-5TD-1553)
menxs to the Space Seation racks (EXPRESS) Logistics Camrier (ELC). Mounting spaces
are provided, and interfaces for power and data are standardized to provide quick and gh-ratedata | 43 Mbps (shared)
straightforward payload integration. Payloads can be mounted using the Special Purpose
Dexterous Manipulator (SPDM ), Dextre, on the Starion’s robatic arm. Eurcpean Col umbus Res sarch Laboratory Resourcas

Flight Relessable Attachment

ELC Singie Adupter Site Ma chanism [FRAM) Mass capacity Z30kg (500 ib)

Power Video Grapple

Fixture [PVGF) o Flight Rele sssbie ' 1m?
- GrappleFixture
[FRGF)

25 kWtotal to carrier (shared
EXPRESS Carrier { )
Avianicu[ExPCA)

Passive Umbilical
Maring Assembly [UMA) 2 rmal Passive
Remotely Dperat
Umbilical-Prylon <
Assambly [ROEU-PDA)

1 Mbgps (MIL-STD-1553)

Kael Assembly

2Mbps (shared)

140




Japan Aerospace Exploration Agency (JAXA)/
Mitsubishi Heavy Industries, Ltd.

JEM Pressurized Module
JEM Remote
. . . Manipulator System
The Japanese Experiment Module is the first crewed space facility ever developed by RMS (JEM-RMS)

Japan. The Pressurized Module (PM) is used mainly for microgravity experiments. Console
‘ Payload

The Exposed Facility (EF) is located outside the pressurized environment of the ISS. Experiment ‘
. . . . acks
Numerous experiments that require direct exposure can be mounted with the help of

the JEM remote manipulator and airlock. Logistics components will be launched in Airlock
the Experiment Logistics Module Pressurized Communication3 & PM/EF Mating
Section (ELM-PS). Experiments may be GPS Antennas echanism
mounted on the JEM-EF using the " Workstation
Experiment Logistics Module ) o ) Stowage Rack
Exposed Section (ELM-ES). faﬁ%iﬁi"ﬁé's'gﬂﬁ'f:f f/loer:rr.::i‘:nmm"g Power System Rack
All of the JEM modules will Section (ELM-PS) i

nvironmental Control

be launched on the and Life-Support/Thermal

Control System Rack

Space Shuttle. 4
Japanese Experiment Module Remote
Manipulator System (JEM-RMS)

‘ Berthed to
Payload 7
Airlock N 7 Node 2

Small Fine Arm

Main Arm

Experiment Logistics
Module Exposed
Section (ELM-ES)

Japanese Experiment
Module Pressurized ELM-PS
Module (JEM-PM)

Diameter 4.4m(14.4ft) 4.4m(14.4ft)

Trunnion Exposed Facility (EF)

EF Berthing Mechanism Length 11.2m (36.7 ft) 3.9m(12ft)

EF Viewing Facility

EF Bus Units 15,900 kg 4,200 kg
(35,050 Ib) (9,260 Ib)

Fine Arm Stage
EF ELM-ES

Dimensions| 5.6 x5x4m 49x42x22m
(18.4x16.4x (16.1x13.8x7.2ft,
13.1ft)

EF

4,000 kg 1,200kg
(8,8201b) (2,6501b)

Experiments
Interorbit Communications - L -
System (ICS) . Racks 10

JEM Remote Manipulator System

Main Arm length 9.9m (325 ft)

JEM-PM during testing. Small Fine Arm length 1.9m (6.2 ft)
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Appendiz I. BAE Systems [11]

RAD750® 3U CompactPCl single-board computer

FEATURES AND CAPABILITIES

The 3U CompactPCl standard
single-board computer, available
in flight and prototype versions,
employs the PowerPC RAD750
microprocessor, the radiation-
hardened version of the IBM
PowerPC750. The companion
PowerPC bridge ASIC provides

access to the memory and the PCI

version 2.2 backplane bus.

Software features

- Example startup ROM and VxWorks board
support package provided for all hardware
configurations.

- Green Hills Software's INTEGRITY realtime
operating system can serve as an alternate
board-support package.

- Hardware reference manuals and software
users guide provided.

- Software developed for the RAD6000®
processor is easily portedto the RAD750.

- All compilers currently available for
the commercial PowerPC 750 are fully
compatible with the RAD750 processor.

~ Operating systems for PowerPC 750-based
computers are easily ported to RAD750
computers. VxWorks and INTEGRITY are
both currently available.

- Virtutech offers a RAD750 simulator.

Form factor
- CompactPCl 3U (100 mm x 160 mm)
- Weight: 549 grams

Memory
- 128 MB SDRAM, 256 kB SUROM

Radiation-hardness

- Total dose: >100 Krad (Si)

~ SEU: 1.9 E-4 errors/card-day
(90% W. C. GEO) varies with orbit

- Latchup-immune

Performance
- >260 Dhrystone 2.1 MIPS @ 132 MHz
-~ 4.3 SPECint95 4.6 SPECfp95 at 132 MHz

Power supply
- 3.3V+10%
- (2.5V generated via on-board regulator)

Power dissipation
- <10.8W

Rail temperature range
- -55°Cto+70°C
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RAD750 3U FLEXIBLE ARCHITECTURE

RAD750 CPU

— PowerPC 750 ISA

— 6 execution units

—32 KB | and D caches
—1 MB L2 cache interface
—>260 MIPS at 132 MHz

Clock

~'» @l Enhanced Power PCI Bridge

0sC

bu Sk = Memory data
S - PCI 2.2 bus interface
' id — PC arbitration/resource controller
- Memory data/address interface Memory control
(LU — PROM, SRAM, SDRAM, EEPROM,
PR and C-RAM control
— EDAC-bit and Nibble
J17- (3 — Auto Memory Scrubbing
Vo9l — 16550 compatible UART
b — RAD750 clock control Memory address

- Timers, interrupts and discretes
— JTAG controller (master/slave)

— DMA controller
- Embedded microcontroller

SuROM
— 128K x 8 EEPROM or
32K x 8 PROM chips
— EDAC - SECDED
— 256 KB EEPROM/64 KB PROM
— Organized 128K x 24/32K x 24

Sync SDRAM

— 64M chips (16M x 4)
— EDAC - Nibble Correct/SECDED
— 128 MB organized 16M x 80 per row
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