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ABSTRACT 

The Marine Corps, as with any organization with a large workforce, must 

accurately monitor and more importantly predict the transition rates among personnel 

entering and exiting the enlisted and officer ranks.  This emphasis is even more 

appropriate given that the Marine Corps has been authorized to increase the current 

authorized end strength by 13,000 personnel from Fiscal Year 2008 to Fiscal Year 2010. 

The purpose of this thesis is to apply parametric modeling (specifically survival analysis) 

to historical data sets of enlisted personnel in order develop a more efficient forecasting 

tool for military planners.  It is the intent to include in the model those characteristics that 

significantly influence attrition behavior, and aggregate these findings to an efficient, yet 

effective forecasting model. Therefore, this thesis will analyze the interaction of time, 

individual characteristics, and those causal attributes that determine whether a Marine 

completes his or her contracted service. The current forecasting method used by the 

Marine Corps forecasts enlisted attrition annually. This study forecasts enlisted attrition 

monthly within occupational field.  Hence, the data was structured to provide this depth 

of analysis. In comparison to the current forecasting method of exponential smoothing 

this study found that the use of survival analysis could be beneficial to not only forecast 

attrition, but also provide a descriptive assessment of attrition rates amongst occupation 

fields without loss of information due to averaging or weighting probabilities. 
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I. INTRODUCTION  

A. BACKGROUND 

The Marine Corps, as with any organization with a large workforce, must 

accurately monitor and more importantly predict the accessions and losses for the enlisted 

and officer ranks.  This emphasis is even more appropriate given that the Marine Corps 

has been authorized to increase the current authorized end strength from 189,000 to 

194,000 Marines in fiscal year 2009 and by an additional 8,000 Marines for fiscal year 

2010 (The National Defense Authorization Act for Fiscal Year 2008, Public Law 110–

181).  Thus, in a three-year period the Marine Corps will have grown by 13,000 

personnel, consequently increasing manpower costs.  

The manpower costs of the Marine Corps comprise over 60% of the total fiscal 

year budget.  The annual costs associated with maintaining an all-volunteer force were 

$9.5 billion for fiscal year 2008 (The National Defense Authorization Act for Fiscal Year 

2008, Public Law 110–181), and they will only continue to rise as the force grows larger.  

Appendix A provides a complete listing of Marine Corps personnel end strength for fiscal 

year 2008. Therefore, accurately and efficiently managing the force and forecasting 

attrition rates is crucial.  Recent endeavors to accomplish this requirement have not been 

successful.  An over-estimation of the end of fiscal year-end strength for 2001-2002 cost 

the Marine Corps $200 million in Operation and Maintenance Funds (Hattiangadi, 

Kimble, Lambert, Quester, CNA, 2005).  Such reductions in the O&M funds can reduce 

operational and material readiness.  The tightrope walked in forecasting year-end 

strengths is a precarious one.  If the Corps under-estimates enlisted losses, then new 

accessions will not be sufficient to replace personnel required and mission readiness 

could suffer across the Marine Corps.  On the other hand, if enlisted losses are over- 
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predicted, and new accession quantities are not adjusted, then the Corps will overspend 

the personnel budget.  There is an art and science to managing labor force transition rates; 

the art comprises the ability to “see into the future” of personnel strengths. 

Marine Corps personnel end strength is calculated at the end of each fiscal year as 

follows: 

Endstrength = Fiscal Year (FY) beginning strength minus losses + gains 

The U.S. Congress mandates the end-strength.  Title X allows for an overage of 

overall personnel not to exceed 2-3 percent.  The Secretary of the Navy must authorize an 

overage of 2%, while the Secretary of Defense must approve a 3% overage.  The end-

strength may not exceed 103% of the end-strength authorized in the current year's 

National Defense Authorization Act. Table of Organization (T/O) requirements and 

manpower policies determine the required FY beginning strength. The Enlisted Strength 

Planners (MPP-20) in concert with the Officer Inventory Planner (OIC) (MPP-30) 

construct the plans for end-strength requirements.  The plan, by pay grade per month, is 

for the current budget year and for six years into the future (Hattiangadi, Kimble, 

Lambert, Quester, CNA, 2005).   

The T/O is a personnel requirements roster that is broken down for any unit 

within the Marine Corps.  It specifies the required rank, Military Occupational Specialty 

(MOS), component code, and personnel quantities for that specific unit to operate the 

designated mission.  In unison with the T/O, manpower policies determine the number of 

reenlistment contracts available for each MOS and boat spaces are allotted on a first-

come-first-served basis for qualified Marines within each MOS.  All of this is governed 

by the Budget Authority (BA), which dictates the available funds for personnel costs for 

the current fiscal year.  Therefore, forecasting future end of active service (EAS), 

retirement, or non-end of active service (NEAS) losses directly affects the required 

accessions for each year.  The focus of this thesis is to contribute to the forecasting of 

NEAS losses, specifically attritions: those Marines who do not complete their contracted 

active service. 
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B. PURPOSE OF THIS STUDY 

The purpose of this thesis is to apply parametric modeling (specifically survival 

analysis) to historical data sets of enlisted personnel in order develop a more efficient 

forecasting tool for military planners.  It is the intent to include in the model those 

characteristics that significantly influence attrition behavior, and aggregate these findings 

to an efficient, yet effective forecasting model. Therefore, this thesis will analyze the 

interaction of time, individual characteristics, and those causal attributes that determine 

whether a Marine completes his or her contracted service. The following two primary 

questions will drive this analysis: 

1.  What causal factors and individual characteristics contribute to attrition 

behavior? 

2.  Can a more efficient and effective forecasting model be developed to either 

replace or complement current forecasting methods for NEAS losses? 

C. SCOPE AND METHODOLOGY 

This study will rely on survival analysis to assess those factors that are associated 

with attrition. Event history analysis, duration analysis, or life-to-death-analysis, are other 

common names for this methodology, but the fundamental approach is the same. A 

subject is observed, in an origin state, for a duration or episode until that subject leaves 

the origin state through an event, or is censored and cannot be further observed.  The 

duration of the origin state or episode and those causal factors that may have caused the 

event are analyzed.  An event could be death, as in medical studies, or generator failure, 

as in mechanical studies. Survival analysis has been used in the medical community to 

study the effects of a drug on cancer patient survival, and the effects of a new surgery on 

heart patients. The engineering community has used event history analysis to study the 

effects of new engine components or synthetic oils on the life expectancy of diesel 

engines. Social scientists have increasingly used survival analysis to forecast drug-use 

among teenagers, labor force transition rates for large organizations, and expected 

duration for peacekeeping missions responding to civil and international crisis. The 
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applications of survival analysis can describe the influences explanatory variables have 

on the probability of an event occurring in the future. This descriptive ability is achieved 

through the temporal ordering of a cause (change in a time-dependent variable) to an 

effect (departure from an initial state) and the analysis of the temporal interval of the time 

between the cause and the effect (Blossfeld, Golsch, Rohwer, 2007). 

In all systems, there is a temporal order to causes and their effects.  There is also a 

temporal interval between cause and effect.  In very rare cases does a change in value of a 

time-dependent covariate result in an instantaneous occurrence of an effect.  In most 

cases, there is a lag between a cause and an event. Of specific importance to applying 

survival analysis to manpower studies is the comparison of this temporal interval (or lag) 

amongst a sample of a population that experiences the same change in a time-dependent 

variable (marriage, number of combat deployments, promotion, etc.). Therefore, survival 

analysis can model the importance time has on the probability that a cause will produce 

an effect (NEAS loss in this study). The Human Capital Theory states that as employee-

specific investments decline (On-the-job-training, task-specific training, etc), exits of 

experienced longer tenured employees from the organization will also decrease due to the 

accumulation of job-specific experience and skills that may not be transferable to another 

organization. Survival analysis can measure this accumulation of job-specific experience 

and apply probabilities of future failures based on the individual characters within the 

sample and the time already spent in the organization.   

This study examines enlisted Marines who enter the origin state upon initial 

enlistment until failure (NEAS loss) or until they exit the analysis by choosing not to 

reenlist. Then personal characteristics such as race, sex, and marital status, are analyzed 

to determine if these attributes can be used to forecast future attrition behavior. Lastly, a 

forecasting model is introduced to calculate the hazard rate (or probability of failure) for 

a specific time of interest given the covariate estimates used in the study.   
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D. ORGANIZATION OF THE STUDY 

Six chapters comprise this study. Chapter II is a literary review of previous 

attrition studies that utilized survival analysis to forecast future attritions. Chapter III is a 

basic description of the mathematical formulas and terms used for survival analysis.  

Chapter IV defines the covariates and provides descriptive statistics of the data used in 

the parametric model. Chapter V defines the model and discusses the results. Chapter VI 

summarizes the results and concludes with the author's recommendations for follow-on 

research in forecasting enlisted attrition. 
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II. LITERATURE REVIEW 

A. PREVIOUS ATTRITION AND LOSS STUDIES 

The Marine Corps, as with any organization with a large labor force, is keenly 

aware of the need for efficient monitoring of labor force transition rates. Labor is the 

most expensive resource to maintain, develop, and replace. Accounting for the personnel 

required to complete an organization's mission requires diligence, continual re-

examination of personnel policies, and a forecasting model developed by sound theory 

and explanatory variables. The techniques to study and analyze personnel behavior are as 

varied as the personnel within an organization. Therefore, predicting who leaves an 

organization, and when, will continue to be a critical topic of interest for any large 

organization. This may be even more true for the military, which must effectively and 

efficiently maintain material and personnel readiness in order to service the nation's 

interests through the threat of or the use of force. Unaccounted budgetary expenditures in 

manpower overages due to poor or inaccurate end-strength forecasts diminish available 

funds to maintain material readiness and can affect the military's ability to conduct 

combat operations. The following studies were conducted to understand better and more 

specifically, improve the predictive capabilities of personnel attrition rates from military 

service. 

The first study reviewed utilized a binary logit model in order to predict enlisted 

Marine Corps End of Active Service (EAS) and Non-End of Active Service (NEAS) 

losses from the period 1997-2007. The second study utilized the Weibull and exponential 

models to obtain the survival functions of individual characteristics of enlisted Coast 

Guard personnel for the fiscal years 1983 to 1990. Then the author constructed a logit 

model to predict future attritions using past accession and attrition information.  The third 

study reviewed for this thesis is a CNA report that describes in great detail the current 

methodology the Marine Corps utilizes to forecast personnel endstrength. 
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1. Forecasting Marine Corps Enlisted Losses (Orrick, 2008) 

A Naval Postgraduate School master’s thesis, written by Captain Sanford C. 

Orrick in March 2008, examined the current methodology of forecasting enlisted loss 

rates in the Marine Corps and then attempted to develop a more efficient forecasting 

model using logit regression. The focus of his study was to compare those attributes and 

characteristics of NEAS losses to EAS losses for the period 1997–2007.  In order to 

develop a more accurate forecasting tool for Marine Corps personnel planners, his 

research attempted to identify factors contributing to enlisted Marines who leave the 

service prior to their EAS. Essentially, he sought the use of recordable attributes that 

significantly affect the probability of attrition. 

Captain Orrick’s data was obtained from the Total Force Data Warehouse 

(TFDW), and included three different sets of data captured by fiscal year. The first data 

set is enlisted Marine accessions from 1997 to 2007. The second data set is Marine 

enlisted losses, either EAS or NEAS, from 1997 to April 2007.  The last data set is a 

snapshot of Marine enlisted endstrength for fiscal year 1997.   

The methodology for this research was to compare the attributes of those Marines 

in the data set who completed their obligated service (classified as EAS) to those of the 

Marines who did not complete their obligated service (classified as NEAS). The snapshot 

end-strength data set for fiscal year 2007 was used to capture attributes for those enlisted 

losses that may not have been captured in the accession data. 

The independent variables of the model were estimated for all NEAS losses 

across all fiscal years in the study. Next, the model was computed again, using only data 

from fiscal years 1998 through 2004 in order to predict NEAS losses for 2005. The model 

was continued in this manner including the predicted years’ observations to predict the 

next fiscal years, concluding in fiscal year 2007. The model results were encouraging.  

According to his results, his model predicted NEAS losses accurately 76.2% of the time. 
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Unfortunately, several questions of bias and data structure taint this study's 

findings.  The merge of the three data sets yielded 587,154 observations. However, only 

167,269 observations were used due to missing data. It is difficult to take the model 

results as representative of the probability of attrition given the selection bias of being 

forced to omit potentially viable observations due to missing data.  

The data structures used for the logit model suffer from inherent issues in the 

concept of causality employed for predictive modeling.  The first issue is the use of panel 

data that was used for predicting the next fiscal year's attritions from an accumulation of 

the previous fiscal years’. Time plays an important role in moderating causality on a 

dependent variable. Specifically, not only is there a temporal order (cause precedes 

effect), but also a temporal interval. There is some time that elapses between an event 

occurring and the impact on the dependent variable.  A restrictive assumption of panel 

analysis is that, the cause and effect happen at the same time. Consequently, the lag time 

between a cause, and to an event is irrelevant. The larger the discrepancy is between the 

true lag and observed lag in the data, the less likely panel analysis will uncover the true 

causal process. The second issue in the data structure is the use of cross-sectional data to 

compare the NEAS and EAS Marines. Cross-sectional data can over-predict change and 

overestimate the significance of explanatory variables (Blossfeld, Golsch, Rohwer, 

2007). The explanatory variables can only explain the outcome at the specific point in 

time the data was collected. Thus, changes in time-dependent explanatory variables are 

not captured over multiple occurrences in the same duration. The last occurrence of a 

change in a variable is the value used for estimating the probability of a potential 

outcome. An important analytical aspect lacking from this form of analysis is that 

predictions might have been different if the previous changes to the time-varying variable 

had also been included in the model. A Marine just recently divorced may be more likely 

to attrite than a Marine who has been divorced for ten years and has presumably adjusted 

to single life. In a cross-sectional data structure, this would not be evident; all divorced 

Marines would share an equal probability of becoming an NEAS loss, ceteris paribus. 
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The main contribution of Orrick (2008) is that it highlights the importance of time 

on causality and the subsequent use of forecasting. The ability to capture duration 

between the cause and effect in cross-sectional and panel studies is limited and therefore 

limits the effectiveness of the logit model to capture causality over long durations, such 

as the length of a Marine’s career.  

2. An Analysis of the Coast Guard Enlisted Attrition (Rubiano, 1993) 

A Naval Postgraduate School master’s thesis, written by Laureano Enrique Onate 

Rubiano, analyzed attrition behavior with survival analysis and then attempted to develop 

a forecasting model in order to predict monthly attritions of enlisted United States Coast 

Guard (USCG) personnel.   

The first goal of developing survival functions for USCG personnel was 

accomplished by defining personnel characteristics for all observations that would be 

used to categorize attrition behavior. The data set consisted of USCG enlisted personnel 

from fiscal year 1983 to fiscal year 1990.  The study included pay grades from E-1 to E-

9, Military Occupational Skill (MOS), gender, race, minority designation, marital status, 

and dates of entry and exit from the Coast Guard. Overall, there were 50,036 people in 

the data set with 29,405 of them exiting the analysis due to discharge from active service.   

The author constructed the number of months on active duty, as an integer, by 

calculating the duration from date of entry to date of exit from the USCG. Survival 

functions were then generated by pay grade, sex, race, marital status, and rating. The 

study plotted the estimated survival against time, the negative natural log of the estimated 

survival function against time, and the natural log of the negative natural log of the 

estimated survival function against time. The second and third plots were used to check 

the validity of using the Weibull and exponential survival models. In either model, there 

was not enough empirical evidence to justify their implementation. Yet, the author 

continued to use these models to graph the survival functions. The empirical test plots 

one used to compare pseudoresiduals, presumably from the nonparametric Kaplan-Meier 

estimate (though not stated by the author), against the predicted residuals apparently from 
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the Cox-Snell model (though again this was not stated by the author).  If the data fits with 

the model then the log survival plot should have assumed a linear pattern through the 

origin.  As stated before, nether of these graphs exhibited this characteristic.  The author 

should have attempted another parametric survival model such as the log-logistic, log-

normal, gamma, or Gompertz, to plot the survival curves. As published, the survival 

functions cannot be relied on to accurately report the historical survival probabilities in 

the USCG.   

It is worth further mentioning that the author did not differentiate between 

personnel exiting the USCG for retirement, non-reenlistments, or administrative reasons.  

This is evident in the sharp drops in survival curves in months 48 and 240 for each 

characteristic. These are the times most first-term enlistees choose not to reenlist and the 

time of standard retirement after twenty years of service. In order to accurately plot 

attrition behavior, the study should have calculated the survivor function for each 

departure event separately.   

The thesis constructed a multiple regression model to predict monthly attritions.  

The independent variable was monthly attritions and the explanatory variables were 

monthly attrition in the previous months, the number of accessions for the previous four 

and twenty years, and monthly unemployment rates. In order to measure the performance 

of the model the mean squared error (MSE) and mean relative error (MRE) were used for 

96 observations (one for each month in eight fiscal years) and 33 observations (October 

1990 to June 1993) were utilized to validate the model. The author chose to use the four-

year and twenty-year attrition number as explanatory variables in the model, citing the 

drastic change in survival probabilities for these time periods. As mentioned above, an 

over-emphasis on times that are considered normal, such as choosing not to reenlist or to 

retire, can bias predictions towards these times (Cleves, Gould, Gutierrez, Marchenko, 

2008). These biases can skew potential informative survival probabilities of early attrition 

behavior toward these two times (48 and 240 months) and precluding the author from 

determining those characteristics that comprise personnel discharging before their 
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respective contract date. Nonetheless, the author claimed his model performed better than 

current USCG forecasting methods. However, the study did not provide a direct 

comparison. 

The main contribution of Rubiano’s study is that it advanced the use of survival 

analysis in an attempt to quantify trends of attrition behavior according to individual 

characteristics.  Though the survival probabilities are probably not nearly as 

representative of empirical attritions than a better selection of parametric models (log-

logistic, lognormal, gamma, Gompertz) would have been, it does demonstrate the ability 

of survival analysis to link causality to an effect within a duration. The temporal order 

and the temporal interval were explained in the data. 

3. Endstrength: Forecasting Marine Corps Losses Final Report 
(Hattiangadi, Kimble, Lambert, Quester, CNA, 2005) 

This CNA report, from 2005 is a comprehensive and detailed report on the 

manpower systems, techniques, and procedures the Marine Corps employs to forecast 

end strength gains and losses. The recognition of the severe consequences of incorrect 

estimates was the motivation this study. The first approach was to assess the existing loss 

forecasting processes. The next step was to make the processes systematic for all military 

personnel planners. Improvements and additions were made to the existing forecasting 

models and the whole process was documented for continuity amongst personnel 

planners. Several issues were identified with missing or incorrect data fields that made 

forecasting calculations less robust. The NEAS Loss Model and active-duty strength 

planning chapters are the focus of this review. 

Forecasting enlisted endstrength entails dividing the enlisted force into three 

categories; first-term, intermediate, and career Marines. The first-term enlistees are those 

non-prior service members serving their initial enlistment contract. The personnel 

planners use the first-term alignment plan (FTAP) to calculate reenlistment rates. The 

FTAP directly contributes the projected end-strength at the end of the current fiscal year 

by estimating the number of qualified Marines who are likely to reenlist. These 
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projections are applied for future fiscal years in order to estimate the number of new 

accessions required per fiscal year to maintain personnel requirements for a specific 

MOS. The model is a steady-state model with planner-influenced adjustments that 

averages reenlistment rates for the past three years. The intent of Hattiangadi, Kimble, 

Lambert, Quester (2005) is to add survival analysis to the planner’s arsenal of tools. 

Steady-state models, though easy to calculate, cannot readily capture changes in behavior 

variables that would directly affect a Marine’s decision to reenlist, such as an armed 

conflict or changes in the economy.  Moving average models tend to be reactive to 

changes in the historical data, whereas the use of survival functions calculated from 

proven covariates of reenlistment influencers can be more descriptive of changes in time-

varying variables. 

The Marines who have reenlisted after the first-term of enlistment are categorized 

as Intermediate-term and Career Marines for end-strength forecasting.  Intermediate-term 

Marines are those who have reenlisted and have between three and fourteen years of 

service. Career Marines, those with fourteen or more years of service, are forecasted 

similarly. The purpose of the Intermediate-term forecasting model is to forecast the 

number of first-term Marines that will remain in the Corps after their first term.  The 

model is using an unweighted average over three years of historical data on the 

reenlistment and attrition behavior of intermediate-term Marines. The CNA report is very 

detailed on this process and it should be reviewed for greater comprehension of the 

current Marine Corps’ methodology of forecasting end-strength levels.   The CNA 

authors discovered that the strength planners’ continuation rates have been under-

estimating the empirical EAS continuation rates that is, more Marines are exiting from 

active than the model is predicting.  The authors believe that the under-estimations are 

caused by the use of unweighted averages and that survival functions could better align 

forecasting with true force continuation rates.  

The NEAS Loss model employed is to predict those Marines who will either 

retire or fail to complete their contractual obligation. The NEAS Loss model has three 

components: recruit losses, retirements, and category losses.  The review of my study 



 
 

14

focuses only on category losses analyzed in the CNA study; recruit losses as they pertain 

to the data set and are not discussed separately as in the CNA study. Category losses (or 

attritions) account for 28% of all NEAS losses (Hattiangadi, Kimble, Lambert, Quester, 

CNA, 2005). Forecasting personnel leaving the service as a category loss is critical. The 

authors found that the Marine Corps accounts for the six categories of the category losses 

collectively, a method used in this study as well. One forecasting model calculates a 

weighted average of the past three years of category losses; the other uses Monte Carlo 

simulation. The personnel strength planners may decide to use one method rather than the 

other depending on the accuracy of the forecasts from previous periods to the actual 

attrition rates. Again, talent and experience of the planners is used in this decision and 

within the weighting of the averages for future forecasts. It is the premise of this thesis 

that moving or weighted averages cannot amply explain developing or shifting trends in 

attrition behavior as responsively as survival analysis.  This study intends to demonstrate 

the power of utilizing historical hazard and survival rates for future forecasting.   

The studies reviewed for this thesis all have the same goal: to improve the 

forecasting of attrition from the active duty forces. There are strengths and weaknesses 

but the intent is paramount. In a resource-scarce environment, managing the enlisted 

transition rates by efficiently predicting losses and establishing recruiting efforts to 

replace these losses can positively impact service personnel readiness. 
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III. SURVIVAL ANALYSIS 

A. INTRODUCTION 

The survival analysis in this study is utilized to develop a model in order to more 

accurately predict enlisted attrition rates. Therefore, it is appropriate to offer a brief 

introduction to the terminology and equations that are employed to facilitate this type of 

modeling. 

Event history analysis (EHA), duration analysis, and time-to-failure analysis are 

other common terms used to model the time a subject under study enters a risk set and 

subsequently fails or leaves the analysis. At its core, EHA measures transitions from 

discrete states or durations from entry to and exit of the state under observation known as 

the survival times. The basic analytical structure of event history analysis is the state 

space and some defined time axis (Blossfeld, Golsch, Rohwer, 2007). Throughout this 

study, the state space is enlistment and the continuous time axis is ‘months enlisted’ on 

active duty.  However, there are several ways a Marine can exit or leave the state space of 

being “enlisted.” Essentially, a Marine enters a single state, enlistment, but has multiple 

destinations. A Marine could be discharged prior to completing his or her contractual 

obligation, complete his or her obligation and leave the service, or continue his or her 

enlistment until retirement.   

This chapter will describe the basic functions of survival analysis. Following that, 

there will be an introduction of the parametric modeling technique and log-logistic 

function used in this study. The chapter will conclude with a brief discussion on 

censoring and truncation. 

B. BASIC MATHEMATICAL COMPONENTS OF SURVIVAL ANALYSIS   

Defining T as a positive random variable denoting survival time or time to a 

failure event is a logical starting point for introduction. The study assumes T is 

continuous and the actual survival time of a unit is t.   



 
 

16

1. Cumulative Distribution and Probability Density Function 

The probability distribution of T is defined by the probability density function, 

f(t), and the cumulative distribution function, F(t). 

a. Cumulative Distribution Function 

 

 0
( ) ( ) ( ) Pr( )

t
F t f u d u T t= = ≤∫  (3.1) 

  
This equation denotes the probability that a survival time T is less than or 

equal to some value t in the future. All points that are differentiable in F(t) can be used to 

define f(t). 

b. Probability Density Function 

The density ( )f t  is defined by 

 

    ( )( ) ( )
( )

dF tf t F t
d t

′= =  (3.2) 

 

Implying 

 

 
0

( ) ( )( ) lim
t

F t t F tf t
tΔ →

+ Δ −
=

Δ
. (3.3) 

 

The probability density function is the unconditional failure rate of the 

events occurring in a smaller and smaller time unit. The function can be expressed as the 

instantaneous probability an event (failure) occurs within the specified state space 

bounded by t and t t+ Δ , 

 

 
0

Pr( )( ) lim
t
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=

Δ
 (3.4) 
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2. Survivor Function 

The survivor function is given by 

 
 ( ) 1 ( ) Pr( )S t F t T t= − = ≥ . (3.5) 
 

The survivor function gives the probability of surviving beyond time t.  That is 

S(t) is the proportion of units surviving beyond t. (0) 1S =  at the origin time and 

monotonically decreases as t increases. Thus, at some value of ( )S t , the probability that 

one unit has not failed will be zero. 

The probability density function gives the unconditional failure while the survivor 

function provides the proportion of units that will not have failed at time t. The important 

link between these two functions is the hazard function. 

3. Hazard Function 

The probabilities of failure and survivor functions are linked accordingly: 

 

 ( )( )
( )

f th t
S t

= . (3.6) 

 

The hazard function is the conditional failure rate that denotes the rate of unit 

failure (or duration ends) by t given that a unit survived until t. Equation (3.6) can be 

written as 

 

 
0

Pr( | )( ) lim
t

t T t t T th t
tΔ →

≤ ≤ + Δ ≥
=

Δ
. (3.7) 

 

The rate can be increasing, decreasing, or a combination of either increasing then 

decreasing, or decreasing then increasing as time elapses. In essence, the failure event is 

conditional on the history (Blossfeld, Golsch, Rohwer, 2007). The conditional aspect of 

time on the probability of failure can be expanded to include time-constant and time-

varying covariates with the following function: 
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0

Pr( | , )( | ) lim
t

t T t t T t xh t x
tΔ →

≤ ≤ + Δ ≥
=

Δ
. (3.8) 

 

Therefore, the effects of time and of covariates on a unit’s probability of survival 

to time t can be measured with the changes in the hazard function. The interpretation of 

the effects of covariates to the hazard function in survival analysis is in terms of risk. 

(Blossfeld, Golsch, Rohwer, 2007)   

C. PARAMETRIC MODELS 

Parametric models differ from nonparametric and semi-parametric models in one 

specific, and important, way. Nonparametric and semi-parametric models compare units 

when events happen to occur.  Time is therefore treated as a nuisance and not dependent 

on an event occurring. Therefore, a covariate within these models that changes value 

when a failure event does not occur, is not considered in the respective hazard function.  

Parametric modeling considers the entire duration of a unit given what was known during 

time ( )jx . Thus for each observation in the data for the duration, 0( , )j jt t  parametric 

schemes assigned probabilities utilizing covariate values at ( )jx . In addition to 

accounting for changes in covariates throughout a duration, parametric models allow 

researchers to assume the shape of the hazard rate whereas nonparametric models allow 

the “date to speak for itself.” The difference is a matter of efficiency and allows for a 

more precise estimation of the effects covariates have on the hazard rate (Blossfeld, 

Golsch, Rohwer, 2007). 

1. Parametric Proportional Hazards Models 

The proportional hazard models begin with the basis equation, 

 
 0( | ) ( ) exp( )j j xh t x h t x β= . (3.9) 
 

The equation stipulates that the baseline hazard rate is a product of the covariate 

value (x) and the estimated value ( xβ ) (the log relative hazard) (Cleves, Gould, 
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Gutierrez, Marchenko, 2008). A standard interpretation is that exp( )iβ  is the hazard ratio 

for the ith coefficient. Parametric models differ from the semi-parametric models in this 

assumption of the baseline (Blossfeld, Golsch, Rohwer, 2007). Semi-parametric models 

do not parameterize the baseline hazard 0 ( )h t .   

Parametric models specify the shape of the baseline in order to gain a more 

efficient estimate of the covariates. For example, the Gompertz Model specifies the 

functional form as, 

 
 0 ( ) exp( )exp( ).h t a tγ=  (3.10) 
 

2. Gompertz Models 

The Gompertz Model is one example of a proportional hazards model and it 

assumes a monotonically and exponentially increasing or decreasing hazard rate. The 

Gompertz distribution based on the “Gompertz's Law” that proposes that transition rates 

decline monotonically as duration increases (Blossfeld, Golsch, Rohwer, 2007).  The 

expression for the transition is 

 
 ( ) exp( ).r t b ct=     0b ≥  (3.11)  
 
Where ( )r t  is the transition rate.  The hazard, cumulative hazard, and survival functions 
are given below. 

a. Gompertz Hazard Function  

 
 0( | ) ( ) exp( )j j xh t x h t x β= . (3.12) 
                         0exp( )exp( )j xt xγ β β= +  
 

b. Gompertz Cumulative Hazard Function 

 
 1

0( | ) exp( ){exp( ) 1}j j xH t x x tγ β β γ−= + − , (3.13) 
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c. Gompertz Survival Function 

 
 1

0( | ) exp[ exp( ){exp( ) 1}]j j xS t x x tγ β β γ−= − + −  (3.14) 
 

In STATA 0c gammaγ= = , 0exp( )b β=  for analysis purposes (Cleves, 

Gould, Gutierrez, Marchenko, 2008). 

D. CENSORING AND TRUNCATION 

Censoring and truncation occur in nearly all real data-analysis situations.  

Censoring occurs when a subject is not under observation and a failure event occurs 

(Cleves, Gould, Gutierrez, Marchenko, 2008). Truncation is slightly different in that there 

is ignorance of the information that the researcher does not have for a given observation.  

The strength of survival analysis over Ordinary Least Squares (OLS) logistic or 

regression is that these censored or truncated observations are included in the analysis as 

long as a portion of the duration falls within the analysis time. OLS and logistic 

regressions typically exclude these observations. The following paragraphs explain 

censoring and truncation more in depth. 

1. Censoring 

Censoring, in addition to as described above, occurs when an observation's full 

event history is not observed. Observations can either be right censored or interval 

censored. Right censoring occurs when an observation is under study for some time then 

either exits the study or the study concludes and a failure event was not observed.  

Typically, right censoring occurs when the analysis time ends due to data collection 

limitations or some other factor that causes to researcher to end the analysis.  It becomes 

unknown when a right censored observation fails, only that the observation survived until 

the end of the study. 
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Interval censoring occurs when an observation fails between two points in time of 

observation, but the exact time of failure is unknown. This type of censoring is usually 

experienced in medical or interview studies when observations are assessed at discrete 

times (Cleves, Gould, Gutierrez, Marchenko, 2008). 

2. Truncation 

Truncation is when a period of an observation's history is unobserved and, 

therefore, cannot be included in the analysis. Observations can either be left truncated or 

interval truncated. Left truncation occurs when an observation enters into the risk set 

prior to the analysis time. In this situation, an observation will be at risk longer than other 

observations that entered the risk set on or after the analysis time.   

Interval truncation (or gaps) occur when a unit under study is not observable for a 

portion of the observation time. Essentially, the subject disappears for a time; then returns 

for observation. The obvious disadvantage to this form of truncation is that the time a 

change to a time-varying covariate occurs is not observed.   
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IV. DATA AND METHODOLOGY 

A.  INTRODUCTION 

The analysis begins with the assumption that the hazard rate, or risk of attrition, 

decreases the longer a Marine serves on active duty.  This assumption rests within the 

Human Capital Theory, which theorizes that within an imperfect market and with 

imperfect information, an employee will continue to “invest” through continued labor, as 

long as the perceived benefits are greater than the perceived costs. Therefore, a Marine 

who views promotion opportunities, educational benefits, pay, health care, etc; as a 

positive return for deployments, changes in duty station, regimented lifestyle of the 

military, and general sacrifices away from the family as positive; they will choose to be 

committed to their service obligations. Once a Marine perceives that the costs are greater 

than the benefits for continued service, he or she may decide to increase his or her net 

benefit through the application of his or her talents, knowledge, and abilities outside the 

military.  

A hypothesis of this study is that those who attrite are examples of people for 

whom the perceived benefits of exiting the service outweigh the consequences of failing 

to complete the contracted service obligation. The immediate benefits to a person’s initial 

investment of their time is first one to two years of a Marine’s enlistment is the duration 

he or she receives the most regimented of training. This period includes recruit training, 

combat training, and basic education within the Military Occupational Skill (MOS). Once 

an enlisted Marine completes these entry-level schools, he or she is assigned to an active 

duty unit.  

A Marine’s active duty unit provides further training to round out the 

“schoolhouse” skills with the techniques and procedures used in daily operations.  As 

Marines develop from basic trained personnel, further education becomes primarily the 

responsibility of those individuals. It is theorized that at this time, some individuals no 

longer feeling guided in their development, will weigh the “costs” of continued 
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commitment to their unit, MOS, and Marine Corps against the perceived benefits of 

opportunities outside military service.  Consequently, these individuals may become less 

productive on duty, may be less motivated to put forth the effort to assimilate into 

military structure, and may develop behavioral deficiencies on off-duty hours. In essence, 

their inaction and resistance to assimilate become the catalyst for early discharge for 

administrative, disciplinary, or convenience of the government discharges. These are the 

majority of NEAS Losses.   

As the catalyst for this and many other studies of attrition, is the question, “How 

can an organization identify these types of individuals?” The simplest answer is that an 

organization cannot. Unless all employees could either be continually surveyed for job 

satisfaction or managers become mind readers, organizations cannot identify who would 

leave. Continual surveys are inefficient and mind reading is impossible. Therefore, we 

can only look to historical trends, characteristics and attributes in attrition behavior, and 

apply relevant theories to predict those most likely to attrite.  Previous studies in attrition 

have compared and analyzed similar characteristics of service members who became 

NEAS losses and applied statistical methodologies to probabilities of attrition based on 

the average of these characteristics. This study follows this formula as well, but also 

attempts to model time to attrition behavior. The premise that the probability of attrition 

diminishes with time is central to the Marine’s perceived future value of continued 

service. Time, especially in the military, is a determinant of service requirements. 

Enlistment contracts, deployment lengths, time in service and time in grade requirements 

for promotion to the next grade all form the perceived costs of continued service. 

Therefore, time is not treated as a nuisance in this study, as it is in non-parametric 

analysis. Time is the decision factor that all service members must consider when 

choosing to “re-up” or “get out”, regardless of the means of “getting out.” 

There is ample evidence that certain specific attributes contribute to attrition 

behavior. Education attainment, race, gender, and age are all substantiated indicators of 

likely attrition behavior. However, these cannot define the entire likelihood of attrition 

through statistical averaging in an assumed “steady-state” as in exponential smoothing or 
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moving-average techniques. Rather, viewing these and other characteristics as investment 

criteria can shed light on attrition behavior. A Marine with a family may perceive more 

benefit from extended deployments than a single Marine. Though deployed and away 

from the spouse and children, that family is receiving benefits from the Marine's pay, 

benefits, and service provided healthcare, whereas, a single Marine, typically, has only 

himself or herself to care for. These two Marines will react in different ways to increases 

in perceived costs: for example cost from extended or back-to-back deployments, longer 

service time for promotion, or stresses of their MOS. The married Marine may be more 

willing to “pay” in time and personal application to continue to receive the benefit of 

providing for the family, while single Marines may be more apt to seek higher benefits 

outside the Corps and cease to invest personal abilities and talents to service obligation; 

perhaps creating the conditions for early separation. Another theory that this thesis 

applies is the concept of causality. 

The concept of causality is employed for this predictive modeling. The concept 

states that each unit of a population must be exposable to any of the various levels of a 

cause.  There are Occupation Fields (OccFlds) in the Marine Corps that are not open to 

every Marine.  Infantry, Artillery, and Tank/Assault Vehicle are male-only. However, 

these male-only OccFlds do not violate the concept of causality in the study as these are 

limitation based on associated attributes (gender) and are restrictive to all female 

Marines. This study attempts to apply the concept of causality with the available data and 

the resources available to military planners in mind. The optimum modeling strategy 

would employ all the known variables of a population and that the information would be 

accurate.  In either case, this was not possible given the limited scope of this study. The 

goal of this study is to develop a forecasting model for military personnel planners. The 

more complex methodologies employed in this study would likely translate into a 

complex and time-consuming model for planners. Military planners are concerned with 

the aggregate when forecasting period attrition rates and not computing the various 

combinations of attributes in order to make predictions. Therefore, care has been taken in 
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the organization of this data to construct a simple and efficient model that forecasts the 

aggregate probabilities of attrition utilizing the statistical findings of numerous, yet 

descriptive, variables. 

This chapter provides some descriptive statistics of the data set and concludes 

with the parametric model selection process. 

B. DATA COLLECTION 

The data employed in this study is from the Marine Corps’ Total Force Data 

Warehouse (TFDW).  The master data set is the combination of twenty-five individual 

data sets.  The master data set used in the parametric model contains data on all enlisted 

Marines who enlisted in the Marine Corps between January 1, 1996 and October 31, 

2008. The master data set does not contain Officers and enlisted Marines who accessed 

prior to January 1996. Twelve of the data sets are yearly information containing monthly 

“snapshots” per enlisted Marine, per fiscal year, beginning January 1996 and concluding 

October 2008.  These twelve data sets primarily contained the accession date for Marines 

that joined in that data set’s fiscal year. The purpose of these data sets is to capture all 

new accessions and to verify the continued service of enlisted Marines that accessed in 

previous fiscal years.  A “Personal Statistic” data set for each fiscal year accompanied the 

accession data sets.  The utility of these data sets is to capture changes in time-varying 

variables for each month per observation. The “Personal Statistic” data sets contain 

individual information such as education level, rank, marital status, etc. for analysis. 

Lastly, a “Separation” data set captured the separations per fiscal year as recorded by the 

“Type Change Code” and “Action Date”. The data sets are merged into one master file.  

STATA/10C for Windows is the statistical software used in the analysis. Monthly 

observations per fiscal year were collapsed to a one duration per observation.  For 

example, a Marine who enlisted in January 1996 and who is still on active duty as of 

October 2008, began with twenty-four observations. Those twenty-four observations 

were then consolidated to one observation detailing the duration of the Marine’s service.   
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The fiscal years 1996 to 2008, and the limitation of analyzing only those enlistees 

who assessed after January 1996, were specifically determined by the author to capture 

the duration of greatest volatility among attrition rates of enlisted Marines. Previous 

studies in attrition, (Hattiangadi et al., 2005; Rubiano, 1993) found that attrition rates 

drastically decline after twelve years of service.  Therefore, this study seeks to capture 

attrition behavior of enlisted Marines from their initial entry to the twelfth year of 

service. 

C. DATA SUMMARY 

The initial master data set contained 419,893 individual observations. However, 

39,562 observations were dropped due to data abnormalities. The active duty statuses of 

39,559 observations could not be obtained from the individual data sets. These 

observations did not have entries indicating separation from active duty, but contained 

less and less information in the following periods of data. In some cases, many variables 

were blank. Therefore, a separation date could not be calculated for these observations 

and continued service was not verifiable. Three observations were dropped due to 

erroneous gender codes. The adjusted master data set used in the analysis contains 

376,710 observations and 373,647 individual subjects. The additional 3063 observations 

are residue left over from the coding of the data.  Of the 3,063 multiple observations, 

2,216 have a "Deserter" status.  There was an initial attempt to include deserters as a 

failure event but this disrupted the model because if a deserter returns from desertion 

their PEBD (origin) is adjusted to reflect the time lost.  In the master data set for these 

observations are two durations; 1) from time of entry to desertion and 2) return from 

desertion to separation.  The study counts the duration from the date of accession to the 

date of separation.  The remaining 847 duplicate observations of the 3,063 are 

administrative corrections.  The first duration for these observations is from the date of 

accession to the date of separation.  The second duration is from the day after the date of 

separation to an arbitrary date entered in the record at TFDW to remove the record from 

the master data file.  Essentially, these arbitrary entries are administrative corrections.  

These 3,063 duplicate records in the master data set are not included in the analysis. 
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The initial intent of the study was to use the “Separation Code” to identify 

observations exiting the active duty, but irregularities in the data required abandonment 

of this strategy and “Type Action Codes” were used instead. The separation code is a 

four-character code that describes the nature of the discharge from active duty. Missing 

or apparent typographical errors were resident in the original data. Thus, ascertaining the 

type of discharge was not possible within reasonable fidelity for analysis. Instead, the 

more general “Type Change Code” and “Action Date” was used. The Type Change Code 

is a two-character code that describes an enlisted loss to the active duty end strength. The 

Action Date is simply the date at which the Type Change Code occurred. The specific 

Type Change codes used are listed in Table 1. 

 

Table 1.   Type Change Codes 

R1 Discharge 
R3 Transfer to the IRR 
RZ Implied Loss 

 

The code R1 and RZ signifies those Marines who did not complete their active 

duty service requirements and are counted as NEAS Losses in the study. Code R3 is 

assigned for a Marine who was transferred to the Individual Ready Reserve (IRR), 

signifying a satisfactory completion of service obligations. Extensive sampling of these 

codes, specifically their definition in the data set, show sufficiently high accuracy for 

further analysis. Over 90% of the Marines who were assigned Type change Code R3 

were discharged on or about their EAS. Approximately 92% of the observations assigned 

the R1 or RZ code were discharged prior to their respective EAS, and are assumed to be 

NEAS Losses in the data set.   

The master data set was coded for duration analysis within STATA. Specifically, 

and in accordance with the information contained in Chapter III, the data was structured 

for survival analysis. Enlisted Marines enter the origin state upon their respective Pay 

Entry Base Date (PEBD), where they become "at risk" in the analysis.  Their analysis 

time (duration and episode) continues until they experience a failure or exit the origin 

state (enlistment). A failure occurs when a Marine is discharged from active duty (Code 
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R1 or RZ) for the purpose of this study, these are NEAS Losses. A Marine exits the 

origin state upon transfer to the IRR (Code R3) or on the date October 31, 2008. It is 

important to note that transfers to the IRR are not considered failures in the analysis.  The 

assumption is that these Marines completed their required service and chose not to 

reenlist.  These are considered EAS Losses in the analysis. In order to capture those 

attributes of NEAS losses (failures), EAS Losses are excluded, because too much 

emphasis would be placed on the periods of 48, 96, 134 months of service; potentially 

over estimating the effects of these times in the analysis. These are the times that four-

year contracts expire and when the majority of Marines who do reenlist exit the service. 

The date October 31, 2008 signifies the end of the duration for those still on active duty, 

because it is the last date for which data is available. Therefore, these observations are 

right-censored. The analysis did not observe a failure on these observations, but can still 

use the fact that they did not fail in application to the population under study.  

In summary, the duration time (analysis time) for each observation in the master 

data set, begins on the respective PEBD and concludes when either, the Marine is 

discharged, transferred to the IRR or the end of the study on October 31, 2008. There was 

an initial attempt in the study to include desertions in the study. Deserter status is for any 

Marine who is on an “Unauthorized Absence” status for a minimum of thirty days. 

However, these records could not be formed into the proper duration time-frame for 

analysis. In total, 2,916 deserter records were dropped from the master data set. 

D. DESCRIPTIVE STATISTICS 

The master data set contains 88 variables, which are listed in Table 2. Not all 

variables were used in the model; some variables are retained only for further analysis of 

specific duration of events. The variables beginning with “occfld…” refer to the 

Occupational Fields utilized by the Marine Corps to classify an enlistee's job description.  

Resident within the Occupational Fields (OccFld), are the Military Occupational 
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Specialties (MOS). For the purpose of the analysis, the Occupational Fields are used for 

forecasting attrition. Three combat OccFlds are restricted to males only OccFld03 

Infantry, OccFld08 Artillery and OccFld18 Tanks and Assault Amphibious Vehicles. 

 

Table 2.   Variable Description 

Variable Label Frequency  Percentage 
Unique Identifier per Marine    376,710   100 
Observation relevant to analysis    375,070   - 
Type Change Code     *See Table 3  * 
Female          26,970     7.16 
Ranks/Pay Grade 
Private/E1      114,354   30.36 
Private First Class/E2       75,696   20.09 
Lance Corporal/E3     107,165   28.45 
Corporal/E4        65,383   17.36 
Sergeant/E5        12,728     3.38 
Staff Sergeant/E6          1,384     0.37 
Citizenship 
Nationalized U.S. citizen         7,069     1.88 
U.S. resident             670     0.18 
U.S. Alien        11,967     3.18 
U.S. citizen      356,932   94.75 
Contract Terms 
Open Contract        53,100   14.10 
Race 
American/Alaskan Indian         4,530     1.20 
Asian           7,857     2.09 
Black/African American       39,114   10.38 
Hawaiian/Pacific Islander         2,150     0.57 
White       290,532   77.12 
Declined to comment on race      32,527     8.63 
Education Level 
Less than 12 years education        7,346     1.95 
Equal to 12 years education    338,485   89.85 
Equal to 13 years education        4,699     1.25 
Equal to 14 years education        4,341     1.15 
Equal to 15 years education        1,309     0.35 
Equal to 16 years education        3,447     0.92 
Equal to 17 to 19 years education      17,083     4.53 
Marital Status 
Married       118,982   31.58 
Occupational Field        
Occfld01      Personnel & Administration    16,107     4.28 
Occfld02      Intelligence        3,493     0.93 
Occfld03      Infantry       77,717   20.63 
Occfld04      Logistics        7,048     1.87 
Occfld05      MAGTF Plans           514     0.14 
Occfld06      Communications       23,848     6.33 
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Table 2 continued 
Variable Label     Frequency  Percentage 
Occfld08      Artillery          8,825     2.34 
Occfld11      Utilities          6,440     1.71 
Occfld13      Engineer, Equipment & Shore Party    17,591     4.67 
Occfld18      Tank and Assault Amphibious Vehicle      5,697     1.51 
Occfld21      Ground Ordnance Maintenance       8,668     2.30 
Occfld23      Ammunition & Explosive Ordnance Disposal    3,648     0.97 
Occfld25      Operational Communications       1,614     0.43 
Occfld26      Signal Intelligence/Electronic Warfare      4,314     1.15 
Occfld28      Data/Communications Maintenance      7,666     2.03 
Occfld30      Supply Administration and Operations     14,518    3.85 
Occfld31      Traffic Management         1,250    0.33 
Occfld33      Food Service          5,620    1.49 
Occfld34      Financial Management         2,585    0.69 
Occfld35      Motor Transport        29,680    7.88 
Occfld40      Data Systems          1,098    0.29 
Occfld41    Morale, Welfare & Recreation           109    0.03 
Occfld43      Public Affairs             746    0.20 
Occfld44      Legal Services             965    0.26 
Occfld46         Combat Camera          1,063    0.28 
Occfld57         Chem, Bio, Radio & Nuclear Defense       1,850    0.49 
Occfld58         Military Police and Corrections        8,255    2.19 
Occfld59        Electronics Maintenance         2,801    0.74 
Occfld606162   Aircraft Maintenance       25,724    6.83 
Occfld6364       Avionics        11,528    3.06 
Occfld65         Aviation Ordnance         5,265    1.40 
Occfld66         Aviation Logistics         9,028    2.40 
Occfld68         Meteorological & Oceanographic           542    0.14 
Occfld70         Airfield Services          4,706    1.25 
Occfld72         Air Spt Anti-air Warfare/Air Trfc Cntrl       3,763    1.00 
Occfld73         Enlisted Flight Crew            477    0.13 
Occfld8490 Enlisted B-Billet             550    0.15 
Occfld99 General Marine        39,596  10.51 
Source: created by author from master data set 
 
The frequency and percentage of the total observations for the Type Change Codes are 
contained in the next table. 
 

Table 3.   Summary Statistic per Type Change Codes 

R1 Discharge    96,601   43.46% 

R3 Tr IRR  121,963   54.87% 

RZ Implied loss      3,719     1.67% 

 Total  222,283  
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E. METHODOLOGY 

There are several graphical and statistical methods to examine the "fit" of the data 

to the five parametric models. These methods are not the sole determinant of model 

selection, but can provide the basis for matching the data and sound theory to survival 

analysis. This section of the study will briefly introduce the five parametric models, 

discuss the graphical and statistical methods employed for the model used in this study 

and conclude with the model selection. 

1. Five Parametric Models 

Five parametric models that can be used in survival analysis are the exponential, 

Weibull, Gompertz, log-logistic, and log-normal. The exponential model assumes the 

baseline hazard (or risk of failure) is constant for all observations. Hence, failure rates are 

independent of process or “lacks memory” of past durations. The Weibull Model is an 

extension of the exponential model that allows the hazard function to monotonically 

increase, decrease, or remain constant. It is most suitable for data that displays monotone 

hazard rates (Cleves, Gutierrez, Gould, Marchenko, 2008). The exponential and Weibull 

are unique amongst the parametric models in that both models can be fitted with either 

the Proportional Hazard (PH) or Accelerated Failure Time (AFT) metric. The Gompertz 

model is suitable for exponentially increasing or decreasing hazard rates.  The model only 

has the PH interpretation available. The Log-Logistic and Log-Normal models are similar 

in computation to the LOGIT and PROBIT models and assume log-logistic distribution 

implying a nonmonotonic relationship between the transition rate and episode duration. 

(Cleves, Gutierrez, Gould, Marchenko, 2008). The models do not have a PH 

interpretation, but allow for changes in the direction of the hazard rate. A logical 

beginning step to parametric model selection is an examination of the product limit 

estimator (Kaplan-Meier). 
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2. Kaplan-Meier Survival Estimate 

The Kaplan-Meier survival estimate is a nonparametric calculation of estimated 

cumulative survival function of all observations in the data. The product-limit method is 

derived by calculating a risk set at every interval an event occurred.  In this study, a 

failure event is defined as an NEAS loss (Type Change Code R1 or RZ). The graph 

depicts an initial decrease in the cumulative survival rates at approximately t = 5, 

signifying an initial increased cumulative hazard rate. Then the survival rate declines at a 

slower rate until approximately t = 90 when another drastic drop in survival rate 

(increased cumulative hazard rate) is experienced. Nonetheless, this graph depicts a 

monotonic decreasing survival rate indicating a monotonically decreasing cumulative 

survival rate. 
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Figure 1.   Kaplan Meier Survival Estimate 

3. Pseudoresidual Graph of Model Suitability 

The development of the graph involves specifying the Cox-Snell residuals as the 

variable for time against the cumulative hazard function as the log of the Kaplan-Meier 
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estimates (Cleves, Gutierrez, Gould, Marchenko, 2008).  If the model “fits” the data, the 

Cox-Snell residuals will have an exponential distribution and the set of pseudoresiduals 

will cluster near a straight line passing through the origin with a slope of one.  Figure 2 is 

obtained by first estimating the Cox-Snell residuals and then the integrated hazard rate is 

estimated utilizing the Kaplan-Meier estimates.  The y-axis is the log of Kaplan-Meier 

estimates and the x-axis is the computed Cox-Snell residuals for each parametric model 

assessed in the figure. 

Examining the below graph, it is easy to determine that the exponential and 

Weibull models are not appropriately suited for the data because the estimated Kaplan-

Meier (or pseudoresiduals) estimates of the integrated hazard function do not follow an 

exponential distribution. The closer the pseudoresiduals follow along the Cox-Snell 

residual, the better the data “fits” the specified model. The psuedoresiduls for the Weibull 

and expontneial models are plotted far from the linear line indicating a weak data “fit.”  

The Log-Logistic and Log-Normal perform somewhat better. The Gompertz Model 

seems to be best suited amongst the models for the data.  The departure of the estimated 

residuals from the linear line is a normal occurrence. This “flaring” off is primarily due to 

fewer observed failures towards the end of the analysis time as fewer observations 

“survive.” In the Gompertz Model the departure seems to be less drastic.   

 



 
 

35

 

Figure 2.   Graphical Representation of Pseudoresiduals 

4. Akaike Information Criterion (AIC) 

The aim of the AIC is to penalize each parametric model’s log likelihood function 

for each covariate estimated. The AIC criterion is given by 

 
2(log ) 2( 1),AIC L c p= − + + +  

 

where c is the number of covariates in the model and p is the number of structural 

parameters in the model.  In Table 4, each model’s log likelihood and AIC are estimated.  

Based on selecting the model with the lowest AIC, the preferred model for this data is the 

Gompertz Model. 
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Table 4.   AIC values for Parametric Model Selection 

Model  Log likelihood(null)  Log likelihood (model) AIC     ______ 
Exponential    -232756.6  -231084.3   462296.5       
Weibull  -232565  -230428.1   460986.2     
Gompertz    -230404.9  -227057.3   454244.5     
Log-Logistic    -241655.9  -240518.9   481167.9     
Log-Normal    -259442.2  -258113.7   516357.3     
 

F. DISCUSSION 

The Gompertz Model seems to be the most appropriate model for the data set as 

demonstrated through a graphical and statistical test of model “fitness.” However, it must 

be emphasized that these tests are not a “goodness of fit” test, but rather a model 

selection process that evaluates a model’s assumptions on the distribution of hazard rates.  

As theorized in this study, hazard rates decrease as time elapses, which is an appropriate 

assumption for the Gompertz Model. The theory to support the use of this distribution 

assumption rests in the Human Capital Theory. Specifically, as an employee incurs more 

experience within an organization, additional personal developmental investments 

decline, and thus job-exits decrease. The determination of the author not to include EAS 

losses as failures in the model allows for a direct estimation of NEAS loss rates without 

over-estimating the transition rates of enlisted Marines who choose not to reenlist.  

Typically, these times would be every 48 months.  

The next chapter will provide an analysis of the data estimated with the Gompertz 

Model. The chapter will begin with an estimation of the data without covariates, expand 

to a model with covariates and then test specific influences of the individual covariates on 

the hazard rate. The chapter will conclude with a description of survival and hazard rates 

of specific covariate values in preparation for the development of a forecasting model for 

NEAS losses. 
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V. PARAMETRIC MODEL RESULTS 

The Gompertz Model was chosen for the analysis of Marine Corps enlisted 

attrition rates for the period 1996 to 2008 by means of the methodology described in the 

previous chapter. The analysis will begin by estimating and interpreting a model without 

covariates. Further expansion of the model will be provided in the subsequent sections of 

this chapter. 

A. GOMPERTZ MODEL WITHOUT COVARIATES 

The hypothesis for the study is that transition rates (hazard rates) will decline at a 

monotonic rate as time increases. 

 

Table 5.   Gompertz Model without Covariates 

 
 t  Coefficient Std. Err. z P>z [95% Conf.  Interval] 

       
constant  -4.553  .0048  -940 0.000  -4.563          -4.544 
       
gamma  -.0160  .0002  -99 0.000 -.0163          -.0157 
Source: generated by author in STATA 

 

As expected, the transition rate as estimated in STATA by the gamma coefficient 

is negative and significant.  Thus, the transition rate for the observations is decreasing as 

enlistment time increases.  Comparisons can be made between varying times in service 

levels. For example, the estimated parameters are 0 .0160c γ= = − , 

exp( 4.553) .0105b = − = .  An enlistee's initial transition rate ( (0) .0105)r =  compared to 

that of an enlisted Marine with one year of service (or 12 months) 

( (12) .0105exp( .0160*12) .009)r = − =  demonstrates a 14% decrease in an expected 

hazard rate as time in service increases by 12 months for enlisted Marines. The survivor 

function 
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 ( ) exp (exp( 1)tbG t c
c
−⎧ ⎫= −⎨ ⎬

⎩ ⎭
,      (5.1) 

 

defined by ( ) .5G M = , is 

 
0.011( ) exp (exp( .0160 1)
.0160

MG M −⎧ ⎫= − −⎨ ⎬−⎩ ⎭
 

 

The probability a service member is still enlisted, say, at four years (48 months) 

can be calculated as, 

 
480.011(48) exp (exp( .0160 1)

.0160
G −⎧ ⎫= − −⎨ ⎬−⎩ ⎭

 

 

However, the coefficients in Table 5 do not include other explanatory factors that 

influence transition rates. A model without covariates assumes that there is no 

heterogeneity amongst individuals (Blossfield, Golsch, Rohwer). The assumption that 

transition rates decrease with time because of the accumulation of MOS-specific skills 

and returns to investment in the form of promotions, higher pay, family benefits, etc. 

could be misleading without the inclusion of substantiated covariates. Therefore, a 

second model is estimated utilizing the covariates outlined in Chapter IV. 

B. GOMPERTZ MODEL WITH COVARIATES 

The model’s covariates (Table 6) are linked to the b parameter. Furthermore, the 

model takes as a baseline for white males, at the rank of Private, with the Occupational 

Field 9900, designated as a United States citizen, with an education level equal to 12 

years, who are serving on a guaranteed contract.   

The value of the log likelihood for this model is -201720.91 with 56 parameters 

compared to the log likelihood of the model without covariates -374750.53. Therefore, 

the model with covariates provides a better description of the hazard rate.   
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All variables, with the exception of (races American Indian, black, and race 

declined comment, education level equal to 13 years, and Occupational Field 6500 

(Aviation Ordnance)) are significant at the 95% confidence level. A negative coefficient 

signifies a decreasing effect on the hazard rate (i.e. lower probability of attrition), while a 

positive coefficient reflects an increasing effect on the hazard function. For example, the 

coefficient for female is positive and significant at the 5% level. Therefore, females 

attrite at a higher rate than males. The hazard function for a specific set of covariates can 

be calculated per (3.12) in Chapter III. 

 

Table 6.   Gompertz Model with Covariates linked to the b parameter 

Variable   Coefficient S.E.  z P-value 
Female       .294  .011             26.34 0.00 
PFC\E2    -1.475  .001          -151.65 0.00 
LCpl\E3    -3.285  .014          -233.68 0.00 
Cpl\E4    -3.263  .014          -236.87 0.00 
Sgt\E5    -4.259  .025          -167.87 0.00 
SSgt\E6    -7.043  .172            -40.87 0.00 
Enlist Age^2            .001  .000             43.67 0.00 
U.S. Nationalized   -  .214  .030              -7.18 0.00 
U.S. Resident   -  .250  .081              -3.08 0.02 
U.S. Alien   -  .213  .021            -10.23 0.00 
Open Contract      .057  .009               6.23 0.00 
American/Alaskan Indian  -  .278  .031              -9.10 0.00 
Asian    -  .159  .027              -5.89 0.00 
Black/African American  -  .003  .010              -0.25 0.80 
Hawaiian/Pacific Islander  -  .510  .061              -8.34 0.00 
Declined race   -  .012  .012              -1.03 0.30   
Less than 12 years education    .236  .020             12.00 0.00 
Equal to 13 years education -  .058  .032              -1.84 0.07 
Equal to 14 years education -  .142  .037              -3.87 0.00 
Equal to 15 years education    .586  .063               9.23 0.00 
Equal to 16 years education    .180  .033               5.52 0.00 
Married       .113  .010             11.61 0.00 
Number of Dependents  -  .260  .001            -45.46 0.00 
Occfld01   -2.710  .020          -134.33 0.00 
Occfld02   -2.658  .048            -55.38 0.00 
Occfld03   -2.463  .010          -238.07 0.00 
Occfld04   -2.721  .030            -89.70 0.00 
Table 6 continued 
Variable   Coefficient S.E.  z P-value 
Occfld05          -2.427  .111            -21.79 0.00 
Occfld06           -2.740  .019          -147.66 0.00 
Occfld08           -2.600  .026            -99.42 0.00 
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Occfld11           -2.682  .030            -89.39 0.00 
Occfld13           -2.699  .020          -132.90 0.00 
Occfld18           -2.461  .031            -80.31 0.00 
Occfld21           -2.665  .027            -97.18 0.00 
Occfld23           -2.647  .040            -65.52 0.00 
Occfld25           -1.837  .035            -52.38 0.00 
Occfld26           -2.524  .039            -64.97 0.00 
Occfld28           -2.547  .027            -94.48 0.00 
Occfld30           -2.712  .021          -129.25 0.00 
Occfld31           -2.867  .069            -41.79 0.00 
Occfld33           -2.624  .029            -89.34 0.00 
Occfld34           -2.631  .044            -59.47 0.00 
Occfld35           -2.665  .015          -172.68 0.00 
Occfld40           -2.001  .054            -37.28 0.00 
Occfld41           -2.524  .209            -12.08 0.00 
Occfld43           -2.705  .090            -30.07 0.00 
Occfld44           -2.780  .079            -35.01 0.00 
Occfld46   -2.786  .079            -35.19 0.00 
Occfld57   -2.675  .062            -43.03 0.00  
Occfld58           -2.771  .030            -93.54 0.00 
Occfld59          -2.587  .046            -57.79 0.00 
Occfld606162   -2.768  .017          -159.31 0.00  
Occfld6364         -2.756  .024          -113.77 0.00 
Occfld65              .059  .055               1.06 0.29 
Occfld66           -2.839  .042            -67.69 0.00 
Occfld68           -2.828  .102            -27.64 0.00 
Occfld70           -2.699  .036            -74.07 0.00 
Occfld72           -2.499  .038            -66.50 0.00 
Occfld73           -2.567  .118            -21.30 0.00 
Occfld8490   -3.022  .165            -18.37 0.00 
Intercept    -2.142  .015          -147.39 0.00 
Gamma       .028  .000           172.83 0.00 
Source: created by author from master data set in STATA 

 

1. Sample Hazard Function Calculation 

In order to demonstrate the probability a failure event will occur given a specific 

time of service (using Table 6 estimates) an example of the hazard function (3.12) is 

computed for a particular set of covariates. 

 
01(36 | ) exp(.0282*36)exp( 2.142 (1* ) (1* )

exp(.0282*36)exp( 2.142 (1*(.294)) (1*( 2.707))
.0290

j female occfldh x β β= − + +

= − + + −
=

 

 

The hazard function depicts a .029 probability that a white female, in the Occfld 

0100 (Administration), will become a NEAS loss in the 36th month of service, given she 
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survived to 36 months of service. This compares to the estimate for a white male, with 

the same covariate valuess and time of service, of .021, a as shown below. Therefore, 

these females have a 26% higher hazard rate than males with identical covariates. 

 
01(36 | ) exp(.0282*36)exp( 2.142 (1* ) (1* )

exp(.0282*36)exp( 2.142 (1*(0)) (1*( 2.707))
.0216

j male occfldh x β β= − + +

= − + + −
=

 

 

The effects of the coefficients on the hazard function for a combination of 

estimated covariant values is proportional to changes to the hazard function and the 

frequency of covariant values that experienced an event (Cleves, Gould, Gutierrez, 

Marchenko, 2008).  In the above demonstration, the estimated value for the coefficient 

female, was positive and significant and increased the probability a “failure event” will 

occur when t = 36 when compared to a male with identical combination of covariates.  

The example of calculating the hazard function for any set or combination can easily be 

expanded to include all variables estimated in Table 6. 

2. Positive c-Parameter 

It is the premise of this study that the hazard rate would decrease monotonically 

as time passes; the Marine Corps would experience fewer NEAS losses as enlistees 

accumulated time in service. A change in the hazard with covariates linked to the b 

parameter from the model estimated without covariates is the sign of the gamma 

( )γ coefficient (or c-parameter).  This appears to be in violation of the hypothesized 

declining rate of transitions as the shape parameter is now positive, .0281, indicating an 

increasing hazard rate.  However, a positive c parameter indicates an increasing hazard 

function. The apparent discrepancy between the theory of a declining hazard rate and the 

contrary positive gamma coefficient can be explained by the influence of different sub-

populations within the data. 

The data is comprised of a multitude of sub-populations. The various 

Occupational Fields, gender, and race are examples. The combinations of these attributes 



 
 

42

further divide the data into more sub-populations.  An individual hazard rate can be 

calculated for each sub-population. In addition, within this data, the proportions of 

observations within these sub-populations are constantly changing as observations, fail, 

exit, or enter the analysis representing the daily accessions and exits of enlisted Marines 

to and from active duty.  The enlisted end-strength is in a constant and daily flux. 

Therefore, the gamma ( )γ coefficient is a combination of the hazard rates of the various 

sub-populations.  This does not mean the gamma ( )γ coefficient can be dismissed as 

false, but it does emphasize the need to construct hazard rates by the sub-populations of 

interest.   

The estimated effects of the covariates on the hazard rate remains the same for the 

population and the sub-populations, but as sub-populations are formed from different 

combinations of covariates, the multiplicative effect of those covariates will change the 

hazard and survival rate for each sub-population. (This concept was demonstrated in 

Section B.1 of Chapter V.) 

The next few sections of this chapter will demonstrate the varying hazard rates 

per sub-populations.   

3. Gompertz Model with Covariates Linked to the b and c Parameter 

The Gompertz Model can be expanded to estimate the effects individual time-

constant coefficients have on the hazard rate as duration time increases. A negative 

coefficient signifies a decreasing effect of the shape of the hazard function, while a 

positive coefficient has an increasing effect of the hazard function. The purpose of such a 

model is to determine if those covariates that serve as initial predictors of attrition 

behavior actually decline in significance as enlistment duration increases (Cleves, Gould, 

Gutierrez, Marchenko, 2008).   

The coefficient estimates listed under the "gamma" section in Table 7 differ from 

those listed in the top half the table in that they estimate the effects of the covariate on the 

hazard rate over the duration of enlistment. For example, the “occfld01” coefficient is 

negative signifying a reduction in the hazard rate compared to the baseline. However, the 
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“occfld01” coefficient listed under the “gamma” section is positive and significant at the 

95% confidence level. This means that the covariate has an increasing positive effect on 

the hazard rate as duration time increases. The coefficients U.S. Resident, American 

Indian, Asian and Hawaiian/Pacific Islander are not statistically significant at the 95% 

confidence level. The interpretation of the “gamma” coefficients is difficult to apply to 

forecasting and requires calculation beyond the scope of this study.  The point of this 

description is to demonstrate how individual covariates influence the hazard rate over 

time and that coefficients that are originally negative can eventually have a positive effect 

on the hazard rate over time. Thus, a positive c parameter ( .0282)γ = that indicates an 

increasing hazard rate is a result of the cumulative hazard rates of sub-populations within 

the study and not necessarily in opposition to the study's theory of decreasing hazard 

rates.  The aggregated grouped effects of sub-population’s hazard rates are causing the 

shape of the hazard function to be position.  Thus, some sub-populations are experiencing 

increasing attrition rates which may be occurring to events not explained by the Human 

Capital Theory. 

Table 7.   Gompertz Model with Covariates linked to the b and c parameter 

 Variable   Coefficient S.E.  z P-value 
Female       .185  .013             13.87 0.00 
PFC\E2    -1.421  .010          -143.64 0.00 
LCpl\E3    -3.269  .014          -229.82 0.00 
Cpl\E4    -3.422  .014          -237.39 0.00 
Sgt\E5    -4.742  .027          -178.50 0.00 
SSgt\E6    -7.572  .173            -43.69 0.00 
Enlist Age^2            .002  .000             41.14 0.00 
U.S. Nationalized   -  .160  .040              -3.96 0.00 
U.S. Resident   -  .300  .120              -2.50 0.01 
Table 7 continued 
Variable   Coefficient S.E.  z P-value 
U.S. Alien   -  .161  .027              -6.03 0.00 
Open Contract      .082  .012               7.05 0.00 
American/Alaskan Indian  -  .254  .042              -6.09 0.00 
Asian    -  .109  .035              -3.14 0.00 
Black/African American     .025  .013               1.87 0.06 
Hawaiian/Pacific Islander  -  .429  .081              -5.31 0.00 
Declined race        .038  .015               2.51 0.01 
Less than 12 years education               .301  .020             15.29 0.00 
Equal to 13 years education -  .023  .032              -0.71 0.48 
Equal to 14 years education -  .217  .037              -5.87 0.00 
Equal to 15 years education    .646  .064             10.17 0.00 
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Equal to 16 years education    .433  .033             13.21 0.00 
Married       .089  .001               9.19 0.00 
Occfld01   -3.339  .031          -108.03 0.00 
Occfld02   -3.781  .093            -40.52 0.00 
Occfld03   -3.032  .014          -208.14 0.00 
Occfld04   -3.508  .049            -70.99 0.00 
Occfld05          -3.394  .194            -17.47 0.00 
Occfld06           -3.689  .030          -122.57 0.00 
Occfld08           -3.670  .041            -81.67 0.00 
Occfld11           -3.258  .047            -69.94 0.00 
Occfld13           -3.313  .031          -107.76 0.00 
Occfld18           -3.110  .047            -66.61 0.00 
Occfld21           -3.431  .043            -79.87 0.00 
Occfld23           -3.485  .067            -52.07 0.00 
Occfld25           -2.238  .058            -38.40 0.00 
Occfld26           -3.458  .067            -51.40 0.00 
Occfld28           -3.261  .045            -73.00 0.00 
Occfld30           -3.223  .032          -101.96 0.00 
Occfld31           -3.329  .110            -30.14 0.00 
Occfld33           -3.117  .046            -68.38 0.00 
Occfld34           -3.099  .068            -45.30 0.00 
Occfld35           -3.266  .023          -140.60 0.00 
Occfld40           -2.804  .105            -26.79 0.00 
Occfld41           -4.500  .776            -6.44 0.00 
Occfld43           -3.285  .150            -21.94 0.00 
Occfld44           -3.427  .127            -26.99 0.00 
Occfld46   -3.651  .134            -27.21 0.00 
Occfld57           -3.492  .099             -35.39 0.00 
Occfld58           -3.438  .045             -75.83 0.00 
Occfld59          -3.129  .073             -42.82 0.00 
Occfld606162     -3.424  .027           -126.95 0.00 
Occfld6364         -3.395  .040             -84.06 0.00 
Occfld65           -  .394  .090               -4.37 0.00 
Occfld66           -3.392  .066             -51.33 0.00 
Occfld68           -3.571  .184             -19.45 0.00 
Occfld70           -3.536  .059             -59.91 0.00 
Occfld72           -3.177  .061             -52.50 0.00 
Occfld73           -3.328  .207             -16.10 0.00 
Occfld8490   -4.073  .244             -16.71 0.00 
Intercept    -1.848  .017           -106.27 0.00 
Table 7 continued 
Variable   Coefficient S.E.  z P-value 
Gamma______________________________________________________________ 
Female       .005  .000              12.30 0.00 
Enlist Age^2   -  .000  .000             -11.63 0.00 
U.S. Nationalized   -  .002  .000               -2.49 0.00 
U.S. Resident      .002  .002                0.81 0.42 
U.S. Alien   -  .002   .001               -2.78  0.01 
Open Contract   -  .003  .000               -8.83 0.00 
American/Alaskan Indian     .001  .001                0.59 0.55 
Asian    -  .002  .000               -1.81 0.70 
Black/African American  -  .002  .000               -6.52 0.00 
Hawaiian/Pacific Islander     .000  .002   0.24 0.81 
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Declined race   -  .002  .000               -4.69 0.00 
Occfld01      .070  .001              67.06 0.00 
Occfld02      .078  .002              51.56 0.00 
Occfld03      .069  .001              75.54 0.00 
Occfld04      .074  .001              60.21 0.00 
Occfld05             .077  .003              25.26 0.00 
Occfld06              .077  .001              78.67 0.00 
Occfld08              .075  .001              62.11 0.00 
Occfld11              .069  .001               51.35 0.00 
Occfld13              .070  .001              65.68 0.00 
Occfld18              .072  .001              54.26 0.00 
Occfld21              .074  .001              61.54 0.00 
Occfld23              .075  .001              50.91 0.00 
Occfld25              .064  .002              29.14 0.00 
Occfld26              .077  .001              53.06 0.00 
Occfld28              .072  .001              62.85 0.00 
Occfld30              .067  .001              61.77 0.00 
Occfld31              .066  .003              23.65 0.00 
Occfld33              .067  .001              50.16 0.00 
Occfld34              .065  .002              41.31 0.00 
Occfld35              .070  .001              70.59 0.00 
Occfld40              .078  .003              24.53 0.00 
Occfld41              .088  .007              11.99 0.00 
Occfld43              .067  .002              27.43 0.00 
Occfld44              .070  .003              26.67 0.00 
Occfld46      .076  .003              28.54 0.00 
Occfld57              .075  .002              37.86 0.00 
Occfld58              .071               .001              60.09 0.00 
Occfld59             .068  .002  37.86 0.00 
Occfld606162        .070  .001  71.52 0.00 
Occfld6364            .070  .001  60.87 0.00 
Occfld65              .011  .002    6.80 0.00 
Occfld66              .068  .002  45.24 0.00 
Occfld68              .071  .003  22.56 0.00 
Occfld70              .076  .001  53.40 0.00 
Occfld72              .071  .001  50.80 0.00 
Occfld73              .073  .003  21.14 0.00 
Occfld8490      .085  .003  25.43 0.00 
Intercept    -  .028  .001              -28.06 0.00 
Source: created by author from master data set in STATA 

4. Gompertz Hazard Rate 

The estimated hazard rate is depicted in Figure 3. As expected with the positive 

gamma coefficient ( .0282)γ = , the rate is increasing monotonically as time increases.  
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Figure 3.   Gompertz Hazard Rate 

5. Hazard Function by Rank 

Figure 4 depicts the different hazard rates by rank. The rank of Private First Class 

has the highest probability of experiencing a failure event as the duration of enlistment 

increases. This is not a surprising result as most PFC's are promoted to the rank of Lance 

Corporal within their first year of active service. The Marines at the rank of PFC beyond 

the first year are typically in that rank as a result of poor performance or conduct and 

have been reduced from a higher pay grade as a result.  The rank of Staff Sergeant, on 

average, is achieved at approximately the eighth year of active service. These Marines 

have demonstrated competence and proficiency within their MOS and thus the 

probability of becoming an NEAS loss for discipline or performance issues are reduced.  

Also, the hazard rate for the rank of Staff Sergeant declines as duration increases. 

Notably, the ranks of Sergeant and Corporal experience increase hazard rates as 

enlistment duration increases. This may be caused by poor or sub-average performance, 

resulting in those Marines being “passed over and not being promoted to the next rank in 

unison with their respective accession cohort. The increasing hazard rates experienced by  
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these ranks signify attrition behavior that is the result of reduction of personal 

investments to continued service and the decision to exit the military rather than incurring 

additional “costs” of enlisted service. 
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Figure 4.   Hazard Functions by Rank 

6. The Use of the Gompertz Model with Covariates Linked to the b 
Parameter as a Forecasting Model 

Developing a model to forecast attrition from the data presented in Table 6 is 

dependent on the researcher’s ability to construct sub-populations from the data. As 

discussed, each sub-population within a larger population will have its own hazard rate.  

That sub-population’s specific hazard rate is influenced by the covariates that are in the 

model.  If large numbers of sub-populations were constructed, the hazard and survival 

rates would still be sensitive to the proportion of observations for each covariate, the 

quantity of observations entering and exiting the sub-population, and the frequency of 

“events” observed with the duration under study. However, a simpler model can be 

developed that would be within the resources a military planner will have in order to 

build future forecasting models. The next section will construct a simple model including 

only the covariates of the various ranks. The model will employ interaction terms for the 
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individual ranks within the 0300 Infantry Occupational Field.  The purpose of this 

simplified model is to demonstrate that restricting the hazard function to a few covariates 

drastically diminishes the models capability to estimate the probability of failure for a 

specified time t. 

C. OCCUPATIONAL FIELD 0300 ATTRITION FORECAST MODEL  

The data in the forecasting model is from the master data set used throughout the 

study. The interaction terms were created to study the attrition behavior of each rank 

within the 0300 Occupational Field. The control group is the rank of Private. The model 

estimates and corresponding graphs of the hazard and survivor functions are provided. 

 

Table 8.   Gompertz Model results for Occupational Field 0300 

Variable Coefficient Standard Error z  P-value 
PFC/E2  -  .510  .016   -31.03  0.00 
LCpl/E3  -1.912  .027   -71.15  0.00 
Cpl/E4  -1.406  .027   -51.69  0.00 
Sgt/E5  -1.341  .066   -20.46  0.00 
SSgt/E6  -3.921  .707   -  5.55  0.00 
Intercept  -4.401  .005                            -896.95  0.00 
Gamma  -  .016  .000   -98.86  0.00 
Source: created by the author in STATA 

 

1. Descriptive Statistics 

As depicted in Table 8, all covariates are significant at the 95% confidence level 

and have an estimated negative effect on the hazard rate. The negative gamma coefficient 

signifies a decreasing hazard rate, which supports this study’s assumption of declining 

attrition rates with time. Figure 5 graphically represents the associated hazard rate.  The 

graph depicts Marines in the 0300 Occupational Field have the highest attrition rate in the 

first 48 months of service.  At approximately 50 months of service the probability of 

attrition is ,004, which typically is for a Marine that is now classified as an Intermediate-

term Marine. 
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Figure 5.   Graph of Occupational Field 0300 Overall Hazard Rate 

2. Occupational Field 0300 Hazard Rates by Rank 

The graphed hazard rates by rank within the 0300 Occfld differ from the hazard 

rates from the larger covariate model in Table 6. As expected, the rank of Private First 

Class experiences the highest hazard rate early in the analysis time. The subsequent 

hazard rates of the other ranks, diminishes as time elapses, which is synonymous with 

promotions to next rank as the duration increases. The ranks of Corporal and Sergeant 

have nearly identical hazard rates. 
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Figure 6.   Graph of OccFld 0300 Hazard Rates by Rank 

3. Why the Differences in Shape of the Hazard Functions? 

The differences in the slope of the estimated hazard functions between the model 

represented in Table 6 and the simplified model in Table 8 lie in the number of covariates 

used in the estimations.  Transition rate models are sensitive to the set of covariates used 

to evaluate the model and a change in the values of a set of covariates used in the model 

can change the shape of the transition rate. This dependency is due to the function of the 

residuals estimated in the model (Blossfeld, Golsch, Rohwer, 2007).  In the model 

depicted in Table 6, the estimated effect of Corporal is the estimated effect the rank of 

Corporal has on the entire population. The residual is calculated by combining all the 

Corporals throughout the sample who had failed and measuring the duration time for the 

failure event. What is not captured is the varying probabilities of failure for the rank of 

Corporal within each occupational field. 
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The increasing hazard function, depicted in Figure 3, is estimated using the mean 

values of 56 covariates. However, the simplified model that depicts a decreasing hazard 

rate utilizes only five interaction terms to estimate the hazard function. The exclusion of 

other explanatory variables reduces the descriptive ability of modeling attrition behavior 

and demonstrates that a Marine’s rank and Occfld alone are not adequate to forecast the 

probability of attrition.   There are other factors, which affect the probability of attrition 

besides those factors currently used by the Marine Corps, and each set of these factors 

will affect the attrition rates differently within sub-populations.  Forecasting models that 

utilize only rank, occupational field and service duration can be misleading and non-

responsive to changes within sub-population attrition rates.  Consequently, the 

requirement to weight the historical data becomes necessary to compensate for the 

inefficiency of an averaging technique.  The application of survival analysis for each 

occupational field within the Marine Corps with all possible combinations of covariates 

significant to characterizing the probability of becoming a NEAS loss will improve the 

efficiency of an attrition forecast model.  

The table in Appendix C provides a frequency distribution of Type Change Codes 

per fiscal year from the master data set. An examination of this table reveals varying 

failure rates (Code R1 and RZ) for each occupation field. Furthermore, the failure rates 

steadily increase for each successive fiscal year differently within each occupational 

field. The number of failures drastically increases for the majority of the fields from the 

FY 2003 to FY 2006. The data presented in Appendix C demonstrates that each 

occupational field has different frequencies of failure and that these frequencies do not 

change evenly across all fields. Therefore, the assumption of a steady-state modeling 

technique is inadequate.  
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VI. SUMMARY AND RECOMMENDATIONS 

The effects a set of covariates have on the probability of attrition, as determined 

by the hazard rate, can change when the set of covariates used in the model are altered. 

The number of covariates in a model of transition rates can influence the shape of the 

hazard function and the estimated coefficient values due to unobserved heterogeneity.  

The effect a set of covariates will have on the sample transition is more than likely 

different for each sub-population.  For example, not all Corporals in the Marine Corps 

attrite at the same rate.  Within each occupational field attrition, rates can vary due to 

different performance, educational, and ability requirements in order to be successful.  

Marines perceive the costs for perceived future benefits differently within each 

occupational field.  Therefore, each occupational field has a different transition rate.  

Given the varying hazard rates per occupational field with gender, race, citizenship, and 

any other set of covariates, a transition rate model that estimates the hazard rate for an 

entire population may suffer because it does not consider these effects.  Exponential 

smoothing models suffer from this inefficiency even more so.  Future forecasts of 

attrition are dependent on previous attrition rates.  Yet in a dynamic environment such as 

the enlisted force, Marines are not influenced by the attrition rates of fellow Marines.  

They are influenced by the constant weighing of the perceived costs to the perceived 

benefits of military service.  The important distinction a set of covariates have on 

different sub-populations would be lost in a sample averaging or weighted-average 

technique that attempts to aggregate effect over a whole population. Eventually, the 

model would become inefficient in capturing changes in attrition rates and weighted 

averages would likely be employed to correct forecasting errors.  Modeling covariates by 

sub-population and estimating the effect variables have within each population will 

provide a better estimate of the hazard rate per sub-group and variables that are 

contributing to attrition behavior.  For example, in Table 7, the gamma estimates for each 

occupational field are different and significant.  This indicates that each occupational 

affects the attrition rate differently over time.  Therefore, the Marines within those 
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occupational fields will have varying probabilities of becoming an NEAS loss in the 

future.  These differing attrition rates (or hazard functions) become compounded when 

additional covariates are added to the model. 

A. PROPOSED ENLISTED ATTRITION FORECASTING MODEL 

The hazard rate introduced in formula (3.12) should be employed for each 

occupational field in the Marine Corps.  Within each occupational field, all possible 

combinations of covariates listed in Table 6 should be calculated utilizing this formula.  

For example, the computation of the hazard rate for Occfld 3000 Supply, would be  

 
0

30

( | ) exp(.0282* )exp(

),
j j Gender j rank j enlistage j citizenship j opencontract

j race j education j Occfld j maritalstatus

h t x t x x x x x

x x x x

β β β β β β

β β β β

= + + + + + +

+ + +
 

 

where time t is defined by the planner and jx  takes on the value of the covariate.  The 

formula is for each gender, rank, citizenship, race and education level within an 

occupation field.   The survivor rate for occupational field is calculated with the formula 

(3.14). 

B. SUMMARY 

The study attempted to answer two primary research questions through the 

application of survival analysis. 

1. What Causal Factors and Individual Characteristics Attribute to 
Attrition Behavior? 

The covariates included in the survival analysis were chosen because previous 

attrition studies have substantiated their relevance to modeling attrition behavior.  This 

study verified the significance of these covariates.  However, this study found that the 

covariates have varying effects amongst different sub-populations.  In order to accurately 

model the probability of an NEAS loss occurring, the effects of the covariate estimates 

should be modeled per sub-population rather than for the entire sample of the population. 
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The study did not attempt to discover additional variables that could be used to 

forecast enlisted attrition as the main intent was to apply survival analysis to an already 

reliable set of covariates. 

2. Can a More Efficient and Effective Forecasting Model be Developed 
to either Replace or Complement Current Forecasting Methods for 
NEAS Losses? 

The study could not compare the results of the survival analysis to the current 

method of forecasting NEAS Losses.  The only data available from the current 

forecasting method was the actual and forecasted aggregated amounts for fiscal years 

2003 to 2009.  There are two key differences between the aggregated amounts available 

and the data used in the study.  The first difference is the data in this study only contained 

enlisted Marines with a maximum of 12.5 years of service.  The study only described 

those Marines who entered into the service on or after January 1, 1996 and concluded the 

analysis on October 31, 2008.  The characteristics of the enlisted Marines that comprise 

the aggregated amounts per fiscal year are unknown.  The second key difference is the 

goal of this study to forecast the probability of attrition by occupation field per month.  

Hence, the data was structured to provide this depth of analysis.  The aggregated data 

available could not be separated by occupational field nor by month in which attrition 

occurred.  Therefore, direct comparison was impossible.  However, in comparison to the 

current forecasting method of exponential smoothing (Hattiangadi, Kimble, Lambert, 

Quester, CNA, 2005), this study found that the use of survival analysis could be 

beneficial to not only forecast attrition, but also to provide a descriptive assessment of 

attrition rates amongst occupation fields without loss of information due to averaging or 

weighting probabilities. 

C. RECOMMENDATIONS 

The following recommendations are provided in order to further enhance the 

survival analysis model used in this study and to provide more tools for military planners 

in forecasting NEAS losses. 



 
 

56

1. Use Separation Category Codes  

This study attempted to use Separation Category codes to define when an enlisted 

Marine failed and became a NEAS loss.  Unfortunately, the Separation category codes 

resident in the TFDW database were not reliable.  The Type Change Codes were used as 

an alternate means to identify attritions.  These codes do not describe the nature a 

Marine's discharge as descriptively as the Separation Category codes.  It is possible that 

the use of these less descriptive Type Change codes, may have erroneously determined a 

Marine to be a failure.  A thorough review of the Separation Category codes should be 

conducted.  When these category codes are determined to be accurate, the model in this 

study should be re-estimated utilizing Separation Category codes as the event of failure. 

2. Forecasting by Military Occupational Specialty 

The occupational field was used as a covariate to model the hazard rates of 

attrition.  It is likely that further analysis of attrition rates by MOS will provide even 

greater clarity in modeling the probability of attrition within an occupational field.  There 

are MOSs within an occupational field that are rank-specific.  For example, 0369 within 

the 0300 Occfld is only for the rank of Staff Sergeant and above; 0193 in the 0100 Occfld 

is also only for the rank of Staff Sergeant and above.  Modeling the hazard rates for 

specific MOSs will reduce the aggregated hazard rates experienced in modeling the entire 

occupational field. 

3. Current Events Variables 

The inclusion of variables that contain data on current operations the Marine 

Corps is conducting can provide greater modeling of attrition rates.  Including in the 

model information on the number and duration of deployments in support of the Global 

War on Terrorism can provide estimates on how attrition rates are affected by successive 

deployments.  
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APPENDIX A: FY 2008 MARINE CORPS END-STRENGTH 

This is personnel end-strength for the Marine Corps in Fiscal Year 2008. 
• Personnel (AD)   180,000 

• Personnel (FTS)       2,261 

• Personnel (SELRES)     37,339 

• Uniformed Personnel   219,600 

• Civilian Personnel     18,322 

• Total Personnel   237,922 
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APPENDIX B: FREQUENCY OF RANK BY OCCUPATIONAL 
FIELD 

 Frequency of Rank by Occupational Field 

 0100 0200 0300 0400 0500 0600 0800 1100 1300 1800 2100 2300 2500 2600

RANK                             

E0 1,196 128 8,106 518 28 1,612 822 602 1,383 603 771 254 280 163

E1 1,841 200 10,080 767 43 2,462 1,036 798 1,964 714 1,094 359 289 445

E2 4,052 454 22,139 1,456 101 4,248 1,993 1,716 3,746 1,138 1,927 732 321 860

E3 5,829 893 23,844 2,615 181 8,427 2,920 2,136 6,816 1,873 2,900 1,018 491 1,200

E4 2,391 1,132 11,997 1,247 116 5,836 1,691 1,031 3,124 1,102 1,654 917 233 1,317

E5 812 586 1,404 391 40 1,120 327 142 515 241 295 311   272

E6 104 100 147 54 5 143 36 15 43 26 27 57   57
                              

Total 16,107 3,493 77,717 7,048 514 23,848 8,825 6,440 17,591 5,697 8,668 3,648 1,614 4,314

 4.28% 0.93% 20.63% 1.87% 0.14% 6.33% 2.34% 1.71% 4.67% 1.51% 2.30% 0.97% 0.43% 1.15%

               

               

               

 Frequency of Rank by Occupational Field 

  2800 3000 3100 3300 3400 3500 4000 4100 4300 4400 4600 5500 5700 5800

RANK                             

E0 589 1,272 100 595 210 2,816 98   36 66 48 26 140 494

E1 849 1,728 135 741 308 3,700 104   63 100 111 93 177 954

E2 1,260 3,213 358 1,182 591 6,439 174   168 289 307 254 448 2,080

E3 2,271 5,634 463 2,023 925 10,989 442 6 251 311 378 517 659 3,166

E4 2,143 2,110 153 934 398 5,024 278 65 203 148 169 584 331 1,235

E5 505 524 39 142 132 680 2 34 23 49 44 178 87 306

E6 49 37 2 3 21 32   4 2 2 6 48 8 20
                              

Total 7,666 14,518 1,250 5,620 2,585 29,680 1,098 109 746 965 1,063 1,609 1,850 8,255

 2.03% 3.85% 0.33% 1.49% 0.69% 7.88% 0.29% 0.03% 0.20% 0.26% 0.28% 0.43% 0.49% 2.19%
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 Frequency of Rank by Occupational Field     

 5900 60/61/62 63/64 6500 6600 6800 7000 7300 80/95 9900     

RANK                      RANK Total % 

E0 344 1,992 588 278 625 38 370 12 125 23,035 E0 114,35430.36%

E1 383 2,683 890 454 854 46 522 34 214 12,683 E1 54,16014.38%

E2 528 5,014 2,546 1,258 1,994 82 1,052 64 87 1970 E2 76,32820.26%

E3 682 7,331 3,518 1,944 3,241 183 1,692 171 9 45 E3 107,32428.49%

E4 711 7,120 3,312 1,041 1,790 140 844 152 30 1,717 E4 65,76617.46%

E5 133 1,470 620 270 474 45 211 43 37 251 E5 12,799 3.40%

E6 20 114 54 20 50 8 15 1 48   E6 1,389 0.37%
                          

Total 2,801 25,724 11,528 5,265 9,028 542 4,706 477 550 39,701  376,710  

 0.74% 6.83% 3.06% 1.40%2.40%0.14% 1.25%0.13% 0.15% 10.54%  100% 
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APPENDIX C: FREQUENCY OF TYPE CHANGE CODE BY 
OCCUPATIONAL FIELD 

 Frequency of Type Change Code by Occupational Field 
OccFld 0100 0200 0300 0400 

Sep code R1 R3 RZ R1 R3 RZ R1 R3 RZ R1 R3 RZ 
FY                         

1996 12           56 1       2 
1997 61 1   7     453 6       23 
1998 180 3   12 1   840 3 4 54     
1999 169 5 14 14   1 1109 28 113 66 1 5 
2000 202 635 25 23 72 2 1,218 3,523 225 75 256 11 
2001 231 726 58 31 143 5 1025 3233 352 63 238 22 
2002 219 746 1 20 115   937 2768 1 96 241   
2003 210 697   19 128   645 3026 3 85 266 1 
2004 231 694   46 38   1196 3261 5 114 354   
2005 262 705   70 149   1795 3092 2 126 341 1 
2006 337 698 3 82 105   2278 3789 1 148 321   
2007 308 682   58 110   1781 3487 4 137 347 1 
2008 273 509 19 57 63 1 1675 2723 33 114 230 2 

                          
Total 2,695 6,101 120 439 924 9 15,008 28,940 743 1,078 2,595 68 
 8,916 1,372 44,691 3,741 
             
             

 Frequency of Type Change Code by Occupational Field 
OccFld 1300 1800     2100 2300 

Sep code R1 R3 RZ R1 R3 RZ R1 R3 RZ R1 R3 RZ 
FY                         

1996 7 1   1     3     3     
1997 66 1   33 1   40 1   19     
1998 156 1   48 2 1 57 1 2 31 1 1 
1999 161 6 12 61   4 74 1 5 26 1 2 
2000 224 796 21 84 240 20 120 293 16 37 136 9 
2001 178 796 62 77 269 23 122 351 25 42 116 11 
2002 229 719   111 196   110 331   45 119   
2003 187 833   64 262   92 372 1 35 93   
2004 308 886   98 293 1 98 386   59 132   
2005 308 947 2 127 269   163 428   77 152   
2006 262 1117 2 135 272 1 172 468   84 174   
2007 283 935 1 112 203   171 383   78 152   
2008 231 618 11 109 169 3 135 287 7 69 108 2 

                          
Total 2,600 7,656 111 1,060 2,176 53 1,357 3,302 56 605 1,184 25 
 10,367     3,289     4,715 1,814 
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Frequency of Type Change Code by Occupational Field 

OccFld 0500 0600 0800 1100 
Sep code R1 R3 RZ R1 R3 RZ R1 R3 RZ R1 R3 RZ 

FY                         
1996             4     5     
1997             44     41     
1998             64     76     
1999 3   1       100 2 10 66 3 8 
2000 6 10   33 147 5 96 331 25 93 261 12 
2001 5 16   217 886 72 150 331 40 82 275 32 
2002 7 16   261 806   129 267 1 127 287 1 
2003 7 16   261 1226 1 116 426 1 91 314   
2004 3 17   374 1202 2 148 423   126 304 1 
2005 10 20   527 1289 1 157 411 2 108 327   
2006 13 38   611 1236 1 175 412   114 368   
2007 19 10   535 1397 1 157 446   101 352 2 
2008 7 8   452 739 19 136 300 7 83 217 2 

                         
Total 80 151 1 3,271 8,928 102 1,476 3,349 86 1,113 2,708 58 

  232     12,301     4,911 3,879 
             
             

Frequency of Type Change Code by Occupational Field  
OccFld 2500 2600 2800 3000 

Sep code R1 R3 RZ R1 R3 RZ R1 R3 RZ R1 R3 RZ 
FY                         

1996 3 1               5   2 
1997 93     14 3   38 1   81 1   
1998 185 2   38 1   60     135 1   
1999 220 3 13 53 2 8 91 3 4 146 6 10 
2000 193 726 24 57 66 2 112 150 14 177 598 31 
2001 21 1 12 56 151 5 107 278 40 176 811 71 
2002 57 1   50 128   191 324   267 618   
2003 7     58 196   111 436   199 697   
2004 7     51 179   109 327 1 207 613 1 
2005 2     103 144   126 399   262 717 1 
2006 1     76 216   163 346   248 642 1 
2007       63 155   177 221 1 260 687 1 
2008 4     53 130   144 160 3 264 383 13 

                          
Total 793 734 49 672 1,371 15 1,429 2,645 63 2,427 5,774 131 

  1,576 2,058 4,137 8,332 
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 Frequency of Type Change Code by Occupational Field 
OccFld 3100 3300 3400 3500 

Sep code R1 R3 RZ R1 R3 RZ R1 R3 RZ R1 R3 RZ
FY                         

1996       2           12     
1997 6     43     11     163 2   
1998 7     73 2   21 1   270 3 2 
1999 12   2 109   6 37 2 1 279 4 21 
2000 16 68 1 108 307 24 38 76 14 363 1,389 68 
2001 16 38 4 118 293 39 36 137 12 427 1346 101 
2002 19 62   105 303   56 91   491 1265   
2003 14 57   101 408   44 110   387 1373   
2004 23 60   96 212   53 97   456 1352 2 
2005 22 57   94 240   52 113   473 1455 1 
2006 28 46   106 242   50 85   619 1566 1 
2007 18 65 1 103 189   55 129   488 1604 1 
2008 22 36 4 101 100 5 41 65 4 448 832 15 

                         
Total 203 489 12 1,159 2,296 74 494 906 31 4,876 12,191 212
 704 3,529 1,431 17,279 
             
             

 Frequency of Type Change Code by Occupational Field 
OccFld 4600 5700 5800 5900 

Sep code R1 R3 RZ R1 R3 RZ R1 R3 RZ R1 R3 RZ 
FY                         

1996 1           3     4     
1997 6     7     28     14     
1998 9     8     52 2   32     
1999 9   1 12 1   74 1 6 35 1   
2000 9 50 1 12 59 1 81 383 7 30 9 5 
2001 22 64 4 17 51 2 85 357 32 46 108 11 
2002 14 48   15 61   105 325   32 106   
2003 12 61   18 72   92 404   33 148 1 
2004 13 60   27 70   103 417   23 141   
2005 12 49   29 83   125 408   44 162   
2006 16 62   32 98   130 377   55 125   
2007 22 38   45 104   140 371   70 95   
2008 10 13   37 83   144 99 2 75 85 1 

                          
Total 155 445 6 259 682 3 1,162 3,144 47 493 980 18 
 606 944 4,353 1,491 
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 Frequency of Type Change Code by Occupational Field 
OccFld 4000 4100 4300 4400 

Sep code R1 R3 RZ R1 R3 RZ R1 R3 RZ R1 R3 RZ 
FY                         

1996               1         
1997 5           1     3     
1998 28           4     8 1   
1999 51   3       8     10 1 1 
2000 30 155 5       5 22 1 16 47 2 
2001 83 228 11       10 19 1 12 30 2 
2002 106 282         2 23   10 41   
2003 7 31     1   4 16   14 43   
2004 9 45   3     13 24   14 38   
2005 11 5   5 5   12 24   12 43   
2006       3 1   21 35   21 41   
2007       7 2   21 38   14 35   
2008       5 1   22 22   20 25 1 

                          
Total 330 746 19 23 10 0 123 224 2 154 345 6 

  1,095 33 349 505 
                
             
Frequency of Type Change Code by Occupational Field  

OccFld 60/61/62 63/64 6500 6600 
Sep code R1 R3 RZ R1 R3 RZ R1 R3 RZ R1 R3 RZ 

FY                         
1996 14     8     2     5     
1997 82     64     22     44     
1998 189 3   91 3   52 2   75 3   
1999 289 5 9 148   3 42 2 4 71 3 4 
2000 303 284 37 138 76 9 57 144 7 90 320 15 
2001 323 862 96 171 412 46 49 286 17 91 385 31 
2002 316 1061   133 600   43 223   91 356   
2003 266 1223   125 557 2 46 242   82 394 1 
2004 270 1200 1 146 577 1 64 242   111 410   
2005 413 1039 2 177 613   84 320   155 480   
2006 475 1151 1 239 643   90 275   159 416   
2007 411 951 1 188 460   105 208   181 350 2 
2008 406 809 7 175 387 3 78 186 1 137 278 3 

                          
Total 3,757 8,588 154 1,803 4,328 64 734 2,130 29 1,292 3,395 56 
 12,499 6,195 2,893 4,743 
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 Frequency of Type Change Code by Occupational Field 
OccFld 6800 7000 7300 80/95 

Sep code R1 R3 RZ R1 R3 RZ R1 R3 RZ R1 R3 RZ 
FY                         

1996                         
1997 4     21                 
1998 3     27   1 4     1     
1999 3     42 1 6 6   1       
2000 4 19   61 205 13 5 4 2       
2001 10 25 1 61 203 26 8 13         
2002 9 7   61 185   7 8     1   
2003 7 23   44 247 1 5 34   2     
2004 11 25   69 231 1 6 16   3     
2005 16 28   82 206   10 9   4     
2006 6 28   103 228   8 32   6 2   
2007 12 22   83 269   10 25   6 1   
2008 9 18 1 78 139     13   15 2   

                          
Total 94 195 2 732 1,914 48 69 154 3 37 6 0 
 291 2,694 226 43 
             
             
OccFld 9900          

Sep code R1 R3 RZ          
FY                

1996 1,682 2            
1997 3,110 6            
1998 5,107 4 3          
1999 3,550 2 217          
2000 4,111 9 120          
2001 3,755 3 249          
2002 3,590 4 7          
2003 3,510 1 17          
2004 3,133 25 255          
2005 2,889 28 119          
2006 2,572 19 10          
2007 364 12 2          
2008 15              

                 
Total 37,388 115 999          
 38,502          
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