

AFRL-RI-RS-TR-2009-79
Final Technical Report
April 2009

JVIEW VISUALIZATION FOR VIRTUAL
AIRSPACE MODELING AND SIMULATION

CACI Technologies, Inc.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or
corporation; or convey any rights or permission to manufacture, use, or sell any patented
invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB
Public Affairs Office and is available to the general public, including foreign nationals.
Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2009-79 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION
STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/

PETER A. JEDRYSIK ROBERT S. MCHALE
Work Unit Manager Deputy Chief, Information Systems Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

http://www.dtic.mil

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

APR 09
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

Feb 04 – Nov 08
4. TITLE AND SUBTITLE

JVIEW VISUALIZATION FOR VIRTUAL AIRSPACE MODELING AND
SIMULATION

5a. CONTRACT NUMBER
FA8750-04-C-0051

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER
N/A

6. AUTHOR(S)

Aaron McVay, Daniel Krisher and Patrick Fisher

5d. PROJECT NUMBER
NASA

5e. TASK NUMBER
BA

5f. WORK UNIT NUMBER
01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

CACI Technologies, Inc.
1300 Floyd Ave
Rome NY 13440

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/RISE
525 Brooks Rd.
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TR-2009-79

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA# 88ABW-2009-1187

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This Final Technical Report discusses the accomplishments of an effort to support NASA and FAA goals for visualization of the
National Airspace System (NAS) to aid in the analysis of proposed changes in order to increase its capacity to meet future needs.
CACI developed a new application using JView technology called the Airspace Concept Evaluation System (ACES) Viewer. The
ACES Viewer is an information visualization tool designed to provide visual representations of the output of the ACES NAS
simulation developed at NASA. The application provides mechanisms to load the various types of data used and output by the
ACES simulation, process the data, and then display it. The ACES Viewer is not limited to visualization of ACES data, as any data
(in one of the supported formats) can be loaded and displayed.

15. SUBJECT TERMS
National Airspace System visualization, Airspace visualization, de-cluttering visualization, overlapping data visualization

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

134

19a. NAME OF RESPONSIBLE PERSON
Peter A. Jedrysik

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

i

Table of Contents

1.0 Executive Summary .. 1

2.0 Objective .. 2

3.0 Introduction ... 2

4.0 TechnicaL Tasks ... 3

4.1 General JView Support .. 3
4.1.1 Infrastructure Improvements ... 3

4.1.1.1 Migration from GL4Java to JOGL ... 3
4.1.1.2 Geometry Buffers .. 3
4.1.1.3 Performance Improvements ... 3
4.1.1.4 Concurrency .. 4
4.1.1.5 Fault Tolerance ... 4
4.1.1.6 Build Process Improvements .. 4
4.1.1.7 Multi-threaded Rendering Support ... 4

4.1.2 Visual Elements .. 5
4.1.2.1 Generic Progress Bar .. 5
4.1.2.2 Histogram Grid Element ... 5
4.1.2.3 Polygon Renderer.. 9
4.1.2.4 HUD Text Renderer .. 12
4.1.2.5 Graticule .. 13

4.1.3 Camera Navigation System ... 13
4.1.3.1 Surface Orbit Navigator .. 14
4.1.3.2 World Orbit Navigator .. 15
4.1.3.3 Scroll Navigator .. 15
4.1.3.4 Clipping Plane Management ... 16

4.1.4 Data Access Components ... 18
4.1.4.1 ImageIO .. 18
4.1.4.2 3D Model Loaders .. 18

4.1.5 User Interface Components ... 21
4.1.5.1 Image List Component .. 21

4.1.6 Miscellaneous Improvements ... 22
4.1.6.1 JView Installer .. 22

4.2 Research, explore and develop De-cluttering concepts for visualization of
overlapping information ... 22

4.2.1 Aggregate Visualization Concepts .. 23
4.2.2 Translucency ... 25

4.3 Development of the World Object ... 27
4.3.1 World Geodetic System (WGS84) Globe Object ... 27

ii

4.3.2 Design of a World Object ... 27
4.3.3 Mercator Projection Imagery Support .. 40
4.3.4 Lambert Conic Projection ... 40
4.3.5 Raster Product Format (RPF) and Compressed ARC Digitized Raster Graphics
(CADRG) Data Support .. 41
4.3.6 TerraServer-USA Data .. 42
4.3.7 Create DTEDImageGenerator TextureSet Object .. 44
4.3.8 NASA World Wind Imagery Support ... 48
4.3.9 Web Map Service (WMS) Imagery Support .. 49
4.3.10 Image Cache Object .. 50
4.3.11 Statistics Generation ... 50
4.3.12 Texture Reduction ... 51
4.3.13 WorldSettings Object .. 53
4.3.14 Multi-View Support .. 53
4.3.15 Relative Altitude Look Up .. 53
4.3.16 Grounding Elements ... 54

4.3.16.1 Grounding Policy .. 54
4.3.17 World Automated Test Program (WATP) .. 56
4.3.18 Node Change Listeners ... 57
4.3.19 Demo Browser – World Demo ... 58

4.4 Developed the initial design framework for providing visualization support to the
Virtual Airspace Modeling and Simulations Project (VAMS) ... 59

4.4.1 Application Infrastructure ... 60
4.4.1.1 Visualization Components .. 60

4.4.1.1.1 Data Tables ... 60
4.4.1.1.2 Transforms .. 61
4.4.1.1.3 Display Containers .. 61
4.4.1.1.4 Renderers .. 62
4.4.1.1.5 Expressions ... 62
4.4.1.1.6 Controls ... 62
4.4.1.1.7 Visualization ... 63

4.4.1.2 Component Model .. 63
4.4.1.3 Concurrency .. 64
4.4.1.4 Extensibility .. 65
4.4.1.5 Logging ... 65
4.4.1.6 Image/Movie Capture ... 65

4.4.2 Data Access ... 66
4.4.2.1 Data Input.. 66
4.4.2.2 Data Output ... 67

4.4.3 Data Processing ... 67
4.4.3.1 Relational Transforms ... 67

4.4.3.1.1 Join Transform. ... 67
4.4.3.1.2 Concatenating Transform.. 67

4.4.3.2 Filtering Transforms ... 68
4.4.3.2.1 Filter Transform .. 68
4.4.3.2.2 Time Filter Transform ... 68

iii

4.4.3.3 Aggregating Transforms ... 68
4.4.3.3.1 Aggregator Transform .. 68
4.4.3.3.2 Grid Accumulator Transform ... 68
4.4.3.3.3 Force Grid Transform ... 68
4.4.3.3.4 Counting Transform .. 69

4.4.3.4 Special Purpose Transforms ... 69
4.4.3.4.1 Grid Maxima Calculator ... 69
4.4.3.4.2 Polygon Centroid Transform .. 69

4.4.3.5 Table Events.. 69
4.4.3.6 Expressions ... 69
4.4.3.7 Controls ... 70

4.4.4 Visual Components ... 71
4.4.4.1 Model Renderer .. 71
4.4.4.2 Line Renderer .. 74
4.4.4.3 Slice Volume Renderer ... 77
4.4.4.4 Splat Volume Renderer ... 79
4.4.4.5 Histogram Bar Renderer ... 80
4.4.4.6 Flow Field Renderer ... 81
4.4.4.7 Frustum Renderer.. 83
4.4.4.8 HUD Table Renderer .. 84
4.4.4.9 Display Containers .. 85

4.4.4.9.1 3D Scene ... 85
4.4.4.9.2 Tabular Scene.. 86

4.4.5 User Interface .. 86
4.4.5.1 Visualization Composition .. 86
4.4.5.2 Property Editor .. 88
4.4.5.3 Dataset Definition ... 89
4.4.5.4 Scene Display.. 91
4.4.5.5 Movie Capture .. 92
4.4.5.6 Log Viewer ... 93

4.5 Audit Trail Viewer .. 94
4.5.1 Graphical User Interface Improvements ... 94

4.5.1.1 Digital Terrain Elevation Data (DTED) Panel.. 94
4.5.1.2 Analysis View Tab .. 95
4.5.1.3 Help Panel ... 96
4.5.1.4 Geometry Panel ... 96

4.5.2 2D Graphical Engine – 2D View .. 97
4.5.2.1 Arrow2D ... 97
4.5.2.2 Trail 2D ... 98
4.5.2.3 Cone2D ... 99
4.5.2.4 Models 2D ... 99
4.5.2.5 Labels 2D .. 100
4.5.2.6 Imagery 2D ... 101

4.5.3 Splash screen ... 102
4.5.4 Representation of Ground Entities .. 103

4.5.4.1 Highlight 2D Elements ... 105

iv

4.5.4.2 3D Views .. 105
4.5.4.3 GATER II Simulation ... 106
4.5.4.4 ATV and the World .. 108

4.6 3D Model Development .. 108
4.6.1 COTS Software Used .. 109

4.6.1.1 3D Studio Max (3DS) ... 109
4.6.1.2 PloyTrans .. 109
4.6.1.3 Multigen Creator ... 109

4.6.2 JView Model Software Developed ... 109
4.6.2.1 ElementViewer ... 109

4.6.3 Model Library ... 110
4.6.3.1 Models Developed .. 110
4.6.3.2 Articulated Models Developed ... 111
4.6.3.3 Model Thumbnails .. 111

5.0 Conclusion ... 111

REFERENCES: .. 112

APPENDIX:... 113

ACRONYMS: .. 123

v

LIST OF FIGURES

Figure 1 - Generic Process Bar ... 5
Figure 2 - Utilization of discrete gridded air-space over time. ... 6
Figure 3 - Mesh rendering of the grid values. ... 7
Figure 4 - WGS84 projected histogram .. 7
Figure 5 - Extruded Rectangles and Wireframe ... 8
Figure 6 - The Histogram Grid Feature with Frustum Culling ... 8
Figure 7 - Histogram Grid: Showing Force-Effect Processor Output (left), Blue Channel of Each

Pixel of an Image (right) ... 9
Figure 8 - Extruded Air-traffic control center zones .. 10
Figure 9 - Sector zones displayed at their correct (scaled) volumes using the Polygon Renderer 10
Figure 10 - Air-Zone Utilization Histograms ... 11
Figure 11 - Sector Zone Capacity Histograms. Sectors whose capacity has been exceeded are

colored red. ... 11
Figure 12 - Lit Sector Zone Load-vs.-Capacity Visualization .. 12
Figure 13 - Text drawn by the HUD Text Renderer with centered justification, top (vertical)

alignment, and positioned at 50% screen width and 100% screen height 12
Figure 14 - Graticule 2D ... 13
Figure 15 - Surface Orbit Position Model... 15
Figure 16 - Scroll Navigator Demo Interface ... 16
Figure 17 - The view frustum of a camera looking toward the World surface. The near and far

clipping planes are managed to ensure the terrain is visible. .. 17
Figure 18 - Camera Clipping Planes using Bounding Box information provided by the polygon

renderer (the US political boundaries). ... 18
Figure 19 - ESRI Model .. 19
Figure 20 - KML Model ... 19
Figure 21 - Collada Model .. 20
Figure 22 - Move Demo .. 22
Figure 23 - Electric Field Created by Point Charges .. 24
Figure 24 - IsoSurface of an Electric Field Created by Point Charges ... 25
Figure 25 - Translucency Used to Display Multiple Visualization Elements 26
Figure 26 - Textual Labels Feature ... 26
Figure 27 - WGS84 Coordinate System ... 27
Figure 28 - Diagram of the Vertices Linked List Data Structure for Three Fan Nodes 28
Figure 29 - Actual Vertices List Structure on the World Object .. 28
Figure 30 - Unstitched Node Geometry .. 29
Figure 31 - Stitched Node Geometry .. 30
Figure 32 - Triangles Used to Generate Normals ... 30
Figure 33 - World Object Using Node Area Calculation .. 32
Figure 34 - World Object Using Screen Error Metric Calculation ... 32
Figure 35 - Screen Error Metric .. 33
Figure 36 - NASA’s Blue Marble Lowest Resolution Image on World Object 34
Figure 37 - World View with WGS84 Projection ... 35
Figure 38 - World View with Flat Projection ... 36
Figure 39 - DTED Enabled on World Object ... 37

vi

Figure 40 - DTED Enabled on World Object (Wire Frame) .. 37
Figure 41 - Multi Pass Textures .. 39
Figure 42 - Mercator Projection Coordinate ... 40
Figure 43 - Lambert Conic Projection .. 41
Figure 44 - Trinity Site with CIB 10 meter... 42
Figure 45 - TerraServer-USA Types and Resolutions .. 43
Figure 46 - TerraServer-USA URBAN Imagery .. 44
Figure 47 - DTEDImageGenerator Original Imagery .. 45
Figure 48 - NASA Generated Image of North America ... 46
Figure 49 - DTEDImageGenerator Image using NASA Color Map .. 46
Figure 50 - XML Input File Example for DTEDImageGenerator .. 47
Figure 51 - DTEDImageGenerator DTED Level 0 Image displayed on World 48
Figure 52 - NASA WorldWind Imagery of Albuquerque, New Mexico 49
Figure 53 - WMS Image of Current Weather over NE US ... 50
Figure 54 - Texture Specific Statistics .. 51
Figure 55 - Albuquerque, NM Terra Server Data Not Limited (772 textures and 200Mb) 52
Figure 56 - Albuquerque, NM Terra Server Data Limited (211 textures and 60.5 Mb) 52
Figure 57 - Touch-Ground policy ... 55
Figure 58 - In-Ground policy .. 55
Figure 59 - Orientation definitions ... 56
Figure 60 - World Test Results ... 57
Figure 61 - Demo Browser – World ... 58
Figure 62 - Several Data Tables in the ACES Viewer Visualization Graph 61
Figure 63 - Several Transforms included with the ACES Viewer .. 61
Figure 64 - Two Renderers included with the ACES Viewer .. 62
Figure 65 - The Time Control (right) and its corresponding representation in the Visualization

Graph (left) .. 63
Figure 66 - A Visualization comprised of 5 displays and a variety of transforms, renderers, data

tables and controls... 63
Figure 67 - Time Query Control ... 70
Figure 68 – Individual Aircraft Display .. 71
Figure 69 - Maneuver Locations drawn with the Model Renderer ... 71
Figure 70 - Center Boundary Crossing Feature (Yellow Spheres) ... 72
Figure 71 - Aircraft Models Rendered by the Model Renderer .. 73
Figure 72 - Location Model Feature Autosize .. 73
Figure 73 - Aircraft Model Feature with Different Rendering Properties 74
Figure 74 - Line Renderer ... 75
Figure 75 - Conflict Detection Feature (red lines), along with aircraft models, and trajectories . 75
Figure 76 - Aircraft Trajectory Visualization ... 76
Figure 77 - Airport Network Feature .. 76
Figure 78 - View Aligned Slices, side view: Wire frame (left), Textured (right) 77
Figure 79 - The final blended image from the camera perspective .. 78
Figure 80 - The VAMS Aircraft Density Field Visualization .. 78
Figure 81 - A Point Splat .. 79
Figure 82 - Splat Volume Renderer .. 80
Figure 83 - Histogram Bar Renderer .. 80

vii

Figure 84 - Histogram Bar Renderer Configurations ... 81
Figure 85 - Flow Field Renderer ... 82
Figure 86 - The Flow Field Renderer drawing wind direction and intensity over Asia 83
Figure 87 - A 3D scene displaying the bounding boxes of several visualization features. Also

includes a view of the camera frustum ... 84
Figure 88 - Table Renderer displaying the number of aircraft in each sector zone 85
Figure 89 - A prototype tabular scene with a visualization feature that displays the number of

aircraft currently enroute to each airport .. 86
Figure 90 - The Visualization Composition Interface .. 87
Figure 91 - The Save Visualization Dialog ... 88
Figure 92 - The Property Editor .. 88
Figure 93 - The Datasets task pane ... 89
Figure 94 - Dataset Wizard Step 1: select the type of data to load. .. 90
Figure 95 - The Basic Database Dataset Wizard Steps ... 90
Figure 96 - The Visualization Window .. 91
Figure 97 - The Visualization Window after activating Movie Capture 92
Figure 98 - Movie Parameters Dialog Window .. 93
Figure 99 - Integrated Log Viewer Window ... 94
Figure 100 - Terrain Panel .. 95
Figure 101 - Analysis View (Old) / (New) ... 95
Figure 102 - Help Panel (Old) / Help Panel (New) .. 96
Figure 103 - ATV Element Viewer .. 97
Figure 104 - Arrow 2D ... 98
Figure 105 - Trails 2D... 98
Figure 106 - ATV Cone 2D .. 99
Figure 107 - ATV 2D Models ... 100
Figure 108 - ATV 2D Labels .. 101
Figure 109 - ATV with 2D Maps .. 102
Figure 110 - ATV Splash Screen .. 103
Figure 111- Ground Trail .. 104
Figure 112 - Triangle Selection Example ... 105
Figure 113 - Highlighted Elements ... 105
Figure 114 - HUD and Cockpit Views ... 1066
Figure 115 - ATV Keyholes ... 107
Figure 116 - Identifying ATV Elements ... 107
Figure 117 - ATV World... 108
Figure 118 - Element Viewer .. 110

viii

LIST OF TABLES

Table 1 - Method for Projection Interface .. 35
Table 2 - Aircraft / Surveillance ... 113
Table 3 - Aircraft / Bombers ... 113
Table 4 - Aircraft / Fighters .. 114
Table 5 - Aircraft / Unmanned Aerial Vehicle (UAV) ... 115
Table 6 - Computer Hardware / IO Devices ... 116
Table 7 - Computer Hardware / CPUs .. 117
Table 8 - Network Hardware .. 117
Table 9 - Communications Equipment ... 118
Table 10 - Ground Vehicles .. 119
Table 11 - Satellites .. 120
Table 12 - Space Telescopes ... 121
Table 13 - Radars .. 122

1

1.0 Executive Summary
The work for this project was apportioned into the following major areas:

Enhancement of the JView Application Programming Interface (API) – JView is a 2D and 3D
runtime configurable, platform independent visualization API. JView is written entirely in Java
and the 3D components utilize the OpenGL API to gain hardware graphics acceleration. Under
this contract, CACI provided support to JView users resolving their technical issues, assisting
new JView users, and provided general enhancements to the JView API when user requirements
were identified.

Development of the World Object – Outdoor terrain rendering is important for a large class of
Geographic Information System (GIS) applications. Interactive visualization of terrain and
general complex surfaces is a difficult problem that requires large data sets to be displayed and
manipulated at high frame rates. Operations such as rotation and panning must be supported so a
user can examine the data in critical area, while maintaining highly accurate images. CACI
developed a Continuous Level-Of-Detail (CLOD) algorithm including Frustum Culling for
rendering Digital Terrain Elevation Data (DTED). The CLOD algorithm is based on the
observation that 3D objects located far off in the distance may be approximated by simpler
versions without loss of visual quality, thus increasing the rendering performance. The
continuous refers to having the algorithm constantly re-compute the detail level of the 3D object
depending on the distance to the camera instead of having a pre-computed set of objects to
choose from. The Frustum is the area in the applications 3D scene visible by the camera, defined
by 6 planes named the near plane, the far plane, the left plane, the right plane, the top plane and
the bottom plane. Frustum culling is simply the process of determining whether or not objects are
visible in this area and then drawing only the objects that are. This algorithm was used to create
the JView World object which has become one of JView's most requested features resulting in an
Air Force patent application [1].

Research, Explore and Develop De-Cluttering Concepts for Visualization of Overlapping
Information – Another area of focused research was de-cluttering concepts. When there is
overlapping information that will be visually fused, it must be de-cluttered so that it becomes
intelligible to the intended audience. Presentation of that information is critical to the user’s
ability to logically correlate the information being displayed and to come to logical conclusions
based on the data displayed. An example of this might be an air traffic controller wishing to see
a display representing the regions with the greatest density of aircraft. Displaying individual
aircraft and their positions would not properly convey the desired information.

Develop the Initial Design Framework for Providing Visualization Support to the NASA Virtual
Airspace Modeling and Simulations Project (VAMS) – CACI developed visualization solutions
for displaying and understanding the current and future implementations of the National Air
System (NAS). This included JView enhancements for large screen displays, using network
visualizations, and both 2D and 3D visualizations of highly multivariate data. CACI developed
the Airspace Concepts Evaluation System (ACES) Viewer, which allows an individual that is

2

unfamiliar with the nuances of the NAS, to be able to understand and appreciate the complex
decisions that are made every day by all members impacting the VAMS project.

Support of the Audit Trail Viewer (ATV) – The Audit Trail Viewer (ATV) is a replacement for
IVIEW 2000 and supports visualization of many different simulation data file formats. The
original ATV was developed by RISF and under this contract CACI provided maintenance,
support, and development of new features for the ATV. CACI made significant contributions to
the release of the ATV version 1.1 which was released on November 8, 2004, and were the
primary developer of the ATV version 1.2.

3D Model Development – CACI developed a library of 3D models in both the Open Flight (.flt)
and Wavefront (.obj) model formats for use by JView users. An example of a model that was
developed is the RASCAL 110 aircraft used in the Characterization of the UAV Network
Environment (CUNE) AFRL Project. While there are many models available on the internet for
download, the majority have license issues that make them unusable by JView users.

2.0 Objective
This project developed, implemented and integrated visualization technologies that supported
NASA and the Federal Aviation Administration (FAA) goals for visualization of the National
Airspace System (NAS). CACI worked closely with AFRL/RISF staff in the development,
research, testing, and generic improvements to the JView API and other visualization tools. This
included researching and implementing concepts that enhanced JView’s ability to support
NASA's visualization solutions.

3.0 Introduction
Under this contract, CACI built upon the excellent work that has been done by Jason Moore and
other AFRL/RISF staff and support personnel developing the JView API. JView relies on
concrete Object Oriented Design (OOD) and programming techniques to provide a robust and
venue nonspecific visualization environment. There are three types of modules that are created
within JView: venue specific modules called facilitators that conquer the specific task of placing
objects in the scene and manipulating their behavior, plug-ins that are venue nonspecific and add
general functionality to the system and modules that consist of data source loaders called
oddments. JView is completely data source independent and is by definition a standard
visualization solution since it does not concentrate solely on environments such as space, air,
ground or water. When a new data type becomes available and visualization is necessary, JView
allows the programmer to quickly implement the additions. It also allows the analyst to operate
in an environment in which they are familiar instead of having to learn a new interface.

In direct support of NASA and FAA goals for visualization of the NAS, CACI developed a new
application using JView technology called the Airspace Concept Evaluation System (ACES)
Viewer. The ACES Viewer is an information visualization tool designed to provide visual
representations of the output of the ACES developed at NASA (a simulation of the national air
system). The application provides mechanisms to load the various types of data used and output

3

by the ACES simulation, process the data, and then display it. The ACES Viewer is not limited
to visualization of ACES data as any data (in one of the supported formats) can be loaded and
displayed.

4.0 Technical Tasks

4.1 General JView Support

 4.1.1 Infrastructure Improvements

During the course of development on the JView library, we made a number of improvements
to the basic infrastructure that affects all applications that use the library.

4.1.1.1 Migration from GL4Java to JOGL

 JView relies on a binding library to send OpenGL commands from JView based
applications to the host system’s graphics driver. GL4Java originally provided this
functionality for JView. Some time ago, the maintainer of GL4Java ceased active
development of the library and for several years, JView continued to rely on GL4Java. We
have extended its capabilities where possible to support new system architectures but
unfortunately it was not feasible to continue to maintain GL4Java, particularly to expose new
graphics functionality that has been added to the OpenGL specification since version 1.4 (the
last version that GL4Java supported). Furthermore, GL4Java suffered from a number of
technical problems, including difficulty in correctly installing the library (a procedure which
JView users had to follow prior to running any JView based applications). Developers at
Sun Microsystems have implemented a new OpenGL binding library, based on GL4Java and
its predecessors, called Java OpenGL Library (JOGL). Unlike GL4Java, this binding library
was designed with support for future revisions of the OpenGL specification in mind, and as a
Sun-backed specification, will most likely be actively developed for a significant period of
time. We replaced GL4Java with the Sun Microsystems supported JOGL library and this
migration allowed CACI to enhance much of the basic JView functionality using new
capabilities available in JOGL and simplified the JView installation process for users.

4.1.1.2 Geometry Buffers
JOGL (The OpenGL binding library used by JView versions 1.5 and greater) makes extensive
use of direct buffers to transfer data between main memory and the graphics hardware. Direct
buffers are storage locations in memory that are not subject to the usual memory management
policies in Java (they represent contiguous, non-movable memory regions), and can be easily
accessed outside of Java (e.g. by the OpenGL driver). We have added a number of utility
methods, classes, and other constructs to work with direct buffers using existing JView data
types that handle common usage scenarios.

4.1.1.3 Performance Improvements

We have incorporated a number of performance improvements throughout JView,
particularly in the main render loop.

4

4.1.1.4 Concurrency

We dramatically reduced the amount of synchronization necessary throughout JView, which
in turn increases opportunities for concurrent execution of code on multi-processor
machines. In many cases, the reduction in synchronization directly resulted in significant
performance improvements. In addition to the changes we made to existing JView
components, we added several new concurrency control utilities to JView to simplify
common programming patterns when using JView.

4.1.1.5 Fault Tolerance

We added error handling capabilities to ensure that a faulty rendering component will not
cause JView-based applications to crash.

4.1.1.6 Build Process Improvements

We made a number of improvements to JView’s Ant based build system, including re-
designing the distribution structure of JView to simplify use of the JView libraries by other
developers.

All releases of JView through version 1.3 were distributed as a number of libraries (16 in JView
1.3) that allowed users to select the JView functionality developers needed for their applications,
and exclude any functionality provided in JView libraries that were unnecessary. This
distribution structure was useful when JView was smaller and had fewer libraries, but rapidly
became difficult to manage since developers using JView would have to be aware of which
libraries contained the JView functionality their application needed, and would have to explicitly
add each library to their applications runtime classpath. With the addition of several third party
libraries to JView supporting KML, Collada, and JOGL, use of multiple independent JView
component libraries became even more difficult. To address this issue, we modified the build
process to incorporate all JView classes and third party libraries into a single library file.

We have also improved the build process by moving from optional compilation, where failure of
compilation of a particular component does not cause the entire build to fail, to conditional
compilation, where the build environment is examined to determine what should be compiled. In
addition to eliminating potentially confusing messages stating that parts of the build had failed,
this has allowed information to be output that describes details of the build environment and
settings.

4.1.1.7 Multi-threaded Rendering Support
Originally, JView used a single threaded rendering model, where all rendering occurred in the
Abstract Windowing Toolkit (AWT) Event Dispatch Thread (EDT). This thread is also
responsible for processing user input (e.g. mouse and keyboard events), and drawing Java GUI
components. One user developing a JView based application was experiencing relatively low
frame rates with JView scenes because the application was saturating the EDT with input and

5

repaint events. To address these types of issues, we have implemented support for alternate
threading models for rendering in JView. JOGL by default constrains all rendering operations to
the EDT; however users may pass command line options to Java to change this behavior. JOGL
supports three rendering modes: AWT/EDT (the default), worker thread, and application specific
mode. Worker thread mode is similar to the typical EDT threading model (it is single threaded),
however it moves rendering operations from the EDT to a dedicated rendering thread. The
application specific mode disables JOGL control of rendering threads, requiring the application
to manage concurrency. We have added support for worker and application specific modes in
JView, in addition to the EDT model that was already supported. Worker mode operates
similarly to the EDT model. Application specific mode causes JView to create one dedicated
render thread per Graph3D to handle rendering for the associated scene.

4.1.2 Visual Elements

4.1.2.1 Generic Progress Bar
Figure 1 illustrates a generic process bar that can be added to any JView scene. This renderer
was designed to display simulation playback progress directly on the visualization display, but
can be used for other purposes as well.

Figure 1 - Generic Process Bar

4.1.2.2 Histogram Grid Element
CACI originally developed the Histogram Grid Element to support an aggregate visualization of
aircraft locations over a geographic region for the ACES Viewer. This element draws 3D
histogram bars with height and coloring determined by a 2D grid of scalar values and a transfer
function that maps these values to a color.

The visualization in Figure 2 uses a colored 2D rectangle for each grid cell. As the number of
aircraft in a particular cell changes, the color of the rectangle changes with each color
representing a density range.

6

Figure 2 - Utilization of discrete gridded air-space over time.

The Histogram Grid Element provides the following capabilities:

• User specified color function. Allows for custom mapping of grid values to histogram
bar colors, and has optional support for color interpolation.

• Support for histogram bar geometry or surface mesh geometry. Figure 3 shows an
example of the surface mesh.

• It can be rendered using any JView Projection (Figure 4).

• Optional wireframe outline of histogram bars with a separate color function (Figure 5).

• Frustum culling (Figure 6) for improved rendering performance.

• Data independence. The Histogram Renderer requires only a 2D grid of intensity values,
and specification of a region in which to draw. This allows the element to be applied to a
multitude of different data sources (Figure 7 - Histogram Grid: Showing Force-Effect
Processor Output (left), Blue Channel of Each Pixel of an Image (right)).

7

Figure 3 - Mesh rendering of the grid values.

Figure 4 - WGS84 projected histogram

8

Figure 5 - Extruded Rectangles and Wireframe

Figure 6 - The Histogram Grid Feature with Frustum Culling

9

Figure 7 - Histogram Grid: Showing Force-Effect Processor Output (left), Blue Channel of Each Pixel of an
Image (right)

4.1.2.3 Polygon Renderer
CACI developed a visualization component to draw 2D polygons in a 3D scene. This can be
used to draw political boundaries, air zones, and other polygonal data. The Polygon Renderer
has the following features:

• Polygons can be extruded to produce a 3D polygonal histogram (Figure 8), or to
represent polygons that have a defined altitude range (such as the air zones of the
National Air System –Figure 9).

• Per-polygon colors or materials, including support for translucency (Figure 10 and Figure
11).

• Lighting. Polygons can be lit using user specified material properties (Figure 12).

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

10

Figure 8 - Extruded Air-traffic control center zones

Figure 9 - Sector zones displayed at their correct (scaled) volumes using the Polygon Renderer

11

Figure 10 - Air-Zone Utilization Histograms

Figure 11 - Sector Zone Capacity Histograms. Sectors whose capacity has been exceeded are colored red.

12

Figure 12 - Lit Sector Zone Load-vs.-Capacity Visualization

4.1.2.4 HUD Text Renderer
The HUD Text Renderer draws user specified text directly on the image plane (Figure 13). It
supports:

• Configurable placement in both absolute (screen) coordinates, or as percentages of the
screen size

• User defined font and coloring

Figure 13 - Text drawn by the HUD Text Renderer with centered justification, top (vertical) alignment, and
positioned at 50% screen width and 100% screen height

13

We have also extended this renderer to produce several informational displays, including the
frame-rate, and statistics for the World object.

4.1.2.5 Graticule
CACI developed a Graticule package for the JView 2D engine that displays longitude and
latitude lines with the addition of only 1 line of code to a JView application. The longitude and
latitude lines drawn by the graticule are defaulted to values of 1 sec, 5 sec, 15 sec, 30 sec, 1 min,
5 min, 15 min, 30 min, 1 deg, 5 deg, 15 deg, 45 deg, and 90 deg. These values can be changed by
the user, but were determined to be practical through a great deal of testing. The graticule
determines which lines to currently draw based on the current width of the map. As the users
zoom in and out, the graticule fades in and out to the next level. The Joint Synthetic Battlespace
Research and Development project and the WISE project have both included this graticule in
their GUI. Figure 14 illustrates the graticule in conjunction with DTED of the United States. In
this example, the North 35 and 40 degree lines of latitude are currently fading in or out
depending on which direction the user moves the camera from this level of detail. Latitude
values above 90 degrees North or below 90 degrees South are not drawn. Longitude wraps as
you move East or West past 180 degrees.

Figure 14 - Graticule 2D

4.1.3 Camera Navigation System
CACI designed and developed a new navigation system for JView that allows users to easily
manipulate the camera position in a 3D scene. The navigation system is actually a framework
that allows developers to implement custom navigation tools for their applications. The
framework has the following features:

14

• A representation of position and orientation. The framework allows navigation tool
implementations to define their own position model. The only restriction being that the
representation can be converted to a 4D homogeneous matrix form (this is how OpenGL
represents the camera position).

• A system for specifying constraints on legal positions. For example, one such constraint
prevents the camera from being positioned under the terrain when a World element is
present in a scene.

• Animations to manipulate the camera position over time.

• A clipping plane management system to automatically adjust the near and far clip plane
distances based on the content of the scene.

• User input handling. This maps user inputs to the actions that the navigation system
should take in response. For example, dragging the mouse in a scene might activate an
animation that moves the camera position accordingly.

We have implemented several tools built upon this framework that provide different methods for
controlling the camera position.

4.1.3.1 Surface Orbit Navigator
We developed the Surface Orbit position model, illustrated in
 Figure 15, to support navigation in scenes that present geographic information. The anchor in
this figure is a look-at point; the camera will always be oriented to face this location. The anchor
location can be moved along a surface defined by a projection (a WGS84 projection in the
figure) by clicking and dragging the surface with the mouse. The camera can orbit the anchor
with another mouse gesture, providing different viewing angles and distances relative to the
anchor.

Camera motion is handled with animations that include smooth acceleration/deceleration, arc
transitions (the camera moves away from the surface before moving closer again when moving
across large distances), and several other features that improve the appearance and continuity of
the scene when moving around. Most of the math used to calculate position and orientation after
moving the camera is based on quaternions, which avoids gimbal-lock type problems that other
navigation systems (Google Earth, NASA WorldWind) have near the poles (latitude = +/-90
degrees).

15

 Figure 15 - Surface Orbit Position Model

4.1.3.2 World Orbit Navigator
The World Orbit Navigator is an extension of the Surface Orbit Navigator that can be used with
scenes containing a World terrain renderer. This provides additional functionality over the
Surface Orbit Navigator, such as taking terrain elevations into account when moving the anchor.
The World Orbit Navigator also includes a default set of position constraints in order to prevent
the camera from moving under the terrain for example as well as several other World-specific
features.

4.1.3.3 Scroll Navigator
A third navigation tool built on top of the Camera Navigation Framework uses a traditional 2D
navigation interface to manipulate the camera position in 3 dimensions. The Scroll Navigation
Model represents the camera position in relation to an axis-aligned bounding box, and provides
five degrees of freedom:

 Tilt and Pan to control the camera's orientation.

 Three axes of movement, specified as percentages of the corresponding view-aligned
axes of the bounding box (horizontal, vertical and depth).

16

This model is designed to be controlled with a set of scroll bars allowing users to scroll the scene
contents up/down, left/right, and in/out, in addition to turning the camera. A prototype user
interface is shown in Figure 16.

Figure 16 - Scroll Navigator Demo Interface

4.1.3.4 Clipping Plane Management
The Camera Navigation Framework includes support for automatic clipping plane management.
Clipping planes define which objects in a scene are visible from a given camera viewpoint. Most
scenes use 6 clipping planes. Left/right and top/bottom planes are defined automatically based
on the viewport size and the field of view. The near and far clipping planes define the depth
range (relative to the camera location) in which elements will be visible. Objects closer to the
camera than the near plane, or farther from the camera than the far plane will not be visible. Due
to limited floating point precision on graphics hardware (typically 32 bits), the depth range
should be kept as small as possible to avoid depth aliasing artifacts. The clipping plane
management system is designed to minimize this depth range, while still keeping all objects that
the camera is looking toward visible.

17

Developers are free to implement and incorporate their own clipping plane management
algorithms, but we provide two that should be sufficient for most applications. One is designed
for use with the World element to ensure that the terrain is visible within the clipping plane
volume as shown in

Figure 17. The other uses bounding box information provided by compatible scene elements to
maintain visibility of these elements as shown in Figure 18.

Figure 17 - The view frustum of a camera looking toward the World surface. The near and far clipping
planes are managed to ensure the terrain is visible.

18

Figure 18 - Camera Clipping Planes using Bounding Box information provided by the polygon renderer (the
US political boundaries).

4.1.4 Data Access Components

4.1.4.1 ImageIO
JView's ImageIO utility is used throughout JView to load texture images from disk. We have
corrected several problems with URL and filename handling that was preventing images from
being loaded if the filenames contained white space characters.

4.1.4.2 3D Model Loaders
CACI has written a few 3D model loaders in support of the JView contract in order to create
more visual appealing models. Models contain geometry information that can be parsed and
displayed by JView. The most difficult part of displaying the model is parsing the complex
model structure to extract the information in a useful manner. The loaders parse information out
and create the JView scene element or geometry so that users can show their model. With more
model loaders available, it is easier for users to import their information or find useful models for
their task. ESRI, KML and Collada Models are some of the model loaders that CACI has
written. A description of each follows:

• ESRI Model - ESRI shape files that contain two dimensional geometric data describing a
series of shapes: Line, Polygon, etc. ESRI files can show political boundaries, roads, and
more. ESRI sparked reasearch in Level of Detail algorithms for two dimensional lines
because ESRI shapes can contain so many lines (Figure 19)

19

Figure 19 - ESRI Model

• KML Model - Keyhole Markup Language (KML) is an XML file that is used by Google
Earth to display geometry, points, and information on a globe. Since Google Earth is so
well known, KML is widely used and there are many KML files ready to display. In
order to support KML, there were many other graphical objects like callouts that needed
to be created. Callout are informational windows used to display information in GL
(Figure 20).

Figure 20 - KML Model

20

• Collada Model - The Collada model is an XML based file format that describes the
geometry, textures, and shape of a 3D model. The primary reason for supporting the
Collada format is that it seems to be becoming the new industry standard data asset
exchange format and it is supported by a range of modeling applications. These include
3dsMax, Maya, and Google’s sketch up. Since Collada is a simple XML format, it very
easy to write an exporter for most applications. Supporting Collada allows JView users to
obtain thousands of models (Figure 21).

Figure 21 - Collada Model

In order to support the parallel to ground clamping policy for World elements, we designed and
implemented an algorithm to calculate a composite orientation relative to a plane. Given an
element's orientation (in terms of yaw, pitch and roll) interpreted as relative to an arbitrary plane,
the algorithm calculates a new absolute orientation composed from the input orientation and the
orientation of the plane. The original yaw of the element is preserved so that if the element had a
north facing orientation, the composite orientation would still yield a north facing element when
applied. The algorithm calculates a pitch and roll for the plane, and offsets the element's
orientation using quaternion math. This functionality is now included in JView as it may be
generally useful even outside the scope of World elements. This work also resulted in significant
optimizations to various quaternion math utilities in JView that in turn improved the
performance of camera positioning and projection calculations.

21

4.1.5 User Interface Components

4.1.5.1 Image List Component
The ATV has for some time included an excellent user interface component that allows users to
select a 3D geometry from a list of images (typically to assign a model to a particular element in
a 3D scene). We have improved this component to facilitate general use with other applications,
and incorporated it into the JView controls library. The new component is made up of three
parts that can be used together or separately:

 An asynchronous image loading utility. This allows images to be loaded from disk or
network devices outside of Java's event dispatch thread (thus preserving interactivity of
user interface components), and contains a number of tunable parameters controlling
threading characteristics and image loading rate.

 A user interface component to display the images in list form. This component uses the
image loading utility to load a limited number of images before redrawing, preserving
interactivity.

 A list model interface to specify the contents of the list. The interface requires
implementations to provide information regarding which images to fetch for each
element in the list, without specifying what the images represent. This decouples the user
interface component from the backing data sources. We have implemented a geometry
list model to provide the functionality that the geometry list was originally developed for.

Move Demo – CACI developed a demo that randomly moves a number of elements shown in
Figure 22. This demo was created to show JView’s capabilities as well as test for improvements
and bugs. This demo helped to show that the performance of JView’s 2D engine was inadequate
for drawing thousands of objects. As a result, the JView AFRL staff modified the 2D elements
to allow faster draw times than before.

22

Figure 22 - Move Demo

This demo sparked another idea of testing a 2D point element. The Point2D class was created for
this demo and was used to test how quickly it could perform. Currently, accurate timing of the
2D engine is not possible; this will be looked at more in the future.

4.1.6 Miscellaneous Improvements

4.1.6.1 JView Installer
CACI built the JView Installer using the InstallAnywhere application. InstallAnywhere is a Java
application that makes windows installers for other Java projects and applications. The JView
installer comes with three pieces that can be installed together or individually. They are
DemoWorld, JView, and the DemoBrowser. InstallAnywhere experiences problems when
dealing with projects that exceed two gigabytes. In order to mend this problem, we wrote a
script and java program that extracted the World data upon installing.

4.2 Research, explore and develop De-cluttering concepts for visualization of overlapping
information

Another area of focused research is de-cluttering concepts. When there is overlapping
information that will be visually fused, it must be de-cluttered so that it becomes intelligible to

23

the intended audience. Presentation of that information is critical to the user’s ability to logically
correlate the information being displayed and will amount to logical conclusions based on the
data displayed.

4.2.1 Aggregate Visualization Concepts
Several concepts (stated below) were explored to use aggregate information to construct a visual
representation of data too voluminous to display directly.

• Developed an algorithm to divide a region of 2D space containing many different objects
into a grid of user defined size. This algorithm uses the locations and heading of each
object contained in the region to calculate the density, cumulative density, average
heading and cumulative heading in each cell of the grid. This provides fast and simple
means for condensing a large number of individual objects into a small number of
groups. This algorithm is limited by the fact it creates a very block oriented picture of the
region represented, and its speed is affected by the size of the grid. This algorithm was
used to development several different visualizations of the National Air System (NAS)
for the Virtual Airspace Modeling and Simulation Project (VAMS). These visualizations
are discussed in the next section.

• Developed a polygon zone algorithm to divide a region of 2D space containing many
different objects into a group of polygon zones. This algorithm used the locations of each
object contained in the region to calculate the density of each polygon zone. This
algorithm does not have the problem of creating a block representation of the region as in
the grid algorithm, but is instead limited to the number of zones the region is broken into,
and its speed is affected by the number of points defining the polygon zone. It uses the
PolyUtils point in polygon test to determine how many objects are contained in each
polygon zone, and it is for this purpose the PolyUtils package was originally created. As
with the grid this algorithm was used to develop several different visualizations of the
NAS for the VAMS Project, and these visualizations are discussed in the next section.

• Developed a metaball algorithm for calculating object density in a region of 2D or 3D
space. Metaballs is a method of displaying the effect that objects have on other objects
near them. The effect is simulated using the equation for the electrical force between two
charged particles F = Q / (R*R). An image of an electric field created by some point
changes is shown in Figure 23. The strength of the field is indicated by the brightness of
the point, and the points are displayed in purple.

24

Figure 23 - Electric Field Created by Point Charges

The net electric field between all particles in the region is computed at every point along a
grid dividing up the region. This grid could then be displayed by drawing an isosurface.
Where you see a contour this is an equipotential line, a line along which the potential is equal
at all points. Figure 24 displays an isosurface version of Figure 23.

While this method is limited by the finite resolution of the grid, the actual equation of the
field has infinite resolution. Initial implementation used the same value of Q, the charge of
the particle for all objects. The algorithm will be modified to include individual values of Q
for each object to allow some objects to have a greater effect than others.

25

Figure 24 - IsoSurface of an Electric Field Created by Point Charges

4.2.2 Translucency

• For the visualization components of the ACES Viewer application to convey the
necessary information, it is expected that several visual features will be combined in
some manner both in a single display, and in multiple views of an ACES simulation run.
For this to be effective, some visual de-cluttering is necessary to prevent important
information from being hidden.

• The visualization shown in Figure 25 used translucency to combine three elements. They
are an ARTCC usage histogram, a grid cell usage histogram and a vector map of the
United States. They were constructed with no modification to existing code, only
changes to feature parameters.

• Similar techniques were employed to de-clutter visualizations containing a large amount
of text. The usefulness of textual labels in a visualization suffers more than most other
visual elements when highly cluttered because it quickly becomes illegible as shown in
Figure 26. We implemented an occlusion based de-cluttering algorithm to make the text
translucent when occluded by another label.

26

Figure 25 - Translucency Used to Display Multiple Visualization Elements

 Figure 26 - Textual Labels Feature

27

4.3 Development of the World Object

4.3.1 World Geodetic System (WGS84) Globe Object
Figure 27 displays the 1984 World Geodetic System (WGS84) Coordinate System for the
Earth.

Figure 27 - WGS84 Coordinate System

4.3.2 Design of a World Object
As part of this contract, CACI developed a World object from the following list of requirements:

• Level of Detail for both Geometry and Imagery.

• Dynamic loading of Imagery and DTED as needed.

• Imagery not tied to Geometry, Multipass Texturing.

• Dynamic Stitching of Geometry at different levels, no shelf’s.

• Frustum, Blackface, and Occlusion Culling.

• Support for multiple projections, Flat Earth, WGS84 Ellipsoid.

• Lighting.

With the desired data structure at draw time as the driving factor in the algorithm design, Aaron
McVay (CACI) and Jason Moore (AFRL) developed a data structure and an efficient method of
building the data structure for this object that is patent pending [1]. Since the vertices themselves
are actually a two-dimensional grid that wraps around at the -180W and 180E longitude a two-

28

dimensional circular linked list of vertices was chosen to represent the draw time data structure.
The list stores fan node vertices, with links to their north, south, east, and west neighbors. It was
also necessary to be able to determine which of the vertices on this list formed the center points
of individual fan nodes. Rather than add a flag to each entry on the list indicating it was a center,
an additional one-dimensional list of center vertices was also created. Figure 28 displays a
diagram of an example of the vertices linked list for three fan nodes. The red vertices are fan
node centers and references to them appear in both the center list and the vertices list.

Figure 28 - Diagram of the Vertices Linked List Data Structure for Three Fan Nodes

Figure 29 - Actual Vertices List Structure on the World Object

29

The vertices and center lists must be created in the step prior to the draw step, and then at draw
time the center list is used to obtain entry into the vertices list (Figure 29). At this point the data
structure is independent of the type of data used to create it, and would lend itself to any 3D
object that requires a CLOD algorithm. The actual method of building the data structure for the
World object follows:

Stitching the geometry together – In many CLOD algorithms such as the one used by Google
Earth border nodes at different levels of detail drew shelf’s to hide the fact that the geometry is
not connected. Figure 30 shows an example of this problem.

Figure 30 - Unstitched Node Geometry

In order to solve the problem in this example, the left most triangles in the larger fan node need
to be broken into smaller triangles. With JView Worlds vertices list it was possible to add more
than nine points to each fan node in order to stitch these regions together. This is accomplished
by starting each node at the center point determined from the center list, then walking the
vertices list to determine all vertices that border the center. Figure 31 shows what the larger fan
node will look like when drawn.

30

Figure 31 - Stitched Node Geometry

This approach allows for an unlimited number of fan points off each center vertices. A
disadvantage is that in regions where the difference in level between nodes is very large, several
long thin triangles are created. OpenGL does not like long thin triangles, but in practice this was
not found to occur often enough to present a problem.

Calculating Lighting – In order to use lighting, every vertex must have a normal vector defined
that is an average of all triangle normals that the vertex is a part of. Figure 32 shows the correct
triangles used to calculate normals for the two pink vertices. The average of the normals for
triangles 1, 2, 3, and 4 is used as the normal for the top pink vertex, and triangles A, B, C, and D
are used for the bottom pink vertex.

Figure 32 - Triangles Used to Generate Normals

1 2

3 4

A B

C D

31

In order to perform the normal calculation, an additional step is required preceding the draw step
in which the normals are calculated for each vertex. This process starts with each center vertex,
walks the fan node and sums up all normals for each vertex. During the draw step each vertex’s
normal summation is normalized resulting in the correct value for that vertex.

QuadTree Forest – The JView World object uses a QuadTree data structure generated
dynamically at run time and only contains the top most nodes and their children that are currently
within the viewing frustum. The base unit of the QuadTree is longitude and latitude post
numbers. Typical globe applications break the earth up into 45 square degree sections for
simplicity, but since this object uses DTED in its raw, unaltered form, the top QuadTree nodes
had to reflect the layout of DTED data. DTED contains square data files containing an equal
number of points from latitudes 50S to 50N. Above 50N or below 50S DTED is broken into
zones that are not square, decreasing the number of longitude posts as latitude approaches the
poles. No DTED was available above 82N or below 82S. To match this data the QuadTree Forest
is created out of 222 different QuadTree branches symmetrically covering all but the poles. The
bottom most level of detail for the QuadTree is based on 3601x3601 per 1 square degree to
support up to DTED level 2. The zero points for both longitude and latitude posts are defined to
be at 180W and 90S. Using a consistent base size of 3601x3601 for every square degree allows
the vertex linked list to be symmetrical across the entire globe. This requires the QuadTree object
to map its actual post range based on the DTED zones to this 3601x3601 per degree base size for
the vertex list.

Resolution Metric – The final implementation of the World Object on this contract supports the
Node Area and the Screen Error Metric options for determination of level of detail. Figure 33
shows the World Object using the Node Area Calculation, and Figure 34 shows the Screen Error
Metric method.

32

Figure 33 - World Object Using Node Area Calculation

Figure 34 - World Object Using Screen Error Metric Calculation

33

The Screen Error Metric calculates the number of pixels that a line will shift when additional
vertices are added by the creation of children. In Figure 35, the red vertex represents the new
point that is added and the red line is the distance in pixels on the screen that the original line is
shifted.

Figure 35 - Screen Error Metric

QuadTree Refinement Step - In order to speed up panning, the QuadTree is limited to
increasing its depth by only one level per node per draw. This is accomplished by using a
separate thread that is notified each time the QuadTree is updated if it was still possible to create
more levels. This additional thread in turn tells JView to update the World object; this process
repeats until there are no more possible levels to be created in the QuadTree.

Vertex Pool – The basic vertex object contained in the link list is a QTVertex. This object type
is requested over and over again so a pool is created that vertices are drawn from, and returned to
when no longer needed. This limits the number of times new QTVertex objects have to be
allocated.

Texture Mapping – The World Object contains a list of textures; each center node contains a
sub list of the textures that it contains from the master list. The node is drawn once for each
texture on the sub texture list. This results in a multi-pass draw step that allows high-resolution
imagery to be overlaid on low-resolution imagery. The TIROS satellite imagery and NASA’s
Blue Marble database are used as the default textures. Figure 36 shows the lowest resolution
image from the Blue Marble database on the World Object.

Screen
Error
Metric

34

Figure 36 - NASA’s Blue Marble Lowest Resolution Image on World Object

Projections – In order to support the requirement for multiple projections, a generic Projection
Interface was created along with two instantiations of that interface, WGS84Projection and
FlatProjection. There are four methods required by the Projection Interface as shown in Table 1.

35

Table 1 - Method for Projection Interface

Method Return Type Parameter List

lonLatToXYZ Vector3d double lon
double lat

lonLatToXYZ Vector3d double lon
double lat
double alt

lonLatToXYZ Void Vector3d _vert
double lon
double lat
double alt

xyzToLonLat Vector2d double _x
double _y
double _z

The projection must be defined during World object creation by passing in the desired projection
through the constructor. The default projection for the World object is WGS84 if no projection is
defined during object creation. Screen shots of the World object for both WGS84 and Flat Earth
Projections are shown in Figure 37 and Figure 38.

Figure 37 - World View with WGS84 Projection

36

Figure 38 - World View with Flat Projection

Dynamic Loading of Digital Terrain Elevation Data (DTED) – The World object has an
option to use altitude that is enabled and disabled by a method call. If the UseAltitude option is
set to true then DTED data is used to determine the altitude of all vertices contained in the
QuadTree data structure. Up to level 2 DTED is supported if available on the user’s hard disk,
but interpolation will be used to estimate the elevation when only low-resolution data is
available.

The QTVertex object stores the elevation for each vertex, and retains that information as long as
the vertex is in the viewing frustum. When a vertex leaves the viewing frustum, the QTVertex
object is de-referenced and becomes available for garbage collection.

Figure 39 and Figure 40 display screen shots of the World object with the use altitude option
enabled.

37

Figure 39 - DTED Enabled on World Object

Figure 40 - DTED Enabled on World Object (Wire Frame)

Imagery Level of Detail (ILOD) – The World supports multiple levels of dynamically loaded
imagery. A TextureElement object was created to represent an individual texture on the surface

38

of the World. The TextureElement object stores the bounds of the texture in degrees and is also
responsible for loading the texture off the hard disk and onto the video card, as well as freeing
the memory used when the texture is no longer needed.

The World object stores a JAVA ArrayList of all possible textures in order of image resolution.
If a region of the World is represented by more than one level of detail, the texture with the
lowest index on the list represents the lowest resolution image. Each QuadTreeNode object
contains an additional list of textures for the sub set of textures that overlap that node. During
creation of the QuadTree, the individual nodes create their sub textures lists by testing their
boundaries against the boundaries of all textures on their parent’s list. This has the effect of
decreasing the number of possible textures a node might use at draw time since there might
easily by thousands of textures for the entire World.

At draw time, each QuadTreeNode determines which textures are currently to be used by
computing the Screen Pixel to Texture Texel Ratio (PTR) for each texture in their sub list.
Calculation of the PTR requires several steps as shown in Equation 1, Equation 2, and Equation
3. The node creates an additional draw list of textures that contains only the textures that meet
the PTR requirements.

egreesNodeWidthD
ixelsNodeWidthPPpD =

Equation 1 - Width of Node (Screen Pixels) / (Degrees)

xelsageWidthTe
EastLonWestLonDpT

Im
−

=

Equation 2 - Width of Texture (Degrees) / (Texel)

DpT
PpDPTR =

Equation 3 - Screen Pixels per Imagery Texel Ratio

Dynamic Loading of Imagery, Texture Thread – All possible TextureElements are created at
object creation but the actual imagery behind them is loaded from the hard disk or from a URL
as needed by a separate Texture Thread. Each TextureElement has a visible and loaded flag that
determine the state of the image. When a QuadTreeNode determines at draw time that it needs a
texture, it sets the visible flag to true and if the texture has not been loaded, it adds a request to
load that image to the Texture Thread. Each time the Texture Thread loads a texture, a Graph3D
repaint is called. At the end of each draw step, the World object unloads all textures that it has in
memory that are no longer visible. The Texture Thread will abandon any load texture requests

39

that have become not visible by the time they are processed. This will occur when the user pans
quickly across the globe.

Multi-pass Draw Step – Each QuadTreeNode may have several textures that fall within its
bounds and passed the PTR ratio test. This requires a draw pass for each texture contained in the
nodes draw list. If any texture completely covers the node, no textures of lower resolution will be
drawn. Figure 93 shows an example of a node indicated by 9 red circles and 4 different textures
A, B, C, and D that all intersect with the node. If texture D is the highest resolution image then
A, B, and C are skipped as they would be hidden by texture D. Textures are drawn in order of
lowest resolution first since the last texture draw will be the one visible. If the reverse is true
with A, B, and C at a higher resolution than D, all four will be drawn. Instead only individual
textures that completely cover a node are detected.

Figure 41 - Multi Pass Textures

The World does not require textures to end exactly on post boundaries which allows complete
freedom in the use of input imagery. Texture D in Figure 41 demonstrates that showing textures
coordinates have to be set for the blue posts as well as the red posts even though they are beyond
the boundaries of the node. If texture coordinates were only given for the red posts, then the
region of the texture between the red and blue posts would not be visible. Since OpenGL will
interpolate the color of the edge texel in a texture for regions beyond the texture edge, it is
necessary to surround all textures with a single texel wide transparent border. This prevents
OpenGL from repeating the edge of each texture beyond its boundaries.

A

C B

D

40

4.3.3 Mercator Projection Imagery Support
During this contract, CACI added support for imagery using the Mercator Projection. Several
different types of imagery are available in the GIS Community that have been saved in the
Mercator Projection. Mercator is a projection that decreases the size of imagery as latitude
increases toward the north or south pole in an attempt to create landmasses that are correctly
sized in latitude. For example, Greenland in a standard projection on a flat map looks as big as
Africa. Figure 42 shows an example of an equally tiled map in Mercator displayed in WGS84
degrees. While the tiles are different sizes in WGS84, they would represent the same area in
Mercator Projection. A TextureSet object was created TextSetMercG to support this type of
imagery. At this time, the projection only supports the input of Mercator imagery and does not
provide an interface to map the JView World's actual geometry. This means that the globe will
still be drawn using WGS84 or Simple Cylindrical but the Mercator Imagery will be properly
placed on the World.

Figure 42 - Mercator Projection Coordinate

4.3.4 Lambert Conic Projection
CACI implemented and tested a Lambert conic projection for use by the JView World. This
projection is only used for mapping the World's vertices and has nothing to do with the type of
imagery displayed. The Lambert projection insures correct latitude image sizing for map data
within a small region bounded by two lines of latitude. This projection would only be desirable if
the area of interest was relatively small like a US state. In Figure 43, the left side shows the

41

Lambert conic projection of the World with its latitude cuts at 50 and 40 degrees north and the
central meridian at 0. In this example, the World will preserves the map data for the region 40
degrees to 50 degrees north latitude.

Figure 43 - Lambert Conic Projection

4.3.5 Raster Product Format (RPF) and Compressed ARC Digitized Raster Graphics
(CADRG) Data Support

During this contract, the ability to use RPF and CADRG data directly off the source CDs was
added to the World object. RPF/CADRG data comes in many different types and levels of detail.
The user defines what type of data to display and the object manages which data is currently
visible and at what distance to use it. Figure 44 displays Controlled Image Base (CIB) 10 meter
data displayed on DTED level 1 of the Trinity Site in Southern New Mexico, the site of the first
Atomic Bomb test.

First Parallel

Second Parallel

Central Meridian

42

Figure 44 - Trinity Site with CIB 10 meter

4.3.6 TerraServer-USA Data
TerraServer-USA is an internet site that serves United States Geological Survey (USGS) public
domain imagery of the United States. The imagery comes in three types which are as follows:
Digital Ortho Quadrangle (DOQ) aerial, Digital Raster Graphic (DRG) topographical, and
URBAN high resolution natural color ortho-imagery. Each type comes in multiple resolutions
ranging from .25 meters per pixel to 512 meters per pixel. All USGS data is projected into the
Universe Transverse Mercator (UTM) projection using the North American Datum of 1983
(NAD83). Figure 45 shows all valid types, resolution and the available UTM zones.

43

Figure 45 - TerraServer-USA Types and Resolutions

TerraServer tiles are requested using theme, scale, resolution, and tile identifiers X and Y. The X
and Y tile identifiers are calculated from the UTM coordinates by dividing the UTM easting for
X, and northing for Y by the UTM Multiplier.

Each downloaded image tile is a 200x200 pixel JPEG and since OpenGL requires powers of two
for use as a texture, each tile is copied into a 256x256 OpenGL byte array with the borders
padded with transparent pixels before it is copied onto the video card.

During peak times of the day, TerraServer-USA can be very slow to serve data and in the initial
implementation this caused the texture thread to hang while waiting for TerraServer to respond.
To solve this problem, an additional thread was created to process only URL requests thus
preventing the primary texture thread from being delayed.

Figure 46 shows a screen shot of the World displaying TerraServer-USA URBAN imagery over
Albuquerque, NM. The white area in the upper right corner of the imagery represents an area
where only partial imagery is available and since JPEG images do not support transparency, pure
white is used instead.

44

Figure 46 - TerraServer-USA URBAN Imagery

4.3.7 Create DTEDImageGenerator TextureSet Object
A TextureSet was created to allow the World to automatically generate imagery using the
DTEDImageGenerator developed under this contract. This texture set caches all generated
imagery so that repeated requests will result in much faster load times.

The DTEDImageGenerator creates a color relief map from DTED data by mapping elevations to
an array of user defined colors that are blended to create a range of possible colors. These
generated images do an excellent job of representing change in elevation, but depending on the
color, may not create very realistic looking imagery. Figure 47 shows an image created of New
Mexico using the default color array.

45

Figure 47 - DTEDImageGenerator Original Imagery

In order to create more detailed color maps, we created a utility that could sample imagery and
then compare the DTED elevations for each pixel in the source imagery and automatically create
color array data. The intended purpose was to use satellite photos or NASA generated imagery to
create a color map for use by the DTEDImageGenerator that would allow it to create more
realistic imagery. Figure 48 shows a source image of North America generated by NASA using
unknown methods and Figure 49 shows a DTEDImageGenerator image created using the color
map sampled from the NASA image.

46

Figure 48 - NASA Generated Image of North America

Figure 49 - DTEDImageGenerator Image using NASA Color Map

47

Since these sample color maps could be thousands of colors in length, a more realistic, and
manageable method of defining them is provided. The color sampling utility outputs the color
data into a XML file format and the DTEDImageGenerator parses the XML files to define all
possible user configurable settings. Figure 50 shows a sample XML input file for the
DTEDImageGenerator with the colors entry truncated to make the example a reasonable length.

<DTED_IMAGE_GENERATOR>

 <SETTINGS
 configName="config_1"
 minAlt="5"
 maxAlt="8000"
 autoAdjustColorBins="false"
 grayScale="true"
 grayBlendPercent="1"
 fill="true"
 fillBlendPercent=".4"
 interpolate="true"
 contours="false"
 findLakes="false"
 findLakesCutOff="300"
 />

<!-- Elevation R G B A -->
 <COLORS>
 0 59 129 163 255
 1 60 129 162 255
 2 41 96 65 255

 ...
 ... truncated
 ...

 1891 167 162 104 255
 2132 71 81 28 255
 </COLORS>

</DTED_IMAGE_GENERATOR>

Figure 50 - XML Input File Example for DTEDImageGenerator

48

Figure 51 shows an example of this imagery displayed on the World object.

Figure 51 - DTEDImageGenerator DTED Level 0 Image displayed on World

4.3.8 NASA World Wind Imagery Support
NASA has recently ported the World Wind Application to a Java based SDK [2]. This provides
developers access to NASA database of imagery over the internet. CACI added support to stream
this imagery for display on the JView World and to store NASA's imagery in a local cache.
When accessing the same region cache, data will be loaded first reducing download
requirements. Cache structure is compatible with NASA cache and may be shared between the
JView and NASA API’s. Figure 52 shows an example of JView World with NASA's World
Wind imagery over Albuquerque, New Mexico.

49

Figure 52 - NASA WorldWind Imagery of Albuquerque, New Mexico

4.3.9 Web Map Service (WMS) Imagery Support
Web Map Service servers are freely available internet servers that produce maps of spatially
referenced data dynamically from disparate geographic information. Servers are available with
terrain imagery, political boundaries, cities, roads, rivers, instant weather, and many other
options. During this contract, CACI added support to stream this imagery for display on the
JView World and to store imagery in a local cache. Many of the WMS servers are very slow but
the cache mechanism makes it possible to load imagery off-line and then bypass the slow server.
Figure 53 shows an example of the northeast US with political borders, major cities, and
instantaneous weather data.

50

Figure 53 - WMS Image of Current Weather over NE US

4.3.10 Image Cache Object
A basic Image Cache Object was created (initially to supplement TerraServer data) that stores
downloaded imagery on the local system. The World checks the cache object before attempting
to download imagery from the TerraServer site and to write the image out to the cache after new
imagery is downloaded.

4.3.11 Statistics Generation
As a debugging tool for determining how well the JView World's texture processing engine is
working, several statistics are internally tracked and can be accessed through the fillWorldStats
method. Some of the statistics that are tracked are shown in Figure 54.

51

Texture Statistic Meaning
Loaded on Card Number of textures that are currently stored on

the Video Card
Ever Loaded Total number of textures that have ever been

loaded onto the Video Card since the JView
World was allocated

Ever Unloaded Total number of texture that have ever been
unloaded from the Video Card since the JView
World was allocated

With No Data When the World requests a data type that is not
contained on the hard disk but has been
enabled by the user a No Data Texture Element
is created, this statistic counts the number of
those elements currently in memory.

Rejected Due to Visibility Number of textures that were added to the
texture queue, but were no longer visible at the
time the queue was ready to process the texture
request. Primarily caused by panning away
from texture area before data is loaded.

Rejected by Queue Number of textures rejected by queue, this
represents an error and should always be zero.

Figure 54 - Texture Specific Statistics

4.3.12 Texture Reduction
CACI implemented an option that uses a nodes' distance from the camera to rapidly reduce the
resolution of textures drawn as distance from the camera increases. This option calculates the
distance to the closest node during the update geometry step and then uses the ratio of the current
node distance from the camera to the closest node distance to drop off textures distant from the
camera focus point. This option drastically decreases the number of textures loaded in areas that
have multiple levels of imagery such as the Albuquerque Terra Server data. For a test location
above Albuquerque, NM, with the new option disabled, the World loads 772 textures for a total
of 200 Mb on the video card, with the limit textures option enabled, this drops to 211 textures
and 60.5 Mb of texture data on the video card. Since the Albuquerque area has 19 levels of
imagery resolution available, this still creates an attractive scene with only nodes far from the
camera showing a drastic reduction in imagery quality. Since most machines do not posses
200Mb of video memory, this option is a very attractive for this region and data type. Figure 55
and Figure 56 show the differences for the Albuquerque, NM test.

52

Figure 55 - Albuquerque, NM Terra Server Data Not Limited (772 textures and 200Mb)

Figure 56 - Albuquerque, NM Terra Server Data Limited (211 textures and 60.5 Mb)

53

4.3.13 WorldSettings Object
The World contains 28 user configurable parameters. Using the standard object oriented design
methodology, this requires 28 object methods for assigning and retrieving their values. In order
to simplify this process and eliminate errors resulting from the order of operations, the World
uses a single WorldSettings objects for all user configurable settings. This object may be
modified as the users’ needs require and when the settings object is passed back to the World, a
copy is saved and applied automatically. This retains encapsulation between the World internal
setting and the user.

4.3.14 Multi-View Support
CACI did a large amount of work to allow the World to support multiple simultaneous views.
There are three major steps required to allow the World to properly support multiple views:

• No static World member variables that would cause separate instants to interfere with
each other.

• Share DTED post data with all views.

• Share Texture data with all views.

In order to eliminate the use of static World members all threads accessing World member data
now do so through a World reference instead of through the class name. This required many
objects to have a member added to store a reference to the World it belongs to. This change made
it possible for multiple Graph3Ds each with their own World object to be created. It is not, and
will not be possible to add a single World object to multiple Graph3Ds. A new instant of the
World must be created for each Graph3D.

Sharing DTED post data with all views was a significant design that created the framework by
which the texture data can be shared in the future. A new object was created to store all data
specific to a single DTED post that is not view dependent. All view or World dependent
information is still stored in a QTVertex object, which in turn has a reference to a DTED post
data object. Each World contains its own queue of DTED posts to be processed; the main DTED
thread now calls on each World object to process its own DTED queue.

4.3.15 Relative Altitude Look Up
The World contains a method getAltRelative used to determine the altitude of a point based on
the current triangulation of the World. This is necessary to attach elements to the surface of the
World such as tank models. Once the deepest current created node containing the requested point
is identified, the altitude is interpolated using the 4 vertices that bound the point. The accuracy of
this value, as compared to the actual altitude of the point increases as the camera zooms in, or as
the World's node ratio is increased.

54

4.3.16 Grounding Elements
When attaching objects to the terrain Grounding is always difficult and never precisely correct.
Each object might need to be grounded differently from other objects. CACI has implemented a
package of grounding policies that can be applied to objects drawn on the surface of the JView
World.

4.3.16.1 Grounding Policy
CACI has developed six different grounding policies that a user can choose from depending on
how they want an object to be displayed on the terrain surface. These six grounding polices are
as follows:

1. Touch-Ground

2. In-Ground

3. Center-To-Ground

4. Percent-In-Ground

5. Parallel-To-Ground

6. Average-Parallel-To-Ground

The Touch-Ground policy will take an element and ground it so that the bottom most vertices of
the geometry just touch the ground. This is done by first traversing through the nodes of the
geometry and grabbing the set of vertices that are the lowest. Then the highest elevation is
calculated from each location of the lowest vertices. Touch-Ground policy will return a
coordinate that has the original latitude and longitude with a new elevation. Figure 57 shows an
object that is using the Touch-Ground policy. It can be seen that the object is only touching the
ground on the side of the hill. The In-Ground policy does the reverse of Touch-Ground policy.
The bottom most vertices at least touch or are below the ground. Figure 58 shows the same
object with the In-Ground policy.

55

Figure 57 - Touch-Ground policy

Figure 58 - In-Ground policy

56

Center-To-Ground policy sets only the center point of the model to be at ground level. Since this
policy does not examine the element vertices to determine high and low points it is
computationally much less expensive than the previous two.

Percent-In-Ground policy uses a defined percentage between the Touch-Ground and In-Ground
policies. This policy is useful for when an element needs to be grounded a little deeper than
Touch-Ground but not as deep as In-Ground.

Parallel-To-Ground is an enhanced version of Touch-Ground that includes modifying the
rotations of the object so that it sits in the same plane as the terrain triangle it is grounded to. The
calculations of finding the resulting orientation are in WGS rotation which is a different axis of
rotation than the JView’s axis of rotations. Figure 59 shows the differences between these two
rotations.

Figure 59 - Orientation definitions

Average-Parallel-To-Ground policy modifies the Parallel-To-Ground policy by calculating the
average ground height of the lowest vertices contained in the model and then grounds the object
to that elevation. As with Parallel-To-Ground, the orientation of the object is modified to place
the model in the same plane as the terrain triangle.

4.3.17 World Automated Test Program (WATP)
CACI developed an automated test program used in comparing JView World against a set of test
parameters. We often find that changes to one part of the JView World result in unexpected
effects in other areas. The creation and use of the ATP, reduced the time lost tracking the source
of many bugs by catching them immediately after they are introduced. Figure 60 shows a sample
test used to compare a go to command to a previously stored result for that operation. Any
change in the test parameters would require a programmer look at these results and determine if
the changes were correct.

-Z

Y
X

JView’s Rotations
Yaw = Y
Pitch = X
Roll = Z

WGS Rotations
Yaw = Z
Pitch = Y
Roll = X

57

TEST:: DAM (CA) PASSED

TEST:: Trinity PASSED

TEST:: Whitesands --- FAILED --NODES DRAWN ARE NOT EQUAL
**********STANDARD RESULTS**********
NAME = TEST:: Whitesands
ANCHOR DISTANCE
 Longitude : 32.64510412717321
 Latitude : -106.52555206083908
 Altitude : 22.40498389022394
CAMERA DISTANCE
 Elevation : 90.0
 Azimuth : -0.2528724054748504
 DISTANCE : 1953692.1459967892

 NODE_DRAWN 6
 NODE_IN_TREE 338
 NUM_LOADED_TEXTURE 2
 TRIANGLES_DRAWN 59
 DEEPEST_LV 6

**********CURRENT RESULTS***********
NAME = TEST:: Whitesands
ANCHOR DISTANCE
 Longitude : 32.64510412717321
 Latitude : -106.52555206083908
 Altitude : 22.40498389022394
CAMERA DISTANCE
 Elevation : 90.0
 Azimuth : -0.2528724054748504
 DISTANCE : 1953692.1459967892

 NODE_DRAWN 260
 NODE_IN_TREE 894
 NUM_LOADED_TEXTURE 2
 TRIANGLES_DRAWN 2080
 DEEPEST_LV 11

Figure 60 - World Test Results

4.3.18 Node Change Listeners
Since the JView World continuously refines its geometry as the user pans and zooms, the actual
geometry of the earth is moving up and down as more DTED data is read in. Any point on the
surface of the earth not exactly on a DTED post is actually an estimate based on the triangles
drawn for the current level of detail. Objects that are to be drawn on the surface such as buildings
or automobiles creates a problem since it could result in the object either floating above or below
the actual surface. CACI developed a NodeChangeListener to the World that allows users to
register listeners that will notify an object that its ground location has changed altitude allowing
its XYZ coordinate to be updated. Updating objects can be a very expensive CPU intensive
operation requiring many trigonometry calculations.

58

4.3.19 Demo Browser – World Demo
CACI updated the demo browser to include demonstrations on how to create a simple JView
World. We added two demonstrations, one that creates a basic World with textures, and a second
that creates a basic World without textures and with DTED. Both demos come with a detailed
description of what the demo represents and how to run the demo. Figure 61 shows the demos
that were added to the demo browser. The upper two images represent the World with textures
and the lower image represents the World without textures.

Figure 61 - Demo Browser – World

59

4.4 Developed the initial design framework for providing visualization support to the
Virtual Airspace Modeling and Simulations Project (VAMS)

This portion of the VAMS effort aims to create an application to visualize data from various
sources that will aid in the interpretation of the effects of simulated changes to the operation of
the NAS, and potentially, to aid in the visualization of live data indicating the actual state of the
air system. NASA is currently developing a complex model and simulation of the NAS under a
separate VAMS project, the ACES simulation. ACES attempts to model all of the key
components of the NAS with very fine granularity and generates vast amounts of data for each
simulation run. ACES is presently under active development, therefore the types of data
generated by the simulation are still growing. Additionally, ACES relies on a significant volume
of input data to specify the parameters of the simulation, which is also growing as ACES
evolves.

The ACES Viewer provides support for loading the data produced (and consumed) by ACES,
and for processing and visually encoding the data for display. More specifically, the Viewer will
provide functionality to assist in analyses of the simulation data by allowing users to construct
visualizations that enhance the ability of analysts to elicit insight into the problem domain that
would otherwise be difficult or impossible to obtain. To this end, the Viewer falls into a
category of tools commonly referred to as an exploratory, composable visualization system. The
system is composable in regard to the mapping and transformation of raw input data to an
associated visual representation. Users will select the appropriate combination of input data,
transformations, and visual atoms to create or compose a visualization. Exploratory refers to the
fact that a user may not know what information they are looking for during analysis of the
simulation run(s). The Viewer will allow users to interact with a particular visualization to
explore the data in a number of different ways, including:

• Visual Querying, for example, drilling down to show more detailed information, or
adding display of related information via direct interaction with the visualization.

• Tuning parameters of visual atoms to adjust the appearance of the visualizations.

• Transformation of input data, including aggregation (counting, averages, grouping, etc.),
comparison (subtraction, evaluation of relationships, etc.), filtering, sorting, and others.

• Dynamically modifying the composition of a visualization.

• Re-playing the simulation, showing the temporal aspect of the data where appropriate.

The primary source of input to the ACES Viewer will be provided by the ACES simulation.
Since ACES is still under active development, the Viewer must provide a relatively simple
mechanism to add support for new data types and to modify support for existing data types. The
ACES Viewer must also provide a mechanism by which users can access and visualize custom
data produced by NAS researchers during analysis and evaluation process. Other input to the

60

Viewer will come in the form of user interaction with the application. This type of input
includes:

 Specification of composition graphs defining the components and component
relationships of each visualization.

 Interaction with the composed visualizations.

Output from the application consists of the visualizations generated by the users. The Viewer
will also provide a mechanism for accessing the visualizations outside of the application through
generation of static images and movies. This will allow the visualizations to be embedded within
presentations or other media without necessitating availability of input data, or the complexity of
using the ACES Viewer application. Finally, the composition graphs defining a visualization
will also be an output artifact of the Viewer. Users will be able to save the visualization
configuration to facilitate application of the composed display to alternate input (e.g. another
simulation run), and sharing with other users/analysts.

4.4.1 Application Infrastructure

4.4.1.1 Visualization Components
This section provides a brief introduction to the components of a visualization in the ACES
Viewer.

4.4.1.1.1 Data Tables
The ACES Viewer requires some data to visualize. This data may come from a variety of
sources external to the application. Once imported, all data in the ACES Viewer is represented
in tabular form, where a Table is an ordered collection of Tuples, and a Tuple is an ordered
collection of data fields. All Tuples in a single Table are comprised of the same sequence of data
fields (although their values will vary). Tables in the ACES Viewer are analogous to tables in a
relational database system with Tuples corresponding to rows in the database table. Each Table
in the ACES Viewer has an associated Schema that specifies the fields that must appear in each
Tuple in the Table, including a field name, data type, and an optional data unit where supported
by the data type.

Many types of data can be naturally represented in this form as evidenced by the ubiquity of
relational database systems. The ACES Viewer directly supports data from relational database
systems as well as Comma Separated Values (CSV) files. Additional data sources may be
supported through plugins to the application.

Data Access Tables (Figure 62) in the ACES Viewer are differentiated from other Tables in the
application (Transforms) by the fact that they do not accept input from other Tables. This
statement will become clearer after the sections describing Transforms and Visualization
Construction.

61

Figure 62 - Several Data Tables in the ACES Viewer Visualization Graph

4.4.1.1.2 Transforms
The ACES Viewer supports various types of data processing via Transform components.
Transforms (Figure 63) can be used for a variety of purposes, including combining data from
multiple input Tables, evaluating aggregate functions, analyzing data, annotating data, or
marshaling data into alternate formats. Transforms are a special type of data Table, where the
content (comprised of Tuples) is defined by the transformation function evaluated against one or
more input tables. Transforms are differentiated from Data Tables in the ACES Viewer by the
fact that they accept (and in fact require) input data in order to function.

Figure 63 - Several Transforms included with the ACES Viewer

4.4.1.1.3 Display Containers
Display Containers represent the drawing surface to which visualizations will be rendered. In its
present state, the ACES Viewer provides a 3D Scene as the sole Display Container. A Display
Container can contain any number of Renderers that are responsible for drawing the visual
representation of data in the Display Container. Note that since the Display Container
effectively defines the visualization style (3D, plots, tables, etc.), only Renderers that support
that particular style may be used with a particular Display Container type. Since there is only
one Display Container type present in the application, all bundled Renderer types are compatible

62

with the 3D Scene, however ACES Viewer plugins may provide alternate Display Container
and/or Renderer types.

4.4.1.1.4 Renderers
Renderers (Figure 64) provide the visual representations of data in the ACES Viewer. Renderers
typically (but not always) require input from a Data Table or Transform to provide data to
render. When a Renderer does require input, it will draw one visual representation of each Tuple
in the input Table.

Figure 64 - Two Renderers included with the ACES Viewer

4.4.1.1.5 Expressions
An Expression is a simple function that accepts a Tuple as input, and produces an arbitrary
output. Expressions provide a means of extracting relevant data from each Tuple in a Table that
is providing input to a Transform or Renderer. A Transform or Renderer will typically require
certain data from each Tuple in the input Table(s). These components will expose Expressions
to users so that the user can specify what data in the Tuple provides the necessary information.
For example, a Renderer that draws 3D Models at specified geographic locations will require
latitude, longitude, and altitude values from each Tuple. This Renderer would provide
Expressions for each required value (latitude, longitude, altitude). Each Expression is evaluated
against every Tuple in the input Table to determine the location where each model should be
rendered.

4.4.1.1.6 Controls
Controls (Figure 65) provide a graphical user interface to manipulate the parameters of other
components that make up a visualization. For example, the ACES Viewer provides a Transform
that filters data from an input Table based on a user specified time range. Only those Tuples
whose time field values fall within the specified time range are included in the output of the
Transform. The ACES Viewer also provides a Time Control. This control provides a user
interface that allows users to dynamically manipulate the filter criteria (time range) of the Time
Filter Transform.

63

Figure 65 - The Time Control (right) and its corresponding representation in the Visualization Graph (left)

4.4.1.1.7 Visualization
A Visualization in the ACES Viewer is comprised of a collection of the components described
previously, with the addition of Links that define relationships between the components. Figure
66 Left shows the Visualization Composition Graph, where graph nodes represent the various
components of the visualization and the edges indicate data flow between the components.
Figure 66 Right shows the resulting visualization.

Figure 66 - A Visualization comprised of 5 displays and a variety of transforms, renderers, data tables and
controls.

4.4.1.2 Component Model
The ACES Viewer uses the JavaBeans component model to integrate and control the various
visualization components. JavaBeans is a Java component architecture commonly used when
developing user interface components. JavaBeans imposes a limited number of requirements on
the component implementation and provides the ability to utilize design-time meta data and
Java's introspection mechanism to graphically manipulate component properties and

64

collaborators. This technique is frequently used by visual Graphical User Interface (GUI)
builder tools. The process of assembling a GUI is very similar to one of the core ACES Viewer
application functions which is assembling a visualization scene.

The JavaBeans specification standardizes various aspects of the components that adhere to it,
which allowed us to develop a system to manage the visualization components in a generic
manner. Some of the capabilities provided by the ACES Viewer’s component management
system include:

• Persistence. Any JavaBeans compliant component can be persisted to disk for long term
storage using a custom XML based format.

• Automatic User Interface generation. Components may expose a variety of properties
that control their behavior (or appearance in the case of visual components). The
metadata provided with each component (part of the JavaBeans specification) allows us
to automatically generate a user interface to manipulate these property values.

• Property value binding. The values of any JavaBeans properties on a visualization
component can be defined externally and shared among multiple components. Changes
in the property value cause Property Change Events to be issued and this allows us to
synchronize the values of properties across multiple components, as the value changes
over time.

• Component linking. Visualization components are connected together to form a data
flow graph (data flows from Tables through Transforms, to the Renderers) using the
property value binding mechanisms.

4.4.1.3 Concurrency
In order to take advantage of computer systems with multiple processors, which are becoming
increasingly common, CACI designed and implemented a flexible concurrent I/O and processing
system for the ACES Viewer. The system is comprised of a number of low level concurrency
controls and utilities, and several task-specific thread pools that are automatically configured to
match the capabilities of the host system.

• I/O pool: This is used for I/O intensive tasks. This type of task typically does not
consume much CPU time, they mostly wait for other devices (hard disk, network, etc.) to
complete a requested operation.

• CPU pool: This is used for CPU intensive tasks such as data processing, and some
rendering calculations that can be performed prior to drawing.

• Control pool: This is used for control tasks. These are typically short-lived operations
that must be executed in a timely manner (e.g. user interaction with the GUI).

65

Segregation of the I/O and CPU pools allow I/O and CPU bound tasks to execute concurrently,
since there will typically not be too much resource contention between the task types. Each pool
is allocated a small number of threads based on the number of available processors in the host
system. Thus each pool can have at most one actively executing task per CPU. I/O threads are
given a lower priority so that they are not scheduled for CPU time as often as the CPU threads.
The control pool consists of a single thread with a high priority. Tasks given to the control pool
for execution will be scheduled for execution quickly, even if other CPU intensive tasks are
active in the CPU pool.

Any of the visualization components are free to use the appropriate thread pool as necessary. To
simplify the implementation requirements of visualization components, we implemented a
number of utilities to track task execution progress, including potential failures of individual
tasks.

4.4.1.4 Extensibility
We have incorporated an extension mechanism to facilitate external development of
visualization and datasource components designed to work with JView and the ACES Viewer
application. Developers can write a visualization component using the public API of the ACES
Viewer, and package it as a .jar file (separate from the ACES Viewer). This jar file, along with a
small XML based metadata file can be placed in a subdirectory of the ACES Viewer binary
application, where it will automatically be detected and integrated into the application. This
allows the ACES Viewer's functionality to be extended without the need to recompile the entire
application. In fact, developers do not even need access to the ACES Viewer source code to
develop and integrate an extension.

4.4.1.5 Logging
The ACES Viewer includes integrated logging capabilities that record each task as it is executed
in the application. This is primarily useful for debugging problems that may occur as we
develop the application, and problems users encounter while using the application. The logged
data is stored in an XML file that can be visualized with third party tools, or with the integrated
log viewer provided with the ACES Viewer. The logs also include information regarding the
interactions of users with the application, which can be used to evaluate the effectiveness of the
user interface, and the application itself.

4.4.1.6 Image/Movie Capture
The ACES Viewer includes integrated image and movie capture functionality, allowing users to
save visualization images for offline viewing. This provides the following benefits:

• Avoids system resource limitations. If the application is being run on a slower machine, or
working with extremely large datasets then the visualization displays may have difficulty
keeping up with the simulation playback at the desired speed. The movie capture allows
frames to be captured independently of the speed that they will be played back.

• Allows visualizations to be presented without the application. There is a fairly large amount
of data involved in playing back a simulation. With the ability to display visualizations of

66

multiple simulations, the size of the data can easily surpass 10 gigabytes. That is a lot of data
to transfer when the interactivity of the application is not required. In this case, movies can
be generated that only use a small fraction of the size of the dataset. These movies can be
combined with and embedded in other media types as part of a presentation, for example.

• Allows application output to be presented by someone who is not necessarily familiar with
the application interface. It is considerably easier to press a single play button on a media
player application than it is to use the visualization application. This also eliminates startup
and data loading time.

• Allows users to communicate problems. If, for example, a visual artifact appears in one of
the visualization features under development, the user can submit a small video illustrating
the problem to the application developers.

4.4.2 Data Access

4.4.2.1 Data Input
Access to data sources is provided through implementations of the Table interface of the ACES
Viewer API. Developers that wish to access a particular type of data resource (for example, a
file with a specific format) must provide a Table implementation that represents data records in
the data source as Tuples. This can be accomplished in a number of ways:

• Using existing data access components. Certain common data formats are directly and
generically supported by the ACES Viewer (presently JDBC data access and certain
comma-separated values formatted files). In this case, the developer needs only to
specify the type of data to access and where it is located (e.g. file path, database
connection parameters, etc.).

• Pre-loading the data. The ACES Viewer contains a table implementation that allows
users to add rows. The table will store all of the data in application memory. A
developer could load all of the data from a resource into such a table. In this case, the
developer is responsible for implementing the data access logic to be executed once the
table is first created, to populate the table with Tuple records.

• Dynamic data access. Developers may choose to implement dynamic data access by
providing a Table implementation that directly accesses its data rows from the source
media (file/database/etc.). This allows a subset of the data to be loaded into application
memory when requested, while the remainder is still stored in the source media. This
type of access is required for extremely large data sources that will not fit in application
memory.

Some of the data source types already supported by the ACES Viewer include:

• Comma-Separated-Values files. The ACES Viewer supports extremely fast reading and
parsing of CSV data and conversion to Java types (from text) when a Schema specifying
the data type of each CSV field is provided. Data can be read from disk as needed when

67

memory utilization is a concern or can pre-load all of the records into memory when
performance is more important.

• Relational Database Data. We provide access to any data stored in a database system that
has a Java Database Connectivity (JDBC) driver. Most open source and commercial
databases include a JDBC driver. Data can be read from a single database table or from
multiple tables by providing the SQL query to read it. Database types are automatically
converted to Java types using metadata information provided by the JDBC driver. This
also includes support for access to remote (networked) database systems.

• National Digital Forecast Data (NDFD) Gridded Binary (GRIB) Data. NDFD data forms
the base of the National Oceanic and Atmospheric Administration (NOAA) National
Weather Service Digital Services Program. NDFD data is freely available in gridded
GRIB format from NOAA servers, which may be queried for a number of available
fields, including wind direction, wind speed, temperature, precipitation amount, wind
gust, etc. The data access components in the ACES Viewer support access to surface
wind direction/speed and surface temperature data.

4.4.2.2 Data Output
The ACES Viewer supports the output of any Table instance in the application to a CSV file
stored on disk, provided that the necessary components are present to convert the data records in
the Table to a textual representation. This includes output of processed data derived from one or
more Data Tables using a Transform component. Once the data has been saved to a CSV file, it
can be loaded back into the application using the CSV Table reader, or used with other
applications that support the CSV standard.

4.4.3 Data Processing
CACI has developed a number of data processing (Transform) components to derive information
from Data Tables. The Transforms included in the ACES Viewer fall under the following
categories: Relational Transforms, Filtering Transforms, Aggregating Transforms, and Special
Purpose Transforms, which are described in the following sections.

4.4.3.1 Relational Transforms

4.4.3.1.1 Join Transform.
The Join Transform operates on two input Tables, performing an inner join using a user specified
join criterion. The two input tables are differentiated as a left table and a right table. The values
in the left and right tables will be included so long as there are matching rows (determined by the
join criteria).

4.4.3.1.2 Concatenating Transform.
The Concatenating Transform concatenates the Tuples from multiple input Tables together
producing output where the number of Tuples is the sum of the number of Tuples in each of the
input Tables. The input Tables must have identical Schemata.

68

4.4.3.2 Filtering Transforms

4.4.3.2.1 Filter Transform
The generic Filter Transform uses a single boolean expression to determine whether Tuples in a
single input table should be included in the Transform output or not.

4.4.3.2.2 Time Filter Transform
The Time Filter Transform is similar to the generic Filter Transform; however the filter criterion
is based on a numeric time value and a history duration, which together define a range of times.
Any Tuples in the input that have a time that falls within this range are included in the output.
This Transform can be used in conjunction with a Time Control for animated playback of time-
keyed data.

CACI has also implemented a specialization of the Time Filter Transform designed for use with
database Tables. This specialization uses SQL queries to evaluate the filter criteria for improved
efficiency.

4.4.3.3 Aggregating Transforms

4.4.3.3.1 Aggregator Transform
The Aggregator Transform collects values from multiple input Tuples into a single output Tuple
(there can be multiple output Tuples). The output Tuple represents a simple aggregation of the
input Tuples by collecting all of the values in the input Tuples into arrays of values. Grouping is
specified by a user specified Expression; each input Tuple where the Expression evaluates to the
same value is grouped into a single output Tuple.

4.4.3.3.2 Grid Accumulator Transform
The Grid Accumulator Transform divides a 2D (latitude/longitude) region into a regular grid and
calculates the number of locations in the input data that fall within each grid cell. The location
and span of the region is automatically calculated to include all of the locations in the input data.
For performance and memory efficiency concerns, this Transform breaks the region down into
multiple sub-regions, each with a corresponding numeric count array and bounding box. The
number of sub-regions can be controlled via properties of the Transform, as can the resolution of
the grid. This transform is designed for use with the Grid Renderer.

4.4.3.3.3 Force Grid Transform
The Force Grid Transform produces a 3D numeric array representing the intensities of a field
sampled at discrete intervals (defined by the grid resolution). Input data consists of a set of
locations and for each grid cell, the intensity value is the sum of QValue/distance2 for each
location in the input (distance is the distance from each location to the center of the grid cell).
This Transform is designed for use with the Slice Volume Renderer.

69

4.4.3.3.4 Counting Transform
The Counting Transform produces a count of input Tuples where the user specified key
Expression evaluates to the same value.

4.4.3.4 Special Purpose Transforms

4.4.3.4.1 Grid Maxima Calculator
The Grid Maxima Transform computes the values and locations of local maxima of 2D grids
provided as input. This is designed for use with the Grid Accumulator Transform.

4.4.3.4.2 Polygon Centroid Transform
The Polygon Centroid Location Transform computes the centroid (in terms of latitude, longitude,
and altitude) of polygons in the input Table.

4.4.3.5 Table Events
Most Transforms expose parameters that may affect the data processing thereby changing the
data represented by the Transform. In order to respond to these changes (for example updating
the visual output of a renderer to reflect new data), the Table API exposes methods that allow
registration of a listener object that will receive notification when the content of a Table (or
Transform) changes. Using this facility, components that accept input data from a
Table/Transform typically monitor the input source for changes so that they might take an
appropriate action.

4.4.3.6 Expressions
In order to increase the flexibility of the renderer and transform components in the ACES Viewer
with regard to input data, Expressions provide user tunable per-Tuple processing capabilities.
Expression implementations are given an input Tuple to evaluate, and return a single object
whose type is determined by the expression implementation. As an example, the location model
renderer (which draws a user specified geometry at multiple locations) has an associated location
expression. The location expression is evaluated on each row of an input table to extract a
location (in terms of latitude, longitude, and altitude) at which the geometry will be rendered.
This decouples the location model renderer from the schema of the input data; the expression is
responsible for interpreting the input rows to extract the necessary information. The location
model renderer could then support alternate input data formats (for example an input table might
only have latitude and longitude columns and all altitudes are assumed to be 0) simply by
replacing the location expression.

Expressions are used by both Transform and Renderer components. Other example uses of
expressions include the filter predicate for the Filter Transform (the filter predicate returns a
boolean value for each input row indicating whether it passes the filter), a color expression for
the polygon renderer (each polygon can be colored individually based on the color value
indicated by the expression).

70

The ACES Viewer provides 3 basic types of Expression:

• Literal: The Expression evaluates to the same value regardless of the Tuple used as
input.

• Data Field: The Expression evaluates to the value of a single column (with a compatible
data type) in the input Tuple.

• Groovy Expression: This is a generic Expression that allows users to write the function
implementation in the Groovy scripting language. All columns of the input tuple are
passed as arguments to the user defined function and the implementation (written by the
user) determines the output.

4.4.3.7 Controls
Controls provide an interface to manipulate parameters of visualization components (Transforms
in particular). A Control’s user interface is typically graphical. Presently, the ACES Viewer has
a single control which is the Time Query Control (Figure 67). This implementation works in
conjunction with a Time Filter Transform (or other components that implement the TimeTable
interface).

Figure 67 - Time Query Control

This Time Control provides VCR-like playback controls as its user interface for controlling the
time and extent parameters of the Time Filter Table. Each Time Control can control any number
of Time Filter Transforms. This allows the time and extent to be synchronized among multiple
Time Filter Transforms. The Time Filter Transform uses the time and extent values provided by
the Time Control to filter input data based on a time key contained in each data row. By
changing the parameters, the Time Filter Transform's content is modified to contain only data
rows that pass the filter criteria. This control uses the ACES Viewer’s concurrency utilities to
track the cascade of updates that occur when the time is advanced, which ensures that all of the

71

components in a visualization graph have had a chance to respond to changes in the Time Filter
Transform’s content before the time is advanced again.

4.4.4 Visual Components

4.4.4.1 Model Renderer
Figure 68 shows one of the first JView based visualization components developed for the ACES
Viewer, showing the location and heading of simulated aircraft. This component is designed to
display any data represented by a location (latitude, longitude, altitude) and optionally an
orientation (yaw, pitch, roll). Figure 69 and Figure 70 show other events drawn with the Model
Renderer.

Figure 68 – Individual Aircraft Display

Figure 69 - Maneuver Locations drawn with the Model Renderer

72

Figure 70 - Center Boundary Crossing Feature (Yellow Spheres)

The initial work was quickly enhanced to include the following functionality:

• User specified geometry for each location (Figure 71)

• Efficient view-dependent rendering. The Model Renderer is designed to render a single
geometry in multiple locations using a technique known as instancing. This technique
amortizes the cost of preparing the graphics hardware for rendering the geometry over
each position that it will be drawn in. We also use view-frustum culling to limit the
number of models that will be rendered to only include those that will be visible given the
camera position and orientation.

• Auto-scaling of geometry. The Model Renderer can be configured to render the model
geometry at a fixed size in screen space, by inverting the scaling that is applied by the
perspective projection when the models are a significant distance from the camera.
Figure 72 illustrates this capability, where similarly colored spheres occupy the same
amount of screen space, regardless of their depth in the scene.

• Geometry appearance modification. The Model Renderer can modify certain appearance
properties of the geometry, such as its color, whether lighting is enabled, and the polygon
rendering modes (for wireframe rendering). This is accomplished by traversing the
geometry tree structure and inserting modifier nodes between specific pieces of the
geometry. Figure 73 shows the paper-airplane geometry with modified material
properties (it is normally grey).

• Projection support. The Model Renderer can use any JView Projection implementation
to convert locations and orientations relative to a latitude, longitude and altitude to a

73

Cartesian location. JView currently provides Mercator, WGS84 and Lambert conformal
Projections.

Figure 71 - Aircraft Models Rendered by the Model Renderer

Figure 72 - Location Model Feature Autosize

74

Figure 73 - Aircraft Model Feature with Different Rendering Properties

4.4.4.2 Line Renderer
The Line Renderer, as the name implies, draws lines between sequences of points. This can be
used to draw trajectories, flight plans, network links, and other data types consisting of
sequences of two or more locations. The Line Renderer, as shown in Figure 74, provides the
following capabilities:

• User specified colors

• Support for dashed lines

• Support for animation with dashed lines

• Leading and/or Trailing alpha gradients

• Line Smoothing

75

Figure 74 - Line Renderer

Figure 75 shows the Line Renderer used to draw conflict trajectories. Figure 76 shows aircraft
trajectories and Figure 77 shows a network visualization based on the number of aircraft moving
between airport pairs.

Figure 75 - Conflict Detection Feature (red lines), along with aircraft models, and trajectories

76

Figure 76 - Aircraft Trajectory Visualization

Figure 77 - Airport Network Feature

77

4.4.4.3 Slice Volume Renderer
CACI developed a component to render volumetric data using OpenGL’s 3D texture support.
The Slice Volume Renderer uses a transfer function to map intensity values specified by the user
to a color and opacity value. The resulting colors are compiled into a 3D texture which is
transferred to the graphics hardware. The renderer then draws a number of view-aligned parallel
slices through the region occupied by the volume, using a variation of the Marching Cubes
algorithm for iso-surface extraction (Figure 78).

Figure 78 - View Aligned Slices, side view: Wire frame (left), Textured (right)

The slices are then texture-mapped so that the colors in the 3D texture are rendered at their
appropriate locations in space (Figure 79 and Figure 80).

78

Figure 79 - The final blended image from the camera perspective

Figure 80 - The VAMS Aircraft Density Field Visualization

The Slice Volume Renderer provides the following functionality:

• Volumetric rendering of data stored in axis-aligned spatial grids.

• User defined transfer function to map intensity values to color and opacity values.

• User defined sampling rate, specified in samples per grid cell (this controls the distance
between slice planes, and thus the resolution of the visual volume representation).

79

The Slice Volume Renderer provides basic volume rendering capabilities and allows for
interactive visualization of volume data; however it does have some limitations:

• The volume data must be structured as a regular 3D grid of intensity values. Irregular,
multi-resolution, and non-gridded (continuous/functional volume) data is not supported.

• The spatial boundaries of the grid must be axis-aligned. This also means that the volume
must be rectilinear.

• 3D texture dimensions are limited by the graphics hardware. This restricts the
dimensions of intensity grids that can be rendered.

4.4.4.4 Splat Volume Renderer
To address some of the limitations of the Slice Volume Renderer, we developed another volume
renderer that uses splats to represent the volume data. Instead of using slices and 3D textures,
this renderer draws a large number of point-splats, representing the color contribution of each
volume region (voxel) to the total volume representation. Each splat is drawn using a point
sprite with a Gaussian texture map in the alpha channel of the texture color, as shown in Figure
81.

Figure 81 - A Point Splat

The volume region is traversed using an octree traversal algorithm. When the traversal has gone
deep enough into the octree so that the volume represented by the octree nodes take up a small
enough area when projected to the screen, a splat is drawn centered in the node. Once the entire
volume has been traversed in this manner, the splats are blended to produce the final view of the
volume (Figure 82).

80

Figure 82 - Splat Volume Renderer

The Splat Volume Renderer avoids all of the limitations of the Slice Volume Renderer and also
allows lighting effects to be incorporated into the volume visualization.

4.4.4.5 Histogram Bar Renderer
We developed a Renderer to display individual histogram bars in a 3D scene. This renderer
differs significantly from the Histogram Grid Renderer described earlier. The Histogram Bar
Renderer (Figure 83) is designed to display a relatively small number of histograms with
significantly more control over their appearance compared to the Histogram Grid Renderer.

Figure 83 - Histogram Bar Renderer

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

81

Some of the capabilities of this renderer include:

• Multiple colors at user definable heights, which can be stacked to show multiple (related)
values in a single histogram.

• View alignment options to ensure the order of multiple histogram bars (from left to right)
remains constant from any viewing direction, while still providing a 3D component.

Several different configurations of this the Histogram Bar Renderer are shown in Figure 84.

Figure 84 - Histogram Bar Renderer Configurations

4.4.4.6 Flow Field Renderer
The Flow Field Renderer displays heading and intensity values arranged in a 2-dimensional
spatial grid. Each heading/intensity value pair is represented by an arrow, where the heading is
encoded by the direction of the arrow, and the intensity is encoded in the color, size, and
animation rate of the arrow (Figure 85).

82

Figure 85 - Flow Field Renderer

The Flow Field Renderer provides the following capabilities:

• Optional Animation, the arrows move in the direction specified by their heading, at a rate
controlled by the intensity value.

• User specified transfer function to map intensity values to colors.

• Support for arbitrary projections (Figure 86).

83

Figure 86 - The Flow Field Renderer drawing wind direction and intensity over Asia

4.4.4.7 Frustum Renderer
The Frustum Renderer is primarily useful as a debugging tool and shows a visual representation
of the view frustum from a given camera location (Figure 87)

84

Figure 87 - A 3D scene displaying the bounding boxes of several visualization features. Also includes a view

of the camera frustum

4.4.4.8 HUD Table Renderer
The HUD Text Renderer that CACI developed for JView allows users to display static text on
the image plane of a 3D visualization. We have also developed an ACES Viewer specific
extension of this component, the HUD Table Renderer. The HUD Table Renderer allows users
to display the content of data tables or transforms on the image plane. Each row in a Table
linked with the HUD Table Renderer will cause a single line of text to be rendered. Figure 88
shows the HUD Table Renderer displaying the number of aircraft in each sector zone along the
right hand side of the display.

85

Figure 88 - Table Renderer displaying the number of aircraft in each sector zone

4.4.4.9 Display Containers
The ACES Viewer contains 2 Display Container implementations that provide a display area for
Renderers to draw in.

4.4.4.9.1 3D Scene
The 3D Scene Display Container uses JView to provide an OpenGL based drawing area. This
Display Container provides a number of services above and beyond what is included in JView’s
Graph3D drawing area, such as:

• Automatic management of Renderers that include a spatial bounding box defining the 3D
volume in which they draw. This information is used to set up the initial camera position,
and to manage clipping plane distances.

• Camera Navigation Support. The 3D Scene Container uses the Camera Navigation
System that we developed for JView to allow users to move the viewing position in the
scene.

• Projection Support. Each 3D Scene can have a single Projection associated with it, which
is passed on to all Renderers that support projections. This ensures that all Renderers in a
scene use the same map projection (if any).

• Stereoscopic rendering support. When enabled, 3D scenes can be rendered in anaglyph
stereo or can produce two separate full-color images for the left and right eyes (for use
with hardware supported stereo).

86

4.4.4.9.2 Tabular Scene
We developed a prototype Display Container to display the content of Tables in tabular form
(Figure 89).

Figure 89 - A prototype tabular scene with a visualization feature that displays the number of aircraft
currently enroute to each airport

4.4.5 User Interface

4.4.5.1 Visualization Composition
The Visualization Composition Interface (Figure 90) is the primary user interface component for
building visualizations in the ACES Viewer.

87

Figure 90 - The Visualization Composition Interface

The left side of the Visualization Composition Window consists of the Composition Graph. This
shows an interactive live representation of the components that make up a visualization. Users
can add or remove components, link components together, or select components to manipulate
their properties. Users can also copy and paste components that are already present in the graph.
The right side of the Visualization Composition Window contains task panes with all of the
available visualization components (Controls, Renderers, Display Containers, Transforms and
Data Tables). Users can drag components from the task panes into the graph area to add new
components to the visualization.

After defining a visualization, it can be saved to disk so that it can be loaded by the ACES
Viewer at a later time (Figure 91). The visualization is saved in an XML format that contains
descriptions of all of the components present in the visualization, their property values, and
representations of links between the components. Users can load the visualization and optionally
apply it to different Data Tables than those that were present when the visualization was saved.

88

Figure 91 - The Save Visualization Dialog

4.4.5.2 Property Editor
When a user selects a node in the Composition Graph, the Property Editor task pane shows all of
the user-controllable properties of the selected component (Figure 92).

Figure 92 - The Property Editor

The Property Editor user interface is automatically generated by the ACES Viewer for each
component using metadata provided by the BeanInfo classes associated with the visualization
components (part of the JavaBeans specification). The metadata includes information on which
properties should be available for editing by the user, human-readable property names and

89

descriptions, and optionally information on what type of user interface component is best suited
for editing the property value. If no information is provided describing the user interface for a
particular property, one is automatically chose by the ACES Viewer based on the data type of the
property. Changes made in the property editor are immediately applied to the component being
edited.

4.4.5.3 Dataset Definition
Users can load and manage Data Tables using the Datasets task pane and the Dataset Definition
wizards. The Datasets task pane shows a listing of the loaded Data Tables and provides controls
to load, unload, and define datasets (Figure 93).

Figure 93 - The Datasets task pane

To load a data source into the application, users first activate the New Dataset control in the
Datasets task pane. This action launches a wizard that allows users to specify the necessary
information to load the data.

The first page of the wizard asks the user what type of data they would like to access. The
wizard presents a list of supported data types with a brief description of each (Figure 94). The
supported types that are available depend on the extensions that are installed in the ACES
Viewer.

90

Figure 94 - Dataset Wizard Step 1: select the type of data to load.

Subsequent pages depend on which type of data is being loaded. For example, if the user wants
to load database data, they must specify database connection parameters (Figure 95).

Figure 95 - The Basic Database Dataset Wizard Steps

91

Once the user has completed the wizard steps, they are given an opportunity to save the dataset
definition, so it can be loaded at a later time without going through the wizard again. The
Datasets task pane is updated to include the Data Tables that were loaded through the wizard
once it is completed.

4.4.5.4 Scene Display
The visualizations created in the Composition Graph are displayed in one or more Visualization
Windows. Each Display Container present in the visualization is displayed in a panel in the
Visualization Window. Users can add multiple Display Containers to one window (Figure 96),
or open each Display Container in a separate window (or any combination of the two). Display
Containers can be dragged with the mouse to change their positions within the window or
dragged to other windows.

Figure 96 - The Visualization Window

Each Display Container in a Visualization Window has its own toolbar. Each toolbar contains a
name for the Display Container (which can be referenced with the Display Container’s
representation in the Visualization Graph), and a button to close the container. When a Display
Container (or its containing Visualization Window) is closed, it is immediately removed from the
Visualization Graph, along with any renderers associated with the display. The toolbar also
contains user interface controls specific to each Display Container type. For example, the 3D
scene provides controls to change the map projection used for the scene, and to re-position the
camera so that the entire content of the scene is visible.

92

4.4.5.5 Movie Capture
Movies can be recorded from the content of the Display Containers in a visualization window.
The content of all of the Display Containers in the window will be incorporated into a single
movie. Users initiate the movie capture process from the menus at the top of each visualization
window. The movie capture controls are added to the bottom of the window (Figure 97).

Figure 97 - The Visualization Window after activating Movie Capture

On the right side of the Movie Capture Controls, the size (width, height) and duration of the
recorded movie are shown. On the left side there is a field showing recording status, and a
Record button used to initiate the recording process. Recording does not begin until the user
presses this button. Pressing the Record button opens a dialog window so that you can specify
the parameters of the movie (Figure 98).

93

Figure 98 - Movie Parameters Dialog Window

Once the capture process is started, users can interact with the visualization and even make
changes to the content while the movie is being recorded.

4.4.5.6 Log Viewer
CACI developed a simple integrated log viewer (Figure 99) to allow users to view logged
information for the running application. If a user experiences a problem or error with the
application, the log viewer can be opened to view log messages as they are generated by the
application. This is also extremely useful during application development. Features of the log
viewer include:

• Generic implementation: The viewer is a simple Java Swing based component that can
be easily added to any application using the Log4J logging system.

• Filtering by log level: Log messages can include anything from fatal application errors to
low-level application flow trace information. The viewer supports filtering to limit the
number of messages users will see.

• Color Coding: Two colors are used for each log message, a green or red box indicating
whether or not the message indicates an error, and a second color indicating the log level
of the message (differentiating, for example, warnings from debugging messages).

94

Figure 99 - Integrated Log Viewer Window

4.5 Audit Trail Viewer
The Audit Trail Viewer is a few on few engagement analysis application used for viewing
simulation outputs. The Audit Trail Viewer was born as a replacement for IVIEW 2000 and
supports visualization replay for many different modeling and simulation data file formats. This
part of CACI’s JView support contract includes the maintenance and enhancements of the Audit
Trail Viewer. The Audit Trail Viewer provides CACI and AFRL engineers the ability to explore
supporting larger simulation environments and unique customer visualization requirements.

4.5.1 Graphical User Interface Improvements

4.5.1.1 Digital Terrain Elevation Data (DTED) Panel
The DTED panel was drastically changed to incorporate a new way of loading DTED. In earlier
versions of the ATV, in order to load DTED, it was required to have an .atvdtd file along with
the simulation file. This .atvdtd file held information like DTED directory, RPF directory, DTED
Level, Lower Left Longitude and Latitude. In the new version of the ATV, all of the options for
loading DTED are on the panel. The lower left latitude and longitude components were added as
well as a DTED directory button. The .atvdtd file is not mandatory to load DTED terrain but is
optional for quick loading. The .atvdtd file pre-selects all the options for a simulation. The new
change can be seen in Figure 100.

95

Figure 100 - Terrain Panel

4.5.1.2 Analysis View Tab
CACI has made many changes to the Analysis Viewing Tab under this contract. These changes
added new functionality and organized the panel into a cleaner more professional application.
Figure 101 shows the analysis view from where we started to where we ended.

Figure 101 - Analysis View (Old) / (New)

96

4.5.1.3 Help Panel
The Help Panel was completely changed using Java Help to design a useful and helpful interface
with searching capabilities and utilities like printing and backtracking. The old Help Panel was
just a collection of html documents that users could read though and there was no searching or
structuring. Figure 102 shows the interface changes from the old to the new Help Panel.

Figure 102 - Help Panel (Old) / Help Panel (New)

4.5.1.4 Geometry Panel
The Geometry Panel is the second panel that the user sees in the ATV. CACI enhanced the
Geometry Panel by incorporating the element viewer. The element viewer tool can be used to
view and select elements such as aircraft in three different ways (Large, Small or Iconic). A
popup mouse over view was added to the element viewer so the user can get more detail on the
model. The popup now includes a 2D version of the image on the lower right corner of the
popup. The new element viewer tries to fit as many images as it can with a minimum size
preference. The element viewer, seen in Figure 103, gives the ATV a professional look as well as
an easy way to identify which model the user wants.

97

Figure 103 - ATV Element Viewer

4.5.2 2D Graphical Engine – 2D View
The 2D graphical Engine is the largest feature that CACI provided in the ATV. There are many
users of the ATV that only need a 2D God’s eye view of the simulation run.

4.5.2.1 Arrow2D
CACI developed the Arrow2D to be used as the default 2D element in the ATV as well as a
general 2D element in JView. The arrow class is configurable to make almost any type of arrow
imaginable. Length and width can be modified to set the boundary of the Arrow2D. Colors can
be picked to change the color of the boarder or the Arrow2D. Also, the trail width and length can
be adjusted by changing the ratio of each. By adjusting the tail length you can inversely change
the Arrow2D head length and angle. Figure 104 shows a diagram of the Arrow2D object.

98

Figure 104 - Arrow 2D

4.5.2.2 Trail 2D
A 2D element to display movement paths was created mimicking the 3D version. The trail future
and past is created in four parts. Part one is the past trail from beginning to current element point.
The second part of the trail is created from the current element point to the interpolation point of
the element. An interpolation point is a point where the time of the element is in-between two
known times. Part three is the line segment from interpolation point of the element to the next
element point. The forth and last line segment is from the next element point to the ending point.
Figure 105 displays a breakdown of the 4 parts of a 2D Trail.

Figure 105 - Trails 2D

Length

W
idth

BorderColorFilledColor

TailLength = Length * LengthRatio

TailWidth = Width * WidthRatio

99

4.5.2.3 Cone2D
Cone2D was created to represent radar beams from elements such as seekers. Cone2D is defined
by values of yaw and pitch. Pitch determines the length as well as the curvature of the cone. A
pitch of 0 would look like a triangle and a pitch of 180 would look like a circle. The yaw value
determines where the cone should be pointing. Figure 106 displays an example of two Cone2D’s
on a single aircraft.

Figure 106 - ATV Cone 2D

4.5.2.4 Models 2D
2D Models were added to help users see information faster and clearer. All models beside the
cone and sphere are raster image models. Raster image models are images that don’t get scaled
from zooming in and out. If no image has been selected, a default arrow is drawn. Models can be
scaled by entering a value in the entity scaled box which will be multiplied by the default scaling
factor. By default, this is set to 1.0 with the models being a 50x50 pixel image resulting in all
models displayed in the same size. Figure 107 displays an example with several 2D models.

100

Figure 107 - ATV 2D Models

4.5.2.5 Labels 2D
CACI created a new 2D Labels element and a different camera setting had to be created. For the
2D camera modes, it was necessary to create a MovementManager2D to help with assignment of
camera modes. There are two camera settings for the 2D View which are Follow and Free. The
Follow mode follows the element that is currently selected and the user cannot move away from
the object. For the Follow mode, the BaseSceneElement2D was modified to implement a listener
that would respond to 2D element movements. This was the only way to check if the element
would move so that camera could be updated on follow mode. The Free mode is a camera mode
that can both move and zoom. There are no attachments with Free mode. Figure 108 shows an
example with 2D Labels.

101

Figure 108 - ATV 2D Labels

4.5.2.6 Imagery 2D
As with the 3D display, the 2D display includes the ability to add imagery to the background.
JView already contained support for image generation for several data formats (RPF and DTED
are examples). Unlike the 3D display, no underlying mesh needs to be created and imagery may
be added without the presence of DTED data. Figure 109 shows an example of JNC RPF data
blended with a DTED image.

102

Figure 109 - ATV with 2D Maps

4.5.3 Splash screen
Using GIMP, the CACI team and the JView government staff developed the new splash screen
as seen in Figure 110. This picture shows one of the new models that can be used. It also
displays the 2D view and table view, and is an improvement over the previous splash screen.

103

Figure 110 - ATV Splash Screen

4.5.4 Representation of Ground Entities
Ground entities are difficult to represent in the Audit Trail Viewer. The Audit Trail Viewer loads
a simulation output file that has multiple entities and contains location data at an update interval.
The ATV entities are placed according to the time of the simulation. If the time of the simulation
is equal to a time in the simulation file then the location associated with that time is used,
otherwise an interpolated time is calculated. This works well with airborne models but gives an
unrealistic view for ground elements. Figure 111 displays an example of what an entity might do
on the ground. The black line represents the ground and the red line represents an entity
trajectory. Interpolation of the ground unit position between reported locations results in a path
that passes though the terrain in several locations.

104

Figure 111- Ground Trail

To accurately represent an entity at ground elevation, we first need to know the elevation of the
ground. In JView, Digital Terrain Elevation Data (DTED) is drawn as triangles that use DTED
elevation posts as the triangle vertices. If the ground point is very near to a post, then the
elevation of the post is used as the actual elevation. Most of the time elevation is calculated by
finding what triangle the point lies on and then interpolating the elevation of the point using the
three elevation posts of the triangle. Figure 112 shows an example of a point on a triangle strip.
Selection of which triangle a point lies on is determined by calculating the horizontal percentage
offset and vertical percentage offset from the lower right post. If the sum of the horizontal and
vertical offsets is greater than one, then the upper left triangle is used for interpolation, otherwise
the lower right triangle is used. Once the triangle is selected, we interpolate the elevation of the
point by using the x offset and y offset for that point.

105

Figure 112 - Triangle Selection Example

4.5.4.1 Highlight 2D Elements
CACI added the ability to highlight 2D elements to solve the problem that terrain can look very
similar to the 2D elements and make it hard to identify an object. Highlighting can also be used
to identify the current 2D element selected after a mouse click or other operation. As seen in
Figure 113, it is easier to see elements that are highlighted. A custom option panel was added in
the ATV to the environment portion of the analysis section to support highlighting of element.
These options can choose from a range of colors to highlight the elements or choose the colors
by affiliation.

Figure 113 - Highlighted Elements

4.5.4.2 3D Views
To show information in a different perspective, we added two new viewports into the ATV. The
first viewport, the Cockpit View is simply, a view from the cockpit of the aircraft (not all aircraft
have imagery for the cockpit and on these instances this view cannot be selected). The cockpit

106

view is shown on the left and middle image of Figure 114. The second new viewport is called
Heads Up Display (HUD) View. CACI developed a basic HUD display that shows heading
information as well as elevation angles. The HUD view is shown in the right most image of
Figure 114. This HUD view has a great deal of potential to display more information in the
future.

Cock Pit View 1 Cock Pit View 2 HUD View

Figure 114 - HUD and Cockpit Views

4.5.4.3 GATER II Simulation
CACI added support for the GATER II format which is comma delimited and has options to
show the affiliations, radar information, sound and above ground level (AGL) elevation. CACI
also developed a loader to view GATER II simulation files in the ATV. Keyholes, which are
zones within a radar system’s coverage that are being jammed by another entity, needed to be
created to support the GATER II output files. GATER II allows for any one radar site to have
multiple keyholes. The shape of a keyhole is an oblong conic shape and Figure 115 shows an
example of 2 keyholes displayed in the ATV.

107

Figure 115 - ATV Keyholes

To identify targets that have been detected or acquired, CACI colored the existing models to
represent the current state of an element. Elements that are red are detected, elements that are
yellow are acquired and elements that are orange represent both. Figure 116 shows an example
of 3D model highlighting.

Figure 116 - Identifying ATV Elements

108

4.5.4.4 ATV and the World
CACI integrated the JView World into the Audit Trail Viewer. A new mouse/keyboard
interaction model was created called the SurfaceNavigator and a small but useful Graphical User
Interface (GUI) to interact with the World was added to the ATV. Figure 117 shows the ATV
with the World and also the GUI that was implemented to control World settings.

Figure 117 - ATV World

The SurfaceOrbitNavigator was added to the ATV not just to provide the correct control of the
World but also to provide a better mouse/keyboard movement tool than the previous one. This
new navigation system allows smoother movement while orbiting or panning. The
SurfaceOrbitNavigator was added to the Orbit, Observational, and the Movie Viewports. The
keyboard/mouse controls were changed to better interact with the navigator style.

4.6 3D Model Development
Development of a library of 3D models in the Open Flight format is to be owned by the Air
Force and distributed under a GOTS license to JView users.

109

4.6.1 COTS Software Used

4.6.1.1 3D Studio Max (3DS)
The primary software used to develop the model library was 3D Studio Max (3DS). CACI
developed the meshes and overlaid the textures using this program. Each model was delivered
first in .max format. The models were then exported using additional COTS software.

4.6.1.2 PloyTrans
CACI was provided with a copy of PolyTrans to export the 3DS model files to the Open Flight
(flt) format and obj formats. PolyTrans is a scene translation tool and a 3d geometry toolkit. This
program was found to have several problems exporting files containing articulation. It was
determined from these communications that PolyTrans would not be an acceptable solution for
creating flt models. CACI researched other possible tools which led to the purchase of Multigen
Creator.

4.6.1.3 Multigen Creator
CACI was provided with a copy of Multigen Creator in order to resolve the issues PolyTrans had
exporting articulated models from 3DS to open flight. Creator only became available near the
end of this contract and as a result, only a few models where actually completed using this
software. Section 4.6.3.1 discusses these models.

4.6.2 JView Model Software Developed

4.6.2.1 ElementViewer
CACI enhanced JView's Drag and Drop Element Viewer to display axis, unit’s values and file
names. This allows users to see the models as JView will display them. Figure 118 shows an
example of a model displayed in the Element Viewer.

110

Figure 118 - Element Viewer

4.6.3 Model Library

4.6.3.1 Models Developed
Thumbnails of the models developed by CACI under this contract are shown in Tables 2 through
13. Each model directory contains the model in 3 different formats, .max, .flt, and .obj.

111

4.6.3.2 Articulated Models Developed
CACI only received MultiGen Creator near the end of this contract and as a result, only a few of
the models have had articulation added. In the next section, the AWACS thumbnail (Table 2,
left), predator thumbnail (Table 5, upper right) and Cell Phone model thumbnail (Table 9, lower
left) contain articulated components.

4.6.3.3 Model Thumbnails
CACI developed a total of 33 models on this effort and their thumbnails are shown in Appendix
A.

5.0 Conclusion
This final technical report illustrates CACI’s progress in developing, implementing and
integrating visualization technologies that support NASA and the Federal Aviation
Administration (FAA). Specifically, CACI provided direct support to JView users, developed
the JView World object (resulting in a joint-AFRL/CACI patent), broke new ground in terms of
de-cluttering concepts, developed ATV version 1.2, developed a library of 3D models, and
developed a new application using JView technology called the Airspace Concept Evaluation
System (ACES) Viewer that provides visual representations of the output of ACES. We count it
as a great success that JView represents a standard visualization solution and provides an
environment that adapts to user needs vice forcing them to adapt to the tool. It has been a
privilege to partner with AFRL and to get to build on the impressive foundation created by
AFRL/RISF.

112

REFERENCES:

[1] Moore, J., and McVay, A., “Method for Loading and Displaying Massive
Gridded Datasets Patent #60/879,211”, 2007.

[2] National Aeronautics and Space Administration, “World Wind”,
http://worldwind.arc.nasa.gov, 2006.

http://worldwind.arc.nasa.gov

113

APPENDIX

 Table 2 - Aircraft / Surveillance

AWACS

RC135 (Rivet Joint)

Table 3 - Aircraft / Bombers

B2 Bomber

114

Table 4 - Aircraft / Fighters

F16

F22 (Raptor)

F35A (JSF)

F117 (Stealth Fighter)

115

Table 5 - Aircraft / Unmanned Aerial Vehicle (UAV)

Global Hawk

Predator

Rascal

116

Table 6 - Computer Hardware / IO Devices

Keyboard (Dell)

Monitor (Dell)

Mouse (Dell)

117

Table 7 - Computer Hardware / CPUs

Table 8 - Network Hardware

Router Wired (Linksys)

Router Wireless (Linksys)

Computer Case (BOXX)

Laptop (HP)

118

Table 9 - Communications Equipment

Cell Tower

Communication Tower

Cell Phone

119

Table 10 - Ground Vehicles

2006 Chevrolet Silverado HD Crew (Blue)

2006 Chevrolet Silverado HD Crew (White)

Desert Patrol Vehicle (DPV)

120

Table 11 - Satellites

DSP

GOES

GPS IIR

ST5

 TDRS

121

Table 12 - Space Telescopes

Faulkes

Maui

 Sloan

122

Table 13 - Radars

SPS 49

TPS 75

123

ACRONYMS:

ACES – Airspace Concept Evaluation System
AGL – Above Ground Level
API – Application Programming Interface
AWT – Abstract Windowing Toolkit
ATV – Audit Trail Viewer
CADRG – Compressed ARC Digitized Raster Graphics
CIB – Controlled Image Base
CLOD – Continuous Level-Of-Detail
CSV – Comma Separated Values
CUNE – Characterization of the UAV Network Environment
DOQ – Digital Ortho Quadrangle
DRG – Digital Raster Graphic
DTED – Digital Terrain Elevation Data
EDT – Event Dispatch Thread
FAA – Federal Aviation Administration
GRIBB – Gridded Binary
GUI – Graphical User Interface
HUD – Heads Up Display
ILOD – Imagery Level-of-Detail
JDBC – Java Database Connectivity
JNC – Jet Navigation Charts
JOGL – Java OpenGL Library
KML – Keyhole Markup Language
PTR – Screen Pixel to Texture Texel Ratio
NAD83 – North American Datum of 1983
NAS – National Air System
NDFD – National Digital Forecast Data
NOAA – National Oceanic and Atmospheric Administration
OOD – Object Oriented Design
RPF – Raster Product Format
UAV – Unmanned Aerial Vehicle
USGS – United States Geological Survey
UTM – Universe Transverse Mercator
VAMS – Virtual Airspace Modeling and Simulation
WMS – Web Map Service
WGS84 – 1984 World Geodetic System
XML – Extensible Markup Language
3DS – 3D Studio Max

