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Abstract 

 The research presented here is an effort to integrate an existing hollow cathode 

design with a low power production Hall thruster in multiple geometries. Both externally- 

and internally-mounted cathodes were fabricated and operated in conjunction with a 

Busek BHT-1500 Hall thruster. Three insert materials were evaluated; Cerium 

Hexaboride (CeB6), Lanthanum Hexaboride (LaB6), and impregnated tungsten. The 

thruster was operated at a single operating condition for all testing. The operating 

specifications for the discharge were 300 V and 2.25 A, giving a total power of 675 W. 

 The boride-based cathodes were tested in both geometries while the tungsten-

based cathode was only tested in an external configuration. A Faraday probe was used to 

measure current density in the plume and a single Langmuir probe was used to 

characterize the plasma. The charge state of the ions was measured with an ExB probe. 

All assembly and testing occurred at the Air Force Institute of Technology’s (AFIT) 

Space Propulsion Analysis and System Simulation (SPASS) lab facility.  

 The thruster’s performance with the externally-mounted boride-based cathodes 

installed demonstrated the highest levels of efficiency and performance. The thruster’s 

performance with the tungsten-based cathode installed was slightly less than with the 

externally-mounted boride-based cathodes. The lowest thruster performance occurred 

with the internally-mounted cathodes installed. The primary loss mechanism observed 

was an increase in multiply-ionized propellant with the internally-mounted cathodes.  
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AN ANALYSIS OF MULTIPLE CONFIGURATIONS OF NEXT-GENERATION 
 

CATHODES IN A LOW POWER HALL THRUSTER 
 

I.  Introduction 

Motivation 

 In any engineering endeavor, greater efficiency and performance are always 

desirable. The goals of greater efficiency and performance are magnified in the realm of 

rocket propulsion, as the cost of placing a spacecraft in orbit is quite expensive. Any 

increase in the efficiency or performance of a propulsion system should allow the 

payload or mission mass to increase as well. The goal of the Integrated High Payoff 

Rocket Propulsion Technology Program (IHPRPT), which began its execution phase in 

1996, has been to improve U.S. rocket technology, doubling its performance by 2010. [1] 

The goals of the IHPRPT Program include booster and orbit transfer applications as well 

as spacecraft propulsion applications. Booster applications are exclusively in the realm of 

chemical propulsion and while alternative propulsion technologies are being evaluated 

for orbit transfer applications, they are still primarily affected by chemical rocket 

technologies. In-space propulsion, however, allows us to venture beyond the realm of the 

chemical rocket.  

 Electric Propulsion (EP) has shown much promise in achieving the goals set forth 

by the IHPRPT Program. While EP has been in use for decades, its use today has been 

highlighted by the achievements of several noteworthy missions. NASA’s Deep Space 1  

(DS1) mission provided the technology validation for the NASA Solar electric propulsion 

Technology Applications Readiness Project (NSTAR). [2] DS1 carried an ion engine 
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based EP system utilizing xenon as a propellant. A nearly identical system is installed 

aboard NASA’s DAWN spacecraft whose mission is still underway. [3]  

 

Figure 1. NASA NSTAR Ion Thruster [4] 

 Aboard Earth-orbiting satellites, a propulsion system is needed to allow for orbital 

maneuvering and station keeping. In the case of geostationary satellites, ever more 

precise station keeping is desired to enable the number of satellites occupying the 

geostationary belt to increase without risk of a collision. EP, specifically Hall thrusters, 

provides a low-thrust and very efficient solution to satisfy the needs of Earth-orbiting 

satellites. Russia has been flying Hall thruster systems for nearly 30 years. Today, the 

Russian SPT-100 Hall thruster, manufactured by Fakel, has flown aboard numerous 

western satellites. [5] The first U.S. company to build a Hall thruster to be flight qualified 

was Busek. Their BHT-200, a 200 W Hall thruster, was flown aboard the Air Force’s 

TacSat-2, which launched in December 2006. [6] The research continues, updating 

existing designs and developing new ones, to improve both the efficiency and 

performance of EP systems. 



 

18 

 

Figure 2. Fakel SPT-100 Hall Thruster [7] 

Problem Statement 

 Most hollow cathode designs for space propulsion in use today utilize a tungsten-

based impregnated emitter which is highly susceptible to poisoning. Poisoning from 

water vapor or oxygen can seriously degrade the performance of these types of emitters. 

Another limiting factor for impregnated emitters is their lifetime, governed by the rate at 

which the impregnate evaporates. In a high-current application, the lifetime of an emitter 

is considerably shorter than in low-current applications.  

 Both the SPT-100 and BHT-200 mentioned above utilize an external cathode for 

electron production. Since both of these thrusters are relatively compact, this generally 

poses no major integration issues. As Hall thrusters increase in size, however, the overall 

form factor of the thruster becomes increasingly important. Any real estate on a satellite 

bus utilized by a Hall thruster system cannot be used for other necessary subsystems such 

as thermal, power, or communications. The Hall thruster’s plume divergence is another 
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issue that must be carefully evaluated when a Hall thruster system is being integrated into 

a satellite. It is highly undesirable to have high energy particles from the thruster’s 

exhaust plume striking solar arrays, communications antennas, or the satellite bus itself. 

Thruster plume symmetry and divergence need to be evaluated as the scale of the thruster 

increases. 

Research Objectives 

 The objectives of this research are to integrate an existing low-current cathode 

design into a low-power production Hall thruster. Additionally, two geometries for 

cathode placement and three insert materials are evaluated to determine the combination 

of geometry and emitter material that delivers the best thruster efficiency for a specified 

operating condition.  

Research Focus 

 This research seeks to quantify the differences in the performance of a Hall 

thruster, operating at a specified condition, depending on the cathode emitter material and 

cathode geometry. The centerpiece of this research was a Busek BHT-1500 Hall thruster. 

The thruster has been modified by Busek to accept a center-mounted cathode of a low-

current design. The cathode design, referred to as a hollow cathode owing to its tube-like 

geometry, is based on the Goebel and Watkins design developed at the Jet Propulsion 

Labs. [8] The emitters installed in the hollow cathodes included Lanthanum Hexaboride 

(LaB6), Cerium Cexaboride (CeB6), and Barium Oxide (BaO) impregnated tungsten 

emitters. Both LaB6 and CeB6 are desirable as emitters in a hollow cathode design due to 

their resistance to poisoning. There has been research done on cathodes utilizing LaB6, 
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but virtually no research exists on the feasibility of CeB6 as an emitter for hollow cathode 

applications. [9]  

 To minimize the number of variables, a single operating condition was selected 

for both the BHT-1500 Hall thruster and for the cathodes being evaluated. In addition to 

the multiple emitters being evaluated, two cathode geometries were evaluated to 

determine what performance differences, if any, could be observed. A more traditional 

edge-mounted geometry was tested along with a geometry where the cathode was 

mounted internal to the thruster along its central axis. Limited research on the effects of 

an internally mounted cathode has been published and more research into this 

configuration is needed. [10]  To affect the performance and efficiency analysis a number 

of operating parameters were observed and recorded. Input power to the thruster’s anode 

and magnets as well as to the cathode keeper was tracked to determine the overall input 

power. Multiple instruments were utilized to determine the properties of the plasma 

plume generated by the Hall thruster. All measurements were taken under assumed 

steady-state conditions; no frequency-domain effects were evaluated.  

Investigative Questions 

 The primary question this research seeks to answer is what combination of emitter 

material and cathode geometry will yield the best performance and efficiency for the 

specified operating conditions. The power input to the thruster and the power output of 

the plume must be quantified to determine the efficiency of the thruster. To determine the 

power output in the plume the characteristics of the plasma need to be observed and 

quantified. The next logical question is what effect does the choice of emitter material or 

cathode geometry have on the plume itself. Comparative spatial measurements of the 
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plume are recorded for each of the possible configurations in order to evaluate the plume. 

Finally, a center-mounted cathode has never been tested with a BHT-1500 Hall thruster, 

so a feasibility study of using the specified hollow cathode design is required.  
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II. Literature Review 

Hall Thruster Applications  

 Even though Hall thrusters have been around for quite a long time, their use 

operationally and even experimentally aboard spacecraft has been somewhat limited. The 

Russian heritage of Hall thruster development is being taken advantage of now in the 

West. The Russian SPT series of thrusters, of which the SPT-100 mentioned above is one 

variant, have demonstrated 7,000 hours of operational life on orbit. [11] The 

nomenclature for the Russian thrusters comes from their designation as stationary plasma 

thrusters in the Russian literature; to differentiate them from pulsed plasma thrusters. In 

an SPT or Hall thruster the plasma is quasi-static. Most of the Russian Hall thrusters 

flown have been used for North-South station keeping (NSSK) operations on 

geosynchronous satellites.  

 The performance ranges for Hall thrusters vary greatly. The thrust levels for Hall 

thrusters range from the mN range all the way up to >1 Newton. Corresponding Isp values 

range from ~1,500 sec. up to ~3,000 sec. [12] [13] [14] Efficiency values for Hall 

thrusters are generally around 50% with this efficiency increasing as the thruster’s size 

and Isp are increased. [11] The efficiency of Hall thrusters is generally less than that of 

ion engines, but Hall thrusters tend to be significantly lighter than their ion counterparts, 

especially in the low power thruster regime. [14] Mission requirements and constraints 

would dictate whether the selection of an ion thruster or a Hall thruster would be most 

beneficial. Ion engines are comparatively better for missions with large ∆V requirements 

whereas Hall thrusters are generally more ideal for time constrained missions. [15]  
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 Due to operational lifetime considerations, missions such as NSSK are ideal for 

Hall thrusters, as they are not needed to operate continuously for the life of the satellite. 

This is not, however, the only mission being considered for Hall thruster use. NASA 

began its Hall thruster program in the early 1990’s by looking at Russian Hall thruster 

technology. [16] Much work was done to increase the power and Isp of Hall thrusters as 

well as to determine the operational lifetime of various designs utilizing various 

materials. Electric propulsion as a whole was advanced tremendously through the 

successful flight test of the NSTAR ion engine aboard NASA’s DS1 spacecraft. This 

mission proved the viability of electric propulsion for deep space missions. The NSTAR 

system aboard DS1 provided a ∆V of 4.5 km/s using only 80 kg of xenon while 

operating, for a large portion of the mission, at a 99% duty cycle. [17] The Dawn 

mission, currently underway, seeks to utilize EP in an even more aggressive manner. The 

Dawn spacecraft carries three NSTAR engines capable of a total ∆V of over 11 km/s. 

This is necessary as Dawn’s mission duration is slated for 10 years and includes 

rendezvous with two asteroids, Ceres and Vesta. [18]  

 Hall thruster in-flight experience has not been limited to Earth orbiting satellites. 

The European Space Agency’s SMART-1 (Small Mission for Advanced Research in 

Technology) operated from 2003 to 2005. During this time, it traversed from Earth orbit 

to lunar orbit by means of a Hall thruster. SMART-1 carried a PPS-1350-G Hall thruster 

built by SNECMA motors. [19] The PPS-1350-G is based on the Russian Fakel SPT-100 

design and is comparable in performance. [5] During the mission, the Hall thruster 

aboard the SMART-1 spacecraft was operated for nearly 5,000 hours to include over 800 

engine startups and shutdowns. The SMART-1 mission demonstrated the ability to 
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throttle a Hall thruster and, using onboard instrumentation, was able to characterize the 

plasma to a limited degree. Additionally, the PPS-1350-G allowed the mission to be 

extended by a year as it was used to maintain its final lunar orbit (station keeping). 

Finally, in a remarkable demonstration of reliability, the PPS-1350-G operated as 

specified every time it was commanded, achieving a 100% reliability rate. [19]  

 Quite a few studies have looked at using EP for solar system exploration. In one 

of these studies, Manzella, Oh, and Aadland looked specifically at the feasibility of using 

a Hall thruster for a notional asteroid sample return mission to the asteroid Nereus. [20] 

Their work included development and testing of a prototype Hall thruster with a 10:1 

throttle range at NASA’s Glenn Research Center. A deep space mission using Hall 

thrusters, especially where any sort of rendezvous is required, would require a degree of 

throttle-ability. Their work concluded that using a throttle-able Hall thruster, a 70 kg 

increase in spacecraft mass could be achieved relative to a mission utilizing an NSTAR 

ion thruster system. [20] In another study, Witzberger and Manzella directly compared 

the use of Hall thrusters versus NASA’s Evolutionary Xenon Thruster (NEXT), an ion 

propulsion system. In their study, which used the Solar-Electric Propulsion Trajectory 

Optimization Program (SEPTOP), developed by Jet Propulsion Labs (JPL), they analyzed 

deep space missions to Jupiter, Saturn, and Neptune. Based on their analysis, a spacecraft 

utilizing Hall thrusters would be able to carry at least 200 kg more payload than a 

spacecraft utilizing the NEXT system. [21] Additional studies by Brophy and others have 

looked at numerous missions, to include a Mars sample return mission, a Europa orbiter, 

and a Pluto/Kuiper flyby to name a few, where EP, either ion engines or Hall thrusters, 

would be the enabling technology. [22] [23] [24]  
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Hall Thruster Theory of Operation  

 A Hall thruster is an electromagnetic EP device sharing some similarities with ion 

thrusters. The Hall thruster’s ion production method is quite different than an ion thruster 

as it relies on a magnetic field to trap electrons used to ionize the propellant. In order to 

generate thrust both thrusters rely on electrostatic potential, but the Hall thruster must 

have a number of components in a very different configuration. The first component is 

the cathode, electrically heated to produce electrons. A portion of the propellant flow, 

generally around 10% for low power applications, is sent through the cathode to help 

sustain the production of electrons in the cathode. Cathode operation will be discussed in 

further detail below. Figure 3 gives a schematic representation of a Hall thruster showing 

both an externally-mounted cathode and a center-mounted cathode. 

 A Hall thruster’s geometry generally consists of a shallow cylindrical channel 

with a propellant feed system and an anode at the upstream end with a series of 

electromagnets arrayed along both the outside and inside of the channel. These 

electromagnets produce a radial magnetic field. The anode at the upstream end of the 

channel is biased positive. The electrons emitted from the cathode are attracted to the 

anode. This current flow also creates an electric field from the downstream electrons 

produced by the cathode to the positively biased anode upstream. Once the electrons 

enter the channel, however, they are trapped by the radial magnetic field and held in the 

channel as they spiral around the magnetic field lines. The crossed electric and magnetic 

fields in the channel cause an azimuthal motion or drift of the electrons. This azimuthal 

motion of the electrons produces what is known as the Hall current, which is where the 
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Hall thruster gets its name. Hall thrusters are also referred to as closed-drift thrusters in 

some of the literature.  

 In order to remain in the channel the electrons need some sort of restoring force to 

counteract the centrifugal force they feel. This restoring force is generated through the 

“wall sheath electric fields and the force associated with the magnetic gradient in the 

radial direction of the channel.” [5] The radius at which the electrons circle the magnetic 

field lines is referred to as the electron Larmor radius and is given by;  

 1 2
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v mVr
B eω

⊥ ⊥
= =  (1) 

where v ⊥ is the velocity perpendicular to the magnetic field line, cω is the cyclotron 

frequency, and V ⊥  is the perpendicular voltage. The corresponding azimuthal drift 

velocity is given by; 

 2B
×

=
E Bv  (2) 

In order for the Hall thruster to operate, the electron Larmor radius must be smaller than 

the depth of the channel so they do not travel to the anode before they can be used to 

ionize the propellant. In a similar fashion the ion Larmor radius must be much larger than 

the “characteristic channel length”, which corresponds to the depth of the channel, “so 

that the ion can be accelerated out of the channel by the applied electric field.” [5]  

 When the Hall current is established in operation, the propellant is then ionized 

and accelerated to produce thrust. A non-reactive gas, noble gases being preferred, is 

injected into the upstream portion of the thruster near the anode. Xenon is the most 

common propellant as it is the heaviest of the stable noble gases and can therefore 

provide the most thrust. Additionally, xenon has a “low ionization energy per unit 
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propellant mass, due to both a moderate ionization energy and a high atomic weight.” 

[25] As the gas molecules encounter the electrons travelling azimuthally they are 

efficiently ionized through collisions with the trapped electrons. Once ionized, the 

molecules come under the influence of the axial electric field created by the anode 

upstream and the electrons emitted by the cathode downstream. Being positively ionized, 

the propellant molecules quickly accelerate and form the plume of the thruster. The  

plume is neutralized by the electrons emitted by the cathode. The thrust generated by a 

Hall thruster is a combination of Newtonian and Maxwellian effects resulting in a net 

force on the spacecraft.  

 

Figure 3. Schematic of a Hall thruster showing both internally and externally mounted 
cathode configurations. [10] 
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 It often helps to think of the space within the channel as two separate, but 

overlapping, regions. The first, upstream region, can be referred to as the ionization 

region. The second, downstream, region is the acceleration region corresponding to the 

electric field, which peaks near the exit plane of the thruster. This overlapping of regions 

is one cause of beam divergence in Hall thrusters. [5]  

 There are two main classes of Hall thrusters. The more common type has a 

channel fabricated from a dielectric material such as boron nitride designed to withstand 

ion bombardment and limit the sputter erosion occurring because of it. The other type of 

Hall thruster is called a thruster with anode layer or TAL thruster. In this type of Hall 

thruster, the walls of the channel are made conductive and the anode is centered in the 

channel, which is typically only half as deep as the channel for thrusters with dielectric 

walls. [5] The metallic walls of a TAL thruster are also much more susceptible to 

secondary electron emission resulting in higher electron temperatures. Additionally, the 

acceleration region of a TAL thruster is about eight times smaller than a thruster with 

dielectric walls. [26] The Hall thruster used in this research is of the dielectric wall type. 

Cathode Technology 

 The cathode is a fundamental component of a Hall thruster. Without it, the 

thruster cannot be started nor can its operation be sustained. In low power Hall thruster 

applications the design and performance of the cathode is of even more importance as its 

power and propellant requirements can significantly reduce the overall efficiency of the 

thruster. The fundamental purpose of a cathode is to produce electrons. In the Hall 

thruster, these electrons serve two purposes. First, they are required to produce the Hall 

current within the channel, the driving mechanism for propellant ionization. Second, the 
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electrons in the plume serve to neutralize the ions once they have been accelerated out of 

the thruster.  

 There are several types of cathodes. The simplest type of cathode is a wire, which 

has enough current flowing through it to allow the material to emit electrons. A tungsten 

filament would be one example of this type of cathode. The single crystal emitter is 

another type of cathode. This type of cathode is often used in electron microscopes as 

well as for lithography and electron beam welding, to name a few applications. It has also 

been considered for EP applications as well, but to a lesser extent. [27] The most 

common materials used for single crystal emitter-type cathodes include both Lanthanum-

Hexaboride (LaB6) and Cerium-Hexaboride (CeB6), but tungsten can be used as well. 

[28] Figure 4 below depicts both a tungsten filament and a single-crystal emitter. 

 

Figure 4. Tungsten filament cathode and LaB6 single crystal emitter. [29] 

 Both filament and single crystal-type cathodes use Ohmic heating to induce 

electron emission. The current that a filament or crystal can emit by thermionic emission 

at a specified temperature is given by the Richardson-Duschman equation; [5] 
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q

kTj AT e
φ−

=  (3) 



 

30 

Where A is the Richardson coefficient and φ is the work function of the emitter, material 

specific properties. In this relationship, increasing the temperature would suggest an easy 

method to increasing the required current. Obviously an upper limit would be the melting 

point of the material due to ohmic heating. Minimizing the energy required to produce a 

working current is paramount to keeping the overall device efficiency high. Therefore, a 

lower work function is desirable to increase the current density.  

 Since a cathode is usually immersed in a plasma, the “space-charge limit” must 

also be considered. Equation (4) below gives the maximum electron current density that 

can be accepted by a plasma due to space-charge effects; also known as the “cathode 

sheath.” [5] [27] 
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It can be seen that the maximum emission current density depends on the ion density, ni, 

as well as the electron temperature, Te. κ  is a constant whose value is usually about 0.5. 

[27] Knowing the characteristics of the plasma, equations (3) and (4) allow us to 

determine the best emitter for a given application.  

 The final type of cathode to be examined is the hollow cathode. The centerpiece 

of a hollow cathode is what is known as the insert. This is the material actually emitting 

the electrons during cathode operation. It is an open cylinder made of a material with a 

suitably low work function. Tungsten impregnated with other materials to lower its work 

function, along with LaB6 and CeB6, have all be used as insert materials in various 

studies. [8] [27] [30] In contrast to the filament and single-crystal cathodes described 

above, hollow cathodes do not utilize Ohmic heating. An external heater filament heats 
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the insert through radiation and conduction. The insert is contained within a tube of a 

suitable high-temperature, non-reactive material around which the heater filament is 

wrapped. A neutral gas flows through the insert where plasma is created. Downstream of 

the insert is a positively biased electrode known as a keeper which serves to extract the 

electrons from the region inside the insert. Figure 5 shows the basic components of a 

hollow cathode as well as several additional design aspects described below. 

 

 

1. Insert Region 
2. Orifice Region 
3. Cathode-to-Keeper Region 
4. Coupling Region 

 

Figure 5. Hollow Cathode Schematic [9] 
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 There have been many different hollow cathode designs developed and tested. A 

common feature for hollow cathodes designed for EP applications is to use an orifice 

plate at the downstream end of the insert. The orifice plate is simply a disk of suitable 

material with a hole in the center, generally smaller than the inner diameter of the insert 

itself. The thickness of the orifice plate, along with the diameter and geometry of the 

hole, can affect the power consumption and minimum flow rates that a hollow cathode 

can handle. [31] In order to make the heater filament more efficient, it is often wrapped 

with a foil made from a refractory metal, such as tantalum, to reduce the radiative losses.  

 The keeper can also be fabricated in a variety of ways. Since the keeper simply 

acts as an anode to the plasma being generated inside the insert, it does not need to be 

overly complex. A simple piece of suitable material with a hole in it for the electrons and 

plasma to pass through, with a positive bias applied, is all that is needed. This simplest of 

designs is often referred to as an open-geometry cathode or keeper. [32] Both metals and 

graphite materials have been used for keepers. A somewhat more common design is to 

enclose the heater, insert, and other components within the electrically isolated keeper. In 

this design, the keeper is an open cylinder, completely open at the upstream end, where it 

would attach to the base of the cathode, and orificed at the downstream end, where the 

plasma and electrons are emitted.  

Hollow Cathode Theory of Operation 

 In contrast to filament and single-crystal-type cathodes where Ohmic heating is 

the driving mechanism for electron emission, hollow cathodes take advantage of what is 

referred to as “field-enhanced emission” by virtue of the electric field present between 
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the plasma internal to the insert and the keeper. This phenomenon is also known as the 

Schottky effect and effectively lowers the work function of the insert material. [5] 

 
04eff

q E
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Equation (5) shows the relationship between the effective work function, effφ , and the 

electric field, E. 0ε  is the permittivity of free space.  

 Hollow cathode operation begins with the application of current to the heating 

element wrapped around the cathode tube containing the insert. Once the insert reaches 

sufficient temperature, it begins to emit electrons from its inner surface. These electrons 

impart a negative charge at the insert surface and form a double sheath there. [5] [9] Once 

the electrons are emitted, they interact with the neutral gas flowing through the cathode, 

ionizing it, and creating a very dense plasma inside the insert. The potential created by 

the keeper electrode causes the electrons to be accelerated away from the insert towards 

the thruster plume.  

 One of the advantages of hollow cathodes is their ability to operate in a self-

heating mode. Once the cathode has been lit and is operating satisfactorily, the external 

heater element can be turned off and the cathode will continue to produce electrons and 

generate plasma. This obviously increases efficiency, as no energy is required to run the 

heating element continuously. The self-heating of the insert is due to three separate 

mechanisms. [5] The first is orifice heating. The high plasma pressures inside the insert 

induce a highly resistive plasma at the orifice. Through convection, much of the power in 

the orifice plasma is transferred to the orifice plate. The power absorbed by the orifice 

plate is then conducted or radiated to the insert. Since ions are produced inside the insert 
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and there exists a negative bias at the internal surface of the insert, ion bombardment of 

the insert’s surface is the second form of self-heating. Finally, at high plasma pressures 

and high discharge currents, electron heating can occur whereby electrons with enough 

energy to pass through the wall sheath are created and then impact the internal surface of 

the insert, depositing their energy there.  

Cathode Insert Materials 

 There have been many materials utilized for the fabrication of inserts. Pure 

tungsten has been utilized as an insert material, but it has many drawbacks. Its work 

function is 4.55 eV, considerably higher than many other insert materials. Therefore, pure 

tungsten must be heated to very high temperatures before emitting electrons. Much more 

common are impregnated tungsten inserts. Initially, compounds such as Barium Oxide 

were deposited on the surface of the tungsten to lower the work function, but the surface 

deposits were quickly depleted through ion bombardment. This gave rise to the 

impregnated inserts where the low work function surface layer could be continuously 

replenished by the material fabricated into the tungsten substrate. [5] A typical 

impregnate may consist of Barium Oxide (BaO), Calcium Oxide (CaO), and Aluminum 

Oxide (Al2O3) used in various ratios. [27] [33] By impregnating a tungsten insert with the 

materials mentioned, the surface work function can be lowered to ~2 eV subsequently 

requiring less heater power to induce thermionic emission. [5] [27] Most impregnated 

tungsten inserts are designed to operate around 1000 C.  

 The main drawback to tungsten–based inserts, both pure tungsten and 

impregnated inserts, is their susceptibility to poisoning. Water vapor and oxygen are the 

two most harmful contaminants to an impregnated insert, with oxygen being the most 
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harmful. Oxygen at partial pressures as low as ~4x10-7 torr can completely stop plasma 

generation inside the cathode. [34] Over time, a poisoned insert will need to be heated to 

higher and higher temperatures to begin emitting electrons, likely eventually exceeding 

the capability of the external heater element or the material properties of cathode 

components. To mitigate the effects of poisoning requires numerous conditioning and 

startup procedures. Special handing of tungsten-based inserts when exposed to 

atmosphere or maintaining them in an inert environment can reduce the possibility of 

poisoning to a degree, but there are efforts to reduce this requirement in order to make the 

integration and test of EP systems utilizing tungsten-based cathodes easier. [33] 

Additionally, extremely pure propellant is required as impurities in the propellant gas can 

react with the insert. Typically 99.9995% pure xenon is used, costing considerably more 

than standard xenon. Finally, extended conditioning procedures whereby the insert is 

slowly heated to its operating temperature over several hours reduces the possibility of 

poisoning. Conditioning procedures and the monitoring of the laboratory vacuum 

environment, using a residual gas analyzer, for example, allows for the possibility of 

poisoning to be minimized. Conditioning procedures may pose no major problems in a 

laboratory vacuum facility, where there are no time constraints, but if an EP device needs 

to be operational shortly after launch for on-orbit maneuvers in low-Earth orbit, a long 

conditioning procedure may not be ideal.  

 Much research has been done in the pursuit of more robust insert materials. 

Several boride-based compounds, primarily LaB6, have been extensively tested. [5] [8] 

[27] [30] Some recent work has also been done using CeB6 as an insert material. [9] [27] 

[35] The work functions of single crystal LaB6 and CeB6 were experimentally determined 
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to be 2.70 and 2.62 eV respectively by Swanson and McNeely. [36] Similar results for 

LaB6 were obtained by Jacobson and Storms. [37] Hollow cathode inserts cannot 

generally be fabricated from a single crystal, due mainly to machining requirements and 

overall size. Boride-based hollow cathode inserts are polycrystalline, being manufactured 

by press sintering powered material into rods that are then machined into the required 

dimensions for the application. [8] [30] The work functions for boride-based inserts vary 

from insert to insert due to dimensional differences and density variations, but a typical 

value for a LaB6 hollow cathode insert would be ~2.67 eV. [5] [8] [30] Despite the 

limited work done on CeB6 as a hollow cathode insert material, several studies have 

shown the work function of CeB6 to be slightly lower than that of LaB6 for single crystal 

specimens. [27] [38] These same studies indicate CeB6 has a lower evaporation rate than 

LaB6 and is less susceptible to poisoning as well.  

 Both LaB6 and CeB6 operate at higher temperatures than impregnated tungsten 

inserts, but are still capable of operating in self-heating mode. [9] This would require 

more heater power to allow the insert to reach its emission temperature, but this 

drawback is mitigated by the boride-based inserts’ reduced susceptibility to poisoning. 

The poisoning of LaB6 has been studied and has shown it is capable of maintaining its 

emissive characteristics at partial pressures several orders of magnitude greater than that 

of impregnated inserts. [34] [39] Oxygen is still the primary catalyst for poisoning, but 

the boride-based inserts’ ability to operate at the higher partial pressures relaxes the 

requirement for ultra-high purity propellant gases. Finally, the lower evaporation rate for 

CeB6, coupled with its lower work function, makes it even more attractive as an insert 

material for long-duration hollow cathode applications. [27] [38] 
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Center-Mounted Cathode Studies 

 Two studies have been completed that investigate the effects of mounting a 

cathode internally, along the central axis of the Hall thruster. Both of these studies, 

however, utilized high power Hall thrusters. Hoefer, et al. tested a Busek BHT-8000, 8 

kW Hall thruster using two insert materials. [10] It was operated with an external hollow 

cathode using LaB6 as the insert material and with an internally-mounted hollow cathode 

using impregnated tungsten as the insert material. McDonald and Gallimore tested a 6 

kW Hall thruster (designated H6) with both external and internal cathodes that each used 

LaB6 as the insert material. [40] Their study also involved varying the location of the 

cathode in the axial and radial direction as well as the rotation of the cathode axis from 0 

to 90 degrees. The 0 degree setting corresponded to the cathode axis being parallel to the 

axial direction of the thruster and the 90 degree setting corresponded to the cathode axis 

being coincident with the radial axis of the thruster.  

 Both studies demonstrate a center-mounted cathode improves the performance of 

the Hall thruster. Hoefer, et al. showed a center-mounted cathode gives a more collimated 

and symmetric plume than an external cathode. [10] The more collimated plume 

improves performance in a variety of ways. There are fewer losses due to plume 

divergence and likely less erosion of the discharge chamber due to asymmetries in the 

plasma. This equates to extended thruster lifetimes and more accurate models for thruster 

lifetime. The more collimated plume also means fewer integration issues for a spacecraft. 

As mentioned in the introduction, the high-energy particles emanating from the thruster 

would negatively impact spacecraft components, so a more tightly collimated thruster 

plume would reduce these effects. Finally, the better symmetry means more accurate 
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numerical models can be developed based on the data collected from Hall thrusters 

operating with center-mounted cathodes.  

 McDonald and Gallimore used their results from the center-mounted cathode to 

compare the various geometries they studied for the external cathode. Despite the wide 

range of geometries for the external cathode they tested, the Hall thruster’s performance 

with the center-mounted cathode was consistently at least 3% more efficient than with the 

external cathode. [40] Again, both of these studies utilized high power Hall thrusters. To 

the author’s knowledge, no work has been done to integrate a center-mounted cathode 

into a low power Hall thruster. Additionally, neither of the studies mentioned above 

directly compares the performance of external or internal cathodes operated with 

different insert materials against one another and neither tested a CeB6 –based cathode in 

any configuration. With the benefits of a center-mounted cathode readily apparent, it 

makes engineering sense to develop and test a center-mounted cathode that can be 

integrated into a low power Hall thruster to improve its performance. 

Experimental Considerations 

 There are many variables that must be controlled or tracked when testing a Hall 

thruster. When looking at performance and more specifically, efficiency, the inputs to 

and outputs from, the thruster must be quantifiable in some form. A short list of factors to 

observe or control would include; propellant flow rates, thruster operating parameters, 

cathode geometry, cathode insert material properties, and the properties of the plasma 

that makes up the exhaust plume.  

 Propellant flow rates and thruster operating parameters are closely interrelated. 

Propellant will be required for both the cathode and for the thruster, with the thruster 
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requiring approximately 90% of the overall propellant flow. Precision mass flow 

controllers provide a means to accurately control and monitor the flow of propellant to 

both the cathode and the thruster. Manufacturers of Hall thrusters will characterize their 

thrusters’ performance in a variety of ways and specify the conditions for optimal 

performance. Some of these conditions include propellant flow rates, anode discharge 

voltage, magnet current, and possibly keeper and cathode heater currents. Thrusters can 

be designed to operate at a single set point or to a specified thrust level and will be 

optimized to that end. In an effort to make Hall thrusters more robust, however, many 

thrusters can be operated at both their design, or rated, output capability or at a level less 

than the specified maximum. The input parameters described above can all be varied to 

achieve various levels of performance from a single Hall thruster.  

 The cathode used for a given Hall thruster need not be designed in concert with 

the thruster. It simply needs to provide the electrons for ionization of the propellant and 

neutralization of the exhaust plume. Cathode positioning with respect to the thruster has 

been examined in several studies. [40] [41] Low power Hall thrusters are generally 

designed to have the cathode or cathodes (if there is a redundant cathode as part of the 

design) mounted next to the thruster with the output of the cathode near the discharge 

channel of the Hall thruster. With increasing thruster size, the possibility exists for 

mounting the cathode internal to the thruster along its central axis. Whether mounted 

externally or internally, the cathode’s position must remain fixed with respect to the 

thruster in order to make any determination of performance differences due to differing 

cathode inserts.  
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 Just as geometry with respect to the cathode positioning is important for both 

performance and comparison, any effects resulting from the material property variations 

of the inserts needs to be captured as well. Since the work function of boride-based 

inserts varies from insert to insert due to the averaging of the work functions of the 

various crystal faces that make up each individual insert, knowledge of the density of the 

insert is critical. The physical dimensions also help determine comparative performance. 

The overall time an insert operates will also affect its performance. This is especially true 

for impregnated inserts where the impregnate is consumed, albeit extremely slowly, as 

the cathode is operated.  

Performance Measurement and Plasma Diagnostics 

 Any time we wish to measure the efficiency, we must be able to measure the input 

and outputs and compare them. Quantifying the propellant used by the thruster and 

cathode, as well as the power being consumed by the anode, magnets, and keeper, is 

fairly straightforward. The above statement assumes the cathode heater is off during 

steady state thruster operation. Measuring the output of a Hall thruster can be done in a 

myriad of ways though. If thrust measurements are the goal, an inverted pendulum thrust 

stand can be used to directly measure the small thrust levels generated by Hall thrusters. 

By knowing the propellant flow rates and exhaust velocity, an Isp value can be 

determined. Exhaust velocity can be obtained through laser velocimetry techniques such 

as absorption experiments or laser-induced fluorescence. Both of these techniques are 

quite useful, but neither gives much insight into the properties of the exhaust plume and 

plasma.  
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 There are numerous ways to characterize the plasma forming the exhaust plume 

of a Hall thruster. The diagnostics used for this research include a Langmuir probe, a 

Faraday probe, and an ExB probe. Each of these instruments provides some of the 

information needed to determine overall thruster performance and efficiency. 

 One of the simplest instruments used for many years to study plasma is the 

Langmuir probe. Despite being an intrusive probe, whereby its presence in the plasma 

will impact the plasma properties, the Langmuir probe’s ability to measure numerous 

plasma properties makes it an invaluable tool for plasma characterization (i.e. plasma 

potential, floating potential, and ion and electron density).  

 Other less intrusive probes enable us to measure parameters of specific interest in 

the study of EP as well. A Faraday probe measures current density, used to determine a 

number of parameters to describe the thruster exhaust plume.  

 An ExB probe, or Wein filter, can be used to separate ions based on their mass 

and charge state. Charge state determination allows us to determine how efficiently the 

propellant is being ionized. Any of the probes mentioned above can be positioned 

throughout the region of the thruster plume. By translating the probe through the thruster 

plume, spatial data can be obtained allowing for a more thorough understanding of the 

plume and the generation of accurate plume models.  

Efficiency Determination 

 Numerous factors affect the efficiency of a Hall thruster. These efficiency factors 

can be looked at singly or as a whole, depending on the data available and the depth of 

analysis. Presented below is a brief overview of the various efficiency factors impacting 
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the overall performance of a Hall thruster. Kim provides the following equation to relate 

all of the various efficiencies into a single formula; 

 i
T i

d

I
I β υ εη ηη η η=  (6) 

where all of the terms on the right-hand side of equation (6) are the various efficiencies of 

the thruster. [42] Ii and Id are the ion current and discharge current, respectably. iη  is the 

propellant utilization efficiency, βη  is the focusing efficiency of the beam, which takes 

into account beam divergence, υη  is the loss caused by the distribution of ion velocities, 

and εη  is the acceleration efficiency. Goebel and Katz, in their text, derive a similar 

expression that is more intuitive; [5] 

 2
T b v m oη γ η η η η=  (7) 

bη  is the beam current efficiency which relates the fraction of the discharge current, Id, 

that forms the beam current, Ib, as follows; 
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b
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Similarly, vη  is the beam voltage efficiency term, relating the discharge potential, Vd, and 

the beam potential, Vb, as follows; 

 b

d

V
Vυη =  (9) 

mη  is the mass utilization efficiency and relates the mass flow rates of propellant to the 

anode and cathode, am  and cm , respectively, to the mass flow rate of the ions leaving the 

thruster, im ; 
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Finally, the electrical utilization efficiency, oη , relates the discharge power of the 

thruster, Pd, to the input power, which includes the discharge power, the keeper power, 

Pk, and the magnet power, Pmag; 
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Equations (8) through (11) allow for the evaluation of the performance of a Hall thruster 

in a piece-wise fashion, providing the ability to look selectively at the various operating 

parameters of a Hall thruster and see what effect each has on the performance. The 

properties of the plume are captured in the 2γ  term. This term takes into account the 

effects of multiply-charged ions in the plume and the plume divergence and is given by; 

 tFγ α=  (12) 

In this expression, costF θ= , where θ  is the average half-angle divergence of the beam. 

This assumes a uniform beam divergence “with a constant ion current density profile 

accelerated by a uniform electric field.” [5] For a cylindrical thruster the expression 

becomes; 
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( )J r  is the ion current density as a function of the radius, which can be determined 

experimentally using a Faraday probe. To relate the losses caused by doubly-charged 

ions, Goebel and Katz derive the following formula; [5] 
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Since equation (14) is a quotient of ratios, we do not need to know the specific beam 

current that is generated by the singly- and doubly-charged ions, only their ratio. This 

type of data is readily obtained experimentally through the use of an ExB probe. 

Additionally, this expression can be expanded to include the effects of more highly 

charged ions.  

 There are other ways to quantify Hall thruster efficiency beyond those presented 

here. Numerous studies focused on a single factor affecting the overall efficiency of a 

Hall thruster. [43] [44] There are many parameters, in design, construction, and operation 

of Hall thruster affecting the overall performance and efficiency of the thruster and their 

interrelatedness can make it challenging to draw conclusions as to the effects of adjusting 

a single parameter on the overall performance. 
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III. Methodology 

Vacuum Facility 

 All of the experimental work described herein was conducted at the AFIT Space 

Propulsion Analysis and System Simulation (SPASS) laboratory. The centerpiece of the 

lab is the 2.5 meter long by 1.8 meter diameter vacuum chamber. The chamber has a 

volume of ~6.5 m3 and numerous feed-throughs with view ports for observing operations 

inside the chamber while pumped down. The chamber was built and installed by PHPK 

of Columbus, Ohio. The chamber utilizes a mechanical roughing pump to lower the 

pressure to approximately 100 millitorr. Once below its crossover pressure, four liquid-

helium cooled cryogenic pumps are activated automatically to reduce the pressure 

further. When bringing the chamber up to atmospheric pressure between test runs, a low-

flow nitrogen system was used to slowly back-fill the chamber with an inert gas to help 

mitigate any potential poisoning of cathode inserts and increase the life of the cryo-heads.  

 The cryogenic pumps are 0.5 meter diameter CVI Torrmaster TM500 cryopumps 

which can handle up to 4,000 l/s of xenon gas per unit. The pumps consist of an air-

cooled compressor assembly that is connected to the cryo-head by means of flex lines. 

[45] [46] The cryo-head assembly reaches temperatures of 16-22 K and acts as a cold trap 

for gasses inside the chamber. The gases condense on the cold surfaces inside the 

cryopump and are trapped there maintaining the vacuum. The cryopumps are a closed 

system and do not vent or expel the trapped gasses to atmosphere and, as such, their 

capability to contain gases introduced into the vacuum chamber, namely the xenon 

propellant, degrades over time. This can be observed during chamber operation by noting 

a rise in the operating temperatures of the cryo-heads. The effects of this degradation can 
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be mitigated some by limiting the time a thruster is operated during a pump down cycle 

and cleaning of the cryo-heads’ fins inside the chamber when the chamber is at 

atmospheric pressure to remove substances deposited there due to thruster operation. 

Figure 6 shows one end of the vacuum chamber along with a cryo-head and compressor, 

the roughing pump, and the cryo-head temperature indicators. 

 

Figure 6. SPASS lab vacuum chamber and associated components. 

 To measure pressure and monitor the various gas species present in the chamber, 

a combination of devices were utilized. For pressures in excess of 0.1 millitorr, a Lesker 
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300 Series Convection vacuum gauge was utilized. This pressure sensor uses a 

convection-enhanced Pirani gauge to enable pressure measurements over a wide range. 

[47] It also contained the circuitry that activated the cryo-pumps and shut down the 

roughing pump once the crossover pressure was reached. It was primarily used to monitor 

the pressure during roughing pump operation.  

 The second device used to measure pressure was an Extorr XT Series Residual 

Gas Analyzer (RGA), model XT100. This device is a single integrated unit containing a 

Pirani gauge, a hot cathode ion gauge, and a quadrapole gauge and is capable of 

measuring pressures from atmospheric all the way down to 10-11 torr. [48] The RGA was 

controlled using Extorr’s VacuumPlus software. The software provides a continuous 

pressure reading using either the Pirani gauge, if the pressure is above 0.1 millitorr, or the 

ion and quadrapole gauges for pressures below 10-2 and 10-3 torr, respectably. A plot of 

the partial pressures of gas species in the vacuum chamber is continuously updated as 

well, allowing the user to monitor for possible leaks or sources of poisoning. Figure 7 

shows a screenshot of the VacuumPlus software and illustrates the partial pressures of the 

various species detected during a test run.  
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Figure 7. Screenshot of VacuumPlus software. 

 The final pressure gauge used is a combination of a Kurt J. Lesker KPDR900 

vacuum controller and a calibrated Series 979ATV transducer. This device became 

available to the author after testing had begun and was used to cross check the operation 

of the Extorr RGA. The 979ATV uses a combination of a Pirani gauge with a hot cathode 

pressure sensor to enable measurement of pressures from 5x10-10 to 1000 torr. [49] With 

the propellant flow rates used for cathode and thruster operation, this gauge indicated that 

the total pressure inside the vacuum chamber did not exceed 1.3x10-5 torr during testing. 
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Test Assembly 

 To facilitate the use of multiple instruments to measure various properties of 

thruster operation, the thruster was mounted on an assembly constructed of 80/20® 

aluminum components bolted to the Z-axis of a three-axis Aerotech® translation stage 

system. The Aerotech® system allowed for thruster translation in all three axes over a 60 

cm range. Each axis could be controlled independently to sub-millimeter accuracy. 

Additionally, scripts could be written to automate thruster movement. Depending on the 

instrument being used, the thruster was either pointed down the length of the vacuum 

chamber or at the ceiling of the chamber. Changing the orientation of the thruster had to 

be done manually as the Aerotech® system as installed has no rotational capability.  

 

Figure 8. Photo showing thruster, pointing vertically, along with truss structure and 

Aerotech® translation stages. 
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 The xenon propellant was stored in a gas bottle mounted on a wall external to the 

chamber. The pressure from within the bottle was initially reduced using a 

regulator/manifold assembly to pressures that the mass flow controllers could reasonably 

handle. Two MKS model 180A precision mass flow controllers, calibrated for xenon, 

were used to control the propellant flow rates. The flow controller for the cathode was 

calibrated from 0-10 sccm of xenon and the controller for the anode was calibrated from 

0-50 sccm of xenon. Both controllers are accurate to ≤0.01% of full scale. After passing 

through the mass flow controllers the xenon went through a gas feed-through into the 

chamber and through stainless steel flex lines to the cathode and thruster. The flow rates 

of the propellant were set and monitored by means of a MKS Type 247 four-channel 

readout.  

 Four DC power supplies were utilized to power the cathode and thruster during 

testing. For heater power a Hewlett-Packard 6033A power supply, rated at 250 W and 

capable of 0-20 V and 0-30 A, was utilized. Since a large potential at the cathode keeper 

aids in cathode ignition, a Matsusada REk650-2.5 power supply was used. This power 

supply is rated at 1625 W and capable of 0-650 V and 0-2.5 A with a current accuracy of 

0.02%. Initially, both the magnet power and discharge, or anode power were controlled 

using a Busek BPU-600 Power Processing Unit (PPU). The discharge voltage accuracy 

was determined empirically to be 0.1%. The PPU received its power from a Sorensen 

DCS55-55 power supply rated at 3 kW and capable of 0-55 V and 0-55 A. The PPU card 

controlling power to the magnets failed part way through testing and so an Agilent 6038A 

power supply was substituted. This unit is rated at 250 W and capable of 0-60 V and 0-10 
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A with a current accuracy of 0.09%. The negative leads for the power supply going to 

each component were grounded either internal or external to the chamber.  

 

Figure 9. PPU and power supplies used to power thruster and cathode. 

Hall Thruster 

 The key component in this work is a Busek model BHT-1500 Hall thruster. In the 

summer of 2007 Busek delivered a BHT-1500 Hall thruster modified to accept a center-

mounted cathode to AFIT’s SPASS lab. The designation for this modified thruster is 

BHT-1500-C. The detailed specification of the BHT-1500 are proprietary, so the data 

provided below is either publicly available from the manufacturer or was determined 

empirically by the author. Operating at a discharge power of 1.7 kW, with a discharge 
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voltage and current of 340 V and 5.0 A, respectively, the BHT-1500 delivers 102 mN of 

thrust at an Isp of 1820 seconds. [12] The above performance was achieved using xenon 

as a propellant and equates to an overall efficiency of 54.6%. Depending on how it is 

operated, the BHT-1500 can be classified as either a low- or high-power Hall thruster. 

Much of the literature considers anything over 1 kW a high-power thruster. In this work, 

the BHT-1500-C was operated such that the total output was less than 1 kW putting it in 

the low-power category. 

 The frontal area of the thruster is square in shape, with each side being 

approximately 16 cm long. An electromagnet is positioned at each corner and together 

they make up the outer portion of the magnetic component of the thruster. The thruster’s 

depth is approximately 9.5 cm. There is a single central electromagnet internal to the 

thruster and a removable metal center sleeve that forms the core of the inner 

electromagnet. Two center sleeves were utilized during testing. The original sleeve 

provided by Busek weighed 400 g and the second sleeve delivered weighed 365 g. The 

second sleeve was required to enable the integration of a center-mounted cathode of the 

design described below with the BHT-1500-C thruster. The diameter of the aft end of the 

original sleeve was not large enough to accept the cathode design to be tested. When 

operating with a center-mounted cathode a quartz sleeve supplied by Busek was used to 

electrically isolate the cathode keeper from the center sleeve.  
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Figure 10. The BHT-1500-C Hall thruster. [50] 

 As mentioned above, a Busek BPU-600 PPU was used to control the discharge 

power and, for a portion of the testing, the magnet power of the thruster. The PPU was 

controlled through a LabView® interface also supplied by Busek. The BPU-600 Host 

Simulator version 4 software enabled control and monitoring of the discharge and magnet 

power from a nearby computer. Figure 11 shows the controls available via the host 

simulator software. Both the software and the thruster itself are capable of independently 

controlling power to the inner and outer magnet coils separately, but the PPU did not 

have this capability. As such, the magnets, both inner and outer coils, were wired in 

series and powered as a single unit. 
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Figure 11. Screenshot of BPU-600 Host Simulator, version 4. 

 Like most Hall thrusters, the BHT-1500-C can be operated under conditions other 

than its rated values. In the case of this testing, the BHT-1500-C had to be operated at 

values less than the operating parameters mentioned above. This was due to two reasons. 

First, the cryo-pumps can only handle a certain amount of propellant flow before they are 

unable to maintain the chamber pressure at acceptable levels. Second, the BPU-600 PPU 

limits the available discharge voltage and current to 400 V and 3.2 A, respectably, giving 

a maximum discharge power of 1280 W.  

Hollow Cathode Assembly 

 The hollow cathodes utilized in this research are based on Goebel’s design from 

the work done at JPL. [30] Previous research done here at AFIT was the genesis for many 
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of the cathode design adjustments as well as cathode fabrication. [9] Enough components 

were on hand, fabricated, or obtained to enable the assembly of two cathodes at a time. 

To clarify the descriptions of the cathodes it must be noted that due to the geometry of 

the thruster and the cathode placement locations, two sizes of cathodes were fabricated. 

These will be referred to as the short and long cathodes. When conducting testing using 

an externally-mounted cathode, the short cathodes were used. When conducting testing 

using an internally-mounted cathode, the long cathodes were used. This was necessitated 

because the cathode’s length needed to be longer than the depth of the thruster when 

mounted internally so the keeper orifice was flush with the thruster’s face and the base of 

the cathode could be accessed from behind the thruster. Functionally the cathodes 

operated in identical fashion, as the inserts were the same size in each type of cathode. 

The only difference was the length. The figure below shows the individual components 

that make up the hollow cathode. 

 
 1. Cathode Tube 
 2. Graphite Keeper Electrode 
 3. Stainless Steel Base Plate 
 4. Tantalum Heater Wire 
 5. Insert (CeB6/LaB6/impregnated Tungsten inside protective carbon sleeve) 
 6. Carbon Support Tube 
 7. Tantalum Orifice Plate 

Figure 12. Hollow Cathode Assembly 
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 The most important component of the cathode is the insert. For this testing, three 

separate inserts were used, CeB6, LaB6, and one impregnated tungsten insert. The 

dimensions for each insert are identical and measure as follows; 6.4 mm outside 

diameter, 3.8 mm inside diameter, and 25.4 mm long. The figure below shows the three 

inserts that were used.  

 

Figure 13. Cathode Inserts: a. LaB6, b. CeB6, c. impregnated Tungsten 

Since the boride-based cathodes were manufactured as described above, their densities 

are of great importance. Vendor data specified the LaB6 insert had a theoretical density of 

between 80-90% and the CeB6 insert had a theoretical density of ~85%.  

 An important consideration in the design and construction for cathodes used in 

low-power applications is their thermal properties. In order to minimize the power 

consumed by the cathode, the goal is to insulate the insert to the maximum extent 

possible. The use of materials with high thermal conductivities, however, may be 

necessary for some components, such as the molybdenum cathode tube described below, 

to ensure structural integrity.  
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 To insulate the insert from the cathode tube it was encased in a carbon sleeve 

made from DFP-1 graphite covering the entire length of the insert. A thin graphite 

washer, also made from DFP-1 graphite, was also placed at the forward end of the insert 

to separate it from the orifice plate. A support tube fabricated from Poco EDM-3 graphite  

was placed behind the insert to thermally insulate it. The rear-most component inside the 

cathode tube was a small spring made out of 0.254 mm diameter tungsten wire that kept 

all the components in the cathode tube snug against the orifice plate and allowed for 

thermal expansion of all the components during cathode operation. When a cathode had 

to be disassembled to switch out the insert, all of the components were cleaned and all the 

components within the cathode tube were kept with the insert that was tested or replaced 

as needed. This ensured there was no cross-contamination between the inserts.  

 The orifice plate was the forward-most component inside the cathode tube. It was 

fabricated from 0.25 mm tantalum sheet and had a 1.0 mm diameter orifice machined into 

it. All of the components described so far were contained in a molybdenum cathode tube. 

This tube provided the structural integrity for the cathode. The molybdenum cathode tube 

was bolted to a stainless steel base plate machined to accept the bolts for the cathode tube 

and keeper assembly and a fitting for the propellant.  

 

Figure 14. Molybdenum cathode tube (long) and mounting flange. 
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 To heat the insert to the levels where it would begin emitting electrons, a tantalum 

sheathed, alumina insulated heater wire was wrapped around the end cathode tube where 

the insert was located. The coils of wire around the cathode tube ensured an even 

distribution of heat to the insert region. The upstream end of the wire ran down the length 

of the cathode tube and through the flange that formed the base of the cathode tube. It 

then ran through the base plate to a location where a lead from the heater power supply 

could be attached. To further insulate the inserts, 0.127 mm thick tantalum foil was 

wrapped around the heater element twelve times. This foil was then held in place by 

wrapping it with a single layer of 0.254 mm thick tantalum sheet.  

 

Figure 15. Assembled (long) cathode tube with heater wire installed. 

 

Figure 16. Cathode tube (short) with heater wire and tantalum foil, mounted to base plate 
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 The keeper electrode was fabricated from Poco EDM-3 graphite and completely 

enclosed the tantalum-wrapped heater and cathode tube assembly. It was electrically 

isolated from the rest of the cathode by means of ceramic insulators and alumina hat 

washers. Graphite was chosen for several reasons. It can easily be machined into various 

shapes and it provided a degree of insulation from radiation losses. Additionally, graphite 

has a low sputter yield allowing it to last much longer than other materials used to 

fabricate keeper electrodes. The orifice on the keeper electrode was 6 mm in diameter. 

Figure 17 shows both cathode keeper electrodes. 

 

Figure 17. Cathode keepers; short and long. 

 As mentioned, the cathode tube and keeper sub-assembly were bolted to a base 

plate. This plate was threaded on one side to accept a gas feed line for the xenon 

propellant. The base plate was then mounted to a flange that allowed the cathode to be 

mounted in the vacuum chamber using the 80/20® components already in place. Figure 

18 below shows the part used for building both the long and short cathodes and Figure 19 

shows a fully assembled cathode. 
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Figure 18. Parts breakdown for cathodes—keeper and cathode tubes for both long and 

short cathodes shown. (Short cathode tube shown with heater wire and tantalum foil.) 

 

Figure 19. Assembled Cathode (short) 
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Data Acquisition and Measurement Equipment 

 In order to measure the efficiency, the power being input into the thruster and 

cathode must be observed and recorded. Current and voltage allow us to monitor the 

overall power used by the thruster and cathode. For each of the anode, magnets, and 

keeper, shunt resistors, connected in series, were used to measure the current. A 

Labview® program converted the voltage across the shunt resistor read by a National 

Instruments® SCXI-1321 4-channel readout to current by means of Ohm’s Law. The 

voltage was sampled at a fairly low rate over a long time period to attenuate out any high 

frequency oscillations and minimize the effect of transients. The heater current was not 

tracked because once the thruster was operating steady-state, the power to the heater was 

turned off. 

 

Figure 20. Electrical schematic of thruster and cathode. 
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Langmuir Probe 

 One of the oldest and most widely used tools for studying plasma properties is the 

Langmuir probe. Langmuir probes have been widely utilized for the study of Hall thruster 

plume properties. [40] [44] [51] [52] [53] [54] [55] In this work, a single Langmuir probe 

was utilized in concert with the Aerotech® translation stages described earlier to obtain 

spatial data for the BHT-1500-C Hall thruster. The probe used is a SmartProbeTM built by 

Scientific Systems. The system consisted of the probe itself, which was mounted to the 

vacuum chamber using appropriate hardware, the control electronics, which were housed 

in a single box, and the SmartSoft software, which ran on a nearby computer. Figure 21 

shows the Langmuir probe installed through the ceiling of the vacuum chamber and the 

BHT-1500-C Hall thruster in relation to it. Additionally, low pressure compressed 

nitrogen was flowed through the probe shaft to keep it cool during thruster operation. 

 
Figure 21. Installed Langmuir probe and Busek BHT-1500-C Hall thruster. 
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 A Langmuir probe works by measuring the current flowing through its probe tip 

as the voltage applied is swept through a range of values. The probe resolution is 25 mV 

and 0.1 μA for voltage and current, respectably. The probe tip used was a tungsten wire, 

0.19 mm in diameter and 4.3 mm in length. The plasma created by the thruster is not 

isotropic, but the plasma exposed to the probe itself is assumed to be isotropic. The 

density gradients not accounted for by this approximation will induce a degree of 

uncertainty not quantified in the data presented here. [9] The voltage is swept from 

negative to positive to generate the corresponding current values. A number of sweeps 

are generally averaged together to generate a scan for a single location. The SmartSoft 

program was allowed to choose the lower and upper limits for the voltage sweep as a way 

to more efficiently collect the data and to prevent the probe from being damaged due to 

electron saturation at large positive potentials.  

 The I-V characteristic curve seen in Figure 22 is an output of the raw data 

generated by the Langmuir probe. There are three distinct regions within the curve from 

which numerous plasma properties can be extrapolated. The first region of the curve is 

called the ion saturation region. In this region, the probe is at a large negative potential 

relative to the plasma and subsequently saturates itself with ions while simultaneously 

repelling electrons. In this region ion current, ion number density, and ion flux can be 

calculated. At the end of this region, the plasma floating potential can be determined 

when the probe current equals zero.  
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Figure 22. I-V Characteristic Curve 

 The second region of the curve is the electron retardation region. In this region, 

electrons with enough energy to overcome the probe’s potential are collected. By 

assuming the electron distribution is in thermal equilibrium, the electron current is 

exponential with respect to the applied potential. In this region, the electron temperature 

can be determined as follows; [56] 
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the second derivative of the I-V curve is zero. This corresponds to the voltage where 

there is no potential difference between the plasma and the probe.  

 The final region of the curve is the electron saturation region. Once the probe’s 

potential exceeds that of the plasma, it quickly becomes saturated with electrons. Here a 

more accurate plasma potential is calculated by using the method of intersecting slopes, 

which incorporates the Laframboise theory. This theory takes into account the expansion 

of the probe sheath as a function of the applied voltage. The exponential curve for the 

electron retardation region and a line from the electron saturation region are extended to 

determine their intersection, which corresponds to the plasma potential. Using this more 

accurate plasma potential, electron temperature can again be calculated using equation 

(15) above, as well as electron number density as follows; [56] 
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Where Ap is the probe area. 

 As mentioned above, the Laframboise theory takes into account the expansion of 

the sheath around the probe tip inserted into the plasma as the voltage is applied. The 

sheath width can be approximated by the following equation; [56] 
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In this equation, ds is the sheath width, dλ  is the Debye length, V is the applied voltage, 

Vp is the plasma potential, and kTe is the electron temperature. “Lafromboise developed a 

theory which calculates the ion and electron current to the probe as a function of applied 

voltage for a range of different Debye lengths and probe radii.” [56] The SmartSoft 
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program uses the Laframboise theory in the form of several equations not presented here 

allowing for more accurate calculation of the plasma parameters, including ion number 

density. The number density is calculated as follows; [56] 
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The value for 0I +  is determined using the parameters of the Laframboise theory derived 

equations that are integral the SmartSoft analysis algorithm.  

 For the research presented here, a matrix of spatial data was taken for each test 

case. The spatial data includes both axial and radial dimensions in a single plane. Scans 

were taken at axial distances from 50 cm to 15 cm from the face of the thruster in 5 cm 

intervals. 15 cm was the closest the thruster could be positioned to the Langmuir probe 

based on the installation of the probe and the thruster. For radial distances, the scans were 

taken at ± 20 cm from thruster centerline in 2 cm increments from 50 cm to 30 cm axial 

distance and at ± 16 cm from thruster centerline in 1 cm increments from 25-15 cm axial 

distance. Figure 23 shows the overall geometry of the data collection. For all the scans, 

the cathode was in the plane of the scan in order to see how the cathode affected the 

plume. For the center-mounted cathodes the radial data was only taken from the 

outermost point, 20 or 16 cm respectably, to the centerline of the thruster as the plume 

was assumed to be axis-symmetric when operating with a center-mounted cathode.  
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Figure 23. Spatial data collection points  (edge-mounted cathode) 

During a data collection at a given point, the SmartSoft program determined the 

minimum and maximum voltages and the voltage interval for each sweep. At each 

voltage, 10 samples were read and 50 sweeps were averaged to provide the values for a 

single location or scan. Once a scan was completed at a given location, the thruster was 

translated to the next location for the next scan. 

Beam Profiler 

 In the summer of 2008, the author assisted in the installation of a beam profiling 

system designed and built by Colorado State University. The system consists of a three-

axis translation and rotation system to which can be mounted a number of instruments. 

The translation stages consist of an axial or Z stage with 1.0 meter of travel and a radial 

or R stage also with 1.0 meter of travel normal to the Z stage. Due to installation 
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limitations, the entire travel of the radial stage, ±50 cm ideally, could not be utilized. The 

rotational, or θ , stage was mounted on top of the translation stages and has a range of 

motion of ±90 degrees. The motors for all the stages are water cooled and utilize a water 

cooler that is external to the vacuum chamber. The stages and instruments mounted to 

them are controlled via a LabView® program also developed at CSU. [57] The three 

instruments provided with the beam profiler include a Faraday probe, and ExB probe, and 

a Electrostatic Analyzer (ESA). For this research, the Faraday probe and ExB probe were 

utilized.  

Faraday Probe 

 A Faraday probe is designed to measure current density in a plasma. The Faraday 

probe itself is a fairly simple device and it has been widely used to study Hall thruster 

plume properties. [10] [43] [58] It consists of a collector disk that has a potential applied 

to it and a device capable of reading the voltage across a resistor. The collector disk is 

mounted inside an enclosure generally biased negative to repel electrons, with an aperture 

to allow ions to enter and strike the collector disk. To determine the current density, jB, 

the following formula is used; [59] 

 21000    (mA/cm )B
aperture

Vj
R A

⋅
=

⋅
 (19) 

R is the value of the resistor in the circuit and apertureA  is the area of the aperture in the 

probe body in cm2. Both of these values are fixed. V is the measured voltage across the 

resistor. The collector plate itself is usually biased positive to repel any low energy 

charge-exchange ions existing in the plume. Below are a photo and schematic of the 

Faraday probe used for this research. 
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Figure 24. Faraday probe and schematic. [59] 

 For the testing conducted in this work, the following parameters were used. The 

aperture diameter is 0.381 mm. The collector plate was biased to +20 V using a Keithley 

6517A electrometer/high-resistance meter. The probe body was biased to -40 V using an 

Agilent 6018A power supply. Voltage was read by an Agilent 34970A data acquisition 

switch unit accurate to ±0.02% and transmitted to the LabView® software recording the 

data to a file. Limitations on the data collection included the geometry of the beam 

profiler and the thruster as their minimum separation was 20 cm as well as the Agilent 

power supply, which would eventually overload once the probe was within a certain 

distance of the thruster.  

 Including the 20 cm axial offset, the probe began scanning at 70 cm axial distance 

from the thruster. It traversed radially from -40 to +40 cm (or vice-versa) from thruster 

centerline in 1.0 cm increments. The center of the thruster was specified as the center of 

rotation. The software and the theta stage kept the Faraday probe pointed at this point. 
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Once the data collect at a given axial distance was completed, the probe was moved 2.0 

cm closer to the thruster and began traversing radially again. This continued until the 

Agilent power supply overloaded and data could no longer be collected. At each data 

point, the Agilent data acquisition equipment took 10 samples that were averaged to 

provide the single value for that point. The scans were completed the same way 

regardless of the cathode geometry being used.  

 

Figure 25. Faraday probe data acquisition setup. 

ExB Probe 

 The ExB probe uses electric and magnetic fields placed normal to each other to 

enable the separation of ions based on their energy, mass, and charge state. ExB probes 

are commonly used in Hall thruster research due to their diagnostic usefulness. [10] [43] 

[58]  Figure 26 shows the main component of the ExB probe. The entrance or collimator 

section has a 0.381 mm aperture, which yields acceptance angles for ions of ±0.30 
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degrees. [60] This makes angular alignment of the ExB probe critical to successful data 

collection. After passing through the collimator, the ions pass through the normal 

magnetic and electric fields. They will only be able to pass through if the net force on the 

ion due to the magnetic and electric fields is near zero. The magnetic field is generated by 

permanent magnets and the electric field provided by an external source and swept 

through a range of voltages.  

 

Figure 26. ExB probe with cover removed. [60] 

After passing through the drift tube, the ions strike the collector where the current 

measured is a function of plate bias voltages. Just before the collector is a negatively 

biased suppressor which serves to repel electrons.  

 The equation derived from the Lorentz Force equation allowing us to determine 

the ion energy, mass, and charge state is; [60] 

 
2 pz q V
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where the φ∆  term is the voltage difference between the plates. The following are 

constants on the right-hand side; B is the magnetic field strength, d is the distance 

between the plates, and q is the electronic charge. The z term is the integer value for the 

charge state of the ion and pV∆  is the potential difference between the ion creation point 
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in the plasma and the collimator of the probe. By knowing the ion species of interest and 

the discharge voltage of the thruster, we can estimate the φ∆  values where we should 

expect to see peaks in the current detected by the probe.  

 

Figure 27. Schematic of ExB probe. [60] 

 Figure 27 shows the electrical layout of the ExB probe. For this work, the sweep 

voltage was applied by the Keithley 6517A electrometer/high-resistance meter. It then 

also measured the current at the detector. This meter was operated in the 200 pA range 

and is accurate to ±1% of the measured current for this range. A Keithley 6487 

picoammeter/voltage source supplied the -30 V to the suppressor. The voltage across the 

plates was swept from +5 to +40 V in 0.1 V increments. At each voltage increment, 10 

samples were taken and averaged to generate the data point.  

 For each test case ExB data was taken at a number of locations within the thruster 

plume. For the edge-mounted cathodes, at an axial distance of 50 cm, scans were 

conducted with the probe pointed down the centerline of the thruster and pointed directly 

at the channel on either side of the thruster. This was to see if any differences could be 
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noted due to the cathode’s influence. Scans were also taken at 15 and 30 degrees either 

side of center line with the probe pointed at the near channel of the thruster. Further scans 

were taken at 60 and 70 cm axial distance that included all of the above except the off-

centerline scans. For the center-mounted cathodes, the above scheme was used except 

with the assumption of an axis-symmetric plume, scans were only done on one side of 

centerline. Figure 28 illustrates the locations where ExB data were taken. 

 

Figure 28. ExB data collection scheme. 

Hall Thruster and Cathode Operation Test Points 

 Overall, three hollow cathode insert materials were tested in cathodes mounted in 

two different geometries. A CeB6, LaB6, and impregnated tungsten insert were each 

tested in an externally-mounted cathode. For the center-mounted cathodes only the CeB6 

and LaB6 inserts were tested. The edge-mounted cathodes were angled 45 degrees 

towards the centerline of the thruster. They were mounted such that the radial distance 
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from the center of the cathode orifice plate to the center of the discharge channel of the 

thruster was the same as the distance from the centerline of the thruster to the center of 

the discharge channel. The center-mounted cathodes were inserted from behind the 

thruster such that the orifice face of the keeper electrode was flush with the face of the 

thruster. Due to the geometric constraints, the edge-mount cathodes’ keeper protruded 

approximately 1.5 cm past the face of the thruster.  

 Two of the edge-mounted cathodes could be installed at the same time to enable 

testing of more than one cathode insert material during a single pump down cycle. Figure 

29 shows the face of the BHT-1500-C Hall thruster with cathodes installed on either side. 

Figure 30 shows a side-view of the BHT-1500-C thruster and a single edge-mounted 

cathode installed. In this figure, both the cathode and anode propellant fittings can be 

seen as well as all the electrical connections for the cathode.  

 

Figure 29. BHT-1500-C thruster with two edge-mounted cathodes installed. 
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Figure 30. BHT-1500-C thruster with single edge-mounted cathode installed. 

 The center-mounted cathodes could only be installed one at a time for obvious 

reasons. The fragile nature of the graphite keepers and the tight space at the back of the 

thruster made the installation of the center-mounted cathodes challenging at times. Figure 

31 shows a front and rear perspective of the BHT-1500-C thruster with a center-mounted 

cathode installed.  
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Figure 31. BHT-1500-C thruster with center-mounted cathode installed. 

 The thruster and cathodes were operated using values derived from the 

manufacturer and Warner’s previous work with hollow cathodes. [9] [50] Since the 

thruster could not be operated at its rated value due to the limitations of the PPU and 

cryo-pumps mentioned earlier, a lower operating condition was used. Using Busek test 

data, a discharge voltage of 300 V was used along with a magnet current of 2.07 A and 

the propellant flow rate for the thruster was 25 sccm. [50] For the cathodes, the keeper 

current was set to 1 A and the propellant flow rate for the cathode was 3 sccm. Per 

Warner’s pervious research, this ensured the cathodes would remain in a focused, or spot  

mode during thruster operation. [9] The aforementioned spot mode is a stable operating 

condition where the cathode experiences smaller voltage fluctuations and operates at a 

lower discharge voltage. The discharge voltage for the cathode refers to the voltage from 

the insert plasma to the keeper. The counterpart to spot mode is plume mode, 

characterized by a diffuse plume from the cathode that exhibits larger voltage fluctuations 

while operating at higher discharge voltages. For most of the testing, the BHT-1500-C 
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thruster’s discharge current was ~2.25 A. Along with the discharge voltage of 300 V, this 

equates to a thruster output of 675 W.  
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IV. Analysis and Results 

Thruster-Cathode Integration 

 The actual assembly of the cathodes was fairly straightforward. The overall 

design is quite simple and the incorporation of the tungsten spring to allow for thermal 

expansion makes the cathode design more robust. The graphite pieces contained within 

the cathode tube would occasionally need to be replaced upon removal, but served well to 

insulate the inserts. Disassembling and cleaning the cathodes was a simple process as 

well.  

 Mounting the cathodes to the thruster posed a few challenges. Ensuring the edge-

mounted cathodes were mounted in the same geometry for each test run took some care. 

The use of 80/20® allowed for relatively easy adjustment and a small jig was used to 

ensure the alignment was consistent for each test run. Integrating the center-mounted 

cathodes posed somewhat greater challenges. The brittle nature of the keeper material 

and the very tight tolerances between the center stem of the thruster, the quartz sleeve, 

and the keeper electrode, made installing the long cathodes a very delicate operation. 

Initial attempts were made to mount the center-mounted cathodes to the existing 80/20® 

components in the vacuum chamber. Two long keepers were broken in this process. The 

heavy stainless steel base plate for the cathode created a bending moment felt by the 

keeper itself at the rear face of the thruster with the thruster mounted to fire in a 

horizontal orientation.  

 The solution involved removing the mounting flange attached to the base plate of 

the cathode to reduce weight and the use of Kapton® tape to support the aft end of the 

cathode. The Kapton® tape can be readily seen in right-hand photo of Figure 31. The 
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tape also served to hold the cathode in a fixed axial position with the orifice face of the 

keeper flush with the face of the thruster. Additionally, an alligator clip was used to 

connect the positive lead for the heater power supply to the heater wire lead on the 

cathode. These measures resulted in the successful mounting of a center-mounted cathode 

in a low power thruster.  

Thruster Operation 

 The BHT-1500-C fired successfully at the specified operating condition during all 

five test cases presented in this work. The successful integration and test of a center-

mounted hollow cathode with a low-power Hall thruster achieves one of the primary 

goals set forth in this research, namely, to demonstrate the feasibility of such a design. 

The use of multiple cathode insert materials demonstrates the flexibility of the design as 

well.  

 The thruster and cathodes were started and operated with a very high degree of 

reliability. Initial operations with the cathode inserts at times required increasing the 

propellant flow to the cathode or power to the heater wire in order for the cathode to 

ignite. All of the cathodes had zero hours of use on them at the beginning of testing, so a 

bit of a “breaking-in” period was to be expected. The need for increased propellant flow 

or heater power when starting was prevalent primarily with the boride-based cathodes. 

The impregnated tungsten insert would ignite quite easily from the very beginning. Once 

operating, the cathodes were, overall, very stable, as was the thruster. The only exception 

being the LaB6 cathodes. In both geometries these cathodes exhibited a degree of 

oscillation in the keeper voltage. The LaB6 cathodes never ceased emitting, but the 

keeper voltage would, at times, fluctuate ±10-15 V. In one test run, the thruster, using an 
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edge-mounted cathode with CeB6 as the insert material, ran for over 19 hours straight 

with no observed stoppages or fluctuations.  

 

Figure 32. BHT-1500-C operating with externally-mounted cathode. 

 What follows are general startup procedures for the hollow cathodes and thruster. 

Appendix A contains detailed, step-by-step procedures for cathode conditioning, thruster 

startup, and system shutdown. Once the vacuum chamber pressure had stabilized, all 

valves in the propellant lines back to but not including the xenon gas bottle valve were 

opened to purge the propellant lines of any contaminants. Once this was completed heater 

power was applied using a constant current setting on the power supply. The current was 

increased over time until the power going into the heater was sufficient to allow for 

electron emission. This process of incrementally increasing the power to the heater is the 
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conditioning process and is critical to the mitigation of any poisoning effects due to 

contamination from exposure to atmosphere. Conditioning takes approximately one hour 

for the boride-based inserts and several hours for the impregnated tungsten inserts after 

the insert has been exposed to the atmosphere. If the insert had been previously 

conditioned and had remained under vacuum, the conditioning process could be 

significantly abbreviated. Once the conditioning process was complete, xenon was 

allowed to flow through the cathode. To ignite the cathode a large potential was applied 

to the keeper. Ignition was noted when the keeper power supply voltage dropped and 

current flow was observed.  

 Once the cathode was lit, xenon was allowed to flow to the thruster. Using the 

PPU host simulator software, a discharge voltage was then set on the anode. With no 

power to the magnets, a neutral ball of xenon plasma would then form at the face of the 

thruster. The power to the magnets was then applied via the host simulator or the external 

power supply. The magnets focused the plume into the collimated stream of xenon ions 

as seen in Figure 32. With the thruster operating, the heater power supply was secured 

and the cathode continued to operate in self-heating mode. Time was then allowed for 

thruster operation to stabilize before taking any data. To secure the thruster, all power and 

propellant to the thruster and cathode was secured.  

Steady-State Power Consumption 

 Key to determining the performance or efficiency of a thruster is the knowledge 

of the power input into the device. The National Instruments® instrumentation and 

LabView® software gathered the data to determine the input current to the anode, 

magnets, and keeper. For each test case, the thruster and cathode were allowed to 
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stabilize before data collection began. Then approximately twenty minutes of data were 

taken to determine the input current and, while this was being done, no other testing was 

conducted.  

Table 1. Component and total power consumption for each test case. 

CeB6 LaB6 Impregnated W CeB6 LaB6

Component Power (edge-mount) (edge-mount) (edge-mount) (center-mount) (center-mount)
Keeper Power (W) 29.78 38.21 12.62 16.77 28.44
standard dev. 0.11 0.13 0.03 0.04 0.04
Magnet Power (W) 6.22 6.21 6.32 6.16 6.26
standard dev. 0.11 0.05 0.12 0.08 0.04
Discharge Power (W) 682.60 677.21 682.96 682.44 676.08
standard dev. 3.65 2.48 3.44 4.67 2.94
Total Power (W) 718.60 721.63 701.90 705.37 710.78
Electrical Eff. (ηo) 0.950 0.938 0.973 0.967 0.951

Cathode Insert Material and Geometry

 
To calculate the power consumption values in Table 1, the following constants were 

used. For discharge power, the voltage was assumed to be constant at 300 V. For the 

magnet power, the resistance in the magnet circuit was assumed to be constant at 1.4 Ω. 

This neglects the change in the resistance of the magnets that occurs while the thruster is 

operating, but for the analysis here provides a basis for comparison. A steady-state keeper 

voltage value was recorded each time the thruster was run. The voltage values for each 

run corresponding to a particular test case were averaged to determine the keeper voltage 

for that test case. The keeper voltage values are the largest source of error in the power 

consumption calculations. The electrical efficiency was calculated using equation (11). 

 From Table 1, the impregnated tungsten-based edge-mounted cathode has the 

highest electrical efficiency. This is most likely due to its lower power consumption for 

the keeper, which is a result of the lower work function of the impregnated tungsten 

insert. The efficiency of the CeB6–based cathode was slightly higher than for the LaB6–
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based cathode in both configurations. This can be attributed to the slightly lower work 

function of CeB6. More interesting is that the electrical efficiency of both CeB6 and LaB6 

increased when going from an edge-mounted configuration to a center-mounted 

configuration. Had an impregnated tungsten insert-based cathode been tested in the 

center-mounted configuration, it likely would have exceeded the electrical efficiency of 

all the test cases presented here.  

Faraday Probe Analysis 

 Plasma current density was directly measured with the Faraday probe and a 

number of additional parameters were derived from this data. Looking at the current 

density distribution we can get an overall idea of the symmetry of the plume at the 

various axial distances data was taken. By integrating the current density, the overall 

beam current can be determined to allow calculation of the beam current efficiency, bη , 

and other performance parameters. In order to fully map the current density in the plume, 

a Faraday probe is swept in a 180-degree arc at a constant radius in front of the Hall 

thruster. [61] [62] Due to the geometric constraints of the SPASS lab, this was not 

possible and the method of scanning in planes at various axial distances from the thruster 

described in Chapter 3 was used. As such, the maximum angle from the thruster 

centerline where data could be taken was ~38 degrees and decreased with increasing axial 

distances. Using this method, the author was unable to measure all of the current in the 

plume, however, valid comparisons between the test cases can be made. Figure 33 

through Figure 35 below indicate the current densities observed at three axial locations, 

50/60/70 cm, for each of the five test cases. (Note: the smallest axial distance for which 

data is available for the internally-mounted CeB6 case is 52 cm.)  
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 All of the figures representing current density are plotted as a continuous line to 

improve clarity since there are 81 data points for each axial scan. Additionally, the 

standard error of the current density was calculated and combined with the measurement 

accuracy of the equipment used to measure the voltage at the Faraday probe. The 

accuracy for all of the current density profiles is ±0.049 mA/cm2 which was the 

calculated standard error. 

 

 

Figure 33. Current Density at 70 cm Axial Distance 
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Figure 34. Current Density at 60 cm Axial Distance 

 

Figure 35. Current Density at 50 cm Axial Distance 
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Figure 33 through Figure 35 indicate increasing peak current density at smaller axial 

distances from the thruster, as would be expected. The thruster with the 

internally-mounted CeB6 cathode demonstrates a higher peak current density than all the 

other cases as axial distance increases. The performance for all five cases, save for the 

internal LaB6 cathode case, is very similar at 50 cm. The internally-mounted LaB6 

cathode demonstrated the lowest peak current densities at each axial distance. This is an 

interesting result that the author cannot attribute to any one particular phenomenon. The 

oscillation observed in the keeper voltage when operating with the LaB6 inserts may be 

one source of performance loss. Despite its lower peak current density, the LaB6 cathode 

shows the highest degree of symmetry in its current density distribution. Of note in the 

figures above, and those that follow, the centerline of the plume does not necessarily lie 

at exactly 0 cm radial distance. This offset is due to the combined slight alignment errors 

in the thruster, the beam profiler, and the probe itself. The asymmetry seen in the 

internally-mounted cathodes is likely due to slight misalignment of the theta stage on the 

beam profiling system. 

 Looking specifically at the externally-mounted cathodes, the LaB6 cathode 

demonstrated a higher peak current density than the CeB6 cathode at the furthest axial 

distance as evidenced by Figure 36. This is somewhat surprising given CeB6’s lower 

work function. At all distances, the impregnated tungsten cathode out-performed the 

boride-based cathodes, which is to be expected based on the tungsten insert’s work 

function. As the axial distance decreased the performance of the boride-based cathodes 

became nearly identical, which can be seen in Figure 37 and Figure 38. 
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Figure 36. Current Density with Externally-Mounted Cathodes at 70 cm Axial Distance 

 

Figure 37. Current Density with Externally-Mounted Cathodes at 60 cm Axial Distance 

0

0.5

1

1.5

2

2.5

3

3.5

4

-50 -40 -30 -20 -10 0 10 20 30 40 50

C
ur

re
nt

 D
en

sit
y 

(m
A

/c
m

2 )

Radial Distance (cm)

CeB6 External (70 cm)
LaB6 External (70 cm)
Tungsten External (70 cm)

0

1

2

3

4

5

6

-50 -40 -30 -20 -10 0 10 20 30 40 50

C
ur

re
nt

 D
en

sit
y 

(m
A

/c
m

2 )

Radial Distance (cm)

CeB6 External (60 cm)
LaB6 External (60 cm)
Tungsten External (60 cm)



 

88 

 

Figure 38. Current Density with Externally-Mounted Cathodes at 50 cm Axial Distance 

 Looking just at the two internally-mounted cathodes, the results are as expected. 

CeB6 has a higher peak current density than LaB6 at all axial distances. This cannot be 

solely attributed to the lower work function of CeB6, however, as there were unexplained 

oscillations when operating with the LaB6 cathodes. Figure 39 shows the current density 

profiles for both internally-mounted cathodes at a single axial distance.  
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Figure 39. Current Density with Internally-Mounted Cathodes at 60 cm Axial Distance 

 Comparing the two geometries for cathode installation against one another for a 

given cathode insert material allows us to examine the effects on the plume based on the 

cathode geometry. With an internally-mounted cathode we would expect to see a more 

symmetric current density profile. For all of the Faraday data corresponding to the 

externally-mounted cathodes, the cathode was installed on the –r side of the thruster 

centerline.  

 For the CeB6 cathodes, the internally-mounted case gives us a higher peak current 

density relative to the externally-mounted cathode as axial distance is increased, although 

at 50 cm (52 cm for the internally-mounted cathode) the current density distributions 

were nearly identical. Interestingly, the current density distribution for the internally-

mounted cathode did not appear to be any more symmetric than the external case as 

illustrated by Figure 40 through Figure 42. The current distribution for the externally-
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mounted cathode actually appears quite symmetric as the axial distance is increased, as 

evidenced by Figure 40. 

 

Figure 40. Current Density with CeB6 cathode at 70 cm Axial Distance 

This absence of symmetric current density distribution for the internally-mounted cathode 

has several possible explanations. It is possible that the orifice plate had been sputter 
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induce asymmetries in the plume.  
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Figure 41. Current Density with CeB6 cathode at 60 cm Axial Distance 

 

Figure 42. Current Density with CeB6 cathode at 50 cm Axial Distance 
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 The LaB6 cathodes showed some peculiarities in both geometries. At all axial 

distances, the externally-mounted cathode developed a higher peak current density than 

the internally-mounted cathode. The internally-mounted LaB6 cathode, again, showed the 

most symmetry of all the test cases. This symmetry, however, was diminished as the axial 

distance decreased.  

 

Figure 43. Current Density with LaB6 cathode at 70 cm Axial Distance 

Figure 43 through Figure 45 indicate the higher peak current density of the thruster when 

configured with the externally-mounted LaB6 cathode.  
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Figure 44. Current Density with LaB6 cathode at 60 cm Axial Distance 

 

Figure 45. Current Density with LaB6 cathode at 50 cm Axial Distance 
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 In order to calculate a total beam current, the measured current density 

distributions were integrated for each test case at each axial distance. In order to capture 

the full beam current passing through a plane normal to the centerline of the thruster, we 

would need to integrate an infinite distance in all directions. As this is not possible with 

empirical data, the computed values are somewhat less than the actual beam current. 

Using the work of Azziz, the author was able to see approximately how much current was 

unable to be measured. Azziz conducted research using a BHT-1500 hall thruster and 

operated at nearly identical conditions to those in this work. [61] In his work, a Faraday 

probe was used to measure the current density of the plume for a full 180 degree arc at 1 

m. The total beam current he calculated was 1.64 A. [61] 

 Since the data taken in this research was limited to axial distances from 50 to 70 

cm, an exponential curve fit was used to extrapolate the data out to 1 m. The curve fit is 

only valid for a range of axial distances and will break down as the axial distance to the 

thruster is decreased. This is due to the near field effects of charge-exchange collisions 

and magnetic influences. For each geometry of CeB6, Figure 46 and Figure 47 show the 

integrated beam current calculated from the Faraday data along with a curve fit for that 

data and a corresponding curve based on the Azziz measured beam current using the 

exponential coefficient derived from this research. 
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Figure 46. Total Beam Current vs. Axial Distance for Externally-Mounted CeB6 

 

Figure 47. Total Beam Current vs. Axial Distance for Internally-Mounted CeB6 
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 Table 2 lists the integrated beam current for each test case at the three axial 

distances used for the figures above. All the values are reasonably close together and the 

difference between the extrapolated value at 100 cm that is based on the data collected 

and the Azziz data is fairly consistent. Since the entire beam current could not be 

calculated from empirical data, a true value for the beam current efficiency cannot be 

determined, but comparisons can be made between the various test cases.  

Table 2. Integrated Beam Current (Amps) 

CeB6 LaB6 Impregnated W CeB6 LaB6

Axial Distance (edge-mount) (edge-mount) (edge-mount) (center-mount) (center-mount)
50 cm 1.948 1.979 1.861 1.916 1.933
60 cm 1.784 1.821 1.700 1.799 1.779
70 cm 1.634 1.689 1.595 1.656 1.680
100 cm (extrapolated) 1.253 1.354 1.271 1.347 1.374
∆J from Azziz Work 0.387 0.286 0.391 0.311 0.266

Cathode Insert Material and Geometry

 
 

 One of the goals of using an internally-mounted cathode is to improve efficiency 

by decreasing losses due to plume divergence. We should expect to see a more highly 

collimated beam with an internally-mounted cathode. The Full-Width, Half-Max 

(FWHM) of the current density distribution for each test case at each axial distance was 

determined and plotted. To better model the asymmetries of the plume the half-max value 

of the current density for each side of the thruster was calculated independently. The 

radial distance corresponding to the half-max value was then determined and plotted. A 

linear curve fit was done for each side of the plume and the half-angle was determined. 

By comparing the half angles from either side of the thruster plume the degree of 

symmetry can be evaluated.  
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Figure 48. FWHM Plume Angle for Externally-Mounted CeB6 

 

Figure 49. FWHM Plume Angle for Externally-Mounted LaB6 
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Figure 50. FWHM Plume Angle for Externally-Mounted Tungsten 

 

Figure 51. FWHM Plume Angle for Internally-Mounted CeB6 
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Figure 52. FWHM Plume Angle for Internally-Mounted LaB6 

For the externally-mounted cathodes in Figure 48 through Figure 50 the increased plume 

divergence on the cathode side is readily apparent. There still appears to be some 

asymmetry with the internally-mounted cathodes as evidenced by Figure 51 and Figure 

52, but it is less pronounced.  

Table 3. FWHM Plume Angles (degrees) 

CeB6 LaB6 Impregnated W CeB6 LaB6

(edge-mount) (edge-mount) (edge-mount) (center-mount) (center-mount)
1/2 angle +r side 4.9 6.5 4.9 6.7 9.3
1/2 angle -r side 10.6 10.8 9.3 8.6 11.3
Total Angle 15.5 17.3 14.2 15.4 20.6
∆ angle from CL 5.6 4.3 4.4 1.9 2.0

Cathode Insert Material and Geometry

 
 Table 3 lists the both the positive and negative half-angles for each test case. For 

each test case the total angles are consistent except for the internally-mounted LaB6 

cathode. When looking at the difference between the positive and negative angles, 
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however, a trend emerges. The difference between the positive and negative half-angles 

for the internally-mounted cathodes are both less than half the difference of the half-

angles for their respective externally-mounted cases. This would indicate a more highly 

collimated plume for the internally-mounted cases. This is further evidenced in that 

despite having the largest total FWHM angle, the internally-mounted LaB6 cathode still 

had a difference between the positive and negative half-angles of just over 2.0 degrees. In 

the case of the internally-mounted CeB6, the more highly collimated plume would 

account for the higher peak current densities seen further downstream in the plume even 

though the total beam current for all five cases was nearly identical. Likewise, the wider 

beam for the internally-mounted LaB6 cathode would account for the lower current 

densities seen downstream. 

Langmuir Probe Analysis 

 The single Langmuir probe provided data on the plasma that makes up the plume 

of the thruster. From this data, additional information was derived to determine 

performance characteristics of the thruster given the various cathode insert materials and 

cathode geometries. The plasma potential was measured and is used to determine the 

beam voltage, allowing the beam voltage efficiency to be calculated. This also allows for 

an exhaust velocity to be calculated allowing for certain assumptions. Ion number density 

was examined as well. It is key to determining the propellant utilization, as the more 

propellant delivered to the anode is ionized, the more efficient the thruster will be.  

 By subtracting the plasma potential from the discharge potential, we can calculate 

the beam voltage and subsequently calculate a beam voltage efficiency.  This is given by;  

 d p bV V V− =  (21) 
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where Vp is the plasma potential and Vd is the discharge potential, which for all test cases 

was 300 V. Knowing Vd and Vb the beam voltage efficiency, vη , can be calculated using 

equation (9). 

 Figure 53 through Figure 55 show the plasma potential at increasing axial 

distance for all five test cases. A lower plasma potential is better allowing more beam 

potential to accelerate the ions. The 15 cm axial plot shows a spike along thruster 

centerline due to the coupling of the cathode to the discharge plasma. As axial distance 

increases this spike diminishes and a nearly constant plasma potential is seen.  

 

 

Figure 53. Plasma Potential at 15 cm Axial Distance 

 At 15 and 50 cm axial distance, the tungsten cathode gives the lowest plasma 

potential. Even through the other cases show a relatively constant plasma potential at 50 

cm axial distance, the internally-mounted CeB6 case shows a small spike in plasma 
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potential on centerline. Other than this small spike, the internally-mounted CeB6 has the 

most stable plasma potential across the plume. The average standard error for the plasma 

potential measurements is 0.20 V.  

 

Figure 54. Plasma Potential at 30 cm Axial Distance 
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Figure 55. Plasma Potential at 50 cm Axial Distance 

 Looking at the average beam voltage versus axial distance, we see no clear trends. 

Figure 56 does show the internally-mounted CeB6 case to, again, be the most stable, this 

time with respect to axial distance. Additionally, save for the 25 cm data, the tungsten 

case shows the highest beam voltage. The average standard error for the averaged beam 

voltages is 0.54 V.  

0.0

10.0

20.0

30.0

40.0

50.0

60.0

-25 -20 -15 -10 -5 0 5 10 15 20 25

Pl
as

m
a 

Po
te

nt
ia

l (
V

)

Radial Distance (cm)

CeB6 External
LaB6 External
Tungsten External
CeB6 Internal
LaB6 Internal

(30 cm axial distance)(50 cm axial distance)



 

104 

 

Figure 56. Average Beam Potential 

 Knowing the average beam voltage and mass of the xenon propellant, a velocity 

can be calculated using the following; 

 2 b
b

eVv
M

=  (22) 

This assumes all of the xenon is singly-ionized and that it is all created at the average 

beam voltage. Neither of these assumptions is completely valid, but this gives a good first 

estimate of the velocity of the ions in the beam.  
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Figure 57. Average Beam Velocity versus Axial Distance 

Figure 57 shows that the tungsten and internally-mounted CeB6 cases yield the highest 

exhaust velocities. Interestingly, the externally-mounted LaB6 had the lowest velocity. 

The ExB probe also allows us to calculate ion velocities. It can also determine the charge-

state of the ions, therefore taking into account multiply-charged xenon ions. This will be 

examined in the next section.  

Table 4. Beam Voltage (V), Efficiency, and Velocity 

CeB6 LaB6 Impregnated W CeB6 LaB6

(edge-mount) (edge-mount) (edge-mount) (center-mount) (center-mount)
Average Beam Voltage 268.7 259.8 274.4 272.9 267.6
Dischage Voltage 300 300 300 300 300
Beam Voltage Eff. (ηv) 0.896 0.866 0.915 0.910 0.892
Avergae Velocity (km/s) 19.9 19.5 20.1 20.0 19.8

Cathode Insert Material and Geometry
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internally-mounted CeB6 is only slightly below these maximum values. Despite the 

results from the Faraday probe analysis, in the case of the Langmuir probe, it appears 

though the externally-mounted LaB6 gives the lowest performance of the five cases, as 

we should expect.  

 Similar to the Faraday data, the ion number density data obtained via the 

Langmuir probe was integrated to get a total ion count at the specified axial distances. 

This integration is subject to the same limitations as the Faraday data, namely that we 

have planar data out to a limited radial distance. The Langmuir data was taken at closer 

axial distances, 15-50 cm, as opposed to 50-70 cm for the Faraday data, but the radial 

limits on the data collection were smaller. Still, comparisons can be made between the 

various test cases.  

 

Figure 58. Total Ion Count versus Axial Distance 
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 Figure 58 shows the total ion count obtained by integrating a circular area 

centered on the thrust axis based on the maximum radial distance examined at the 

specified axial distance. The trend of decreasing ion count as axial distance increases is to 

be expected. The standard error for this data set is ±15.9%. To see how the ion count 

along the plume changed with axial distance the total ion count above was divided by the 

solid angle subtended by the circular area through which data was taken. This gives 

dimensions of ions per steradian.  

 

Figure 59. Ions/sr versus Axial Distance 

 Figure 59 shows the ions per steradian values for each of the five cases at each 

axial distance. The trend is expected since we are measuring along the thrust axis where 

the ion concentrations are the greatest in the plume and the solid angle is decreasing as 
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artifact of the change in data collection from ±16 cm to ±20 cm radially. The standard 
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error for this data is ±7.1x1010 ions/sr. While all the test cases seem to be similar at 

smaller axial distances, the externally-mounted LaB6 case shows a higher concentration 

of ions along the thrust axis at larger axial distances. This is an interesting result since the 

externally-mounted LaB6 case had the largest beam angle, based on the Faraday data, of 

any of the externally-mounted cases. It does agree with the Faraday data as the 

externally-mounted LaB6 case had the highest integrated beam current.  

 Various comparisons of the ion number density are presented below. The trends 

are generally what is expected except for the higher values for the externally-mounted 

LaB6 case at the largest axial distances. In all of the externally-mounted cases, the 

cathode was mounted on the –r side of the thruster. Figure 60 through Figure 62 show all 

five cases plotted at three axial distances.  

 

Figure 60. Ion Number Density at 15 cm Axial Distance 
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Figure 61. Ion Number Density at 30 cm Axial Distance 

 

Figure 62. Ion Number Density at 50 cm Axial Distance 
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The standard error for the ion number density was calculated at each of the three axial 

locations illustrated in the figures presented here. At 15 cm, the standard error is 

±1.58x1010 cm-3, at 30 cm it is ±6.19x109 cm-3, and at 50 cm it is ±2.15x109 cm-3. 

 Looking at the externally-mounted cases, the tungsten has the highest number 

density in close, but the LaB6 is significantly higher at 50 cm axial distance. The 

performance of the CeB6 case is nearly identical to the tungsten except near the very 

center of the plume at the smaller axial distances. Figure 63 and Figure 64 both show the 

central peak for ion number density and, at the 15 cm axial distance, the distribution is 

quite symmetric. At 50 cm, however, the distribution is less symmetric, especially in the 

LaB6 case. 

 

Figure 63. Ion Number Density with Externally-Mounted Cathodes at 15 cm Axial Distance 
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Figure 64. Ion Number Density with Externally-Mounted Cathodes at 50 cm Axial Distance 
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peak ion number densities. Figure 65 shows the ion number density of the LaB6 at all 

points to be higher than that of the CeB6. The slightly higher beam current for the 

internally-mounted LaB6 at the larger axial distances seen in the Faraday data, coupled 

with the increased divergence of the plume, may contribute to the higher ion number 

densities seen with the LaB6 at larger axial distances.  
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Figure 65. Ion Number Density with Internally-Mounted Cathodes at 50 cm Axial Distance 

 Examining the internal versus external case for the CeB6 and LaB6 respectively, 
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Figure 66. Ion Number Density with CeB6 cathode at 15 cm Axial Distance 

 

Figure 67. Ion Number Density with LaB6 cathode at 15 cm Axial Distance 
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Figure 68. Ion Number Density with CeB6 cathode at 50 cm Axial Distance 

 

Figure 69. Ion Number Density with LaB6 cathode at 50 cm Axial Distance 
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 To better compare an internal versus an external cathode configuration with 

respect to the ion number density, a three-dimensional plot was generated for both CeB6 

test cases. Figure 70 and Figure 71 represent the ion number density profile for the 

externally-mounted CeB6 and internally-mounted CeB6, respectively. Visual analysis of 

these plots shows that the peak ion number density is higher and the beam more focused 

for the internally-mounted case.  

 

 

Figure 70. Ion Number Density Profile with Externally-Mounted CeB6 cathode 
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Figure 71. Ion Number Density Profile with Internally-Mounted CeB6 cathode 

ExB Probe Analysis 
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case was examined for all five test cases. For the externally-mounted cathodes, the data 

from both sides of the thruster, the cathode side and the opposite side, is evaluated. This 

gives a total of eight cases for the ExB probe data. In all cases the probe itself was 

pointed at the discharge channel, not the center of the thruster, and the distance to the 

thruster was 50 cm. Due to the small magnitude of the currents measured for the ExB 

data, the uncertainty for this data is ±2.56 pA. 

 

Figure 72. ExB Data for Externally-Mounted CeB6 

 Figure 72 shows the ExB data from both the cathode side and opposite side 

channel locations for the externally-mounted CeB6 cathode. The tallest peak indicates 

singly-ionized xenon, the second peak indicates doubly-ionized xenon, and the third 

peak, triply-ionized xenon. In some of the traces, quadruply-ionized xenon was detected, 

but its presence could not be seen in all tests since the magnitude of the collected current 
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barely exceeded the noise floor. As such, only singly-, doubly-, and triply-ionized xenon 

ions are considered in this analysis.  

 

Figure 73. ExB Data for Externally-Mounted LaB6 

 

Figure 74. ExB Data for Externally-Mounted Tungsten 
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 Figure 72 through Figure 74 compare the traces from the cathode side to the 

opposite side of the channel for the three externally-mounted cases. In all three cases the 

peak for both the singly- and doubly-ionized xenon is higher on the cathode side. 

Multiply-ionized particles are a loss mechanism since the ion carries multiple charges, 

but has the same mass as a singly-ionized particle. It would be better to singly-ionize 

more propellant, than to have multiply-ionized particles in the beam. The multiply-

ionized particles, however, will have a higher velocity due to their higher charge state, for 

a given potential.  

 

Figure 75. ExB Data for Internally-Mounted Cathodes 

 There is only a single trace for each of the internally-mounted cases. Figure 75 

compares the measured current for internally-mounted CeB6 and LaB6. The absolute 
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externally-mounted cases may indicate a measurement or alignment issue. A comparison 

can be made between the internal and external cases by normalizing the measured current 

and plotting them on the same set of axes.  

 

Figure 76. Normalized ExB Data for CeB6 
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Figure 77. Normalized ExB Data for LaB6 
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significantly different than the results obtained by Hofer, et al. when investigating 
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there may be variability since the operating conditions were significantly different from 

those in this work. Additionally, only one location in the plume was analyzed to 

determine ionization species fractions. In Hofer’s work the ExB data was taken on 

centerline. Ekholm, et al., using a Busek BHT-600 W Hall thruster, showed relatively 

constant ion species fractions through a range of angles, but Pollard, et al. showed the 

fraction of multiply-charged ions to be higher, ~20% for xe+2, at angles of 30 degrees and 

higher off axis. [55] [58] Pollard’s work also utilized a high-power, 4 kW class, Hall 

thruster. 

Table 5. Ion Species Fractions 

Insert Material Measurement Location xe+ xe+2 xe+3

CeB6 (edge-mount) cathode side 0.812 0.150 0.038
opposite side 0.782 0.189 0.028

LaB6 (edge-mount) cathode side 0.806 0.158 0.036

opposite side 0.820 0.143 0.037
Impreg. W (edge-mount) cathode side 0.828 0.133 0.040

opposite side 0.804 0.157 0.039
CeB6 (center-mount) (n/a) 0.587 0.233 0.180
LaB6 (center-mount) (n/a) 0.669 0.213 0.118

Ion Species Fraction

 

 Taking the voltage from the ExB data where the maximum current was measured 

for each species of ion, we can calculate a better value for the velocity of the ions and 

take into account the velocity variability due to charge state. The velocity is given by; 

 v
B d
φ∆

=
⋅

 (23) 

where φ∆  is the voltage at which the current peaks, and B and d are properties of the 

ExB probe itself. Using equation (20) the potential between the location where the ion 

was created and the collimator of the ExB probe can be determined as well.  
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Table 6. Ion Velocity (km/s) for Externally-Mounted Cathodes 

CeB6 CeB6 LaB6 LaB6 Impreg. W Impreg. W
(cathode) (opposite) (cathode) (opposite) (cathode) (opposite)

  Singly-ionized (xe+) 20.7 20.6 20.5 20.5 20.5 20.7
  Doubly-ionized (xe+2) 29.7 29.5 29.5 29.7 29.8 29.9
  Triply-ionized (xe+3) 36.2 36.2 36.6 36.3 36.3 36.0

Cathode Insert Material and Channel Side

 
 

Table 7. Ion Velocity (km/s) for Internally-Mounted Cathodes 

CeB6 LaB6

  Singly-ionized (xe+) 21.6 20.0
  Doubly-ionized (xe+2) 30.9 29.0
  Triply-ionized (xe+3) 37.0 35.4

Cathode Insert Material

 

 Looking at the velocities calculated in Table 6 and Table 7, the values are all 

reasonably consistent for each test case. The internally-mounted CeB6 case again shows 

the highest performance with respect to the velocity of singly-ionized xenon particles and 

the internally-mounted LaB6 shows the lowest performance.  
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V.  Conclusions and Recommendations 

Conclusions of Research 

 There are a number of ways to look at the data presented and beyond that, the 

performance of a given thruster. Beyond improving efficiency, which is always a driver 

for innovation, performance can be looked at in several ways for a thruster. Both thrust 

and specific impulse (Isp) can be used to classify the performance of a thruster. With EP a 

choice generally needs to be made between these two performance metrics. High thrust 

can provide a large ∆V in a shorter period of time, whereas a high Isp will yield a greater 

economy for the available propellant. Many of the EP thrusters being developed today are 

designed to be dual-mode thrusters than can operate either at a high thrust setting or a 

high Isp setting depending on the mission requirements.  

 Table 8 summarizes the results of this work. Based on the numbers, it appears as 

though the externally-mounted boride-based cathodes provided both the highest thrust 

and highest Isp. An explanation of these results follows.  

Table 8. Efficiency and Performance Results 

CeB6 LaB6 Impreg. W CeB6 LaB6

(edge-mount) (edge-mount) (edge-mount) (center-mount) (center-mount)
Electrical Eff. (ηo) 0.950 0.938 0.973 0.967 0.951
Mass Utilization Eff. (ηm) 0.882 0.900 0.841 0.889 0.879
Alpha Correction (α) 0.937 0.936 0.941 0.842 0.879
Gamma Correction (γ) 0.928 0.925 0.934 0.834 0.865
Beam Current Eff. (ηb) 0.784 0.807 0.747 0.791 0.789
Beam Voltage Eff. (ηv) 0.896 0.866 0.915 0.910 0.892
Total Efficiency  (ηT) 0.507 0.505 0.488 0.431 0.440
Isp (seconds) 1659 1660 1608 1515 1537
Thrust (mN) 44.79 44.80 43.40 40.89 41.50

Cathode Insert Material and Geometry
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 The electrical utilization efficiencies have been carried over from the power 

consumption calculations without any adjustments. Both the mass utilization efficiency 

and beam current efficiency require a value for the beam current in order to be 

determined. Since the entire beam current was not quantified in this work, these values 

can only be used to make comparisons between the five cases presented here. The 

integrated beam current used for the calculations was the beam current measured at 60 

cm as that was the midpoint of the Faraday data. The mass utilization efficiency was 

calculated using; 

 b
m

p

I M
e m

η =


 (24) 

where M is the mass of the xenon ions and pm  is the total mass flow rate of the 

propellant. The beam voltage efficiency was taken directly from the Langmuir data.  

 To determine the value for α, the correction factor for multiply-charged ions, 

equation (14) was expanded to include triply-ionized xenon. The significantly higher 

fractions of multiply-ionized propellant measured for the internally-mounted cathodes 

were the most significant efficiency loss observed relative to the externally-mounted 

cathodes. Again, the value for α was calculated from ExB data take at one location in the 

plume and it may vary significantly depending on the location where the data was taken. 

To determine the value for γ, the angle calculated from the Faraday data using the 

FWHM method was used. This is not the true thrust half-angle for the thruster, but the 

relative comparisons between the five cases are still valid.  
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 The total efficiencies were calculated using equation (7) and average just under 

50%, which is typical for Hall thrusters in this class. The Isp values were calculated as 

follows;  

 2m b
sp

eVI
g M
γη

= . (25) 

 

The Isp values calculated have a degree of error due to the assumptions made above, but, 

again, are valid for comparisons between the five cases.  It is interesting to note that the 

boride-based cathodes have similar Isp values for each of their respective geometries.  

 Finally, the thrust was calculated using the following equation; 

 2
b b

MT I V
e

γ=  (26) 

which is subject to the previously stated assumptions as well. These numbers provide a 

good basis for comparison as well. Mirroring the trend for Isp, the boride-based cathodes 

showed similar performance based on geometry.  

 The most surprising result was the internally-mounted CeB6 cathode having both 

the lowest Isp and the lowest thrust. The author also expected the impregnated tungsten’s 

performance to exceed that of the externally-mounted boride-based cathodes. The loss 

mechanism of multiply-ionized propellant significantly impacted the performance of the 

internally-mounted cathodes. The γ term, which is used to determine the values of thrust 

and Isp, is squared in the total efficiency equation and is significantly lower for the 

internally-mounted cathodes. For the internally-mounted LaB6 cathode both the increased 

multiply-ionized propellant fractions and the larger thrust angle contributed to the 

reduction in the value of γ, however, for the internally-mounted CeB6 it was solely the 
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increase in the fractions of the multiply-ionized propellant that resulted in the efficiency 

loss. If the multiply-ionized propellant losses from the ExB data are neglected the 

efficiency of the internally-mounted CeB6 exceeds all the other cases by approximately 

3%. Neglecting the ExB data for the remaining cases, the LaB6 cathodes in both 

geometries demonstrate the next highest efficiencies, followed by the externally-mounted 

CeB6 and then the tungsten. 

Recommendations for Future Research 

 The possible avenues available to further the research begun here are quite varied. 

The place to begin would be to expand the operating envelope of the thruster from one 

operating condition to a range of operating conditions. Since the BHT-1500-C used in 

this work was operated at less than its rated power, the performance measured is likely 

sub-optimal. In order to operate the thruster throughout its full range, modifications will 

need to be made to the SPASS lab. More pumping capacity to handle the higher 

propellant flow rates and larger power supplies to deliver the increased discharge power 

will be required. Work is currently in progress to add additional cryo-pumps to the 

existing vacuum chamber that may allow higher propellant flow rates without exceeding 

~1x10-5 torr. 

 The discharge power is not the only operating parameter that can be varied. The 

magnet power and keeper power can also be varied to see what effect they have on 

performance. Better measurements of the input power would allow for a more precise 

determination of the electrical utilization efficiency. As the operating condition is varied, 

the performance and efficiency will likewise change. The instruments used in this study 

can again be utilized to obtain data on the plume. To get ground-truth numbers for thrust, 
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however, a thrust stand would need to be used. The SPASS lab has a thrust stand that 

should be used to determine the thrust for the BHT-1500-C for both the operating 

condition used in this work and for a range of additional operating conditions up to the 

limit of the vacuum chamber.  

 The data taken in this work has provided some insight into the effect of cathode 

insert material and geometry on thruster performance and efficiency, but higher fidelity 

data is need to provide a basis for comparison outside of this work. A true measure of 

beam current and better ion species fraction data would be the place to start. Knowing the 

true total beam current would allow comparison against other Hall thrusters in this class 

and a better determination of mass utilization efficiency and beam current efficiency. The 

ExB data for the internally-mounted cathodes is somewhat suspect and a more robust set 

of data may yield different results.  

 Finally, the cathodes themselves can be tested. Varying the keeper power and 

flow to the cathodes would allow for the identification of the optimal operating condition 

for the cathodes. Varying the cathode position beyond the two tested in this work would 

be possible as well, as in the work done by McDonald and Gallimore. [40] Thermal 

analysis of both the cathode and the thruster itself could help identify possible loss 

mechanisms of each. If time and lab requirements allow, an extended lifetime test should 

be conducted on the thruster and cathode combination using a boride-based cathode to 

determine the consumption rate of the cathode and any wear effects on the thruster or 

cathode. Finally, other cathode designs can be tested with the thruster in an effort to 

achieve maximum performance or efficiency.  
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Appendix A.  Thruster Operating Procedures 

The following procedures were used for the operation of the BHT-1500-C Hall thruster 

and the cathode being tested with it. 

1. Ensure vacuum chamber pressure is below 1x10-6 torr.  

2. Purge xenon propellant lines; 

a. Ensure xenon gas bottle valve is closed.  

b. Turn on MKS four-channel readout.  

c. Open flow controllers to anode and cathode.  

d. Open propellant regulator valve. 

e. Once flow rate drops below 1 sccm, close all valves/secure flow 

controllers. 

3. Condition Cathode 

a. Turn on heater power supply and set maximum voltage to 13 V. 

b. Set current to 2.5 A for 15 minutes. (40 minutes for tungsten) 

c. Increase current by 2.5 A every 15 minutes until at 10 A. (40 minutes for 

tungsten) 

d. Once at 10 A for 15 minutes, increase current to 11.25 A and allow 

voltage to stabilize.  

4. Prepare Propellant Lines 

a. Open xenon bottle valve. 

b. Set propellant regulator valve to 20 psi. 

c. Open mass flow controller to cathode with 3 sccm flow rate set. 
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5. Light Cathode 

a. Turn on power to the keeper power supply. 

b. Ensure output is set to 1.0 A and 650 V.  

c. Depress “output” button to apply the potential to the keeper. 

d. Cathode ignition is indicated by a drop in keeper voltage. 

6. Light Thruster 

a. Turn on power supply for PPU. 

b. Turn on PPU. 

c. Launch BPU-600 Host Simulator software. 

d. Set discharge voltage to 300 V. 

e. Open mass flow controller to anode with 25 sccm flow rate set. 

f. Activate discharge power from Host Simulator. (A purple glow discharge 

will be seen on the face of the thruster.) 

7. Collimate Plume 

a. Turn on power to magnet power supply or set 2.07 A for magnet power in 

the Host Simulator software and activate it. 

b. Set maximum voltage to 6.5 V on power supply. 

c. Slowly increase current to 2.07 A on power supply and observe plume. (A 

highly collimated plume of blue plasma will now emanate from the face of 

the thruster.) 

8. Secure Heater: turn off the heater power supply. 

9. Allow thruster to stabilize and conduct testing. Ensure chamber pressure remains 

below ~1x10-5 torr. 
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10. Securing Thruster 

a. Secure power to the anode, magnets, and keeper.  

b. Secure xenon flow to the anode and cathode.  

c. Close xenon bottle valve and regulator.  

d. Close Host Simulator software and secure power to the PPU. 

e. Turn off all power supplies. 

11. If bringing the vacuum chamber back to atmospheric pressure, ensure nitrogen is 

used to back-fill the chamber to help mitigate any chance of insert poisoning. 
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Appendix B.  Faraday Probe Data 

 

Figure 78. Current Density for Externally-Mounted CeB6 

 

Figure 79. Current Density for Externally-Mounted LaB6 
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Figure 80. Current Density for Externally-Mounted Tungsten 

 

Figure 81. Current Density for Internally-Mounted CeB6 
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Figure 82. Current Density for Internally-Mounted LaB6 

 

Figure 83. Total Beam Current vs. Axial Distance for Externally-Mounted LaB6 
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Figure 84. Total Beam Current vs. Axial Distance for Externally-Mounted Tungsten 

 

Figure 85. Total Beam Current vs. Axial Distance for Internally-Mounted LaB6 
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Figure 86. Current Density with Internally-Mounted Cathodes at 70 cm Axial Distance 

 

Figure 87. Current Density with Internally-Mounted Cathodes at 50 cm Axial Distance 
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Appendix C.  Langmuir Probe Data 

 

Figure 88. Ion Number Density with Externally-Mounted Cathodes at 30 cm Axial Distance 

 

Figure 89. Ion Number Density with Internally-Mounted Cathodes at 15 cm Axial Distance 
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Figure 90. Ion Number Density with Internally-Mounted Cathodes at 30 cm Axial Distance 

 

Figure 91. Ion Number Density with CeB6 cathode at 30 cm Axial Distance 
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Figure 92. Ion Number Density with LaB6 cathode at 30 cm Axial Distance 

 

  

0.0E+00

2.0E+10

4.0E+10

6.0E+10

8.0E+10

1.0E+11

1.2E+11

1.4E+11

-25 -20 -15 -10 -5 0 5 10 15 20 25

Io
n 

N
um

be
r 

D
en

sit
y 

(N
i/c

m
3 )

Radial Distance (cm)

LaB6 Internal

LaB6 External
(30 cm axial distance)



 

140 

Appendix D.  ExB Probe Data  

 

Figure 93. Cathode Side ExB Data for Externally-Mounted Cases 

 

Figure 94. Opposite Side ExB Data for Externally-Mounted Cases 
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Table 9. Ion Generation Potential (V) for Externally-Mounted Cathodes 

CeB6 CeB6 LaB6 LaB6 Impreg. W Impreg. W
(cathode) (opposite) (cathode) (opposite) (cathode) (opposite)

  Singly-ionized (xe+) 291.8 288.4 285.0 285.0 285.0 291.8
  Doubly-ionized (xe+2) 299.2 296.7 296.7 299.2 301.7 304.2
  Triply-ionized (xe+3) 296.4 296.4 304.5 298.4 298.4 294.4

Cathode Insert Material and Channel Side

 
 

Table 10. Ion Generation Potential (V) for Internally-Mounted Cathodes 

CeB6 LaB6

  Singly-ionized (xe+) 316.5 271.5
  Doubly-ionized (xe+2) 324.4 287.0
  Triply-ionized (xe+3) 310.6 284.5

Cathode Insert Material
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