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Abstract

Micro Air Vehicles (MAV) are a subset of Unmanned Aircraft Systems (UAS)

that are up to two orders of magnitude smaller than manned systems. Near-Earth

environments, such as forests, caves, tunnels and urban structures make reconnais-

sance, surveillance and search-and-rescue missions difficult and dangerous to accom-

plish. Therefore, MAVs are considered ideal for these types of missions. Advances

in material sciences, analytical tools, propulsion systems, battery technology, etc.

have enabled highly effective small-sized aircraft like UAS. Nevertheless, UAS data

are not scalable for MAVs due to lack of adequate prior research. While other agen-

cies, universities and some curious hobbyists have done substantial research on this

topic, future military missions require MAV designs that meet strict operational

performance (range, payload, maneuverability, etc.). Data using full size aircraft is

inadequate to characterize miniature aircraft parameters due to the lower Reynolds

numbers, low aspect ratio (LAR) wings, and impact of wing-propeller interactions.

The main objectives of this research were to: collect and synthesize the available

data/tools; create a statistically integrated database/tool set of MAV designs for

conceptual design trades; validate the tool set using published experimental data;

synthesize and model a prototype design using conceptual and empirical analysis;

highlight MAV-specific design criteria; and identify gaps in existing data for later

research. The following design tools have constituted the starting point for creating

a demonstration tool-set for MAV design: Digital DATCOM supplemented with ex-

perimental data (aerodynamics, stability and control), Athena Vortex Lattice (AVL)

Method (aerodynamics, stability and control), QPROP (propeller, motor, energy

requirement), MATLAB (modeling, aerodynamic equations evaluation, data acqui-

sition, database creation), Microsoft Excel (power/battery modeling) and Phoenix

Integration ModelCenter (MC) as the executive control program (integration, siz-

iii



ing and trade studies). Validation cases were completed for the current level of the

single-prop, fixed-wing design tool. A coaxial MAV prototype was evaluated and

some parametric studies were conducted for QPROP performance.
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TOOLS FOR THE CONCEPTUAL DESIGN AND ENGINEERING

ANALYSIS

OF

MICRO AIR VEHICLES

1. Introduction

1.1 Background and Motivation

Unmanned Aircraft Systems (UAS) have become an integral part of the aerospace

community. They have numerous military and civilian applications including

surveillance, search and rescue, damage assessment, reconnaissance and tactical at-

tack. Currently, the military uses these vehicles primarily for gathering intelligence,

surveillance and reconnaissance. The most notable current UASs used by the mili-

tary for these purposes are the Predator and Global Hawk. Figure 1.1 illustrates the

wide variety of UASs including micro air vehicles (MAVs). MAVs have wingspans

of approximately 15 cm (0.15 m or 6 in) or less as compared to the larger UAVs,

that can be about 3500 cm (35 m or 115 ft) in span (b) as in the case of the Global

Hawk [28]. MAVs would be smaller and cheaper than current UASs and could be

used to perform similar missions on a different scale. Some of the MAV mission

types as mentioned in reference [46] are:

• Surveillance: Day and night video, infrared images of battle fields

• Detection: The sensing of biological agents, chemical compounds and nuclear

materials

• Communication: Communication enhancement in urban areas or other envi-

ronments for continuous line-of-sight operations
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Figure 1.1 UAS Family [10]

• Placement of Unattended Sensors: Acoustic sensors outside of a building for

hostage rescue or counter drug operations

Other possible missions are to place acoustic sensors for intelligence or battle

damage assessment after attack. These missions may consist of a single MAV or

swarming MAVs with multiple sensors. MAVs can fulfill their potential if they

attain certain attributes to include: range, endurance, stealth, precision, low cost,

low weight, minimal logistical support and mission versatility [28].

In recent years, interest in and development of MAVs has greatly increased.

As such, many concepts and designs have emerged for MAVs. However, if one wants

to study only certain aspects of MAVs, such as an advanced aerodynamic wing

or advanced guidance, navigation and control (GNC), the various designs do not

lend themselves well for trade studies. As seen in Figure 1.2, MAVs have a typical

Reynolds number (Re) on the order of 5.0x104 to 2.5x105 and aspect ratios (AR) be-

low two. Often these parameters are driving fundamental research in aerodynamics.
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Figure 1.2 Mass versus Reynolds number for MAVs [45]

Conceptual design of aircraft and systems-level analysis for engineering trades

all depend on reliable low-level analysis/computation. For manned aircraft and large

UASs, aerospace engineering practice benefits from physics-based (lifting-line theory

and stability derivatives for airframe performance and flight dynamics analysis, etc.)

and non-physics-based tools (extensive statistical databases for table-look up refer-

ences, etc.). Together these enable quick trade studies and go/no-go evaluations of

proposed airplane design concepts.

Figure 1.3 Challenges in MAV Design
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Figure 1.3 summarizes some of the well-known challenges associated with MAV

design. For MAVs, there is a lack of statistical information and considerable doubt on

the validity of traditional aerodynamics models. Even for nominally fixed-wing (rigid

or flexible-wing) configurations which loosely resemble larger UASs, the combination

of low Reynolds numbers, LAR wings and impact of wing-propeller interactions

together places traditional models into question. Consequently, the data that we

have for full size aircraft do not characterize miniature aircraft well.

1.2 Research Objectives

The main objectives of the proposed research were to integrate a statistical

database of MAV designs into look-up tables for conceptual design trades and estab-

lish and demonstrate low-fidelity numerical models for MAV aerodynamics and flight

dynamics. The current research focuses on collecting and synthesizing the available

data and tools, creating a statistically integrated database/tool set, validating the

tool set and synthesizing and modeling a prototype design using conceptual and

empirical analysis.

1.3 Scope and Assumptions

There are different types of MAVs that are being built by different agencies

such as fixed (rigid or flexible-wing), flapping and rotary wing. They all require

extensive data and different approaches. This research is focused on rigid-wing MAVs

using various tools that have been developed for similar applications. In a similar

way to this research, other procedures could be created in order to evaluate fixed

(flexible), flapping and rotary wing MAVs as well. Due to the size of the vehicles

and the associated Reynolds number, the design of efficient MAVs with classical

aerodynamics is questionable or sometimes not possible.

Currently the tool does not include component-level detail, although it can be

integrated easily with the background of this research. Also, the final prototype for
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Figure 1.4 Notional Reconnaissance Mission Profile

proposed mission profile (Figure 1.4) is supposed to be a hybrid (flies like a fixed-

wing aircraft and hovers like a rotorcraft). Hence, some part of the mission has to

include transition from level flight to hover mode or the other way around. The

transition part of the flight is beyond the scope of this research.

Some assumptions had to be made due to the specific tools employed or the

limited data available. For instance, DATCOM requires certain parameters that go

into calculations as inputs. DATCOM handles straight-tapered, cranked or double-

delta wings. For Zimmerman, Inverse Zimmerman and elliptical planforms, it is not

possible to enter planform properties due to the limitation on inputs. Some measures

are taken to alleviate this problem and new geometry inputs are created using some

assumptions. The first assumption is that an equivalent trapezoidal wing planform

based on AR and b is sufficient and the second one is that the equivalent body based

on fineness ratio for the body can be used. Also, the backbone of the experimental

data analysis is based on the final report [47] and dissertation [59] of Torres which,

though limited, is useful to demonstrate procedures for using experimental data

with the following assumption. The third assumption is that in the areas where
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DATCOM fails, experimental data can be interpolated if experimental database

is created properly. The final assumption is that Drela’s QPROP for propulsion

and AVL for stability and control can be used to demonstrate a tool set. These

assumptions constitute the basis of the methods implemented in this research.

1.4 Hypothesis

Using ModelCenter (MC) [50] as the executive control program to orchestrate

other tools of interest, it is possible to develop a conceptual design tool for fixed-

wing MAVs and extend the current capabilities further. Also, this research will help

people create a database, procedures and templates (for the future use of the MC)

for the conceptual design of MAVs. Moreover, the same type of design environment

may be extended for evaluating rotary and flapping wing MAVs.

1.5 Methodology

Based on the previously mentioned restrictions in the conceptual MAV design,

to extend that data to the design of MAVs, various tools will be integrated into a

program called MC. A similar modeling/optimizing environment in MC was applied

to a Joined-Wing Sensor-Craft by Dittmar [16] and a successful concept validation

model was constructed based on an S-3 Viking with the values within 4% of the actual

published aircraft values. For MAVs, a similar environment, but using different tools,

will be examined in a multidisdiplinary approach. Mueller’s text books [46, 45] on

MAVs were used as a starting point for a multidisciplinary approach to a fixed wing

MAV design. This research aims to develop procedures for building a fixed-wing

MAV conceptual design and analysis tool via a combination of a survey of state of

the art and original model/code development. Overall, this research encompasses

the aerodynamics, propulsion (propeller-type), stability and control pieces of the

conceptual MAV design process in a multidisciplinary approach.
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There are three design phases: conceptual, preliminary and detail design [54].

As the first step, the conceptual design process is a very fluid process with many

flexibilities. As one goes further in detail, new constraints emerge and the design gets

more sophisticated. Aircraft systems are very complex and require intensive multidis-

ciplinary optimization (MDO). Sometimes bringing people from different disciplines

together and allowing them to apply their expertise and knowledge on the design

of interest can be costly if there is not enough interaction. Software programs such

as MC helps engineers share and interact with each other (within the discipline or

between disciplines) leading to robust and successful designs throughout the phases

of the aircraft design. Following the methodology listed below, a multidisciplinary

conceptual MAV design tool was created in the MC environment and it is named as

the MAV Conceptual Design and Analysis (MCDA) tool:

1. Considering different design tools, methods and determining the ones applica-

ble to the conceptual design of MAVs

2. Setting up the design environment in a commercial design and optimization

software program called MC

3. Incorporating different applicable design tools and experimental results into

MC via various interfaces

4. Determining procedures for implementing experimental data into the tool

5. Validating the tool with the published references

6. Evaluating the expected results

The ultimate goal is to have an approach to provide rapid and economical

estimation of aerodynamic, propulsion, stability and control characteristics.

1.6 Outline of the Chapters

In Chapter 1, we discussed the background and motivation for this research.

The scope of the research and assumptions for related parts of the research were
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also discussed. The hypothesis, methodology, and the outline of the chapters can be

reviewed in this chapter as well.

Chapter 2 is a review of the different disciplines related to the accomplishment

of the current research. Although there are several resources on the matter, it is

restricted intentionally to the current research aims.

Chapter 3 primarily focuses on the development of the fixed-wing MCDA tool.

Selection methodology of the tools is mentioned in this chapter. The first part

includes brief information about the major software programs that have been inte-

grated into the MCDA tool. The second part includes the filewrapper structures of

the related tools. The third part has detailed summaries of the components in the

MCDA tool. Code, filewrappers and templates are attached in Appendix D.

Chapter 4’s first part covers the experimental data interpolation evaluation of

the MCDA tool. The current level of the tool is compared with published references.

Marek [38] and some of his procedures and a case study in that reference will be

evaluated for the validity of the tools and codes in the second part. The third

part covers the conceptual design of a coaxial prototype with some modifications to

the single-propeller MCDA tool and some analysis of it. In the last part, QPROP

performance is evaluated with the MC parametric study tool without validation.

Chapter 5 discusses the conclusions and recommendations. The MCDA tool

has some limitations and they will also be presented here. Future advancements

and additions to the tool with some recommendations are discussed, concluding the

thesis.

Appendices are addressed within the text.

Part of this thesis has been presented in 4th Annual Dayton Engineering Sci-

ences Symposium (DESS08-0065) 27 October 2008 , Dayton, OH and 47th AIAA

Aerospace Sciences Meeting (AIAA-2009-38) 5-8 Jan 2009, Orlando, FL.
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2. Literature Review by Topic

2.1 Aerodynamics

The wing planform and the airfoil section of the lifting surface are critically

important to the performance of all flying vehicles. As in all air vehicles, it is

intended to have stable and controllable vehicles. Mueller’s textbook [46] covers

the discussions on the progression from high Reynolds numbers to the low Reynolds

numbers encountered in the design of MAVs. In the same chapter, it is explained

that classical aerodynamic theory is not adequate for low Reynolds numbers and

LAR wings due to unique aerodynamic properties. MAV applications are hindered

by the lack of thorough understanding of the aerodynamics associated with MAVs

flying at low speeds. Some of the early experiments on LAR wings at low Reynolds

numbers were run between 1930 and late 1950 by various researchers. According to

the previous researchers, Mueller [48] and Torres [47, 59]:

• A finite wing of a given AR generates lift from counter-rotating wing tip vor-

tices

• These vortices strengthen as the angle of attack (AoA) increases

• For a LAR wing, wing tip vortices might be present over most of the area

• LAR wings can have linear and non-linear sources of lift. The non-linear lift

due to the tip vortices results in an increased lift-curve slope and therefore a

high value of αstall

Therefore, some measures had to be taken in order to precisely calculate the effects of

LAR wing at low Reynolds numbers. Some suggestions were made by Polhamus [52]

and extended by Lamar [36] for non-linear equations for lift, drag and pitching mo-

ment. The experimental data in reference [46] were used to calculate the parameters

for Pollhamus’ lift, Prandtl’s drag and Lamar’s non-linear pitching moment. It was

found that the non-linear equation approximations are only applicable up to αstall.
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At greater values of AoA, the highly nonlinear effects associated with pre-stall and

stall conditions cannot be modeled by simple equations. Similar wind tunnel tests

and procedures were carried out by Marek [38] and the method was validated for

higher Reynolds numbers with similar agreement to Mueller and Torres’ [47] work.

In another publication, Torres and Mueller [60] presented their previous research on

LAR wings at low Reynolds number adding Vortex-Lattice Method (VLM) imple-

mentation and they compared the experimental results with VLM predictions. For

certain cases, the VLM results compared well with experimental data.

The present research mostly focuses on the procedures of those references due

to the limited nature of non-linear equation approximations. Although this reason

narrows the capabilities of the MCDA tool, it is capable of generating the experi-

mental test results with a good approximation.

One of the main challenges associated with MAV design mentioned in Chapter 1

is the effects of propulsive-induced flow on the aerodynamics of MAVs. Null et al. [49]

conducted some experiments to figure out the flow interaction over the aerodynamic

surfaces. Some of their findings were:

• The propeller-induced flow had the largest influence on the lowest Reynolds

number test cases

• The propeller-induced flow does have a substantial effect on the aerodynamics

of the typical MAV where the propeller diameter is a significant portion of the

wingspan

• The induced flow from the propulsion system had a positive effect on the lift

coefficients (CL) of the vehicles. The induced flow caused somewhat higher

magnitudes of maximum lift coefficient (Clmax) and a delayed stall, but a

detrimental effect on the drag coefficients (CD) and a subsequent decrease in

the lift-to-drag (L/D) ratios at low angles of attack. L/D ratios at high angle

of attacks were higher for the propulsive-induced tests.
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Also in Galinski [20]’s MAV configuration, it was found that propeller-induced flow

at the control surfaces acted as an additional advantage almost equivalent to the

thrust vectoring of the modern fighter airplane.

2.2 Power/Propulsion

The design of an electric propulsion system for an UAS incorporates various

disciplines making the task a MDO case. Propeller aerodynamics, structural prop-

erties, characteristics of the electric system and the vehicle itself require great efforts

in propulsion system design. Sibilski et al. [56] described power requirements for

MAVs. Within the comparison of the three flight modes (fixed, rotary and flapping

wing) when there is no hover requirement, fixed wing flight is always the most energy

efficient for MAVs. Nevertheless, if there is a hover requirement, flapping or rotary

wing would be the preferred options based on the constraints.

In other research, Gur and Rosen [23] presented a comprehensive method for

optimal design of electric propulsion systems for UASs that are also applicable to the

MAV cases. It is known that the propulsion system of MAVs (batteries, motor, pro-

peller, etc.) accounts close to 60− 70% of the vehicles total weight [44]. Therefore,

optimization of the propulsion systems is extremely important. Gur and Rosen [24]

also studied common models for the analysis of the propeller aerodynamics, perfor-

mance calculations and propeller design and compared the results, discussing the

advantages and disadvantages of each one.

Propeller research at the University of Illinois at Urbana-Champaign included

the study of small scale propellers which have been widely used for radio controlled

(R/C) aircraft. A large number of off-the-shelf R/C aircraft that have different sizes

and shapes of propellers are now available. These aircraft are fairly inexpensive and

use small motors and propellers with diameters less than 5 in to provide thrust.

An increased interest in MAVs in industry and for the military creates a need for

data on micro propellers as well. Deters and Selig [15] conducted some experiments
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on different scales of micro propellers in order to measure the static performance.

According to them, knowing the static performance of micro propellers would be very

useful in determining motor selection and flight capabilities of small R/C aircraft

and also MAVs. This type of research is also useful for the QPROP propeller input

file which is a part of the MCDA tool.

Mueller et al. [46] mentioned different types of propulsion (internal combustion

engine propulsion and electric motor propulsion), DC electric motors (cored, core-

less and brushless), batteries (lithium polymer, nickel-cadmium and nickel-metal-

hydrite cells) and electric motor controllers (brushed “Electronic Speed Control-

ESC”, brushless). They explained the advantages and disadvantages of those units

in detail for a better MAV design.

2.3 Stability and Control

The first-order derivatives of the aerodynamic coefficients are called stability

derivatives. According to Krashanitsa et al. [35], stability and control are of pri-

mary concern for MAV design due to beyond line-of-sight operations. Since MAVs

demonstrate intrinsically unsteady behavior with high and low frequency oscilla-

tions, flying the MAV via an on-board camera and controlling it from a ground

station is very difficult. Therefore, they emphasized that an enhanced Automatic

Flight Control System (AFCS) is required. Their research covers the methods of de-

velopment and integration of systems for the autonomous flight of a MAV. Moreover,

the process also includes the determination of stability and control derivatives using

analytical and numerical computational software, simulation of flight dynamics and

closed-loop control design. The linearized equations of motion of the aircraft were

used to evaluate the effectiveness of the control laws for MAVs and the equations

are developed from an evaluation of the various aerodynamic stability and control

derivatives. Aerodynamic derivatives were determined by the use of analytical soft-

ware. Advanced Aerodynamic Analysis (AAA) software, VLM and Tornado software
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by Melin [42] were used in determining the stability and control derivatives. But one

thing to mention here is that the propeller moments and propeller wash on the wing

had been neglected. Dragonfly and Zagi MAVs were used for flight testing in their

research.

Melin [41] worked on a MATLAB code to evaluate the aerodynamic properties

using VLM and developed a vortex lattice code “Tornado solver”. In order to validate

Tornado’s data, he compared the results with two different methods: VLM and panel

code. AVL, VIRGIT and Tornado are all vortex lattice methods while CMARC is a

panel method. He worked on a large-scale “Cessna 172” but was able to get Tornado

computational results for the Cessna 172 that correlated with both AVL data and

CMARC data. His approach and the results are explored in his thesis [41] and

manual [42].

In addition to those efforts, Kellogg [33] from the Naval Research Laboratory

(NRL) summarized some results for stability and control behaviors of the micro

tactical expendable (MITE) series. Another effort on the same topic by Stewart et

al. [58] included a MAV configuration with flexible wings and they aimed to look

at the issue of air vehicle flexibility on the flight mechanics and also control aspects

particular to MAVs. They estimated the airframe aerodynamic coefficients using

AVL and compared to wind tunnel data to ensure the estimates from AVL were

reasonable. Some of the comparison figures are presented in their paper. They also

evaluated the stability and control characteristics of their MAV.

Digital DATCOM [39] provides the longitudinal coefficients and the derivatives

of them for static stability characteristics. Output for configurations with a wing

and horizontal tail also includes downwash and the local dynamic pressure ratio in

the region of the tail. Also, dynamic stability characteristics can be computed for

each component with some limitations. Whether they can be used for MAVs or not

is not clear since the program was designed for normal size aircraft. DATCOM also
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has capability to evaluate the stability and control characteristics as mentioned in

the manual [39] and might be appropriate to evaluate MAVs.

2.4 MAV Design Efforts

A large number of MAVs have been designed and flown around the world for

different purposes. Several universities have been involved in MAV research. Pines

and Bohorquez [51] gathered information on the notable firsts in the MAV Flight

Regime. The list follows as in [51]:

1. The first battery-powered electric motor open-loop controlled flapping flight

was by Microbat-CalTech/Aerovironment.

2. The longest endurance (< 100 g) is > 30 min for a fixed-wing MAV by a Black

Widow designed and built by Aerovironment.

3. The first autonomous MAV flight (global-positioning-system waypoint naviga-

tion) was by Microstar-Lockheed Martin.

4. The first open-loop controlled hovering flight of a biologically-inspired flapping

vehicle was by MENTOR-SRI.

5. The longest-endurance flapping flight (< 100 g) was about 25 mins by a 9 in

Microbat designed and built by Aerovironment.

This list will grow whenever new technologies emerge such as micro fuel cells or

motors and the physics is discovered behind some of the challenges of MAV develop-

ment. MAV design has become a catalyst for research in aerodynamics, propulsion,

stability and control, MDO, microelectronics and artificial intelligence.

Figure 2.1 illustrates the different types of MAVs: fixed-wing, flapping-wing,

rotorcraft and hybrid (tailsitter or tilt-rotor). Meuller’s textbook [46] is a great

reference for MAV designers and has three case studies although limited to certain

types of MAVs. Torres [59] provided comprehensive aerodynamic data and showed

how useful engineering decision-making tools could be extracted from wind tunnel
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data for MAV design. Marek [38] also conducted some wind tunnel experiments

similar to Torres [47] and compared the results’ validity and created a database

for his design and optimization instead of using the VLM or some sophisticated

computational fluid dynamics (CFD) code. Therefore, he used a method based

directly on data from wind tunnel experiments. In his wind tunnel experiments, the

method was validated for higher Reynolds numbers than described in Torres [47].

He also built and flew the “BumbleeBee” MAV which is one of the validation cases

of the current research.

Pines and Bohorquez’s paper [51] about the challenges of the future develop-

ment of MAVs is also a very good reference for different advancements/issues on

MAV design. The status and performance of the current MAVs of that time (2006),

fundamental physics limiting MAV performance and emerging MAV research and

technology trends are explained thoroughly.

Figure 2.1 MAV Types

Some other MAV development efforts are as follows:
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Kellogg [33] from NRL describes the development of the MITE fixed-wing

MAVs developed at the NRL from 1996 to 2002. The development of the MITE

program is explained in a theoretical, experimental and practical way. Aerody-

namic design refinements by CFD, propulsion system and design, structure, flight

experiments, design evolution (MITE 1-2-3-4-5-6), stability and flight control and

navigation processes are explained with the key points and talent required to build

and operate a MAV. In 2003, with all the experience gained from the MITE se-

ries, a transition to the first operational electric-powered, back-packable airplane

“Dragon Eye” was made successfully, although it was not a MAV with respect to

its size. Grasmeyer and Keennon [21] also describe the extensive research on the

development of the “Black Widow” and this program showed that a 6-inch MAV

can perform useful missions that were deemed impossible previously.

In another research effort, Green [22] shifted the focus to another issue by

emphasizing that limited flying space and densely populated obstacle fields requires

a vehicle that is capable of hovering as well as being highly maneuverable. He

incorporated a secondary flight mode into a fixed-wing aircraft to preserve its ma-

neuverability while adding a hovering capability. For this purpose, he designed a

fixed-wing hybrid platform with a high thrust-to-weight ratio (T/W ) enabling it to

transition into a vertical flight mode and ran some experiments using his approaches

for transition. Importantly, he demonstrated that hovering mode can be sustained

using the propeller wash and enlarged elevator and rudder control surfaces as seen in

Figure 2.2. He also developed a quaternion attitude controller. This approach was

successfully applied in his case due to the large AoA maneuvers of the hybrid plat-

form. As a result of his experiments, captured flight data showed that the controller’s

performance exceeded that of an expert human pilot who would fly the platform on

the prop (prop hanging). Another important result is that, while hanging, the mo-

tors reactive torque was thought to be beneficial, but the plane torque-rolled at a

rate of 20-25 RPM, causing a dizzying effect on the video capture. He mitigated
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Figure 2.2 Regulating the Pitch and Yaw Angles via Elevator and Rudder [22]

this problem with two DC motors with propellers, mounted on each wing tip and

oriented such that the thrust vectors had an angular separation of 180 degrees. This

created a counter-rotating force and by controlling the speed of the wingtip motors,

the torque roll was regulated. The final system was able to achieve the described

mission in his thesis. Another approach to the same issue is coaxial rotors. Success-

ful applications of coaxial rotors as in a Ka-50 helicopter and some UASs increased

the interest in that topic. He et al. [26] tested the feasibility of hovering a MAV

using a single-motor, double-rotor gearless torque-canceling mechanism without the

need for complex gear or electrical control systems. Their results show that such a

mechanism is feasible and is able to produce adequate thrust with insignificant net

torque on the MAV. However, they found that their prototype did not produce the

thrust required to hover their prototype due to an inefficient motor and friction in

the slip ring system. In the R/C community, there are several examples of indoor

and outdoor coaxial helos such as E-flite Blade MCX. But they use double-motor,

double-rotor and variable speed controllers for maneuverability. One successful ex-

ample of coaxial type propulsion is the “Mini-Vertigo” by Moschetta et al. [43] as

seen in Figure 2.3. They tested two fixed-wing MAV configurations: a tilt-wing con-
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Figure 2.3 Mini-Vertigo in Hover Mode [43]

cept powered by two non-coaxial counter-rotating propellers and a tilt-body concept

based on a coaxial rotor. They paid more attention to the coaxial tail-sitter con-

cept for which the propellers induced flow that guaranteed aerodynamic efficiency

over the whole flight envelope. They observed that the drag force on the wing is

produced by a mixture of free stream and propeller-induced stream. Additionally,

the zero-lift drag coefficient increased by about three times with propeller-induced

speed increase from 0 to 15 m/s. The flight tests in R/C mode proved that their

present configuration had very good handling capabilities for both horizontal flight

and hovering with the tilt-body fixed-wing coaxial configurations. The reader may

refer to these references [14, 32, 25, 34] for more information related to these topics

on coaxial rotor systems.

Other applications related to hovering flight are compound aircraft, tilt-wing,

tilt-rotor and tail-sitters. Comparing those different applications, Hogge [27] con-

cluded that a tail-sitter is the best option in terms of being able to perform well both

in vertical and horizontal flight. His work includes designing, analysis, construct-

ing and flight testing of some conceptual miniature Vertical Take-Off and Landing

(VTOL) tail-sitter UAV prototypes. He also included a method for sizing control

surfaces for a tail-sitter vehicle. His approach to the case was:
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• A combination of classic aircraft design methods and numerical analysis were

used to estimate the aircraft performance and flight characteristics

• The numerical analysis was based on a propeller blade-element theory coupled

with momentum equations to predict the influence of a propeller slipstream on

the freestream flow field

• Analyzing the aircraft was accomplished using 3D vortex lifting-line theory to

model finite wings immersed in the flow field

In order to manage those steps, he utilized a program called “AITHER” de-

veloped by Hunsaker [29].

Figure 2.4 Hogge’s Final Prototype and Component Placement [27]

Figure 2.4 illustrates the final prototype of Hogge [27]. Development of a con-

trol system which was effective for vertical flight while the vehicle was descending, or

hovering in ground effect, was achieved. However, developing solutions for obtaining

the desired hover flight time was the challenging part of the research. His recom-
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mendations on tail-sitter MAVs are: counter-rotating propellers, vectored thrust,

variable pitch propellers and improved propulsion technology.

2.5 Software

Digital DATCOM was used in the primary design of aircraft for rapid and

economical estimations of aerodynamic stability and control characteristics that are

frequently required. The fundamental purpose of the USAF stability and control

DATCOM is to provide methods for estimating stability and control characteristics

in preliminary design applications. It calculates static stability, high-lift and control

device and dynamic-derivative characteristics. Trim option is also available [39].

DATCOM+ is a more user-friendly version, available online with modifications [2].

Many MAV designers use PROFOIL, Eppler Code, Drela’s XFOIL, Profili [53]

(derived from XFOIL), XFLR5 (derived from XFOIL) or XWING [37] for aerody-

namic data. In one research project, Selig et al. [55] compared modern computational

tools of the time (PROFOIL, XFOIL, Eppler Code) and wind tunnel tests for low

Reynolds number airfoil design and analysis. Among these programs mentioned

above, XWING seems to be the only one with 3D effects included. XWING uses a

2D boundary layer and a 3D potential flow matching technique and the capabilities

of the new software were examined for swept, twisted, and tapered wings at high

Reynolds numbers as well as for LAR-rectangular wings at low Reynolds numbers.

The technique was determined to be particularly useful for 3D wings at low Reynolds

number [37]. Since most of the applications for fixed wing MAVs utilize LAR wings,

it would have been beneficial to integrate this code into MC for a better analysis.

However, at the time this research was being conducted, the XWING program was

not yet available. It was decided that limited experimental data and DATCOM

would be used together for the aerodynamic coefficients which would have 3D effects

for the analysis.
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Figure 2.5 ElectriCalc Screenshot

R/C communities use commercial software such as ElectriCalc, MotoCalc and

also freeware such as Estimate Electric Motor and Prop Combo or various Excel

Spreadsheets. Some of those programs have their own database and are able to

calculate flight parameters based on motor, battery, propeller and electronic speed

controller as seen in Figure 2.5. They may provide acceptable results for R/C aircraft

but the order of magnitude of the sizes of the components that are used in R/C

aircraft is still higher than the MAVs and most of them don’t take low Reynolds

number effects into account. Some of the tools utilized in the current research are

Drela’s QPROP [17], AVL [19] and performance analysis Excel Spreadsheets. In

Appendix A, there is a detailed list of various calculators compiled online [61, 7, 5]

which might be useful for follow-on research.
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3. Integration Environment

Multidisciplinary system design is a computationally intensive process combining

individual disciplines within the design environment. Performing a design and opti-

mization with limited interaction with other branches of research makes the process

costly and sometimes inefficient. The present research combines different disciplines

into a design and optimization tool called ModelCenter (MC) which will increase

the computational power and communication capabilities between researchers dur-

ing the conceptual design of MAVs. As in Figure 3.1, the following components were

intended to be integrated into ModelCenter in order to create the MCDA tool.

• MC (sizing and trade studies)

• Digital DATCOM (aerodynamics, stability and control)

• QPROP (power, thrust, energy requirement)

• AVL (stability and control, aerodynamics)

• MATLAB Plug-in (for various applications)

• Excel Plug-in, eHeli [4] (power/battery modeling)

• ElectriCalc or MotoCalc Database

• Script Program (MC)

In determination of the components to be integrated into MC, the R/C world

was explored since the tools and materials utilized in most of the MAV design efforts

were from R/C solutions although the size of the R/C aircraft is still larger than

MAVs. There are many applications, software and tools available and some are

proprietary. Appendix A has a list of some of the tools. Some criteria were considered

in selection of the tools:
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Figure 3.1 Overview of MC Component Integration

• Integratibility: As a first requirement, tools must have the appropriate type

or format to be integrated into MC. So any MATLAB, MathCad or Excel file

can be an option. Also some I/O programs can be used via filewrappers.

• Documentation: Most tools available online don’t have any documentation and

a user has to figure out how they work on his own. It causes a loss of time and

effort.

• Sufficient Theoretical Background: The solutions must have the theoretical

background, explained in detail. Many possible solutions did not have sufficient

theoretical background or were not explained clearly.

• Simplicity: Most of the solutions are relatively simple, especially the Excel

spreadsheets. If the software is well-documented, that also makes the solution

simpler.

• MAV-Scale Implementation: Some of the solutions were used in the academic

world to analyze UASs and MAVs. Some have real-world applications.

• Modifiability: Html-based tools, commercial software and some other freeware

cannot be modified. Sometimes, it is required to modify input files and maybe

subroutines as well.
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• Tool Functions: Some tools have only a single function whereas some of them

are very sophisticated and have many functions.

Based on those criteria, DATCOM (aerodynamics, stability and control), QPROP

(propulsion) and AVL (stability and control, aerodynamics) were chosen. They are

all well-documented and have sufficient theoretical background. The integratibility

problem was solved using batch files.

3.1 Major Component Descriptions

This section provides the descriptions of the programs and detailed information

on the components that have been used in this effort.

3.1.1 ModelCenter:“The Executive Control Program”. Phoenix Integra-

tion’s ModelCenter (MC) was designed as a model integration environment with its

companion application “analysis server” [11]. MC provides a flexible framework to

create an integrated design model and perform design optimization. Models and

applications from outside environments can be brought together into MC, and it

provides an intuitive graphical user interface (analysis view) to assist in building

larger system models. Trade-study tools (2D or carpet plots) graphically display

the data for the model that is being examined. In addition, MC has a wide va-

riety of plug-in components such as Catia, Converger, Darwin, Design Explorer,

Flames Analyze, Flames Execute, Gradient Optimizer, MATLAB, MathCad, NX,

Optimizer, Excel, ProE, QuickWrap and Script. Importing outside applications can

be achieved by direct interaction with MC or through analysis server connections [11]

via FileWrappers, ScriptWrappers and ExcelWrappers as seen in Figure 3.2. Import-

ing applications and applying plug-in features appropriately into the MCDA are the

primary focus of this multidisciplinary research.

In addition to those primary functions, there are some other add-on packages

available so as to provide additional optimization capabilities or existing tools can be
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Figure 3.2 Importing Applications into MC

wrapped into the MC environment (for more applications, see reference [50]). Here

is a list MC functions that were used in the development of the MCDA tool.

Outside applications:

• DATCOM Filewrapper

• QPROP Filewrapper

• AVL Filewrapper

• eHeli Excelwrapper

Plug-in applications:

• Aircraft Geometry Custom Plug-in

• MATLAB Plug-in (for various applications)

• Script Plug-in (for various applications)

Figure 3.3 summarizes the program environment and a short review of MCDA

operation in MC is as follows: Aircraft components are created in the Aircraft Geom-

etry (nose, body, aftbody, wing, horizontal wing, vertical wing, propellers) plug-in.
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For aerodynamics, DATCOM filewrappers (with a selectively running script com-

ponent) and MATLAB experimental data interpolation component; for propulsion,

QPROP filewrapper; for stability and control, AVL filewrapper; and for the power

requirement, eHeli Excelwrapper were created. There are a couple of MATLAB

plug-ins and script files that create proper inputs and outputs for those major com-

ponents i.e. filling the gaps between them. The geometry view not only provided

an intuitive picture of the model but also it helped to verify the geometry was be-

ing built properly. Using MC link editor, variables are linked in an orderly fashion.

Trade studies and modification based on the user defined inputs were made after

creating the entire model.

Figure 3.3 MC Work Space Overview

Some examples of the inputs are b, AR, planform type (Zimmerman, inverse

Zimmerman, Rectangular, Elliptical), flight velocity (u), AoA, temperature (Tcelc),

QPROP inputs such as battery capacity, maximum load voltage, speed constant

(Kv), zero torque current (Io) and resistance (R) for the motor. In fact, it is up to
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the user to select which variables are going to be inputs or outputs, because some of

the components allow the user to vary the inputs such as QPROP. Once every link

has been established, the user can trade-study any of those inputs mentioned versus

any output variable. Some examples are CL vs AoA, L vs Tcelc, R vs endurance,

etc. As seen, it is a very flexible environment with a lot of outputs for the user.

Switching between analysis view and geometry view helps the user see the effects

of the desired input visually. Also, carpet plots can be generated with two inputs

and any reasonable output. Since everything is linked together, MC runs the trade

study by pre-validating every single component which is linked to variables of interest

which makes it a very powerful tool.

3.1.2 Digital DATCOM. Digital DATCOM was used in primary design op-

erations for rapid and economical estimations of aerodynamic stability and control

characteristics that are frequently required. The fundamental purpose of the USAF

stability and control DATCOM is to provide methods for estimating stability and

control characteristics in preliminary design applications. It calculates static longi-

tudinal and lateral stability, dynamic derivatives and high lift and control surface

characteristics. Trim option is also available [39]. Basically, it allows the user to esti-

mate the design aerodynamic coefficients of an aircraft either from a design or for an

existing aircraft. A user defined input file is executed via digdat.exe then an output

file is created (Figure 3.4). See Appendix D.9 for examples of input, output and

filewrapper code and see References [39, 13] for more information about DATCOM.

There is a derivative of DATCOM called DATCOM+. It is available online,

with a front-end and back-end added to the original DATCOM for user convenience.

By adding a different format output section to the original program, the data is

output in various formats [2]:

• Free-format LFI tables, for plotting with LFIPLOT.

• XML format, compatible with JSBSim
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Figure 3.4 Digital DATCOM Operations

• AC3D Model

But there are some known issues with DATCOM+. One is that defining airfoils

manually (with upper and lower surface points), rather than using NACA numbers,

does not provide any output for the AC3D picture. The second one is that fuselages

are not drawn correctly if defined as other than a circular cross-section. Even with

these restrictions, it is still user-friendly and produces the same data. In the MCDA

tool, the original Digital DATCOM executable file is used. Using the plus (+) version

did not give any additional capabilities due to the user defined airfoil (flatplate).

Figure 3.5 Examples from DATCOM+ AC3D View [2]

DATCOM requires certain parameters as inputs that go into the calculations.

For example, DATCOM handles straight-tapered, cranked or double-delta wings.

For Zimmerman, Inverse Zimmerman and elliptical planforms, it is not possible to
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enter planform properties due to the limitation on inputs. Measures were taken to

alleviate this problem and geometry inputs were created using some assumptions.

Figure 3.6 DATCOM Input Results

The first assumption is that an equivalent trapezoidal wing planform based on

AR and b is sufficient and the second one is that the equivalent body based on fineness

ratio for a body can be used. Zimmerman planform geometries are generated by

joining two half-ellipses at the quarter-root-chord location. As plotted in Figure 3.6,

one ellipse has semi-major axis a3 and semi-minor axis a1 while the other has semi-

major axis a2 and semi-minor axis a3. Based on that calculation, a simple area rule

was applied to Zimmerman, ellipse planform geometry (i.e. equivalent trapezoidal

are for both of upper and lower half ellipses). A MATLAB m-file was generated for

that purpose and inserted into MC for the geometry analysis part of the model. The

results are tested in the DATCOM program and it was possible to observe the output

of the DATCOM input file by using Digdat P lot 2007 Plotter. Figure 3.6 shows the

planforms that were created for DATCOM via previously mentioned assumptions.

DATCOM outputs are also presented in the right hand side of the same figure in
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Figure 3.7 Flat Plate Profile

color. For the cases in this figure, Zimmerman, inverse Zimmerman and ellipse have

a taper ratio of 0.57 being close to a taper ratio of 0.45 which almost completely

eliminates the undesired effects for an unswept wing and produces a lift distribution

very close to the elliptical ideal [54] in classic aerodynamic applications.

There are three options to define an airfoil section in DATCOM: an airfoil

section designation (For NACA, double wedge, circular arc or hexagonal airfoils),

section upper and lower Cartesian coordinates or section mean line and thickness

distribution. Since the airfoil section in Torres research [59] was not defined with a

designation, section upper and lower Cartesian coordinates were created in MATLAB

and applied to DATCOM (Figure 3.7). All planform types in that research had

leading and trailing elliptical edges of 5-to-1 and thickness-to-chord ratios (t/c) of

1.96%. For the body shape, it is cylindrical based on the fineness ratio, but there is

an option to enter user defined body shapes manually in DATCOM too.

Also, the Digital DATCOM manual [39] warns of poor accuracy below Re∼= 105.

Parametric studies in the MCDA tool revealed that DATCOM would generate the

same aerodynamic data below Re∼= 105 and should not be trusted. Another test

case was run at very low speed for a rectangular planform with 8 in span, AR=2
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Figure 3.8 DATCOM Low Speed Test Run

and 4 inches of chord at 15 and 0.1 m/s and DATCOM failed to operate at 0.1 m/s

and only produced CL data (Figure 3.8).

Digital DATCOM is not capable of calculating aerodynamic coefficients at very

low Reynolds numbers, but there is an option to input experimental data such as CL,

CD and CM for the wing, body or combination of both. A DATCOM test case was

run at Re=100K, AR=2 for all planforms to compare the results with experimental

data. As shown in Figure 3.9, CL and CD curves had similar pre-stall tendencies

except for the rectangular planform CD. CM and post-stall results did not seem to

match at all because the DATCOM program was not designed to handle LAR wings

at very low Reynolds numbers.

As a result, in order to utilize DATCOM’s synthesizing capabilities, experi-

mental inputs (interpolated) were used within the database limits and extrapolated

up to a Reynolds number at which the result did not deteriorate very much. Beyond

that Reynolds number, options are to use DATCOM stand alone or to supplement

the database with additional experimental inputs. For example, CD and CM exper-

imental input data (extrapolated) are used and the CL is generated by DATCOM.
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(a) Expr.CL (b) DATCOM CL

(c) Expr.CD (d) DATCOM CD

(e) Expr.CM (f) DATCOM CM

Figure 3.9 Comparison of Experimental Results [47] and DATCOM
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3.1.3 QPROP. MAV propulsion systems must be as lightweight and effi-

cient as possible. Small-scale propulsion systems will have to satisfy extraordinary

requirements for high energy density and high power density depending on the mis-

sion. As long as there is no hovering requirement, fixed-wing propeller-driven MAVs

have been found to be the most energy efficient [46]. Technologies like MEMS, low

power electronics and component multi-functionality will help the performance of

propeller-driven vehicles [40]. The R/C community now has many examples of light

weight-hover capable or propeller-driven small indoor and outdoor vehicles.

In this research, battery driven propulsion systems for MAV prototypes are

examined and QPROP is integrated into MC. In general, different outputs can be

extracted, but those values are dependent on the selected motor, propeller and the

flight conditions, based on the inputs such as required thrust (Treq) and u (Fig-

ure 3.10). All of those different database files can be manipulated easily within the

MCDA using a fileWrapper component.

Figure 3.10 QPROP Operation

Drela’s QPROP predicts the performance of propeller-motor combinations and

assumes a brushed DC motor type, therefore it is limited. It also takes atmospheric

conditions into account. Most of the commercial programs use relatively simple
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propeller and motor models. QPROP has a relatively sophisticated and accurate

propeller aerodynamic model and a general motor model. QPROP has two pro-

peller/motor file formats: simple and advanced propeller/motor input files. Another

good feature of QPROP is that the user can create his own input data for the pro-

peller and motor. Although it has limited motor types, any motor model can be

coded in SUBROUTINE MOTORQ (in motor.f). Moreover for non-electric motors,

the voltage (V ), passed to MOTORQ, can represent any suitable power-control vari-

able, e.g. throttle setting, fuel flow rate, etc. [17, 18].

QPROP can be incorporated into MC via a filewrapper and can generate a wide

variety of outputs as shown in Figure 3.10. The user guide explains the propeller

aerodynamic model, QPROP theory, motor models and relations between equations,

measurements for sophisticated propeller geometry and blade airfoil. There are three

input files: fluid constant file, propeller file and motor file. Execution is performed

via a batch file which is also considered as an input file in the MCDA. QPROP can

be run in many different modes via single-point or multi-point runs. It was decided

that the MCDA tool use a single-point run execution instead of a multi-point run.

The reason for that is to keep the process simple and also, the MC parametric study

tool can be used to generate data as if it were a multi-point run. The MCDA

single-point run is based on the variables u and Treq. Finally, the results can be

viewed on the screen or dumped into a text file. Another single-point run QPORP

filewrapper was generated to evaluate QPROP in the parametric study tool in the

coaxial MCDA and it allows the user to operate QPROP with its all functions once

input files are supplied. See Appendix D.8 for examples of inputs, output and the

QPROP filewrapper.

3.1.4 AVL. AVL software is a vortex lattice code developed by Mark

Drela and Harold Youngren at the Massachusetts Institute of Technology (MIT).

Vortex Lattice Methods (VLM) like AVL performs reasonably well for aerodynamic

configurations which consist mainly of thin lifting surfaces at small AoA and side
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slips (β) [19]. It is usually used in simulator modeling and in general it has been

found useful for modeling unusual aircraft configurations [12] as seen in Figure 3.11.

Figure 3.11 AVL Geometry Input Example, UF MAV [57]

AVL needs three input files: geometry, mass and run-cases. Unusual geometries

can be defined in xxx.avl file and mass file (xxx.mass) requires a detailed analysis

of components for vehicle of interest. Run-case (xxx.run) file allows user to evaluate

the vehicle at various attitudes. As summarized in Figure 3.12, AVL generates the

following data: run case aerodynamic coefficients (Cltot, Cdtot, Cdind, Clff , Cdff ),

control surface deflections (for flap, aileron, elevator and rudder) and stability axis

derivatives (for wing, flap, aileron, rudder and elevator). See Appendix D.9 for

examples of inputs, output and the AVL filewrapper.

The geometry of an aircraft is specified as the locations of each lifting surface

of the aircraft including control surfaces. Moreover, airfoils can be created for those

surfaces by Drela’s XFOIL. Just for this purpose, Cloudcap Tech [12] company cre-

ated an AVL Editor application which allows user to create an AVL model using a
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GUI which can also call both XFoil and AVL. The geometry in AVL can be graphi-

cally represented in 3D, similarly to MC and the user can evaluate his/her inputs by

looking at the geometry view. The stability derivatives about the center of gravity

(CG) are calculated using the lifting surface geometry. The AoA or lift coefficient

of the aircraft can be varied for different flight conditions then the stability deriva-

tives are determined for each angular position [30]. See Reference [19] for detailed

information and Reference [12, 57, 30] for various applications.

Figure 3.12 AVL Operation

3.1.5 MATLAB/Excel. MATLAB (MATrix LABoratory) is a tool to do

numerical computations, display information graphically in 2D and 3D, and solve

many other problems in engineering and science. Some of the features of MAT-

LAB are: easy matrix manipulation, implementation of algorithms, implementation

of algorithms, plotting of functions and data, etc. Microsoft Excel consists of a

proprietary spreadsheet-application written and distributed by Microsoft and it has

calculation tools, graphing tools, pivot tables, and other features.

These tools have a great variety of applications that were incorporated into

the MC environment. Some examples are: experimental databases are in an Excel

spreadsheet, a MATLAB m-file was created to obtain numbers (data) from that
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spreadsheet and after that another MATLAB m-file created a 3D database and pro-

duced aerodynamic coefficients based on user-defined AR, Reynolds number and AoA

by interpolating and extrapolating. Another example is eHeli, an Excel spreadsheet

that was wrapped within MC.

For the author, these two tools have high importance. The reason for that is

MC handles Excel and MATLAB plug-ins very well. Any related research about

MAVs accomplished in MATLAB and Excel can be imported into the MC envi-

ronment with slight modifications. It is up to the researcher’s imagination which

variables or equations are going to be integrated into the tool. Eventually this will

help the integration process become very adaptive and flexible.

3.2 Major Component FileWrapper Structures

It is important to mention that the most significant challenges during the

development of MCDA were the filewrapper structures of DATCOM, QPROP and

AVL. The logic behind a filewrapper in MC is simple but manipulation of the input

files, constructing the executables via batch file and creating an output file made the

process very complicated. The logic behind the filewrappers and how they work is

as follows:

The FileWrapper utility enables users to create Analysis Server com-
ponents from file I/O programs. These components are often referred to
as FileWrapper components. A file I/O program is an analysis that has
one input file, an executable that can be run from the command line of
an operating system shell and one output file as in DATCOM example.
More complicated file I/O programs may have multiple input files and/or
output files (as in QPROP and AVL) associated with either a single ex-
ecutable or multiple executables. The FileWrapper utility is designed to
automate the execution of analyses that are based on file I/O programs.
A user can create a FileWrapper component that will automatically edit
the appropriate input file(s), run the executable(s), and parse the output
file(s) of an analysis whenever the component is executed by the Analysis
Server [50].
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Figure 3.13 summarizes the filewrapper structures of DATCOM, QPROP and

AVL in general. As explained in the previous paragraph, the fileWrapper component

will automatically edit the input file(s) on the left hand side of the figures, run the

executable or batch file in the middle and parse the results as seen on the right hand

side of the figures. As seen in Figure 3.13, DATCOM is the easiest to handle and

AVL is the hardest one in terms of inputs and outputs.

The latest version (v.8) of MC has a filewrapper plug-in called QuickWrap

which helps user create filewrappers with a user-friendly interface. The QuickWrap

is stored under the component plug-ins item of the Server Browser. Specifying the

input/output files and selecting the variables in QuickWrap can be done via three

ways: the auto-import tool, point-and-click specification and manual creation. See

the related Appendices D.7.3, D.8.3 and D.9.3 for filewrapper templates.
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(a) DATCOM Filewrapper Structure

(b) QPROP Filewrapper Structure

(c) AVL Filewrapper Structure

Figure 3.13 Filewrapper Structure Overview
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3.3 Integration of The Tools

In this section, the pieces of the fixed wing MCDA tool are explained. The

related code may be found in the corresponding Appendices. Components names are

arbitrarily chosen by the author during the code development and can be renamed

differently in future applications.

3.3.1 Geometric Properties. This function is accomplished under two com-

ponents which are the “Initial-Body Definition (MC component)” and the “Body

Definition (MATLAB)” depicted under the the component tree. Geometric prop-

erties of the vehicle for the equivalent wing and body were primarily needed as

inputs for DATCOM and aircraft geometry components, but used in several other

components as well.

Figure 3.14 Geometric Properties Overview

The “Initial-Body Definition” is the component where a user defines AR, span

(b) and planform type for the MCDA tool. There are also other inputs such as

dihedral, twist, tip and root thickness ratio, but they do not have a direct effect on

the MCDA analyses other than to change the geometry of the vehicle in geometry
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view. These extra inputs are in the predefined Aircraft Components (wing, elevator,

rudder, fuselage) and they are not incorporated into any analysis in the MCDA tool.

The second component is the “Body-Definition” m-file which calculates the

geometric properties, when AR, b and type (Rectangular, Zimmerman, inverse Zim-

merman and Elliptical) are defined. As summarized in Figure 3.15, the m-file will

output root chord (croot), tip chord (ctip), mean aerodynamic chord (c̄) and Y loca-

tion of c̄ (Ȳ ), sweep angle (Λ) and taper ratio (λ) of the respective wing planform

via a simple area rule based on the assumptions mentioned in Chapter 3.1.2. The

equations derived from those assumptions are as follows:

Sref =
b2

AR
(3.1)

a3 =
b

2
(3.2)

a1 = 3 ∗ a2 (3.3)

croot = a1 + a2 (3.4)

ctip = (a1 + a2) ∗ (
π

2
− 1) (3.5)

ctipupper = a1 ∗ (
π

2
− 1) (3.6)

c̄ =
2

3
∗ croot ∗

1 + λ+ λ2

1 + λ
(3.7)

Ȳ =
b

6
∗ 1 + 2 ∗ λ

1 + λ
(3.8)

Λ = arctan

[
a1 − ctipupper

a3

]
(3.9)

λ =
ctip
croot

(3.10)

Rectangular and ellipse planform parameters are inherently easy to find due to

symmetry. The (inverse) Zimmerman planform geometries are generated by joining

3-20



two half-ellipses at the quarter-root-chord location. One ellipse has semi-major axis

a3 and semi-minor axis a1 while the other has semi-major axis a2 and semi-minor

axis a3.

Figure 3.15 Geometry Calculation Overview

3.3.2 Atmospheric Model. This component is named as “Air Properties

in SI Units”. The Atmospheric Model Component is an intermediate component

which will calculate the air properties at operational conditions when user defines

the ambient temperature (Tcelc).

There is only one direct user input which is Tcelc. Then temperature in Kelvin

(Tkel), pressure (P) and speed of sound (a) are calculated via the following equa-

tions [8]. (R= 287 and γ= 1.4)

Tkel = Tcelc + 273.15 (3.11)

P = ρ ∗R ∗ Tkel (3.12)

a =
√

(γ ∗R ∗ Tkel) (3.13)
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The variables density (ρ), kinematic viscosity (ν) and dynamic viscosity (µ)

are interpolated in a MATLAB plug-in based on the database in Figure 3.16 of air

properties in SI units.

Figure 3.16 Properties of Air [6] and Atmospheric Model Component Overview

Consequently, those outputs are used as flight condition inputs (in the QPROP),

the calculation of forces (in the Flight Data Component) and finding M, a, Re num-

ber (in the Flight Parameter Component).

3.3.3 Experimental Aerodynamic Data Interpolation/ Extrapolation. This

function is accomplished under the “Aero-Block” component. The idea behind the

Aero-Block was that DATCOM would not produce good results at very low Reynolds

numbers as specified in the manual. However, there is an option in DATCOM that

the user can input their experimental data in order to override the DATCOM results.

Extensive experimental data was needed for that purpose. Figure 3.17 summarizes

the Aero-Block component.

The aerodynamic data on various airfoil geometry and wing planform of the

lifting surfaces are very important. Due to the lack of these type of data, phys-
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ical or numerical experiments are needed. Drag calculation is more difficult due

to the order of magnitude being smaller than the lift. LAR wing theory and

experimental data by Mueller and Torres have been used to analytically predict

the performance of the MAV [46]. For very low Reynolds number aerodynamics,

Mueller and Torres [47] conducted experiments on LAR wings and they collected

data for rectangular, Zimmerman, inverse Zimmerman and elliptical planforms, ARs

of 0.50, 0.75, 1.00, 1.25, 1.50, 1.75 and 2.00 and Reynolds numbers of 70K, 100K

and 140K. Details of the experimental setup and how it was conducted can be ex-

plored in the related references [47, 59]. Those experimental data was converted into

a more functional format and processed in order to be utilized in the MCDA tool.

Figure 3.17 Aero-Block Overview

Steps are as follows:

• Experimental Data [47] for DATCOM EXPR input

The experimental data from Torres and Mueller is provided in an Excel file

and had CL, CD and L/D tabulated as a function of α for the rectangular,

Zimmerman, inverse Zimmerman, and elliptical planforms of ARs 0.50, 0.75,

1.00, 1.25, 1.50, 1.75, and 2.00. The Reynolds numbers available were 70K

and 100K based on croot. Also the 95% uncertainty bounds were listed for

CL, CD and L/D which were labeled as dCL, dCD and dL/D, respectively.
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The second Excel spreadsheet had CN and CM in a similar fashion except that

the Reynolds numbers were 100K and 140K.

• Rearrangement of Experimental Data

Rearrangement of the data was needed for acquiring them automatically via

MATLAB functions. In order to do that, CL, CD and CM data were extracted

from related columns and three separate Excel spreadsheet were created under

each aerodynamic coefficient name (data tabulated in a similar way mentioned

above). There was one additional change to the CL Excel spreadsheet which

is CL data at Reynolds number 140K. Data for CL at 140K was calculated

from normal force coefficient (CN) data vs α at 140K [9]. The same procedure

was not applied to the CD data because there was an unknown axial force

component associated with wind the tunnel data [9].

• Data Acquisition from Excel files

This step was accomplished by using the “xlsread” function in MATLAB and

saved as “xxx.mat” for future data callings.

• Interpolation/Extrapolation of the Experimental Data

The planform names were given a type number (Type 1 Rect - Type 2 Zim

- Type 3 Inv Zim - Type 4 Ellip). A MATLAB m-file was generated for

interpolation and extrapolation based on the type of planform, AR, Reynolds

number and α. An example of the interpolation function in MATLAB used

for CL after calling the related planform Cl.mat file is:

CLi=INTERP3(ARX , alphaY , ReZ , CL, ARr, alphar, Rer, ’spline’)

• Visual Data Check

It was important to check if the database was created properly and Figure 3.18

has examples of a 4D plot of the experimental CL, CD and CM for Zimmerman

planform. Plots were created by Jayaraman’s m-file [31] in order to check the
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meshing process results visually. Customizable four-dimensional plots were

created using MATLAB’s function “slice” by Jayaraman.

Figure 3.18 Interpolated CL, CD, CM data for Zimmerman Planform

Now CL, CD and CM can be extracted for any Reynolds number, AR and

α within the data limits. Extrapolating also can be done but the results seems to

vary a lot. Those interpolated data then were used as experimental inputs for DAT-

COM at low Reynolds numbers. Procedures that were followed for aerodynamics

are summarized in the MCDA tool in Figure 3.19.

3.3.4 Determination of Aerodynamic Coefficients. This function is accom-

plished by one of two components which are selectively run according to an MC

“Switch” and “Aero-Coefficients” components. The logic behind selectively running

an MC script is that it will run one of the two different DATCOM filewrappers

dependent upon the Reynolds number.

As seen in Figure 3.20, Selectively Running MC “Switch” component consists

of three subcomponents which are: digdat MAV filewrapper (with experimental CL

and CD overriding), digdat MAV CL only (with experimental CD overriding) and
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Figure 3.19 Steps followed for Aerodynamics

Figure 3.20 Selectively Running MC Switch and Aero-Coefficient Components
Overview
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a script file that determines which filewrapper to be used. Since the experimental

data were available up to Re=140K and we want to extend the capabilities further,

DATCOM results above a predetermined Reynolds number was used. Below that

Reynolds number, Aero-Block generated experimental CL, CD and CM data would

override DATCOM results. Some extrapolation cases were run in the parametric

trade study tool in the development of Aero-Block Component and it was found

that CL data would deteriorate too much once a Reynolds number was picked well

above the experimental data limit (Re=140K) but CD and CM would not be affected

as much as in CL case.

It is important to mention DATCOM operations. DATCOM is run via a

filewrapper in the MC environment. There is only one input file and one output

file. Although the user can define many variables for various calculations, DATCOM

operation is kept simple and can be subject to change based on the user requests. It

should be noted that filewrappers will only change the parameters that are specified

in them but an actual DATCOM, AVL or QPROP input file(s) require several vari-

ables. So those variables other than those specified in filewrappers can be thought

as “frozen variables”. Although they are frozen, they have a direct effect on the

results and user has to be cautious when configuring filewrappers and templates

for filewrappers. The DATCOM filewrapper in the MCDA tool has the following

variables:

• Flight conditions: M, Re, α

• Options: Reference area (Sref ), b

• Components: Wing Apex (X location), Wing Apex (Z location), CG (X loca-

tion), CG (Z location)

• Fuselage: Fuselage cross section locations, Radius at cross section locations

• Wing: croot, ctip, λ, semi-span (b/2 ), exposed semi-span (b/2 )

• Experimental data input: CL, CD and CM or CD and CM
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• Results (Aerodynamic coefficients): CL, CD and CM

It is possible to extend the current DATCOM filewrapper capabilities. Some

of them are: dynamic derivatives for body, wing, wing body, wing-body-tail config-

urations; longitudinal trim data (for control device on wing or tail and all-movable

horizontal stabilizer); power and ground effects; static and dynamic stability output

(static longitudinal and lateral stability, dynamic derivatives). However, it is ques-

tionable if those applications can be used in MAV design or not due to the LAR wings

at low Re numbers and propeller-induced flow characteristics. In the MCDA tool,

only CL, CD and CM parameters are compared to experimental results. Therefore

there are many options that can be discovered and accomplished in future research.

At least, it is believed that some of the procedures can be used in MAV design. See

reference [39] for DATCOM capabilities.

“Aero-Coefficients Component” is a companion component to the Switch com-

ponent and it simply mirrors the CL, CD CM and L/D data in an organized fash-

ion. These coefficients are used in lift (L), drag (D), and moment (M ) calculations

(Flight-data Component).

The Switch component might seem too complicated to the reader but this

decision is given after taking too many constraints into account (assumptions, re-

strictions, limitations) for the project’s progress. Aerodynamics was the most chal-

lenging part of this research. Priority was given to using experimental data which

would have 3D effects.

Consequently, a tool that would calculate aero-coefficients is required for quick

trade studies in future applications for the conceptual design of MAVs. The options

are experimental data in a range that covers the entire flight regime of the MAV of

interest, a AVL type-VLM code, a DATCOM for MAVs or some other codes such as

XFOIL, XWING. Then those options would replace this complicated process.
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3.3.5 Flight Parameters and DATCOM Input Converter. Flight Parame-

ters Input Block is an intermediate component which will calculate the parameters

related to the flight regime. Also there are two subcomponents which will prepare

variables for DATCOM operations.

Figure 3.21 Flight Parameters Component Overview

As summarized in Figure 3.21, the direct user inputs are u, α and the indirect

inputs are croot (from right wing chord in inches), and ν (from air properties block in

SI units). Then the Reynolds number and M are calculated within this component

via the following equations:

Re =
u ∗ croot ∗ 0.0254

ν
(3.14)

M = u/a (3.15)

Also, there are two subcomponents named the “MC inputs for DATCOM” and

the “DATCOM inputs” and their functions are as follows:

• MC inputs for DATCOM: The M, b, croot, ctip, Λ, Sref , Xcg, Zcg ,Xw and

Zw are variables for DATCOM, gathered in this subcomponent in order to
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prepare variables for DATCOM operations. Refer to DATCOM manual [39]

for input descriptions.

• DATCOM inputs: After manipulation, same variables are gathered in this

subcomponent in order to keep track of the variables that will feed the DAT-

COM filewrappers.

In the MCDA tool, a user defines u and α under this component when running

parametric trade study tool.

3.3.6 Flight Data Component. Flight Data component consists of two

subcomponents which are the“Inputs for Forces” and the“Flight Data” results.

Figure 3.22 Flight Data Overview

The “Inputs for Forces” subcomponent gathers the relevant variables, i.e. ρ,

u, Sref , AR, b, CL, CD and L/D. Those variables are used in the calculation of

L, D, approximate weight (Wappx), αstall, and thrust (T ) under the“Flight data”

subcomponent via the following equations after units were matched (g=9.807):

L =
1

2
∗ ρ ∗ u2 ∗ CL ∗ Sref (3.16)

D =
1

2
∗ ρ ∗ u2 ∗ CD ∗ Sref (3.17)

αstall = −10 ∗ arctan[4 ∗ (AR− 1.25)] + 28 [47] (3.18)
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(
T

W

)
cruise

=
1

(L/D)cruise
[54] (3.19)

Treq =
Wappx

(L/D)
(3.20)

While using thrust matching, it is assumed that thrust is aligned with the

flight path. In unaccelerated flight, the thrust must be equal to the drag; likewise,

the weight must equal the lift [54]. In reality, there is a contribution of the dynamic

thrust generated by the propeller to L and D.

3.3.7 QPROP. This component is the propulsion part of the the MCDA

tool and it is highly sophisticated. The MCDA QPROP filewrapper is a simplified

version that a user can tailor based on the different approaches to the propulsion

part of the MCDA tool.

In the MCDA tool, QPROP will generate results based on the Treq and u.

The u is a direct input by the user but Treq is calculated via Eq. 3.20. Then these

inputs feed into QPROP and it will make its evaluation based on motor, propeller

geometry and atmospheric conditions. These input files can be manipulated in MC

environment as well. Finally, QPROP will generate the following data:

• Velocity (u) = V

• Propeller RPM (ω)

• Pitch Change in Degrees (Dβ)

• Propeller Thrust (T )

• Propeller Torque (Q)

• Shaft Power (Pshaft) = Q ∗ w and w = RPM ∗ π/30

• Motor Voltage (V )

• Motor Current (I )
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• Motor Efficiency (ηmot)

• Propeller Efficiency (ηprop) = T ∗ V
Pshaft

• Advance Ratio (adv) = V
w∗R

• Thrust Coefficient (CT ) = T
1
2
∗ρ∗(w∗R)2∗π∗R2

• Torque Coefficient (CP ) = Q
1
2
∗ρ∗(w∗R)2∗π∗R3

• Slipstream Velocity Increment (DV )

• Overall Drive Efficiency, eff (η) = ηmot ∗ ηprop

• Electrical Power (Pelec) = amps*volts = I*V

• Propeller Power (Pprop) = V*T

• Power-Weighted Average Local (clavg)

• Power-Weighted Average Local (cdavg)

Manually running the QPROP is a very tedious process and getting results

requires some effort. This process is simplified in MC so that the user can easily run

the cases.

Figure 3.23 QPROP Overview

QPROP component consists of the following subcomponents as inputs:

• Flight Conditions: ρ, µ, a
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• Motor Inputs: R, Io, Kv

• Propeller Inputs: Blade number, tip radius

• Radius (r): for seven different cross sections

• Chords (c): for seven different cross sections at different radius

• Beta Angles (β): for seven different cross sections at different radius

• Velocity (u): Flight Velocity (i.e. incoming velocity to the propeller)

• Thrust (Treq): Required Thrust (i.e. thrust that propeller is supposed to gen-

erate)

QPROP component consists of the following subcomponents as outputs:

• PROP erties: ω, Q, Pshaft, V, I, ηmot, ηprop

• Extra Properties: adv, CT , CP , DV, η, Pelec, Pprop, Clav, Cdavg

Some of the relations used in the QPROP subroutine are:

Q = (I − I0)/Kv (3.21)

w = (V − I ∗R) ∗Kv (3.22)

P = w ∗Q = (V − I ∗R) ∗ (I − I0) (3.23)

eff = P/(I ∗ V ) = (1− I ∗R/V ) ∗ (1− I0/I) (3.24)

General discussion about QPROP is given is Section 3.1.3. QPROP is run via

a filewrapper and is not a single-input/single-output type of tool. Flight conditions,

motor, propeller and the batch file that runs the QPROP are all separate input files

comprising many variables [17]. Although there are many data generation options

in QPROP, the author restricted the QPROP Batch file run case only to Treq and u

in the MCDA analysis.
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3.3.8 Power Performance Calculator. This component calculates the en-

durance in minutes via an Excel spreadsheet called eHeli. It was originally designed

for small rotary vehicles but adapted to the MCDA tool. The Current Cell in the

eHeli spreadsheet is overridden with the QPROP current output. There are more

complicated spreadsheets with databases available online like Power System Com-

parison [4] from the same source eHeli. Instead of using a spreadsheet like eHeli, a

MATLAB m-file could have been used. But implementation of Excel spreadsheets

might be more useful for future research in MC, since they are widely used in the

R/C community.

Figure 3.24 eHeli and Power Calculator Overview

The Power Performance calculator has two subcomponents which are the “mo-

tor” and the “battery properties”. For the motor, the Kv, I0 and Rm are input values;

for the battery, capacity and max loaded voltage are the inputs. Motor properties

also are fed into QPROP. Once QPROP runs and gives out the results, it feeds the

power calculator with Ireq (current). Then the power calculator uses motor, battery

and Ireq as inputs. Finally it will calculate the endurance in minutes.
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3.3.9 AVL Operations. This component is used as the stability and control

part of the MCDA tool. AVL operations are accomplished under two components;

“AVL Inputs” and “AVL MAV”.

The function of the “AVL Inputs” components is to gather and produce inputs

for AVL. There are three subcomponents under the AVL Inputs named wing, hor-

izontal stabilizer and vertical stabilizer. In the AVL manual, there is a caution for

the modeling of bodies and it recommends leaving the body out of the AVL model if

a fuselage is expected to have little influence on the aerodynamic loads. Therefore it

was decided to leave the body out in the AVL component. Although many geometric

variables from other components are linked to the “AVL Inputs” for the geometry

generation, not all of them are defined. So missing variables for the geometry are

calculated in this subcomponent. For instance, x, y, z locations for wing, h-stab and

v-stab sections are calculated from sweep (Λ) and semi-span (b/2 ). Similarly, ctip

for h-stab and v-stab are calculated from taper ratio (λ) within this subcomponent.

“AVL MAV” is the core of stability and control analysis of the MCDA tool.

It was the last piece added to the MCDA tool by the author and the most chal-

lenging one. This filewrapper has a unique structure and may serve as an example

to other filewrapper operations. AVL has three input files: geometry (xxx.avl),

mass (xxx.mass) and run-case save (xxx.run) input files as illustrated in Figure 3.12.

Those input files are very detailed, only the geometry input file is mostly integrated

into the MCDA. By saying mostly, the author means there are many other options

that a user can specify for the geometry and this is true for the other input files

in AVL. For example, creating the mass file itself a requires great effort by defining

mass, x, y, z location, Ixx, Iyy, Izz, Ixy, Ixz and Iyz for every single component on

the vehicle i.e. nose, wings, rudder, wing connectors, battery, propeller, servos, rods,

cables, pins, pods, autopilot and camera. But instead of typing those parameters

manually, the MC environment can be used in future applications to generate these

inputs as in the geometry (xxx.avl) input file example of the MCDA tool.
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Figure 3.25 AVL Geometry defined in the MCDA Tool

Figure 3.25 illustrates the MCDA MAV geometry file (mtrn MAV.avl) con-

struction. For the wing, a partial-span control surface was specified by defining two

panels, i.e. three sections, which have a flap over the inner panel and an aileron over

the outer panel, whereas the rudder and elevator have only one panel, i.e. two sec-

tions. The CONTROL keyword in AVL geometry declares that a hinge deflection at

this section is to be governed by one or more control variables. An arbitrary number

of control variables can be used (but limited). Also non-symmetric control effects,

such as Aileron Differential, can be specified in the geometry file. See avl doc.txt file

for a detailed description of input files [19].

AVL is normally executed from a command prompt but a batch file was created

in order to integrate AVL into the MC environment. After the input files are pro-

cessed, AVL will open up the main window where the user can pick different menus

and under each command, there are sub-menus with many options. For instance,

Oper menu has the following options:
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• Select run case

• List defined run cases

• Add new run case

• Save run cases to file

• Delete run case

• Fetch run cases from file

• Name current run case

• Write forces to file

• Execute run case

• Initialize variables

• Geometry plot

• Trefftz Plane plot

• Stability derivatives

• Total forces

• Body-axis derivatives

• Surface forces

• Reference quantities

• Strip forces

• Element forces

• Design changes

• Strip shear & moment

• Options

• Hinge moments

It is a highly complicated process so two batch files that would simplify this

process were needed. One of the AVL batch files runs AVL executable, loads xxx.avl,

xxx.mass and xxx.run input files and runs the second batch file in order to operate

inside the AVL menu. The second batch file opens up the Oper sub-menu, overrides

the roll, pitch, yaw rates and flap, aileron, elevator, rudder deflections finally setting

the AoA to the desired value. Based on these inputs, the next command in the

batch file runs the execution and has the AVL print out the results in the user-

defined text file (mtrn MAV results.txt in MCDA). Once the results are printed,

the AVL filewrapper searches for predefined slots in the results file and fetches the

desired data. Results are as follows:

• Run Case Aerodynamic Coefficients: Cltot, Cdtot, Cdind, Clff , Cdff , e
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• Control Surface Deflections: Flap, aileron, elevator, and rudder deflections for

the desired flight condition

• Stability Axis Derivatives: CLa, Cya, Cla, Cma, Cna, CLb, Cyb, Clb, Cmb,

and Cnb are displayed in MCDA but there are other stability derivatives

available and filewrapper can be adjusted to the user request. They are

CL, Cy, Cl, Cm, and Cn values for the roll rate (p’), pitch rate (q’), yaw

rate (r’), flap, aileron, rudder and elevator. Also Trefftz Drag and span effi-

ciency for the flap, aileron, rudder and elevator are displayed and the neutral

point is calculated. As seen there are many outputs and a user can tailor the

filewrapper to their needs, get data easily and relay it to another component.

After MC runs the AVL filewrapper, all input files must have changed accord-

ingly, so AVL can be run manually with already manipulated input files, i.e. the

user does not have to create input files. If the user wants to view the AVL geometry,

AVL should be used from the command prompt and the procedures mentioned in

the manual should be applied. Figure 3.26 and 3.27 shows some of the functions of

the AVL geometry view. These plots were taken after running MC i.e. MC changes

the xxx.avl geometry as expected.

As mentioned in reference [12], difficult-to-model aircraft parameters can be

obtained from AVL and Cloud Cap Technologies has used AVL to model almost 20

aircraft and it has in general performed very well. Drela explains the limitations in

the avl doc.tex file which comes with the program [19].
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(a) AVL in General

(b) Normal Vectors

(c) Wing Loading

Figure 3.26 AVL Geometry View Examples 1
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(a) Trails and Wing Loading

(b) Trefftz Plane Analysis

Figure 3.27 AVL Geometry View Examples 2
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3.3.10 Aircraft Components. MC comes with basic components and shapes

for visualization. It has predefined geometric shapes such as block, cone, cylinder,

sphere, arrow and some more generic shapes. There are also custom-built compo-

nent packages such as Aircraft Geometry which is utilized in the MCDA tool. One

important thing to mention here before explaining any of the details is that, in gen-

eral, MC Geometry view is not designed as a computer aided design (CAD) tool. It

is intended to give user an intuitive interface to ascertain whether parameters rep-

resent the expected values, either input or output. Aircraft Geometry component

in MC was built in that sense as well. It has nose section, mid-section, aft-body

components as the fuselage of the aircraft, wing or multisection-wing components as

the main wing, horizontal wing, vertical wing or canard types. They are represented

in a primitive way in the geometry view as seen in Figure 3.28. For example, when

b and croot is increased, immediately after that the changes can be observed, but if

the wing profile is changed, it can’t be observed in the geometry view. The same

type of restrictions apply to the fuselage. Only elliptical or circular types of body

shape can be entered. Therefore, wing volume and wetted surface areas cannot be

calculated properly without having the complete geometry. These type of limitations

were also reviewed by Dittmar [16] and he wrote several MATLAB codes to allow

the calculation of wing volume and surface areas and created super-elliptical fuselage

shapes. He also evaluated the General Geometry Generator (GGG) version 2.0 for

potential use and inclusion into MC.

Even with all those restrictions, Aircraft Geometry Component package is very

useful for a generic aircraft in order to manipulate the respected data easily and visu-

alize the work. Now properties that can be input in Aircraft Geometry components

will be presented.

• Nose: Dive angle, geometry (in axis system), number of cross sections (when

changed, no effects were observed by the author), length, radius-1 and radius-2,

shoulder and tip angle.
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• Mid-Section: Dive angle, geometry (in axis system), length, number of cross

sections, radius-1 and 2 for defining the first cross section, radius-3 and 4 for

defining the last cross section (either ellipse or circle).

• Aft-Body: Geometry, angle-1 and 2, length , number of cross sections, radius-

1 and 2 for defining the first cross section, radius-3 and 4 for defining the last

cross section (either ellipse or circle).

• Wing: AR, (t/c)tip, (t/c)root, Sref , dihedral angle, number of cross sections,

croot, ctip, b, Λ, λ, twist angle, type (4-wing, 5-htail, 6-vtail, 7-canard)

• Multi-Wing Section: (t/c)tip, ctip , number of sections (operational with

some restrictions), b, Λ, twist angle. These values are input as array of numbers

up to 5 different cross sections.

Figure 3.28 Aircraft Geomerty Component Overview

As seen from the component properties, a generic aircraft can be created in MC

with some limitations. It is possible to enter each value by hand or by linking with

Link Editor (one of the most powerful features of MC). Every aircraft component

in the MCDA tool is linked together and once the MCDA user defines the initial
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parameters via the Geometric Properties Calculator, it will automatically calculate

linked components and will display in geometry view.

3.3.11 Propeller Geometry. The propeller geometry was created with the

Multi-Wing Section component by the author, since there is no specific component

for propulsion. It is less detailed than QPROP, which has highly sophisticated pro-

peller geometry. Therefore, the propeller geometry component is not capable enough

to cooperate efficiently with QPROP with only five cross sections embedded in the

multi-wing section component. As mentioned before, the MC geometry view was

not designed as a CAD tool; some script and MATLAB plug-ins can alleviate this

problem. As a second option, manually changed input files for QPROP can be used

before running the MCDA. The second method was used in the MCDA tool (due

to time restriction), although it is controversial to the philosophy behind using MC.

A user should be able to change all the parameters within the MC environment.

Once the database input files in QPROP are standardized, the data will be easily

manipulated in the MC environment in future research. As an example, propeller ge-

ometries in QPROP database propeller files have different numbers of cross sections.

When a filewrapper is generated, the user is limited to the number of inputs stated

in filewrapper and if another propeller input file has different number of parameters,

then it will not be possible to use the already created filewrapper in MC, because it

will not be able to match the pre-defined and actual input file variables.
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4. Results and Analysis

This chapter includes the evaluation of experimental data interpolation performance

of the MCDA tool, validation of the MCDA tool using BumbleBee MAV, a coaxial

prototype analysis with related changes to the original tool, and the QPROP tool

performance analysis (without validation). Some of the results are presented in the

related Appendices.

4.1 Experimental Data Interpolation/Evaluation

This section includes the evaluation of the experimental data created by the

Aero-Block (experimental interpolation) component in the MCDA tool. Initially,

it is shown that interpolation of Torres and Mueller’s [47] experimental data was

accomplished with a properly created data set. In the second part, Marek’s ex-

perimental data was compared with the outcome of the Aero-Block and DATCOM

component.

4.1.1 Aero-Block Performance Evaluation. Figure 4.1 has the comparison

of the actual experimental data created by Torres and Mueller and aero-block gen-

erated data. Aero-block generated data should match the experimental data and

moreover, it should correctly interpolate the data.

Some parametric trade studies were run in MC for each planform separately.

As previously mentioned, in order to get results from the aero-block, user has to

define AR, Re and AoA. The parametric study tool has a plotting feature, but to

show all planforms in a single plot, the results were exported into the MC xxx.cvs

file and then plotted using MATLAB.

Figures 4.1(a) and 4.1(b) are the actual experimental CL data of all planforms

with AR=1.5 and AR=1.75 respectively at Re=100K which were picked from the

final report of Torres and Mueller [47] for comparison. Figures 4.1(c) and 4.1(d)
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(a) Lift Coefficient AR=1.50 [47] (b) Lift Coefficient AR=1.75 [47]

(c) Lift Coefficient AR=1.50 (d) Lift Coefficient AR=1.75

(e) Lift Coefficient AR=1.625

Figure 4.1 Experimental Data [47] and MCDA Aero-Block Generated Experimen-
tal Data
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are the aero-block generated experimental data plotted in MATLAB. As seen in

related figures, they match the experimental data. Finally, Figure 4.1(e) shows

the interpolation of the CL data of inverse Zimmerman planform with AR=1.675 at

Re=100K and interpolation occurred between AR=1.5 and AR=1.75. Consequently,

it produced the results as expected. See Appendix B for 3D MCDA interpolation

results for the inverse Zimmerman planform.

4.1.2 Experimental Data Cross-Validation. Marek [38] conducted some

wind tunnel experiments similar to Torres [47] and created a database for his design

and optimization instead of using VLM or some sophisticated CFD codes. Therefore,

he used a method based directly on data from wind tunnel experiments. In his wind

tunnel experiments, the method was validated for higher Reynolds numbers than

described in Torres [47]. The present research focuses on the topic using same type

of approach but with a multidisciplinary tool. Marek’s results are compared to

MCDA and DATCOM results in Figure 4.2. Experimental setup included inverse

Zimmerman planform, 30 cm b, 3.1% t/c, AR=1.66 and Re=140K.

The b, AR and type were entered in the MCDA tool and parametric study was

run to find the velocity that would give the Re=140K at Tcelc = 15. After finding

u= 8.886 m/s and M =0.026, two separate parametric trade studies were run for

Aero-Block and DATCOM to compare the aerodynamic coefficients. Figure 2(a)

has Marek’s CL, CD and L/D results for the given configuration. Figure 2(b) has

CL, CD vs α of the MCDA and DATCOM. Figure 2(c) has L/D vs α of the MCDA

and DATCOM. For the current case, MCDA interpolated its own database based on

Torres’ work and DATCOM was run by MCDA via assumptions, whereas Marek’s

results are directly from wind tunnel tests. The findings are:

• MCDA CLmax was 18 % higher in magnitude than Marek’s and was not within

the error bars. However, stall AoAs almost matched. DATCOM CLmax was
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6% higher in magnitude than Marek’s being within the error bars. Stall AoAs

had the same tendency.

• MCDA CD was slightly higher after 12◦ of AoA but DATCOM CD was within

the error bars up to stall AoA.

• L/Dmax=7.2 occurred at about 6◦ AoA in Marek’s results. MCDA results

were uneven due to interpolation and MCDA L/Dmax=7.4 at 4◦ AoA. After

polynomial curve fitting, MCDA L/Dmax was about 7 at 5◦ AoA (within 3 %

of Marek’s results). DATCOM L/Dmax, unexpectedly very low, was about 5.2

at 6◦ AoA (within 28 % of Marek’s results).

Overall, MCDA results are believed to be in good approximation with all the

assumption taken. DATCOM produced reasonably good results for a 30 cm-wing.

The MCDA L/D ratios are very sensitive at lower AoAs so the user has to be

cautious about the jumps in L/D and take appropriate action by deleting invalid

run parameters.

4.2 Validation of The MCDA Tool Using BumbleBee MAV Prototype

Marek also designed a code to optimize the wing geometry of the MAV and his

optimization code was expected to find the best wing geometry within the constraints

set by the user. He created a prototype called “BumbleBee” with his predefined

geometry parameters. BumbleBee had L/Dmax of 5.66, b of 376 mm, Hacker A10−

9L electric motor, 1320 mAh Lipo battery and HackerX7 10A speed controller with

generic 6x4 propeller. Its endurance was calculated by MotoCalc as 23 minutes at

85 % throttle settings. The total weight of the BumbleBee was 305 g and it had an

inverse Zimmerman wing planform. Some flight tests were carried out and for an

approximate cruise velocity of 15.4 m/s, maximum flight time logged was 19 minutes.

The cruise speed and endurance were close to his initial design parameters.

The BumbleBee geometry and the other parameters were matched and run in

the MCDA. Motor properties for the same motor [3] and the same battery parameters
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(a) Marek’s Test Result [38]

(b) CL, CD vs α

(c) L/D vs α

Figure 4.2 Comparison of Test Results [38] to Aerodynamic Coefficients Generated
by MCDA
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Figure 4.3 MAV Weights vs Span derived from [51, 38, 46]

were applied. The actual weight of the vehicle was higher than the estimated weight

according to Figure 4.3, so it was set to the actual weight of BumbleBee in the

MCDA tool.

The propeller geometry chosen from the QPROP database, cam6x4 (Graupner

CAM 6x4), was selected as the closest geometry in size. A factor of 1.2 is used to

account for the additional power loads (e.g. avionics, servos, transmitter, wire resis-

tance, etc. ). Figure 4.4 shows the steps followed in the evaluation of the BumbleBee

MAV. The flight conditions, geometry and propulsion data were set based on the

parameters mentioned above and initial geometry was confirmed by looking at the

Geometry View of MC. The L/D vs AoA case was run by the parametric study tool

in MC and L/Dmax value was 4.5 at 9◦ AoA and 12 m/s velocity. The geometry

used by DATCOM was also checked for discrepancies with MC. The matching plan-

forms are shown at the right lower corner of Figure 4.4. Since Reynolds number

was higher than the database limits, extrapolation was used within the code. The

CL(CD) curves are compared in Figure 4.5 (Marek’s result on the left and MCDA

result on the right) and results are a little different than each other which is expected
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Figure 4.4 BumbleBee MAV Evaluation in the MCDA Tool

since Reynolds number was higher then the MC database limits and extrapolation

was used within the code. Finally endurance of 20.4 minutes (within 7.4 % of the

maximum logged flight time of the BumbleBee MAV) at 9210 RPM with a thrust of

0.672 N was found. Consequently, endurance result closely matched the Bumblebee

result.

Figure 4.5 BumbleBee and MCDA CL vs CD
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4.3 Coaxial MAV Prototype

In this section, a coaxial MAV prototype in the MCDA tool is evaluated after

some modifications to the single-propeller version.

4.3.1 Coaxial MCDA Tool. The proposed mission type had two types of

mission profiles: forward flight and hovering flight. The MCDA tool was created for

single-propeller MAVs. It is modified to evaluate the hovering flight phase. Based

on the literature review, counter-rotating propellers would provide torque control on

the vehicle while hovering. There are some state-of-art R/C vehicles with additional

controls. As an example, Blade mCX is one of the off-the-shelf micro helicopters

with coaxial counter-rotating blades. It has a total weight of 28 g (1.0 oz). It

delivers flight times of 6 to 8 minutes, while full, 4-channel control provides the

precision needed for flying in tight indoor spaces. It has a unique 5-in-1 control unit

with combination of main motor electronic speed controls, mixer, gyro, servos and

receiver [1]. It also has two additional motors to move the swash plate up/down

and left/right which provides exceptional maneuverability. A similar approach was

imagined for the proposed mission profile in the hovering phase.

The MCDA tool was modified (Figure 4.6) to have two counter-rotating pro-

pellers. As a starting point, the same type of propeller and motor as in Bumblebee

was used in the evaluation. The modifications are:

• Another propeller and a shaft were added in the geometry section for visual

validation.

• Two additional components were created under the name of Forward and Hover

Coaxial Propulsion. Each propeller has its own QPROP filewrapper and they

feed the Power Calculation spreadsheet together for the endurance.

• Modified “Flight Data” component provides thrust (T ) and velocity (u) for

each of the propellers i.e. separate QPROP components. Two subcomponents
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were added to “Flight Data” component: “hovering data” and “forward flight

data”. For the hovering phase of flight, Treqtotal
=Wappx and u=0. For the

forward flight phase Treq=
Wappx

(L/D)max
∗ g

1000
for a given u.

QPROP, Flight Data, Power Performance Calculator and Propeller Geometry

components have exactly the same variables and are explained in Chapter 3.3 in

detail .

Figure 4.6 Modifications to MCDA for Coaxial Configuration

4.3.2 Analysis of the Coaxial Prototype. After modifications were applied,

a MAV with inverse Zimmerman wing, 15 cm b, AR=1.7 and Wappx=84 g (based on

the Figure 4.3) was evaluated in the coaxial MCDA tool. It was found that it should

fly at 19 m/s in forward flight with L/D=6.22 and 6◦ AoA. Single-propeller forward

flight, coaxial-propeller forward flight and coaxial-propeller hovering flight results

are presented in Figure 4.7. Coaxial results represent the single motor parameters.

For coaxial hovering and forward flight, it is assumed that thrust is shared by

two propellers equally. In the trade study, coaxial configurations were supposed to

have less endurance due to the extra load by the second motor for the propulsion, and

additional motors and servos for maneuverability. The coaxial MCDA tool estimated
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(a) RPM vs Thrust at u=19 m/s

(b) Amperes vs Thrust at u=19 m/s

(c) MCDA Results

Figure 4.7 Different Flight Mode Results
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that the coaxial forward flight had less endurance than the coaxial hovering for the

current configuration.

4.4 QPROP Performance Analysis

In the MCDA tool, the QPROP component was restricted to Treq and u. In

order to evaluate the QPROP performance, a separate component was created under

“Evaluation/Propulsion” with complete capabilities of the actual single-point-run

QPROP, instead of multi-point-run because MC can run parametric studies itself.

Three different parametric studies were conducted in the MCDA tool for evaluation

of the QPROP program.

During the run cases, the fluid constant and the motor input files were kept

the same. QPROP requires a detailed description of the propeller geometry and

blade airfoil characteristics but a user can create his own sophisticated propeller

properties as mentioned in Reference [17]. Therefore, to keep the analysis simple,

the propeller file (geometry and number of blades) was manipulated in parametric

studies. The first goal was to enlarge the propeller geometry by increasing the radius

(r), therefore chord lengths (c) increase accordingly, at each station but blade angles

(β) remain the same. The second goal was to change the number of blades during

the parametric studies. The Graupner CAM 6X3 folder propeller properties [17]

were changed with the following assumptions.

In the propeller file, CL0 , CLa , CLmin
and CLmax parameters stay the same

when the propeller is enlarged with only radius and chord (blade angle at each cross

section remain the same) via the following equations:

rratio =
ruser
r0

(4.1)

r[7] = rratio ∗ [r1, r2, r3, r4, r5, r6, r7] (4.2)

c[7] = rratio ∗ [c1, c2, c3, c4, c5, c6, c7] (4.3)
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β[7] = [b1, b2, b3, b4, b5, b6, b7] (4.4)

After applying these assumptions, three different parametric studies were con-

ducted by changing the radius and number of blades of the propeller. Units were

kept the same as in the QRPROP input files.

4.4.1 T and RPM Relation While Changing Number of Blades. In this

setup, u was set to zero (i.e. static platform measurement). T was increased from

0.2 N to 2.0 N with a 0.1 N increment and the number of blades was increased from 2

to 5 with 1 increment in the parametric study tool. A total of 19 runs were conducted

in 2 minutes. Finally as seen in Figure 4.8, it is found that as Treq increases, RPM

increases. As the number of blades increase, RPM decreases for the same Treq case.

Figure 4.8 RPM vs T

4.4.2 Propeller Parameters While Changing Number of Blades and r. In

this setup, u was set to 10 m/s and Treq=0.4 N. Based on the assumptions, the

radius of the propeller was increased from 3 in to 10 in with an increment of 1 in
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and the number of blades was increased from 2 to 4 with an increment of one. A

total of 24 runs were conducted in 4 minutes. The CT , ηprop, I, V, RPM parameters

were compared in the parametric study tool. Results for the ηprop are presented as

an example in Figure 4.9. The CT , I, V, RPM results are presented in the same

fashion in Appendix C.1.

(a) 3D ηprop vs r and Number of Blades

(b) 2D ηprop vs r and Number of Blades

Figure 4.9 Change in ηprop with r and Number of Blades

4.4.3 Propeller Parameters While Changing T and u. In this setup, the

Treq was increased from 0.01 N to 0.4 N with an increment of 0.02 and the u was

increased from 0 m/s to 20 m/s with an increment of 1 m/s. A total of 441 runs were

conducted in 45 minutes. The CT , Q, ηprop, I, V and RPM parameters were compared
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in the parametric study tool. Results for the ηprop are presented in Figure 4.10. The

CT , Q, I, V and RPM results are presented in the same fashion in Appendix C.2.

(a) 3D ηprop vs T and u

(b) 2D ηprop vs T and u

Figure 4.10 Change in ηprop with T and u
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5. Conclusions and Recommendations

This chapter includes conclusions, limitations of the research and recommendations.

5.1 Conclusions

In recent years, research in MAV is attracting people from all around the

world. Several universities have been involved in MAV research and people are

still researching the physics behind different kinds of MAVs. It requires different

disciplines to design a MAV, like any other vehicle, but the number of constraints

are increasing due to the small scale of MAVs. Battery or any source of energy,

propulsion, component weights, MAV building materials, low Re number effects

on aerodynamics, unpredictable propeller-induced flow effects over the body and

surfaces, gust effects etc. are restricting the MAV capabilities, therefore the MAV

missions.

The current research focused on a multidisciplinary approach to fixed-wing

MAVs in a very suitable integration environment, called ModelCenter (MC). A tool,

fixed-wing MAV Conceptual Design and Analysis (MCDA), was created within the

MC environment. A single-propeller and a coaxial MAV were evaluated with the

MCDA tool. Due to the unique characteristics of the LAR wings at low Re numbers,

experimental data, although it’s limited, was integrated into the model to supplement

DATCOM. Some of the R/C community approaches such as QPROP were applied

in the propulsion part and evaluated in Chapter 4.4 and Appendix C. For stability

and control, AVL was integrated into the model but not with its entire capabilities.

Working on each of these areas individually takes too much time but when the related

software programs were configured properly to work within the MC, work load and

data processing time decreased and quick data evaluations could be made easily.

Data validation of the tool was made by comparing similar research on a fixed-wing

MAV with the MCDA tool outputs. However, the tool itself is not a generic tool to
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evaluate all types of fixed-wing MAVs and has some limitations due to the integrated

component limitations, limited experimental data, limited database, etc. Not all of

the variables for each of the software programs were used in the current research

and to have a better analysis, it is critically important that a through understanding

of all the variables associated with each of the major software programs is needed.

Also, the tool itself is not at the component level, though it can be done easily

with the guidance of the current research. It was successfully shown that some

sophisticated software programs, that will help analyze the conceptual design, can

be integrated and evaluated in the MC environment. Also, some of tools that were

revealed in Appendix A can be explored for extending the MCDA capabilities further.

ModelCenter has proven itself to be a very good environment for conceptual design,

although Aircraft Geometry component was limited to certain shapes. It is believed

that optimization capabilities and various plug-in components will add a substantial

power to the MCDA.

5.2 Limitations of Research

The MCDA is limited to fixed-wing MAVs. Due to lack of aerodynamic data on

the LAR wings at low Re numbers, experimental data supplemented DATCOM was

used in aerodynamic analysis. Since the area of interest was the low Re numbers, we

were restricted to the experimental data of Torres’. The experiment was conducted

with four different flat-plate wing planforms, seven different AR and two different

Re numbers. Besides being limited to experimental data, DATCOM also limits

the user for certain geometric shapes and some assumptions had to be made to

correlate with the experimental data. For QPROP, extensive research is needed

for the propeller and motor database. Although it has limited motor types, any

motor model can be coded in SUBROUTINE MOTORQ (in motor.f). Moreover

for non-electric motors, the voltage (V ), passed to MOTORQ, can represent any

suitable power-control variable, e.g. throttle setting, fuel flow rate, etc. QPROP
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has two propeller file formats: simple and advanced propeller input files. A user can

create his data by the guidance shown in the manual which will boost the QPROP

capabilities when combined with the MC parametric study tool. AVL is a very good

software in terms of being able to create unconventionally-shaped vehicles, unlike

DATCOM. It can also calculate aerodynamic coefficients as well as stability and

control derivatives. There are some applications of AVL in the simulation world but

it has some limitations as mentioned in its manual. The AVL geometry file was

integrated successfully and it represents the same geometry in MCDA, although it

is possible to configure many different shapes. Mass and run files are needed to be

explored in detail, and it requires a considerable amount of time and expertise on

AVL.

5.3 Recommendations

The current research has revealed some software programs and integration

procedures for them into MC for the proposed effort. It is important to utilize all

capabilities of each of the tools that were integrated. Therefore, possible areas of

improvement are:

• DATCOM: In the MCDA tool, the shape of the body segment is restricted

to cylindrical shape due to predefined MC Aircraft components. However

in DATCOM, besides cylindrical shape, a user can input cambered bodies

of arbitrary cross section by specifying the BODY namelist optional inputs.

DATCOM can compute static longitudinal and lateral stability. It can also

compute dynamic derivatives but the solutions are provided for basic geometry

only and not all of the dynamic derivatives are calculated for each combination

of vehicle configuration and speed regime because of DATCOM limitations.

For the dynamic stability, the effects of high-lift and control devices are not

recognized either.

5-3



• QPROP: This software is fully functional in the MCDA tool if the input files

are present. Electrical or Motocalc database have variety of motors, batteries,

ESCs, etc. A similar MATLAB or Excel database could be created for micro-

motors, batteries and propellers that would cooperate with QPROP.

QPROP is well-documented and a user can create his own propeller input file

by the guidance of the user manual which may require integration of Drela’s

Xfoil or a similar software into the MCDA. It also possible to change the

subroutine of QPROP for different type of motors.

• AVL: The AVL geometry file was integrated into the MCDA tool but in order

to evaluate and utilize the tool, mass and run files need to be constructed

properly. After this step, AVL filewrapper has to be edited so that it will

manipulate all of these three files (geometry, mass, and run) for MC operations.

AVL and other VLM software programs have to be analyzed for LAR wings at

low Re Numbers.

The MC environment is a very flexible environment. There can be some add-

on’s to the current MCDA tool. Appendix A may be a starting point for that

purpose. In any case, a stable tool, either a software or experimental research that

would cover the entire flight regime of the MAV, is needed for aerodynamics. The

induced flow (prop wash) effect on the body and other surfaces has to be taken into

account as well. Momentum theory can be applied to figure out the propeller flow

field. Motor on/off experiments can be conducted to see the effects of the induced

flow over the body and surfaces but will require great amount of time and effort.

In addition to those, there is another important issue that the speed of the wind

gust may be on the same order of magnitude as the overall flight speed of a MAV

and maintaining smooth flight can be a challenge for either a R/C pilot or an AFCS.

Therefore, gust tolerance modeling tool is a must in the proposed effort. A MATLAB

m-file specifically created for this purpose can easily be integrated into MC. It is

recommended to have people work on various disciplines separately and have them
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combine their work at regular intervals, to be compatible, in an environment such

as ModelCenter.
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Appendix A. Survey of Tools

This Appendix lists different tools (Airfoil, Propeller and CFD/Aerodynamics Anal-

ysis) that could be used for MAV conceptual designs.

1. D-calc, Christian Persson/Helmut Schenk (English & German)

www.yahoogroups.com/group/D-calc

2. MM_calc, English, Louis Fourdan (freeware)

electrofly.free.fr

-> tlchargements (link at top of page)

-> moteurs

-> MM_calc

-> English or French version

Help/discussion/announcements/bug-reports/pats-on-shoulder:

http://www.rcgroups.com/forums/showthread.php?t=583327

Links to MM_Calc derivatives:

Scorpion_Calc, Motrolfly_Calc, Dualsky_Calc, Aero-nuts_Calc, Himax_Calc

http://www.rcgroups.com/forums/show...714#post8760714

3. Motocalc ($)

www.motocalc.com

4. Elektro-Antrieb (German only, ($)

www.geck-elektroantrieb.de

5. P-calc (freeware)

brantuas.com/ezcalc/dma1.asp

6. E-Calc

www.slkelectronics.com/ecalc/index.htm

7. Mumtats (freeware), RCGroups user ’vintage1’

http://www.rcgroups.com/forums/showthread.php?t=233250

8. Rod Badcock’s thrust-, prop- and motor-calculators (freeware)

www.badcock.net

A-1



9. Peak efficiency (freeware)

www.peakeff.com

10. WebOcalc and PowerCalc (Free Open Source Software)

flbeagle.rchomepage.com

-> software

Help/discussion/announcements/bug-reports/pats-on-shoulder:

http://www.rcgroups.com/forums/showthread.php?t=930018

11. Adam One Motor/Prop calculator (freeware)

www.adamone.rchomepage.com/calc_motor.htm

12. Thrust calculator (freeware)

www.lcrcc.net/thrust_calc.htm

13. Thrust calculator (freeware)

www.gobrushless.com/testing/thrust_calculator.php

14. ’Propellor Calculator’ by Helmut Schenk (freeware, English & German)

www.drivecalc.de

-> propellor calculator (bottom of page)

15. Prof. Mark Drela’s prop calculator

web.mit.edu/drela/Public/web/qprop

16. Jim Banner’s (user ’jrb’) calculator

http://www.rcgroups.com/forums/show...hmentid=1621267

17. The math behind calculators and motors:

http://www.rcgroups.com/forums/showthread.php?t=185271

18. FanCalc (freeware)

http://www.s4a.ch/eflight/fancalc_e.htm (English & German)

19. MotorCalc (freeware)

http://www.s4a.ch/eflight/motorcalc.htm (German)

20. CompuFoil3D

http://www.compufoil.com/index.shtml

21. Profili

http://www.profili2.com/eng/default.htm
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22. XFOIL

http://web.mit.edu/drela/Public/web/xfoil/

23. Athena Vortex Lattice

http://web.mit.edu/drela/Public/web/avl/

24. Eppler

http://www.pdas.com/eppler.htm

25. MeshPilot:A 2D airfoil mesh CFD analysis tool.

http://www.shore-cfd.com/html/shore_cfd_-_meshpilot.shtml

26. CRCCsim: A Model-Airplane Flight Simulation Program

http://crrcsim.sourceforge.net/

27. Adams/Aircraft

28. Java Foil

http://www.mh-aerotools.de/airfoils/

29. Java Prop

http://www.mh-aerotools.de/airfoils/

30. Java Pipe

http://www.mh-aerotools.de/airfoils/

31. Processing of Propeller Geometry

http://www.mh-aerotools.de/airfoils/

32. Determination of the Aerodynamic Center and

the Center of Gravity of Planforms

http://www.mh-aerotools.de/airfoils/

33. PlaneView

http://www.mh-aerotools.de/airfoils/

34. Cloudcaptech

http://www.cloudcaptech.com/download/Piccolo/Aircraft%20Modeling%20Tools/

35. Advanced Aircraft Analysis (AAA)

http://www.darcorp.com/Software/AAA/
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Appendix B. Experimental Data Interpolation in the MCDA Tool

This Appendix has experimental [47] and interpolated aerodynamic coefficients of

the inverse Zimmerman planform.

B.1 Inverse Zimmerman at Re=70K [47]

(a) 3D Inverse Zimmerman Re=70K CL

(b) 3D Inverse Zimmerman Re=70K CL

Figure B.1 Inverse Zimmerman Re=70K CL
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(a) 3D Inverse Zimmerman Re=70K CD

(b) 3D Inverse Zimmerman Re=70K CD

Figure B.2 Inverse Zimmerman Re=70K CL
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(a) 3D Inverse Zimmerman Re=70K L/D

(b) 3D Inverse Zimmerman Re=70K L/D

Figure B.3 Inverse Zimmerman Re=70K L/D
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B.2 Inverse Zimmerman at Re=85K (Interpolated)

(a) 3D Inverse Zimmerman Re=85K CL

(b) 3D Inverse Zimmerman Re=85K CL

Figure B.4 Inverse Zimmerman Re=85K CL
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(a) 3D Inverse Zimmerman Re=85K CD

(b) 3D Inverse Zimmerman Re=85K CD

Figure B.5 Inverse Zimmerman Re=85K CL
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(a) 3D Inverse Zimmerman Re=85K CD

(b) 3D Inverse Zimmerman Re=85K CD

Figure B.6 Inverse Zimmerman Re=85K L/D
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B.3 Inverse Zimmerman at Re=100K [47]

(a) 3D Inverse Zimmerman Re=100K CL

(b) 3D Inverse Zimmerman Re=100K CL

Figure B.7 Inverse Zimmerman Re=100K CL
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(a) 3D Inverse Zimmerman Re=100K CD

(b) 3D Inverse Zimmerman Re=85K CD

Figure B.8 Inverse Zimmerman Re=100K CL
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(a) 3D Inverse Zimmerman Re=100K CD

(b) 3D Inverse Zimmerman Re=100K CD

Figure B.9 Inverse Zimmerman Re=100K L/D
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Appendix C. QPROP Performance Analysis

C.1 Propeller CT , I, V and RPM Parameters While Changing Number of Blades

and r

(a) 3D CT vs r and Number of Blades

(b) 2D CT vs r and Number of Blades

Figure C.1 Change in CT with r and Number of Blades

C-1



(a) 3D I vs r and Number of Blades

(b) 2D I vs r and Number of Blades

Figure C.2 Change in I with r and Number of Blades

C-2



(a) 3D V vs r and Number of Blades

(b) 2D V vs r and Number of Blades

Figure C.3 Change in V with r and Number of Blades
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(a) 3D RPM vs r and Number of Blades

(b) 2D RPM vs r and Number of Blades

Figure C.4 Change in RPM with r and Number of Blades
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C.2 Propeller CT , Q, I, V and RPM While Changing T and u

(a) 3D CT vs T and u

(b) 2D CT vs T and u

Figure C.5 Change in CT with T and u
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(a) 3D Q vs T and u

(b) 2D Q vs T and u

Figure C.6 Change in Q with T and u
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(a) 3D I vs T and u

(b) 2D I vs T and u

Figure C.7 Change in I with T and u
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(a) 3D V vs T and u

(b) 2D V vs T and u

Figure C.8 Change in V with T and u
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(a) 3D RPM vs T and u

(b) 2D RPM vs T and u

Figure C.9 Change in RPM with T and u
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Appendix D. Code Used in Integration Process

This appendix includes the code written in MATLAB, MC script files and text files

for the components mentioned in Chapter 3.3.

D.1 Geometric Properties

This MATLAB m-file is used in the “Body Definition” component and it cre-

ates the geometric variables based on the assumptions that were mentioned in Chap-

ter 3.1.2 on page 3-6.

% # variables

% variable: Aspect_ratio double input default="1.66" matlabName="AR"

% variable: Span double input units="inches" matlabName="b"

% variable: Type double input default="3" matlabName="type"

% variable: Sweep_angle_quater_chord_minus4 double output matlabName="sa"

% variable: Root_chord double output matlabName="rc"

% variable: Tip_Chord double output matlabName="tc"

% variable: Taper_ratio double output matlabName="tr"

% variable: sweep_angle_leading_edge_datcom double output matlabName="datcom_sa"

% variable: S_ref_in2 double output matlabName="S_ref"

% variable: c_bar double output matlabName="cbar"

% variable: Y_bar double output matlabName="Ybar"

% minus 4 degrees from sweep angles are just for visualization

%sweep angles are supposed to be quarter chord sweep angles

AR

b %inches

type %1 rect 2 zim 3 inv zim 4 ell

S_ref=b^2/AR; %inch^2

%% Rectangular Planform

if type==1

chord_rect=S_ref/b; %inches

taper_ratio_rect=1;

%%these variables are linked to model center

sweep_agle=0;

root_chord=chord_rect;

tip_chord=chord_rect;

taper_ratio=1;

datcom_sa=1;

%% Zimmerman Planform

elseif type==2

%for plotting purposes

S_zim=S_ref; %zimmerman planform area

a_3=b/2; %semi-major axis of LEADING edge ellipse

a_1=S_zim*2/(4*pi*a_3); %S_zim=pi*(a_3*a_2+3*a_2*a_3)/2 inch^2

a_2=3*a_1; %semi-major axis of TRAILING edge ellipse

c_1=a_1*(pi/2-1); %equivalent tip chord for LEADING ellipse

c_2=a_2*(pi/2-1); %equivalent tip chord for TRAILING ellipse

e_1=b/2; %Semimajor axis ellipse

e_2=S_ref/(pi*e_1); %Semiminor axis ellipse

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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chord_zim=a_2+a_1;

t_chord_zim=c_1+c_2;

taper_ratio_zim=(c_1+c_2)/chord_zim;

sweep_angle_le_zim=atand(3/4*(a_1-c_1)/a_3)-4;

sweep_angle_te_zim=atand((a_2-c_2)/a_3);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%these variables are linked to model center

sweep_agle=sweep_angle_le_zim;

root_chord=chord_zim;

tip_chord=t_chord_zim;

taper_ratio=taper_ratio_zim;

datcom_sa=atand((a_1-c_1)/a_3);

%% inverse zimmerman Planform

elseif type==3

S_zim=S_ref; %zimmerman planform area

a_3=b/2; %semi-major axis of LEADING edge ellipse

a_1=S_zim*2/(4*pi*a_3); %S_zim=pi*(a_3*a_2+3*a_2*a_3)/2 inch^2

a_2=3*a_1; %semi-major axis of TRAILING edge ellipse

c_1=a_1*(pi/2-1); %equivalent tip chord for LEADING ellipse

c_2=a_2*(pi/2-1); %equivalent tip chord for TRAILING ellipse

e_1=b/2; %Semimajor axis ellipse

e_2=S_ref/(pi*e_1);%Semiminor axis ellipse

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

chord_zim=a_2+a_1;

t_chord_zim=c_1+c_2;

taper_ratio_zim=(c_1+c_2)/chord_zim;

sweep_angle_le_zim=atand((a_1-c_1)/a_3);

% now inverse zimmerman profile parameters

chord_invzim=a_2+a_1;

t_chord_invzim=c_1+c_2;

taper_ratio_invzim=(c_1+c_2)/chord_invzim;

sweep_angle_le_invzim=atand(3/4*(a_2-c_2)/a_3)-4;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%these variables are linked to model center

sweep_agle=sweep_angle_le_invzim;

root_chord=chord_invzim;

tip_chord=t_chord_invzim;

taper_ratio=taper_ratio_invzim;

datcom_sa=atand((a_2-c_2)/a_3);

%% Elliptical

elseif type==4

%for plotting purposes

S_zim=S_ref; %zimmerman planform area

a_3=b/2; %semi-major axis of LEADING edge ellipse

a_1=S_zim*2/(4*pi*a_3); %S_zim=pi*(a_3*a_2+3*a_2*a_3)/2 inch^2

a_2=3*a_1; %semi-major axis of TRAILING edge ellipse

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

c_1=a_1*(pi/2-1); %equivalent tip chord for LEADING ellipse

c_2=a_2*(pi/2-1); %equivalent tip chord for TRAILING ellipse

e_1=b/2; %Semimajor axis

e_2=S_ref/(pi*e_1); %Semiminor axis

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

chord_ellip=2*e_2;

t_chord_ellip=2*e_2*(pi/2 - 1) ; %2*(S_ref/(2*e_1)-e_2);

taper_ratio_ellip=t_chord_ellip/chord_ellip;

sweep_angle_le_ellip=atand(3/4*(e_2-t_chord_ellip/2)/e_1)-4;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%these variables are linked to model center

sweep_agle=sweep_angle_le_ellip;

root_chord=chord_ellip;

tip_chord=t_chord_ellip;

taper_ratio=taper_ratio_ellip;
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datcom_sa=atand((e_2-t_chord_ellip/2)/e_1);

else disp(’please enter integers 1,2,3 or 4 for the type of planform’)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Results

sa=sweep_agle;

rc=root_chord;

tc=tip_chord;

tr=taper_ratio;

datcom_sa;

cbar=2/3*rc*(1+tr+tr^2)/(1+tr) %mean aerodynamic chord Raymer p.56

Ybar=b/6*((1+2*tr)/(1+tr)) %’’ y location Raymer p.56

D.2 Atmospheric Model

This MATLAB m-file is used in the “Air Properties in SI Units” component

to find air properties at a given temperature.

% # variables

% variable: pressure double output units="pascall, N/m^2" matlabName="pr"

% variable: speed_of_sound double output units="m/s" matlabName="a"

% variable: density double output default="1.23" units="kg/m^3" matlabName="rho_r"

% variable: dynamic_viscosity double output units="Nsec/m^2" matlabName="mu_r"

% variable: kinematic_viscosity double output units="m^2/sec" matlabName="nu_r"

% variable: temperature double input units="celcius" matlabName="t_celc"

%

%altitude model for base

%for altitude <36152 ft

t_celc ; %base temperature

t_fh=t_celc*1.8+32; %temp in fahrenheit

%alt=alti*3.2808399 ; %altitude in feet 1 meter = 3.2808399 feet

%t_fh=59-0.00356*alt; %temperature in Fahrenheit

%t_celc=(t_fh-32)/1.8; %in celcius http://www.infoplease.com/ipa/A0001731.html

t_kel=t_celc+273.15; %kelvin degrees

R=287;%gas constant in J/(kg.K)

gamma=1.4; %ratio of specific heats

%from http://www.grc.nasa.gov/WWW/K-12/airplane/atmos.html

%% Properties of Air at Atmospheric Pressure in SI Units

%http://www.engsolcom.com/Database_Pages/Air_Properties.html

%T(C) rho(kg/m^3) mu (N sec/m^2) nu (m^2/sec)

p_si=[ 0 1.29 1.72E-05 1.33E-05

5 1.27 1.74E-05 1.37E-05

10 1.25 1.77E-05 1.41E-05

15 1.23 1.79E-05 1.46E-05

20 1.21 1.81E-05 1.50E-05

25 1.19 1.84E-05 1.55E-05

30 1.17 1.86E-05 1.60E-05

35 1.15 1.88E-05 1.64E-05

40 1.13 1.91E-05 1.69E-05
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45 1.11 1.93E-05 1.74E-05

50 1.09 1.95E-05 1.79E-05

55 1.08 1.98E-05 1.84E-05

60 1.06 2.00E-05 1.88E-05

65 1.04 2.02E-05 1.93E-05

70 1.03 2.04E-05 1.98E-05

75 1.01 2.07E-05 2.04E-05

80 1.00 2.09E-05 2.09E-05

85 0.99 2.11E-05 2.14E-05

90 0.97 2.13E-05 2.19E-05

95 0.96 2.15E-05 2.24E-05

100 0.95 2.17E-05 2.30E-05];

temp=p_si(:,1);

rho=p_si(:,2);

mu=p_si(:,3);

nu=p_si(:,4);

rho_r=interp1(temp,rho,t_celc,’spline’ );

mu_r=interp1(temp, mu,t_celc,’spline’ );

nu_r=interp1(temp, nu,t_celc,’spline’ );

pr=rho_r*R*t_kel; %pressure in pa

a=sqrt(gamma*R*t_kel); %speed of sound m/sec

D.3 Experimental Data Interpolation

“Aero-Block” component utilizes the following background to find the interpo-

lated or extrapolated aerodynamic coefficients.

D.3.1 Data Acquisition from Excel Spreadsheet. Experimental data from

an Excel spreadsheet under different tabs and names was converted to xxx.mat files

in MATLAB and this process was repeated for all planforms and Re numbers. This

section presents the 3D database creation of rectangular and Zimmerman CD data.

%this m file creates database from experimental cl cd cm data

close all;clear all;clc;

alpha=xlsread(’cd’,’rect 70K’,’A2:A52’);

AR=[0.5 0.75 1 1.25 1.50 1.75 2];

Re=[70000;100000];

cd(:,:,1)=xlsread(’cd’,’rect 70K’,’B2:H52’);

cd(:,:,2)=xlsread(’cd’,’rect 100K’,’B2:H52’);

[AR_X,alpha_Y,Re_Z]=meshgrid(AR,alpha,Re);

save cd_rect.mat

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

close all;clear all;clc;

alpha=xlsread(’cd’,’zim 70K’,’A2:A52’);

AR=[0.5 0.75 1 1.25 1.50 1.75 2];
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Re=[70000;100000];

cd(:,:,1)=xlsread(’cd’,’zim 70K’,’B2:H52’);

cd(:,:,2)=xlsread(’cd’,’zim 100K’,’B2:H52’);

[AR_X,alpha_Y,Re_Z]=meshgrid(AR,alpha,Re);

save cd_zim.mat

D.3.2 Interpolation/Extrapolation. This section presents how CL, CD and CM

data were interpolated/extrapolated.

% # variables

% variable: type double input matlabName="type"

% variable: AR_r double input matlabName="AR_r"

% variable: Re_r double input matlabName="Re_r"

% variable: alpha_r double input matlabName="alpha_r"

% variable: CL double output format="0.000" matlabName="CL"

% variable: CD double output format="0.000" matlabName="CD"

% variable: CM double output format="0.000" matlabName="CM"

% subscript r doesn’t mean anything, just to seperate variables

% it is critically important to specify xxx.mat locations in ModelCenter

type

AR_r

Re_r

alpha_r

if type==1

load ’aero_interpolation\Cl_rect.mat’

elseif type==2

load ’aero_interpolation\Cl_zim.mat’

elseif type==3

load ’aero_interpolation\Cl_ziminv.mat’

elseif type==4

load ’aero_interpolation\Cl_ell.mat’

else disp(’Please enter integers 1 to 4 for the type of planform ’)

end

CLi=interp3(AR_X,alpha_Y,Re_Z,CL,AR_r,alpha_r,Re_r,’spline’);

if type==1

load ’aero_interpolation\cd_rect.mat’

elseif type==2

load ’aero_interpolation\cd_zim.mat’

elseif type==3

load ’aero_interpolation\cd_ziminv.mat’

elseif type==4

load ’aero_interpolation\cd_ell.mat’

else disp(’Please enter integers 1 to 4 for the type of planform ’)

end

cdi=interp3(AR_X,alpha_Y,Re_Z,cd,AR_r,alpha_r,Re_r,’spline’);

if type==1

load ’aero_interpolation\cm_rect.mat’

elseif type==2

load ’aero_interpolation\cm_zim.mat’

elseif type==3

load ’aero_interpolation\cm_ziminv.mat’

elseif type==4

load ’aero_interpolation\cm_ell.mat’ %location of xxx.mat file

D-5



else disp(’Please enter integers 1 to 4 for the type of planform ’)

end

cmi=interp3(AR_X,alpha_Y,Re_Z,cm,AR_r,alpha_r,Re_r,’spline’);

%% Operation below was needed due to the sensitivity

%% of DATCOM for number of digits after the decimal point

CL1=sprintf(’%0.4f’,CLi);

CL=str2num(CL1)

CD1=sprintf(’%0.4f’,cdi)

CD=str2num(CD1)

CM1=sprintf(’%0.6f’,cmi)

CM=str2num(CM1)

D.4 Determination of Aerodynamic Coefficients

The ModelCenter Selectively Running Switch component is used to run one of

the two different DATCOM filewrappers conditionally dependent upon the Reynolds

number. Under this component, there are three subcomponents: two different DAT-

COM filewrappers and a script file. Selectively running the function is accomplished

via the MC script file. It is critically important that the user uncheck the “Prevali-

date Inputs” under the script component settings (options) for the script file to run

selectively and without prevalidating.

# variables

variable: Re_r double input

variable: cd1 double input

variable: cd2 double input

variable: cm1 double input

variable: cm2 double input

variable: cl1 double input

variable: cl2 double input

variable: CD double output

variable: CM double output

variable: CL double output

variable: L_D double output

sub run

if Re_r < 170000 then

CL=cl1

CD=cd1

CM=cm1

else

CL=cl2

CD=cd2

CM=cm2

end if
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L_D=abs(CL/CD)

end sub

D.5 Flight Parameters and Input Converter

The Re number after linking all the variables is found via this component.

It also has a digit converter for DATCOM input files. As experienced, DATCOM

would fail if the related numbers were directly linked to DATCOM filewrappers.

Another important point to mention here is that DATCOM Re number must be in

(1/Length) format.

% # variables

% variable: Reynolds_number double output matlabName="Re_r"

% variable: chord double input matlabName="chord"

% variable: angle_of_attack double input matlabName="aoa"

% variable: Kinematic_viscosity double input matlabName="nu_r"

% variable: velocity double input matlabName="u"

% variable: Mach_number double input format="0.000" matlabName="Mach"

%

% setGroup "MC_inputs_for_Datcom"

% variable: Mach double input matlabName="Mach"

% variable: Span double input matlabName="Span"

% variable: Root_chord double input matlabName="Root_chord"

% variable: Tip_chord double input matlabName="Tip_chord"

% variable: Sweep double input matlabName="Sweep"

% variable: Sref double input matlabName="Sref"

% variable: XCG double input matlabName="XCG"

% variable: ZCG double input matlabName="ZCG"

% variable: XW double input matlabName="XW"

% variable: ZW double input d matlabName="ZW"

% variable: X5_loc double input matlabName="X5_loc"

%

% setGroup "DATCOM_INPUTS"

% variable: datcom_re double output matlabName="datcom_re"

% variable: datcom_mach double output matlabName="datcom_mach"

% variable: datcom_span double output matlabName="datcom_span"

% variable: datcom_rootchord double output matlabName="datcom_rootchord"

% variable: datcom_tipchord double output matlabName="datcom_tipchord"

% variable: datcom_sweep double output matlabName="datcom_sweep"

% variable: datcom_Sref double output matlabName="datcom_Sref"

% variable: datcom_semispan double output matlabName="datcom_semispan"

% variable: datcom_xcg double output matlabName="datcom_XCG"

% variable: datcom_zcg double output matlabName="datcom_ZCG"

% variable: datcom_XW double output matlabName="datcom_XW"

% variable: datcom_ZW double output matlabName="datcom_ZW"

% variable: datcom_bodyX5 double output matlabName="datcom_bodyX5"

%Reynold number as an output

Re_r=u*chord*0.0254/nu_r

%Here Modelcenter numbers were converted into

%3 digits after point for datcom use
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M=sprintf(’%0.3f’,Mach);

datcom_mach=str2num(M)

Re1=u/(nu_r*3.2808399)

%1 meter = 3.2808399 feet

Re=sprintf(’%0.3f’,Re1);

datcom_re=str2num(Re)

s=sprintf(’%0.3f’,Span);

ss=sprintf(’%0.3f’,Span/2);

datcom_span=str2num(s);

datcom_semispan=str2num(ss);

rc=sprintf(’%0.3f’,Root_chord);

datcom_rootchord=str2num(rc);

tc=sprintf(’%0.3f’,Tip_chord);

datcom_tipchord=str2num(tc);

sw=sprintf(’%0.3f’,Sweep);

datcom_sweep=str2num(sw);

sref=sprintf(’%0.3f’,Sref);

datcom_Sref=str2num(sref);

xcg=sprintf(’%0.2f’,XCG);

datcom_XCG=str2num(xcg);

zcg=sprintf(’%0.2f’,ZCG);

datcom_ZCG=str2num(zcg);

xW=sprintf(’%0.2f’,XW);

datcom_XW=str2num(xW);

zW=sprintf(’%0.2f’,ZW);

datcom_ZW=str2num(zW);

x5=sprintf(’%0.2f’,X5_loc);

datcom_bodyX5=str2num(x5);

D.6 Flight Data Component

This section has the equations for L, D, Treq and Wappx. The T and u variables

are defined for coaxial forward and hovering flight for linking in MC.

% # variables

%

% setGroup "Inputs_for_forces"

% variable: rho double input matlabName="rho"

% variable: vel double input matlabName="vel"

% variable: Sref double input matlabName="Sref"

% variable: AR double input matlabName="AR"

% variable: span double input matlabName="span"

% variable: L_over_D double input matlabName="L_over_D"

% variable: Cl double input matlabName="Cl"

% variable: Cd double input matlabName="Cd"

%

% setGroup "Flight_data"
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% variable: Lift double output matlabName="Lift"

% variable: Drag double output matlabName="Drag"

% variable: Weight_appx double output matlabName="Weight_appx"

% variable: Weight_act double output matlabName="Weight_act"

% variable: Weight_ratio double output matlabName="W_ratio"

% variable: alpha_stall double output matlabName="alpha_stall"

% variable: T_req_in_N double output matlabName="T_req_in_N"

%

% setGroup "Forward_Flight_data"

% variable: Horizontal_velocity double input matlabName="h_vel"

% variable: Thrust_ratio_f double input matlabName="Thrust_ratio_f"

% variable: T_req_forward double output matlabName="T_req_forward"

% variable: T1_f double output matlabName="T1_f"

% variable: T2_f double output matlabName="T2_f"

%

% setGroup "Hover_data"

% variable: Vertical_velocity double input matlabName="V_vert"

% variable: Thrust_ratio_h double input matlabName="Thrust_ratio_h"

% variable: T_req_hover double matlabName="T_req_hover"

% variable: T1_h double output matlabName="T1_h"

% variable: T2_h double output matlabName="T2_h"

g=9.807;

Lift=Cl*(0.5*rho*vel^2*Sref*0.0254^2)/g*1000;% in gr

Drag=Cd*(0.5*rho*vel^2*Sref*0.0254^2)/g*1000;% in gr

alpha_stall=-10*atan(4*(AR-1.25))+28;

Weight_appx=6.8953*span - 19.262; %gr

Weight_act=Weight_appx*1.271;

W_ratio=Weight_act/Weight_appx;

T_req_in_N=Weight_appx/(abs(L_over_D))*g/1000;

T_req_hover=Weight_appx*g/1000;

T_req_forward=T_req_in_N;

%Forward Flight COAXIAL

%T2/T1; %T1 forward, T2 aft; Thrust_ratio max is 1

T1_f=T_req_forward/(1+Thrust_ratio_f);

T2_f=T1_f*Thrust_ratio_f;

%Hover Flight COAXIAL

%T2/T1; %T1 forward, T2 aft; Thrust_ratio max is 1

T1_h=T_req_hover/(1+Thrust_ratio_h);

T2_h=T1_h*Thrust_ratio_h;

D.7 DATCOM

Figure 3.4 on page 3-7 and Figure 3.13 on page 3-18 summarize the DATCOM

operation and filewrapper structure. This sections presents the related file structures

in DATCOM operations.

D.7.1 DATCOM Input File. The DATCOM input file with CD and CM

experimental data supplement for MAV configuration is presented in this section.
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$EXPR01 section was changed in the MC Switch script file based on the assumptions

mentioned in the related chapter. In this specific case, DATCOM will generate its

own data when $EXPR01 section is removed.

$FLTCON NMACH=1.0, MACH(1)=0.0296, RNNUB(1)=216170.212437379,

NALPHA=1.0, ALSCHD(1)=10.0,

TR=1.0$

$OPTINS SREF=144.167, BLREF=14.8,

$SYNTHS XCG=4.0, ZCG=0.55,

XW=3.0, ZW=0.5, ALIW=0.0,

SCALE=1.0$

$BODY NX=5.0,

X(1)=0.0, X(2)=1.5, X(3)=3.0, X(4)=5.0, X(5)=16,

R(1)=0.0, R(2)=0.25, R(3)=0.5, R(4)=0.5, R(5)=0.5,

BNOSE=1.0,

ITYPE=1.0, METHOD=1.0$

$WGPLNF CHRDR=12.4, CHRDTP=7.07, SSPN=7.4, SSPNE=7.4,

SAVSI=28.335,

CHSTAT=0.0, TWISTA=0.0,

DHDADI=0.0, TYPE=1.0$

$WGSCHR NPTS=30.0,TYPEIN=1.0,

XCORD(1)=0.0,

7.444E-04, 2.955E-03, 6.565E-03, 1.146E-02, 1.750E-02, 2.450E-02,

3.224E-02, 4.049E-02, 4.900E-02, 5.000E-02, 1.500E-01, 2.500E-01,

3.500E-01, 4.500E-01, 5.500E-01, 6.500E-01, 7.500E-01, 8.500E-01,

9.500E-01, 9.510E-01, 9.595E-01, 9.678E-01, 9.755E-01, 9.825E-01,

9.885E-01, 9.934E-01, 9.970E-01, 9.993E-01, 1.0,

YUPPER(1)=0.0,

1.702E-03, 3.352E-03, 4.900E-03, 6.299E-03, 7.507E-03, 8.487E-03,

9.209E-03, 9.651E-03, 9.800E-03, 9.800E-03, 9.800E-03, 9.800E-03,

9.800E-03, 9.800E-03, 9.800E-03, 9.800E-03, 9.800E-03, 9.800E-03,

9.800E-03, 9.800E-03, 9.651E-03, 9.209E-03, 8.487E-03, 7.507E-03,

6.299E-03, 4.900E-03, 3.352E-03, 1.702E-03, 0.0,

YLOWER(1)=0.0,

-1.7018E-03, -3.3518E-03, -4.9000E-03, -6.2993E-03, -7.5072E-03,

-8.4870E-03, -9.2090E-03, -9.6511E-03, -9.8000E-03, -9.8000E-03,

-9.8000E-03, -9.8000E-03, -9.8000E-03, -9.8000E-03, -9.8000E-03,

-9.8000E-03, -9.8000E-03, -9.8000E-03, -9.8000E-03, -9.8000E-03,

-9.6511E-03, -9.2090E-03, -8.4870E-03, -7.5072E-03, -6.2993E-03,

-4.9000E-03, -3.3518E-03, -1.7018E-03, 0.0, $

DIM IN

DERIV DEG

$EXPR01

CDWB(1)=0.1152,

CMWB(1)=0.010031,

$

CASEID CD-CM EXPERIMENTAL DATA FOR WING-BODY

NEXT CASE

D.7.2 DATCOM Output File. This section has an example of the DAT-

COM output file supplemented with CD and CM .

1 AUTOMATED STABILITY AND CONTROL METHODS PER APRIL 1976 VERSION OF DATCOM

D-10



USER DEFINED WING SECTION

UPPER ABSCISSA UPPER ORDINATE LOWER ABSCISSA LOWER ORDINATE X-FRACTION CHORD MEAN LINE THICKNESS

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.00074 0.00170 0.00074 -0.00170 0.00074 0.00000 0.00340

0.00296 0.00335 0.00295 -0.00335 0.00296 0.00000 0.00670

0.00657 0.00490 0.00656 -0.00490 0.00657 0.00000 0.00980

0.01146 0.00630 0.01146 -0.00630 0.01146 0.00000 0.01260

0.01750 0.00751 0.01750 -0.00751 0.01750 0.00000 0.01501

0.02450 0.00849 0.02450 -0.00849 0.02450 0.00000 0.01697

0.03224 0.00921 0.03224 -0.00921 0.03224 0.00000 0.01842

0.04049 0.00965 0.04049 -0.00965 0.04049 0.00000 0.01930

0.04900 0.00980 0.04900 -0.00980 0.04900 0.00000 0.01960

0.05000 0.00980 0.05000 -0.00980 0.05000 0.00000 0.01960

0.15000 0.00980 0.15000 -0.00980 0.15000 0.00000 0.01960

0.25000 0.00980 0.25000 -0.00980 0.25000 0.00000 0.01960

0.35000 0.00980 0.35000 -0.00980 0.35000 0.00000 0.01960

0.45000 0.00980 0.45000 -0.00980 0.45000 0.00000 0.01960

0.55000 0.00980 0.55000 -0.00980 0.55000 0.00000 0.01960

0.65000 0.00980 0.65000 -0.00980 0.65000 0.00000 0.01960

0.75000 0.00980 0.75000 -0.00980 0.75000 0.00000 0.01960

0.85000 0.00980 0.85000 -0.00980 0.85000 0.00000 0.01960

0.95000 0.00980 0.95000 -0.00980 0.95000 0.00000 0.01960

0.95100 0.00980 0.95100 -0.00980 0.95100 0.00000 0.01960

0.95950 0.00965 0.95950 -0.00965 0.95950 0.00000 0.01930

0.96780 0.00921 0.96780 -0.00921 0.96780 0.00000 0.01842

0.97550 0.00849 0.97550 -0.00849 0.97550 0.00000 0.01697

0.98250 0.00751 0.98250 -0.00751 0.98250 0.00000 0.01501

0.98850 0.00630 0.98850 -0.00630 0.98850 0.00000 0.01260

0.99340 0.00490 0.99340 -0.00490 0.99340 0.00000 0.00980

0.99700 0.00335 0.99700 -0.00335 0.99700 0.00000 0.00670

0.99930 0.00170 0.99930 -0.00170 0.99930 0.00000 0.00340

1.00000 0.00000 1.00000 0.00000 1.00000 0.00000 0.00000

1 AUTOMATED STABILITY AND CONTROL METHODS PER APRIL 1976 VERSION OF DATCOM

WING SECTION DEFINITION

0 IDEAL ANGLE OF ATTACK = 0.00001 DEG.

ZERO LIFT ANGLE OF ATTACK = 0.00004 DEG.

IDEAL LIFT COEFFICIENT = 0.00000

ZERO LIFT PITCHING MOMENT COEFFICIENT = -0.00001

MACH ZERO LIFT-CURVE-SLOPE = 0.10115 /DEG.

LEADING EDGE RADIUS = 0.00232 FRACTION CHORD

MAXIMUM AIRFOIL THICKNESS = 0.01960 FRACTION CHORD

DELTA-Y = 0.75341 PERCENT CHORD

0**** REYNOLDS NUMBER TOO LOW FOR THE AIRFOIL SECTION MODULE, SECTION CHARACTERISTICS BASED ON A VALUE OF 2.718E5 ***

0 MACH= 0.0296 LIFT-CURVE-SLOPE = 0.08218 /DEG. XAC = 0.25573

1 AUTOMATED STABILITY AND CONTROL METHODS PER APRIL 1976 VERSION OF DATCOM

CHARACTERISTICS AT ANGLE OF ATTACK AND IN SIDESLIP

WING-BODY CONFIGURATION

CD-CM EXPERIMENTAL DATA FOR WING-BODY

----------------------- FLIGHT CONDITIONS ------------------------ -------------- REFERENCE DIMENSIONS ------------

MACH ALTITUDE VELOCITY PRESSURE TEMPERATURE REYNOLDS REF. REFERENCE LENGTH MOMENT REF. CENTER

NUMBER NUMBER AREA LONG. LAT. HORIZ VERT

IN IN/SEC LB/IN**2 DEG R 1/FT IN**2 IN IN IN IN

0 0.030 2.1617E+05 144.167 9.978 14.800 4.000 0.550

0 -------------------DERIVATIVE (PER DEGREE)-------------------

0 ALPHA CD CL CM CN CA XCP CLA CMA CYB CNB CLB
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0

10.0 0.115 0.417 0.0100 0.430 0.041 0.023 0.000E+00 0.000E+00 -Infinity 8.832E-06 -2.689E-03

0*NOTE* OUTPUT REFLECTS EXPERIMENTAL DATA INPUTS

1 THE FOLLOWING IS A LIST OF ALL INPUT CARDS FOR THIS CASE.

0

1 END OF JOB.

D.7.3 DATCOM Filewrapper. This section has an example of the DAT-

COM filewrapper structure.

#

# Basic Digital DATCOM File Wrapper

#

# @author: Mustafa Turan

# @version: 6 Nov 2008

# @description: MAV DIGITAL DATCOM WRAPPER

#

RunCommands

{

# Put ModelCenter values in the input file

generate inputFile

# Run the code

run "digdat"

# Parse the standard output file

parse outputfile

}

RowFieldInputFile inputFile

{

templateFile: mtrn_mav_CL_only.template

fileToGenerate: for005.dat

# These are the variables that are being modified in the template file to create the DATCOM input file.

# Other variables can be added as desired/needed.

setDelimiters "= ,"

setGroup Flt_Cond

markAsBeginning "$FLTCON"

keyvar: Mach_number double "MACH(1)" description="mach number evaluated"

keyvar: Reynolds_number double "RNNUB(1)" description="reynolds number normalized"

keyvar: AOA double "ALSCHD(1)" description="angle of attack"

setGroup optins

markAsBeginning "$OPTINS"

keyvar: S_ref double "SREF" description="reference area"

keyvar: Span double "BLREF" description="span"

setGroup Components

markAsBeginning "$SYNTHS"

# MC Var Name Var Type Code Variable Description Field

keyvar: WingApex_X double "XW" description="Wing Apex location from nose in X dir"

keyvar: WingApex_Z double "ZW" description="Wing Apex location z dir"

keyvar: CG_X double "XCG" description="Center of gravity in the X dir"

keyvar: CG_Z double "ZCG" description="Center of gravity in the Z dir"

setGroup Fuselage

markAsBeginning "$BODY"

keyvar: FusPos2 double "X(2)" description="Rear x-pos of nose cone"
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keyvar: FusPos3 double "X(3)" description="Mid x-pos of midsection"

keyvar: FusPos4 double "X(4)" description="Rear x-pos of midsection"

keyvar: FusPos5 double "X(5)" description="Rear x-pos of AftSection"

keyvar: FusRad2 double "R(2)" description="Rear Rad of nose cone"

keyvar: FusRad3 double "R(3)" description="Mid rad of midsection"

keyvar: FusRad4 double "R(4)" description="Rear rad of midsection"

keyvar: FusRad5 double "R(5)" description="Rear rad of Aftsection"

setGroup Wing

markAsBeginning "$WGPLNF"

keyvar: RootChord double "CHRDR" description="Wing root chord length"

keyvar: TipChord double "CHRDTP" description="Wing tip chord length"

keyvar: SemiSpan double "SSPN" description="Wing semi-span length"

keyvar: Exposed_Semispan double "SSPNE" description="Exposed Wing semi-span length"

keyvar: Sweep double "SAVSI" description="Sweep Angle (variable sweep inboard)"

setGroup experimental_data_input

markAsBeginning "$EXPR01"

keyvar: CD_wing double "CDWB(1)" description="experimental cd input"

# keyvar: CL_wing double "CLWB(1)" description="experimental cl input"

keyvar: CM_wing double "CMWB(1)" description="experimental cm input"

}

RowFieldOutputFile outputFile

{

# This routine parses the program output file.

# Other variables can be extracted as desired.

fileToParse: for006.dat

setDelimiters "= "

# Search reference string as before

markAsBeginning "FLIGHT CONDITIONS"

setGroup Input_check

variable: Mach_no double 5 2

variable: Re double 5 3

variable: Ref_Area double 5 4

variable: Ref_Chord double 5 5

variable: Ref_Span double 5 6

setGroup Coefficients

variable: CD double 9 2

variable: CL double 9 3

variable: CM double 9 4

}

D.8 QPROP

Figure 3.10 on page 3-12 and Figure 3.13 on page 3-18 summarize the QPROP

operation and filewrapper structure. This sections presents the related file structures

in QPROP operations.
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D.8.1 QPROP Input Files. There are four different input files in the

MCDA tool for QPROP: three of them are the actual input files and the fourth one

is the QPROP batch file that runs the QPROP component.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

qcon.def File Template

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

1.225 ! rho kg/m^3

1.78E-5 ! mu kg/m-s

340.0 ! a m/s

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Propeller File Template

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 ! Nblades

0.50 5.8 ! CL0 CL_a

-0.3 1.2 ! CLmin CLmax

0.028 0.050 0.050 0.5 ! CD0 CD2u CD2l CLCD0

70000 -0.7 ! REref REexp

0.0254 0.0254 1.0 ! Rfac Cfac Bfac

0.0 0.0 4.0 ! Radd Cadd Badd

# r chord beta

0.75 0.66 27.5

1.00 0.69 22.0

1.50 0.63 15.2

2.00 0.55 10.2

2.50 0.44 6.5

2.875 0.30 4.6

3.00 0.19 4.2

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Motor File Template

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

mtrn_motor file

1 ! motor type (brushed DC)

0.18 ! Rmotor (Ohms)

0.72 ! Io (Amps)

1700.0 ! Kv (rpm/Volt)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

QPROP Batch File Template for Velocity and Thrust Inputs

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

qprop mtrn_prop mtrn_motor 3.0 0.0 0.0 0.0 0.981 0.0 0.0 0.0 > mtrn_Qprop.dat
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D.8.2 QPROP Output File. There is a single output file generated by the

QPROP batch file. Line numbers in the presented example in this section may not

match with QPROP filewrapper in the next section.

# QPROP Version 1.22

#

# mtrn prop Graupner CAM 6x3 folder xxx

#

# mtrn_motor file

# 0.31000 Rmotor (Ohms)

# 0.77000 Io (Amps)

# 2760.0 Kv (rpm/Volt)

#

# rho = 1.2250 kg/m^3

# mu = 0.17800E-04 kg/m-s

# a = 340.00 m/s

#

1 2 3 4 5 6 7 8 9 10 11

# V(m/s) rpm Dbeta T(N) Q(N-m) Pshaft(W) Volts Amps effmot effprop adv

0.000 1787. 0.000 2.000 0.5720E-01 10.70 6.011 17.3033 0.1029 0.0000 0.00000

12 13 14 15 16 17 18 19

# CT CP DV(m/s) eff Pelec Pprop cl_avg cd_avg

0.5502E-01 0.1033E-01 6.6896 0.0000 104.0 0.000 0.7406 0.5524E-01#

# radius chord beta Cl Cd Re Mach effi effp Wa(m/s) Aswirl adv_wake

0.0404 0.0340 30.380 1.1161 0.13131 16121 0.020 0.0000 0.7511 2.834 24.30 0.1196

0.0450 0.0347 28.311 1.0628 0.11116 18524 0.023 0.0000 0.7653 3.001 22.75 0.1237

0.0495 0.0350 26.471 1.0176 0.09678 20807 0.025 0.0000 0.7745 3.144 21.36 0.1271

0.0541 0.0350 24.856 0.9816 0.08656 22902 0.028 0.0000 0.7798 3.268 20.10 0.1299

0.0587 0.0347 23.442 0.9536 0.07920 24781 0.031 0.0000 0.7824 3.375 18.97 0.1323

0.0632 0.0341 22.191 0.9315 0.07374 26446 0.033 0.0000 0.7829 3.467 17.93 0.1343

0.0678 0.0334 21.065 0.9132 0.06952 27920 0.036 0.0000 0.7819 3.546 16.99 0.1360

0.0724 0.0327 20.026 0.8963 0.06605 29244 0.038 0.0000 0.7798 3.613 16.12 0.1373

0.0770 0.0319 19.037 0.8786 0.06294 30477 0.041 0.0000 0.7770 3.667 15.30 0.1382

0.0815 0.0312 18.071 0.8583 0.05996 31670 0.043 0.0000 0.7735 3.708 14.54 0.1388

0.0861 0.0305 17.130 0.8361 0.05719 32808 0.046 0.0000 0.7692 3.737 13.82 0.1390

0.0907 0.0298 16.219 0.8130 0.05469 33863 0.049 0.0000 0.7641 3.756 13.14 0.1389

0.0952 0.0291 15.344 0.7901 0.05253 34796 0.051 0.0000 0.7578 3.764 12.49 0.1384

0.0998 0.0283 14.511 0.7681 0.05075 35564 0.054 0.0000 0.7503 3.761 11.87 0.1377

0.1044 0.0274 13.726 0.7479 0.04938 36118 0.056 0.0000 0.7415 3.750 11.29 0.1367

0.1090 0.0264 12.988 0.7297 0.04838 36446 0.059 0.0000 0.7315 3.731 10.73 0.1355

0.1135 0.0254 12.296 0.7130 0.04768 36573 0.062 0.0000 0.7204 3.705 10.20 0.1341

0.1181 0.0244 11.647 0.6975 0.04722 36532 0.064 0.0000 0.7082 3.675 9.710 0.1326

0.1227 0.0233 11.039 0.6825 0.04692 36361 0.067 0.0000 0.6953 3.643 9.252 0.1311

0.1273 0.0223 10.469 0.6671 0.04672 36108 0.069 0.0000 0.6818 3.614 8.834 0.1298

0.1318 0.0213 9.937 0.6509 0.04666 35723 0.072 0.0000 0.6677 3.591 8.463 0.1287

0.1364 0.0200 9.449 0.6357 0.04718 34787 0.074 0.0000 0.6510 3.572 8.127 0.1278

0.1410 0.0182 9.014 0.6219 0.04892 32745 0.077 0.0000 0.6292 3.559 7.827 0.1272

0.1455 0.0156 8.638 0.6055 0.05295 28970 0.079 0.0000 0.5975 3.577 7.615 0.1277

0.1501 0.0119 8.329 0.5448 0.06159 22816 0.082 0.0000 0.5425 3.827 7.905 0.1368
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D.8.3 QPROP Filewrapper. This section has an example of the QPROP

filewrapper structure.

#

# Basic QPROP filewrapper

#

# @author: Mustafa Turan

# @version: 7 Nov 2008

# @description: Mav QPROP analysis

#

RunCommands

{

# Put ModelCenter values in the input file

generate inputFile1

generate inputFile2

generate inputFile3

generate inputfile4

# Run the code

run "qprop_batch.bat"

# Parse the standard output file

parse outputfile

}

RowFieldInputFile inputFile1

{

templateFile: qcon.template

fileToGenerate: qcon.def

setDelimiters "= ,"

setGroup Flight_conditions

variable: rho double 1 1 description="density"

variable: mu double 2 1 description="dynamic viscosity"

variable: a double 3 1 description="speed of sound"

}

RowFieldInputFile inputFile2

{

templateFile: qprop_batch.template

fileToGenerate: qprop_batch.bat

setDelimiters "= ,"

variable: Velocity double 1 4 default=1.0 description="flight velocity"

variable: RPM double 1 5 default=0.0 description="RPM"

variable: Volt double 1 6 default=0 description="Volt"

variable: dBeta double 1 7 default=0.0 description="dBeta"

variable: Thrust double 1 8 default=1.0 description="Thrust required"

variable: Torque double 1 9 default=0 description="Torque"

variable: Amps double 1 10 default=0 description="Amps"

variable: Pele double 1 11 default=0 description="Power "

}

RowFieldInputFile inputFile3

{

templateFile: mtrn_motor.template
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fileToGenerate: mtrn_motor

setDelimiters " ,"

setGroup inputs_Motor

variable: Rmotor double 6 1 description="Rmotor(ohms)"

variable: Io double 7 1 description="Io (amps)"

variable: Kv double 8 1 description="Kv (rpm/volts)"

}

RowFieldInputFile inputFile4

{

templateFile: mtrn_prop.template

fileToGenerate: mtrn_prop

setDelimiters " ,"

setGroup inputs_Prop

variable: Blade_Number double 4 1 description="Number of blades"

setGroup radius

variable: r1 double 17 1 description="radius 1 "

variable: r2 double 18 1 description="radius 2 "

variable: r3 double 19 1 description="radius 3 "

variable: r4 double 20 1 description="radius 4 "

variable: r5 double 21 1 description="radius 5 "

variable: r6 double 22 1 description="radius 6 "

variable: r7 double 23 1 description="radius 7 "

setGroup chord

variable: c1 double 17 2 description="chord 1 "

variable: c2 double 18 2 description="chord 2 "

variable: c3 double 19 2 description="chord 3 "

variable: c4 double 20 2 description="chord 4 "

variable: c5 double 21 2 description="chord 5 "

variable: c6 double 22 2 description="chord 6 "

variable: c7 double 23 2 description="chord 7 "

setGroup beta

variable: b1 double 17 3 description="beta 1 "

variable: b2 double 18 3 description="beta 2 "

variable: b3 double 19 3 description="beta 3 "

variable: b4 double 20 3 description="beta 4 "

variable: b5 double 21 3 description="beta 5 "

variable: b6 double 22 3 description="beta 6 "

variable: b7 double 23 3 description="beta 7 "

}

RowFieldOutputFile outputFile

{

# This routine parses the program output file.

# Other variables can be extracted as desired.

fileToParse: mtrn_Qprop.dat

setDelimiters "= "

markAsBeginning "V(m/s)"

setGroup prop_erties

variable: Velocity double 2 2

variable: RPM double 2 3

variable: Dbeta double 2 4

variable: Thrust double 2 5

variable: Q double 2 6

variable: Pshaft double 2 7
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variable: Volts double 2 8

variable: Amps double 2 9

variable: effmot double 2 10

variable: effprop double 2 11

variable: adv double 2 12

variable: CT double 2 13

variable: CP double 2 14

variable: DV double 2 15

variable: eff double 2 16

variable: Pelec double 2 17

variable: Pprop double 2 18

variable: cl_avg double 2 19

variable: cd_avg double 2 20

}

D.9 AVL

Figure 3.12 on page 3-15 and Figure 3.13 on page 3-18 summarize the AVL

operation and filewrapper structure. This section presents the related file structures

in AVL operations. The geometry input file is based on the Figure 3.25 on page 3-36.

D.9.1 AVL Input Files. There are four different input files in the MCDA

tool for AVL: three of them are the actual input files and the fourth one is the

auxiliary AVL batch file that changes parameters in the AVL menu.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Geometry Input File Template (xxx.avl)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

MAV Mustafa Turan

#Mach

0.0

#IYsym IZsym Zsym

0 0 0.0

#Sref Cref Bref

32.0 4.0995 8.0

#Xref Yref Zref

1.5 0.0 0.0

#

#

#====================================================================

SURFACE

Wing

#Nchordwise Cspace Nspanwise Sspace

8 1.0 12 1.0

#

YDUPLICATE

0.0

#

ANGLE

0.0

#-------------------------------------------------------------

SECTION
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#Xle Yle Zle Chord Ainc Nspanwise Sspace

0. 0. 0. 5.093 0.0 0 0

AFILE

mtrn_MAV_wing.dat

#Cname Cgain Xhinge HingeVec SgnDup

CONTROL

flap 1.0 0.75 0.0 0.0 0.0 1.0

#-------------------------------------------------------------added by mtrn

SECTION

#Xle Yle Zle Chord Ainc Nspanwise Sspace

0.5 2.5 0. 3.8 0.0 0 0

AFILE

mtrn_MAV_wing.dat

#Cname Cgain Xhinge HingeVec SgnDup

CONTROL

flap 1.0 0.75 0.0 0.0 0.0 1.0

CONTROL

aileron -1.0 0.75 0.0 0.0 0.0 -1.0

CLAF

1.0

#-------------------------------------------------------------

SECTION

#Xle Yle Zle Chord Ainc Nspanwise Sspace

0.9 4.0 0.0 2.097 0.0 0 0

AFILE

mtrn_MAV_wing.dat

CONTROL

aileron -1.0 0.75 0.0 0.0 0.0 -1.0

#

CLAF

1.0

#====================================================================

SURFACE

H-stab

#Nchordwise Cspace Nspanwise Sspace

6 1.0 6 1.0

#

YDUPLICATE

0.0

#

TRANSLATE

7.0 0.0 0.0

#

#-------------------------------------------------------------

SECTION

#Xle Yle Zle Chord Ainc Nspanwise Sspace

0.0 0.0 0.0 1.5 0. 0 0

#Cname Cgain Xhinge HingeVec SgnDup

CONTROL

elevator 1.0 0.7 0.0 1.0 0.0 1.0

#-------------------------------------------------------------

SECTION

#Xle Yle Zle Chord Ainc Nspanwise Sspace

0.14 2.0 0.0 1.0 0. 0 0

#Cname Cgain Xhinge HingeVec SgnDup
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CONTROL

elevator 1.0 0.7 0.0 1.0 0.0 1.0

#

#====================================================================

SURFACE

V-stab

#Nchordwise Cspace Nspanwise Sspace

6 1.0 5 1.0

TRANSLATE

7.0 0.0 0.0

#-------------------------------------------------------------

SECTION

#Xle Yle Zle Chord Ainc Nspanwise Sspace

0.0 0. 0.0 1.4 0. 0 0

#Cname Cgain Xhinge HingeVec SgnDup

CONTROL

rudder 1.0 0.5 0.0 0.0 1.0 1.0

#-------------------------------------------------------------

SECTION

#Xle Yle Zle Chord Ainc Nspanwise Sspace

0.14 0. 1.5 0.8 0. 0 0

#Cname Cgain Xhinge HingeVec SgnDup

CONTROL

rudder 1.0 0.5 0.0 0.0 1.0 1.0

#-------------------------------------------------------------

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Mass File Example from the Manual(xxx.mass)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

# SuperGee

#

# Dimensional unit and parameter data.

# Mass & Inertia breakdown.

# Names and scalings for units to be used for trim and eigenmode calculations.

# The Lunit and Munit values scale the mass, xyz, and inertia table data below.

# Lunit value will also scale all lengths and areas in the AVL input file.

Lunit = 0.0254 m

Munit = 0.001 kg

Tunit = 1.0 s

#-------------------------

# Gravity and density to be used as default values in trim setup (saves runtime typing).

# Must be in the unit names given above (i.e. m,kg,s).

g = 9.81

rho = 1.225

#-------------------------

# Mass & Inertia breakdown.

# x y z is location of item’s own CG.

# Ixx... are item’s inertias about item’s own CG.

#

# x,y,z system here must be exactly the same one used in the .avl input file

# (same orientation, same origin location, same length units)

#

# mass x y z Ixx Iyy Izz [ Ixy Ixz Iyz ]

* 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.

+ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

58.0 3.34 12.0 1.05 4400 180 4580 ! right wing

58.0 3.34 -12.0 1.05 4400 180 4580 ! left wing

16.0 -5.2 0.0 0.0 0 80 80 ! fuselage pod

18.0 13.25 0.0 0.0 0 700 700 ! boom+rods

D-20



22.0 -7.4 0.0 0.0 0 0 0 ! battery

2.0 -2.5 0.0 0.0 0 0 0 ! jack

9.0 -3.8 0.0 0.0 0 0 0 ! RX

9.0 -5.1 0.0 0.0 0 0 0 ! rud servo

6.0 -5.9 0.0 0.0 0 0 0 ! ele servo

9.0 2.6 1.0 0.0 0 0 0 ! R wing servo

9.0 2.6 -1.0 0.0 0 0 0 ! L wing servo

2.0 1.0 0.0 0.5 0 0 0 ! wing connector

1.0 3.0 0.0 0.0 0 0 0 ! wing pins

6.0 29.0 0.0 1.0 70 2 72 ! stab

6.0 33.0 0.0 2.0 35 39 4 ! rudder

0.0 -8.3 0.0 0.0 0 0 0 ! nose wt.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Run File Example from the Manual(xxx.run) Up to Five Different Run Scenerion

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Run case 1: -unnamed-

alpha -> CL = 1.12345

beta -> beta = 0.00000

pb/2V -> pb/2V = 0.00000

qc/2V -> qc/2V = 0.00000

rb/2V -> rb/2V = 0.00000

flap -> flap = 0.00000

aileron -> Cl roll mom = 0.00000

elevator -> Cm pitchmom = 0.00000

rudder -> Cn yaw mom = 0.00000

alpha = 8.24035

beta = 0.00000

pb/2V = -0.645134E-24

qc/2V = 0.00000

rb/2V = -0.834026E-25

CL = 1.12345

CDo = 0.00000

bank = 20.00000

elevation = 0.00000

heading = 0.00000

Mach = 0.00000

velocity = 5.8633

density = 0.200000

grav.acc. = 10.0000

turn_rad. = 0.00000

load_fac. = 1.00000

X_cg = 0.650000

Y_cg = 0.00000

Z_cg = 0.00000

mass = 100.000

Ixx = 400.000

Iyy = 200.000

Izz = 600.000

Ixy = 0.00000

Iyz = 0.00000

Izx = 0.00000

visc CL_a = 0.00000

visc CL_u = 0.00000

visc CM_a = 0.00000

visc CM_u = 0.00000

---------------------------------------------

Run case 2: -unnamed-

alpha -> CL = 0.87654

beta -> beta = 0.00000

pb/2V -> pb/2V = 0.00000

qc/2V -> qc/2V = 0.00000
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rb/2V -> rb/2V = 0.00000

flap -> flap = 0.00000

aileron -> Cl roll mom = 0.00000

elevator -> Cm pitchmom = 0.00000

rudder -> Cn yaw mom = 0.00000

alpha = 2.34567

beta = 0.00000

pb/2V = 0.0000

qc/2V = 0.74000E-03

rb/2V = -0.134026E-01

CL = 0.789102

CDo = 0.01234

bank = 20.00000

elevation = 0.00000

heading = 0.00000

Mach = 0.00000

velocity = 5.8633

density = 0.200000

grav.acc. = 10.0000

turn_rad. = 0.00000

load_fac. = 1.00000

X_cg = 0.650000

Y_cg = 0.00000

Z_cg = 0.00000

mass = 100.000

Ixx = 400.000

Iyy = 200.000

Izz = 600.000

Ixy = 0.00000

Iyz = 0.00000

Izx = 0.00000

visc CL_a = 0.00000

visc CL_u = 0.00000

visc CM_a = 0.00000

visc CM_u = 0.00000

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Auxiliary Batch File Template for AVL Menu Manuplation

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

OPER

A R 0.5555E-01

A P 0.5526E-03

A Y 0.1687E-02

A D1 0.

A D2 0.

A D3 0.

A D4 0.

A A 1.5

X

ST

mtrn_MAV_results.txt

O

QUIT
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D.9.2 AVL Output File. AVL generates output after running the following

batch file. As seen in the command, xxx.run file Auxiliary Batch file is called within

the command while operating.

AVL main batch file (as executable in the filewrapper):

avl mtrn_MAV.avl vanilla.run < mtrn_MAV_b.batch

---------------------------------------------------------------

Vortex Lattice Output -- Total Forces

Configuration: MAV Mustafa Turan

# Surfaces = 5

# Strips = 41

# Vortices = 294

Sref = 20.515 Cref = 4.4230 Bref = 5.9055

Xref = 0.65000 Yref = 0.0000 Zref = 0.0000

Standard axis orientation, X fwd, Z down

Run case: -unnamed-

Alpha = 6.00000 pb/2V = 0.05507 p’b/2V = 0.05555

Beta = 0.00000 qc/2V = 0.00055

Mach = 0.000 rb/2V = 0.00748 r’b/2V = 0.00169

CXtot = -0.00282 Cltot = 0.00000 Cl’tot = 0.00000

CYtot = 0.00550 Cmtot = 0.00000

CZtot = -0.28209 Cntot = 0.00000 Cn’tot = 0.00000

CLtot = 0.28025

CDtot = 0.03229

CDvis = 0.00000 CDind = 0.03229

CLff = 0.28313 CDff = -0.37659 | Trefftz

CYff = -0.00652 e = -0.0399 | Plane

flap = 0.00000

aileron = 3.22334

elevator = -27.34651

rudder = 17.87431

---------------------------------------------------------------

Stability-axis derivatives...

alpha beta

---------------- ----------------

z’ force CL | CLa = 2.317367 CLb = -0.003174

y force CY | CYa = 0.097712 CYb = -0.024071

x’ mom. Cl’| Cla = -0.005580 Clb = -0.117160

y mom. Cm | Cma = -0.533778 Cmb = 0.004271

z’ mom. Cn’| Cna = -0.043476 Cnb = 0.033274

roll rate p’ pitch rate q’ yaw rate r’

---------------- ---------------- ----------------

z’ force CL | CLp = 0.001552 CLq = 3.537171 CLr = 0.004538

y force CY | CYp = 0.216254 CYq = 0.093204 CYr = 0.026703

x’ mom. Cl’| Clp = -0.158943 Clq = 0.005837 Clr = 0.149331
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y mom. Cm | Cmp = -0.002085 Cmq = -1.652294 Cmr = -0.011797

z’ mom. Cn’| Cnp = -0.084672 Cnq = -0.044089 Cnr = -0.048904

flap d1 aileron d2 elevator d3 rudder d4

---------------- ---------------- ---------------- ----------------

z’ force CL | CLd1 = 0.011449 CLd2 = 0.000110 CLd3 = 0.003959 CLd4 = 0.000024

y force CY | CYd1 = 0.000296 CYd2 = 0.000111 CYd3 = 0.000042 CYd4 = -0.000384

x’ mom. Cl’| Cld1 = 0.000026 Cld2 = 0.002533 Cld3 = 0.000006 Cld4 = -0.000006

y mom. Cm | Cmd1 = -0.004345 Cmd2 = -0.000062 Cmd3 = -0.004591 Cmd4 = -0.000034

z’ mom. Cn’| Cnd1 = -0.000133 Cnd2 = -0.000145 Cnd3 = -0.000033 Cnd4 = 0.000360

Trefftz drag| CDffd1 = -0.026130 CDffd2 = 0.000054 CDffd3 = 0.015024 CDffd4 = 0.000072

span eff. | ed1 = -0.000498 ed2 = -0.000034 ed3 = -0.002704 ed4 = -0.000010

Neutral point Xnp = 1.668789

Clb Cnr / Clr Cnb = 1.153100 ( > 1 if spirally stable )

D.9.3 AVL Filewrapper. This section has an example of the AVL filewrap-
per structure.

#

# Athena Vortex Lattice filewrapper

#

# @author: Mustafa Turan

# @version: 23 Jan 2009

# @description: MAV AVL analysis

#

RunCommands

{

# Put ModelCenter values in the input file

generate inputFile1

generate inputFile2

# Run the code

run "avl_batch.bat"

# Parse the standard output file

parse outputfile

}

RowFieldInputFile inputFile1

{

templateFile: mtrn_MAV.template

fileToGenerate: mtrn_MAV.avl

setDelimiters " ,"

setGroup "UserInputs.Geometry_input_file"

variable: Mach double 3 1 description="keep it zero for M<0.2"

variable: S_ref double 7 1 description="reference ares"

variable: C_ref double 7 2 description="c_bar"

variable: b_ref double 7 3 description="span"

variable: X_ref double 9 1 description="see manual"

variable: Y_ref double 9 2 description="see manual"

variable: Z_ref double 9 3 description="see manual"

setGroup "UserInputs.Wing.Section_1"

variable: Xle1 double 26 1 description="see manual"

variable: Yle1 double 26 2 description="see manual"
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variable: Zle1 double 26 3 description="see manual"

variable: Chord double 26 4 description="see manual"

variable: Flap_Cgain double 33 2 description="see manual"

variable: Flap_Xhinge double 33 3 description="see manual"

variable: Flap_SgnDup double 33 7 description="see manual"

setGroup "UserInputs.Wing.Section_2"

variable: Xle2 double 37 1 description="see manual"

variable: Yle2 double 37 2 description="see manual"

variable: Zle2 double 37 3 description="see manual

variable: Chord double 37 4 description="see manual"

variable: Flap_Cgain double 44 2 description="see manual"

variable: Flap_Xhinge double 44 3 description="see manual"

variable: Flap_SgnDup double 44 7 description="see manual"

variable: Aileron_Cgain double 47 2 description="see manual"

variable: Aileron_Xhinge double 47 3 description="see manual"

variable: Aileron_SgnDup double 47 7 description="see manual"

setGroup "UserInputs.Wing.Section_3"

variable: Xle3 double 54 1 description="see manual"

variable: Yle3 double 54 2 description="see manual"

variable: Zle3 double 54 3 description="see manual"

variable: Chor double 54 4 description="see manual"

variable: Aileron_Cgain double 60 2 description="see manual"

variable: Aileron_Xhinge double 60 3 description="see manual"

variable: Aileron_SgnDup double 60 7 description="see manual"

setGroup "UserInputs.Horizontal_STAB.Translate"

variable: Translate_x double 74 1 description="see manual"

variable: Translate_y double 74 2 description="see manual"

variable: Translate_z double 74 3 description="see manual"

setGroup "UserInputs.Horizontal_STAB.Section_1"

variable: Xle1 double 79 1 description="see manual"

variable: Yle1 double 79 2 description="see manual"

variable: Zle1 double 79 3 description="see manual"

variable: Chord double 79 4 description="see manual"

variable: Elevator_Cgain double 83 2 description="see manual"

variable: Elevator_Xhinge double 83 3 description="see manual"

variable: Elevator_SgnDup double 83 7 description="see manual"

setGroup "UserInputs.Horizontal_STAB.Section_2"

variable: Xle2 double 87 1 description="see manual"

variable: Yle2 double 87 2 description="see manual"

variable: Zle2 double 87 3 description="see manual"

variable: Chord double 87 4 description="see manual"

variable: Elevator_Cgain double 91 2 description="see manual"

variable: Elevator_Xhinge double 91 3 description="see manual"

variable: Elevator_SgnDup double 91 7 description="see manual"

setGroup "UserInputs.Vertical_STAB.Translate"

variable: Translate_x double 99 1 description="see manual"

variable: Translate_y double 99 2 description="see manual"

variable: Translate_z double 99 3 description="see manual"

setGroup "UserInputs.Vertical_STAB.Section_1"

variable: Xle1 double 103 1 description="see manual"

variable: Yle1 double 103 2 description="see manual

variable: Zle1 double 103 3 description="see manual"

variable: Chord double 103 4 description="see manual"

variable: Rudder_Cgain double 107 2 description="see manual"

variable: Rudder_Xhinge double 107 3 description="see manual"

variable: Rudder_SgnDup double 107 7 description="see manual"

setGroup "UserInputs.Vertical_STAB.Section_2"
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variable: Xle2 double 111 1 description="see manual"

variable: Yle2 double 111 2 description="see manual"

variable: Zle2 double 111 3 description="see manual"

variable: Chord double 111 4 description="see manual"

variable: Rudder_Cgain double 115 2 description="see manual"

variable: Rudder_Xhinge double 115 3 description="see manual"

variable: Rudder_SgnDup double 115 7 description="see manual"

}

RowFieldInputFile inputFile2

{

templateFile: mtrn_MAV_b.template

fileToGenerate: mtrn_MAV_b.batch

setDelimiters "= ,"

setGroup UserInputs.Run_Constraints

variable: Roll_rate double 2 3 description="see manual"

variable: Pitch_rate double 3 3 description="see manual"

variable: Yaw_rate double 4 3 description="see manual"

variable: Flap double 5 3 description="see manual"

variable: Aileron double 6 3 description="see manual"

variable: Elevator double 7 3 description="see manual"

variable: Rudder double 8 3 description="see manual"

variable: AOA double 9 3 description="see manual"

}

RowFieldOutputFile outputFile

{

# This routine parses the program output file.

# Other variables can be extracted as desired.

fileToParse: mtrn_MAV_results.txt

setDelimiters "= ,"

markAsBeginning "Configuration"

setGroup Results.Run_Case_AERO_coeff

variable: Cl_tot double 21 2 description="see manual"

variable: Cd_tot double 22 2 description="see manual"

variable: Cd_ind double 23 4 description="see manual"

variable: Cl_ff double 24 2 description="see manual"

variable: Cd_ff double 24 4 description="see manual"

variable: e double 25 4 description="see manual"

setGroup Results.Conrol_surface_deflections

variable: flap double 27 2 description="see manual"

variable: aileron double 28 2 description="see manual"

variable: elevator double 29 2 description="see manual"

variable: rudder double 30 2 description="see manual"

setGroup Results.Stability_axis_derivatives

markAsBeginning "CLa ="

variable: CL_a double 1 6 description="see manual"

variable: Cy_a double 2 6 description="see manual"

variable: Cl_a double 3 5 description="see manual"

variable: Cm_a double 4 6 description="see manual"

variable: cn_a double 5 5 description="see manual"

variable: CL_b double 1 8 description="see manual"

variable: Cy_b double 2 8 description="see manual"

variable: Cl_b double 3 7 description="see manual"

variable: Cm_b double 4 8 description="see manual"

variable: cn_b double 5 7 description="see manual"
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variable: Xnp double 27 4 description="neutral point"

}
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