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ABSTRACT 

Unmanned Underwater Vehicles frequently rely on two-dimensional sensors for 

information about their surroundings.  These sensors do not provide adequate information 

for obstacle avoidance in cluttered maritime environments.  To address that issue, a three-

dimensional reconstruction of the environment utilizing occupancy grids and a prototype 

forward looking sonar will be considered.  Providing the vehicle with three-dimensional 

views of the environment will allow for optimal route planning and an increase in 

successful missions in complex environments.   
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EXECUTIVE SUMMARY 

Unmanned underwater vehicles (UUV) are being tasked with a growing number 

of mission sets.  These mission sets require the vehicle to perform tasks in a wide variety 

of environments.  The mission sets may require the UUV to traverse up river ways, 

perform searches in harbor environments, or navigate in littoral areas.  In each of these 

areas, the complexity of the environment poses challenges for the safe navigation of the 

vehicle.   

The current build of UUVs are utilizing sensors that provide two-dimensional 

representations of their operating environment.  In compressing the information from a 

three-dimensional world into a two-dimensional representations a significant amount of 

information is lost.  The loss of this information creates challenges in the proper 

navigation of the vehicles.  The main goal of this work is to provide the vehicle with a 

three-dimensional representation of the environment that can be utilized for obstacle 

avoidance and route planning.   

With this goal in mind, forward looking sonar (FLS) was chosen as the sensor of 

interest.  This research mounted two prototype FLS onto the Remote Environmental 

Measuring UnitS (REMUS) used by the Center for Autonomous Vehicle Research 

(CAVR) at the Naval Postgraduate School.   One of the sensors provided a horizontal 

field of view that covered ninety degrees and ninety meters in front of the vehicle.  The 

horizontal FLS also has fifteen degrees of ambiguity in the vertical direction.  The other 

FLS was mounted to provide a vertical field of view that covers forty-five degrees and 

ninety meters, with fifteen degrees of ambiguity in the horizontal direction.   

An occupancy grid was used as the framework of the reconstruction.  Occupancy 

grids divide the area into sub regions.  Each region or cell is assigned a probability that 

indicates the likelihood of that cell being occupied.  The probabilities of occupancy are 

determined from physical and probabilistic models of the sensors.  Each measurement 

received by the sensors is converted into a probability of occupancy and provides an 



 xiv

update to the overall probability stored in the grid.  With enough measurements, a clear 

three-dimensional representation can be reconstructed.   

To prove the applicability of this method, REMUS was deployed in the Charles 

River in Boston, Massachusetts and directed underneath the Massachusetts Avenue 

Bridge.  The bridge provided obstacles that have distinct three-dimensional shapes.  

Using this dataset and the models and algorithms developed the main features of the 

bridge, the berm and pylons were reconstructed.  The resulting three-dimensional grid 

clearly depicted the height, width, and depth of the pylons.  The grid was also able to 

locate the rapid shoaling of the berm.   

The two-dimensional representations of the bridge depict the bridge as an 

unnavigable area.  By successfully locating these obstacles and determining the open 

space surrounding them, the vehicle can safely navigate underneath the bridge.  Three-

dimensional reconstruction of the environment extends the areas in which the vehicle can 

safely be deployed.   
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I. INTRODUCTION 

A. MOTIVATION 

During the last several years there has been an explosion of interest in unmanned 

underwater vehicles (UUV). UUVs are being utilized to explore the ocean depths, survey 

and aid in salvage operations, and are even used in keeping our soldiers and sailors safe.  

The current crop of UUVs is utilized in areas where the main navigational hazard is the 

ocean bed.  The next generation of UUVs will need to be able to navigate in water with a 

variety of obstruction: pier pylons, kelp beds, oil platforms, etc.   

B.  STATEMENT OF PROBLEM 

UUVs are currently limited by the navigational sensors they employ.  The sensors 

primarily map the environment into a two-dimensional representation.  While this works 

well for unmanned ground vehicles mapping a hallway, it leads to many complications 

when traversing in the undersea environment.  In the past UUVs have been employed in 

locations with a large open area.  They have successfully mapped the bottom contours 

and other bathymetric features.  However, the next generation of UUVs will need the 

ability to navigate among a wider variety of obstacles.  For example, a UUV may be 

required to conduct searches in a congested harbor area and do so several times a year to 

measure and detect changes in the environment.  This adds a new level of navigational 

complexity.   

In order to safely navigate in an unknown environment the vehicle must be able to 

image the space directly in front of it.  Forward Looking Sonar (FLS) can provide 

submerged vehicles with this capability.  Current FLS map the area into two-dimensional 

images.  During the process of compressing a three-dimensional world into a two-

dimensional image information is lost.  In some circumstances, that information can be 

critical for proper navigation. 

Figure 1 is a picture of the Massachusetts Avenue Bridge in Boston MA. Figure 2 

is a rough approximation of the undersea support for the bridge. There are several distinct 



 2

features. Each pylon has an associated width, height and depth. The river bottom quickly 

shoals on each side of the bridge. The shoaling on either side is to support the pylons.  

 

Figure 1.   Massachusetts Avenue Bridge in Boston MA,  
from [18]  

 

 

Figure 2.   Submerged Bridge Pylons 
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Currently, UUVs are using FLS for obstacle avoidance and path planning ([1] 

[2]).   The NPS REMUS vehicle is currently equipped with both a vertical and horizontal 

FLS.  Figures 3 and 4 show both horizontal and vertical FLS sonar images from a UUV 

passing underneath the bridge. 

 

Figure 3.    Horizontal FLS Image from a REMUS vehicle navigating underneath the 
Massachusetts Avenue Bridge 

 

 

Figure 4.   Vertical FLS Image from a REMUS vehicle navigating underneath the 
Massachusetts Avenue Bridge 
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The first feature of note is the quickly shoaling river bottom.  According to the 

horizontal FLS, the change in depth of the river bottom appears as a solid wall.  

However, data provided by the vertical FLS shows that the vehicle can simply change its 

depth and safely navigate above the river bottom. The information from the horizontal 

image would prevent the vehicle from approaching the bridge.  The pylons of the bridge 

present a similar problem.  They are clearly visible in the horizontal image, but again 

show as a solid object in the vertical image. This registers with the obstacle avoidance 

algorithm as a rigid boundary.   

The main point is that when relying either on the individual vertical and 

horizontal images the vehicle would not be able to find a safe path for navigation under 

the bridge. The bridge effectively becomes a blockade that prevents further navigation. 

This is a severe limitation for UUVs. In order to overcome this, a method must be 

developed to take the two separate sources of information and merge them into a more 

coherent single three-dimensional environmental model. A model that allows the vehicle 

to locate the opening between the pylons. 

UUVs are being called upon to accomplish increasingly complex tasks, such as 

navigating up rivers. This requires detailed knowledge of the three-dimensional world in 

which the UUV is located.  In order to accomplish tasks such as these, the vehicle will 

need the benefits provided by a three-dimensional model of the area.   

C.  SCOPE AND STRUCTURE OF THESIS 

This thesis will look into the feasibility of reconstructing a three-dimensional 

environment through the use of two-dimensional horizontal and vertical forward looking 

sonar images. The creation of the three-dimensional environment is considered critical 

for the UUV to navigate in cluttered and restricted waterways.   In order to create a three-

dimensional model, a probabilistic model of the forward-looking sonar will be developed.  

There are two aspects to the model – the vehicle motion model and the sensor model. The 

sensor information is only as good as the estimate of the vehicle’s position. The thesis 

will start with a description of the vehicle and a probabilistic model for estimating 

position and errors.  
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Next, the sensor model will be defined.  The model will define the spatial 

relationship described by the sonar images.  This relationship will be used to determine 

an object’s location in global environment. This FLS model will also need to define both 

the probability of detection and the probability of noise attributed to each sensor.   

Following the FLS model description, an occupancy grid will be developed.  This 

three-dimensional grid will be the representation of the environment.   The probabilistic 

model of the vehicle’s position will be combined with the probabilistic and spatial 

models of the FLS to populate the occupancy grid.  The following chapters will discuss 

the generation of the FLS model, the basis for occupancy grids, and will culminate with 

the algorithm used to create the three-dimensional model.     

D.  PRIOR WORK 

Three-dimensional mapping has been considered for many applications.  Robotic 

vehicles have employed various techniques to determine their environment, whether they 

are entering damaged buildings for disaster relief [3] or mapping the ocean floor [4].  

Unmanned vehicles have also been employed with a wide range of sensors.  The sensors 

utilized in three-dimensional mapping include cameras, laser range finders, radar, and 

multiple forms of sonar.  

 The current methods used in mapping the undersea environment are focused on 

producing maps after the vehicle has transited through the area.  These methods typically 

involve a side scan sonar.  Side scan sonar uses a specific array of active sonar heads to 

provide imagery of the ocean floor to the side of an UUV.  Side Scan sonar can produce 

very accurate three-dimensional measurements, but will not provide images of the 

volume directly in front of the vehicle.  With the goal of obstacle avoidance, the use of 

side scan sonar provides little benefits.  Forward-Looking Sonars have previously been 

used for reactive obstacle avoidance with success ([1]& [2]).  Nevertheless, in this past 

research the vehicle was limited to a singular plane of view, either vertical or horizontal.  

Little research has been conducted on combining multiple FLS into a single 

representation.  The thesis will look into the feasibility of utilizing FLS to develop a 

three-dimensional map.  
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II. VEHICLE DESCRIPTION 

A. VEHICLE DESCRIPTION 

The Remote Environmental Measuring UnitS (REMUS) is the vehicle used in this 

thesis. It is a multipurpose unmanned underwater vehicle (UUV) currently in use by the 

Center for Autonomous Vehicle Research (CAVR) at the Naval Postgraduate School 

(NPS).  REMUS is a small man-portable UUV ([5]).  REMUS specifications are listed in 

Table 1.  This small package provides for easy deployment and recovery.   Coupling its 

ease of deployment with a reconfigurable payload allows REMUS to be capable of 

executing a wide assortment of missions. 

 

Maximum Diameter 19 cm  
Maximum Length 160 cm 
Weight in Air 37 kg 
Trim Weight 1 kg 
Maximum Operating 
Depth 

100m 

Energy 1kw-hr Lithium Ion Battery 
Endurance 22 hours at 3 kts 

>8 hours at 5 kts 
Propulsion DC brushless motor, 3 bladed 

propeller 
Velocity Up to 5 kts 

Table 1.   REMUS Specifications, from [5] 



 8

 

Figure 5.   NPS REMUS onboard The Cypress Sea  

 

REMUS can be equipped with various environmental sensors including 

temperature and conductivity sensors, pressure sensors, fluorometer, and turbidity 

sensors.  In addition to the various environmental sensors, it is also capable of carrying a 

wide range of imaging sensors, to include side scan sonar, forward looking sonar (FLS), 

and video cameras.  Navigationally, the vehicle may choose from many options.  The 

navigational sensors include GPS, inertial navigational system (INU), long or ultra short 

baseline, and Acoustic Doppler Current Profiler (ADCP).  This wide range of payload 

options allows REMUS to be used in operations that range from scientific surveys to 

harbor security.  

The REMUS vehicle employed by the CAVR is a modified version.  The CAVR 

REMUS is equipped with a prototype FLS provided by BlueView Technologies.  The 

prototype FLS will be the main sensor utilized in this thesis.  This FLS will be discussed 

at length in the following chapters.   
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B. EQUATIONS OF MOTION 

To take full advantage of the sensors employed, the position of the vehicle is 

required.  Like all vehicles, REMUS position at any given time is a result of a complex 

set of forces.  A single paper could be dedicated to the description of the forces affecting 

underwater vehicles.  The purpose of this section is to provide the reader with a 

simplified overview of these forces and how they are modeled.  A more detailed 

explanation can be found in [7].   

To discuss the forces acting upon a body, a common reference frame must be 

defined.  The standard approach to relate the position and motion in two separate frames 

of reference is the Newton Euler approach.  The coordinate systems used in this approach 

can be seen in Figure 6 . 

Figure 6.   Local and Global Coordinate System, from [7] 

 
The following assumptions are made for this model: 

 The rotation of the earth does not appreciably contribute to the 

acceleration of the vehicles center of mass.  Therefore, the rotation of the 

earth is negligible. 

 The vehicle is modeled as a rigid body 

x 

y
z

X

Z

Y 
Ro 

G

ρG 

Global Frame 

Local Frame 



 10

 The sources of significant forces acting upon the vehicle are propulsion, 

hydrostatic, and hydrodynamic lift and drag.  The forces can all be 

classified as either inertial or gravitational. 

The local velocity is a vector composed of surge (u), sway (v), and heave (w).  

The conversion from the global velocity 
X Y Z  
  

to the local velocity requires a 

transformation matrix. 

 *

x X

y T Y

z Z

   
      
      

 2-1 

T, the transformation matrix, is defined in terms of ‘Euler’ angles (φ,θ,ψ) and is 

listed in Equation 2-2. 

 

 
cos cos sin cos sin

, , cos sin sin sin cos sin sin sin cos cos cos sin

cos sin cos sin sin sin sin cos cos sin cos cos

T d

    
              

           

 
    
   

 2-2 

 

Likewise the rate of change of the ‘Euler’ angles can be defined in terms of the 

global angular velocity vector [p,q,r].  

 

 

1 sin tan cos tan

0 cos sin

sin cos0 cos cos

p

q

r

    
  
  

 

                       





 2-3 

 

From these equations, Healey derived six equations of motion for a rigid body.  

The equations of motion defined as Surge (Equation 2-4), Sway (Equation 2-5), Heave 

(Equation 2-6), Roll (Equation 2-7), Pitch (Equation 2-8), and Yaw (Equation 2-9).  

Table 2 lists the variables and definitions used in the equations of motions. 
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       2 2 sinf r r r G G GX m u v r w q x q r y pq r z pr q W B               

               

2-4 

       2 2 cos sinf r r r G G GY m v u r w q x pq r y p r z pr q W B                  2-5 

       2 2 cos cosf r r r G G GZ m w u q v p x pr q y qr q z p q W B                  2-6 

 

       
   

   

2 2

cos cos cos sin

f x z y xy yz xz

G r r G r r r

G b G B

K I p I I qr I pr q I q r I pq r

m y w u q v p z v u r w p

y W y B z W z B   

        

       
   

  

   2-7 

 

       
   

   

2 2

 -

  + cos cos sin

f x z x xy yz xz

G r r G r r r

G B G B

M I q I I pr I qr p I pq r I p r

m x w u q v p z u v r w Q

x W x B z W z B  

        

      
  

  

   2-8 

 

       
   

   

2 2

cos sin sin

f z y x xy yz xz

G r r r G r r r

G b G B

N I r I I pq I p q I pr q I qr p

m x v u r w p y u v r w q

x W x B y W y B  

        

       
   

  

   2-9 

 
 

Ix, Iy, Iz Mass moment of inertia terms 

ur, v r, w r 
Component velocities for a rigid body fixed 
system with respect to the water 

p, q, r 
Component angular velocities for a rigid body 
fixed system 

xB, yB, zB 
Positional difference between center of 
buoyancy and the geometric center 

xG, yG,zG 
Positional difference between the center of 
gravity and the geometric center 

B Buoyancy 
W Weight 
δr(t) Delta Rudder function 

Table 2.   Equation of Motion Variables 

 

Dolbec [8] coupled the equations of motion with the hydrodynamic coefficients 

associated with REMUS [9] to create the final kinematics equation used to model the 

motion of REMUS (Equation 2-10).    
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C.  POSITION ESTIMATION 

The equations of motion provide the theoretical framework for determining a 

vehicle’s position based upon the forces acting upon it.   For the equations of motion to 

provide any practical benefit they must be coupled with a sensor capable of measuring 

the acceleration and angular rates in each of the component directions. For a UUV the 

sensors include the following: 

1. Acoustic Doppler Current Profiler (ADCP)/Doppler Velocity Log (DVL) 

– It provides: 

a. Water velocities – surge, sway and heave 

b. Vehicle velocities over the ground – forward, side slip and heave 

c. Vehicle Altitude 

2. Depth sensor 

3. Compass – Heading and heading rate 

4. Global Positioning System – Latitude and Longitude position on the 

surface 

5. Inertial Navigation Unit (INU) – Accurate angular and motion velocities 

 

These sensors are combined together using an Extended Kalman Filter (EKF) to 

provide an optimal position estimation of the vehicle.   The theory of the EKF, a 

derivative of the Kalman filter, has been discussed in depth in many publications; this 

chapter will serve simply as an overview of the EKF and its application to REMUS.   

In a Kalman filter, the state and variance of a dynamic linear system is determined 

recursively.  The Kalman filter is a two-step process.  The first step is to predict the state 
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and variance of the system using the model of the system (movement update).  For 

REMUS the equations of motion serve as this model. Upon receiving a new 

measurement, the difference between the measurement and the predicted state is 

calculated.  This difference is a correction factor used to update the current state of the 

system (measurement update).  The process is depicted in Table 3. 
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Variable 

Definition 

 
 
 

, : mean and covariance of the system state

, : mean and covariance of the measurement noise

, : mean and covariance of the movement noise

H:  measurement matrix

K:  Kalman Gain

Z:  measurement

:  move

v

w

R

Q











ment matrix

 

Table 3.   Kalman Filter Equations,  after [10]  

 

The method listed in Table 3 will only work for systems with a linear model.  

However, modeling the position of REMUS is a non-linear process. Since REMUS does 

not measure position directly, but deals with the estimation of position from both angular 

rates and accelerations the equations of motion are non-linear in nature.    Because of the 

non-linearity an EKF is required.  In an EKF, the nonlinear components are linearized by 

an approximation function (normally a Taylor series approximation).   In an EKF the 

following substitutions are made: 
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 (μ, Σ)  is replaced with f(μ, Σ) 

 Z is replaced with h(Z) 

The most accurate sensor for measuring the global position of the REMUS was GPS. 

This is only available when the vehicle is on the surface. Once underwater, position 

estimation errors grow more rapidly over time. For the UUV to navigate accurately for 

extended periods of time underwater, it requires a high-grade inertial navigation system. 

The REMUS UUV had an integrated navigation suite that combines together the IMU, 

GPS and ADCP/DVL. It is the SEA DeViL T24, a navigation suite from Kearfott that 

advertises a position accuracy of 0.5% total distance traveled.  The stated manufacture 

specifications for REMUS’ IMU are listed in Table 4.  Alameda provides a detailed 

explanation of the Sea DeViL architecture [11]. 

 

Table 4.   Sea DeViL Performance From Kearfott Systems, from [12] 

 

During this experiment, the vehicle did not receive any position measurements 

after the initial dive.  The position and the errors associated with it will be entirely 

attributed to the accuracy of the Sea DeViL.  Due to the short relative distance traveled 

during experiment, the errors in position are minimal.  The vehicle traveled 

approximately 450 meters to reach the bridge.  This equates to a possible positional error 
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of 2.3 meters.  The total distance traveled at the beginning of the last pass underneath the 

bridge was 1350 meters, yielding a maximum expected error of 6.5 meters.  For this 

reason, the position and orientation will be assumed to be relatively accurate.   

The position of the vehicle (or mobile sensor) and its orientation play a critical 

role in mapping the output of the sensor to the global space.  All of the information 

provided by the sensor is referenced to the vehicles location and attitude.  Any error in 

the vehicles location is propagated through each of the models.  In other words, errors in 

the vehicle’s position or orientation will cause objects to be plotted in the wrong location, 

invalidating the entire method.   

The next chapter will discuss the model of the FLS.  The FLS model will then be 

combined together with the vehicle model in order to take the sonar images and 

reconstruct a three-dimensional occupancy grid that represents underwater objects.  
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III. FORWARD LOOKING SONAR 

A. INTRODUCTION 

A sonar uses the distribution and reflection of a sound wave to determine the 

range and bearing to submerged objects.  Active sonar systems use a transducer to create 

their own source of sound in the water (called a ping) and then listen for its return.  In its 

most basic form, active sonar determines the distance to a given target by measuring the 

time delay from the production of a sound until the return reaches the transducer.  In 

order to determine the distance to a target, all that is required is the total travel time and 

the speed of sound through the water.  This yields Equation 3-1. 

   

 
  
Range 

time delay * Speed of sound

2
 3-1 

The accuracy of the range is then dependent upon the ability of the system to 

accurately measure the time delay and the accuracy of the speed of sound.  Ideally, the 

speed of sound would be constant throughout the water, however, in practice this is not 

the case. The approximate speed of sound is calculated onboard the REMUS vehicle 

using water temperature and salinity. Normally, this is about 1500 meters per second. 

Ranging information alone is not sufficient to geo-locate an object.  To accurately 

determine the location of the object it’s bearing must also be determined.   To measure 

the bearing to an object, a transducer will only project or listen to sounds along a 

particular bearing (also called a beam).  Thus by only listening to sounds along a 

particular bearing and measuring the time delay of the sounds return, both the bearing 

and the range to an object can be determined.  The ability of the transducer to listen along 

a particular bearing or range of bearings is called its directivity.  A transducer with a high 

directivity will be able to isolate sounds to a small range of bearings.  Transducers with 

low directivity have larger bearing resolutions.   

For the sonar to determine the range and the bearing to an object it must be able to 

distinguish the return from the background noise.  There are numerous sources of noise 

for any sonar system.  In the underwater environment, multiple sources of sound exist.  
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Everything from biologics to merchant traffic emits sounds across all frequencies.  Wave 

action and rain also contribute significantly to the amount of background noise a sonar 

system must overcome.  The overall ability of the sonar system to determine detection is 

based on the ratio of return signal received at the transducer to the amount of general 

noise received at the transducer.  This is the sonar’s signal to noise ratio (SNR).   

Due to the larger range of values of sound energy in the water, SNR is generally 

defined in terms of decibels (dB).  The general equation for SNR in an active sonar 

system is shown in Equation 3-2. 

2SNR SL TL TS NL     3-2 

The amount of signal returned to the transducer is dependent upon the amount of 

sound initially projected into the water, the source level (SL).  After leaving the 

transducer, the sound expands and travels through the medium towards the object.  While 

traveling, the intensity of the sound is diminished via attenuation and expansion.  This 

loss of intensity is called the transmission loss (TL).  The total amount of sound received 

at the object is the source level minus the transmission loss.   

Once the sound reaches an object in the water, it is then reflected off the object.  

The amount of sound reflected and directed back towards the original source of the sound 

is called the target strength (TS).  Many factors affect the amount of sound reflected off 

the object.  TS is dependent upon the angle of incidence, the absorption properties of the 

object, the size and shape of the object, etc.  Once the sound is reflected, it travels back 

towards the source.  As it travels, it undergoes the same amount of transmission loss.  So 

the total pressure received at the transducer from original signal is 

 Received Signal = SL - 2 TL + TS    3-3 

However, this does not take into account the amount of noise the transducer 

receives.  Letting the noise level (NL) be defined as the amount of noise received by the 

transducer, the SNR equation becomes 

      SNR  SL 2TLTS  NL     3-4 
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B. BLAZED SONAR ARRAYS 

Blazed array sonar is a method to create a highly directive signal in a small 

package.  Blazed array sonar systems utilize a principle similar to echelette diffraction 

gratings in optics to create a multitude of beams from a single sound source [13].  The 

blazed sonar array maps the frequency of a given broadband pulse to the angular spatial 

domain.  The principle is similar to that of a prism.  A broad spectrum signal (white light) 

is processed through the stave (the prism) and individual frequencies are projected to 

independent spatial locations (the rainbow). Each frequency band creates a unique beam.  

The shape and size of the beam is dependent on the frequency band and the shape of the 

stave projecting the sound.  A plot of the magnitude of the projected sound versus bearing 

for a typical blazed array sonar is provided in Figure 7.  The lower larger beams were 

created by the lower frequencies. 

  

Figure 7.   Composite Blazed array beam patterns for frequencies between 300 kHz 
and 600 kHz, from ([15]) 
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Once the sound has been transmitted into the water from the blazed array, it 

interacts with its environment just like any other active sonar.  The main difference is that 

the frequencies are separated into individual beams.   As all the frequencies return to the 

transducer, they are recombined into a single signal.  The recombination of the signals 

occurs in reverse order of the creation.  Each beam will only receive a particular band of 

frequencies.  This maintains the original frequency to angular spatial mapping.  

Since each frequency band correlates to a specific angle in the spatial domain, the 

individual frequencies can be modeled as a single hydrophone with a high directivity.  

Maintaining the frequency to angular spatial relationship creates a simulated array of 

hydrophones.  This simulated array is what creates the detailed representation of the 

volume ensonified.   

C. BLUEVIEW P450-15E 

The BlueView P450-15E is a blazed array system with a center frequency of 450 

kHz.  The P450-15E specifications are listed in Table 5.   

 

Table 5.   BlueView P450-15E Specifications (from BlueView Inc., 2008) 
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The P450-15E produces image files in both Cartesian and Polar coordinates (see 

Figure 8).   The resolutions available according to image type are listed in Table 6.  

While the P450-15E is capable of higher range resolutions, it is constrained by the size of 

the image available.  Due to the nature of the blazed array sonar, the polar coordinate 

system is the natural coordinate system.  In order to transfer the information from the 

polar coordinate system to the Cartesian image, pixels with changing resolutions were 

required.  In the polar image the resolution per pixel is constant throughout the entire 

image.   For these reasons, polar images where utilized in this thesis.  

Cartesian Image Polar Image

 

Figure 8.   Cartesian and Polar images from P450-15E sonar 

 
 

 BlueView 
Specification 

Cartesian Polar 

Image Size (in 
pixels) 

 387 x 571 461 x 2048 

Range 
Resolution 

2 inches Appoximately 
12” x 6” 

90
7.67

461 pixels
in

pixel

m


 
Bearing 
Resolution 

1 deg varies based on 
the location of 
the pixel 

deg90
.044 

2048 pixels

o

pixel

 

Table 6.   Comparison of Horizontal FLS Image Resolutions  
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Both image files provide an angular resolution greater than the manufacture 

specifications.  This anomaly is attributed to the varying beamwidths of the blazed array 

sonar.  The larger bearing resolution listed by the manufacture corresponds to the larger 

beamwidth of the lower frequency beam.  However, the resolution of the polar image  

appears to be based upon the beamwidth of the highest frequency beam.   

The image created by a P450-15E is a two-dimensional representation of a three-

dimensional volume. A depiction of the actual volume ensonified is depicted in Figure 9.    

A single stave of the P450-15E has an approximate 23-degree field of view in the image 

plane.  The NPS REMUS AUV has four staves in the horizontal plane for an approximate 

90-degree total field of view.   

 

Figure 9.   Volume ensonified by the horizontal P450-15E 

 

The ensonified volume covers a fifteen degree spread in the vertical plane.  The 

sonar is unable to distinguish the difference between an object at different elevations.  

For example the object highlighted in Figure 10, could be located anywhere within the 

fifteen-degree spread.  This is the ambiguity of the sonar in the vertical plane.  The object 

shown in Figure 10 is approximately thirty meters in front of the vehicle.  Based on its 

range and the bearing ambiguity of the FLS, the object can be located within +/- 4 meters 

in altitude.  The P450-15E provides a range resolution of 2 inches and a bearing 

resolution in the image plane of 1 degree.  This results in the ensonified volume being 

divided into cube like shapes with dimensions of 2 inches by 1 degree by 15 degrees (see 

Figure 11). 
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Figure 10.   Submerged Rock in a Horizontal FLS Image 

 

Figure 11.   Volume segments created by P450-15E  

 

The vertical array is composed of a single stave mounted perpendicular to the 

horizontal array.  Mounting the array in this fashion provides angular resolution in the 

vertical direction.  Due to the rotation of the array, the ambiguity of the sonar shifts to the 

horizontal direction.  All vertical sonar images will have fifteen degrees of ambiguity in 

the horizontal direction.  The vertical sonar will be utilized to provide the location of the 

ocean floor and the height of the objects encountered.  A typical vertical sonar image is 

displayed in Figure 12.   

Submerged Rock
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Figure 12.   Vertical Sonar Image depicting the river surface and floor 

 

By combining the separate fields of view, the two sonars can effectively create a 

volume with resolution in all three planes.  The volume ensonified by the combination of 

sonars is depicted in Figure 13.  Of particular importance is the fifteen-degree by fifteen-

degree area where the two arrays overlap.  This overlapping of the arrays divides that 

volume of water into sections that are two inches in depth (vertically and horizontally) by 

one degree in vertical width and one degree in horizontal width (Figure 14).   

 

River Surface 

River Floor 
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Figure 13.   Volume ensonified by the combination of Vertical and Horizontal Arrays 

 

 

Figure 14.   Volume segments created by the overlapping sonar 

 

The vertical and horizontal sonar are independent sonar systems.  Information is 

not shared between them.   Separate two-dimensional representations are created by each 

system.  The horizontal system provides resolution in the horizontal plane, but is unable 

to provide resolution in the vertical plane.  The vertical system, though unable to provide 

resolution in the horizontal, provides resolution in the vertical.  In order to create a three-

dimensional model the two separate data streams need to be combined.  The following 

chapters will discuss the use of occupancy grids to combine the separate systems into a 

single three-dimensional model.    
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D.  FLS PROBABILITY MODELS 

Knowing that the purpose of the FLS sonar is to populate an occupancy grid 

necessitates the development of probabilistic models of the FLS.  For a sensor to be used 

in an occupancy grid, two separate probabilistic models need to be generated.  One model 

describes the probability of receiving a value when the return can be attributed solely to 

noise.  The second model describes the probability of receiving a particular value when 

the sonar return can be attributed to a physical object.  This section will focus on the 

development of the probability models and the details of an occupancy grid will be 

discussed in the next chapter.   

1. Horizontal FLS Noise Model 

There are many possible sources of noise for the sonar system.  Like all electrical 

systems, a certain amount of noise can be attributed to the various types of electrical 

noise: power supply fluctuation, thermal noise, etc.  A secondary source of noise is 

acoustic.  Acoustic noise includes weather, biological sources, or other vehicles in the 

area.  Acoustic Models have been created for the various types of noise, but these models 

do not take into account the method of beamforming used in blazed array sonar.  The 

final category of noise can be attributed to REMUS itself.  REMUS utilizes several other 

sensors that also project noise into the water column.  These sensors include but are not 

limited to the acoustic modem, ADCP and Side Scan sonar.   

Instead of designing and incorporating theoretical models for each of the noise 

sources an experimental approach was taken to create a comprehensive noise model.  

Within the dataset used, there are approximately 300 images for the horizontal FLS that 

show little to no objects in the field of view.  These images were acquired with the 

vehicle in motion and in the same acoustic environment.  By using images taken in the 

same acoustic environment, the noise can be classified as a single distribution.   

The expected distribution of the noise will be a combination of multiple noise 

sources.  Because the resulting distribution of the noise is unknown, a histogram was 

used to observe the distribution.  By using a histogram, an initial assumption of the 
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distribution does not need to be made.   When creating a histogram, the bins size and 

spacing can play an important role is determining the distribution.   

The number of bins will be determined by the range of values expected.  Each 

image in the data set is a sixteen bit image, so each pixel has a potential range of value 

from zero to 65535.   However, prior experience has shown that the maximum expected 

value of noise is much lower.  In determining the bin size and spacing a subset of 50 

images were analyzed.  The combined histogram of each of the images was plotted.  In 

these fifty images, the maximum value of noise was 3958.  Based on the maximum noise 

value and considering the computer storage limitations the noise histogram contained 25 

bins with a spacing of 160 (with the exception of the first and last bin).  The first bin 

contained values from zero to 80; the last bin contained values from 3920 to 65536. 

With the bin size determined, the images were analyzed in more detail.  Due to 

the nature of the FLS, the noise distribution varied based on the range and bearing of the 

pixel.  As shown in Figure 15 the distribution cannot be readily classified.  The 

distribution of noise in the larger ranges appears to be a Gaussian distribution, where the 

distribution at close range is a combination of distributions.  This more complex 

probability distribution function may be attributed to the near field effect of active sonar.   

To take into account the variability of the distributions across the entire image, a 

distribution was defined for each pixel in the image.  
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Figure 15.   Noise Distribution Changes over Range  (meters) and Bearing (degrees) 

 

2. Horizontal FLS Detection Probabilities 

The other distribution required for the occupancy grid is the probability of 

receiving a particular value given that the value is attributed to a return from an object.  

Ideall, this model would be based on a theoretical approach.  Theoretical models exist for 

determining sound propagation in the water.  Using the models, the intensity level of 

sound can be predicted at any point in the water column.  However, the algorithms 

utilized by BlueView in mapping the broadband signal received at the FLS stave into an 
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image are proprietary.  Without knowledge of the exact algorithms involved in generating 

the FLS images, an experimental approximation must be made.   

A single experiment has not been conducted to determine the distribution of 

expected received values at every pixel in the image.  To determine the distribution of 

received FLS image values when an object is present a subset of the Charles River 

dataset was analyzed.  Unfortunately, every image in the Charles River dataset is subject 

to all the noise sources previously discussed.  The noise distribution must be separated 

from the signal distribution.   

The subset of images used for this portion of the experiment was chosen due to 

the large area that the objects filled in the field of view.  In a similar fashion to the noise 

distribution, the histogram of each pixel was determined.  The following process was 

used to separate the detection distribution from the noise distribution, and is illustrated in 

Figure 16 .  This procedure is done for each pixel in the image.  
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Figure 16.   Determining the Probability of Detection for pixel (50, 400) of the 
Horizontal FLS 
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1. Determine  pixel value | no ObjectP  (Figure 16a).  This is a histogram of 

the raw data retrieved from the dataset.  
2. Normalize  pixel value | no ObjectP  (Figure 16b).   In this step the 

histogram is normalized so that the sum of all of the bins equal one.  
3. Determine  pixel valueP  (Figure 16c).  The raw histogram of the dataset 

that contains images with a combination of objects.   
4. Determine  pixel value | ObjectP .  The probability of receiving any pixel 

value is a summation of multiple probabilities (Equation 3-5).   
 

          pixel value pixel value | pixel value | no Object no ObjectP P Object P Object P P   3-5 

 
Rearranging Equation 3-5 yields Equation 3-6. 
 

    
       Object 1

pixel value | Object pixel value pixel value | no Object
no Object no Object

P
P P P

P P
   3-6 

 

 no ObjectP  was estimated by the ratio of the sum of histogram bins of 

 pixel valuesP that have a corresponding non zero bin in 

 pixel values|no ObjectP .  Figure 16d 

shows
   1

pixel values
no Object

P
P

. 

5.    
 

pixel value|Object
no Object

P Object
P

P
is shown in Figure 16e. 

6.  Ensure that all values of    
 

pixel value|Object
no Object

P Object
P

P
 remain 

positive (Figure 16f).  If any value in the histogram generated in step five 
is negative, raise all values of the histogram by the maximum negative 
value.  This ensures that all probability values are non-negative.   

7. Determine  pixel values | ObjectP (Figure 16g).  Assume 
 

 no Object

P Object

P
 

is a constant and normalize    
 

pixel value|Object
no Object

P Object
P

P
.  This 

provides  pixel values | ObjectP , the final distribution used to model the 

probabilities of receiving a value given that an object is present.   
8. Ensure    pixel values | no Object pixel values | ObjectP P  maintains the 

relationship of the original distribution (Figure 16h).  To verify that the 
separate distributions are accurate, they are summed and normalized.  The  
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new normalized combination distribution is compared to the original 
normalized distribution.   As can be seen in Figure 16d and h, the resulting 
shape of the distribution is similar to the original.   

 

3. Vertical FLS Model 

The Vertical FLS is comprised of staves identical to those used in the horizontal 

FLS.  The difference between the vertical and horizontal FLS is the number of staves 

used and the orientation in which they are mounted. The vertical FLS covers 45 degrees 

in the field of view (2 staves) and the horizontal FLS covers 90 degrees (4 staves).  The 

central 45 degrees of the horizontal sensor distributions should be identical to the 

distribution of the vertical FLS.   

4.   Verification of the Probability Models  

The models are created on a pixel-by-pixel basis; therefore the horizontal model is 

comprised of almost two million individual probability functions (461x2048x2).  With 

that number of distributions it was impractical to inspect each distribution.  To verify that 

the relationship between the noise and detection distributions were valid, a sample 

Bayesian probability image was created for each sensor.   

 
   

|  all pixels are due to detections
Bayesian Image

|  all pixels are due to detections |  all pixels are due to noise

P I

P I P I



 3-7 

If the distributions are correct then the Bayesian image will show a high intensity 

value for any obstacle in the image and will show a very low intensity in areas due to 

noise.  Figures 17 and 18 show the original FLS image with the resulting Bayesian 

image.  As can be seen in both figures, the amount of noise is drastically reduced and the 

objects detected are greatly enhanced.  The clarity of the images proves the validity of 

both the noise and detection distributions.  As can be seen Figure 17, further future work 

can be done to remove the noise in the lower portions of the image.   
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Figure 17.   Horizontal FLS Image (upper)  and corresponding Bayesian Image (lower) 

 
 

 

Figure 18.   Vertical FLS Image (left)  and corresponding Bayesian Image (right)  
Both images are in polar coordinates 
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E. GEO-LOCATING IMAGE DATA 

Up to this point, all of the information provided by the FLS has been referenced to 

the vehicle.  To be truly useful in a mapping algorithm, the FLS data will need to be 

mapped into the global space.  By combining the vehicle position estimation model with 

the FLS model, each data point in a sonar image can be geo-located.  This section will 

cover the equations necessary to couple the models and convert sonar images into to map 

coordinates.   

1. Development of the Transformation Equations 

The height of the image corresponds to a range in front of the vehicle (0 to 90m) 

and the width of the image corresponds to the bearing from the vehicle.  The horizontal 

images are 461 x 2048 pixels.  The vertical images are 461 x 1024 pixels. Both of these 

are using polar coordinates In the horizontal images, with the four staves, the bearing is 

the spread in the horizontal plane of the vehicle and covers -45o to 45o.  The vertical 

images cover from -22o to 22o in the vertical plane of the vehicle (There are two staves 

and the coverage is a total of 45 degrees). Equation 3-8 shows the conversion from pixel 

indexes into the range and bearing from the vehicle.  
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To fully describe the volume ensonified, Equation 3-8 needs to be revised to 

include the ambiguity of the FLS.  At this point, a decision needs to be made to determine 
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the resolution associated with the ambiguity of the FLS.  Since the overall goal of the 

system is to combine both sensors into a single coherent sensor model, the resolution of 

the ambiguity is chosen to match the resolution of the opposing sensor.  This provides a 

one-degree spacing in the ambiguity of the sonar images and causes θp and φp to become 

vector quantities.  
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Combining the knowledge of the vehicles position and orientation with 

Equation3-9, allows for each pixel in the image space to be geo-located.  Define the 

sensor’s location as (xo, yo, zo) with an orientation of (θv, φv, ψv ).  Due to the small 

amount of roll associated with the vehicle it will not be accounted for in the 

transformation.  
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The data provided by a single pixel can then be geo-located using Equation 3-11. 
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Equation 3-11 will map any data stored in the image space into the global space, 

whether the data is the original sonar image or a processed version.  This fact will be 

utilized in the next section during the creation of the occupancy grids.  Since the 
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occupancy grids use a probabilistic approach, each image will be transformed from the 

original image into the probabilistic image.   The probabilities assigned to each pixel will 

then be mapped into the occupancy grid.  The next chapter will utilize both the sonar and 

vehicle models to generate the occupancy grid.  
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IV. OCCUPANCY GRIDS 

A. MAP CHOICE 

The main goal of providing the UUV with a three-dimensional map is safe and 

accurate navigation.  A safe route is one in which the vehicle has a low probability of 

collision.  In other words, the vehicle is able to locate and avoid the obstacles in its path.  

The accurate route is one in which the vehicle is able to successfully move from a starting 

position and reach its end position. This thesis will not delve into the intricacies of route 

planning, but route planning defines the type of map required for safe navigation and thus 

must be considered.  These goals provide the requirements for the map.  First, the vehicle 

needs to know location of obstacles.  Second, the vehicle needs to know the location of 

free space.    

The most intuitive method to create the map is feature recognition.  In feature 

recognition every object detected by the sensor is classified.  The object’s shape, 

dimensions and location are then stored in a database.  Once a new sensor reading is 

received, it is correlated to all the objects currently stored in the database.  Previously 

detected objects are verified and the new objects are added into the database.   

Feature recognition is easily grasped conceptually, but can be complicated to 

implement.  In man-made areas, such as buildings, the range of shapes required to 

accurately depict the environment is limited, most areas can be approximated by simple 

shapes.  In more natural settings, the variation in objects requires more complex shapes 

be defined.  The larger dataset of shapes added to the algorithm and the increased 

complexity of the shapes requires large amount of computations.  This in turn requires a 

very large amount of processing power.   

With feature recognition, every shape must be classified, compared against the 

database of shapes, and stored for latter comparison.  Cluttered environments will require 

a significant number of classifications and comparisons.  As the vehicle finds more  
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objects, more processing power and time will be required.  The variability in processing 

power requirements makes feature recognition difficult to implement on small scale 

UUVs.    

Feature recognition also provides much finer detail than is required by the UUV 

for safe navigation.  For safe navigation, the vehicle only needs to know that an object 

exists as a given position.  It does not matter whether that object is cubic, cylindrical, or 

spherical.   It only matters that the space is occupied.  For that reason, occupancy grid 

mapping is a better choice.   

B.  OCCUPANCY GRIDS 

Instead of recognizing and organizing objects by their shape and location, 

occupancy grids divide the area into a grid.  The region to be mapped is defined and then 

tessellated.  Each element, or cell, in the grid is assigned a value indicating whether the 

cell is occupied.  This idea is easily extended from two-dimensional (checkerboard) to 

three-dimensions (stacks of cubes).  Since the state of the cell could only take on one of 

two values.  The cell is either empty or occupied.  Since the cell can only be in one of two 

states, the probability of the cell being empty plus the probability of the cell being 

occupied must equal one (Equation 4-1). 

 

     1P s C Empty P s C Occupied           4-1 

 

The information provided by the sensors does not directly map to the state of the 

cell.  The state of the cell must be inferred from the sensor values.  Because of this 

inference, the state of the cell is approximated.  In an ideal world, the cell could only take 

on one of two values.  The cell would either be empty or would be occupied.  However, 

in practice, the sensors cannot provide the definitive state of the cell.  Therefore, the 

probability of the state of each cell is recorded.   The determination of the probability of 

the state of the cell given the current reading of the sensor is found using Bayes theorem 

Devore[14] defines Bayes Theorem in the following manner, ‘Let A1, A2, …Ak be a 
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collection of k mutually exclusive and exhaustive events with prior probabilities 

P(Ai)(i=1,…,k).  Then for any event B for which P(B)>0, the posterior probability of Aj 

given that B has occurred is  
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 Utilizing Bayes theorem will provide the probability of the state of the cell based 

on the current measurements only.  What is needed is the state of the cell based on the 

current and all previous measurements.   Elfes [16] provides an iterative solution to 

determining the probability that a cell is occupied given all previous measurements 

(Equation 4-3). 
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Expanding the summation in the probability update equation yields Equation 4-4.  

From here, it is easy to see the four unknowns that must be determined for each update.  

The unknowns are listed in Table 7. 
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    1
|

t
P s C Occ r


    Probability that a cell is occupied given 

the current and all previous measurements 

   |
t

P s C Occ r    Probability that a cell is occupied given all 
the previous measurements 

   |
t

P s C Empty r  
Probability that a cell is occupied given all 
the previous measurements 

 1 |tP r s C Occ     Probability of receiving the current 
measurement given that the cell is 
occupied 

 1 |tP r s C Empty     Probability of receiving the current 
measurement given that the cell is empty 

Table 7.   Definition of Terms 

 

Since the cells can only have two states, empty or occupied, 

   |
t

P s C Empty r    can be substituted with    1 |
t

P s C Occ r    , reducing the 

number of values to be calculated for each cell.  For example,  assume a cell is an 

unknown state   0.6P s C Occ    and a new measurement is received.  Based on the 

measurement and the corresponding probability functions the values of 

 1 |tP r s C Occ     and  1 |tP r s C Empty     are determined.  Assume that 

 1 | 0.2tP r s C Empty      and  1 | 0.4tP r s C Occ     .  From these values the 

probability of the cell being occupied is updated (Equation 4-5).   
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The recursive nature of this problem requires a seed value for 

   |
t

P s C Occ r   .  At time zero, or the time prior to any measurements, this value 

indicates all the information the vehicle has about its environment.  When the vehicle has 

zero information about its environment the cells are initialized to 0.5. An initial value of 

0.5 indicates that the cells are equally likely to be occupied or empty.   As more 

information is attained this value is updated.  This value will constantly be evolving 

based on the current input from the sensor.    
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The next values needed are the probability of receiving a particular measurement 

value given the state of the cell.  These probability distributions are individual to the type 

of sensor employed.  Since the probability distribution is dependent on the sensor type, 

the distributions should be defined prior to vehicle operation.   The probability 

distributions associated with the sensor can be determined either theoretically or 

experimentally.  Whether distributions are derived theoretically or through 

experimentation, their values can be stored and easily referenced at run time.  The sensor 

probability distributions for the FLS were derived experimentally.  The methods used to 

derive them will be covered in Chapter IV.  

The typical occupancy grid update starts when a new measurement is received.  

The sensor location is correlated to an occupancy grid location. The current occupancy 

grid value is retrieved. Next, the measurement is converted into two separate 

probabilities, the probability of receiving the signal assuming that the location is empty 

and the probability of receiving the signal assuming the location is occupied.  Utilizing 

Equation 4-4 the new value of the probability of the grid cell being occupied is calculated 

and stored.   This process will repeat for every sensor measurement that is received.   

C.  COMBINING MULTIPLE SENSORS 

The previous discussion only covered the case in which the grid was dependent 

on a single sensor.  However, in most robotic applications, the vehicle will have multiple 

sensors.  The vehicle may have many sensors of the same type or a multitude of different 

classes of sensors.  It is through the combination of multiple sensors that a better 

understanding of the environment can be made.  In order to take full advantage of all the 

sensors that the vehicle deploys, the occupancy grid map must account for all sensor 

values.   

The most accurate method of combination would be to use a superbayesian 

approach.  In this method, all sensors probabilities would need to include the dependency 

on the other sensors utilized.  For example, when utilizing two different sensors, S1 and 

S2, the probabilistic sensor model for S1must also take into account any information 

provided by S2.    The new probabilistic model for S1 would be the probability of 
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receiving the particular sensor value given that the cell is occupied and that S2 received a 

given sensor value.   The same holds true for S2.   This redefines the probabilistic model 

used for each sensor utilized.   

There are two distinct disadvantages associated with the method.  Many 

unmanned vehicles are capable of changing the sensors they employ.  A vehicle that has 

five different sensors would require 120 (5!) sensor models to account for all of the 

possible sensor configurations.  This alone makes this type of implementation 

impractical.  Assuming that all 120 sensor models are created, if any sensor is added or 

upgraded all the previous sensor models are superseded.  On today’s vehicles that are 

capable of rapid changes in sensor configuration, this method is not practical.   

An alternative method is to maintain separate occupancy grids for each sensor and 

then combine the grids utilizing an independent opinion pool.  This method has proven 

successful by Elfes in [15].  In this scenario, each sensor will generate its own occupancy 

grid values.  Assume the vehicle is utilizing sensors, S1 and S2, which in turn generate 

occupancy grids P1 and P2.  The grid probabilities can be combined, as shown in 

Equation 4-6. 
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The individual occupancy grid values will be dependent only on the sensor input 

and its probabilistic model.  Maintaining the independence between sensors allows for a 

singular sensor models to be created.  For example, REMUS is also equipped with a side 

scan sonar.  Defining independent models for side scan sonar and FLS allows for their 

inclusion or exclusion in the reconstruction process based on current task.  For the 

previous vehicle with five sensor, this reduces the number of required sensor models 

from 120 to 5.  With the fewer number of models required, it becomes practical to 

implement this algorithm on unmanned vehicles.     

D.  SUMMARY 

Occupancy grids can organize multiple sensor inputs into a format that can be 

used for safe and accurate navigation.   They do not require any prior knowledge of the 
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area and can easily be utilized in highly congested areas. Occupancy grids are also well 

suited to combine multiple sensor inputs.  The ability to navigate without any prior 

knowledge and the ability to determine the environment from all sensor inputs is an ideal 

combination for UUVs.    
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V. RESULTS AND CONCLUSIONS 

A. RESULTS 

Before discussing the results, it is important to recall the objectives of the 

research.  REMUS’s ability to avoid obstacles is dependent upon its information about 

the environment.  Currently REMUS is utilizing two-dimensional representation of the 

environment for path planning and obstacle avoidance.  This limited REMUS’s ability to 

navigate successfully in cluttered environments, like under a bridge.    

In 2007, REMUS was deployed in the Charles River and sent on a path 

underneath the Massachusetts Avenue Memory Bridge.  Figure 19 is a picture of the 

Massachusetts Avenue Bridge. Figure 20 shows the path of the vehicle.  The path is 

shown in blue and the red circles indicate edges of the pylons supported the bridge.   The 

GPS position of the pylons were acquired by placing a handheld GPS unit in close 

proximity to the part of the pylons that were above the surface.  A limited number of 

satellites were acquired while receiving the position due to the bridge occluding GPS 

satellite reception.  Due to the limited number of satellites received, there may be errors 

associated with the GPS positions of the columns.  

 

Figure 19.   Massachusetts Avenue Bridge, Boston, MA,  
from [18] 
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Figure 20.   Vehicle Path in the Charles River and under the Massachusetts Avenue 
Bridge 

 

As discussed in Chapter I, the vehicle would not be able to navigate successfully 

between the pylons and over the berm if it relied on obstacle avoidance and two-

dimensional representations of the bridge.  This can be seen by Figure 4.  With the 

combination of horizontal and vertical FLS and occupancy grids, a path emerges.  Figure 

21 shows the occupancy grid created.  The grid was formed using eleven images; 6 

horizontal and 5 vertical. These were the total number of images available to the vehicle 

as it approached the bridge.  Figure 21 is composed of small cubes.  A solid black cube 

corresponds to a probability of occupancy of nine-tenths or greater.  Cubes with a 

probability between five and nine tenths are increasing shades of red.  Cubes with a 

probability of one half or less are not depicted.  Cubes with values of one half or less 

indicate unknown areas or areas not likely to be occupied.   These cubes are not 

displayed. 
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Comparing Figure 21 with Figure 4 the success of occupancy grids readily stands 

out.  In the horizontal image of Figure 4, the four berms were apparent.  The problem 

with the horizontal view was that the berm appeared as a solid wall.  In Figure 21, the 

central section of the wall created by the bern has a reduced height.  This section is the 

area ensonified by the vertical FLS.  The vertical FLS has lowered the height of the berm 

to its correct value.  The vehicle can now recognize the path through the berm.  A similar 

effect happens with the space between the pylons.   Due to the ambiguity of the vertical 

FLS, the columns formed a vertical wall that covered the entire field of view.  However, 

once combined with the horizontal FLS information, the edges and dimensions of the 

columns become easily identifiable.   

 

Figure 21.   Occupancy Grid Developed with 11 consecutive images (6 Horizontal, 5 
vertical) with the vehicle on a southwest approach 

 

Successfully locating a path for the vehicle is just part of the problem; the vehicle 

must also be able to correctly place the path into the global space.  To determine the 
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accuracy of the generated map, the positions of the generated pylons are compared to 

measured values.  The GPS location of the pylons was determined with a hand held GPS 

unit.  Figure 22 shows an aerial view of the occupancy grid with the GPS measurements 

overlaid in green circles.  The distance between the GPS position and the closest gridded 

pylon location were calculated.  The results are listed in Table 8. 
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Figure 22.   Occupancy Grid and Column Locations 
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Actual Cell Location Distance (m) 

(-294.1, 315.2) (-296, -315) 1.9 

(-292.7, -317.1) (-296, -316) 3.5 

(314.6, -320) (-314. -320) 0.6 

(-288.6, -350.4) (-289, -350) 0.6 

(-283.1, -350.4) (-284, -349) 1.7 

(-274.9, -367.1) (-276. -367) 1.1 

(-294.1, -367.1) (-291, -369) 3.6 

(-261.2, -389.3) (-264, -397) 8.2 

(-259.8, -393) (-267, -396) 7.8 

(-279, -293) (-273, -298) 7.8 

(-283.1, 396.8) (-281, -401) 4.7 

(-279, -400.5) (-279, -401) 0.5 

Table 8.   Actual Pylon Location versus Cell Location 

 

When analyzing this data, a couple of observations become apparent.  There is a 

significant offset between the location and gridded location of the lower pylon.   The 

possible sources of error will be discussed in the following section.  Excluding the lower 

most pylon, the rest of the data shows a mean distance error of 1.8 m.  This error is much 

larger than expected with the high-resolution capabilities of the FLS.   

B. SOURCES OF ERROR 

Several factors play a role in the overall error distance.  One of the main 

contributing factors is the grid size.  The grid size (1m x 1m x 0.5m) was chosen to 

reduce the number of computations required.  The grid size also provided enough 
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resolution for the vehicle to determine a path through under the bridge.  However, this 

large grid size does not lend itself to a direct relationship with the sensor resolution.   

Another contributing factor is the method used for pixel probability placement 

into the grid.  A single grid cell will have multiple pixels plotted to it for a single update.  

In this experiment, the highest probability values were placed within the cell.  This 

method disregards information provided by the range of pixel contained in the cell.   

The final contributing factor to the error is the vehicle position and orientation at 

the time of the image.  There are two separate contributors to this one source of error.   

First, the image data is not sampled at the same time or by the same computer as the 

vehicle state information.  Because of this, the vehicle state information was interpolated 

to determine an approximate value at the time of the image.  Any error in the state 

information is propagated through the algorithm and results in displaced detections.  The 

second contributor to errors in the vehicle state is the approximations made by the 

internal navigation unit.  The vehicle received a position fix at the beginning of the 

mission but was unable to receive any more fixes for the duration of the mission.   

C.  RECOMMENDATIONS 

The research has demonstrated the proof of concept of utilizing dual FLS with 

occupancy grids to reconstruct a three-dimensional environment.  However, progress 

needs to be made before the process is deployable on a vehicle in real time.   Some of the 

areas that need further investigation are detailed below.   

1. Probabilistic FLS Model 

The validity of the model created for this experiment is limited to use in the 

Charles River.  The model does not take into account the variability of many of the 

sources of noise.   Many factors can affect the noise distributions.  To be truly useful the 

noise distribution will need to take into account changes in the vehicles operational 

parameters.  For example, how does the noise change as the speed of the vehicle 

changes?  Does flow noise contribute significantly?  What is the correlation in the noise 

model and the acoustic noise in the environment?  Many parameters need to be analyzed 
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to develop a robust noise model.  The detection distribution utilized for the FLS model 

will also need refinements.  It is recommended that specific experiments be undertaken to 

provide a better classification of noise and detection distributions. 

2. Algorithm Improvements 

The algorithm in its current form is too slow to implement on an operational 

vehicle.  An update based on a single image requires approximately 60 seconds to 

process.   This is unacceptable for real time operation.  It is recommended that the 

algorithm be transferred from a Matlab, a prototype environment, to a language designed 

for speed.  One possible source of improvement is to down sample the FLS images.  The 

current images provide a bearing resolution of 0.044 degrees.  The actual minimum 

resolution of the FLS is specified as one degree.  If the images are re-sampled in a 

manner to minimize the data lost, the number of computations can be drastically reduced.  

One possible method that can be used to resample the images is to use a Markov Random 

Field to determine the relationship among the pixels.  Once a viable method for 

resampling has been found, the corresponding distribution functions will need to be 

created.   

3.  Combine the Occupancy Grid Route Planning Algorithm 

The final recommendation is to couple this algorithm with route planning.  The 

main goal of this thesis is to provide the vehicle a method to determine safe routes for 

navigation in a cluttered environment.  While this thesis has shown a feasible method, 

until it is coupled with a route planning algorithm, its full utility cannot be determined.   

D. CONCLUSIONS 

There are issues to be addressed and further research needs to be conducted, but 

this research can stand as a proof of concept.  It is possible to provide UUVs with a 

reconstructed three-dimensional representation of the underwater environment.  This 

representation can then be used for route planning and obstacle avoidance.  Using a  
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three-dimensional reconstruction provides UUVs with the capability of successfully 

navigating in cluttered environments.  With this capability, it becomes possible to safely 

deploy UUVs into more complex environments.   
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APPENDIX: MATLAB CODE 

A. MERGING VEHICLE AND SONAR IMAGE DATASETS 

dataset = zeros(8100,15); 
% % 
% dataset = [elapsed time, lat, lon, x, y, depth, altitude, heading, pitch, ... 
%                 roll, velocity, headingRate, Horizontal Image #, Vertical 
Image #] 
% Original Data located in VehicleData, VertData, HorData 
  
%Vehicle Elapsed time AtBeginning of first turn:    736 sec 
%Sonar Elapsed time at Beginning of first turn:     685 sec 
  
offset = 736-685 
j = 1; 
hd1 = zeros(1,15); 
hd2 = hd1; 
vd1 = zeros(1,15); 
vd2 = vd1; 
for i = 35:3000 
    %Retrieve time of Horizontal FLS 
    Htime = HorizData(i,1); 
    %Retrieve time of Vertical FLS 
    Vtime = VertData(i,1); 
     
%Get Vehicle State Associated with Horizontal FLS and Interpolate 
    Hn = find(VehicleData(:,9)<(Htime+offset), 1, 'last')-1; 
    hd1 = [VehicleData(Hn,9), VehicleData(Hn, 10:11), 0, 
0,VehicleData(Hn,12:18)]; 
    Hn = Hn+1; 
    hd2 = [VehicleData(Hn,9), VehicleData(Hn, 10:11), 0, 
0,VehicleData(Hn,12:18)]; 
    intp = (hd2(1)-(Htime+offset))/(hd2(1)-hd1(1)); 
     [Hn, VehicleData(Hn-1, 9), Htime+offset, VehicleData(Hn,9), intp] 
    hd = hd1 + intp*(hd2-hd1); 
%Get Vehicle State Associated with Vertical FLS and Interpolate 
    Vn = find(VehicleData(:,9)<(Vtime+offset), 1, 'last'); 
    vd1 = [VehicleData(Vn,9), VehicleData(Vn, 10:11), 0, 
0,VehicleData(Vn,12:18)]; 
    Vn = Vn+1; 
    vd2 = [VehicleData(Vn,9), VehicleData(Vn, 10:11), 0, 
0,VehicleData(Vn,12:18)]; 
    intp = (vd2(1)-(Htime+offset))/(vd2(1)-vd1(1)) 
    vd2 = vd1+intp*(vd2-vd1); 
 %Store combined data to a new dataset ordered by offset time 
    switch logical(true) 
        case(Htime<=Vtime) 
            dataset(j,:) = [hd2, i, i-1, 0]; 
            dataset(j+1, :) = [vd2, i, i, 0]; 
            j  = j+2; 
        case(Htime>Vtime) 
            dataset(j,:) = [vd2, i-1, i, 0] ; 
            dataset(j+1, :) = [hd2, i , i, 0]; 
            j = j+2; 
    end 
end 
     
%Convert GPS to meters in a local grid 
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% Reference point (42.358301, -71.088055) 
for i = 1:size(dataset,1) 
    lat = dataset(i, 2); 
    lon = dataset(i,3); 
    dataset(i,4) = (lat-42.358301)*60*1853.47; 
    dataset(i,5) = cos(2*pi*lat/360)*60*1853.47*(lon--71.088055); 
end 
  
clear hd1 hd2 vd1 vd2 intp i Vn Hn Htime Vtime j lat lon 
% clear VehicleData VertData HorizData  
 

 

B. GENERATING FLS PROBABILITY MODEL 

bins = linspace(0,4000,25); 
binstorage = zeros(size(bins)); 
  
%Generate Noise Distributions 
binstorage = zeros(461, 2048, numel(bins)); 
for i = 300:20:600  %Range of Images involved in Noise Distribution 
    %Combine 20 Images 
    for j = 1:20 
        imageData(:,:, j) = OpenHorSonarImage('..\SonarImages\8_bit', 
'fls_horz_',  4, '.png', i+j-1); 
    end 
    m = zeros(size(binstorage)); 
    %Create Histograms 
    for k = 1:size(imageData,1) 
        for p = 1:size(imageData,2) 
            m(k,p,:) = hist(imageData(k,p,:),bins); 
        end 
         
    end 
    binstorage = binstorage+m; 
    i = i 
    clear imageData 
     
end 
  
clear i j k p m b1 
%Save Histogram as Noise Histogram 
Vnoise = binstorage; 
  
%Generete Sensor Histograms 
imageData = zeros(461, 2048, 20); 
binstorage = zeros(461, 2048, numel(bins)); 
%Image Ranges used in Dataset 
I_range = [820, 960; 1125, 1265; 1505, 1617; 1840, 1910];   
for l = 1:4 
    start = I_range(l,1); 
    stop = I_range(l,2); 
    for i = start:20:stop 
        for j = 1:20 
         imageData(:,:, j) = OpenHorSonarImage('..\SonarImages\8_bit', 
'fls_horz_',  4, '.png', i+j); 
        end 
     
        m = zeros(461, 2048, numel(bins)); 
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        for k = 1:size(imageData,1) 
            for p = 1:size(imageData,2) 
                m(k,p,:) = hist(imageData(k,p,:),bins); 
            end 
        end 
        binstorage = binstorage+m; 
        i = i 
    end 
end 
 %Save Sensor Distribution 
Vsensor = binstorage; 
Vbins = bins; 
clear imageData binstorage I_range start stop  
clear i j m k p  
%  
  
%Remove Noise From Sensor Distribution 
n = zeros(size(Vbins)); 
s = n; 
t = n; 
i = 200; j = 880; 
%Update the Distributions for Each Pixel  
% for i = 1:461 
%     for j = 1:2048 
        %Retrieve Noise Histogram 
        n(:) = Hnoise(i,j,:);  
      figure(4); subplot(4,2,1); bar(Hbins, n); title('Noise 
Distribution') 
        %Normalize Noise  
        n = n/sum(n); 
        [mn, mi] = max(n); 
      figure(4); subplot(4,2,2); bar(Hbins, n);title('Normalized Noise 
Distribution, n') 
        % Retieve Sensor Histogram 
        s(:) = Hsensor(i,j,:); 
      figure(4); subplot(4,2,3); bar(Hbins, s); title('Detection 
Distribution')         
        % Normalize sensor over range of Noise Distribution 
        s = s/sum(s.*(n>0)); 
      figure(4); subplot(4,2,4); bar(Hbins, s); title('Normalized 
Detection Distribution, s') 
        %Remove Noise and Ensure all values are positive, then Normalize 
        s = s-n; 
%                 figure(4); subplot(4,2,5); bar(Hbins, s); title('s-n') 
        s= s + abs(min(s.*(s<0))); 
        s = s/sum(s); 
                figure(4); subplot(4,2,6); bar(Hbins, s); title('(s-n) 
raised to a min of zero') 
%         s = s+0.001*abs(min(s+10.*(s==0))); 
        figure(4); subplot(4,2,7); bar(Hbins, (s+n)/sum(s+n)); 
title('Adjusted Detection Distrobution') 
%         s = (1-s).*(s~=0); 
        s = s/sum(s); 
                figure(4); subplot(4,2,8); bar(Hbins, (s+n)/sum(s+n)); 
title('Adjusted Detection + Noise') 
        n = n+max(min(n+10.*(n==0)),0.01); 
    
    Save Adjusted Distribution to Sensor and Noise Models 
        Hnoise(i,j,:) = n/sum(n); 
        Hsensor(i,j,:) =s; 
    end 
end 
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 C. GENERATING THE MAP 

1. Main Function 

%ESTABLISH THE BOUNDARIES OF THE GRID 
b = [0 0.25 50; 0 .25 50; 0 0.25 10]; 
b(1,1:3) = b(1,1:3) + -300; 
b(2,1:3) = b(2,1:3) + -385; 
b(1:2, 2) = 0.25; 
for i = 1:3 
    b(i,4) = numel(b(i,1):b(i,2):b(i,3)); 
end 
b = b 
  
%Initialize all variables 
%Image Containers 
imgH = zeros(461, 2048); 
imgS = zeros(size(imgH)); 
imgV = zeros(461, 1024); 
imgSv = zeros(size(imgV)); 
  
%Grid Containters 
gH = 0.5*ones(b(1,4), b(2,4), b(3,4)); 
gV = 0.5*ones(size(gH)); 
gN = zeros(size(gH)); 
gS = zeros(size(gH)); 
gM = 0.5*ones(size(gH)); 
  
%Vehicle State 
vd = zeros(1,6); 
  
HIN = 0; 
VIN = 0; 
  
dr = [1662, 1672 ; 2280, 2290 ]  %Establish images be considered 
for l =1 
for vdn = dr(l,1):dr(l,2) 
    tic 
    %Extract Vehicle state and Images Numbers 
    vd = [dataset(vdn, 5), dataset(vdn, 4), dataset(vdn, 7), 90-
dataset(vdn, 8), dataset(vdn, 9), dataset(vdn, 10)]; 
%   Generate Horizontal Map 
    if HIN < dataset(vdn, 13) 
        HIN = dataset(vdn, 13); 
        imgH = OpenHorSonarImage('../SonarImages/RTheta', 'fls_horiz_', 
4, '.pgm', HIN);  %Get Images 
        imgH(find(isnan(imgH)))=2; 
        imgS = ProbImages(imgH, Hsensor, Hbins);        %Detection Prob 
Image 
        img = ProbImages(imgH, Hnoise, Hbins);          %Noise Prob Image 
        gS = HorImage2Map(imgS, vd, b);          %Detection Prob Grid 
        gMask = gS>=0;                                  %Mask of updated 
Values 
        gN = HorImage2Map(img, vd, b);           %Noise Prob Grid 
        %Horizontal Grid Update 
        gS = (gS.*gH)./(gN.*(1-gH)+gH.*gS); 
        gH = gS.*gMask+gH.*(~gMask); 
    end 
     
%   Generate Vertical Map 
    if VIN < dataset(vdn, 14) 
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        VIN = dataset(vdn, 14); 
        imgV = OpenVertSonarImage('..\SonarImages\RTHeta', 'fls_vert_', 
4, '.pgm', VIN);  %Get Image 
        imgSv = ProbImages(imgV, Vsensor, Vbins);   %Detection Prob Image 
        imgV = ProbImages(imgV, Vnoise, Vbins);     %Noise Prob Image 
        gS = VertImage2Map(imgSv, vd, b);           %Detection Prob Grid 
        gMask = gS>=0;                              %Grid Mask 
        gN = VertImage2Map(imgV, vd, b);            %Noise Prob Grid 
        % Vertical Grid Update 
        gS = (gS.*gV)./(gN.*(1-gV)+gS.*gV); 
        gV = gS.*gMask+gV.*(~gMask); 
    end 
     
     
%   Pooled UPdate 
    gM = (gV.*gH)./(gH.*gV+(1-gV).*(1-gH)); 
     
    [HIN, VIN, vdn]  %Show Loop Progress 
end 
end 

2. Converting FLS Images to Probabilities 

function Prob = ProbImages(img,  SensorDist, binSpacing) 
%This function creates to probability images based upon the 
provided image 
%and the Sensor Probability Distribution (modeled as a histogram).  
Each 
%bin contains the probability of recieving a sensor value within 
the edges 
%of the bin.  
% 
% %Inputs:   
%     img:  Sensor Image    M x N 
%     binSpacing: Vector indicating the edges of the probability 
bins  (length P) 
%     SensorDist:  Probability Distribution of the sensor. 
%            M x N x P 
%   Outputs: 
%     Prob:  An M x N matrix where each element represents the  
 probability of receiving each pixel 
            
%                  
Prob = 0.5*ones(size(img)); 
 
%Traverse the entire image 
for j = 1:size(img,2) 
    for i = 1:size(img,1) 
 %Find out which Bin number the intensity falls into 
      binNum = find(img(i,j)<binSpacing, 1, 'first');     
      if binNum >0 
 %Retrieve probability of receiving that intensity value 
 
         Prob(i,j) = squeeze(SensorDist(i,j,binNum));       

else 
         Prob(i,j) = 0.0001;  %Assign a minimum Probability 
      end 
    end 
end     
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3. Mapping Image Data to Grid Locations 

a. Horizontal FLS  

function imageMap = HorImage2Map(img,VehicleData, bounds) 
  
% %bounds 
%   [ xmin, xres, xmax, # of cells 
%     ymin, yres, ymax, # of cells 
%     zmin, zres, zmax, # of cells  ] 
temp = []; 
cnt = 1; 
  
ambspacing = 0.5*pi/180; 
ambend = 7*pi/180; 
  
%Set Vehicle position and orientation parameters 
x0 = VehicleData(1);  %LocalX 
y0 = VehicleData(2);  %LocalY 
z0 = VehicleData(3);  %Depth 
heading = VehicleData(4)*pi/180;   
pitch = VehicleData(5)*pi/180;  
roll = VehicleData(6)*pi/180; 
  
  
%Gen imageMap 
xr = bounds(1,1):bounds(1,2):bounds(1,3); 
yr = bounds(2,1):bounds(2,2):bounds(2,3); 
zr = bounds(3,1):bounds(3,2):bounds(3,3); 
imageMap = -1*ones(bounds(1,4), bounds(2,4), bounds(3,4)); 
  
%Establish Image Parameters 
imgH = size(img,1); 
imgW = size(img,2); 
%Spherical Coordinates 
theta = linspace(pi/4, -pi/4, imgW); 
r = linspace(90,0, imgH); 
phi = -ambend:ambspacing:ambend; 
  
for phiI = 1:size(phi,2) 
     
    [gr, gt, gphi ] = ndgrid(r, theta, phi(phiI)); 
    %Convert data from Local Spherical to Global Cartesian 
    [x, y, z] = sph2cart(gt+heading, gphi+pitch, gr); 
    %Move Image Data to Vehicle Location 
    x = x+x0; 
    y = y+y0; 
    z = z+z0; 
    %Covert Image Position to Grid Values 
    xi = ceil( (x-bounds(1,1))/bounds(1,2)); 
    xi = ((xi>0)&(xi<size(xr,2))).*xi; 
    yi = ceil( (y-bounds(2,1))/bounds(2,2)); 
    yi = ((yi>0)&(yi<size(yr,2)-1)).*yi; 
    zi = ceil( (z-bounds(3,1))/bounds(3,2)); 
    zi = ((zi>0)&(zi<size(zr,2)-1)).*zi; 
  
    %Store Image Values into Grid Position 
    for rI = 1:imgH 
      for thetaI = 1:imgW 
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          %Determine if image value is contained within map 
          valid = (xi( rI, thetaI, 1)>0 & yi( rI, thetaI, 1)>0 & 
zi( rI, thetaI, 1)>0); 
          %If Valid Store Data contain in image pixel to 
corresponding Grid 
          %Locations 
          if valid 
                val = imageMap(xi( rI, thetaI, 1), yi( rI, thetaI, 
1), zi( rI, thetaI, 1)); 
                imageMap(xi( rI, thetaI, 1), yi( rI, thetaI, 1), 
zi( rI, thetaI, 1)) = max(img(rI, thetaI), val); 
            end 
  
        end 
    end 
end 

b. Vertical FLS 

function imageMap = VertImage2Map(img,VehicleData, bounds) 
% %bounds 
%   [ xmin, xres, xmax 
%     ymin, yres, ymax 
%     zmin, zres, zmax  ] 
temp = []; 
cnt = 1; 
  
ambspacing = 0.5*pi/180; 
ambend = 7*pi/180; 
  
%Set Vehicle position and orientation parameters 
x0 = VehicleData(1);  %LocalX 
y0 = VehicleData(2);  %LocalY 
z0 = VehicleData(3);  %Depth 
heading = VehicleData(4)*pi/180;   
pitch = VehicleData(5)*pi/180;  
roll = VehicleData(6)*pi/180; 
  
  
%Gen imageMap 
xr = bounds(1,1):bounds(1,2):bounds(1,3); 
yr = bounds(2,1):bounds(2,2):bounds(2,3); 
zr = bounds(3,1):bounds(3,2):bounds(3,3); 
imageMap = -1*ones(size(xr,2), size(yr,2), size(zr,2)); 
  
imgH = size(img,1); 
imgW = size(img,2); 
phi = linspace(-pi/16, pi/16, imgW); 
r = linspace(90,0, imgH); 
theta = -ambend:ambspacing:ambend; 
  
for thetaI = 1:numel(theta) 
    [gr, gt, gphi ] = ndgrid(r, theta(thetaI), phi); 
    [x,y,z] = sph2cart(gt+heading, gphi+pitch, gr); 
    x = x+x0; 
    y = y+y0; 
    z = z+z0; 
  
    xi = ceil( (x-bounds(1,1))/bounds(1,2)); 
    xi = ((xi>0)&(xi<size(xr,2))).*xi; 
    yi = ceil( (y-bounds(2,1))/bounds(2,2)); 
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    yi = ((yi>0)&(yi<size(yr,2)-1)).*yi; 
    zi = ceil( (z-bounds(3,1))/bounds(3,2)); 
    zi = ((zi>0)&(zi<size(zr,2)-1)).*zi; 
%     size(imageMap) 
%     [size(xr, 2), size(yr,2);max(max(max(xi))), 
min(min(min(xi))); max(max(max(yi))), 
min(min(min(yi)));max(max(max(zi))), min(min(min(zi)))] 
    for rI = 1:imgH 
      for angle = 1:imgW 
%           temp = [xi(rI, thetaI, 1), yi(rI, thetaI, 1),zi(rI, 
thetaI, 1)] 
          valid = (xi( rI, 1, angle)>0 & yi( rI, 1, angle)>0 & zi( 
rI, 1, angle)>0); 
          if valid 
                val = imageMap(xi( rI, 1, angle), yi( rI, 1, 
angle), zi( rI, 1, angle)); 
                imageMap(xi( rI, 1, angle), yi( rI, 1, angle), zi( 
rI, 1, angle)) = max(img(rI, angle), val); 
            end 
  
        end 
    end 
end 
%Set portions of the map without data to a value of .5 (unknown 
state). 
% imageMap = (imageMap <0).*.5 + imageMap.*(imageMap>=0); 
% imageMap = reshape(imageMap, bounds(4,1)*bounds(4,3), 
bounds(4,2)); 
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4. Display the Grid 

function drawGrid(gridMap, b, axis_handle) 
%Generic Cube of Cell Dimensions 
xcube = b(1,2)*  [ 0 0 1 1 0 NaN 0 1 NaN 1 0;... 
            0 0 1 1 0 NaN 0 1 NaN 1 0]; 
xcube = xcube+b(1,1); 
ycube = b(2,2)*  [ 0 1 1 0 0 NaN 1 1 NaN 1 1;... 
            0 1 1 0 0 NaN 0 0 NaN 0 0]; 
ycube = ycube+b(2,1); 
zcube = b(3,2)*  [ 1 1 1 1 1 NaN 1 1 NaN 0 0;... 
            0 0 0 0 0 NaN 1 1 NaN 0 0]; 
zcube = zcube +b(3,1); 
%Traverse entire Grid,  Draw cubes based on the Probability contained in 
%the cell 
for i = 1:size(gridMap, 1); 
    for j = 1:size(gridMap, 2); 
        for k = 1:size(gridMap, 3); 
  
            switch logical(true) 
                case gridMap(i,j,k) >0.95 
                    surf(xcube+i*b(1,2), ycube+j*b(2,2), zcube+k*b(3,2), 
'facecolor', [0 0 0], 'edgecolor', 'none'); 
                case gridMap(i,j,k) >= 0.8 
                    surf(xcube+i*b(1,2), ycube+j*b(2,2), zcube+k*b(3,2), 
'facecolor', [0.25 0 0], 'edgecolor', 'none' ); 
                case gridMap(i,j,k) > 0.7 
                    surf(xcube+i*b(1,2), ycube+j*b(2,2), zcube+k*b(3,2), 
'facecolor', [0.5 0 0], 'edgecolor', 'none'); 
                case gridMap(i,j,k) > 0.5 
                    surf( xcube+i*b(1,2), ycube+j*b(2,2), zcube+k*b(3,2), 
'facecolor', [0.75 0 0], 'edgecolor', 'none'); 
            end 
            hold on 
        end 
    end 
    if mod(i,10) == 0 
        i = i 
    end 
end 
axis([ b(1,1) b(1,3) b(2,1) b(2,3) b(3,1) b(3,3)]); 
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