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ABSTRACT   
 
This report is a survey of contributions by various research institutions within Australia into 
several important applications of speech processing, such as speech and speaker recognition. The 
purpose of this report is to give a rough snapshot of where a number of individual research 
institutions stand. For each application, a number of research papers within Australia are 
discussed in detail. Although much of the above research is directed towards simple tasks there 
are a number of significant contributions from various Australian research institutions. Some 
systems, particularly those from QUT, have achieved state-of-the-art performance. 
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A Review of Contributions by Australian Research 

Institutions into Speech Processing  
 
 

Executive Summary    
 
This report is a survey of how Australia has contributed to the research in speech 
processing. The customer is interested in which Australian research institutions have 
produced, or are likely to produce in the future, useful technologies for various speech 
processing applications. We have identified a number of functional components such as 
speaker verification, language identification, speech recognition etc. which can represent 
components of a larger system, although discussion of such a larger system is outside the 
scope of this report. For each of these functional components, we discuss the standard 
techniques used with emphasis on which techniques have been researched by Australian 
research institutions. 
 
A large number of Australian institutions have done research on various speech 
processing applications and many interesting avenues of research have been investigated. 
However, a significant amount of their work focuses on irrelevant tasks (e.g. telephone 
banking) or problems that are too simple (e.g. 10-digit recognition) to be of use in high 
volume speech processing. Also, research experiments are often performed on a little-
known corpus to validate their results, making it difficult to compare against other 
research. A notable exception is QUT, which is the only regular Australian participant in 
the well-known NIST evaluations, and their results are generally competitive. Another 
important contribution is the ANDOSL database, from four universities (excluding QUT). 
This database was used to promote research into database annotation and speaker 
diarisation. 
 
This report is intended to highlight which institutions(s) are conducting research in areas 
of potential significance to the customer in providing support to their current and future 
high volume speech processing requirements. 
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1. Introduction  

 
This review is a survey of speech-related technologies that have been undertaken by various 
Australian institutions. It is intended to help a client decide which research institutions in 
Australia can be considered for funding opportunities. In broad terms, speech processing is 
the study of speech signals and the algorithms applied to them. This report will discuss 
various systems that perform a specific function, such as speaker verification, language 
identification, keyword spotting etc. It is anticipated that a number of such systems will form 
part of a larger end-to-end system, but this is outside the scope of this report. A system will 
generally contain a number of operational components such as feature extraction, phoneme 
modelling, model training etc. This report will describe in detail various operational 
methodologies used by Australian institutions in a number of selected sub-problems. The 
subsequent chapters cover, in order, Speaker Verification (SV) and Identification (SID), 
Language Identification (LID), Speech Recognition, Keyword Spotting (KWS), Accent 
Identification (AID), phoneme recognition, speech segmentation and other lesser-known 
topics. It will be noted that some components are omitted despite being popular fields of 
research. For instance, speech coding, speech enhancement or natural language 
understanding will not be discussed. 

 
1 



 
DSTO-TN-0837 

2. Speaker Recognition  

2.1 Overview of Speaker Recognition 

In speaker recognition, two important sub-problems will be considered, namely speaker 
verification (SV) and speaker identification (SID). The aim of SV is to determine if a particular 
speaker was speaking or not given a speech segment. A SV system generally has two phases, 
training (offline) and testing (online), and consists of the following components: 
parameterization, modelling and scoring (see Figure 1). Parameterization occurs in both the 
training and testing phases, while modelling and scoring occur only in the training phase and 
testing phase respectively. 

 
Figure 1: Modular representation of speaker verification system 

 
Parameterization means analysing the speech signal and converting the raw data into 
features, such as Mel Frequency Cepstrum Coefficients (MFCC) or Linear Prediction 
Cepstrum Coefficients (LPCC) etc. The parameterization process is used both in training 
speaker models and testing (see below). Once the parameters are obtained, speaker models 
can be trained using a sufficiently large quantity of data. In the testing phase, speech data is 
converted into features in the same way as in the training phase. One is also given a claimed 
identity, from which one can obtain the target model from the training phase. The target 
model represents the hypothesis that a given audio segment was spoken by a particular 
speaker. A Universal Background Model (UBM) is obtained from pooled speech by several 
speakers. This model represents the alternative hypothesis that an audio file was not spoken 
by a particular speaker. Using a likelihood-ratio test a “score” is obtained, which indicates 
how confident one is about whether the speaker should be accepted. The higher the score is, 
the stronger the evidence is in favour of accepting the speaker. Note that an individual score is 
not to be confused with the result of an evaluation (such as specified by NIST) where an 
algorithm is tested against some data and a result is given, e.g. “given task XXX and corpus 
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YYY, algorithm ZZZ makes correct decisions 80% of the time”. The scoring stage determines 
whether the claimed identity should be accepted or rejected. Typically this is done by 
comparing the score against a pre-determined threshold. If the score exceeds the threshold, 
the speaker is accepted, or else it is rejected. This threshold can be viewed as a parameter, 
controlling the trade-off between false alarms (where an impostor is accepted) and misses 
(where the speaker is incorrectly rejected). Increasing the threshold will result in a lower false 
alarm rate at the cost of a higher miss rate, while decreasing the threshold yields the opposite 
result. Thus one can construct a Detection Error Trade-off (DET) curve that shows how the 
false alarm rate and miss rate change as a function of the threshold. The score is often 
normalized (before comparing to a threshold) to neutralize certain effects such as 
environmental noise and mismatched training/testing conditions (e.g. carbon versus electret 
handsets), since it is well-known that such effects can greatly reduce performance.  
 
A number of evaluation metrics are commonly used to assess SV systems. The basic idea is to 
summarise the DET curve in a single value by choosing an “operating point” (corresponding 
to a value of the threshold) which is optimal in some sense. The cost function assigns a real 
number to both misses (Cmiss) and false alarms (Cfa). The total cost is given by C = Cfa Pfa + Cmiss 

Pmiss. Note that the impostor rate must be assumed to be known a priori to enable the 
calculation of false alarm and miss probabilities. The desired operating point is where the cost 
function attains the minimum value Copt. This value summarises the performance of the 
system, with lower values of Copt indicating better performance. Another measure commonly 
used is the EER, where the probabilities of false alarm and miss rate are equal. However, this 
is less popular than the cost function, since the EER rarely corresponds to a realistic operating 
point (Bimbot et al., 2003). Other measures exist, but it is outside the scope of this report to 
discuss these. 
 
In SID, the problem is: given a set of speakers (generally a finite set, known a priori) and a 
speech signal, determine the most likely speaker.  The procedure for SID is somewhat similar 
to SV except (i) all speaker models obtained in the training phase are required for scoring, (ii) 
no claimed identity is required and (iii) in the scoring stage one chooses the speaker which 
corresponds to the highest-scoring model (see Figure 2). This is simpler in the sense that one 
does not need to select an arbitrary threshold or perform normalization techniques such as T-
norm (as in SV). This implies that scoring is relatively trivial, and the speaker with the highest 
score is chosen.  
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Figure 2: Modular representation of speaker identification system 

 
Section 2.2 describes in detail a number of ideas by Australian research institutions for the 
parameterization stage, such as Sliding Window Analysis (Pelecanos & Sridharan, 2001b) and 
Feature Warping (Pelecanos & Sridharan, 2001a). Section 2.3 describes some models proposed 
for the modelling stage. Section 2.4 offers only a brief discussion on scoring, since this has not 
been heavily researched by Australian research institutions. 
 
2.2 Parameterization  

Parameterization essentially consists of two stages: feature extraction and 
filtering/normalization. Feature extraction involves preprocessing the signal and selecting a 
parameterization scheme to generate various features of interest. Given a speech signal, one 
can apply standard techniques such as FFT, multiplication by filter-bank etc, to generate 
spectral vectors. These can be further processed to generate, for instance, the well-known Mel 
Frequency Cepstrum Coefficients (MFCC) or Linear Predictive Cepstral Coefficients (LPCC).  
The filtering/normalization stage is needed to remove noise and compensate for “mismatched 
conditions” such as different duration of syllables. A well-known method for filtering is 
Cepstral Mean Subtraction (CMS) (Atal, 1974) where the mean vector is subtracted from each 
cepstral vector. A number of ideas from various Australian institutions will be discussed 
below. 
 
2.2.1 Sliding Window Analysis 

In (Pelecanos & Sridharan, 2001b) from QUT, Pelecanos and Sridharan proposed to filter away 
noise using “sliding window analysis”. That is, a box-car filter is applied to the cepstral 
features as a function of time and the output of this filter is subtracted from the raw cepstral 
features. This generalizes the well-known CMS filter in the sense that the mean is subtracted 
from a small “sliding” window instead of the entire speech segment. The great advantage of 
sliding window analysis is that unlike CMS, window analysis is suitable for handling multiple 
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channels, e.g. when both sides of a telephone conversation are recorded. Although other well-
known filters have been designed to handle multiple channel effects, such as RASTA 
(Hermansky & Morgan, 1994) and LDA-FIR modulation spectrum analysis (Avendano, Van 
Vuuren, & Hermansky, 1996), they have some drawbacks. RASTA only shows limited 
improvement over CMS. Moreover, there is the issue of settling time of the Infinite Impulse 
Response (IIR) filter at the start of a speech segment, which can degrade performance for short 
test segments (of the order of 3 seconds). The data-driven approach of LDA-FIR requires the 
use of phonemically transcribed speech segments that are compatible with the speech in the 
target application. 
 
Sliding window analysis avoids all these difficulties. Pelecanos and Sridharan showed that a 
window of 300-500 frames is optimal for the two-speaker detection task in the NIST 2000 
speaker recognition evaluation (A. Martin & Przybocki, 2000). 
 
 
2.2.2 Feature Warping 

Another solution to linear channel effects/additive noise is feature warping (Pelecanos & 
Sridharan, 2001a). The use of this technique was the key technology in QUT gaining first place 
in the 2001 NIST world-wide speaker recognition evaluation in the Single Speaker Detection 
Task (Basic) and Single Speaker Detection Task (Cellular Data) categories. Feature warping 
attempts to enhance the robustness of each cepstral feature distribution by mapping it to a 
target distribution, such as a standard normal distribution. At any particular time, each 
cepstral value is “ranked” according to how many other values in a sliding window exceed it. 
The corresponding percentile in the target distribution becomes the warped cepstral feature 
value. The effect of feature warping is to emphasize the relative instead of absolute values of 
the feature vectors. A noteworthy aspect of feature warping is that it can be cascaded with 
other schemes such as RASTA (Hermansky & Morgan, 1994). Feature warping is related to the 
concept of histogram equalization, a well-known technique for image processing, and has 
been widely adopted in the speech processing community. For instance, Choi, from ATP 
Research Laboratory, NICTA, (Sydney) used it for robust front-end processing for speech 
recognition (Choi, 2006). 
 
2.2.3 The Use of F-patterns for Diphthongs 

Another useful set of features can be obtained from the F-patterns (fundamental frequency F0, 
first second and third formants F1 F2 F3 etc). Rose (P. Rose, 2006), from ANU, postulated that 
diphthongs carry more useful information than monophthongs. Rose explored two questions: 
(i) given two speech samples, to what extent diphthongs can be used to discriminate whether 
they are from the same or different speakers and (ii) which parameters are appropriate for 
which diphthongs. For the diphthong /ai/, Rose showed that including the F2 + F3 formants, 
omitting the F1 formant and normalizing the duration gave the best EER of 22% on the 
Bernard Corpus (Bernard, 1967). Other different diphthongs such as /εi/ have yielded similar 
results. The diphthong /ai/ has useful properties for forensic SID (P. Rose, Kinoshita, & 
Alderman, 2006): the three formants are relatively easy to measure and often occur in phone 
conversations (e.g. ‘Hi’, ‘Bye’). Rose also showed that combining five different diphthongs can 
improve the EER to 10% for the Bernard Corpus. Although the power of formants has been 
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researched in the context of monophthongs (Alderman, 2005; P. Rose, Osanai, & Kinoshita, 
2003), diphthongs remain relatively unexplored, especially in the context of forensic 
applications, so this could be a fruitful area for future research. The Bernard corpus is 
relatively simple, as Bernard recorded only the occurrences of diphthongs in /h_d/ words. 
Hence this is only useful in text-dependent SID, where the given text is known. A more 
powerful system would require at least a phoneme-recognition stage to handle unknown text. 
 
2.2.4 Discriminative feature extraction 

In speaker recognition, as well as other areas of speech processing in general, a standard 
assumption is that the feature extraction algorithm is fixed while a classifier is adapted during 
training. In (Nealand, Bradley, & Lech, 2002) from RMIT University, Melbourne, Nealand et 
al. proposed that Discriminative Feature Extraction (DFE) could be used to train feature 
extraction parameters in conjunction with the classifier. The feature extraction employed a 
filter-bank-based extraction algorithm. The filter-bank was emulated by a weighted 
summation of power spectral components, where the individual weights could be trained.1  
The term “discriminative feature extraction” is derived from the fact that DFE attempts to 
maximize discrimination between classes, rather than fitting classifier models to training data. 
Nealand et al. showed that their DFE algorithm consistently scored a higher recognition rate 
than a conventional algorithm using a fixed filter-bank. 
 
2.2.5 Higher level features 

In the previous discussion only low level features have been considered. However, it is known 
that high-level features such as linguistic context, prosodic cues etc, also carry useful 
information and recently more researchers have investigated these sources of information for 
speaker recognition. In (Baker & Sridharan, 2006), from QUT, Baker and Sridharan used a 
multi-lingual framework where phones can be categorized into one of four broad classes, 
namely (i) vowels/diphthongs, (ii) nasals/liquids/glides, (iii) fricatives and (iv) stops/pauses. 
A pseudo-syllable was assumed to consist of three phones. Thus pseudo-syllables could be 
classified as one of only 64 possible combinations of three broad phone classes. This 
represents a reasonable trade-off between the ability to retain useful information in the phone 
classification set and to allow for sufficient training data for each pseudo-syllable. By 
modelling these broad syllabic events, comparable performance to a standard system was 
obtained on the NIST 2003 speaker recognition corpus.  
 
However, attempts to incorporate high-level features such as prosody to complement the 
standard acoustic features have met with limited success, both within Australia and 
worldwide. In Luengo et al. (Luengo et al., 2006) a traditional MFCC-based SV system was 
combined with a prosody-based system and tested on the AHUMADA database (Ortega-
Garcia et al., 1998). The traditional and prosody-based systems obtained an EER of 3.85% and 
23.93% respectively, hence the prosody-based system is much inferior. When the two systems 
are combined the EER drops to 3.84%, which is a negligible improvement over the MFCC-
based system alone. One of the major issues with higher-level features is the necessity to 

                                                      
1 It is assumed the filter has a Gaussian profile to reduce the number of trainable parameters. 
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mark-up large volumes of training data with higher-level feature information such as 
prosodic features. 
 
2.3 Modelling 

2.3.1 Gaussian Mixture Models 

Text-independent SID and SV is a strong focal point of research in Queensland University of 
Technology (QUT) as evidenced by regular participation in NIST evaluations and numerous 
publications in conference proceedings, particularly ICASSP. QUT has been particularly 
successful with the use of Gaussian Mixture Models (GMM). The GMM is relatively simple 
and well-understood, yet other more complex models such as HMMs and Neural Networks 
(NN) have failed to demonstrate any consistent advantage over GMM. For this reason GMM 
is considered one of the most successful models in SID and SV (Bimbot et al., 2003). A GMM is 
a likelihood function that specifies the probability density for a feature vector (e.g. MFCC 
coefficients) to be a linear combination of Gaussians with weights summing to unity. The 
GMM parameters are iteratively updated using the expectation maximization algorithm 
(Dempster, Laird, & Rubin, 1977)  during model training. Typically, the GMM representing a 
speaker is not created “from scratch” but is adapted from a Universal Background Model 
(UBM) representing all speakers (Reynolds, Quatieri, & Dunn, 2000). 
 
 
2.3.2 Trajectory Modelling 

The HMM model is based on the assumption that speech is “sustained” in one state before 
suddenly jumping to the next state. But this assumption is not realistic in continuous speech 
since sustained sounds are short or omitted. In (Tey, Jong, & Togneri, 1996), from UWA,  a 
speech signal was treated as a “moving point” in N-dimensional space and segmented, using 
a transient trajectory model for each transition from one sound to another. The trajectory of a 
speech signal was viewed via a Feature VIEWing system, fview, a software package 
developed within CIIPS (Centre for Intelligent Information Processing Systems), in the School 
of Electrical, Electronic and Computer Engineering of UWA. With the help of this package, a 
speech signal was manually segmented. For each segment, each cepstral coefficient (as a 
function of time) was modelled as a low-order polynomial. Another idea proposed by the 
same authors was that of “rate-independent” parameterization. Effectively, the time 
dimension was “warped” so that the speech signal moves in N-dimensional space at a 
constant rate (with respect to the standard Euclidean distance metric) in order to normalize 
differences between different speaker rates. The experimental results were disappointing:  it 
was found that the trajectory model was comparable to HMM for speech recognition but 
inferior for speaker recognition. Moreover, the model was only tested on a simple set of 
sounds, namely the English letters “b,c,d,e,g,p,t”. The experimental results favoured the 
normal “unwarped” rate-dependent parameterization. 
 
Despite the poor experimental results this paper is noteworthy since UWA has placed fview 
in the public domain. It has been used for research into speech recognition and speaker 
recognition, but its main purpose was to promote research into front-end processing as an 
individual component, not within a system. Tey et al. (Tey, Jong, & Togneri, 1996) noted that 
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while it is common to publish results for various systems (LID, speech segmentation etc), of 
which front-end processing is only one component, little effort has been devoted to 
considering front-end processing in itself. Thus it is difficult to determine if a system “does 
badly” because of weaknesses in the front-end processing component, or some other 
component in the system. Unfortunately, outside of UWA, there is no significant research 
dedicated to fview. 
 
2.3.3 Neural Networks  

In (Price, Willmore, Roberts, & Zyga, 2000), from DSTO, Price et al. compared a NN model 
against a conventional GMM. Their work is novel in that genetic algorithms are used for 
optimising the network. An individual NN was created to model each speaker. Each NN took 
cepstral coefficients as the input feature vector and returned a binary output of 10 or 01 to 
represent the speaker and background respectively.2  The training data consisted of 2 minutes 
of speech from 2 different handsets for 21 different male speakers from the 1996 NIST speaker 
evaluation workshop. The test data utterance length was nominally 30 seconds. Price et al. 
trained and tested both matched and mis-matched microphone conditions. It was found that 
GMM outperformed NN in terms of equal error rate under both matched and mis-matched 
conditions. Given a miss rate of 0.5% GMM also outperformed NN (9% vs 14% probability of 
false alarm) under matched conditions. But under mis-matched conditions the result is 
reversed, (98% vs 64% probability of false alarm).  
 
2.3.4 Other Models 

Other methods for solving the classification problem include HMM, and SVM. HMMs attempt 
to incorporate temporal information by using transitions between states to model how a signal 
evolves with respect to time. SVMs attempt to separate speaker and impostor models without 
the assumption of a linear boundary. Attention has also been paid to combining GMM with 
SVM. For a detailed discussion the reader is referred to (Bimbot et al., 2003) and references 
therein.  
 
In (Baker & Sridharan, 2006) (see section 2.2.5) it was assumed that a syllable consisted of 
three phones. The HMM is appropriate since one can easily concatenate HMM models for 
individual phone classes to form a model for the entire syllable. Baker and Sridharan used a 
7-state left-to-right topology, since each phone was modelled as a 3-state left-to-right topology 
and the entry and exit states of the middle phone overlapped with those of the start and end 
phones. The HMM was tested against a previously proposed GMM system (Baker, Vogt, & 
Sridharan, 2005) and a “baseline” GMM-UBM system (Reynolds, 1997) on the NIST 2004 
speaker recognition evaluation corpus. It was shown that HMM outperformed the GMM and 
GMM-UBM systems. This result is potentially significant. However it would be 
computationally slow due to the requirement for phoneme recognition to be performed. 
 

                                                      
2 Although it is possible to return only one bit instead of two, it is generally accepted that two bits yield better 
performance. 
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2.4 Scoring 

The scoring component determines whether a speaker should be accepted or rejected 
depending on the speaker’s score. There are two distributions representing the target and 
impostor models. It is assumed that both models are approximated by normal distributions. 
Usually the output score is compared to a threshold. If the score is higher than the threshold, 
then the speaker is accepted, otherwise it is rejected. Score normalization is often used and is 
based on the following idea:  instead of directly comparing the score θ to a threshold, it is 
better to compare (θ – μ)/σ with the threshold, where μ, σ are the mean and standard 
deviation of the target model respectively. The initial study of score normalization techniques 
is largely due to Li and Porter (Li & Porter, 1988). There are a large number of variations on 
the theme of score normalization and the reader is referred to (Bimbot et al., 2003) for detailed 
discussion. QUT has used score normalization techniques from other researchers outside 
Australia. For instance, Mason et al. (Mason, Vogt, Baker, & Sridharan, 2004) have used 
handset normalization and test segment normalization (Auckenthaler, Carey, & Lloyd-
Thomas, 2000). However the author of this report is unaware of any serious contributions by 
Australian research institutions to the use of score normalization per se.  
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3. Language Identification 

3.1 Overview of Language Identification 

The aim of Language Identification (LID) is to determine a language given a speech segment. 
A typical LID system consists of the following stages: parameterization (feature extraction), 
modelling and scoring (see Figure 3). Hence it is similar to speaker identification, but with 
“speaker” replaced by “language”. Parameterization and modelling will be discussed in some 
detail.  
 

 
Figure 3: Modular representation of language identification system 

 
3.2 Parameterization 

3.2.1 Mel Frequency Cepstral Coefficients (MFCC) versus Linear Predictive 
Cepstrum Coefficients (LPCC) 

Mel Frequency Cepstral Coefficients (MFCC) and Linear Prediction Cepstrum Coefficients 
(LPCC) are two of the more common parameterization schemes. The MFCC are obtained by 
computing log output amplitudes of non-linearly spaced filters and taking a discrete cosine 
transform. LPCC attempts to model the vocal tract by an all-pole filter. The linear prediction 
coefficients (LPC) are the coefficients of this filter and the LPCC are the same data in the 
cepstrum domain. The name LPCC derives from the fact that future values of the signal are 
modelled as a linear function of previous samples. In (Wong & Sridharan, 2001), from QUT, 
Wong and Sridharan compared LPCC with MFCC. They showed that LPCC consistently 
outperformed MFCC in all tests using the 10-language version of OGI-TS. Also, using delta 
coefficients (time derivatives of the features coefficients) resulted in enhanced performance. 
Wong and Sridharan used the GMM for the modelling component, as described above in the 
chapter on speaker identification. In the experiments performed, the optimum accuracy was 
only 60.0% achieved with the use of 12 LPCC and corresponding delta and acceleration 
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coefficients. Unlike speaker identification, the use of GMM is less favourable compared to 
other methods, such as phoneme-based modelling (Zissman & Singer, 1994). This will be 
discussed in more detail in section 3.3. 
 
3.2.2 Prosody  

In Martin et al. (T. Martin, Baker, Wong, & Sridharan, 2006; T. Martin, Wong, Baker, & Mason, 
2004) phone-triplets were used as crude approximates for a syllable-length sub-word 
segmental unit. This pseudo-syllabic length framework was subsequently used to examine the 
contributions made by acoustic, phonotactic3 and prosodic information sources to gain insight 
into how these information sources contribute to overall LID performance. Importantly, this 
work was examined under current NIST LID evaluation protocols, in conjunction with typical 
baseline LID techniques such as the GMM/UBM and PPRLM approaches.  
 
A series of experimental comparisons were conducted, examining the utility of segmental 
units in modelling short term acoustic features. This included comparisons between language 
specific GMM, language specific GMM for each segmental unit, and finally language specific 
HMM for each segment. This examination was undertaken in an attempt to better model the 
temporal evolution of acoustic features. In a second tier of experiments, the contribution of 
both broad and fine class phonotactic information, when considered over an extended time 
frame, was contrasted with an implementation of the currently popular parallel phone 
recognition language modelling (PPRLM) technique. Results indicated that this information 
could be used to complement existing PPRLM systems to obtain improved performance. The 
pseudo-syllabic framework was also used to model prosodic dynamics and compared to an 
implemented version of a recently published system, achieving comparable levels of 
performance. 
 
Further studies examining the use of prosody for LID were also conducted in Bo et al., (Bo, 
Ambikairajah, & Fang, 2006) from UNSW and NICTA. In this study, prosodic information 
was combined with cepstral features such as MFCC and PLP. In contrast to most studies 
which utilise 12 MFCC or 9 PLP coefficients, Bo and Chen also investigated the effect of 
altering the number of coefficients. They reported an optimum performance of 87.1% on the 
10 language recognition task in the 1992 OGI corpus, obtained when the number of MFCC 
components was reduced to seven. 
 
3.2.3 Acoustic Systems 

Recently, acoustic LID has received renewed interest due to the NIST 2003 evaluation task 
(Matejka, Cernocky, & Sigmund, 2004) in which acoustic-based systems outperformed 
traditional phonetic systems. In (Allen, Ambikairajah, & Epps, 2006), again from UNSW and 
NICTA, Allen et al. combined information from both magnitude and phase information in the 
signal. The phase information was obtained via the Modified Group Delay Function (MGDF) 
(Hegde & Murthy, 2005). The use of the Shifted Delta Cepstrum (SDC) (Torres-Carrasquillo et 
al., 2002) further improved performance. Instead of calculating an approximate first derivative 

                                                      
3 Roughly speaking, phonotactic information refers to how often different combinations of phonemes can 
appear in a language. 
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(Furui, 2000), a vector of first order delta coefficients was obtained by computing differences 
across multiple frames of speech. 
 
Curiously, the MGDF had also been used by Griffith University in the context of speech 
recognition (Donglai & Paliwal, 2004), although that paper only focussed on the relatively 
simple task of recognising connected digits. Phase information is relatively unexplored in the 
literature yet has interesting properties. For instance, speech signals can be reconstructed from 
the magnitude spectrum only if the phase information can be estimated accurately.  
 
3.3 Modelling 

3.3.1 Hybrid Systems  

Although the use of GMM in LID compares unfavourably with other methods, GMM can be 
incorporated into “hybrid systems” using other more successful techniques. In (Wong & 
Sridharan, 2002a), from QUT, Wong and Sridharan showed that the use of Voice-Tract Length 
Normalization (VTLN) (Wong & Sridharan, 2002b) and Parallel Phoneme Recognition and 
Language Modelling (PPRLM)4 (Zissman, 1995; Zissman & Singer, 1994) can significantly 
reduce error rates of GMM. Since PPRLM is one of the more successful approaches, it will be 
discussed in further detail in section 3.3.2. 
 
The UBM technique, successfully employed in speaker verification, was employed in LID to 
reduce the computational costs in both training and testing of the GMM model. VTLN, which 
has proved very successful in speech recognition (Bacchiani, 2001; Wegmann, McAllaster, 
Orloff, & Peskin, 1996), attempts to normalize out the inter-speaker differences due to variable 
vocal tract length. Wong and Sridharan incorporated VTLN into their GMM system by 
effectively attempting to adapt the GMM model during the training phase and estimate the 
tract length5 of each speaker simultaneously (Wong & Sridharan, 2002b). Hybrid systems are 
generally implemented as follows: given a language, each system outputs a score. The 
resulting scores by all models are then “combined”, usually via a weighted average (Wong & 
Sridharan, 2002a). The scores for all languages are used in the final decision of identifying a 
language. Wong and Sridharan attempted to fuse the GMM with the phoneme-based 
approach PPRLM, the latter having proved very successful in LID. Given output scores from 
GMM and PPRLM, the final output was a linearly weighted average of the two (although the 
weights heavily favour GMM). Wong and Sridharan showed that the fused system outscores 
both GMM and PPRLM separately. However, it should be pointed out that their experiments 
also confirmed that GMM by itself is inferior to PPRLM, even when the UBM and VTLN 
techniques are applied to the former. These results suggest that the static acoustic features 
identified by the GMM somehow “complement” the phonemic information captured by 
PPRLM. In (T. Martin, Baker, Wong, & Sridharan, 2006) (section 3.2.2) a similar idea was 
applied: the proposed syllable-based system was fused with acoustic HMM, prosodic HMM 
and PPRLM systems. However, instead of a simple linear weighting, a MLP neural network 

                                                      
4 The acronym PRLMP also appears in the literature. 
5 Strictly speaking the authors merely estimate an “abstract” rather than the actual “physical” tract length of 
the speaker, but this distinction will be ignored. 
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was used. Martin et al. showed that the combination of these systems results in a significant 
improvement over the use of PPRLM alone. 
 
Since it is outside the scope of this report to detail all of the above modelling techniques, only 
a brief discussion on PPRLM is provided. The interested reader is referred to (Muthusamy, 
Barnard, & Cole, 1994) and (Zissman, 1996) and references therein. 
 
3.3.2 Phoneme Recognition and Language Modelling in Parallel 

The concept of phonemes is fundamental to many (but not all) speech processing tasks. 
Phonemes are used in LID, Keyword Spotting (KWS) and Accent Identification (AID). One of 
the main advantages of phonemes is their small number compared to the set of words in the 
vocabulary. For instance English has only around 40 distinct phonemes but the number of 
words is higher by several orders of magnitude.6  Moreover, as all words can be expressed as 
combinations of terms in the distinct phoneme set, phoneme models need no retraining when 
words are added to the vocabulary. Given models for all phonemes, any sentence can be 
represented by concatenating the word models, which can be obtained by concatenating the 
phoneme models. Although units other than phonemes have been proposed in the literature 
(Lee, Soong, & Paliwal, 1996), it is outside the scope of this report to discuss them in detail.  
 
One of the most successful approaches to the modelling component of an LID system is 
PPRLM. Given the acoustic representation, phoneme models are constructed for multiple 
languages in parallel. A phoneme model is typically represented as a HMM with left-to-right 
topology to account for the temporal aspects of the phoneme. Phonemic labelling of data is 
often performed manually, despite being tedious and error prone, since accurate labelling is 
considered critical for system performance. For many databases, phonemic transcriptions are 
available for only some of the languages. Given an acoustic model, one can build a stochastic 
grammar for any language (not necessarily the same as that of the acoustic model). The 
likelihood of any combination of language model and acoustic model can be calculated. The 
likelihood of a language model is obtained by summing the likelihood of all possible 
combinations of the language model with any acoustic model. Scoring is usually done by 
choosing the language with highest likelihood. This process is depicted in Figure 4. 
 

                                                      
6 Although several estimates have been given for the number of words in the English language, they will not 
be quoted since there is no single sensible criterion for counting words. 
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Figure 4: Data flow for PPRLM method 

 
Given that the objective of PPRLM systems is to capture as accurately as possible the 
phonotactics which characterise a language, it is assumed that the minimisation of Phone 
Error Rate (PER) is a precursor to achieving this effectively. In (T. Martin, Wong, & Sridharan, 
2006), Martin et al. investigated the relevance of PER as a metric for determining eventual LID 
performance. In contrast to previously reported techniques using PPRLM, this study made 
use of the CallHome corpus to produce the acoustic models, rather than OGI, based on the 
premise it provides a better representation for the style of discourse and channel conditions 
encountered in the Conversational Telephone Speech (CTS), which is now the focus of current 
NIST LID evaluations. Using the CallHome corpus, significantly improved results were 
obtained, with an average improvement of approximately 6% absolute across the 30, 10 and 3 
seconds tasks for the NIST 1996 and 2003 evaluations. An examination was also conducted 
into the impact of tuning the individual front-end recognisers, on both the resultant PER of 
other languages and against the resultant LID performance. The work conducted established a 
number of limitations in the correspondence between PER and LID so a new technique based 
on pronunciation modelling techniques was trialled for forecasting the change in LID 
performance when the phone recogniser front-end was modified. The essential idea was to 
assign a smaller cost for mistaking two similar phones (e.g. /b/ and /p/) than mistaking two 
different phones (e.g. /b/ and /s/). It was shown that this measure gives stronger correlation 
to LID performance than PER. 
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4. Speech Recognition 

4.1 Overview of Speech Recognition 

Automatic speech recognition is the problem of decoding a speech stream into a sequence of 
words. Speech recognition applications range from extremely simple tasks (ten-digit 
recognition) to more complex tasks (e.g. medium or large size vocabulary voice dictation). 
Speech recognition is a well-researched area largely thanks to the advances in signal 
processing theory, algorithms, software and hardware. However, current technology is still 
significantly behind human performance under “real world” conditions. For instance, 
recognition accuracy can significantly degrade when the testing and training sets have 
different characteristics such as additive white noise or different speaking styles. Many 
Australian research institutions have done research into speech recognition but most of it is 
relevant for only small-vocabulary applications. This section will only cover medium-large 
vocabulary continuous speech recognition as this is particularly relevant for defence 
applications. It is obvious that the use of a large vocabulary and continuous speech will make 
speech recognition much harder. A large vocabulary may lead to infeasible constraints in 
memory or time. In other words, a system that works on a small vocabulary may not scale up 
to a larger vocabulary. Continuous speech implies that individual words may be pronounced 
differently depending on the context of neighbouring words, or a person may stutter or retract 
‘false starts’ etc. 
 
Given a speech signal, Large Vocabulary Continuous Speech Recognition (LVCSR) attempts to 
decode it into a sentence (or a number of sentences). Note that in some applications, further 
processing may be needed after obtaining sentences (e.g. speech understanding) but only the 
speech recognition problem will be considered. A speech recognition system consists of a 
parameterization module and a pattern-matching module. The parameterization module 
obtains a stream of features, just as in speaker or language identification. The pattern 
searching model takes these input features and decodes them into words/sentences, using 
word and sentence matching. Note that the word and sentence matching submodules are 
“coupled” because both modules give some measure of how likely a feature stream represents 
a particular sentence: the word match module determines how well each individual word 
matches the feature stream, and the sentence match module determines how well the 
individual words fit into a sentence. One possible interpretation is that the word module does 
not yield a hard choice of any particular word, but a set of probabilities for multiple words. 
Thus, for instance, the word “The” could be determined as the most likely word to begin a 
sentence, but after the rest of the signal is decoded the sentence module may indicate the 
sentence most likely starts with “They” instead. The word and sentence matching modules 
output a probability for any word sequence. Finally, a decoding module is required to 
calculate the word sequence with highest probability (see Figure 5). 
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Figure 5 Modular representation of speech recognition system 

  
  
4.2 Parameterisation 

The parameterization stage in speech recognition has much similarity with the features used 
in Speaker Recognition. Fourier analysis is one of the most widely used tools for deriving 
speech features. Cepstral features are often used, along with their first and second derivatives. 
Mel- or Bark-scale spectral features are also common. For a detailed discussion the reader is 
referred to (Lee, Soong, & Paliwal, 1996). Feature extraction techniques such as Principal 
Component Analysis (PCA) and Linear Discriminant Analysis (LDA) have been used for the 
problem of audio-visual speech recognition (Dean, Lucey, & Sridharan, 2005; Dean, Lucey, 
Sridharan, & Wark, 2005), but for the remainder of this report it is assumed that only the 
audio signal is given. 
  
4.2.1 Subband Spectral Centroid Histograms 

In (Gajic & Paliwal, 2006; Paliwal, 1998), from  Griffith University, Paliwal and Gajic used 
Subband Spectral Centroid (SSC) histograms The main motivation was to provide robustness 
against white noise. The SSC is related to spectral peak positions, but easier to compute. The 
SSC is therefore robust to additive noise, provided the noise spectrum is relatively flat and 
assumed independent of the signal. Paliwal and Gajic showed that SSC is comparable with 
MFCC in the presence of additive white noise, and comparable in noise-free conditions. 
Although their experiments were performed only on a small to medium size vocabulary, it is 
not inconceivable that the use of SSC can be applied to LVCSR. 
 
4.3 Word and sentence matching 

The Hidden Markov Model is the most commonly used model in continuous speech 
recognition systems. The HMM is used to represent phonemes, which are then concatenated 
sequentially to represent words and/or sentences. One main advantage of the HMM 
approach is its ability to decode a temporal sequence without need for manual segmentation, 
which is very tedious. On the other hand it is difficult to justify the ad-hoc choice of a 
particular model. This amounts to the assumption that the observed speech is produced by a 
particular underlying distribution and it is only necessary to estimate model parameters of 
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such a distribution. This is considered to be one of the main drawbacks of HMM (Bahl, Brown, 
de Souza, & Mercer, 1993; L. R. Rabiner & Huang, 1993). The NN model attempts to combine a 
large number of simple processing elements to simulate a biological system such as the 
human brain. The structure of neural networks makes it ideal for parallel computation. 
However, a disadvantage of NN is that the framework is static – it is difficult to handle the 
temporal structure of speech signals (Bimbot et al., 2003; L. R. Rabiner & Huang, 1993). 
Support Vector Machines (SVM) (Shawe-Taylor & Cristianini, 2000) is a relatively recent 
development in speech recognition and keyword spotting. However, no research by 
Australian institutions involving SVM has been found, so it will not be discussed here. 
Recently, more attention has been paid to extending NN, e.g. time delay recurrent NN 
(Weibel, Hanazawa, Hinton, Shikano, & Lang, 1989; Zhou, Liu, Song, & Yu, 1998) to address 
this issue. Before the nineties, HMM (L. Rabiner & Juang, 1986) was considered the dominant 
approach. The current trend is to combine HMM with NN to form so-called hybrid models 
(Trentin & Gori, 2003). Excellent surveys can be found in (Morgan & Bourlard, 1995; Trentin & 
Gori, 2001). 
 
4.3.1 Self Organising Maps 

Sehgal et al. from Monash University have developed UbiqRec (Sehgal, Gondal, & Dooley, 
2004), a speech recognition system based on Self Organizing Maps (SOM) (Kohonen, 1993), 
which are a subtype of neural networks. It can be used for phoneme recognition with the 
number of output neurons equal to the number of phonemes to be recognized. However, 
Sehgal et al. showed that recognition performance can be significantly improved if multiple 
SOM are used, each SOM optimizing their weights for a specific phoneme class. This idea, 
known as Concurrent SOM, has also been used successfully in image processing applications 
such as multispectral satellite imagery (Neagoe & Ropot, 2004). The obvious disadvantage is 
that of increased computational complexity, but Sehgal et al. alleviated this problem with the 
use of Singular Value Decomposition (SVD). UbiqRec is novel in that it uses the Arabic 
language, which is rarely used in speech research. However, it is not in the public domain. 
 
4.3.2 Hidden Dynamic Models 

A relatively recent development in LVCSR is the use of Hidden Dynamic Models (HDM) to 
account for the weaknesses of HMM. It is well-known that HMM has difficulties with co-
articulation and phonological variation, problems which are specific to LVCSR. The HMM is a 
data-driven approach which does not take into account the underlying human speech 
production process. It has a large number of parameters and is difficult to adapt to new 
speakers, without the use of unreasonably large amounts of training data. On the other hand, 
the HDM is a more structured model of speech production that respects the manner in which 
humans produce speech. This has been investigated by UWA. In (Togneri & Deng, 2004; 
Togneri & Li, 2001), Togneri et al. proposed that Vocal Tract Resonances (VTR) can be used as 
an alternative to MFCC since VTR space has lower dimensionality. Thus there are fewer 
parameters to estimate and less training data is required. The “learning” or the estimation of 
state and parameter information was based on the Expectation Maximization (EM) algorithm 
(Dempster, Laird, & Rubin, 1977). The E-step required the calculation of conditional 
expectations (the sufficient statistics), which was then input into the M-step. The sufficient 
statistics were calculated using the Extended Kalman Filter (EKF). Togneri and Deng showed 
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that it is possible to use EKF for estimation of both state and parameters, instead of just state 
(Deng & Ma, 1999). They also showed that the HDM was capable of generating speech vectors 
that give good approximations to real data. 
 
4.3.3 Cross Language Adaptation 

QUT has a strong interest in developing speech recognition technology for the resource-poor 
Indonesian language (T. Martin, 2006). In (T. Martin & Sridharan, 2005; T. Martin, Svendsen, 
& Sridharan, 2003), Martin et al. proposed the use of cross-language adaptation: a recognizer 
trained in one resource-rich language can be used to adapt to a resource-poor language. Cross 
language adaptation has been studied before, however the earliest efforts focussed on a one-
to-one mapping between phonemes of different languages. This leads to context mismatch: 
although the same phoneme is shared in different languages, they do not occur in the same 
context. For instance, the trigram SCH occurs frequently in German, but hardly in English 
(although this example is at the letter level, a similar phenomenon occurs at the phoneme 
level). 
 
To solve this, Polyphone Decision Tree Splitting (PDTS) (Schultz & Waibel, 2000) was used. In 
PDTS a Context Querying Decision Tree is constructed for each phoneme, where each node 
represents the occurrence of any phoneme occurring in different contexts. Starting with a 
single node, the principle of maximum entropy gain was used to decide which nodes to split. 
The “formative branches” of the tree was built using the target language (this ensures the state 
distribution of the final model is compatible with the target language requirements). The 
training data from the source language was then used to extend the tree. Martin and 
Sridharan proposed a number of improvements for PDTS (T. Martin & Sridharan, 2005): for 
instance, phonemes were grouped according to whether they are vowel or consonant as well 
as state in a 3-state left-to-right topology, i.e. six decision trees are built per phoneme. Models 
were separately trained for noise, silence, pauses etc. Experiments were performed on 
Switchboard-I (SWB-1-ENG), 1996 HUB5 evaluation Spanish data (HUB5-SPAN) and 
Indonesian speech from OGI Multilanguage Speech corpus. The proposed method (named 
NEW-Tech) was compared with a knowledge driven mapping technique based on IPA 
combined with a context dependent model training paradigm (referred to as Know+STD). 
NEW-Tech outperformed Know+STD if adaptation data was used. However, it performed 
worse than a “baseline” system based on 2 hours of Indonesian speech (instead of 90 minutes 
or less for New-Tech and Know+STD). This result suggests that lack of data remains a serious 
difficulty in speech recognition. Martin et al. acknowledged that it is difficult to determine the 
merits of cross-language modelling due to the poor results. However, further investigation 
may lead to better performance. 
 
4.4 Decoding 

Decoding is the problem of choosing the word sequence with highest probability. This is a 
non-trivial problem since it is not feasible to search through every conceivable sequence of 
words. The problem is essentially that of searching a large solution space for an optimal 
solution with highest score and the standard AI techniques such as depth-first, breadth-first, 
beam-search and A* (Luger, 2002) have all been applied. The reader is referred to (S. Young, 
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1996) and references therein for more detail. No significant research by Australian institutions 
into the decoding phase of a speech recognition system has been found. 
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5. Keyword Spotting 

5.1 Overview of KWS 

Keyword spotting, also known as word spotting, is a “simplified” variant of speech 
recognition, where it is only necessary to detect certain words of interest rather than the entire 
speech utterance. This allows KWS systems to analyse an audio signal in less than real time, 
whereas speech recognition systems typically take much longer, especially in the context of 
LVCSR. KWS has many applications such as information retrieval from stored speech, 
detection of command words in voice operated software etc. Although KWS has become an 
active research area in recent years, it is not nearly as popular as speech recognition. 
Nevertheless there has been some interesting research in Australia.  
 
There are many similarities between KWS and speech recognition. The performance decreases 
if the size of the vocabulary increases or the speech is fluent, as one would expect. For 
instance, (Lee, Soong, & Paliwal, 1996) cited an example where word spotting on a 5-word 
isolated keyword recognition task yielded much better performance than word spotting on a 
20-keyword fluent speech keyword recognition task. As well, the modelling techniques of 
HMM, NN and SVM which have been successfully applied to speech recognition can also be 
applied to KWS. For instance, when using the HMM model, a common assumption is that 
explicit background “filler models” can represent all out-of-vocabulary or non-keyword 
speech (Higgins & Wohlford, 1985; Lee, Soong, & Paliwal, 1996; R. C. Rose & Paul, 1990). The 
features used in speech recognition such as MFCC’s plus delta and acceleration coefficients 
are typically used for KWS as well. For these reasons, a separate chapter for parameterization 
and modelling will not be provided here, but individual contributions by Australian research 
institutions will be discussed immediately below. 
 
5.1.1 Dynamic Match Phoneme Lattice Spotting 

HMM-based keyword spotting suffers from very slow query speeds. In Phoneme Lattice 
Searching (PLS), Young et al. (S. J. Young, Brown, Foote, Jones, & Jones, 1997) attempted to 
improve query speeds by indexing speech files with a lattice. Each file was represented by a 
phoneme-lattice, which can be very efficiently traversed during query time. However, a 
serious drawback of PLS is that target phoneme sequences must either be detected as an exact 
match or rejected outright, thus yielding a high miss rate. Thambiratnam and Sridharan from 
QUT (Thambiratnam & Sridharan, 2005) addressed this drawback via Dynamic Match 
Phoneme Lattice Spotting (DMPLS). DMPLS effectively allowed for phoneme recognizer 
errors such as substitution deletion and insertion. More specifically, a sequence was accepted 
if the Minimum Edit Distance (Jurafsky & Martin, 2000) from the correct word was below a 
threshold. The word “dynamic” was derived from the well-known dynamic time warping 
principle (L. R. Rabiner & Huang, 1993), where the minimum number of insertions, deletions 
and substitutions to convert one sequence of phonemes to another is calculated. DMPLS was 
compared against a conventional HMM-based keyword spotting system (Rohlicek, 1995) 
using the Switchboard-1 conversational telephone speech corpus and the TIMIT microphone 
speech database. Although the miss rate of DMPLS was slightly inferior to that of HMM 
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(13.9% versus 8.0%), a tenfold improvement in both false alarm rate and computation speed 
was reported. Hence DMPLS is suitable for tasks that require high speed and accuracy. 
 
5.1.2 Relationship between training data and performance 

An important issue is how the amount of training data affects keyword spotting performance. 
In speech recognition, the lack of training data is a common complaint among many 
researchers, and there is a strong demand for the amount of training data to be increased, 
possibly by 1 or 2 orders of magnitude. But it is unclear how much performance gain this may 
yield. In fact Moore (Moore, 2003) claimed that an inordinately large amount of training data 
would be required to bring the performance of an automatic speech recognition system equal 
to that of a human listener. 
 
It is expected that a lack of training data would also decrease performance in KWS. However, 
KWS is a much more constrained task, attempting to discriminate between a small set of 
classes. Hence it is reasonable to hope that KWS may be less affected by reduced amounts of 
training data than speech recognition. If so, KWS techniques may provide a viable short-term 
solution for the development and deployment of non-English data mining applications. In 
(Thambiratnam, Martin, & Sridharan, 2004), Thambiratnam et al. investigated the effect of 
limited training data on the performance of KWS systems. Experiments and discussion were 
presented to assess the benefits of a large training corpora for KWS, and to determine whether 
the benefits form the increased training data provided sufficient gains to motivate the 
collection of this data. The languages examined in this study were English, Spanish and 
Indonesian. Encouragingly, the research indicated that KWS is significantly less sensitive to 
the training databases size, when compared to speech transcription. For example, it was found 
that reducing 160 hours of training data for English to 4 hours resulted in only a 6.1% loss in 
EER7, which is significantly less than the 18% reported by Moore for speech recognition. 
Similar results were observed for Spanish and Indonesian. 
 
 

                                                      
7 In keyword spotting the EER is typically used, rather than the word error rate for speech recognition. 

 
21 



 
DSTO-TN-0837 

 

6. Accent Identification 

6.1 Overview of Accent Identification 

AID is closely related to language identification, except that all speakers speak the same target 
language. It is expected that speakers with foreign accents will import some aspects of their 
first language when speaking the target language, and it is well-known that speech 
recognition systems significantly degrade when the speaker accent differs from that in the 
training set. Thus knowledge gained from accent ID can often improve speech recognition 
performance. It is also an important tool for forensic applications. The components are similar 
to speaker or language identification (see Figure 6):  

 
Figure 6: Modular representation of accent identification system 

 
6.2 Parameterization 

There are a number of possibilities that have been considered regarding feature space for 
accent ID: prosody, sub-word, spectral and word-based approaches have all been proposed 
(Tanabian & Goubran, 2005). Prosody is a discriminative feature in foreign accent 
identification. Hansen et al. (Hansen, Yapanel, Huang, & Ikeno, 2004) used normalized 
fundamental frequency (F0) range and syllable rate to distinguish different accents. Spectral 
features such as MFCC, delta MFCC, log energy and delta energy have been used (Kumpf & 
King, 1996). They do not offer any specific advantages, except that these spectral features are 
ubiquitious in all areas and applications of speech processing. Sub-word modelling is another 
approach. The idea is to detect phonemes from a different language used to approximate the 
“correct” phonemes in the target language, typically using PPRLM (Zissman, 1995; Zissman & 
Singer, 1994) which has achieved state-of-the-art performance for both language and accent 
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identification. The main advantage of word-based approaches (Rongqing & Hansen, 2005)  is 
that an entire word carries much more information than a phoneme. Hence it is possible to 
exploit dialectal variations when different speakers utter the same word. Sub-words are easier 
to work with than whole words, largely because of the small number of the former compared 
to the latter. However, most speech (e.g. day-day conversation) only uses a small fraction of 
all possible words in a language (Tanabian & Goubran, 2005). By only considering the most 
common words, this approach avoids the “curse of dimensionality” that one would expect 
from an entire vocabulary. The choice of parameterization remains an unsolved problem, 
typically “solved” using an arbitrary choice depending on the application. 
 
There are a few Australian papers on AID. The following paper, a joint effort from MIT and 
University of Sydney, (Berkling, Zissman, Vonwiller, & Cleirigh, 1998) used the subword 
approach. Past research focussed on phoneme inventories, phoneme sequences and intonation 
patterns. In this paper a new feature was proposed: location of phoneme within a syllable. It is 
well-known that syllables can be subdivided into onset and rhyme, but this does not indicate 
where a syllable occurs within a word. Berkling et al. defined three constituents: proclitic, core 
and enclitic. The core contained the obligatory vowel. The proclitic and enclitic constituents 
covered components that only occurred morpheme-initially and morpheme-finally 
respectively, and indicated a boundary of grammatical units in English. For each accent a 
confusion matrix was computed relating the probability of a target phoneme given an 
achieved phoneme. For an achieved phoneme sequence, the accent was classified according to 
the confusion matrix which best “explained” the difference between the target and achieved 
phoneme sequences. Knowledge of English syllable structure could be incorporated by 
treating the confusion matrix as a function of position (proclitic, core, enclitic) rather than 
“constant” (with respect to position). The modelling component used the standard HTK to 
recognize 40 different phoneme models. Berkling et al. hypothesised that identifying Lebanese 
accents is harder than identifying Vietnamese, since the pronunciation of the former is closer 
to native English than the pronunciation of the latter. They tested their algorithm on two- and 
three-way classification of English (EN), Vietnamese (VI) and Lebanese (LE) accents. For two-
way accent identification an improvement from 86% to 93% was achieved for EN-VI and an 
improvement from 78% to 84% was achieved for EN-LE. These results support their 
hypothesis. For three-way accent classification the accuracy improved from 69% to 77%.  
 
In (Kumpf & King, 1997), from Speech Technology Research Group (STRG), UTS8, Kumpf and 
King did not propose a specific set of features but instead attempted to associate a different 
feature set for different phonemes. Thus the set of features was not “constant” but was rather 
a function of phoneme. A single feature vector was extracted for all phoneme classes 
combining acoustic (MFCC, log energy), prosodic (segment duration, F0, delta F0) and 
contextual information (description of phonemic left and right context). For each phoneme 
class Linear Discriminant Analysis (LDA) was used to select a different subset of the above 
features. This was used to keep features that assisted in accent discrimination but eliminated 
redundant features that did not contribute much to accent discrimination capability. Kumpf 
and King claimed that their accent classification scheme achieved performance close to the 
human benchmark. 

                                                      
8 The  authors were working at Sydney at the time of writing but King is currently residing at University of 
South Australia 
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6.3 Modelling 

The simplest model that has been used is GMM9 (Too, Chao, Chang, & Jingehan, 2001). The 
main advantage is that it requires no segmentation or phonemic labelling of training speech. 
However, it cannot model temporal information of the speech signal. Neural networks have 
been used only rarely (Tanabian & Goubran, 2005) and will not be considered in detail here. 
The HMM is the most common model since it accounts for both temporal and spectral 
variations in the speech signal. However, it does require phonemic labelling or segmentation 
of training speech. Phonemic labelling can be done either manually or automatically. Manual 
labelling or segmentation is time-consuming and the results are often inconsistent, even 
among experts. However it is more accurate than automatic labelling or segmentation. This 
can be an important consideration when AID is part of a larger system (e.g. speech 
recognition) since errors in one module can propagate to the next. A related issue is the fact 
that manual labelling is often only available for a small percentage of languages, so 
experiments are typically restricted to a corresponding subset of a particular database. For 
instance, in (Kumpf & King, 1996) (see below), only three accents of English were considered 
when there are three varieties of Australian English (General, Broad and Cultivated) and ten 
foreign-accented varieties of English in total. 
 
Unfortunately, AID is a relatively new field and research results are limited, even outside 
Australia. Some research has been done within a single model, such as exploring the effect of 
the number of components in a GMM (Too, Chao, Chang, & Jingehan, 2001), but no important 
comparisons between different models have been found. In LID, it is well established that 
GMM is inferior to other approaches such as PPR (Zissman, 1996), but there is no 
corresponding comparison in AID. 
 
Kumpf and King (Kumpf & King, 1996), from STRG, UTS, used a Parallel Phoneme 
Recognition (PPR)-based system (Hazen & Zue, 1993; Zissman, 1996; Zissman & Singer, 1994) 
for automatic accent classification for foreign accents. They used accent specific HMMs and 
phoneme bigram language models to derive accent discrimination likelihood scores. Speech 
was automatically segmented using a HMM segmenter trained on Australian English (AuE) 
phoneme classes. This was used to train accent-specific HMM-phoneme and phoneme-bigram 
models. The PPR approach is as follows: during training, a HMM phoneme model and 
language model (phoneme bigram) are used on three accents, namely: Australian English, 
Lebanese Arabic and South Vietnamese. During testing, a Viterbi decoder determines the 
most likely state sequence representing the speech utterance, given the HMM and language 
model corresponding to an accent. Log likelihood scores are assigned to the state sequences. A 
bias is subtracted to account for the small training size of the database. Finally, the accent 
corresponding to the highest final score is determined as the “correct” accent. This process is 
demonstrated in Figure 7. 

                                                      
9 Unlike the usage of GMM in speaker identification, this paper is not from an Australian research institution. 
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Figure 7: Modelling component of accent identification system 

 
In the experiments of Kumpf and King the ANDOSL database was used (Millar, Vonwiller, 
Harrington, & Dermody, 1994). They tested their algorithm on two- and three-way 
classification of Australian, Lebanese-Australian and South Vietnamese accents. For the two- 
and three-accent classification tasks, the best average obtained was 85.3% and 76.6% 
respectively. The use of the language model (as opposed to using only the HMM) only 
contributed marginally to overall performance (about 2-3%). A study was also performed on 
the effect of the use of automatic segmentation and it was found that manual segmentation 
only yielded an improvement of 1-2% to the overall score. Kumpf and King postulated that 
the difficulties of manual segmentation and consequent lack of training data had caused the 
use of phoneme-bigram language models and manual segmentation scoring only marginal 
improvement in their experiments.  
 
The ANDOSL database is very significant in the context of language/accent identification 
since it arose out of a project funded by the Australian Research Council, involving a number 
of research groups from various universities. This will be discussed in more detail in section 9.  
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7. Phoneme Recognition 

7.1 Overview of Phoneme Recognition 

Phoneme recognition is not really a “functional component” that is useful by itself. It is 
nevertheless an important problem as it is frequently used in other components such as 
speech recognition. In fact, phoneme and speech recognition have many similarities. For 
instance, front end processing techniques are similar and it is common to model phonemes 
using a left-to-right HMM with three states. One important and obvious difference is that 
evaluation is performed at the level of phonemes instead of words (e.g. in speech recognition 
the Word Error Rate is often used). A corollary is that phoneme recognition does not require 
the use of word models as described in section 4.3, so it is somewhat simpler. Unfortunately, 
no significant reviews on phoneme recognition have been found, and there are few papers 
describing phoneme recognition by itself rather than speech recognition. Therefore this report 
will only briefly discuss three papers from QUT, Newcastle and NAL, and Edith Cowan 
University.  
 
7.2 Phoneme Recognition with LID 

In (Wong & Sridharan, 2003), from QUT, Wong and Sridharan examined the problem of 
multilingual phoneme recognition, where it is necessary to both identify the language and 
generate a phoneme sequence. They considered three different approaches to multilingual 
phoneme recognition, which were labelled Approach 1, Approach 2, Approach 3 (A1,A2,A3). 
Essentially language identification can be done either explicitly or implicitly (the first two 
methods A1 and A2 are explicit). In A1 each language was modelled by a GMM, as done in 
speaker verification. The language that best matches the speech (in the sense of highest 
likelihood score) was identified and the monolingual system corresponding to that language 
was used to perform phoneme recognition. The GMM is an unusual choice for the modelling 
component, since, unlike most other models, it does not employ phoneme recognition at any 
level. Alternatively, in A2 all monolingual systems (corresponding to all languages) were used 
to perform phoneme recognition and the highest likelihood score determined the phoneme 
transcription, as well as the language. This avoided the use of GMM in A1, but was 
computationally more expensive since all monolingual systems must be employed instead of 
only one in A1. The implicit LID method (A3) mapped phonemes from multiple languages 
into a smaller multilingual set of phonemes. This allowed the recognition system to handle 
utterances in multiple languages. However language information was lost, which mitigated 
against certain language-specific speech recognition techniques. Given a choice of approach 
A1, A2 or A3, phonemes were modelled using a 3-state HMM with 8 Gaussian mixture 
components per state. Wong and Sridharan also defined a “baseline” algorithm which 
assumes that perfect language identity information is always available. Thus the baseline was 
expected to be better than A1, A2 or A3. 
 
In the experiments A1, A2, A3 and the baseline algorithms were tested on both isolated and 
continuous speech in three languages, namely English, Mandarin and Spanish. Wong and 
Sridharan concluded that the superiority of one method over another largely depended on the 
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LID stage. Given high LID accuracy, explicit-LID was better than implicit-LID. More 
specifically, A1 was the best of the three methods but was still 5% worse than the baseline 
performance. If the LID accuracy was poor, as in the isolated phoneme recognition 
experiment, then A3 was the best of the three methods, but was still much worse than 
baseline. 
 
7.3 Phoneme Recognition Using Wavelet Transforms 

Tan et al. from the University of Newcastle and National Acoustic Laboratories, NSW, (Tan, 
Minyue, Spray, & Dermody, 1996) used the wavelet transform as a front-end pre-processor for 
HMM-based phoneme recognition. Two versions of the wavelet transform were tested, 
namely, the Discrete Wavelet Transform (DWT) and Sampled Continuous Wavelet Transform 
(SCWT). The use of Mel-scale cepstral coefficients of order 12 was also tested and served as 
the baseline. The main advantage of SCWT is its ability to preserve both harmonic and 
formant information from the speech signal. However, results on the prototype version (1988) 
of the TIMIT database suggested that SCWT was only marginally better than the baseline in 
recognition rate, but DWT was significantly worse.  
 
7.4 Time-Frequency Shift-Tolerant Pre-processing   

As remarked earlier, a significant problem of Neural Networks (NN) is that they are often 
unable to recognise a time shift in the input speech signal. Hence it is useful to find an input 
pattern that is independent of any time-shift relative to the training pattern. Similarly, one 
often wants to be able to recognise a frequency shift in the input speech signal (for instance, 
“helium speech” can be simulated by a large amount of frequency shift and a high-pass filter). 
Several researchers have proposed different NN architectures to obtain both time-shift and 
frequency-shift invariance in the input pattern for various applications including speech 
recognition (Sawai, 1991) and phoneme recognition (Basu & Svendsen, 1993). In (Ang & Hon 
Nin, 1995), from Edith Cowan University, Ang and Hon Nin used a spectrogram as the time-
frequency distribution and a counter-propagation network (Hecht-Nielsen, 1988) to recognise 
a fixed-position pattern. Given a spectrogram, a two-dimensional FFT was used to obtain a 
time-frequency shift-tolerant pattern. This was then input to a counter-propagation network. 
Ang and Hon Nin showed that their algorithm can distinguish between the five different 
vowels of English: ‘a’, ‘e’, ‘i’, ‘o’, ‘u’. 
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8. Speech Segmentation 

8.1 Overview of Speech Segmentation 

Speech segmentation is the problem of locating boundaries between sounds corresponding to 
the phonemes that make up a speech signal. It is possible to perform segmentation manually, 
especially in applications where the highest precision is critical. However, more research is 
being performed on automatic segmentation, which is useful for applications where precision 
is not critical. For example, automatic segmentation is sufficient when training HMM for 
speech recognition since segmentation errors are “averaged out” (Cox, Brady, & Jackson, 
1998). 
 
Usually the phoneme sequence is given, in which case the segmentation problem is also 
known as forced alignment. Although speech segmentation is not directly useful for an end-
user, it has many important applications. For example, for a corpus to be useful for speech 
recognition research, the speech itself should be complemented with phoneme labels and 
segmentation. Since speech segmentation is not directly useful for an end-user, it is not clear 
how best to measure the quality of automatic segmentation. The most common measure is the 
percentage of boundaries that are correctly located, to within a specified tolerance, e.g. “96% 
of boundaries with errors below 20ms”. 
 
Automatic speech segmentation consists of parameterization to obtain feature vectors and the 
usage of different “techniques” to obtain the final segmentation (see Figure 8). The word 
“modelling” is deliberately avoided since, unlike some of the other fields (e.g. speaker 
recognition), the decision may not depend on a specific model. In an extreme case, (Alani & 
Deriche, 1999) , which will be discussed below, the segmenting technique is nothing more 
than thresholding a distance measured between four contiguous frames. 

 
Figure 8: Modular representation of speech segmentation system 

 
8.2 Parameterization 

There are a number of choices for the parameterization stage. For instance, the f0 contour, 
short-time energy contour and energy in different frequency bands have all been used. The 
reader is referred to Toledano et al. and references therein for a more detailed discussion 
(Toledano, Gomez, & Grande, 2003). 
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The wavelet transform is a powerful tool in signal analysis. It is probably best known for its 
application to image compression in JPEG, but it has also proved useful for speech 
compression (Agbinya, 1996). The wavelet transform is used to analyse a signal in both time 
and frequency domains. By using both short high-frequency and long low-frequency 
windows, the wavelet transform can be used to detect fast transients (stops) and slow 
transients (vowels).  
 
In (Alani & Deriche, 1999), from QUT, Alani and Deriche used the wavelet transform for 
speech segmentation. At any point in time the presence or absence of a boundary was 
determined by considering the values of the feature vectors in four contiguous frames. If the 
first two frames were sufficiently different from the latter, a boundary was detected. 
Experiments have been performed on the TIMIT database. An unusual aspect of the 
experiments was that the wavelet transform was compared against spectrum coefficients 
instead of the more common cepstral coefficients. The wavelet transform was more compact, 
using six parameters instead of sixteen in the Mel-scale spectrum coefficients, and the 
performance was slightly superior in terms of both accuracy and false alarm rate. 
Unfortunately the wavelet transform has rarely been used in speech segmentation and has not 
shown any great success. 
 
8.3 Modelling 

Three common modelling techniques are HMM, neural networks and dynamic time warping. 
HMM is the most common model since it has already been extensively studied in other areas 
of speech recognition. Typically, a HMM-based phoneme recognizer would be altered by 
incorporating the known phoneme sequence which can be used for forced alignment. 
“Hybrid” approaches have also been proposed, where HMM is combined with other models 
and techniques. Again it is outside the scope of this report to discuss these in detail, and the 
reader is referred to (Toledano, Gomez, & Grande, 2003) and references therein. 
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9. Other Topics 

9.1 Overview 

This section covers a number of miscellaneous problems in speech processing, namely 
speaker diarisation (meeting segmentation) and database annotation. These “lesser-
known” problems are not necessarily less important than those described in previous 
chapters and it is conceivable that more research could be devoted to them. 
 
9.2 Speaker Diarisation 

Speaker diarisation is the problem of segmenting an input audio channel into speaker ‘turns’ 
and associating a speaker label with each turn. A speaker diarisation system from Macquarie 
University (Cassidy, 2004a, 2004b) was developed primarily for participation in the NIST 
RT04 Spring evaluation. The system comprised of four components: (i) speech/silence 
classification, (ii) speaker segmentation, (iii) clustering and (iv) identification (see Figure 9). 
 

 
Figure 9: Modular representation of a simple diarisation system 

 
The speech/silence classifier was used to remove the portions where no speaker was present. 
To detect speaker changes within a portion of speech, the popular Bayesian Inference 
Criterion (Chen & Gopalakrishnam, 1998) was used. This amounts to declaring that a speaker 
change occurs if there is a qualitative change in acoustic signal. Clustering was then 
performed to determine the number of speakers in the meeting, this information being 
unavailable in the RT04 Spring evaluation specification. Finally speaker models, derived from 
simple Gaussians (essentially these are GMM with the number of mixtures equal to one), were 
used to identify speakers. 
 
Macquarie University’s system was relatively simple and was not competitive in the NIST 
evaluation. Other more powerful systems have additional components. For instance, gender 
(male/female) or bandwidth (low/high) classification have been used to assist the clustering 
stage. A re-segmentation stage was often performed to refine original segment boundaries 
and fix “small errors”. An excellent review can be found in (Tranter & Reynolds, 2006). 
 
9.3 Database Annotation 

Although large speech databases have been constructed world-wide (see for instance (Lai et 
al., 1990) references 1-8), this is somewhat neglected in Australia. One of the research efforts in 
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Australia at creating a database is due to UWA. Lai et al. (Lai et al., 1990) have developed a 
simple database, unfortunately unnamed, containing speech from Australian speakers of 
various ethnic groups. The speakers consisted of equal numbers of males and females and 
most of them had tertiary education. Recording was performed in a quiet room with minimal 
noise. The speech material was divided into four categories: isolated digits/numbers/words, 
vowels/diphthongs, connected digits and six phonemically balanced sentences. At the time of 
writing, voices from 110 subjects have been collected, and Lai et al. are intending to collect 
more data. 
 
An important database is ANDOSL, which was briefly mentioned in section 6.3. As it is 
intended primarily for research only within Australia, the database comprises of spoken 
language from a variety of major speaker groups in Australia. Although four institutions 
(Sydney, NAL, Macquarie, and ANU) have cooperated in the ANDOSL project, only 
Macquarie University performed database annotation (which was identified as one of the 
“components” of the ANDOSL project). Nowadays large databases of speech data are readily 
available and researchers have focussed on development of annotation standards. Clearly, it is 
desirable to develop software tools and labelling standards for general purposes, instead of 
just one or two ad-hoc specific projects, such as in (Lai et al., 1990). Cassidy and Harrington 
(Cassidy & Harrington, 1996; Cassidy & Harrington, 2001) from Macquarie University have 
developed EMU10, a speech data management system designed for labelling and querying 
databases such as ANDOSL or TIMIT. EMU is an extension of a previous system called MU+ 
(Harrington, Cassidy, J., & A., 1993). It is a flexible system and offers many advantages over 
previous ad-hoc systems. For instance, it has databases for languages other than English, and 
EMU can read a number of popular label and data formats. 
 
The fundamental principle of EMU is combining both sequential and hierarchical information. 
The term “hierarchical” means that information can be represented at different levels, such as 
phonemes, words or complete sentences. For instance, if a child whispers a particular sentence 
it is natural to represent it at the utterance level, rather than insert a “special token” at the 
phonemic level to represent the beginning or ending of a whispered sentence (Cassidy & 
Harrington, 1996). Thus the information that can be represented is much richer and more 
powerful than that represented by the sequential information alone. EMU was implemented 
as a C++ library. Graphical user interfaces to various database functions could be 
implemented with the help of the Tcl/Tk scripting language. Using Tcl, EMU could be 
converted from a hierarchical database to a relational database. Cassidy showed that this can 
improve query speeds, especially for large databases (Cassidy, 1999). Originally based within 
SHLRC at Macquarie University, the EMU project has now been developed into an 
international collaboration (http://emu.sourceforge.net/). 

                                                      
10 EMU is merely a name, not an acronym. 
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10. Summary and Conclusions 

The previous chapters give an overview of the kind of work done by various institutions. It 
should be clear that there is a large variety of work done within Australia, in terms of task 
complexity, relevance to defence applications, amount of effort invested and quality of 
research. This report has included a significant number of research papers in Australia to give 
a rough snapshot of where each individual research institution stands. The purpose of this 
chapter is to compare the relevance of the work done by each institution in greater detail. 
 
Although research institutions often have interests in a particular functional component, such 
as speaker identification, it is equally likely to research on a particular operational component, 
and apply it to different functional components. Therefore two tables have been displayed. 
The first table compares institutions versus functional components: 
 

Table 1: Functional components used in Australian research institutions 

RESEARCH INSTITUTION FUNCTIONAL COMPONENTS 
ANU SID 
EDITH COWAN UNIVERSITY Phoneme recognition 
GRIFFITH SID + speech recognition 
MACQUARIE Speaker diarisation, database annotation 
MONASH Speech recognition 
NEWCASTLE+NAL Phoneme recognition 
NICTA SID + LID + speech recognition 
RMIT SID 
QUT SID + LID + speech recognition + segmentation 
SYDNEY Speech recognition + accent detection 
UNSW SID + LID + speech recognition 
UWA SID + speech recognition + database annotation 
 
For ease of presentation of this table, SID is used to refer to both speaker identification and 
verification. Similarly, speech recognition covers both keyword spotting and continuous 
speech recognition. As can be seen, SID and speech recognition are the most popular areas. 
The contribution by ANU into SID is particularly important since Rose et al. have done a 
significant amount of research into forensic SID (P. Rose, 2006; P. Rose, Kinoshita, & 
Alderman, 2006; P. Rose, Osanai, & Kinoshita, 2003). QUT has done a significant amount of 
work on speech recognition, including some studies on the interesting topic of Audio-Visual 
Speech Recognition (AVSR) (Dean, Lucey, & Sridharan, 2005; Dean, Lucey, Sridharan, & 
Wark, 2005). Although speech synthesis is also popular in Australian research institutions, it is 
omitted from the table as it is irrelevant for the purpose of this report. 
 
Not all the “big universities” are present in the table. Notable absentees include the University 
of Adelaide, University of South Australia and University of Melbourne. No significant 
research in these institutions has been found. Although Melbourne has done some work on 
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speech processing, their work mostly involved language development for disabled people 
with severe or profound deafness, and for that reason they have not been considered. In 
contrast, Griffith University, which is not a Group-Of-Eight member, has done some relevant 
research in SID and speech recognition. 
 
The second table summarises which institutions have used which operational components 
and which have done research into which ideas. It does not necessarily indicate which idea 
was invented by which institution. 
 

Table 2: Operational components used in Australian research institutions 

RESEARCH INSTITUTION OPERATIONAL COMPONENTS 
ANU Diphthongs and F-patterns 
EDITH COWAN UNIVERSITY Neural networks 
GRIFFITH Phase information, subband spectral coding histogram 
MACQUARIE GMM (diarisation), hierarchical database annotation 
MONASH Self organizing maps 
NEWCASTLE+NAL Wavelet transform 
NICTA Phase information, prosody and spectrum information, 

feature warping 
RMIT Discriminative feature extraction 
QUT GMM, feature warping, LPCC vs MFCC, wavelet 

transform, hybrid systems  
SYDNEY Location of phoneme within syllable 
UNSW Phase information, prosody and spectrum information 
UTS Syllable structure (in AID), different feature sets per 

phoneme 
UWA Trajectory models, hidden dynamic models 
 
Although some papers described an entire system, e.g. (Cassidy & Harrington, 1996) most 
described only a single idea or technique such as utilizing phase information (e.g. Modified 
Group Delay Coefficients) in the context of a specific functional component (e.g. speech 
recognition). It was also common for one research institution to exploit research done 
somewhere else, which is especially true for a single operational component being used in 
multiple contexts. For instance, since feature warping from QUT has proved to be so 
successful, it has been regularly used by several research institutions in many areas of speech 
processing. NICTA used feature warping (also known as cumulative distribution mapping) in 
the context of noise-robust speech recognition although that was only for digit recognition. 
Also, QUT and NSW have used the wavelet transform for speech processing merely because it 
is a well-known concept in signal processing in general, not because of any special advantages 
of the wavelet transform in the context of speech processing.  
 
Comparison between different items of research is difficult for many reasons. There are a 
large number of different corpora for all functional components. Even when two parties work 
on the same functional component and the same corpus, it is common for at least one side to 
restrict experiments to a subset of a particular corpus. Moreover, the success of an experiment 
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is by no means the only indication of how useful a particular direction of research is. For 
instance, other important factors include the placing of software in the public domain or 
participation in standard evaluations such as the well-known NIST evaluations.  
 
The NIST evaluations are designed to advance the state of the art in various tasks such as 
speech recognition, speaker recognition and language identification etc. Although the 
evaluations aim to simulate realistic conditions (e.g. telephone conversations where channel 
mismatch between training/test data is common), they are not a ‘perfect’ indicator of real-
world performance. For instance, a system for speaker recognition may perform excellently in 
a NIST evaluation but do poorly in a real-world application. Nevertheless, these evaluations 
are highly respected in the speech processing community as they enable researchers to 
directly compare different algorithms using both the same test data and same evaluation 
specification plan. Moreover, the tasks are complex and the testing is quite thorough. 
Typically, participation in a NIST evaluation requires the submission of “complete results” for 
one or more test conditions. Good performance in a NIST evaluation generally indicates that a 
system is highly competitive with other systems worldwide. 
 
Unfortunately, most of the research papers listed in this report have avoided the NIST 
evaluations, either by using an “inferior” corpus (corpora) or by ignoring the specification 
plan for the given corpus (corpora). There are a number of reasons for this: 
 

1) For a system to be competitive in a NIST evaluation, it requires the institution to 
invest many years of research on a specific task. This is a significant undertaking, 
even for the best research institutions in Australia. 

2) Many applications only require simple tasks e.g. a typical telephone banking 
application only requires the recognition of ten digits plus a few simple words. 

3) NIST evaluations are “closed shop”. Only those who register or submit a system 
for evaluation are allowed to have detailed knowledge about all systems 
submitted, i.e. how they work, how they scored and which systems performed best 
overall. It is illegal for NIST participants to comment publicly on the relative 
performance of other participants. Hence it is difficult to obtain meaningful 
comparisons between state-of-the-art systems. 

 
QUT is the only regular Australian NIST participant. Their papers listed in this report almost 
always conform to NIST specifications. Outside QUT some Australian research efforts use 
data derived from NIST (Allen, Ambikairajah, & Epps, 2006; Price, Willmore, Roberts, & Zyga, 
2000), but these are exceptions rather than the rule. Macquarie University is the only other 
institution to have participated in a NIST evaluation, but their results were not competitive. 
 
Another significant project is the creation of the ANDOSL database. Four universities 
contributed to this database: Sydney, NAL, Macquarie and ANU. The database has been used 
by Macquarie University for the tasks of database annotation and speaker diarisation 
(Cassidy, 2004b; Cassidy & Harrington, 1996). This has been described in section 9.3. 
 
Some effort has been made in getting software into the public domain. The research on front-
end processing performed by UWA includes a software system called fview which has been 
placed in the public domain (Tey, Jong, & Togneri, 1996). Although it has been used for 
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speech and speaker recognition, its primary objective is to promote research specifically for 
front-end processing regardless of application. However, it is not popular outside UWA. The 
EMU system from Macquarie (Cassidy & Harrington, 1996) is not only publicly available, but 
has also achieved international recognition. 
 
A lot of Australian research into speech recognition involves only small vocabulary. As 
systems become more powerful, it is likely that more research will be focussed on more 
difficult tasks. It is encouraging that some Australian institutions are beginning to research 
difficult tasks. For instance, Togneri et al. (Togneri & Deng, 2004; Togneri & Li, 2001) from 
UWA and Thambiratnam from QUT (Thambiratnam & Sridharan, 2005) have done research 
on LVCSR/keyword spotting. 
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