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ABSTRACT  
 
This report outlines an investigation of an ultrasonic Acoustic Electric Feedthrough (AEF) to 
transfer power through a metal plate. This approach is being explored as a potential means of 
wirelessly powering in situ structural health monitoring systems embedded within aircraft and 
other high value engineering assets. A numerical model is developed describing the coupled 
electro-mechanical behaviour of an AEF system, and is then validated using experimental data. 
Using a pair of well matched piezoelectric disks with 38 mm diameter and 2 mm thickness, and 
with 1 W of real input power, the AEF approach is shown to transfer approximately 300 mW of 
usable electrical power through aluminium plate with thicknesses in the range of 1.6 mm - 5 mm. 
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Executive Summary  
 
In-situ Structural Health Monitoring (SHM) devices allow the Australian Defence Force to 
move from expensive time-based maintenance approaches for ageing platforms to cost-
effective condition-based approaches. For air platforms the retrofitting of these systems is 
complicated by the fact that the majority of SHM devices need to be fitted on internal 
aircraft structure, underneath the aircraft’s skin. If the SHM device is in a location that is 
difficult to access, then transferring power and data through the aircraft skin may be 
necessary. The retrofitting of the SHM device then becomes complicated due to flight 
worthiness and certification issues, with the chief concern being that holes drilled through 
the aircraft skin (to pass wiring) could, for example, act as stress concentrators. To address 
this issue DSTO has investigated the use of an ultrasonic Acoustic Electric Feedthrough 
(AEF) technique to pass power and communications through metal plates. The AEF 
technique consists of generating, transmitting and receiving high frequency (kHz-MHz) 
acoustic pulses using piezoelectric elements. A numerical AEF modelling capability was 
developed, and used to explore the effect of: (i) metal plate thickness, (ii) piezoelectric 
element thickness, (iii) the type of piezoelectric material, and (iv) the bondline thickness 
between the piezoelectric element and metal plate. An experimental program was carried 
out to validate the model predictions. Experimental studies using a non-optimized system 
have shown that the AEF approach was able to transfer in the range of 300 mW of real 
electrical power (for 1000 mW of real input power) through aluminium plates with a 
thickness range of 1.6 mm – 5 mm, typical for aircraft skin. For comparison, a standard 
recharge on an 80 mA-hr lithium polymer battery requires four hours of charging at a 
power level of approximately 148 mW, indicating that the demonstrated 300 mW AEF 
power transfer would be more than sufficient to recharge a small battery. 
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1. Background  

The Australian Defence Science and Technology Organization (DSTO) is developing in situ 
structural health monitoring systems [1, 2, 3, 4, 5, 6, 7, 8] for potential use in high value 
platforms across the Australian Defence Force (ADF). Using smart sensor concepts, airframe 
damage and damage growth, operational strains, corrosion, corrosive environments, and 
other structural and environmental parameters, would be continuously monitored on-board 
an aircraft to provide a basis for real-time damage diagnostics. This technology could 
potentially permit a safe reduction in inspection and regular maintenance time and costs and 
therefore substantially impact on aircraft through-life support costs and availability. However 
providing power and two way communications to a smart sensor system is a challenge 
particularly when physical access to the system is difficult. To address this issue, DSTO is 
investigating the use of ultrasound via an Acoustic Electric Feedthrough (AEF) arrangement 
to provide power and communications through the skin of an aircraft to smart sensor systems 
located inside the aircraft. 
 
Hu et al [9] modelled an AEF scheme from first principles. Sherrit et al [10] at the NASA Jet 
Propulsion Laboratory used lumped element modelling to reproduce Hu’s work, and to 
extend the modelling of the AEF arrangement by adding a more realistic description of 
material damping. The AEF model implemented by Hu et al [9] and Sherrit et al [10] consisted 
of a metal plate sandwiched between two piezoelectric layers. Sherrit et al [10] highlighted the 
fact that their modelling did not incorporate adhesive bondlines between the piezoelectric 
material and the metal plate, the implicit suggestion being that the bondlines might affect the 
behaviour of an AEF system. This report examines the modelling of an AEF system in 
LTSpice, a complete and fully functional SPICE program from Linear Technology [11]. 
Implementing the model in LTSpice allows the complexity of the AEF modelling to be 
substantially increased by allowing: (i) the addition of extra AEF layers (i.e. bondlines) and (ii) 
the addition of realistic electrical components to the model. Once developed, the LTSpice AEF 
model was used to examine various geometrical and material parameters with the aim of 
optimizing the power transferred through a thin metal plate. To test the fidelity of the LTSpice 
modelling the simulations were compared to experimental data collected from AEF 
arrangements constructed to transfer power through both 1.6 mm and 5 mm thick aluminium 
plate.  
 
1.1 LTSpice Modelling of a Single Piezoelectric Disk 

Prior to modelling an AEF scheme it was necessary to ensure that LTSpice was capable of 
modelling the electromechanical behaviour of a single piezoelectric disk. There are numerous 
examples of lumped element and spice modelling of piezoelectric elements available in the 
literature [e.g. 10, 12, 13, 14 ,15 ,16]. Typically these are based on either the Mason [17] or the 
Krimholtz, Leedom and Matthaei (KLM) piezoelectric models [18]. Both the Mason and KLM 
piezoelectric models are one-dimensional and describe the thickness mode resonances of a 
piezoelectric element, utilizing a lumped element electrical circuit analog to model the 
electromechanical behaviour of the element.  
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The LTSpice modelling of a Lead Zirconate Titanate (PZT) element, as described in this paper, 
requires five piezoelectric material parameters: ε33S, e33, c33D, ρ and Q. Some calculation may be 
required to implement a particular material type within LTSpice since PZT manufacturers 
rarely specify all of the required material parameters. The physical parameters used in these 
models vary depending on whether the piezoelectric element is free or clamped. An example of 
a free element is one hanging freely in air. Two examples given in the literature of clamped 
elements are: (i) a PZT element bonded to a 6 mm thick steel plate [10] and (ii) a PZT element 
bonded to a Poly Methyl Methacrylate (PMMA) acoustic load matching element [15]. The 
parameters are also dependent on geometry. Kim et al [19] used the aspect ratio G to 
investigate the effect of different piezoelectric disk geometries: e.g. a pancake defined by 

, and cylinder defined by . Often, key parameters like ε1<<G 1>>G 33S, e33, and c33D will need 
to be calculated from other given piezoelectric material parameters. A series of equations that 
show how to calculate these particular parameters are given in Appendix A. These equations 
draw heavily on the various piezoelectric relationships highlighted by Berlincourt et al [20].  
 
The LTSpice model of a PZT element shown in Figure 1 was adapted from the literature [10-
16] and has three ports: two mechanical ports corresponding to the back (B) and front (F) of 
the element, and a single electrical port (E) with the assumption that the opposite side of the 
PZT element is grounded. PZT element mechanical losses are modelled using a lossy 
transmission line as outlined in the literature [14, 15]. The LTSpice library and schematic files 
for the model shown in Figure 1b are given in Appendix B, with parameter definitions given 
in Appendix C.  

1 direction

3 direction

.

.

PZT disk

electrode E

diameter D

thickness T

 
Figure 1: (a) Schematic of a piezoelectric disk in air and (b) the equivalent LTSpice model 

(a) 

 
H 
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Figure 1a shows a schematic of a piezoelectric disk element of diameter D and thickness H 
where the resistors RBT and RBR model the acoustic energy lost to the surrounding air. R1 is 
equal to 50 Ω which is the typical output impedance of an AC voltage source. Most results 
presented in this paper, measured and modelled, were produced using piezoelectric elements 
with nominal dimensions of D = 38 mm and H = 2 mm. According to Kim et al [19], for PZT-5, 
if the aspect ratio G ~ 0.1 there should be little or no mode coupling between the radial and 
thickness vibration modes and the electromechanical coupling constant used should be that 
for a pancake geometry, i.e.  [47.0~Tk 20]. The PZT disks used in the current work had an 
aspect ratio of approximately 0.1, yet a measured [21] impedance spectrum (Figure 2) 
revealed substantial mode coupling between the thickness and radial modes, marked T and R 
respectively. The observed mode coupling effect will be discussed later. 
 
The PZT elements used in this paper were of a material composition denoted Pz27 [22], which 
is a ceramic with material properties similar to PZT-5A. The modelling results presented in 
this paper were calculated using a Pz27 electromechanical coupling constant of k33 = 0.699, 
where the 33 subscript denotes a cylindrical geometry. Interestingly, modelling the element 
using a pancake geometry (with kT ~ 0.47) produced a substantially poorer fit to the measured 
data. It is worth noting that measured values of modelling parameters were used where 
possible. A list of parameters used for the piezoelectric calculations is given in Appendix C. 
 

 
Figure 2: Admittance spectrum measured for a Pz27 disk with 38 mm diameter and 2 mm thickness 

showing the thickness resonant mode T and the coupled radial modes R [ ] 21

 

 
3 



 
DSTO-RR-0338 

1.2 LTSpice Modelling of the Acoustic Electric Feedthrough Technique 

As mentioned, using LTSpice allowed the fidelity of the AEF modelling to be substantially 
increased over that presented in the literature by allowing: (i) the addition of extra AEF layers 
(i.e. bondlines) and (ii) the addition of realistic electrical components in the model. Figure 3 is 
a schematic cross-section of an AEF system showing the transmit and receive PZT elements 
bonded either side of a metal plate. Figure 4 and 5 show schematics of two AEF models that 
were implemented in LTSpice. Figure 4 depicts the model developed to extend the work of 
Hu et al [9] and Sherrit et al [10]. Figure 5 shows a schematic of the LTSpice model developed 
to examine acoustic energy transfer through an aluminium plate, and included the addition of 
a non-linear electrical load on the receive side of the model. Inclusion of realistic bondline 
thicknesses (i.e. shown as the components LossyBondTline in Figure 4 and 5) into the modelling 
was required to achieve reasonable correlation with measured AEF power transfer results, 
which will be discussed later in this report. 
 
To perform a simulated frequency sweep with LTSpice a script was written to execute the 
following simple algorithm: 

• modify the relevant parameter in the LTSpice netlist (e.g. frequency, plate thickness, 
piezo thickness),  

• call LTSpice to perform a transient analysis,  

• read the specified LTSpice measurements from the LTSpice log file, 

• record the measured data, 

• repeat until last frequency.  
 
A simulated frequency sweep over the range 600 kHz -1300 kHz with 5 kHz steps would 
typically take 24 hours on a 3 GHz Pentium 4 duo-core machine with 3 Gb of fast RAM. 

receive
element

transmit
element

bondlines

metal plate
 

Figure 3: Schematic showing an AEF configuration in cross-section 

 
4 



 
DSTO-RR-0338 

 
 

Figure 4: LTSpice model of a Pz27/steel AEF system with similar physical configuration to that 
shown in Figure 3, being the AEF geometry discussed in the literature [9, 10] 

 

 
Figure 5: LTSpice schematic of a Pz27/Al AEF system with similar physical configuration to that 

shown in Figure 3 and with constant 1 W apparent input power and diode bridge RC load 

 
Several factors were found to have an important influence on the power transfer efficiency of 
the AEF system, listed below:  
 
(i) Adhesive bondline. As mentioned earlier, Sherrit et al [10] stated that the adhesive bondline 
between the piezoelectric element and the metal plate might limit the power transfer 
efficiency of an AEF system. In this report AEF systems with nominal bondline thickness of 
100 µm were investigated using the LTSpice models shown in Figure 4 and 5. The bondlines 
are assumed to be silver loaded epoxy [23] with material properties given by Rajic [24]. 
 
(ii) Supply impedance. When using LTSpice to reproduce the steel plate case reported in the 
literature [9, 10] it was assumed that the supply output impedance was negligible (wire 
resistance only, which was modelled with Ω= 1.02R  as shown in Figure 4). The power 
amplifier utilised experimentally had an output impedance of 50 Ω and therefore modelling 
the aluminium plate AEF system required Figure 5). (= 502R Ω
 
(iii) Constant power source. The schematic of the constant power source in Figure 5 is shown in 
Figure 6 and the associated library file is included in Appendix B. The constant power source 
model was developed to allow direct comparison between experimental observations and 
model predictions.  
 
Normally 1 W of apparent input power was chosen to drive the AEF systems because this 
could easily be supplied by the amplifier without risk of damage. When the drive frequency 
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coincided with an AEF system resonance the phase difference between the input current and 
voltage was near zero meaning that there was approximately 1 W of real input power at 
resonance. The apparent input power was measured by taking the RMS of the instantaneous 
product of the input current and the input voltage.  
 

 
Figure 6: Schematic of the constant power source 

 
(iv) Material damping. Damping in the piezoelectric elements is modelled using a lossy 
transmission line [14, 15]. The LTSpice models used in this report extend the use of the lossy 
transmission line to the metal plate and the bondlines.  
 
(v) Diodes. High speed Schottky diodes were required to maximise the AEF power transfer 
efficiency. As shown in Figure 5, high speed 1N5818 diodes [25] were used to create the 
rectifying bridge on the receive side of the plate. The 1N5818 Spice model supplied by the 
manufacturer was modified to include measured values of diode leakage. 
 
(vi) Load resistance. To duplicate the literature results the investigation of a steel plate AEF 
system required a linear 20 Ω load resistor as shown in Figure 4. A 30 Ω resistive load in 
parallel with a high frequency 1 µF storage capacitor was used for the investigation of 
aluminium plate AEF systems (R1 and C1 respectively in Figure 5). The reason for choosing a 
30 Ω resistive load will be discussed later. 
 
(vii) Element thickness, H = 2 mm. Pz27 disks with 38 mm diameter and 2 mm thickness were 
chosen for AEF investigations that involved aluminium plate. The 2 mm thickness was chosen 
because the fundamental anti-resonant frequency was approximately 1 MHz which was low 
enough to ensure that cable-inductance issues were negligible and, for demonstration 
purposes, simple drive electronics could be fabricated using commercially available MOSFET 
driver chips. 
 
1.3 Range of Validity of LTSpice Modelling 

The following section discusses various factors and restrictions on the accuracy of modelling 
an AEF system in LTSpice. It was expected that the 1-dimensional LTSpice models presented 
would produce useful predictions as long as the total acoustic path was less than the Fresnel 
distance for the solid i.e. the AEF system operated in the plane wave region. Mason [26] 
estimated that the Fresnel region extends for a distance, 
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λ2

2

0
Rd =       (1) 

 
For the AEF systems investigated in this paper, with a drive frequency of approximately 1 
MHz and using a Pz27 disk with a diameter of 38 mm, equation 1 predicts a Fresnel distance 
of  mm. Outside of the Fresnel region diffraction effects need to be included. 
Johansson and Martinsson [

90~0d
27] investigated the inclusion of diffraction effects in PSpice 

simulations of ultrasonic systems using an approximation of the equation given by Kino [28]. 
This describes the attenuation between two identical transducers with radius R and separated 
by distance x in terms of the Seki [29] parameter S, 
 

2R
 
where λ is the wavelength of the ultrasound. It is assumed that equation 2 holds for a 
continuous wave. Figure 7 plots the attenuation as a function of the Seki parameter and shows 
that for S < 0.1 the estimated attenuation due to diffraction will be less than 0.59 dB, which 
represents a loss of 13%. For the cases considered in this report the Seki parameter is less than 
0.1 indicating small diffraction losses. 
 
The radial symmetry of a piezoelectric disk allowed Johansson et al [27] to investigate 3-
dimensional diffraction effects with a 1-dimensional model, however it is more difficult to 
incorporate other, non-symmetric, 3-dimensional effects into a 1-dimensional LTSpice model. 
In particular, it is believed that small non-uniform variations in layer thicknesses (e.g. 
bondline, piezoelectric material, metal plate) have a significant effect on the behaviour of an 
AEF system and would be a challenge to simulate with a 1-dimensional model. Due to time 
constraints average thickness values have been used in the current modelling. 

λ
      (2) 

xS =

0.1 1 10
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Figure 7: Attenuation caused by diffraction, after Johansson [27] and Kino [28] 

The LTSpice modelling is optimised for the first thickness mode as described by Püttmer et al 
[14]. Practically this meant that a constant frequency-independent resistance value was chosen 
for each of the lossy transmission lines that are used to model damping in the piezoelectric 
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elements, the metal plate, and the bondlines. Lossy transmission line resistance, RTL, is 
calculated using [15], 
 

Q
LR AR

TL
ω

=       (3) 

 
where AL ρ= , ,2RA π= ARAR fπω 2=  and the anti-resonant frequency  v=ARf D/(2 H) as 
given by [20]. 
 
The assumption of a constant RTL implied by equation 3 meant the mechanical Q values used 
in the LTSpice modelling were only correct at the anti-resonant frequency fAR, and the 
mechanical Q values for all materials effectively increased as the frequency was increased. In 
other words, the assumption of a constant RTL over-estimates the material damping below fAR 
and under-estimates the material damping above fAR. 
 
The silver-epoxy material properties determined by Rajic [24] were calculated at ~ 4 MHz. The 
LTSpice modelling in this paper assumed that the mechanical damping of silver epoxy was 
frequency independent. The authors are aware however that the damping properties of visco-
elastic materials can vary quite markedly with frequency. For example, van Deventer et al [15] 
shows that the mechanical Q of PMMA increases from 10 to 100 over the 10 Hz - 10 MHz 
frequency range.  

2. Experimental  

This section examines the manufacture of the various AEF arrangements and the subsequent 
experimental investigations. Figure 8 shows two schematics of the experimental 
configurations utilised to examine the behaviour of the AEF arrangements. Two well matched 
Pz27 disks with 38 mm diameter and 2 mm thickness were chosen (where well matched meant 
that the two Pz27 disks had well matched fundamental thickness-mode resonance and anti-
resonance peaks). Silver-cement was used as the electrode material for the Pz27 disks because 
it is easily soldered. The disks were bonded to either side of the metal plates using silver 
loaded epoxy [23] with the disk centres axially collocated to within + 1 mm. The steel plate 
used had dimensions of 100 mm by 64 mm by 6 mm thick, whereas the aluminium plates 
were square with a side length of 600 mm.  
 
The AEF systems were prepared using the following procedure:  
 
(i) Impedance measurements. A Solartron SI-1260 impedance analyser was used with a custom-
built PZT measuring attachment (shown in Figure 9a and b). Impedance spectra were 
measured to ensure that the two Pz27 disks (Transmit and Receive) were well matched in 
terms of their through-thickness resonance and anti-resonance. During the impedance 
measurements the samples were mounted with the loaded gold pogostick contacting the centre 
of the disk (see Figure 9).  
 
Impedance data was collected over the frequency range 1 kHz to 10 MHz, sampling at 1000 
points per decade, with 1 second temporal averaging per point. The impedance frequency 
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sweep was collected near the thickness resonance at maximum frequency resolution to 
accurately determine the frequency location of the thickness resonance and anti-resonance. If 
the thickness resonances (and anti-resonances) of the two disks were not well matched (i.e. 
differed by more than +500 Hz) then the process was repeated until two matching samples 
were found. Matching of the two disks will be discussed in more detail later in this report.  
 

Steel plate
transmit piezo

receive piezo

ch2

ch1

20ohm

ch3

AG1021+ -

1ohm

Al plate

ch4

receive piezo

transmit piezo

1ohm
ch2

ch1

1uF 30ohm

ch3

AG1021+ -  

(a) 

(b) 

Figure 8: Schematic of the AEF power transfer experimental arrangements for (a) steel plate (b) 
aluminium plate 

 
(ii) Soldering electrical contacts to the PZT disks. A fine-point soldering iron was set to just over 
360 °C. Flux was applied to a small area at the centre of a Pz27 disk. A 10 mm length of solder 
was melted onto the clean soldering iron tip and the tip was then quickly ‘dabbed’ onto the 
Pz27 surface. It was found that excessive heat or delay whilst applying the solder would cause 
the silver metallization (on the Pz27 surface) to be subsumed into the solder ball. 
 
(iii) Plate surface preparation. The area of plate to be bonded was gently cleaned with acetone 
and followed by ethanol to remove any acetone residue. The bonding area was then scored in 
the vertical direction using 600 grade wet-and-dry abrasive paper with ethanol lubricant 
(allowing extra area for the silver-epoxy spew fillet). The number of scoring strokes was kept 
to a minimum to reduce material loss from the surface of the plate. Scoring was repeated in 
the horizontal direction, again keeping the number of strokes to a minimum. Ethanol was 
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used to remove residue from the abrasive paper. The bonding area was cleaned with acetone 
and again the acetone residue was removed with ethanol.  
 
(iv) Bonding of the Pz27 disk. The CW2400 silver loaded epoxy [23] was prepared according to 
the manufacturers instructions. The instructions stated that the pot-life after mixing is 10 
minutes, however the authors found that the useful working time of the epoxy was 
approximately 5 minutes. Additionally, the instructions state that mixing should take 2 
minutes, however for small quantities the authors found 1 minute to be sufficient, which 
allowed extra working time for placement of the Pz27 disk onto the bonding area. A spatula 
was used to apply a uniform layer of the mixed epoxy to the underside of the Pz27 disk which 
was then immediately placed on the plate. Using gloved fingers, pressure was applied to the 
disk and a small circular motion was used to ensure that the epoxy spew fillet was uniformly 
distributed around the circumference of the disk. A scalpel was used to remove excess epoxy 
from the edge of the disk, however the spew-fillet was left intact during this process. It was 
found that removing the excess at this stage simplified the process of eliminating electrical 
shorts after curing. Figure 10 shows an example of a 38 mm diameter, 2 mm thick Pz27 disk 
bonded to an aluminium plate. 
 
(v) Curing of the silver epoxy. After the Pz27 disk was satisfactorily positioned it was covered 
with Teflon sheet and approximately 500 grams of mass was applied. According to the 
manufacturer the epoxy should be cured at room temperature (24 °C) for 4 hours, or at a 
temperature of 66 °C (to 121 °C) for 10 minutes. To ensure maximum bond strength the 
authors used a 250 W heat lamp, which produced a sample temperature of 60 °C, for 2 hours 
and then allowed the sample to sit at room temperature for at least 24 hours.  
 
(vi) Removal of electrical shorts. After curing a multi-meter was used to test for electrical 
shorting between the top Pz27 electrode and the plate. If a short had occurred a Q-tip and a 
very small amount of acetone was used to remove excess epoxy from the edge of the Pz27 
disk, with care taken to ensure that the acetone did not contact or flow down to the spew fillet 
and hence weaken the bond. 
 
Steps (ii) to (vi) were repeated to bond the second Pz27 disk to the opposite side of the plate. 
With the two Pz27 disks (transmit and receive) bonded to the plate and cured, the simple 
circuits shown schematically in Figure 4 (or Figure 5) were built. An AG1021 100 W power 
amplifier was used to drive the transmitting Pz27 disk. A 4-channel oscilloscope with floating 
probes was connected to monitor the input voltage and current used to drive the transmit 
Pz27 disk, the voltage across the load resistor and, if a diode bridge was used on the receive 
side, the output voltage across the receive Pz27 disk was also measured. Drive frequency was 
stepped across the range of interest (normally 400 kHz to 1300 kHz), with the amplifier output 
adjusted at each step to give the required apparent input power to the transmit Pz27 disk. 
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gold 
pogostick 

PZT disk 

 

Figure 9: Impedance measurements using (a) Solartron 1260 and (b) the DSTO piezoelectric disk 
adaptor 

(a) (b) 

 
 

 
 

Figure 10: Pz27 element immediately after silver-epoxy bonding to aluminium plate 
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3. Results and Discussion 

In the following, Part 1 develops the LTSpice AEF model, extends the model to include 
bondlines and then compares the predictions with those found in the literature while Part 2 
utilises the LTSpice AEF model to investigate geometrical and material parameters with the 
aim of optimizing power transfer through an aluminium skin. Part 2 also includes a 
comparison with experimental data. 
 
3.1 Part 1 - Steel plate Acoustic Electric Feedthrough 

The AEF geometry under investigation is that considered by [9, 10] and involves 6 mm thick 
steel plate with PZT disks of 1 mm and 2 mm thickness bonded to either side of the plate. The 
LTSpice model in Figure 4 was developed to reproduce this and to also examine the effect of 
silver-epoxy bondlines. Material parameters for modelling were extracted from the literature 
and are given in Appendix C. The LTSpice model was optimised for the thickness anti-
resonant mode of the 1 mm thick transmit piezoelectric disk located at a frequency of 
approximately 2 MHz. Figure 4a shows the locations of V(out) and V(in) and Figure 11a 
compares  curves reproduced from the literature [inout VV / 9] with those produced using the 
model given in Figure 4. 
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Figure 11: Simulation results comparing (a) the voltage ratios and (b) the admittance for three cases: 
(i) literature reproduced from Hu et al [9], (ii) LTSpice modelling using lossy transmission 
line damping models for the piezoelectric and steel elements and (iii) the LTSpice model 
with 100 µm silver epoxy bondlines added between the piezoelectric elements and the steel 

 
The lossy transmission lines utilised in the LTSpice AEF modelling were more sophisticated 
than the damping models utilised in the literature [9, 10]. The use of more sophisticated 
damping models resulted in smaller resonant peaks, as shown in Figure 11a. Figure 11a also 
shows the effect of adding two 100 µm bondlines (i.e. one bondline on each side of the steel 
plate) to the LTSpice model, resulting in further substantial suppression of the resonant peaks 
(with peak voltage ratios 1/ <INOUT VV ) which were also shifted in frequency. Figure 11b 
shows a comparison of the input admittance curve from the literature and those modelled 
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using LTSpice and again the addition of the two 100 µm bondlines has a significant effect on 
the behaviour of the AEF model.  
 
The initial AEF modelling was carried out using piezoelectric material parameters extracted 
from the literature [9, 10]. To extend the modelling and hence allow comparison with 
measured AEF data it was necessary to show that the LTSpice piezoelectric model could 
accurately predict the thickness mode resonance behaviour of the Pz27 disks used. The 
piezoelectric LTSpice model shown in Figure 1b was hence created to confirm that the three 
port piezoelectric model found in the literature was suitable. Note that the LTSpice model was 
optimised for the first thickness mode, as discussed in [14]. 
 
Impedance spectra from the model were compared with measured impedance spectra that 
were collected using a custom built sample holder, shown in Figure 9. Figure 12 shows the 
measured impedance data from a free Pz27 disk, 38 mm diameter and 2mm thick, over the 
range 1 kHz to 10 MHz; plotted near 1 MHz is the modelled impedance data computed using 
the LTSpice model of a Pz27 disk shown in Figure 1b.  
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Figure 12: Measured impedance magnitude spectrum over the frequency range 1 kHz-10 MHz, and 

modelled data in the vicinity of the fundamental through-thickness resonance (~972 kHz) 

 
The series of measured resonance peaks located between ~50 kHz and 600 kHz are lateral 
vibrations (in the 1 direction) that are not modelled in the LTSpice Pz27 simulation, which 
only models thickness-mode resonances. Figure 13 examines the frequency range near the 
thickness-mode resonance and shows that excellent agreement was found between the 
measured and modelled magnitude and phase. Figure 13 also shows that mode coupling 
occurs between the radial and thickness modes. Noting that impedance is the reciprocal of 
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admittance, to facilitate comparison of Figure 2 with Figure 13a, the thickness mode resonance 
has been marked with T and the radial coupled modes are labelled R. As discussed earlier, the 
observed mode coupling was confirmed by the manufacturer [21].  
 
Having confirmed the LTSpice piezoelectric model was predictive the model was then applied 
to the AEF geometry considered in [9] and [10], after which an experimental validation was 
performed. Two Pz27 disks, 38 mm diameter, with thicknesses of 1 mm (transmit) and 2 mm 
(receive) were bonded to either side of a small steel plate, with dimensions 100 mm x 64 mm x 
6 mm thick. A 20 Ω linear load resistance was attached to the receive Pz27 disk as shown 
schematically in Figure 4. The apparent input power for the experiment was limited to 
500 mW as higher input powers were found to distort the output load voltage. 
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Figure 13: Comparison of measured and modelled (a) impedance magnitude and (b) phase near the 
thickness resonance, where thickness mode resonance has been labelled with T and the radial 
coupled modes are labelled R 

  

 
Figure 14: Oscilloscope screen capture showing three traces from steel plate AEF experiment. Channel 

locations are indicated in Figure 8a: Ch1=V(in), Ch2=I(R2), Ch3=V(out) across 20 Ω 

Figure 14 shows an example oscilloscope trace measured at a drive frequency of 1075 kHz 
near the anti-resonance frequency of the 2 mm thick Pz27 disk in the steel plate AEF. An 
oscilloscope trace was captured at each drive frequency step shown in Figure 15. Using the 
oscilloscope traces it was possible to find the power transfer efficiency ν, defined as, 
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⎝

⎛
×=

TRANSMIT

RECEIVE

P
P

100ν      (4) 

 
where  and )2()( RIinVPTRANSMIT ×= )1()( RIoutVPRECEIVE ×=  
 
Figure 15 shows a comparison of measured power transfer efficiencies with those found using 
LTSpice simulation. For the purpose of modelling, nominal 100 µm silver-epoxy bondlines 
were chosen. The experimental efficiency was calculated using mW 

and . 

500=TRANSMITP

( ) Ω= 20/2LOAD
RMSRECEIVE VP Figure 15 shows that both the measured and modelled peak 

power transfer efficiencies were quite poor, less than 2%, for this geometry and load 
resistance.  
 
Subsequent micrometer measurements revealed that the thickness of the steel plate varied 
from 5.80 mm at the edge of the plate to 5.99 mm at the middle. Given that there was a 200 µm 
thickness variation across the plate it was not expected that the frequencies of the measured 
resonance peaks would match those computed by the one-dimensional LTSpice simulation, 
which assumed uniform bondlines and plate thicknesses. The authors expected that the 
thickness variation of the steel plate would mean that a full three-dimensional model would 
be required to satisfactorily model the AEF system, however Figure 15 does seem to show 
reasonable correlation between the measured and modelled resonant peaks at 625 kHz and 
1025 kHz.  
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Figure 15: Measured versus modelled power transfer efficiency for a 1 mm Pz27/6 mm steel/2 mm 

Pz27 AEF system. Note the peaky nature of the plot with very low power transfer between 
the peaks. 
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The AEF efficiency curves given in the literature [9, 10] show significant power transfer in 
between the resonant peaks, however with more realistic damping in the AEF model the 
efficiency curves became peaky with very little power transfer between the resonant peaks. It 
is also worth noting that the efficiencies shown in Figure 15 are substantially lower than the 
predictions found in the literature so it is clear that using lossy transmission lines to model 
damping and adding the adhesive bondlines has a significant effect on the power transfer 
efficiency. 
 
3.2 Part 2 - Aluminium plate Acoustic Electric Feedthrough 

The ultimate goal of this research is the development of an AEF system to provide power and 
communications through the skin of an aircraft. With the LTSpice AEF model agreeing 
satisfactorily with the literature and also shown to have predictive capability, an investigation 
of AEF power transfer through aluminium plate was undertaken. 
 
Prior to modelling the aluminium plate AEF system a series of impedance curves were 
measured before and after bonding Pz27 disks (38 mm diameter and 2 mm thick) to a 1.6 mm 
thick aluminium plate. The results of these measurements are shown in Figure 16. Figure 16a 
shows impedance curves taken over the frequency range 1 kHz to 10 MHz and compares the 
impedance of the transmit Pz27 disk before and after bonding to a 1.6 mm thick aluminium 
plate. As might be expected, bonding the Pz27 disks to a metal plate resulted in the 
attenuation and shifting of the radial resonance peaks located between 50 kHz and 600 kHz. 
The thickness resonance modes seen at 1 MHz and above were also attenuated and shifted (to 
a higher frequency) after bonding. Figure 16b shows that the fundamental thickness resonance 
of both the transmit and receive Pz27 disks shifted to a higher frequency after bonding, i.e. 
from 972 kHz to ~1060 kHz.  
 
Close examination of Figure 16b reveals that the anti-resonant frequencies of both the transmit 
and receive Pz27 disks was 1084 kHz prior to bonding and shifted to 1129 kHz after bonding. 
Figure 16c shows that, prior to bonding, the transmit and receive Pz27 disks had extremely 
well matched resonance and anti-resonance frequencies with the centre of the phase peak 
located at ~1027 kHz and that, after bonding, the peak shifted to ~1100 kHz. Prior to bonding 
the mode coupling between the thickness and radial modes is clearly visible in Figure 16b and 
Figure 16c which also show that the mode coupling was severely attenuated after bonding.  
 
Simulations were carried out using the LTSpice AEF model in Figure 5 and comparison was 
made with laboratory data measured using the experimental setup (Figure 8b). An example of 
a measured oscilloscope trace is shown in Figure 17; similar traces were captured at each step 
in drive frequency. The measured data presented in Figure 18, 19 and 20 was calculated from 
traces similar to Figure 17. 
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Figure 16: Impedance measurements of 2 mm thick Pz27 disks before and after bonding to 1.6 mm Al 
plate: (a) shows the measured impedance magnitude from the transmit piezoelectric 
element, for both transmit and receive piezoelectric elements (b) shows details of the 
measured impedance magnitude near the fundamental thickness resonance and (c) the 
corresponding phase 
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Figure 17: Oscilloscope screen capture showing four example voltage traces from the aluminium plate 

AEF experiment. Channel locations are indicated in Figure 8b: Ch1=V(in), Ch2=I(R2), 
Ch3=V(out) across 30 Ω, Ch4=voltage across the receive piezo 

Figure 18a is the modelled and measured load voltage as a function of frequency for an AEF 
formed using 1.6 mm thick aluminium plate, showing a modelled peak voltage of ~4 V and a 
measured peak voltage of ~3 V. Plotted in Figure 18b are curves of load power as a function of 
frequency. Since the load voltage had a negligible amount of ripple the power was estimated 

using the simple relationship ( ) Ω= 30/2LOAD
MEANLOAD VP . The modelled peak power transfer was 

near 550 mW whilst the measured peak power transfer was just over 300 mW. It is assumed 
that the difference is the power lost to the metal plate which is not included in the model. The 
approximate power transfer efficiency ( )1/100 LOADP×=ν , shown as a percentage in Figure 
18b, is only accurate at the resonant peaks where the real input power was about 1 W.  
 
Figure 18b also shows that the maximum measured power transfer peak was centred near 
1100 kHz with a Full-Width-Half-Maximum (FWHM) of ~166 kHz while the maximum 
modelled power transfer peak was centred at 1091 kHz with FWHM ~183 kHz. Both the 
modelled and measured power curves show that the centre of the maximum power transfer 
peak was located near the anti-resonant frequency of a bonded 2 mm thick Pz27 disk (Figure 
16) which is expected since losses within the disk are minimised at anti-resonance. The phase 
plot between input current and drive voltage shown in Figure 19 gives an indication as to why 
the resonance peak near 1100 kHz was so wide. The modelled phase data shows three clearly 
discernable peaks located side by side near 1100 kHz which indicates that there may be a 
similar number of peaks present between 1000 kHz and 1200 kHz in the measured phase data. 
 
Modelled and measured results pertaining to a 5 mm thick aluminium plate are shown in 
Figure 20 and are quite similar to those in Figure 18 for the 1.6 mm thick plate. In particular, 
the peak values of the modelled and measured load voltage (and power) at ~1040 kHz are 
close to those found for the 1.6 mm plate near 1100 kHz. 
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Figure 18: Measured and modelled results for the 2 mm Pz27/1.6 mm Al/2 mm Pz27 AEF 
configuration (a) load voltage and (b) transmitted power as a function of frequency 

 
To examine the effect of metal plate thickness on the power transfer efficiency a series of 
simulations, varying the input drive frequency and the aluminium plate thickness, were run 
using the LTSpice model shown in Figure 5. Again, 38 mm diameter, 2 mm thick Pz27 disks 
were used to form the AEF system. Figure 21 shows the load voltage response for a range of 
fixed drive frequencies for varying aluminium plate thickness. From Figure 21 it can be 
inferred that for drive frequencies near the 1100 kHz anti-resonance, the thickness of the 
aluminium plate has little effect on the amount of power transferred through the plate. This 
prediction is borne out in practice as shown in Figure 18 and Figure 20 where the measured 
power transfer efficiency was found to be similar for aluminium plate thicknesses of 1.6 mm 
and 5 mm. Of course as plate thickness increases diffraction effects (i.e. Figure 7) become 
important and would reduce the power transfer efficiency.  
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Figure 19: Phase spectra for a 2 mm Pz27/1.6 mm Al/2 mm Pz27 AEF configuration 
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Figure 20: Measured and modelled results for the 2 mm Pz27/5 mm Al/2 mm Pz27 AEF 
configuration, (a) load voltage and (b) transmitted power as a function of frequency 

For drive frequencies away from 1100 kHz (i.e. for frequencies away from the anti-resonance) 
there appeared to be a particular set of thicknesses that allowed maximum power transfer. For 
example, Figure 21 indicates that a drive frequency of 900 kHz produces maximum power 
transfer through plates of 0.6 mm and 3.5 mm thickness.  
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Figure 21: Modelled results for an AEF system with varying plate thickness and drive frequency using 
a 1 W constant apparent input power and a 30 Ω load resistor 

 
The LTSpice model in Figure 5 was modified to investigate the effect of the piezoelectric 
element thickness on the power transferred through a 1.6 mm aluminium plate. The load 
resistor R1 was removed and the voltage across the 1 µF storage capacitor C1 was measured 
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as a function of time. Both the transmit and receive piezoelectric elements used in the AEF 
system had the same nominal thickness. The input drive frequency was adjusted to be equal 
to the resonance frequency for each element thickness modelled. Figure 22a shows the 
modelled steady state load voltage as a function of Pz27 disk thickness. The actual voltages 
plotted in Figure 22a are 90% of the final steady state C1 capacitor voltage, V90%; this value 
was chosen to keep simulation times reasonable.  
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Figure 22: Modelled results for an AEF system fo mm thick Al plate, where the PZT element 

 
he time taken for the C1 capacitor to reach 90% of its steady state voltage, t90%, is plotted in 

r a 1.6 
thickness is varied: (a) 90% of steady state load voltage, (b) time taken to reach 90% of 
steady state load voltage, and (c) load power as a function of varying Pz27 thickness 

T
Figure 22b. Figure 22c plots load power as a function of piezo element thickness, where load 
power was calculated using, 
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( )

%90

2
%902

1

t

VC
PLOAD =      (5) 

where C=C1=1 µF. 
 
The load power plotted in Figure 22c is not power in the true sense, but is the power stored 
and consumed in the following cycle: 
(i) a capacitor charge cycle (where the load is capacitive only) is followed by, 
(ii) an energy use cycle during which the energy stored in the capacitor in stage (i) is dissipated 
through a real load. 
 
Figure 22c shows a trend towards lower power-transfer efficiency for piezoelectric element 
thicknesses below 1 mm. For a 1.6 mm aluminium plate Figure 22c suggests that a range of 
piezoelectric element thicknesses from 1 mm to 3 mm could be used to form an AEF system 
with power transfer efficiencies in the range of 25-40%. 
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Figure 23: Modelled results for 2 mm Pz27/1.6 mm Al/2 mm Pz27 AEF configuration, (a) load voltage 
and (b) load power, with varying load resistance and drive frequency swept across the 
fundamental thickness resonance, 1025-1150 kHz 

 
Finally, the reason for choosing a 30 Ω load resistance for the aluminium plate AEF 
configuration is apparent in Figure 23 which plots a series of simulation results where both 
the load resistance and drive frequency were varied. The LTSpice model shown in Figure 5 
was again modified and this time resistor R1 was stepped across the range 1 Ω to 100 Ω and 
the input drive frequencies were stepped from 1025 kHz to 1150 kHz, corresponding to the 
main power-transfer peak as shown in Figure 18 and Figure 20. Figure 23 shows that a 30 Ω 
load resistor produced load voltages from 3.7 V to 4.1 V which was deemed to be a useful 
voltage range by the authors. However, more importantly it appears that the load resistance 
for optimum power transfer efficiency lies somewhere in the range of 30 Ω to 60 Ω and is 
somewhat independent of the drive frequency as long as it is within approximately +50 kHz of 
the thickness-mode resonance.  
 

 
22 



 
DSTO-RR-0338 

4. Conclusion 

The Acoustic Electric Feedthrough (AEF) technique was investigated as a possible means of 
passing power through the aluminium skin of an aircraft. An AEF operates using two axially 
aligned piezoelectric elements, located on opposite sides of a metal plate. A piezoelectric 
element excited at its thickness mode anti-resonant frequency is used to transmit ultrasound 
through a metallic plate. The ultrasound is received by a second element located on the 
opposite side of the plate. An LTSpice model of the AEF scheme was developed and used to 
reproduce and extend modelling found in the literature. In particular, the model included 
lossy transmission lines to represent material damping in the AEF scheme and silver epoxy 
bondlines. The effect of these additions was to significantly dampen ultrasonic standing 
waves created in the AEF system which resulted in reduced power transfer efficiencies 
compared with theoretical results reported in the literature. The LTSpice model was used to 
investigate an AEF system installed on aluminium plate and the simulation results were 
compared with the results from the experiment. Modelling and experimentation was carried 
out with two piezoelectric elements (transmit and receive) that were well matched, meaning 
that they had near identical resonance and anti-resonant thickness modes. It was shown that if 
the drive frequency was equal to the anti-resonant frequency of the piezoelectric elements 
used to create the AEF system, then the power transfer efficiency was unaffected by plate 
thickness. Using Pz27 disks, of 38 mm diameter and 2 mm thick, laboratory testing has shown 
that with 1 W of input power then 300 mW of real power could be transmitted to an electrical 
load through aluminium plates of 1.6 mm and 5 mm thickness. Future work will involve both 
the investigation of various types of piezoelectric materials to determine the optimum ceramic 
composition for power transfer and the development of AEF-based communications 
techniques. 
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Appendix A:  Example piezo parameter calculation  

To calculate ε33S: given that the permittivity ε33T = ε33,rT ε0 van Deventer et al [15] gives the 
following relationship between ε33T and ε33S,  
 

( )2
3333
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1
1
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−
=

ε
ε

     (A1) 

 
Because k33 and ε33T are normally provided by the manufacturer, ε33S may calculated using 
equation A1. 
 
To calculate e33: piezoelectric constant e33 may be calculated using, 
 

EE cdcde 3333133133 2 +=     (A2) 
 
Equation A2 can be used if the manufacturer specifies c13Eand c33E. If these elastic stiffness’s are 
not provided then e33 may be estimated using, 
 

 ( )2
333333 1 T
E kYde −=      (A3) 

 
Equations A2 and A3 can be used to calculate an accurate e33 for most types of PZT ceramic, 
however the calculated e33 can be erroneous for PZT with unusual microstructure (e.g. Pz21 
and Pz46). 
  
To calculate c33D: The relationship between c33D and c33E is, 
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A PZT manufacturer normally specifies both kT and c33E allowing c33D to be found. If the 
manufacturer does not specify c33E then it will need to be found from Y33E, 
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Assuming that kT, k33, and kP are known for a material, the constant A can be found from the 
relationship given by Berlincourt et al [20],  
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A can also be found from its definition, 
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where s13E, s33E, s11E and s12E are compliances at constant field. 
 
With c33D known then vD, the clamped speed of sound in the piezoelectric material, can be 
found using, 
 

vD 
ρ

Dc33=       (A8) 

 
Also required for lumped element modelling are the density and speed of sound of the 
medium that the PZT element is situated in. For the example shown in Figure 1a the 
surrounding medium is air, which has density ρ = 1.25 kg/m3 and speed of sound v 

. Knowing the area Asm /4.343= E of the PZT element allows the mechanical loading due to 
the medium to be found, 
 

Z0 = ρ v AE      (A9) 
 
Using a single resistor Z0 to model the medium is equivalent to making the assumption that 
no acoustic echo will be received back from the medium [16].  
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Appendix B:  LTSpice netlists 

Given below are example of LTSpice library and schematic files used to perform the 
modelling shown in this paper. Note that the parameters given in PZTtrans.lib are defined in 
Appendix C. 
  
B.1. PZTtrans.lib 

 
*PUTTMER 1997 THICKNESS-MODE TRANSDUCER 
.SUBCKT PZTtrans E B F 
O1 B 1 F 1 myLossyTlineTRANS 
V1 1 2 
E1 2 0 4 0 1 
V2 E 3 
C0 3 0 {c0T} 
F1 0 3 V1 {hc0T} 
F2 0 4 V2 {hT} 
R1 4 0 1E3 
C1 4 0 1 
.model myLossyTlineTRANS LTRA(len={thickT} R={rT} L={LT} C={cT}) 
.ENDS 
 
B.2. PZTtrans.asy 

 
Version 4 
SymbolType BLOCK 
RECTANGLE Normal 48 48 -48 -48 
TEXT -48 -1 Left 0 PZTtrans 
SYMATTR Value PZTtrans 
SYMATTR Prefix X 
SYMATTR SpiceModel PZTtrans.lib 
SYMATTR Value2 PZTtrans 
PIN -48 -32 LEFT 8 
PINATTR PinName E 
PINATTR SpiceOrder 1 
PIN -48 32 LEFT 8 
PINATTR PinName B 
PINATTR SpiceOrder 2 
PIN 48 32 RIGHT 8 
PINATTR PinName F 
PINATTR SpiceOrder 3 
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B.3. const_power.lib 

.subckt const_power in m_Power 
B1 N001 0 V=V(vd)*sin(2*pi*time*V(f)) 
R1 in N001 50 
*for real power the next line must be: 
*B2 z1 0 V=-1*V(in)*i(r1) 
*for apparent power the next line must be: 
*B2 z1 0 V=abs(V(in)*i(r1)) 
B2 z1 0 V=abs(V(in)*i(r1)) 
R3 m_Power z1 1K 
C2 m_Power 0 20n 
V1 f 0 {fDRIVEcp} 
V2 Gain 0 100 
V3 Ideal_Power 0 {pDRIVEcp} 
B4 0 vd I=V(Gain)*(V(Ideal_Power)-V(m_power)) 
R4 vd 0 1e8 
C3 vd 0 10µ 
.ic V(vd)=10 
.ic V(m_power)={pGUESScp} 
.backanno 
.ends 
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Appendix C:  Parameter values used in calculations 

material 
definition designation units Hu PZT Pz27 aluminium steel silver 

epoxy [ ] [9] [22] [5] [9] 5
Clamped relative 

permittivity 
S

rel,33ε  - 1470.5 914 - - - 

piezoelectric 
constant 33e  C/m2 23.3 16 - - - 

clamped elastic 
modulus 

Dc33 GPa 159 144 73.1 269 7.28  

ρdensity  kg/m3 7500 7700 2770 7850 3890 

mechanical 
quality Q - 136 81.5 1000 100 23.4 

 
Definition Designation Equation Effective Units 

permittivity of free space e0 8.8542*10-12 C/(V.m) 

clamped permittivity eST e33S*e0 C/(V.m) 

piezoelectric constant e33T  C/m2

clamped elastic modulus c33DT  N/m2

density rhoT  kg/m2

mechanical Q QT  - 

disk thickness, and radius thickT, radT  m 

clamped velocity of sound vDT SQRT(c33DT/rhoT) m/s 

anti-resonant frequency resfreqT vDT/(2*thickT) Hz 

disk area areaT pi*radT*radT m2

capacitance c0T eST*areaT/thickT F 
hT e33T/eST V/m transmitting constant hc0T hT*c0T F.V/m 

acoustic impedance*area z0T rhoT*vDT*areaT kg/s 

lossy transmission line inductance LT z0T/vDT kg/m 

lossy transmission line capacitance cT 1/(vDT*z0T) s/kg 

lossy transmission line resistance rT 2*pi*resfreqT*LT/QT kg/(m.s) 
3density of medium back face rhoTB  kg/m

velocity of sound in back medium vDTB  m/s 

acoustic impedance*area z0TB rhoTB*vTB*areaT kg/s 

density of medium front face rhoRB  kg/m3

velocity of sound in front medium vDRB  m/s 

acoustic impedance*area z0RB rhoRB*vRB*areaT kg/s 
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