
Livespaces Technical Overview

Matthew Phillips

Command, Control, Communications and Intelligence Division
Defence Science and Technology Organisation

DSTO-TR-2188

ABSTRACT

This report describes Livespaces, a technology framework developed by DSTO to
support advanced meeting spaces and distributed multi-site collaboration. It
discusses the rationale behind the Livespace concept, the history of the research
and development that led up to the Livespaces approach, and, in particular, its
roots in providing support for the intense collaboration sessions often required by
ADF operational planning specialists. The novel technical architecture employed
by the Livespaces operating environment is described, as well as the new
capabilities it enables. The report also discusses possible configurations for a
Livespace and various applicable off-the-shelf hardware technologies and their
trade-offs.

RELEASE LIMITATION

Approved for public release

Published by

Command, Control, Communications and Intelligence Division
DSTO Defence Science and Technology Organisation
PO Box 1500
Edinburgh South Australia 5111 Australia

Telephone: (08) 8259 5555
Fax: (08) 8259 6567

© Commonwealth of Australia 2008
AR- 014-287
October 2008

APPROVED FOR PUBLIC RELEASE

Livespaces Technical Overview

Executive Summary

This report contains a technical definition of the Livespaces technology framework
developed by DSTO to support advanced meeting spaces and distributed multi-site
collaboration. It defines the rationale behind the development of the Livespace concept, and
describes the capabilities a Livespace provides.

The Livespace concept originates from DSTO research into supporting the intense
collaboration sessions often required of ADF planning specialists during the initial planning
phase of an operation. Initial experiments in supporting this type of collaboration were
carried out using a prototype assembled from components developed by several 3rd parties,
including Stanford and the Distributed Systems Technology Centre. These led to an initial
Livespace prototype room at The University of South Australia, which was trialled as part of
a series of Technical Exercises involving ADF planning staff. The requirements and
experiences arising from the prototype were incorporated into the novel architecture for
developing collaborative meeting spaces which is described in this report.

This report describes the requirements and technical problem space that led to the design of
the Livespace Bus, a distributed systems approach to solving the problem of integrating a
disparate and distributed set of software and hardware components into a single
manageable system. It includes a description of how the bus operates and provides a brief
example showing how a software developer can use this framework to rapidly develop new
Livespace services or extend existing ones.

The software applications and services that have been developed on top of the Livespace Bus
framework are described: these include various experimental groupware applications and
the desktop applications for managing a Livespace smart meeting room, such as
environmental settings (lights, volume, video switching, etc.)

The report also discusses the various approaches to setting up a Livespace, its layout, trade-
offs, and the various applicable hardware technologies that may be employed.

In the future work section, we highlight the fact that Livespaces has matured to a level of
stability that has enabled it to be successfully deployed to a number of ADF sites for
advanced trials. It has also been deployed by Canada’s DRDC to three Canadian sites under
a TTCP Materiel Transfer Agreement. We discuss options for expanding the scope of
Livespace application and collaboration, and recommend that an effective approach would
be to make the Livespace framework available under an open source license.

Authors

Matthew Phillips

Matthew Phillips is a Defence Scientist working in Human Interaction
Capabilities Group within Command, Control, Communications and
Intelligence Division. His research interests include distributed systems,
information visualisation and software architectures. Matthew has a
Bachelor of Computer Science (Hons) from The University of Adelaide.

Contents
ABBREVIATIONS

1. ...INTRODUCTION 1

1.1. ..What Is A Livespace? 1

1.2. ...The Intense Collaboration Space 2

1.3. ...A User’s View Of A Livespace 2

2. ..WHY DO WE NEED LIVESPACES? 3

3. ...HOW TO CREATE A LIVESPACE 5

3.1. ..The Livespace Architecture 5

3.2. ...The Livespace Bus 7

3.2.1. ..Example: Clipboard 8

3.2.2. ...Example: Light 9

3.2.3. ..Example: Media Player 9

3.2.4. ..Example: Computer 9

3.3. ...Visibility And Understanding Via Browsing 10

3.4. ..Replication And Synchronisation 11

3.5. ..The Livespace Bus Development Model 13

3.6. ...Find, Monitor, Update, Delete 15

3.7.The Livespace Bus Compared To Other Technologies 16

4. ..LIVESPACE CORE SERVICES 18

4.1. ..Room Management Services 18

4.1.1. ...The Room Service 18

4.1.2. ..The Computer Service 18

4.1.3. ...The Media Service 19

4.1.4. ..OSGi Service Administration 19

4.1.5. ...Screen Sharing 20

4.1.6. ..Lighting 20

4.1.7. ..Displays 20

4.1.8. ...Audio Mixing 20

4.2. ..Application Services 21

4.2.1. ...Meta Applications 21

4.2.2. ...Sessions 21

4.2.3. ..Clipboard 22

4.2.4. ..Presence 22

4.2.5. ..Information Repository 22

4.2.6. ..Livepoint 24

5. ...DEPLOYMENT 26

5.1. ..The Client Shell 26

5.2. ...Configuration Management 27

5.3. ...The Desktop Dashboard 27

6. ...FEDERATION 29

7. ..APPLICATIONS 31

7.1. ..Clipboard 31

7.2. ..TeamThink 31

7.3. ..Screen Sharing 32

7.4. ..Ignite 34

7.4.1. ...The Sessions Page 36

7.4.2. ...The Meta Applications Page 37

7.4.3. ..The Video Page 38

7.4.4. ..Other Pages 39

7.5. ...Link Sharing 39

7.6. ..Sticker 40

7.7. ..AccessGrid 42

8. ..ADMINISTRATIVE APPLICATIONS 44

8.1. ..Service Browser 44

8.2. ...Media Viewer 44

8.3. ...The Meta Application Editor 45

8.3.1. ..An Example Meta Application 46

8.4. ..OSGi Administration 48

9. ...LIVESPACE HARDWARE COMPONENTS 49

10. ..FOUNDATION TECHNOLOGIES 54

11. ..HISTORY 55

11.1. ..Livespaces Timeline 56

12. ...CURRENT STATUS AND FUTURE WORK 57

Abbreviations

ADF Australian Defence Force.

CAT 5 Category 5 shielded twisted pair cable.

CORBA Common Object Request Broker Architecture, the OMG’s distributed object
communication system.

CRUD Create Retrieve Update Delete, the four fundamental operations performed by
database applications.

CSIRO Commonwealth Science and Industrial Research Organisation.

CTW Collaborative Telepresence Workstation, built as part of the HxI initiative.

DCOM Microsoft’s Distributed Component Object Model (also known as COM+).

DJFHQ ADF Deployable Joint Forces Headquarters, located in Brisbane, Australia.
Now known as HQ1DIV.

DRDC Defence Research And Development Canada.

DSTC Distributed Systems Technology Centre, a cooperative research centre,
headquartered in Brisbane, which operated from 1992 to 2006.

DSTO Australian Defence Science and Technology Organisation, headquartered in
Edinburgh, South Australia.

FOCAL Future Operations Centre Analysis Laboratory, an experimental facility located
at DSTO Edinburgh.

GUID Globally-unique identifier.

HCI Human-computer interaction.

HTTP Hypertext Transfer Protocol.

HxI A research initiative involving collaboration between DSTO, CSIRO and
NICTA. The HxI Initiative develops technologies that support humans in their
interactions with each other, their environments and information.

ICS The Intense Collaboration Laboratory, located at DSTO Edinburgh.

IP Internet Protocol.

iROS The Interactive Room Operating System, a project initiated at Stanford
University, USA.

ISDN Integrated Services Digital Network.

KVM Keyboard/Video/Mouse switch.

LAN Local Area Network.

LCD Liquid Crystal Display.

NICTA National Information and Communications Technologies Australia.

ODSI Open Distributed Services Infrastructure, a distributed services framework
developed by DSTC using Elvin.

OMG Object Management Group.

OSGi The OSGi Alliance’s open standard for component-based software services.

PC Personal Computer.

RCP The Eclipse Rich Client Platform, a user interface framework for developing
desktop applications in Java.

REST Representation State Transfer.

RPC Remote Procedure Call.

RSS Really Simple Syndication.

SCM Software Configuration Management.

SDO Service Data Objects.

SOAP Simple Object Access Protocol.

SWT Standard Widget Toolkit, a component of the Eclipse Rich Client Platform.

TTS Text to speech.

UDP/IP User Datagram Protocol over Internet Protocol.

UniSA The University of South Australia.

URI Universal Resource Indicator, a superset of Uniform Resource Locator (URL)
and Uniform Resource Name (URN).

USB Universal Serial Bus.

VNC Virtual Network Computing.

VoIP Voice over IP.

VTC Video Teleconferencing.

WAN Wide Area Network.

WebDAV Web-based Distributed Authoring and Versioning.

XML Extensible Mark-up Language.

1. Introduction

1.1. What Is A Livespace?

A Livespace is a technology-enhanced collaboration space for a team of people. The purpose
of a Livespace is to integrate technologies that help people work together: to bring these
technologies together into a supporting system that becomes part of the background, rather
than the more common situation where these technologies appear as a set of disparate,
idiosyncratic and quirky hardware gadgets and software applications.

The Livespace approach is most effective in advanced meeting spaces equipped with a range
of capabilities, since it’s in these sorts of spaces that the cognitive overload of managing the
devices and applications becomes most significant. However, the application of the
Livespace concept is not tied to a particular set of technologies: it can be applied equally to a
meeting room full of the latest experimental and off-the-shelf computing systems and audio-
visual equipment, or to a collection of personal laptops temporarily networked together for
an ad-hoc meeting.

Personal computersSmart whiteboards

Shared displays

Re-con!gurable table

Video teleconferencingAutomatic lighting

DSTO’s Intense Collaboration Space

DSTO-TR-2188

 1

1.2. The Intense Collaboration Space

A prime example of what we mean by a Livespace is DSTO’s Intense Collaboration Space
(ICS). This is a meeting space designed to enable prototyping and experimentation to
support the sort of intense collaboration that occurs between small groups of military
specialists during the planning phase of a military operation.

The ICS is oriented around a re-configurable central conference table, with small form-factor
personal computers (PC’s) for each participant, three shared projected displays in the front,
smart whiteboards, and supported by a number of background capabilities such as video
teleconferencing, video and audio switching, and automatic lighting control.

One way to get a feel for what a Livespace provides is to describe how it is used from a
meeting participant’s point of view. The next section runs through a general scenario of use.

1.3. A User’s View Of A Livespace

The participants in a Livespace session will find a control panel inside the door that enables
them to activate the room: this will turn on the room’s various devices (e.g. lights and
projectors) and initialise any background software applications. Each user will usually log on
to a personal computer on the central table. As well as standard desktop software, the
personal computers run a range of custom collaborative software which provides facilities
for shared document editing, document management, text messaging, and applications for
controlling the room itself, such as lighting and volume.

As well as personal displays, the users also have access to three large shared computing
spaces projected onto the front wall. These displays, which can be controlled from any of the
participant’s personal PCs, provide a shared display space for information, such as
documents, web pages or video. There may also be a number of smaller ‘ambient’ shared
displays (typically LCD screens) in the room that can be used for displaying background
information, such as the meeting agenda. At any time the display from any of the personal
computers can be shared by switching it up to the large display area. The participants can
also sketch on one of the room’s whiteboards – a capture device attached to the whiteboard
digitises these sketches and shows them in an application on one of the shared displays.

The room also has telepresence capabilities for collaboration with groups in remote
Livespaces. These capabilities include conventional video teleconferencing, document
sharing and remote screen sharing, which enables participants to see and interact with
remote displays. The room’s collaborative applications can be connected to support the
telepresence collaboration.

At the end of a session, any artefacts generated, such as documents, minutes and sketches,
can be stored to a document repository. The same control panel that activated the room is
then used to turn it off and leave it in a state ready for its next session.

DSTO-TR-2188

2

2. Why Do We Need Livespaces?

The driving force for Livespace research is to reap what we believe is a largely untapped
potential for technology to significantly advance synchronous collaboration within and
between networked smart-room environments. This paper focuses on the architectural
aspects of a Livespace: the technical infrastructure needed to integrate the core components
that we envisage in a Livespace-enabled environment. The relationship between the
Livespace concept and related work such as the Interactive Workspaces project at Stanford
University (Johanson et al. 2001), the Intelligent Room project at MIT (Coen et al. 1999), and
the Open Distributed Systems Integration (ODSI) framework (Bond 2001) has been described
previously (Bright 2004). Underpinning research and development in selected aspects of
human-computer interaction (HCI) and computer-supported cooperative work (CSCW) is
being conducted by DSTO and its partners in HxI (Braccetto 2008) using the technology
infrastructure described here as a testbed.

The current explosion of Internet-based communication technologies has clearly
demonstrated how these innovations could significantly change the way groups collaborate
– yet if you walk into a typical corporate meeting room today, you’re unlikely to find any
collaboration technology more sophisticated than a video teleconferencing unit. While there
is no lack of innovative technology to choose from, we’re making less progress than we’d like
in effectively employing it.

There are many low-cost collaboration technologies becoming available, including an
embarrassing number of instant messaging networks, VoIP-based internet telephony and
video conferencing. These new consumer products are feeding a growing public awareness
of the possibilities. However many of the popular collaboration technologies are solely
consumer-focused, often restricted to one-to-one communication between two PCs and
mediated by proprietary servers.

In addition, due to their relative immaturity, many collaboration technologies are built inside
proprietary walled gardens, making them difficult to integrate, as well as inflexible and
idiosyncratic. Unlike established technologies, such as email, these technologies tend to have
their own interfaces, protocols and authentication, which all cumulatively increase the
friction involved in using them. It is a sad fact that any given group of people can be
confident of being able to use ‘old’ technologies such telephone or email in their daily work,
but relying on anything more advanced usually incurs an unacceptable risk of technical
problems dominating over productive work.

The Livespace goal is to meld available technology into a space in which people feel
comfortable and confident. A successful Livespace should make taking advantage of
technology effortless, rather than being an ongoing battle against a conglomeration of
recalcitrant gadgets. At a minimum, achieving this goal will involve moving our
conceptualisation a step up from a PC and application-focused approach toward treating the
meeting space itself as the application.

A large part of a Livespace’s function is to make hardware invisible. If a user has to hunt for
a remote control or open a computer rack, then the Livespace has failed. Perhaps the number

DSTO-TR-2188

 3

of remote controls for the devices in the ICS alone is the most telling indication of how futile
it would be to simply drop these technologies into a room with no further thought (Figure 1).

Figure 1. A daunting set of controls from a meeting room

While it’s unlikely readers will disagree with these sentiments – indeed they verge on being
motherhood statements – the reason that ‘recalcitrant gadgets’ are often a sad fact of meeting
spaces today is not due to a lack of trying to achieve the above goals. It seems that even
people who are expert in this area have inherent difficulty defining conceptual models that
support advanced collaboration without exposing the complexity of the technology
underlying it. While we certainly don’t claim to have solved this problem, the Livespaces
project is working toward a new approach creating effective collaboration spaces: the next
sections describe how we’ve gone about it.

DSTO-TR-2188

4

3. How To Create A Livespace

A Livespace needs to integrate a wide range of hardware and software: lights, projected
displays, audio, video, information storage, and a milieu of software applications. In fact, in
many ways, a Livespace needs to act as an operating system for the meeting space and, like
an operating system, the natural way to approach managing such a disparate array of
components is start by defining a flexible plug-and-play framework into which the
components can be integrated.

The core component of a Livespace that provides this distributed plug-and-play framework
is termed the Livespace Bus: in the operating system metaphor, this plays the role of the
peripheral device bus. All services and applications in a Livespace room use this bus to
discover and communicate with each other.

3.1. The Livespace Architecture

The diagram in Figure 2 places the Livespace Bus in context, showing how it supports the
other core components of a Livespace.

Services
Sessions, meta apps, ...

Elvin message bus

Livespace Operating Environment
Application framework

Devices
Lights, Projectors,

VTC, ...

Applications
Clipboard, Livepoint, Screen sharing, ...

Livespace Bus
Shared data space

Users
Laptops, Mini PC's,

PDA's, ...

Figure 2. The Livespace architecture stack

Working from the bottom up, we have the following core components:

Elvin message bus. At the lowest level of the Livespace stack is the Elvin publish/
subscribe message bus (Segall et al. 2000). Elvin provides an abstraction over point-to-
point network communications, enabling clients to broadcast and receive messages
without necessarily being aware of each other. Elvin clients need simply subscribe to

DSTO-TR-2188

 5

messages of interest using content-based selection criteria, and Elvin takes care of
routing those messages to them when they’re published somewhere on the bus. Elvin
routers can also be federated into efficient wide-area messaging networks, which is key
to supporting the connection of Livespaces across sites.

Livespace Bus. The Livespace Bus is another level of communications abstraction: it
defines a shared data space of discoverable, modifiable data objects called entities. The
Livespace Bus entity model is fundamental to a Livespace, and is used for many
purposes, including device discovery and coordination, and application-level
information management.

Livespace Operating Environment. This is a framework for building Livespace
services and applications. It includes a component model for packaging and deploying
software components, and a centralised service management and configuration system.

Services. This represents the set of core services that drive a Livespace. This includes
services for controlling a room’s hardware devices (lights, projectors, audio/video
switching, video conferencing), switching between pre-set room configurations
(sessions), multimedia display, and high-level information systems such as the room-
wide shared clipboard and information repository. In the operating system metaphor
we’ve been using, the services that manage a room’s hardware resources can be
thought of as the equivalent of device drivers.

Applications. These are desktop applications such as the Livepoint remote mouse
control system, remote screen sharing, instant messaging, group brainstorming and the
Ignite room control system.

The core applications provided by a Livespace include:

Ignite. The main user interface to the room’s devices and services: this includes
lighting, audio and video switching and applying pre-defined commonly-used room
configurations.

Screen sharing. Provides the ability to push a live copy of a computer’s screen onto
another computer.

Link sharing. Allows users to quickly open links to web pages and documents on
remote displays.

Livepoint. Provides the ability to control remote screens as if they were attached to the
local computer.

TeamThink. A shared document editor that can be used to collaboratively edit a live
document, often used during brainstorming sessions.

Sticker. Provides instant messaging between individuals or to the entire room, as well
as displaying news feeds.

DSTO-TR-2188

6

These Livespace applications, as well as others that support room management, are
described in more detail later in this paper.

Before we show how the Livespace services and applications work together, we will need to
describe the Livespace Bus in more detail, since the Livespace components all operate in
terms of the abstractions it provides.

3.2. The Livespace Bus

The Livespace Bus is a space of distributed data objects, or entities. An entity is simply a data
resource that is published into the shared space where it can be discovered, monitored and
modified. Services, whether they be low-level hardware drivers, or high-level information
resources, publish an entity-based model of themselves on the bus where clients can discover
them. As the underlying device or information resource changes, the entities are kept
synchronised. Equally, when a client changes an entity, the underlying service tries to ‘make
it so’ by making the equivalent change to the real resource the entity represents.

One way to illustrate this approach is via an example of some of the entity-based services in
a Livespace. In the Figure 3 below examples of four different entity types are shown: we’ll
run through each one from simplest to most complex.1

DSTO-TR-2188

 7

1 For the purposes of the example some of the example entities have been simplified from
those deployed in an operational Livespace.

name: Front Left Downlight

ID: ICS.light.1-56-4

type: dimmer

level: 50

name: Clipboard

ID: ICS.clipboard

text: Shared text in the clipboard

name: Laptop 1

ID: ICS.computer.laptop1

user: Fred

architecture: i386

screens:

 screen 0:

 ID: laptop1.screen0

 index: 0

 primary: true

 size:

 width: 1024

 height: 768

 screen 1:

 ID: laptop1.screen1

 index: 1

 primary: false

 size:

 width: 1024

 height: 768

name: Left Projector

ID: ICS.display.left projector

powerOn: true

showing: laptop1.screen0

Shared text clipboard
Down-light

Laptop on meeting table

Projector display

name: Media Player

ID: ICS.media.laptop1

file: http://ics/media/movie.avi

state: paused

Media player

Figure 3. Some example Livespace entities

3.2.1. Example: Clipboard

Every entity has at least two fields associated with it: a globally-unique ID and a human-
readable name. An entity will also have a number of type-specific fields, which may be
values such as text, numbers or dates, or nested sub-entities.

The simplest entity in a Livespace is the Clipboard. This has just one field, text, that holds
text that is available to the whole Livespace. This entity is presented to the user via a simple
desktop applet that allows the user to quickly edit the shared text, and copy it in and out of
the local clipboard (Figure 4).

DSTO-TR-2188

8

Figure 4. The Livespace clipboard window

3.2.2. Example: Light

Unlike the clipboard, which is a passive container for text, the Light entity represents the
state of an active device in the room: a light source. The Light entity’s most important field is
its level, which represents the light’s current illumination level: changing the level causes
the service that published the entity to issue the commands needed to make the light follow
suit.

3.2.3. Example: Media Player

The media player entity is an example of a common modelling pattern which employs a
metaphor from a real device. The media player has two key properties, file and state: to
play a media file we first put a link to the file in the file property, and then set state to
‘playing’. Once playing, we can set the state to ‘paused’ or ‘stopped’ to control playback.
This entity model mimics a real device, such as a CD player, where the user loads a disc and
then sets the state using the play and pause buttons on the device.

3.2.4. Example: Computer

The Computer entity is one of the more complex entities in the space, and is used by many
other services in the room. One of these entities is published by each computer in a
Livespace – in the example above, we show a subset of the information, which includes the
computer’s name, the currently logged in user and its CPU architecture. The diagram also
shows the information a computer publishes about its video displays: the example computer
has two desktops on two screens running at 1024 x 768 pixel resolution.

The example diagram also shows a logical link between one of the computer’s screens and a
Display entity that represents a video projector in the room. This link is established simply
by putting the screen’s ID into the Display’s showing field: when this field changes, the
service in the room that controls the room’s video switch synchronises by switching the
video source from the computer’s first screen to the projector’s video input. The device
driver analogy is apt in this example: Livespace clients only need to know how to change the
correct entities to control video switching, only the back-end service needs to know how to
actually control the video switch hardware and look up the associated input and output
video ports.

DSTO-TR-2188

 9

3.3. Visibility And Understanding Via Browsing

Because the Livespace Bus is built on a space of uniform distributed resources, the space
itself can be browsed and manipulated without any a priori knowledge of its structure. One
key benefit this gives is the ability to browse and manipulate the entities in the space, a
facility which is provided by the Livespace Browser application. The screen capture in Figure
5 shows an example of the Livespace Browser in the Intense Collaboration Space.

Details of the selected light entity

Entity representing
the Livespace room

Contains all discovered
computer entities

Expanded computer
entity

Selected light entity

Figure 5. The Livespace Browser application

The Livespace browser follows the common metaphor of showing an expandable hierarchy
on the left and the detail of the selected item on the right. The root of the hierarchy is the
entity representing the room itself: in this case it’s DSTO’s Intense Collaboration Space.
Under this are a series of folders for each entity type: as these folders are expanded, the
entities of that type appear as children.

In the example, the computer and light entity type folders have been expanded, and the user
has further expanded the detail of the ics-ambient computer, showing some of its internal
structure. The user has selected the Back Inner Left Spotlight light entity, and its properties
appear in the detail pane on the right. You can see that the light’s level is currently at ‘0’,
meaning the light is off: the user could, if they wish, enter a new value such as ‘100’ directly
into the browser to turn the light on.

DSTO-TR-2188

10

The ability to browse and manipulate the state of a Livespace in this way has proven
extremely useful for developers and administrators and we believe it is one of the key
advantages to this kind of approach over the more opaque RPC-style systems discussed later.

3.4. Replication And Synchronisation

The Livespace Bus is implemented using a dynamic entity replication system. On the bus
there are two types of agent: servers, which publish entities, and clients, which discover and
maintain local replicas of them. Although the client/server terminology may suggest a
significant difference, a server is actually very similar to a client: they both host a pool of
local entities that can be accessed and changed, a server simply has the additional role as the
publisher of the master copy of its entities.

Once a client has discovered an entity, it maintains a local copy of it for the duration of its
interest, and will update it when the server notifies it of changes to the master copy. Any
changes made on the client’s replica are visible immediately on the client, while at the same
time a change request is sent asynchronously to the server. This is an optimistic, lock free
system in which a client initially assumes that an update will succeed – if a change is later
vetoed by the server, the client must deal with rolling back the change. If a change is not
acknowledged, the client must assume that the server is down, and will act as if the entity
had been deleted. At any given time, client and server may be out of sync, but the system
does guarantee that they will eventually reach a synchronised state.

All the communications between clients and servers is via the Elvin event notification
system, which takes responsibility for routing messages efficiently between any number of
event producers and consumers. To illustrate how the Livespace Bus uses the message router
for entity replication, we’ll run through the following example. In the sequence diagram in
Figure 6, we list the sequence of events that occur when a client discovers two light entities,
monitors a change from the server, and then makes a change itself.

DSTO-TR-2188

 11

Message busClient Server 1 Server 2

Find "type = light"

Light 1 copy

Light 2 copy

Light 1 changed: level = 0

Update request: level = 50

Light 2 changed: level = 50

Light 2 deleted

Discovery

Light 1 changes on
Server 1

Client changes
Light 2

Time

Server 2 shuts
down

Figure 6. Entity replication sequence

The Livespace messages transferred over Elvin come in three categories: find, update and info.
The find message type is used to query for entities hosted by server containers. The update
message is emitted by a client to request a state change to an entity. The info message type
contains entity state, and is emitted by server containers in response to find requests, or when
the entity changes.

An info message either contains the entire state of an entity, or the delta between the previous
state and the new one.2 Thus the initial Discovery phase shown in the diagram above would
involve the client sending a single find, followed by receipt of two info replies from the
servers, each containing the full state of a light entity. The following change of Light 1’s level
would contain only a delta to the level value from the previous info.

DSTO-TR-2188

12

2 The entity state in info messages is encoded directly into the Elvin notification format
where possible, but since Elvin notifications do not support compound data structures
(values in a notification must be numbers, strings or binary byte arrays), an XML transfer
format is used as a fallback for more complex structures.

One of the chief advantages of this architecture is that reading and writing to entities is a
non-blocking operation: changes are always made instantly on the local copy, while the
request/response transaction to make it actually happen is handled asynchronously. The
replication model also means there is no necessary distinction between client and server
entities: Livespace programs access an entity in the same way regardless of whether it is the
master copy or a client replica. In fact, entities do not have to be managed by a client or
server at all, making testing easier by allowing developers to test against off-line ‘dummy’
entities.

One of the chief disadvantages of this approach is the fact that clients must be prepared to
deal with rollbacks to changes that initially appeared to be successful: this may happen due
to a service vetoing the request, the change being trumped by another client, or if the server
has silently failed and the request is not acknowledged. In practice this has not turned out to
be much of an issue, since clients are typically programmed in an event-driven fashion
anyway, and these abnormal situations are indicated using the same notification route as
‘normal’ events: if a server vetoes a change (e.g. a request to change a light level to ‘-1’), the
client simply sees the light’s level change to ‘-1’ and then change back to the initial value, at
which point it deals with it in the same way as any other kind of change. In the case where a
server has abruptly failed, the client will be notified that the entity was deleted when a
liveness check fails, and deal with it as with a normal delete.

One other disadvantage of this approach is the fact that clients and servers can be out of
synchronisation for a small window of time. This has the implication that clients on different
machines with replicas of the same entity may also temporarily disagree about its state.
While there may be good reasons to argue that this distributed systems version of general
relativity is a fundamental property of such systems, it is also true that for applications with
harder requirements for synchronisation, this would not be sufficient. However, the
applications in a Livespace do not have such stringent requirements, and we have found in
practice that this approach represents a good compromise.

3.5. The Livespace Bus Development Model

From the developer’s perspective, entities are simply pure-data objects that can be read,
written to, and monitored for changes. By ‘pure-data’ we mean that an entity has no
behaviour or methods that can be invoked aside from those that read and write its state. In
fact, there are only three logical operations that can be invoked on an entity:

get value: read the value of a property. For example: light.getValue (“level”)	

set value: set the value of a property. For example: light.setValue (“level”, 50)

listen: register to be notified whenever the state of the entity changes. A listener
receives the name of the property and its old and new values. Since entities can be
nested, the property name is actually a path into the entity, e.g. computer/screens/0/
width.

DSTO-TR-2188

 13

Entities are hosted in either a server or client container. The entities in a server container are
made available for discovery and update by clients. The entities in a client container appear
asynchronously as they are discovered after issuing a query (i.e. a find message) for matching
entities to any server containers. Once created, both kinds of container are used in the same
way: as a dynamic set of entities.

The Java code below defines the simplest useful entity in a Livespace, the shared clipboard.3

public class Clipboard extends Entity
{
 public String text;
}

The clipboard entity is as simple as it gets: it has one field, the shared text. However, the
Entity base class, from which all entities inherit, adds two more fields: a globally-unique
identifier (GUID) for the entity, and a name field used for presentation purposes. The
Clipboard class being defined here is a programming convenience only, clients that replicate
an entity do not need to have a class locally defined for it – if a class for an entity type is not
available, a generic entity instance is generated instead.4

The Java code below shows the process of publishing the clipboard:

// the connection to Elvin and the entity representing the room
Elvin elvin = ...;
Room room = ...;

// create entity server container
EntityServer server = new EntityServer (elvin, room, "clipboard");

// create clipboard instance
Clipboard clipboard = new ClipboardEntity ();

// publish it
server.entities.add (clipboard);

DSTO-TR-2188

14

3 Although the Livespace Bus development API is currently implemented in Java, the
communication protocol is platform-agnostic, meaning other languages can be supported
(a C++ API is currently in development).

4 We do not define formal schemas for entities on the bus beyond the kind of convenience
class illustrated here. We have resisted the natural urge as computer scientists to define
and enforce a formal schema system in order to avoid the friction that this would add in a
distributed, changing and extensible environment. We have found in practice that the live
schemas viewable by browsing entities in the Service Browser are sufficient – for
developers, the key properties of all the core entities are defined and documented as Java
classes.

Once this code has been executed, the clipboard entity will be available on the bus for
discovery by client containers. The client code below listens for changes to the clipboard and
updates its text:

// listen for changes and print the old and new values
clipboard.addPropertyListener (new PropertyListener ()
{
 public void propertyValueChanged (PropertyEvent e)
 {
 print ("Clipboard text changed");

 print ("Old text: " + e.oldValue);
 print ("New text: " + e.newValue);
 }
});

// change the clipboard text
clipboard.setValue ("text", "Livespace clipboard example text");

While the clipboard is just a passive data holder, entities such as lights and projector displays
that represent devices and services in the room will have an associated software ‘driver’ that
is listening for changes to its entities, and which will synchronise those changes with the real
world. So, when the Livespace projector service sees the powerOn property of the Display
entity that it published change from ‘false’ to ‘true’, it sends the correct control code to the
corresponding projector device to make it turn on.

The process of developing a Livespace service involves deciding on how best to model it as
an entity, defining how changes to the entity map to the intended actions, and implementing
listeners for the relevant properties which effect those changes. In the next major section you
can see how some of the core Livespace Bus services are designed in this manner.

The next two sections discuss some of the philosophy behind the entity replication approach
and compare the Livespace Bus to some other related technologies

3.6. Find, Monitor, Update, Delete

Operations as varied as sharing text between applications, controlling room lighting, and
switching video in a Livespace are all accomplished with just four verbs applied to one noun:
find an entity, monitor changes to an entity, update an entity’s state, and delete an entity.

This will be a familiar pattern to those from the database world, which is driven by Create,
Retrieve, Update and Delete (CRUD), or those from the tuple space world of get, put, and
take.5 There are also parallels to be drawn with the Representational State Transfer (REST)
approach to web services (Fielding 2000; Fielding et al. 2002), which is oriented around
resources to which you may apply the HTTP operations PUT (create), GET (retrieve), POST
(update) and DELETE (remove).

DSTO-TR-2188

 15

5 Examples of systems based on tuple spaces include Linda (Gelernter 1985) or Jini (Waldo
1999).

The advantage of resource-oriented approaches is that they provide a uniform interface to a
potentially complex space of operations: anything that can be done in these systems will be
modelled as a state change to a resource, it’s just a matter of deciding what to do with which
resource. This is in contrast to the other widely used approach to distributed programming
where a command verb is defined for every possible scenario. This works for small numbers
of operations, but leads to a combinatorial explosion of verbs as the system grows. For
example, for the clipboard, lighting and video switching examples in the previous section,
we’d need to provide at least these verbs: Find-Clipboard, Copy-Text-To-Clipboard, Get-Text-
From-Clipboard, Get-Lights, Set-Light-Level, Get-Light-Level, Listen-To-Light-Level-Change, Find-
Displays, Set-Screen-Switching, and so on.

The approach where a command verb is defined for every possible action is embodied by
many systems using the Remote Procedure Call (RPC) paradigm, such OMG’s CORBA,
Microsoft’s DCOM or, more recently, Web Services based on SOAP (Gudgin et al. 2003). Aside
from the above-described complexity engendered by this approach, the notion that
procedure calls, object-oriented or otherwise, should be applied to distributed systems has
been brought into serious question over the years, and many have come to the conclusion
that distributed computing is such a fundamentally different problem from local computing
that an approach that tries to simply extend paradigms from local computing is doomed to
failure (Tanenbaum et al. 1988; Waldo et al. 1994).

3.7. The Livespace Bus Compared To Other Technologies

A number of the key architectural concepts underlying the Livespace Bus were inspired by a
existing technologies. These include systems based on tuple spaces such as iROS (Johanson et
al. 2001) and Jini, as well as the data access abstraction technology known as Service Data
Objects (SDO) (Beatty et al. 2003).

The key difference between the Livespace Bus and tuple space systems is its resource-
oriented nature. At first glance you might assume that the tuples used by systems like Jini
and iROS are the equivalent of a Livespace entity: however the tuples in these systems are
usually employed as events for discovering services and invoking operations on them, they
do not model anything in themselves. These systems are architected around services and the
operations they provide, rather than around resources and the state changes they support.6
And while, in practice, many of these operations end up being about monitoring and
updating state,7 the system itself does not explicitly model the concept of a stateful resource.

The SDO framework also has some features in common with the Livespace Bus. SDO is
oriented around data access using graphs of abstract data objects, which have much in
common with Livespace entities. SDO clients may also employ an optimistic update strategy,

DSTO-TR-2188

16

6 In many ways these sorts of service are the equivalent of objects in an object-oriented
system: they intentionally hide their state, encapsulating it behind the operations that
manipulate it.

7 This is especially true of iROS, which deals with a similar set of abstractions to a
Livespace.

where the client modifies a local copy of a data object graph and transfers a change summary
to the data store at a later time. However, similarities to the Livespace Bus end at this point,
since SDO was primarily designed to be a data abstraction layer for accessing persistent
stores such as relational databases or XML documents. SDO does not address the issue of
object discovery or support broadcasting updates to rapidly-changing objects. It also does
not define a model for monitoring changes to objects.

DSTO-TR-2188

 17

4. Livespace Core Services

In this section we run through the Livespace services that collectively form the core of a basic
Livespace. These are mostly entity-based services: however a few lower-level services, such
as the Livepoint remote mouse control service, operate by sending and receiving messages
directly via the Elvin router. The choice to use the router directly may be made either for
performance reasons, or because the service does not map naturally to the entity-modelling
architecture.

4.1. Room Management Services

The room management services provide the core services supporting the operation of the
room’s computers and devices, as well as basic facilities, such as media playback, that are
built on by higher-level applications.

4.1.1. The Room Service

The room service publishes an entity that models the Livespace room itself, providing
essential metadata used by other services. It also acts as a namespace for its entities so that,
in the case where multiple rooms are connected, it is possible to issue a query for all entities,
or restrict the query to just the entities in a given room.8 In the Service Browser application,
the room is presented as the root of the tree to visually indicate this – although the other
entities in the space are not actually children of the room entity, they exist within its
namespace.

4.1.2. The Computer Service

Each computer in a Livespace advertises its presence by running a service which publishes a
single descriptive computer entity. Figure 7 below is a screenshot from the Service Browser
application showing some of the top-level properties of a computer entity.

Figure 7. Part of a computer entity

DSTO-TR-2188

18

8 We would like to investigate using a more scalable approach to namespaces in a future
version of the Livespace Bus, which would employ a DNS domain-style namespace
hierarchy for entities, allowing one to query with varying levels of specificity: for example
‘find all entities in the defence.gov.au namespace’ .

The computer service is one of the core services in a room since, as well as advertising the
existence of a computer and basic information about its hardware, it also serves as a
substrate for other services to attach to and extend. Many services that are logically
associated with a computer add extended attributes to the computer entity instead of
publishing a top-level entities of their own.9 This approach helps to reduce the proliferation
of tiny, top-level entities that would otherwise occur, and makes it possible to see all
computer-related properties in one place. Several examples of extension services appear
below – other extension services include one that looks up video switch ports for the video
inputs and outputs advertised on computers and displays.

4.1.3. The Media Service

The media service extends the computer entity to add the ability to play back audio/visual
files, display and control Microsoft PowerPoint presentations, and open documents and web
pages in a browser.

To open a file on a computer, a client puts the link to the file (a URI) in the computer’s
currentDocument property, which will cause the file to be opened immediately in a new
application or web browser window. Playing audio/visual media files10 or opening a slide
presentation can be done in the same way or, if the client wishes more control over
placement and playback, it can instead put the link into one of the sub-portals inside the
computer’s mediaViewer property, and set the state property of the portal to ‘playing’.11

As well as providing a generalised, distributed multimedia playback facility for the room,
the media viewer can also be scripted to generate automated presentations by the Meta
Applications service (see the explanation of Application Services later in this document).

4.1.4. OSGi Service Administration

The OSGi administration service, somewhat self-referentially, is a service that manages
services. It operates by publishing a model of a computer’s services in the bundles property
of the computer entity. As well as showing the services on a computer and their state, this
model can be manipulated to remotely add, remove, start, and stop services.

The application that is generally used to display and manage services using this capability is
shown in the description of the OSGi Administration application described in a later section.

DSTO-TR-2188

 19

9 These extension services that attach, or ‘glom onto’, other entities have also become
informally known as ‘glommer services’.

10 The media service is implemented using Apple’s QuickTime multimedia framework,
enabling the wide variety of media supported by the QuickTime platform to be played.

11 These portals define sub-regions of a screen in order to manage playback of multiple
audio/video streams or PowerPoint presentations on a single screen.

4.1.5. Screen Sharing

The screen sharing service allows remote computer displays to be viewed over a network. It
is often used for pushing the display of a personal computer up to a shared display, or for
sharing one computer’s display with several people to make collaborative use of an
application. Under the hood, the screen sharing service uses Virtual Network Computing
(VNC) technology – an alternative service allows the use of a hardware video switch if
available.

The section on the Screen Sharing application later in this document has a fuller description
of what this service provides.

4.1.6. Lighting

The lighting service acts as a front end to an automated lighting controller, publishing a set
of light entities to match those in the room and synchronising them with the underlying
hardware. Predefined lighting scenes can then be defined as part of the Sessions service.

There are a number of off-the-shelf options that provide automated lighting. DSTO’s ICS
uses the Clipsal C-Bus system (C-Bus 2007). Other similar systems include consumer home-
automation products based on standards such as X10 (X10 2007).

4.1.7. Displays

Each stand-alone display in the room, such as a projector, is represented by a display entity.
A display entity may be merely a passive entity representing the existence and capabilities of
a display, or it may be managed by a driver service that controls the display hardware, such
as an LCD projector controlled via an RS-232 serial interface.

For displays that can be targeted using a video switching device, a videoSourceId property
on the display is used to select the current video source for the display, which is typically the
output of a computer, camera, or VTC system. Displays that can can be turned on or off
programmatically, such as LCD projectors, will also have a powerOn property.

4.1.8. Audio Mixing

If the Livespace’s audio is managed by a software-controllable mixer, the driver that controls
the mixer may publish a set of audio mixer entities that allow basic control of the audio
channels. For example, mixer entities such as ‘Left’, ‘Right’, ‘Centre’ and ‘Master’ may be
available: each of these entities will have a volume property allowing the volume of that
channel to be adjusted between 0 and 100.

DSTO-TR-2188

20

4.2. Application Services

The application services are a level of abstraction over the services described above.
Application services provide the basis for most of the user-visible applications of the room.

4.2.1. Meta Applications

The meta applications service is so named because it provides a ‘meta service’, a service that
coordinates other services. The meta applications stored and executed by this service can be
thought of as scripts that direct a series of actions applied to other services (see Figure 8 for
some examples). Ultimately these actions, like all Livespace operations, boil down to
manipulating the state of entities – the meta applications service makes it possible to execute
a series of synchronised, coordinated state changes across the services in a room.

Meta applications are often used in concert with the capabilities of the Media Service to
generate automated multimedia presentations, in which audio/visual displays are
coordinated across a number of screens. The description of the Meta Application Editor later
in this document includes some examples of this kind of meta application.

Figure 8. Some of the meta applications available in the ICS

4.2.2. Sessions

The sessions service provides the ability to quickly switch the room into pre-defined
configurations, or sessions. A Livespace has at least two fundamental sessions: ‘Room On’
and ‘Room Off’ – these will typically be set up to turn the room’s core devices on or off when
users wish to enter or leave the room. For example, the ‘Room On’ session might activate the
‘Presentation Lighting’ scene, turn the room’s main projectors on, forward default desktops
to the projectors, and play a welcome sound, while ‘Room Off’ would essentially reverse
those actions.

DSTO-TR-2188

 21

Custom sessions may be defined to switch the room into a state convenient for common
tasks. For example, a ‘Brainstorming’ session might set up the room so that the screen of the
computer at the head of the table is switched to the main projector (in order to allow the
chair of the meeting to share their display), turn up the lights over the meeting table, and
open TeamThink on all the computers on the table ready for recording ideas.

Under the hood, a session is actually just a type of meta application. The sessions service
extends the meta application model by managing a stack of session meta applications,
enabling a session to be pushed on to the top of the stack to become current, and to be
popped off the top of the stack to roll back to the previous session.

4.2.3. Clipboard

The clipboard service, which has already been described in the Livespace overview sections,
provides a way to share text across computers. Common uses include:

• Pasting links from a web browser for other people to open,

• Transferring text that needs to be conveyed without errors, such as codes, web
addresses, file paths, or formal instructions, and

• Copying and pasting sections of text from documents or web pages to cite during a
discussion.

4.2.4. Presence

The presence service publishes information about who is in the room, also known as virtual
presence. The published information currently consists only of the user name the person used
to log in to their computer. In future we anticipate adding information such as whether the
person appears to be currently using the computer based on keyboard and mouse activity,
and other information including email addresses and, in a military context, rank and
clearance level.

The presence information is also extended by other services. For example, TeamThink
extends its user’s presence information to include the TeamThink-specific fields that
advertise what role the person is playing and the text the person is currently typing.

4.2.5. Information Repository

The information repository provides storage for documents, media and other information
resources. In some ways the repository is analogous to a shared network drive, however the
repository provides a number of capabilities beyond that of a traditional file system,
including change notification, full text indexing and file versioning.

The repository appears as a tree-structured entity in the Livespace, which can be accessed in
the same way as other entity-based services. It can also be accessed like a normal file system

DSTO-TR-2188

22

from desktop applications like Windows Explorer and Mac OS X Finder via a WebDAV
interface (Figure 9).

Figure 9. The information repository in the Service Browser and in Windows Explorer via WebDAV

Representing the repository as an entity allows Livespace clients to easily discover, access
and monitor it. In order to add new content, a client need simply create a new entity as a
child of a folder node in the repository. The repository service will then automatically create
a new resource in its underlying store and add the URI generated for the resource as a
property of the entity – the client can then access the resource via HTTP GET (read) and PUT
(write) operations. We represent the resource data as a URI, and not directly as a property of
the entity, because the data may be large and HTTP resources are more readily accessible by
existing desktop applications.

At the time of writing, a prototype of the Information Repository is being trialled. The
service that supports it is based on the Apache Jackrabbit (Apache 2007) implementation of
the Java Content Repository specification (JCR 2007). The hybrid of Jackrabbit and WebDAV
as the back end of the service, with the entity-based front end, is so far proving very effective
in day to day use.

DSTO-TR-2188

 23

4.2.6. Livepoint

Livepoint provides the ability to remotely control a screen by allowing the mouse to virtually
jump from the user’s local PC to the remote screen. While the jump is in progress, the user’s
mouse and keyboard act exactly as if they are plugged into the remote computer (Figure 10).

Typically one or more edges of a user’s screen are designated as Livepoint jump points. For
example, in the ICS Livepoint is configured such that pushing the mouse to the top edge of
the screen on one of the meeting table computers causes control to jump to the centre shared
display at the front of the room. Moving the mouse to the left edge of the centre display
jumps the mouse to the left display, and the same for the right display. This allows people to
naturally shift control between their local PC and the three computers that drive the shared
displays, and is remarkably effective in making them feel like one large desktop space.

Left Display Centre Display Right Display

Desktop computer

Figure 10. Using Livepoint to jump between screens

Livepoint builds on the core capability provided by the Synergy application (Synergy 2007).12
Synergy provides the platform-specific logic for capturing and injecting keyboard and mouse
events that is needed to simulate one computer’s keyboard and mouse being connected to
another computer. Livepoint removes the client/server distinction employed by Synergy and
instead enables any computer in the room to send or receive keyboard and mouse events via

DSTO-TR-2188

24

12 Livepoint also derives inspiration from iROS’s PointRight application (Johanson, et al
2002).

the Elvin event router. It also extends Synergy to be aware of the room’s current screen
forwarding state.

DSTO-TR-2188

 25

5. Deployment

A Livespace system consists of 60 or more software components, deployed onto a number of
computers: typically 10 or more for a reasonably well-equipped room. Different sets of
components are needed on computers with different roles: the software deployed to a server
computer will be quite different from that on one of the desktop computers. The challenge is
to manage the configuration and deployment of the software into the room so that it is
possible to reliably add, remove, update, and change parameters of the software and
hardware.

To address this, we have built a system based on the OSGi service framework (OSGi 2007).
OSGi is an open standard service platform, originally developed for the mobile arena. The
OSGi framework provides the following key facilities:13

A software component model. OSGi enables packaging software into components
called bundles. A bundle contains the executable code for a component as well as
metadata, such as the component’s name, version and, most importantly, its
dependencies on other components.

A managed service execution environment. OSGi bundles are deployed and executed
inside an OSGi service manager that hosts bundles by first resolving their
dependencies on other bundles, linking them together, and then running the code.
Bundled services can be deployed, undeployed, started, and stopped dynamically,
without affecting other services in the environment.

We have built a system on top of OSGi to support our own specialised requirements. In
particular we have added the following three facilities.

5.1. The Client Shell

The client shell is a tiny (4 kilobyte) program that connects to the room’s main server via
HTTP and starts the Livespace software. It first copies and executes a single ‘bootstrap‘ OSGi
bundle provided by the server, which then identifies and starts the rest of the bundles
required for the host: these are also copied from the room server.

This approach means computers in a Livespace only require a one-off install of the client
shell software: further software upgrades are carried out by simply updating the bundles on
the server, which will be pushed out to clients next time they restart. The client shell can be
remotely restarted using the management system if required.

The client shell can optionally be installed as a system service, meaning it is always running
even when no one is logged into the computer. While this can be useful, especially on server

DSTO-TR-2188

26

13 At the time of writing there are at least three open source OSGi implementations
available: Knopflerfish (Knopflerfish 2007), Apache Felix (previously known as Oscar)
and Equinox (which provides the core of Eclipse’s plug-in architecture). We are currently
using Knopflerfish.

computers, there are a number of security issues to take into account when running bundles
with system privileges if they need to interact with the desktop.14 We have investigated
several ways to work around this, but so far the only feasible solution is to simply run the
client when the user logs on rather than as a service.

5.2. Configuration Management

This Livespace central configuration system determines both deployment (what bundles are
deployed to which hosts), and settings (the configuration parameters for each bundle). Both
of these types of configuration can be targeted in the following ways: they may be applied
globally to all hosts, targeted at a specific category of computer (for example, ‘desktop
computers on the table run Livepoint, server computers do not’), or targeted at a specific
host (e.g. ‘Ignite on the touch-screen panel host always runs on startup in full screen mode’).

The configuration for all hosts in a room is stored on the computer acting as the main server
for the room: the aggregated set of deployment and configuration parameters on this server
can be thought of as the room’s configuration. Since the configuration simply consists of
human-readable text files, it can be managed with a conventional software configuration
management (SCM) system.

A configuration is split into two layers: the default layer that we ship with the Livespace
distribution, which defines the standard set of configuration parameters; and a room-specific
layer that contains the overrides and additions needed to set up a specific room. The ‘room’
layer is logically merged on top of the default layer to generate the actual configuration, an
arrangement which allows us to manage changes to the configuration by simply modifying
the default layer in new releases. We also provide a configuration template with embedded
instructions that is designed to make initial setup easier.

5.3. The Desktop Dashboard

The desktop application components in a Livespace, such as the Clipboard, TeamThink and
Ignite are themselves OSGi bundles. On computers that interact with the room’s users we
deploy a bundle named the Dashboard that acts as a launcher for these desktop application
bundles. The dashboard appears as an icon in the Windows or Linux task bar, or in the
application menu on the Mac: clicking the icon shows a menu of applications that can be
launched (Figure 11).

DSTO-TR-2188

 27

14 These security issues are severe enough that some operating systems such as Mac OS X
and Windows Vista simply do not allow system services to interact with the desktop at
all.

Figure 11. The Dashboard menu in the Windows notification area

The items shown on the dashboard are controlled using the Livespace configuration system,
so they can be customised for the room. They can also be customised on a per-computer
basis, allowing different application sets for different categories of computer.

DSTO-TR-2188

28

6. Federation

The Livespaces system was designed from inception to support multiple connected rooms,
and to support connection of the services in those rooms. To this end, we have developed a
federation service, which is an optional component that allows two or more rooms to be
connected together, either permanently, or on an ad hoc basis.

As an example of what we mean by federation, consider the simplest scenario, where we
have two Livespaces in an single organisation that we wish to connect for a meeting.15 In this
scenario, we might choose to set up federation to do the following:

• Synchronise the clipboards of the two rooms so that pasted text in one room appears
in the clipboard of the other room.

• Connect the screen sharing application so that screens in one room can be shown on
screens in the other.

• Synchronise the meta applications between the rooms, so that an automated
presentation played in one room also plays in the other.

• Synchronise presence so that applications such as TeamThink, which rely on virtual
presence, can see all people in both rooms.

This is a good setup for two rooms in one organisation, but the federation setup would
probably be quite different in other scenarios. For example, you may not wish to synchronise
the meta applications in the general case. And in a situation where sensitive information may
be in use, you may not wish to allow screen sharing. For this reason, the federation system
allows a great deal of control over what resources are connected.

Internally, the Livespace federation service works by connecting entities on the Livespace
Bus in one of two ways:

Replication. In this mode, an entity in one room is synchronised with another: the
other entity becomes an exact replica of the primary entity. For example, this mode of
federation is used to synchronise the clipboards of two rooms.

Mirroring. In this mode, a selected set of entities in one room are ‘reflected’ into the
other. From the point of view of the other room, those entities appear as normal
entities: the federator ensures that changes in either room are reflected in the other.
This mode of federation is used for example, to reflect virtual presence information
from one room into another.

The federation system can be thought of as a replication proxy between the rooms: as such it
can also provide the extra management needed when proxying connections over a Wide
Area Network (WAN). The communication characteristics of a WAN can be very different

DSTO-TR-2188

 29

15 Federation across organisational or trust boundaries is complicated by the extra security
requirements implied. Although the Livespace federation system has a number of options
to control what goes across federation barriers, for simplicity we won’t use them in this
example.

from the Local Area Network (LAN) environment on which the Livespace Bus is generally
used: a WAN will often have far higher communications latency, variable bandwidth, lower
reliability and lower security than a LAN environment. The built-in defaults of the Livespace
Bus, including critical parameters such as response time-outs, are optimised for a LAN
environment: the federation service, as it proxies between buses, can adapt this to behaviour
better suited to higher-latency links. Its nature as an external, optional service also de-
couples the federated rooms, shielding them so that if the network between them goes down,
their local services remain unaffected.

DSTO-TR-2188

30

7. Applications

This section provides an overview of the applications that are presented to users of a
Livespace. These applications are typically launched from the Livespace Dashboard menu.

7.1. Clipboard

The Livespace clipboard has already been covered previously. It provides a simple
mechanism for quickly transferring text and URIs between participants.

7.2. TeamThink

TeamThink is a collaborative document editor. It is a simple tool that is most effective for
brainstorming or other collaborative authoring sessions between two to four people, where
each person has a task that can be done in parallel to the others. During a TeamThink
session, the meeting convenor will periodically synchronise with the others by stopping
them and pulling their inputs into a consolidated document.

A TeamThink session will generally consist of one or more cycles of the following steps:

Decide roles. Typically the meeting convenor is the Editor, others are Proposers.

Assign tasks. For example, the editor may ask each person to generate a list of key
points for a different section of a document.

Work in parallel. Each person enters their contribution in their text area. The Editor
may contribute also, or simply monitor other people’s progress.

Synchronise and consolidate. The editor calls a halt and interactively runs through
each person’s contributions, possibly modifying them. The editor then submits the text
contributed by each person into the appropriate part of the main document.

The end result is a consolidated plain text document which may then become the base of a
more formal document, presentation, or email.

The TeamThink window below in Figure 12 is showing a session with three participants.
Each person is running TeamThink on their computer and can see the others in the vertical
list on the left. Each person has a role and a personal area that they can enter text into at the
top of the left hand panel. There is generally one person in the Editor role who is responsible
for directing the meeting, with the others being Proposers (people can also opt to run in
Observer role to watch what’s going on).

DSTO-TR-2188

 31

Your name

Your role in the session

Your contribution box

Steven (participant)

Derek (participant)

Submits the contribution (above)
to the document (right)

The consolidated document

Figure 12. The TeamThink window

All of the information in the window is live: as people edit it, it will be updated on
everyone’s screen in real time. The Editor is the only one who can edit the main document,
and can even edit other people’s text if they want, although this is usually done during the
discussion and consolidation phase, to propose a change before submitting, for example.

TeamThink is a model example of how the Livespaces infrastructure can accelerate
prototyping new collaboration applications. The TeamThink concept actually came directly
from one of our military users just before an experimental exercise that was to be hosted in a
Livespace environment – we saw an opportunity and the first prototype was implemented in
under two days and successfully trialled during the exercise. TeamThink today still only
weighs in at a tiny 700 functional lines of Java code. This type of rapid development and
feedback would not have been possible without the running start provided by the
Livespaces infrastructure.

7.3. Screen Sharing

The Screen Sharing application allows the screen of a computer to be viewed live on another.
The screen can be sent either in display-only mode, or in fully interactive mode, where the
user viewing the screen can control the mouse and keyboard. The screen display can also be
scaled down or up, allowing multiple screens to be viewed at once, as shown in Figure 13
below.

DSTO-TR-2188

32

Figure 13. Screen sharing multiple screens to one display

To use the screen sharing application, the user activates it from the Dashboard menu, which
displays the window shown in the bottom right of the screenshot above (shown full size in
Figure 14). From this window the user can see what screens are already shared, create new
shared screens, and un-share existing ones. The ‘Share a screen’ button displays a list of
source and target computers to share from and to. For example, the window below shows
the user about to send their screen (‘ics-display-lft’) to a shared display computer (‘ics-
autm2’).

DSTO-TR-2188

 33

Figure 14. The screen sharing window

The screen sharing application uses Virtual Network Computing (VNC) technology to
perform the sharing over the network.

The current implementation of the screen sharing application is a prototype designed to
enable experimentation with the best ways to use it and the policies that are needed to
control it. There are clearly important awareness and privacy issues to consider when
deploying such a powerful way of monitoring any computer in a Livespace. One of the keys
issues to be addressed is how to make the people and services in the room aware of the
visibility of any given screen. For example, if you’re not aware that someone in a remote
room has forwarded your screen to one of their shared displays, you may be embarrassed
when writing an in-confidence text message to someone at the other end.16 Similarly, the
instant messaging client on the other end would ideally not flash such a personal message on
the screen when the display it is on is publicly visible.

7.4. Ignite

Ignite is the primary control panel for the room, and is the interface most users will see when
they first enter a Livespace. As such, Ignite is intended to provide an approachable interface
for controlling the room’s lights, displays and other devices, switching video and audio, and
playing meta applications.

Most Livespaces feature a touch-panel mounted on a wall at the entrance to the room
running Ignite in full-screen mode. Because of this, the Ignite interface is designed to make it

DSTO-TR-2188

34

16 The current version displays an icon in the computer’s notification area when the screen is
being shared to another computer. The details of where the screen is being shown are
available as a tooltip on the icon.

easily controlled via finger taps on a touch panel, although it can just as well be used on a
desktop with a standard mouse.

Figure 15. The initial Ignite start page leading on to Room Setup

The screen shots in Figure 15 above show the initial Ignite ‘Setup Livespace’ page leading to
the ‘Room Setup’ page, which provides a central menu of options for controlling the room.
From here the user can simply tap ‘Default Start Up’ to activate the default session, which
will typically turn lights on, start projectors, select the default video and audio forwarding,
etc. Alternatively, the user may select a custom session by tapping the ‘Sessions’ button,
which takes them to the page described in the next section.

Having the ‘Setup Livespace’ page as the starting point, rather than going directly to the
‘Room Setup’ page, has been the subject of some debate within the development team. The
idea is that the large, green ‘Setup Livespace’ button is easily recognisable from a distance:
even users completely unfamiliar with Ignite should notice it and walk over, at which point
there is only one option available ... tap the button. Successfully navigating to the setup page
in this way should convey the idea that green buttons are tap-able actions, and that an arrow
on a button means it takes you to another page.

DSTO-TR-2188

 35

7.4.1. The Sessions Page

Breadcrumb trail
showing navigation

history

Filter session list to
show only selected

categories

Available sessions

Figure 16. The Ignite Sessions page

The Sessions page (Figure 16) shows the list of all available pre-defined sessions, or a filtered
subset if the user selects one of the filter categories above the list. Tapping a session activates
it – the current session is always shown at the bottom left of the Ignite display. For example,
the user could tap the ‘AccessGrid VTC’ session to switch the computer that runs the
AccessGrid video teleconferencing software onto the centre display, start the AccessGrid
software, and switch lighting into the configuration best suited for a video teleconference.

Note also the ‘breadcrumb’ navigation trail at the top of the page – this allows you to see
how you got to the page, and allows you to go back by tapping one of the buttons. The user
may also shut down the room from any page by tapping the ‘Stop’ button that appears in the
top right corner.

DSTO-TR-2188

36

7.4.2. The Meta Applications Page

Figure 17. The Ignite meta applications page

The Meta Applications page (Figure 17) is similar to the sessions page, adding Play/Pause
and Stop buttons above a list of pre-defined meta applications. The similarity is no
coincidence since sessions are actually just a special type of meta application.

DSTO-TR-2188

 37

7.4.3. The Video Page

Available screens

Available computers
(red cross means not
connected to switch)

Line connects
computers to the
displays they are

switched to

Filters visible screens

Filters visible
computers

Figure 18. The Ignite video control page

The video controller page (Figure 18) is the user’s interface to the room’s video switching
capability. The displays in the room that can be targeted by the room’s video switch are
shown at the top, computers below, labelled by their current user (if any) and the computer’s
name. Computers that cannot be forwarded because they are not connected to the switch,
such as the laptop being used by ‘matt’ (top left computer in the figure), are shown with a
red cross over their icon. The yellow dotted lines show the current switching state, for
example the ‘Centre Projector’ display is currently showing the ‘ics-display-ctr’ computer.

The user can switch a computer’s video to a display by simply tapping the computer and the
display in any order, or restore the default video source of a display by double-tapping the
display.17 If a computer has several video outputs, as is the case when the computer’s video
card has several desktops, a menu appears to allow selection of the desired desktop.

The video switching described here should not be confused with the VNC-based software
screen sharing application described previously, even though they they provide some
overlapping functionality. Video switching is done over video cables connected to a
hardware video switch; screen sharing is done in software over the network – each approach
has strengths and weaknesses. In future we plan to explore the possibility of uniting these
two technologies, which would require a re-think of the user interface, since software

DSTO-TR-2188

38

17 The default video sources are customisable per session.

forwarding provides capabilities not possible with hardware switching, such as being able to
forward any computer to any computer.

7.4.4. Other Pages

Ignite also allows the user to select lighting scenes and control the audio mixer volume levels
(Figure 19). There is also an optional page for controlling the position of devices with
attitude control motors, such as the displays used in the HxI Braccetto CTW devices (HxI
2007) or video cameras.

Figure 19. The Lighting and Audio pages

7.5. Link Sharing

The Link Sharing applet provides a way for people to quickly open web pages or other
documents on several computers. The usual mode of use is to navigate to the page of interest
in a web browser18 and then drag the link from the browser’s location field onto the link
sharing window, which adds it to the list of shared links that can be seen in the screenshot in
Figure 20.

DSTO-TR-2188

 39

18 Links may be to a standard web page, office document, or a page in the Livespace
information repository.

Figure 20. The link sharing window

Once shared, a link can be opened on any number of computers by selecting it and choosing
‘Show Link’, which displays the window in Figure 21.

Figure 21. The link sharing ‘Show Link’ window

In the example, the link will be opened on the three selected computers when the ‘Show’
button is hit. The selected set of computers is preserved for the next time the window is
opened, assisting the common use case of opening several links on the same set of
computers.

The shared links persist until they’re deleted, or the ‘Cleanup’ button can used to manually
delete links older than a week, keeping at most twenty of the newest ones.

7.6. Sticker

Sticker provides an instant messaging and virtual presence service in a Livespace (Sticker
2007). It appears as a tickertape-style strip at the bottom of the screen: incoming messages
slide across on the tape similar to those on a stock ticker (Figure 22).

DSTO-TR-2188

40

Figure 22. Sticker on the desktop

People in a Livespace can send instant messages to anyone else or to pre-defined groups to
which several people may belong. Messages can also be generated by automated services,
such as news originating from RSS feeds or alerts notifying of events including document
changes, meeting reminders, etc.

As well as the ticker interface, which uses minimal desktop space and is well suited to short
news messages and announcements, Sticker also has a more traditional threaded message
list view which is better suited for ongoing conversations between people (Figure 23).

DSTO-TR-2188

 41

Figure 23. The Sticker Messages window

7.7. AccessGrid

AccessGrid (AccessGrid 2007) (Figure 24) is not a product of the Livespace project, but it has
become an indispensable part of the Livespace suite. AccessGrid provides scalable software
video teleconferencing capability. It is open source and available for a wide array of off-the-
shelf computing platforms, making it ideal for inter-organisational collaboration where
proprietary products may not be affordable, or where existing solutions don’t interoperate.

DSTO-TR-2188

42

Figure 24. An AccessGrid session

AccessGrid provides a set of virtual ‘Venues’. Entering a venue, assuming you have been
granted access, allows you to engage the other members of the venue in a video
teleconference. It also supports simple text messaging and some shared applications, such as
a shared presentation viewer.

The minimum hardware needed to use AccessGrid is a PC with an IP network connection, a
basic USB webcam (although video quality will be substantially improved by a higher-
quality video camera), and either an omni-directional microphone with echo cancelling, or a
microphone headset. AccessGrid transmits audio and video via multicast UDP/IP, so for
networks where this is not configured (and WAN environments) a multicast-to-unicast
bridge service will be needed. AccessGrid sessions are coordinated by a ‘Venue Server’, one
of which will need to be available on the same network.

AccessGrid has been superficially integrated into Livespaces so that an AccessGrid VTC can
be automatically launched as part of a Livespace session. In future we would like to
investigate how we can further integrate it by storing window layouts and other
configuration.

DSTO-TR-2188

 43

8. Administrative Applications

In addition to the applications listed above that support the end users of a Livespace, a
number of administrative tools are available which help the managers of a Livespace to
effectively configure and maintain the system.

8.1. Service Browser

The service browser application is an indispensable debugging and exploration aid,
providing a view of all entities published on the Livespace Bus. An example of its use has
previously been demonstrated in the ‘Livespace Bus’ section.

As well as providing a way to browse the entities in a Livespace, the browser can be used to
edit their state, which can be useful when exploring behaviour, or when no other interface is
available.

8.2. Media Viewer

The media viewer application is used to set up viewer portals that contain the media
service’s multimedia presentations on a computer’s desktop (Figure 25). The default is to
simply have one portal encompassing the entire desktop: however the media viewer can be
used to partition the space into several portals, allowing several media displays at once. For
example, a video display may be shown on one half of a screen and a PowerPoint
presentation on the other half.

Figure 25. The Media Viewer window

As well as potentially making better use of screen real-estate, this capability is crucial when
authoring meta applications on a single desktop, which are intended for a room with

DSTO-TR-2188

44

multiple displays – meta application developers can test their multi-display meta
applications all on one screen with several portals before deploying to the room.

8.3. The Meta Application Editor

The Meta Application editor is the authoring tool that is used to script the series of
coordinated actions that make up a meta application (Figure 26). It provides the ability to
browse and edit meta applications, and to start, pause and stop them.

Slide sequence for
display 1 (centre)

Slides for
display 2 (left)

Slides for right
display 3 (right)

The example
meta application

Figure 26. The Meta Application Editor

The editor’s window displays the room’s available meta applications in a list on the left hand
pane. Meta applications can be selected and expanded to see their structure, which consists
of a hierarchy of actions to be executed.

DSTO-TR-2188

 45

Figure 27. The meta application action types

The actions that can be executed by a meta application are shown as they appear in their
menus in Figure 27 above. The actions provide the ability to:

• Group a series of actions for sequential or parallel execution

• Link to another meta application

• Pause the execution of the application for a pre-set amount of time

• Display PowerPoint presentation slides, with optional control of stepping through their
transitions

• Play audio/visual media files

• Generate speech from text

• Open a web page or any other document via a URI

• Run an application on a given computer using a command line

• Control the room’s video switching (Display Config), audio mixing or lighting

• Set any property on any entity, which is the fallback when none of the other
specialised actions does what is needed

8.3.1. An Example Meta Application

Meta applications can be used for many purposes, but one common application is for
automated multi-media presentations, which are typically based on slides, with optional
supporting text-to-speech audio, still pictures, and video graphics. To illustrate how this sort
of meta application is scripted in the editor, we’ll run through the ‘Livespaces High Level
Overview’ meta application, which is a short presentation about Livespaces itself.

In the example meta application (selected in the screenshot above), there are two groups
inside a top-level group. The two child groups execute the two main phases of the
presentation one after the other: the main presentation and a conclusion. The first group has
three actions that run Microsoft PowerPoint slide presentations simultaneously, each on a
different display in the room. The second group, which runs when the first is complete,
concludes the presentation by displaying a ‘Questions?’ slide and some graphics.

DSTO-TR-2188

46

Expanding the main presentation group shows the structure in Figure 28 below.

Play speech for
three bullet points

on display 1

Advance next
bullet point on

display 1, after one
second

Advance slides on
all three displays

Advance next
slide on display 2

Figure 28. The internal structure of a meta application

The first screenshot showed how three slide presentations were set up to drive the three
displays.19 In the second screenshot you can see how the rest of meta application is driven:
by a series of actions under the main slide-show action.

After showing the first slide of the three slide packs on the three displays, the meta
application proceeds as follows:

• The display 1 introduction slide is accompanied by a voice-over generated by a text-
to-speech (TTS) engine. In this case the TTS is pre-generated and stored as audio files,
but it could also be generated on-the-fly.

• After the initial bullet point is shown and the introduction read, the main
presentation is advanced one step to show the next bullet point, followed by a voice-
over for the new text.

• All three slide shows are then advanced to the next slide using a parallel group with
three ‘step’ actions. Note in the screenshot how the step actions are targeted at a
display using the ‘priority’ field – although the step actions are children of the

DSTO-TR-2188

 47

19 Meta application displays are referred to by number (1, 2, 3, ...), which reflect their relative
priority in the room. The centre display is usually display 1, left is 2, right is 3, etc. If a
room does not have a display mapped for a priority (for example, if it only has two main
displays), the actions for that priority are not executed. Equally, several displays could be
mapped to the same number in order to show the same information at the same time.

display 1 presentation, they can target the other displays. This is a useful way to
coordinate actions on separate displays.

The meta application then continues until stopped or it completes.

8.4. OSGi Administration

The OSGi Administration application controls the OSGi service bundles running on any
computer in the Livespace (Figure 29). The computers running the Livespace OSGi client
software are shown in a list on the left – selecting a computer shows its installed service
bundles and their current state.

Computers in the
Livespace

OSGi services
running on the

selected computer

Figure 29. The OSGi service administration window

From this window, services can be started and stopped, reloaded (which forces the bundle to
be re-loaded from the server), or added and removed. The administration tool can also
instruct clients to restart themselves, restarting an individual client, a category of client
(servers, displays, etc.), or simply all clients in the room.

Coupled with the centralised deployment and configuration system described earlier, this
remote administration capability has proven very effective for managing several rooms
containing many devices.

DSTO-TR-2188

48

9. Livespace Hardware Components

This section describes in some detail the sorts of devices that we have employed in a
Livespace.

Three main displays
(projected)

Speakers

Ambient displays

Gooseneck
microphones

Laptop client PC

Small form factor PC
with tablet display

Smart whiteboard
(digital sketch capture)

Room control console
(attached to rack KVM)

Audio visual
components

Server computers

Automated lighting

Touch-screen control panel

Others

Figure 30. Components of the Intense Collaboration Space

Figure 30 shows an isometric cutaway view of the Intense Collaboration Space (ICS) at
DSTO. The ICS is our main fixed experimental facility and contains examples of nearly all
the off-the-shelf technologies we’ve identified as potentially useful in a Livespace. The key
components in the ICS are discussed below.

Client computers. We have trialled two sorts of computer for personal computing on
the meeting table: laptops and small form-factor PCs. The key advantage of a laptop is
portability, giving the ability to pick it up and move it around the room: however the
fact that the laptop needs to be plugged into heavy cables means that this portability is
mostly lost in the ICS – the combination of power connection, video cable (if we want
to send its video to the main displays), and network cable (when being used in an
environment where WiFi is not an option) makes for a formidable physical and
psychological barrier to mobility.

Small form factor PCs, which are much cheaper than laptops, and generally faster and
more reliable, have turned out to be a better choice for a permanent facility such as the
ICS. When coupled with a digitising tablet (such as those sold by Wacom) and a

DSTO-TR-2188

 49

suitable operating system such Windows XP Tablet Edition or Mac OS X, these PCs can
also accept pen input if required. PC units can either be deployed on the table as in the
ICS, or stored in a rack, with their keyboard, mouse and video extended out to the
table via a KVM extender solution.

Server computers. A room like the ICS will only need a single server computer, which
provides the core software services (bundle deployment, event routing, HTTP/
WebDAV server and shared file system) needed for a Livespace. The server may also
act as a driver for peripheral devices, such as the Clipsal C-Bus automation system
used for lighting control in the ICS, or to manage one or more serial port interfaces
used to control projectors, etc.

Shared displays. Large scale, shared displays provide an important space for
displaying information and collaborating in a Livespace. Depending on the size of the
room, shared displays can be generated by projectors or large plasma/LCD screens. In
the ICS we use three ceiling-mounted consumer-grade projectors throwing their
displays onto the wall in the front of the room.

Optionally, one or more ‘ambient’ displays might be deployed in the room: these
displays are typically smaller and less centrally located than the shared displays.
Ambient displays are often used for showing background information, such as status
displays, tickertape news, and virtual presence rosters.

Display computers. If a Livespace has shared displays, it can also be useful to have one
or more computers dedicated to driving those displays – the alternative is to be limited
to switching the video from the client computers to the main displays. Two common
configurations are to have one computer per display (a separate desktop per display),
or one computer with several desktops driving all the displays (one desktop stretched
over several displays).

In the ICS we have three display computers, one per projector, and typically use the
one-desktop-per-display arrangement. However, since the centre display server has a
triple-head video card, it can be reconfigured into the single-desktop arrangement as
needed.

The single desktop model has the advantage of allowing windows to be dragged across
displays. The main disadvantage is many applications are badly-behaved in the
presence of multiple displays, showing pop-up windows on the wrong display,
miscalculating the display size, and other problems.

Audio/Video switch. The audio and video outputs of the computers in the room can
be connected to a switch in the room’s equipment rack, and automatically controlled
by Livespace driver services. This provides the ability to switch video from the client
and display computers to the shared displays, as well as switch, mix, and set the
volume of audio in the room.

Keyboard/Video/Mouse switch. In the ICS we have a dedicated LCD display and
keyboard console connected to a KVM, which can be used to control the server and

DSTO-TR-2188

50

display computers in the room. The KVM console is the natural place for the room’s
administrator to operate from.

Room control panel. Ideally an ICS-like room will have a panel at the entrance running
Ignite to make it easy to set up the room. This panel can be a simple LCD touch screen
mounted just inside the entrance, connected to a computer in the rack which is running
Ignite in full-screen ‘kiosk’ mode. The computer driving the display can either be a
dedicated, low spec PC, or the room’s main server, since its display is generally not
used for anything else when not being employed by the room’s administrator. The
touch screen we use in the ICS connects to the computer via USB and generates mouse
inputs in response to finger drags and taps.

Lights. The ICS lighting is provided by down-lights and conventional fluorescent strip
lighting, both of which can be automatically controlled via a C-Bus automation unit.
The key benefit of automated lighting is it allows Livespace sessions and meta
applications to switch room lighting scenes, for example to switch lights on when the
room starts, change to presentation lighting for automated briefs, and then change back
to an appropriate scheme for a meeting.

Smart whiteboards. The ICS includes four whiteboards mounted on sliding brackets,
to which smart whiteboard digitisers have been attached to capture sketches.20 When
someone starts drawing on a board, an associated application launches on the display
on the same side of the room as the board and shows the captured diagram. The result
can be saved or printed from the application. Some models can also provide optical
character recognition of any hand-written text.

Modular Table. The main meeting table in the ICS is composed of seven re-
configurable modules, which can be arranged into several shapes as needed (Figure
31).21 The tables are also finished with a smooth lacquer that can be drawn on with
conventional whiteboard markers, so people can simply scribble on the table if that
suits them – typically these sorts of outputs are captured with a digital camera after the
meeting.

DSTO-TR-2188

 51

20 To date, we have trialled two types of whiteboard capture device, eBeam (eBeam 2007)
and Mimio (Mimio 2007).

21 In theory anyway: in practice, the sheer number of cables and wires connected to the
devices on the table, and between the table modules, mean that re-configuring the table is
a rare event.

Figure 31. Some of the arrangements possible with the ICS modular desks

Video conferencing. We have experimented with several types of video conferencing
technology in the ICS: AccessGrid and ConferenceXP (ConferenceXP 2007), both of
which are software packages that run on off-the-shelf PC hardware (typically a PC plus
USB camera and echo cancelling microphone or headset) and communicate over IP,
and a Tandberg MXP6000 hardware unit, which provides a turnkey solution that can
use IP or ISDN.22

While hardware solutions offer advantages in ease of setup and use, and often provide
better video quality, they are also an order of magnitude more expensive to deploy
than software solutions, and are far less customisable – for this reason, in an
experimental space such as the ICS, we have found the software solutions to be more
appropriate. The free software solutions are also easier to deploy when collaborating
with third parties who may not have the budget for a hardware unit.

Audio capture. Various microphones (headset, gooseneck, and table-mounted omni-
directional) are available in the room and, coupled with an audio switch/mixer, echo
canceller and audio digitiser, these can be used for various purposes including VTC,
audio recording and speech-to-text transcription.

Other infrastructure. Wires and cables are the bane of a facility with a large number of
electronic devices.23 In the ICS we have tried to mitigate the problem by running the
majority of wires under the raised floor – even so, the tables become effectively bolted
to the floor once all the cables are connected, so strategies for reducing the number of
cables going to the table are high on the requirements list for future iterations.

DSTO-TR-2188

52

22 We have also experimented with other consumer-oriented products such as Skype but, as
discussed in the introduction to this paper, most of these do not work well (or at all) in
multi-room/multi-participant scenarios.

23 This situation is exacerbated in the Defence classified domain where wireless
communications are usually not permitted.

One way to reduce the cabling that has already been employed in the newer Battlelabs
is to move the client computers off the table into a rack, and use a Keyboard/Video/
Mouse (KVM) extender solution to connect the screen, keyboard and mouse on the
table via a dedicated CAT 5 twisted pair cable or via the network over IP.24 This
eliminates the two thickest cables (power and video), replacing them with single, thin
CAT 5 wire terminated in a KVM box on the table.

DSTO-TR-2188

 53

24 In a classified environment this arrangement also has the advantage that all computing
devices can be housed in a single secure rack, or even located in a secure facility away
from the Livespace.

10. Foundation Technologies

The Livespaces environment has been engineered from existing DSTO software components
and a number of components from third parties. The platform is Java-based, with the Eclipse
Rich Client Platform (Eclipse 2007) providing the framework for the desktop applications.
Wherever possible we have selected open source components to reduce licensing issues on
deployment and to allow us to customise the software to our needs. This choice of
technologies enables us to deploy Livespaces in a wide variety of environments, which
widens the scope for experimentation and helps us to employ best-of-breed technology
wherever we can find it.

Figure 32 below shows the core Livespace software component stack, and the key supporting
3rd party components that we build on to provide essential services. The only 3rd party
components in this diagram that are not open source are the Livespace Bus itself (and its
supporting framework, the DSTO Foundation), QuickTime, and the Windows and Mac OS X
operating systems.

Supporting componentsCore technologies

Java 5

Elvin/Avis

SWT

Eclipse RCP

Apache Jackrabbit
Document repository

Knop!er"sh OSGi

Synergy
Remote screen control

QuickTime
Media playback

Windows
Mac OS X

Linux
Other Unix

Jetty
HTTP server

VNC
Remote terminal access

AccessGrid
Video teleconferencing

DSTO Foundation
Framework

Livespace Bus

Figure 32. Technology foundations for Livespaces

DSTO-TR-2188

54

11. History

Livespaces arose out of DSTO research into supporting intense collaboration during the
planning phase of a military operation. In this sort of collaboration, expert planners are
called in to define and evaluate the best courses of action to achieve their commander’s
stated intent for an operation. The planning phase of an operation usually has a fixed time
limit, especially in the disaster rescue and peacekeeping missions often required of the
Australian Defence Force (ADF). It requires the staff to collaborate at a high level for a
sustained period in order to make most effective use of their limited time and (often)
incomplete information.

The Livespaces program draws from previous work in the Computer Supported Cooperative
Work research area in defining the concept of Intelligent Interactive Workspaces (Vernik et al.
2003). This research looked into methods of supporting collaboration between multiple
participants in an enterprise, rather than just supporting the work practices of individuals.

Prototyping initiated with the Augmented Synchronised Planning Spaces (Ausplans) project,
which was a joint effort between DSTO, the University of South Australia (UniSA) and the
Distributed Systems Technology Centre (DSTC) (R. Vernik et al. 2004; Evdokiou et al. 2004).
The Ausplans project began with a prototype laboratory built by combining technologies
from MIT (Meta Glue), Stanford (iROS), and the DSTC (Elvin and ODSI): the resulting
prototype was the first ‘LiveSpace’, although the underlying technology was very different
to what came later.

Several foundational experiments were conducted using the prototype smart meeting space
at UniSA with the advice and participation of experienced planning staff from Deployable
Joint Force Headquarters (DJFHQ), based in Brisbane. Based on the outcome of these
experiments and our experiences gained in integrating the prototype technology at UniSA,
work began on developing a fully-integrated system to support smart meeting rooms that
would meet the requirements of ADF planning staff – this development marked the start of
the Livespaces technology as it is described in this document.

Although the Livespaces research and development has been driven by the needs of the
ADF, the kinds of collaboration it supports clearly have general application. The cross-
organisation research being conducted as part of the HxI Braccetto (Braccetto, 2008) project
aims to identify how best to apply the research results and technologies across domains.

DSTO-TR-2188

 55

11.1. Livespaces Timeline

2002 Initial research at University of South Australia (Vernik, Bright, Blackburn) with
experiments using MIT Meta Glue for future smart teamspaces. Based on iROS
(Stanford) & ODSI/Elvin (DSTC)

2003 First Livespace environment established at UniSA. Relationship established with
Stanford University and the use of iROS as the operating environment with
workspaces and ODSI/Elvin for enterprise integration. Augmented Synchronised
Planning Spaces (Ausplans) project started.

2004 DSTC SA established. ICS built at DSTO Edinburgh. Livespaces used as part of the
Augmented Synchronised Planning Spaces project. First experimentation using
actual planning teams. Research conducted into workspace session interfaces and
workspace simulation. Session interface research leads to first Ignite prototype.
Development of new Livespace operating environment started.

2005 DSTC Ausplans project complete. DSTO FOCAL facility enhanced with Livespaces
capabilities. New Livespace labs established at Deployable Joint Force
Headquarters (DJFHQ) in Brisbane. Final experimentation undertaken as part of
Exercise Pozieres Development ’05 conducted at DJFHQ in November.

2006 DSTO Livespace operating environment in place, remaining iROS and ODSI
components retired. Livespaces integrated as part of the HxI Braccetto project.
Command TeamNets established based on Livespaces technologies and concepts.

2007 Coalition TeamNets established to support coalition experimentation. New
Composable Collaboration Systems laboratory established. Livespaces 1.0 and 1.1
baselined and deployed to newly-established Australian Battlelabs and Canadian
DRDC.

DSTO-TR-2188

56

12. Current Status And Future Work

As of November 2007, Livespaces is about to reach its second major baseline, release 1.1.
While the 1.0 baseline was targeted at quality and ease of deployment, release 1.1 represents
a series of incremental improvements across all components, as well as two major new
components: a revamped Ignite interface and the Information Repository.

The Livespaces 1.0 baseline has been deployed to several Defence sites around Australia, and
three installations established by DRDC in Canada. It has also become part of the framework
supporting the HxI Braccetto collaborative telepresence workstations (CTWs), operated by
DSTO, CSIRO and NICTA.

While we have many items of work scheduled for an anticipated 1.2 baseline, the Livespaces
infrastructure has reached a fairly mature and stable state, and future work on Livespaces
will now be dependent on outcomes of our research into user interfaces for distributed
awareness and collaboration. In terms of purely extending Livespaces capabilities, we would
like to explore more sophisticated interfaces for controlling Livespaces, aimed at providing a
holistic visualisation of rooms, people and services, and allowing them to be manipulated
directly within the interface. We have already begun exploring, via a series of storyboards,
advanced interfaces for visualising and managing multiple-room screen forwarding.

While we currently rely on bilateral agreements between our research partners for
collaboration, we would like to stimulate wider interest and research in this area. One way to
achieve this would be to make Livespaces available under an open source licensing
arrangement, an option we are actively investigating. As well as potentially giving
Livespaces a greater exposure to potential collaborators and Defence contractors, we are
aware that developing Livespaces to its current level would not have been possible without
the support of a number of open source projects, and making Livespaces itself available as
open source would be the logical way of making a contribution back.

DSTO-TR-2188

 57

Key Contributors

A number of people have contributed to the research and development that has resulted in
Livespaces.

Dr. Rudi Vernik. Research leader.

Matthew Phillips. Lead developer. Designer of the Livespace Bus and core services.

Derek Weber. Key developer. Responsibilities include screen sharing and lighting
control.

Steven Johnson. Key developer. Responsibilities include the Session Manager and
Information Repository.

Peter Evdokiou. Researcher.

David Karunaratne. Livespaces Developer. Responsibilities include the Meta
Application system and link sharing.

Acknowledgements

The style and content in this paper has greatly benefited from the review and advice of Derek
Weber, David Karunaratne, and Tim Pattison.

DSTO-TR-2188

58

References

AccessGrid (2007) AccessGrid.org, viewed 8 October 2007, http://www.accessgrid.org.

Apache (2007) Apache Jackrabbit, viewed 8 October 2007, http://jackrabbit.apache.org/.

Beatty, J., Brodsky, S., Nally, M., Patel, R. (2003) ‘Next-Generation Data Programming: Service
Data Objects’, whitepaper, available at http://www.bea.com/dev2dev/assets/sdo/Next-
Gen-Data-Programming-Whitepaper.pdf.

Bond, A. (2001) ‘ODSI: Enterprise Service Co-ordination’, Conference on Distributed Objects and
Applications (DOA-01), Rome.

Braccetto (2008), HxI [Braccetto], viewed 8 April 2008, http://www.hxi.org.au/index.php?
option=com_content&task=blogcategory&id=26&Itemid=57.

Bright, D., Vernik, R.J. (2004) ‘Livespaces: an interactive ubiquitous workspace architecture
for the enterprise’, Lecture Notes in Computer Science, Springer Verlag, Vol. 3207, p. 982-993.

C-Bus (2007) Clipsal Integrated Systems, viewed 8 October 2007, http://www3.clipsal.com/
cis/portal/.

Coen, M., Phillips, B., Warshawsky, N., Weisman, L., Peters, S., Finin, P. (1999) ‘Meeting the
Computational Needs of Intelligent Environments: The Meta-Glue System’, MANSE'99,
Dublin.

ConferenceXP (2007) Microsoft Research Conference XP Project, viewed October 8, 2007,
http://www.conferencexp.net/.

eBeam (2007) eBeam – Interactive Whiteboard Technology, viewed 8 October 2007, http://
www.e-beam.com.

Eclipse (2007) Eclipse Rich Client Platform, viewed October 8, 2007, http://www.eclipse.org/
home/categories/rcp.php.

Evdokiou, P., Thomas, B.T., & Vernik, R.J. (2004) ‘Augmented Synchronised Planning Spaces’,
The Ninth International Command and Control Research and Technology Symposium, Copenhagen,
Denmark.

Fielding, R. (2000) ‘Architectural Styles and the Design of Network-based Software
Architectures’, PhD dissertation, School of Information and Computer Science, University Of
California, Irvine.

Fielding, R. & Taylor, R. (2002) ’Principled design of the modern Web architecture’, ACM
Transactions on Internet Technology (TOIT), Volume 2, Issue 2, pages 115-150.

Gelernter, D. (1985). ‘Generative communication in linda’, ACM Transactions on Programming
Languages and Systems, 7(1):80–112, January 1985.

DSTO-TR-2188

 59

http://www.accessgrid.org
http://www.accessgrid.org
http://jackrabbit.apache.org
http://jackrabbit.apache.org
http://www.bea.com/dev2dev/assets/sdo/Next-Gen-Data-Programming-Whitepaper.pdf
http://www.bea.com/dev2dev/assets/sdo/Next-Gen-Data-Programming-Whitepaper.pdf
http://www.bea.com/dev2dev/assets/sdo/Next-Gen-Data-Programming-Whitepaper.pdf
http://www.bea.com/dev2dev/assets/sdo/Next-Gen-Data-Programming-Whitepaper.pdf
http://www.hxi.org.au/index.php?option=com_content&task=blogcategory&id=26&Itemid=57
http://www.hxi.org.au/index.php?option=com_content&task=blogcategory&id=26&Itemid=57
http://www.hxi.org.au/index.php?option=com_content&task=blogcategory&id=26&Itemid=57
http://www.hxi.org.au/index.php?option=com_content&task=blogcategory&id=26&Itemid=57
http://www3.clipsal.com/cis/portal/
http://www3.clipsal.com/cis/portal/
http://www3.clipsal.com/cis/portal/
http://www3.clipsal.com/cis/portal/
http://www.conferencexp.net
http://www.conferencexp.net
http://www.e-beam.com
http://www.e-beam.com
http://www.e-beam.com
http://www.e-beam.com
http://www.eclipse.org/home/categories/rcp.php
http://www.eclipse.org/home/categories/rcp.php
http://www.eclipse.org/home/categories/rcp.php
http://www.eclipse.org/home/categories/rcp.php

Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J.-J., Nielsen, H.F. (2003), ‘SOAP Version
1.2 Part 1: Messaging Framework’, World Wide Web Consortium, Boston, USA, 2003.

HxI (2007) HxI Braccetto, viewed October 8, 2007, http://www.hxi.org.au/.

JCR (2007) Java Specification Requests – JCR 170, viewed October 8, 2007, http://jcp.org/en/
jsr/detail?id=170.

Johanson, B., Hutchins, G., Winograd, T. & Stone, M. (2002) ‘PointRight: Experience with
Flexible Input Redirection in Interactive Workspaces’, UIST-2002: Proceedings of User Interface
Software & Technology.

Johanson, B., Ponnekanti, S., Kiciman, E., Sengupta. C., Fox, A. (2001) ‘System Support for
Interactive Workspaces’, Unpublished, available at http://graphics.stanford.edu/papers/
iwork-sosp18/.

Knopflerf ish (2007) , Knopf ler f i sh OSGi , v iewed October 8 , 2007, http://
www.knopflerfish.org/.

Mimio (2007), Interactive whiteboard, virtual whiteboard, whiteboards, Sanford Brands – mimio,
viewed 8 October 2007, http://www.mimio.com.

OSGi (2007), OSGi Alliance, viewed October 8, 2007, http://www.osgi.org/.

Segall, B., Arnold, D., Boot, J., Henderson, M., & Phelps, T. (2000) ‘Content based routing
with Elvin4’, Proc. AUUG2K, Canberra, Australia.

Sticker (2007) Sticker home page, viewed October 8 2007, http://tickertape.org/projects/
sticker/.

Synergy (2007) Synergy project, viewed October 8, 2007, http://synergy2.sourceforge.net/.

Tanenbaum, A. & van Renesse, R. (1988) ‘A critique of the remote procedure call paradigm’,
In R. Speth, editor, Proceedings of the EUTECO 88 Conference, pages 775-783, Vienna, Austria,
April 1988. Elsevier Science Publishers B. V. (North-Holland).

Vernik, R., Blackburn, T. & Bright, D. (2003) ‘Extending Interactive Intelligent Workspace
Architectures with Enterprise Services’, Proceedings of Evolve2003, Enterprise Information
Integration, Sydney, Australia.

Vernik, R.J., Johnson, S., Bright, D. & Vernik, M. (2004) ‘Using Workspace Simulation to
Support the Evaluation of LiveSpaces for Synchronised Planning Activities’, SimTecT 2004,
Canberra, Australia.

Waldo, J. (1999) ‘The Jini Architecture for Network-centric Computing’, Communications of the
ACM, pages 76-82, July 1999.

Waldo, J., Wyant, G., Wollrath, A., & Kendall, S. (1994) ‘A note on distributed computing’,
Tech. Rep. SMLI TR-94-29, Sun Microsystems Laboratories, Inc., Nov. 1994.

DSTO-TR-2188

60

http://www.hxi.org.au
http://www.hxi.org.au
http://jcp.org/en/jsr/detail?id=170
http://jcp.org/en/jsr/detail?id=170
http://jcp.org/en/jsr/detail?id=170
http://jcp.org/en/jsr/detail?id=170
http://graphics.stanford.edu/papers/iwork-sosp18/
http://graphics.stanford.edu/papers/iwork-sosp18/
http://graphics.stanford.edu/papers/iwork-sosp18/
http://graphics.stanford.edu/papers/iwork-sosp18/
http://www.knopflerfish.org
http://www.knopflerfish.org
http://www.knopflerfish.org
http://www.knopflerfish.org
http://www.mimio.com
http://www.mimio.com
http://www.osgi.org
http://www.osgi.org
http://tickertape.org/projects/sticker/
http://tickertape.org/projects/sticker/
http://tickertape.org/projects/sticker/
http://tickertape.org/projects/sticker/
http://synergy2.sourceforge.net
http://synergy2.sourceforge.net

X10 (2007) About X10, viewed October 8 2007, http://www.smarthome.com/about_x10.html.

DSTO-TR-2188

 61

http://www.smarthome.com/about_x10.html
http://www.smarthome.com/about_x10.html

Page classification: UNCLASSIFIED

DEFENCE SCIENCE AND TECHNOLOGY
ORGANISATION

DOCUMENT CONTROL DATA 1. PRIVACY MARKING/CAVEAT (OF DOCUMENT)
  UNCLASSIFIED  

2. TITLE

Livespace Technical Overview

3. SECURITY CLASSIFICATION (FOR UNCLASSIFIED REPORTS THAT
ARE LIMITED RELEASE USE (L) NEXT TO DOCUMENT
CLASSIFICATION)

 Document U
 Title U
 Abstract U

4. AUTHOR(S)

Matthew Phillips

5. CORPORATE AUTHOR

Defence Science and Technology Organisation
PO Box 1500
Edinburgh South Australia 5111
Australia

6a. DSTO NUMBER
DSTO-TR-2188

6b. AR NUMBER
AR-014-287

6c. TYPE OF REPORT
Technical Report

7. DOCUMENT DATE
October 2008

8. FILE NUMBER
2007/1154298/1

9. TASK NUMBER
07/248

10. TASK
SPONSOR
DSTO

11. NO. OF PAGES
61

12. NO. OF REFERENCES
28

13. URL on the World Wide Web

http://www.dsto.defence.gov.au/
corporate/reports/DSTO-TR-2188.pdf

14. RELEASE AUTHORITY

Chief, Command, Control, Communications and Intelligence Division

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT

Approved for public release

OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE, PO BOX 1500,
EDINBURGH, SA 5111
16. DELIBERATE ANNOUNCEMENT

No Limitations

17. CITATION IN OTHER DOCUMENTS

18. DSTO RESEARCH LIBRARY THESAURUS http://web-vic.dsto.defence.gov.au/workareas/library/resources/
dsto_thesaurus.htm

Distributed collaboration environments
Distributed systems
Human computer interaction
Application software
19. ABSTRACT
This report describes Livespaces, a technology framework developed by DSTO to support advanced meeting
spaces and distributed multi-site collaboration. It discusses the rationale behind the Livespace concept, the
history of the research and development that lead up to the Livespaces approach, and, in particular, its roots in
providing support for the intense collaboration sessions often required by ADF operational planning specialists.
The novel technical architecture employed by the Livespaces operating environment is described, as well as the
new capabilities it enables. The report also discusses possible configurations for a Livespace and various
applicable off-the-shelf hardware technologies and their trade-offs.

Page classification: UNCLASSIFIED

http://www.dsto.defence.gov.au/corporate/reports/DSTO-TR-XXXX.pdf
http://www.dsto.defence.gov.au/corporate/reports/DSTO-TR-XXXX.pdf
http://www.dsto.defence.gov.au/corporate/reports/DSTO-TR-XXXX.pdf
http://www.dsto.defence.gov.au/corporate/reports/DSTO-TR-XXXX.pdf
http://web-vic.dsto.defence.gov.au/workareas/library/resources/dsto_thesaurus.htm
http://web-vic.dsto.defence.gov.au/workareas/library/resources/dsto_thesaurus.htm
http://web-vic.dsto.defence.gov.au/workareas/library/resources/dsto_thesaurus.htm
http://web-vic.dsto.defence.gov.au/workareas/library/resources/dsto_thesaurus.htm

	ABSTRACT
	Executive Summary
	Author
	Contents
	Abbreviations
	1. Introduction
	1.1. What Is A Livespace?
	1.2. The Intense Collaboration Space
	1.3. A User’s View Of A Livespace
	2. Why Do We Need Livespaces?
	3. How To Create A Livespace
	3.1. The Livespace Architecture
	3.2. The Livespace Bus
	3.3. Visibility And Understanding Via Browsing
	3.4. Replication And Synchronisation
	3.5. The Livespace Bus Development Model
	3.6. Find, Monitor, Update, Delete
	3.7. The Livespace Bus Compared To Other Technologies
	4. Livespace Core Services
	4.1. Room Management Services
	4.2. Application Services
	5. Deployment
	5.1. The Client Shell
	5.2. Configuration Management
	5.3. The Desktop Dashboard
	6. Federation
	7. Applications
	7.1. Clipboard
	7.2. TeamThink
	7.3. Screen Sharing
	7.4. Ignite
	7.5. Link Sharing
	7.6. Sticker
	7.7. AccessGrid
	8. Administrative Applications
	8.1. Service Browser
	8.2. Media Viewer
	8.3. The Meta Application Editor
	8.4. OSGi Administration
	9. Livespace Hardware Components
	10. Foundation Technologies
	11. History
	11.1. Livespaces Timeline
	12. Current Status And Future Work
	Key Contributors
	Acknowledgements
	References
	DISTRIBUTION LIST
	DOCUMENT CONTROL DATA

