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ABSTRACT   
 
The Information Fusion Panel within The Technical Cooperation Program (TTCP) is developing 
algorithms to perform machine-based situation assessment to assist human operators in complex 
situations. This report proposes a technique to measure the effectiveness of these algorithms in a 
simulation environment where ground truth is well-defined. In addition, this report models the 
situation assessment algorithms abstractly using random inference networks, and examines how 
errors (damage) spread through the inference networks. This models deficiencies in the object 
assessment as input to the situation assessment algorithm. 
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Evaluation of the Effectiveness of  
Machine-based Situation Assessment  

� Preliminary Work  
 
 

Executive Summary  
 
The Information Fusion Panel within The Technical Cooperation Panel (TTCP) is 
developing algorithms for machine-based situation assessment to assist the human 
operator in complex situations. This report describes a technique that could be employed 
to evaluate the effectiveness of these algorithms in a simulation environment where the 
ground truth is well-defined. The Information Fusion Panel can demonstrate and test the 
algorithms by simulating information fusion in the fictional �North Atlantis� scenario.  
 
This report contributes directly to fulfilment of a TTCP milestone. 
 
In the TTCP experiments the ground truth and situation assessment will be described 
using the same ontological framework. However this report also briefly discusses the 
more general case where different ontological frameworks are employed for the ground 
truth and situation assessment. 
 
The technique for evaluating the algorithms involves a process of aligning the situation 
assessment more closely to the ground truth over a number of iterations. Propositions 
where the situation assessment starts to diverge from the ground truth are identified, and 
then the technique tries to �prune� these branches of divergence. The technique utilises 
the F-value metric described in the scientific literature. The F-value is a set-theoretic 
measure that facilitates comparison of the output propositions from the situation 
assessment with those from the ground truth. The evaluation technique seeks to measure 
how quickly the F-value converges to its maximum value of unity over successive 
iterations, indicating that the situation assessment has converged to the ground truth.  
 
During the comparison of the situation assessment and ground truth, the matching 
propositions from the two sets of output propositions are identified. This report discusses 
techniques for performing partial matching of output propositions from the situation 
assessment and ground truth, e.g. when they differ only in a single argument. It addresses 
partial matching for both cases where the differing argument is a discrete variable or a 
continuous variable.  
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Further work is required to test this evaluation technique prior to it being employed in 
TTCP experiments, especially to understand better the conditions under which the F-value 
converges to unity. 
 
Errors in the input object assessment or the situation assessment algorithms can cause 
cascading errors through the inference networks. Complex networks have received 
attention recently in a diverse range of disciplines including the physical sciences, 
biological sciences, economics and sociology. Examples of complex networks are 
electricity grids, the Internet, neurons in the human brain, the global economy, and 
friendship networks. One issue studied has been that of damage spreading through 
complex networks, e.g. viruses spreading over the Internet.  
 
This report describes how random inference networks were constructed to abstractly 
model the situation assessment process, and to examine how errors (damage) spread 
through such networks. The random inference networks consist of: (a) input propositions 
that model inputs to the situation assessment such as the object assessment, (b) inference 
rules, and (c) output propositions. This approach has similarity to the random Boolean 
networks described in the scientific literature that abstractly model gene regulation and 
control.  
 
The F-value metric was used to measure how a single perturbation spread through a 
random inference network. The results achieved thus far are only very preliminary, but 
they show that damage spreading depends on:  

(a) the degree of connectedness between the rules and other predicates in the 
network, and 

(b) the type of Boolean functions that are employed in the network.  
 
Further work is needed to produce a more complete set of results, and to leverage off the 
significant body of research into damage spreading in random Boolean networks. 
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1. Introduction  

The most dominant model of data fusion is the Joint Directors of Laboratories (JDL) model [1, 
2]. The three levels of data fusion from that model that are most relevant to this report are: 
[6, 7] 
1. Level 1. Object assessments are stored representations of objects. They are usually 

partitioned into data registration, data association, position attribute estimation, and 
identification.  

2. Level 2. Situation assessments are stored representations of relations between objects. 
Situation assessment fuses the kinematic and temporal characteristics of the data to create 
a description of the situation in terms of indications of warnings, plans of action, and 
inferences about the distribution of forces and flow of information. 

3. Level 3. Threat assessments are stored representations of effects between objects. They 
assess the threat posed by the enemy being tracked. This may also include an assessment 
of the friendly forces’ ability to engage the enemy effectively. 

 
This report is primarily concerned with algorithms that are developed to perform machine-
based situation assessments, thus assisting the human operators in complex military 
situations. In particular, this report is concerned with how to assess the effectiveness of these 
algorithms. 
 
In relation to machine-based situation assessment, there needs to be a way to represent the 
domain of interest in a meaningful way. Accordingly, reference 3 posed the Semantic 
Challenge that is “What symbols should be used, and how do these symbols acquire 
meaning?”  It is a very significant challenge to develop an ontological framework to achieve 
this goal. A framework named “Mephisto” is being developed (3, 4, 5). Its layers and a sample 
of the associated concepts are: 
Metaphysical Layer: exist, time, connect, distance, angle. 
Environmental Layer: land, sea, air, temperature, weight. 
Functional Layer: sense, move, attack, destroy. 
Cognitive Layer: achieve, intend, belief, expect, inform, prefer. 
Social Layer: group, ally, enemy, possess, authorise. 
 
Examples of the relations developed under the Mephisto framework are:  (3, 4, 5)  

1. destroyed(x) meaning that x is destroyed. 
2. can_transform(z,x,y) meaning that z can transform x into y. 
3. desires(X, α) meaning that the individual X desires that α in order to satisfy an 

existing intention. 
 
Reference 4 describes an ontology as the systematic specification of the concepts required to 
describe the domain of interest. It notes that ontological frameworks need to do at least two 
things: 

1. Provide a formal language in which ontologies can be expressed. 
2. Provide reasoning capabilities, so that an ontology can be demonstrated to be free of 

contradictions. 
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Reference 4 notes that the formal language utilised is normally a logical language, and that, in 
mathematical terms, the logic employed should be sound, complete, decidable and tractable if 
possible. Logic systems that might be employed include description logics. A formal logic is a 
formal language together with an inference relation that specifies which sentences of that 
formal language can be inferred from sets of sentences in that formal language. A formal 
theory is a set of sentences expressed in a formal language. When combined with a formal 
logic, inferences from a formal theory can be made that describe a domain of interest in the 
world. 
 
The goal of the algorithm for machine-based situation assessment is to determine the most 
likely state of the domain of interest. For example, reference 6 develops a modal model for the 
state of the domain of interest that comprises a set of possible worlds. The maintenance of a 
probability density function over the possible worlds allows the most likely possible world to 
be determined. 
 
 

2. TTCP Activity 

The Technical Cooperation Panel (TTCP) provides a mechanism for collaboration in Defence 
science and technology for the participating countries: Australia, the United States, the United 
Kingdom, Canada and New Zealand. Technical Panel 1 in the Command, Control, 
Communications and Intelligence (C3I) Group of TTCP is named the Information Fusion 
Technical Panel. One of their key goals is to develop and test algorithms for machine-based 
situation assessment. 
 
To achieve this end, they have developed a detailed “North Atlantis” scenario [8]. Figure 1 
shows a map of North Atlantis, a fictional continent between Europe and Greenland. The 
scenario includes: six nations with alliances and hostilities, destroyers, frigates, mine vessels, 
patrol boats, submarines, merchant ships, whaling and counter whaling vessels, coast guard 
vessels, tourist vessels, commercial aircraft, surveillance aircraft, military strike aircraft, and 
military and civilian helicopters. 
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Figure 1. The fictional continent of North Atlantis 

 
In 2005, the scenario was instantiated in a simulation environment based on the Scenario 
Toolkit and Generation Environment (STAGE). Algorithms for object assessment and 
situation assessment have been exercised in this simulation environment. This report is 
specifically concerned with how the algorithms for situation assessment will be evaluated in 
the simulation environment. This report contributes directly to fulfilment of a TTCP 
milestone. 
 
A complete formal theory could in principle be developed for the ground truth of the 
scenario. This represents an omniscient view of the scenario in the simulation environment. It 
is complete in the sense that the truth or falsity of any atomic proposition1 that is part of the 
description of the situation in the scenario can be inferred from the formal theory.  Thus the 
formal theory would in principle allow the inference of a full set of atomic propositions to 
describe the situation in the scenario from a ground truth perspective. Examples of atomic 
propositions could be: 
• Target 6 is a tuna fishing vessel. 
• John Brown is an associate of Simon Black. 

                                                      
1 An atomic proposition is a proposition that uses a single predicate. According to Reference 9, a predicate is a 
functor (function object) that gives a Boolean 'yes/no' answer to a question about an object. 
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• Orangeland adjoins Redland. 
where the formal language has ‘tuna fishing vessel’, ‘associate of’ and ‘adjoins’ as predicates. 
In practice a complete representative subset of interest from the formal theory can be used to 
provide a symbolic expression of the ground truth. This becomes the standard to test the 
situation assessments against. 
 
In the simulation environment, a given algorithm for machine-based situation assessment will 
also produce a set of atomic propositions to describe the situation in the scenario. At this 
stage, to simplify the process, it will be assumed that the information that the situation 
assessment algorithm receives from the object assessment is perfectly accurate and fully 
comprehensive information. Even so, the Situation Assessment (SA) algorithm may be 
imperfect, and so the SA propositions may diverge from the set of Ground Truth (GT) 
propositions. To assess the performance of the SA algorithms, there needs to be a method for 
comparing the set of SA propositions with the set of GT propositions. One aim of this report is 
to describe such a methodology that could be employed when the simulation experiments are 
performed. 
 
 

3. Metrics 

There are a few studies in the literature where the ground truth is compared with the output 
from an algorithm performing data fusion, in order to evaluate the effectiveness of the 
algorithm. Reference 10 focuses on Level 1 data fusion (object assessment) and Level 2 data 
fusion (situation assessment) in a traditional military scenario. Reference 10 presents a set of 
metrics for comparison of the algorithm output with the ground truth. Of great interest to the 
authors of this report is reference 11 where the focus is on Level 3 data fusion (threat 
assessment) in the context of a terrorist threat against national interests. 
 
Reference 11 describes the employment of three metrics: 

1. Recall  
2. Precision  
3. F-value  

 
These can be defined with reference to the Venn diagram in Figure 2. The left-hand oval refers 
to the set of GT propositions (GT), and the right-hand oval refers to the set of SA propositions 
(SA). If the SA algorithm operates perfectly, then the two ovals will overlap perfectly. 
However, in general the intersection set will be a strict subset of the GT set and the SA set. 
Also, in general there will be propositions in the GT that aren’t in the SA (GT – SA), and 
propositions in the SA that aren’t in the GT (SA – GT). 
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Figure 2. Venn diagram of the comparison of the ground truth with the situation assessment 
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R
∩

=  )( Recall   (1) The Recall is defined: 

 

SA
SAGT

P
∩

=  )(Precision   (2) The Precision is defined: 

 
Where |X| indicates the cardinality of the set X. 
 
Note that if the sets GT and SA are disjoint, then this indicates complete failure of the SA 
algorithm, and both the Recall and Precision are zero. On the other hand, if the SA algorithm 
operates perfectly, then the Recall and Precision both equal one. 
 
It is often convenient to combine the Recall and Precision into a single metric. This is achieved 
using the F-value that is the geometric mean of the Recall and Precision: 
 

PR
RP
+

=
2 value-F   (3) 

 
As with the Recall and Precision, the F-value is between zero and one, with a value of one 
indicating perfect performance of the SA algorithm. 
 
Another similarity metric described in the literature is the Tversky similarity: [12] 
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GTSASAGTSAGT
SAGT

−+−+∩

∩
=

βα
  SimilarityTversky   (4) 

 
SAGT −Where α and β are between zero and one, and are chosen to bias in favour of either  

or GTSA − . 
 
From inspection of equations 1 to 4, it is apparent that: 

1. Recall corresponds to the Tversky Similarity with α = 1 and β = 0. 
2. Precision corresponds to the Tversky Similarity with α = 0 and β = 1. 
3. F-value corresponds to the Tversky Similarity with α = 0.5 and β = 0.5. 

 
Thus the Recall / Precision / F-value are closely related to the Tversky Similarity. 
 
Another possible global measure of the effectiveness of the SA algorithm can be derived from 
the probability density function over the possible worlds described by reference 6 (discussed 
in Section 1). The ground truth could be matched across the possible worlds in the situation 
assessment. The possible world with the closest match could be noted, along with its 
associated probability p1. This could be compared with the probability of the most likely 
possible world p  ≥ p2 1. Such a comparison could yield a global measure of effectiveness. 
 
 

4. Ontology Matching 

For the simulation experiments to be run under the auspices of TTCP, the ground truth and 
situation assessment will be defined within the same ontological framework. However, the 
more general case is where the ground truth and situation assessment are defined within 
different ontological frameworks. To gain a better understanding of a how the comparison of 
ground truth and situation assessment might be performed in this more general case, the 
literature on ontology matching was consulted. The specific context was to imagine the 
ground truth as Ontology A being matched to the situation assessment as a different Ontology 
B. Definition of the matching function would facilitate a detailed comparison of the atomic 
propositions from the ground truth and situation assessment. 
 
Broadly speaking, there are three types of ontology matching: 

1. Terminological matching. 
2. Learning-based matching. 
3. Structural-based matching. 
 

With terminological matching, the aim is to determine the quality-of-match between Concept 
A from Ontology A and Concept B from Ontology B. Concepts with a high quality-of-match 
are candidates for matching. One approach is to look at the similarity of the strings that 
comprise the names of the concepts using measures such as n-grams [13, 14], string edit 
distance [14], and longest common sub-sequence [15]. For example, if Concept A is Defence 
and Concept B is Defense, the string similarity is very high. Another approach is to examine 
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the linguistic affinity between concepts [16, 14, 17]. For example, if Concept A is drink and 
Concept B is beverage, they have a high linguistic affinity because they are synonyms. 
 
With learning-based matching [18, 19, 14, 15, 20, 13], often classification algorithms are 
employed such as the naïve Bayes classification algorithm, and complete-link hierarchical 
clustering. Concepts that belong to the same class or cluster are candidates for matching. For 
example, one approach is to obtain a corpus of documents relevant to Ontology A and another 
corpus of documents relevant to Ontology B. A document classifier is trained using the 
concepts in Ontology A and documents relevant to Ontology A, and is then exercised on the 
documents relevant to Ontology B. Similarly, a second document classifier is trained using the 
concepts in Ontology B and documents relevant to Ontology B, and is then exercised on the 
documents relevant to Ontology A. The net result is a measure of how much the documents 
associated with Concept A and Concept B tend to overlap, and the magnitude of this measure 
indicates whether the two concepts are candidates for matching [14]. Various other metrics 
have been defined in the literature to measure the similarity between concepts, such as the 
Jaccard Co-efficient [19], and the Cosine Measure [20]. 
 
With structural-based matching, the neighbourhoods of Concept A and Concept B are 
examined to determine how similar they are. Where they are quite similar, Concept A and 
Concept B are candidates for matching. One approach is to measure the contextual affinity 
between Concept A and Concept B [16]. It is determined whether the attributes of Concepts A 
and B are well-matched in terms of (a) linguistic affinity (discussed above), (b) compatibility 
of data types, and (c) whether the attributes are mandatory or optional.2  It is also determined 
whether the relations in the neighbourhoods of Concepts A and B are well-matched in terms 
of (a) linguistic affinity, and (b) being of the same type, e.g. same-as, is-a, part-of.  
 
An alternative approach to performing structural-based matching is relaxation labelling [19]. 
First a different type of matcher performs coarse matching, and then relaxation labelling is 
used to refine this over a series of iterations. It relies on measuring how well features in the 
neighbourhood of Concept A match with features in the neighbourhood of Concept B. 
 
 

5. Exploring Employment of the Metrics 

5.1 Simple Scenario 

To explore the employment of the metrics discussed in Section 3, a simple scenario was 
developed, and coded using the logic programming language Prolog. This included a set of 
input propositions, along with rules to infer conclusions. Below is the full set of output 
propositions for the ground truth, including the conclusions derived from the rules, along 
with some brief explanation. First the activity of the vessel named the “Ironhorse” and its 

                                                      
2  As an example to help explain the terminology, two concepts might be student and person.  An 
attribute of student and person might be age.  A relation involving student and person might be 
student is-a person, where is-a is a binary relation. 
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captain Samuel White is described. Even though Samuel White is associated with the 
Brownland military, the GT inference doesn’t conclude that the Ironhorse is a threat. 
 
• commercial_vessel(ironhorse) – The Ironhorse is a commercial vessel. 
• captain_of_vessel(samuel_white,ironhorse) – Samuel White is the captain of the Ironhorse. 
• recent_communication(samuel_white,daniel_smith) – Samuel White has recently been 

communicating with Daniel Smith. 
• secret_service_of(brownland,daniel_smith) – Daniel Smith is a member of the Secret 

Service of Brownland. 
• associated_with_military_of(brownland,samuel_white) – Thus Samuel White is associated 

with the military of Brownland. 
• associated_with_military_of(brownland,ironhorse) – Thus the Ironhorse is associated with 

the military of Brownland. 
• in_maritime_region_of(blueland,ironhorse) – The Ironhorse is in the territorial waters of 

Blueland. 
• last_port_of_call(nectarville,ironhorse) – The last port-of-call of the Ironhorse was 

Nectarville. 
• port(nectarville,brownland) – Nectarville is a port in Brownland. 
• previous_country_visited(brownland,ironhorse) – Thus the previous country visited by 

the Ironhorse was Brownland. 
• diplomatic_climate(blueland,brownland,normal) – The diplomatic climate between 

Blueland and Brownland is normal. 
 
Second the activity of the vessel named the “Masked Avenger” and its captain Andrew Brown 
is described. Andrew Brown is associated with the Orangeland military, and in this case the 
inference does conclude that the Masked Avenger is a threat. 
 
• commercial_vessel(masked_avenger) – The “Masked Avenger” is a commercial vessel. 
• captain_of_vessel(andrew_brown,masked_avenger) – Andrew Brown is the captain of the 

Masked Avenger. 
• recent_communication(andrew_brown,thomas_jones) – Andrew Brown has recently been 

communicating with Thomas Jones. 
• secret_service_of(orangeland,thomas_jones) – Thomas Jones is a member of the Secret 

Service of Orangeland. 
• associated_with_military_of(orangeland,andrew_brown) – Thus Andrew Brown is 

associated with the military of Orangeland. 
• associated_with_military_of(orangeland,masked_avenger) – Thus the Masked Avenger is 

associated with the military of Orangeland. 
• in_maritime_region_of(blueland,masked_avenger) – The Masked Avenger is in the 

territorial waters of Blueland. 
• last_port_of_call(jorvik,masked_avenger) – The last port-of-call of the Masked Avenger 

was Jorvik. 
• port(jorvik,orangeland) – Jorvik is a port in Orangeland. 
• previous_country_visited(orangeland,masked_avenger) – Thus the previous country 

visited by the Masked Avenger was Orangeland. 
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• diplomatic_climate(blueland,orangeland,very_tense) – The diplomatic climate between 
Blueland and Orangeland is very tense. 

• hostile_intent_towards(blueland,masked_avenger,orangeland) – Thus the Masked 
Avenger has hostile intent towards Blueland. 

• risk_of_dangerous_cargo(masked_avenger,blueland,high)  – Thus there is a high risk that 
the Masked Avenger is carrying cargo that is dangerous from a Blueland perspective. 

• potential_threat(masked_avenger,blueland,high) – Thus a high level of threat is posed by 
the Masked Avenger to Blueland interests. 

 
Figure 3 shows an example of one of the GT rules in Prolog format. The output predicate is 
“hostile_intent_towards”, and the input predicates are on the right-hand-side. When X is 
“blueland”, Y is “masked_avenger”, and Z is “orangeland”, all the input propositions are 
TRUE, and consequently the output proposition is also TRUE, because each comma between 
two propositions in the rule indicates logical AND.3  All these propositions appear in the list 
of propositions above, except the “ok” predicate that is discussed below. 
 

 
hostile_intent_towards(X, Y, Z) :- associated_with_military_of(Z, Y),  
                                                           diplomatic_climate(X, Z, very_tense),   
                                                      in_maritime_region_of(X, Y), 
                        ok(hostile_intent_towards(X, Y, Z)). 

Figure 3. An example of one of the GT rules in Prolog format 

 
In forming the situation assessment, the same set of input propositions and rules were 
employed, but a few errors were deliberately introduced into the rules to model real-life 
deficiencies in SA algorithms. For example, Figure 4 shows the SA rule corresponding to the 
GT rule in Figure 3. Inspection of both figures shows that the “diplomatic_climate” predicate 
has been deleted from the SA rule. 
 

 
hostile_intent_towards(X, Y, Z) :- associated_with_military_of(Z, Y),  
                                                      in_maritime_region_of(X, Y), 
                        ok(hostile_intent_towards(X, Y, Z)). 

Figure 4. The SA rule corresponding to the GT rule in Figure 3

 
5.2 Calculation of the Metrics 

Prolog was used to obtain a complete listing of: (a) the output propositions for the ground 
truth (given in Section 5.1), and (b) the output propositions for the situation assessment. 
Within Prolog, the metrics described in Section 3 were calculated; refer to Table 1 for the 
results. The overall comparison between the ground truth and situation assessment yielded an 
F-value of 0.91. 
                                                      
3 hostile_intent_towards is the predicate, and  hostile_intent_towards(X,Y,Z) and 
hostile_intent_towards(blueland, masked_avenger, orangeland) are propositions. 
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Table 1. The metrics calculated in Prolog for the simple scenario 

Metric / Parameter Value 
|GT| 25 
|SA| 28 

24 |GT ∩ SA| 
Recall 0.96 
Precision 0.86 
F-value 0.91 

   
The scoring method described above effectively weights all of the output propositions equally 
when the F-value is calculated. If the output propositions were somehow ranked in order of 
perceived importance, then some type of weighted sum could be devised to calculate 
quantities mirroring |GT|, |SA| and |GT ∩ SA| where more important propositions would 
contribute more compared to propositions with lesser importance. For example, taking the 
simple scenario described in Section 5.1, potential_threat(masked_avenger,blueland, high) 
may be perceived as more important than commercial_vessel(masked_avenger). In fact, 
reference 11 (discussed in Section 3) employs weighted sums to calculate quantities mirroring 
|GT|, |SA| and |GT ∩ SA|. The employment of weightings could be a future extension to 
the methodology described in this report. 
 
5.3 False Positives and Negatives 

False positives are the propositions that are in the situation assessment, but not in the ground 
truth (i.e. in SA – GT with reference to Figure 2). They represent spurious information inserted 
by the situation assessment. For the simple scenario described above, there were five false 
positives: 

1. hostile_intent_towards(blueland,ironhorse,brownland) 
2. risk_of_dangerous_cargo(ironhorse,blueland,medium) 
3. potential_threat(ironhorse,blueland,medium) 
4. risk_of_dangerous_cargo(masked_avenger,blueland,medium) 
5. potential_threat(masked_avenger,blueland,medium) 

 
The false positives in boldface are special cases where the input propositions to the rule were 
TRUE in the situation assessment and ground truth, but the output proposition was TRUE in 
the situation assessment and FALSE in the ground truth. This indicates some type of 
corruption in the rule in the situation assessment. For example, the first false positive 
(hostile_intent_towards) can be seen to be a direct consequence of the error introduced in 
Figure 4, that is, deleting the predicate diplomatic_climate. On the other hand, the false 
positives not in boldface have at least one input proposition to the rule that is TRUE in the 
situation assessment, but FALSE in the ground truth. Thus it isn’t surprising that the output 
proposition is TRUE in the situation assessment but FALSE in the ground truth. The false 
positives in boldface can be viewed as pointers to where the situation assessment’s underlying 
theory begins to diverge from the ground truth. For convenience they are termed root false 
positives. 
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False negatives are the propositions that are in the ground truth, but not in the situation 
assessment (i.e. in GT – SA with reference to Figure 2). They represent information not 
captured by the situation assessment. For the simple scenario described above, there were two 
false negatives: 
• risk_of_dangerous_cargo(masked_avenger,blueland,high) 
• potential_threat(masked_avenger,blueland,high) 
 
Using a similar argument to above, the false negative in boldface is a root false negative, and 
indicates where the situation assessment’s underlying theory starts to diverge from the 
ground truth. 
 
5.4 Partial Matching 

One approach to matching propositions between the ground truth and situation assessment is 
to maintain that if they are identical there is a match, and if they are not identical there is no 
match. A less “black-and-white” approach is to allow partial matching – refer to the two 
examples in Table 2 from the simple scenario described above. 
 

Table 2. Examples of partial matching from the simple scenario 
 Ground Truth Proposition Situation Assessment Proposition Quality-of-

Match 
1 risk_of_dangerous_cargo(masked_avenger, 

blueland, high) 
risk_of_dangerous_cargo(masked_avenger, 
blueland, medium) 

0.5 

2 potential_threat(masked_avenger, blueland, 
high) 

potential_threat(masked_avenger, blueland, 
medium) 

0.5 

 
The quality-of-match value must be between zero (no match) and one (perfect match). In the 
case of the partial matches in Table 2, the only difference is that the third argument is “high” 
in the ground truth, but the situation assessment assigns “medium” to the third argument. 
The Prolog code searches for cases where the only difference between the propositions is in a 
single argument to detect a partial match. For example, where that difference is high versus 
medium as in Table 2, the code automatically assigns a quality of match of 0.5 
 
Another example, this time hypothetical, might be the proposition commercial_vessel(target6) 
in the ground truth versus fishing_vessel(target6) in the situation assessment. The Prolog code 
would detect that both propositions refer to the same target, and may assign a partial match 
with a quality-of-match of 0.3 based on the perceived difference between “commercial vessel” 
and “fishing vessel”. In general, the quality-of-match values are based on the professional 
judgements of the personnel who configure the system for comparing the SA with the GT. 
 
The total of the quality-of-match scores from the partial matches contribute to the intersection 
between the ground truth and situation assessment propositions, that is |GT ∩ SA| in Figure 
2. For example, perfect matches contribute 23 points to the score for |GT ∩ SA| in Table 1. 
The partial matches in Table 2 also contribute one point (2 x 0.5) to give the final score of 24. 
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Table 2In , partial matches are assigned when only one difference between the GT and SA 
propositions is detected. Although it hasn’t been implemented, a more complex scheme could 
be employed that caters for partial matches with more than one difference.  
 
The examples of partial matching discussed thus far tend to be more of a discrete nature, for 
example the value-of-interest being either “low”, “medium” or “high”. There will also need to 
be matching involving continuous variables such as distance and time. Reference 11 provides 
one means of achieving this by employing the sigmoid function. A hypothetical example is the 
GT proposition referring to a range range(51000,1200) indicating that the range is 51000m. The 
partially matching SA proposition might be range(51400,1200) indicating a range of 51400m. 
Thus the situation assessment is in error by 400m. The second argument in the “range” 
predicate indicates the range error (in this example 1200m) that corresponds to a quality-of-
match of 0.5 – refer to this range error as the “nominal error” for convenience. For an arbitrary 
range error, the ratio of the nominal error to the actual error is calculated (1200 / 400 = 3 in 
our example), and then the sigmoid function in Figure 5 is consulted. Reading from the graph 
gives a quality-of-match of 0.75 for our example.  
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Figure 5. Sigmoid function used to calculate the quality-of-match with continuous variables 

 
Inspection of the sigmoid function in Figure 5 confirms that very large errors will yield a 
quality-of-match approaching 0, and very small errors will yield a quality-of-match 
approaching 1. This general approach only requires one parameter (nominal error) to specify 
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the quality-of-match for arbitrary errors, and having the nominal error as an argument in the 
predicate means that it can be varied as required on a case-by-case basis.  
 
The approach described above employs a fixed sigmoid function in Figure 5. A more complex 
approach would be to include a third argument in the “range” predicate that is a scaling 
parameter that either compresses or stretches the sigmoid curve along the axis entitled “Ratio 
of Nominal Error to Actual Error”. This would provide additional flexibility in specifying the 
quality-of-match involving continuous variables, however there would need to be some 
principled means of judging what value to give to this scaling parameter in each specific 
context. 
 
For more complex scenarios there may be ambiguity about which partial matches to form. For 
example, a given proposition from the ground truth may potentially be matched with ten 
different propositions from the situation assessment. In general a linear assignment algorithm 
will be required to decide which partial matches to form. The optimisation goal might be to 
maximise the total of all the quality-of-match values from the full set of partial matches. 
Candidate assignment algorithms are: 

1. The auction algorithm [21, 24]. The authors of this DSTO Technical Note have access 
to C code for this algorithm.  4

2. The Jonker-Volgenant-Castañon (JVC) algorithm [22, 23, 24]. 
 
5.5 Iterative Correction Process 

As discussed in Section 5.3, the root false positives and root false negatives can be viewed as 
pointers to where the situation assessment starts to diverge from the ground truth. Thinking 
in terms of networks of propositions, one may view the root false positives and negatives as 
the start of branches of propositions in the situation assessment and ground truth where they 
diverge away from each other. This study seeks to test the thesis that, once identified, the root 
false positives and negatives can be corrected, thus pruning the branches of divergence. 
 
For example, from Section 5.3, one of the root false positives was: 
1. hostile_intent_towards(blueland,ironhorse,brownland) 
 
In Prolog, the approach taken is to introduce the “ok” predicate shown in Figure 4. For the 
specific root false positive listed above, the ok predicate takes the form shown in Figure 6. 

                                                      
4 Supplied by Dr Jason Williams (DSTO). 
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ok(hostile_intent_towards(X, Y, Z)) :-  
   (X, Y, Z) \== (blueland, ironhorse, brownland). 

Figure 6. The “ok” predicate employed in the situation assessment to correct root false positives 

 
The role of the ok predicate is to allow only those combinations of X, Y and Z that are 
“OKAY”, that is for the specific case of hostile_intent_towards, the combination X = blueland, 
Y = ironhorse, Z = brownland is disallowed in order to correct the root false positive.5  The ok 
predicate in Figure 6 could be expanded with other combinations of X, Y and Z if there was a 
requirement to correct other root false positives related to hostile_intent_towards. The second 
root false positive listed in Section 5.3 
[risk_of_dangerous_cargo(masked_avenger,blueland,medium)] would also require a similar 
employment of the ok predicate. 
 
It is a simpler matter to correct the root false negatives in Prolog. For example, to correct the 
root false negative in Section 5.3, it is suffice to include the following proposition in the 
situation assessment, effectively inserting the missing information: 
• risk_of_dangerous_cargo(masked_avenger,blueland,high) 
 
Once the root false positives and negatives have been corrected in Prolog, the Recall, Precision 
and F-value can be calculated again in a second iteration. The new results are shown in Table 
3. Note that in this case, the corrections have resulted in a significant improvement to the F-
value, and the numbers of false positives and false negatives have been significantly reduced. 
In fact, for the second iteration there are no false positives, and only one false negative (that is 
also a root false negative): 
• potential_threat(masked_avenger,blueland,high) 
 

Table 3. The metrics calculated in Prolog for the second iteration 
Metric / Parameter Value 
|GT| 25 
|SA| 24 

24 |GT ∩ SA| 
Recall 0.96 
Precision 1 
F-value 0.98 

 
Now this root false negative can be corrected, and then the Recall, Precision and F-value can 
be calculated in a third iteration. This time the ground truth and situation assessment match 
perfectly, and the Recall, Precision and F-value are all one. Figure 7 shows the increase in the 
F-value over the iterations of (re-)calculation and correction. 
 

                                                      
5 In Prolog, T1 \== T2 is TRUE when the two terms T1 and T2 are not literally identical. 
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Figure 7. The increase in the F-value over the iterations of (re-)calculation and correction 

 
It is the thesis of this report that the integrated area in maroon in Figure 7 is a measure of the 
effectiveness of the situation assessment algorithm because it provides a measure of how 
difficult it is to correct the situation assessment. This measure will be zero if the algorithm 
performs perfectly, and the situation assessment perfectly matches the ground truth in the 
first iteration. The measure will be quite large if the F-value is significantly less than one in the 
first iteration, and it only very slowly converges to a value of one. The value of the measure 
could be transformed using a non-linear function to yield a more intuitive result where one 
indicates perfect performance, and zero indicates complete failure. 
 
For the simple scenario above, the F-value reached unity in three iterations. However, in the 
general case the authors are currently uncertain about the convergence properties of the F-
value. Thinking in terms of networks of propositions, it is uncertain whether correction could 
result in the creation of new branches of divergence between the situation assessment and 
ground truth. Possibilities include (a) the F-value being oscillatory, and (b) the F-value not 
converging to unity. 
 
One simple result is the condition under which the F-value is strictly increasing from one 
iteration to the next: 
 

SAdFSAGTd
2

>∩   (5) 

 
in the limit of infinitesimal changes, where |SA| and |GT ∩ SA| are defined in Section 3. 
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5.6 Further work 

Further work is required to investigate the convergence properties of the F-value in Figure 7 
in the general case. The question to be answered is: Under what conditions will the F-value 
converge to unity?  Two avenues have been identified to pursue this question: 

1. Examination of the theory of non-monotonic logics that are relevant to the iterative 
correction process described in Section 5.5. 

2. Experimentation with the random inference networks discussed in Section 6, 
specifically, examining what type of convergence behaviour they exhibit. 

 
A further extension to the methodology described above for comparing the situation 
assessment with the ground truth could be to weight the output propositions according to 
their importance when calculating the Recall, Precision and F-value. This was discussed in 
Section 5.2. 
 
 

6. Random Inference Networks 

6.1 Background 

Reference 25 notes that complex networks are being studied across many fields of science. 
Complex networks can be modelled as structures consisting of nodes or vertices connected by 
links or edges. Examples include: 

1. The Internet is a network of routers or domains. 
2. The World Wide Web is a network of websites. 
3. The electrical power grid can be described as a network. 
4. The global economy is a network of national economies, that in turn are networks of 

markets, that in turn are networks of producers and consumers. 
5. In nature, food webs can be described using networks. 
6. An organisation is a network of people. 
7. In the social domain there are friendship networks. 
8. The human brain is a network of neurons. 
9. In the human body metabolic pathways can be described using networks. 

 
Reference 25 discusses some of the different types of networks that have been identified: 
1. Exponential networks where the number of links per node is fairly uniform across the 

network, e.g. a roadmap showing highways in the U.S. where the nodes are cities. 
2. Scale-free networks where a few nodes have a large number of connections, but most 

nodes have only a few connections, e.g. an airline routing map in the U.S. where the nodes 
are airports. 

3. Small-world networks where there is local clustering, and the average path length 
between two randomly selected nodes is low (the so-called “small world” effect), e.g. 
friendship networks. 

 

16 



 
DSTO-TN-0836 

Scale-free networks such as the Internet have the property that they are robust against random 
failures of nodes or links. However, they are fragile against intentional attacks aimed at key 
nodes that have a large number of connections. 
 
Of key interest to this report, damage can spread across networks, e.g. diseases across social 
networks, viruses across the Internet, and failures can cascade across the power grid. The 
networks of interest in this report are the inference networks used to form the situation 
assessment. Errors can occur in such an inference network, and this can then spread as 
damage across the inference network. 
 
Random Boolean Networks (RBN), also known as NK networks, were pioneered as simplified 
models of gene regulation and control [26, 27]. In such a network there are N nodes that are 
connected using directed links to form various cyclic pathways. For each node there are 
exactly K incoming links that control the state of the node. An example is shown 
diagrammatically in Figure 8. The state of each node is either zero or one, and this is 
controlled by the K incoming links via a random Boolean function.  
 

 
Figure 8. Example of an NK network with N = 16 and K = 3, taken from reference 28. 

 
For example, consider hypothetically that K is two, and node A is controlled by node B and 
node C. Simulation can be used to study the dynamics of the NK networks. At a given step in 
the simulation, let the state of node A be zero, node B one, and node C zero. Let the random 
Boolean function be logical OR in this specific case. Then when the state of all the nodes is 
synchronously updated to proceed to the next step in the simulation, the state of node A will 
change to one since (node B) OR (node C) is one. Likewise the states of nodes B and C will be 
updated depending on their particular controlling inputs, and similarly for all the remaining 
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nodes in the network. The simulation is initialised by randomly assigning each node a value 
of zero or one. Then the dynamics of the network is studied by studying the states of the 
nodes as the simulation progresses through its successive steps. Reference 29 has a Java applet 
that can be used to observe the dynamics of an NK network. 
 
Damage spreading has been studied for NK networks by switching (perturbing) the initial 
state of a randomly chosen node, and determining how this impacts the dynamics of the 
network (e.g. reference 30). The nature of the damage spreading is dependent on K: 
1. Frozen regime. For K = 1, the initial perturbation dies out quickly, after which both the 

original and perturbed network display the same pattern.  
2. Critical regime. For K = 2, the effect of the perturbation tends to persist, but it only impacts 

part of the network. 
3. Chaotic regime. For K = 3 or greater, the perturbation causes extensive changes to the 

network dynamics. 
 
Researchers currently believe that gene regulation networks operate in or near the critical 
regime, because evolution requires that there must be sensitivity to perturbations and 
mutations, but not the very high sensitivity of the chaotic regime. 
 
6.2 Creation of Networks 

One aim of this report was to examine damage spreading in the inference networks used for 
situation assessment in a similar manner to how damage spreading has been studied in NK 
networks, as discussed in Section 6.1. The process employed is summarised in Figure 9. 
Random inference networks were created to study damage spreading, one for the ground 
truth, and another for the situation assessment. The only difference between the networks 
when they were initialised was a single perturbation applied to the SA network. The aim was 
to measure how this perturbation spread throughout the SA network by comparing the final 
states of the SA network and GT network. 
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PERTURBATION 
INPUT 

PROPOSITIONS 

RULES 

OUTPUT 
PROPOSITIONS 

SITUATION ASSESSMENT 

INPUT 
PROPOSITIONS 

RULES

OUTPUT 
PROPOSITIONS 

GROUND TRUTH 

Compare using F-value metric  
Figure 9. The process employed in studying damage spreading in inference networks 

 
Input propositions were created that modelled the input that the situation assessment would 
receive from sources like the object assessment. Figure 10 shows some input propositions 
extracted from a GT random inference network, and the corresponding SA network (in Prolog 
format). Note that the two sets of input propositions match perfectly apart from the 
mismatching propositions in orange caused by the perturbation to the SA network that was 
applied randomly. This models deficiencies in the object assessment as input to the situation 
assessment algorithm. In this case four input predicates were employed (p001, p002, p003 and 
p004),6 and four targets were employed (01, 02, 03 and 04) to form the input propositions. 
Each predicate formed a binary relation involving two targets as arguments. The two 
arguments of an input proposition were not allowed to be identical. The predicate “truth” 
differentiates the GT input propositions from the SA input propositions. The input 
propositions were created randomly with duplication of propositions disallowed.  
 

                                                      
6 More concrete examples of predicates are given in Section 5.1. 
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truth(p002(01,04)). 
truth(p002(02,03)). 
truth(p002(03,01)). 
truth(p002(03,02)). 
truth(p002(03,04)). 
truth(p002(04,03)). 
truth(p003(01,03)). 
truth(p003(03,01)). 
truth(p003(03,02)). 
truth(p003(03,04)). 
truth(p003(04,03)). 
truth(p004(01,02)). 
truth(p004(02,01)). 
truth(p004(02,03)). 
truth(p004(03,01)). 
truth(p004(03,02)). 
truth(p004(03,04)). 
 

Ground Truth Situation Assessment 

p002(01,04). 
p002(02,03). 
p002(03,01). 
p002(03,02). 
p002(03,04). 
p002(04,03). 
p003(01,03). 
p003(03,01). 
p003(03,02). 
p003(03,04). 
p003(04,03). 
p004(01,02). 
p004(01,04). 
p004(02,01). 
p004(02,03). 
p004(03,02). 
p004(03,04). 
 

 
Figure 10. Input propositions extracted from a GT inference network and corresponding SA network 

 
Referring to Figure 9, inference rules were also created randomly. The same rules were 
employed for both the GT network and SA network. Figure 11 shows an extract of rules from 
a GT random inference network (hence the “truth” predicate is used). The rules are shown in 
Prolog format with one minor difference: ∧ (instead of ,) is used as shorthand for logical AND, 
and ∨ (instead of ;) is used as shorthand for logical OR. 
 

truth(p033(X,Y)) :- not(truth(p009(Y,X))) ∧ not(truth(p015(X,Y))) ∧ not(truth(p002(X,Y))).
truth(p034(X,Y)) :- not(truth(p011(Y,X))) ∧ not(truth(p004(Y,X))) ∧ truth(p028(X,Y)).
truth(p035(X,Y)) :- not(truth(p006(Y,X))) ∧ not(truth(p025(Y,X))) ∧ not(truth(p029(X,Y))).
truth(p036(X,Y)) :- truth(p005(X,Y))  ∧ not(truth(p018(X,Y))) ∧ not(truth(p023(Y,X))).
truth(p037(X,Y)) :- truth(p015(X,Y))  ∧ not(truth(p021(Y,X))) ∧ not(truth(p026(Y,X))).
truth(p038(X,Y)) :- not(truth(p026(X,Y))) ∧ not(truth(p002(X,Y))) ∧ truth(p001(X,Y)).
truth(p039(X,Y)) :- not(truth(p033(X,Y))) ∧ not(truth(p035(Y,X))) ∧ not(truth(p025(Y,X))).
truth(p040(X,Y)) :- not(truth(p017(Y,X))) ∨ truth(p003(Y,X))  ∨ truth(p031(X,Y)).
truth(p041(X,Y)) :- truth(p019(X,Y))  ∨ truth(p018(X,Y))  ∨ truth(p017(Y,X)).
truth(p042(X,Y)) :- not(truth(p021(X,Y))) ∧ not(truth(p024(X,Y))) ∧ not(truth(p036(Y,X))).
truth(p043(X,Y)) :- not(truth(p015(X,Y))) ∧ truth(p019(X,Y))  ∧ truth(p004(X,Y)).
truth(p044(X,Y)) :- truth(p015(Y,X))  ∨ truth(p032(Y,X))  ∨ not(truth(p037(Y,X))).
truth(p045(X,Y)) :- truth(p027(Y,X))  ∧ not(truth(p024(X,Y))) ∧ not(truth(p014(X,Y))).

 
Figure 11. An extract of rules from a GT random inference network 
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Figure 11In , the extracted rules are numbered sequentially from 33 to 45. As each rule was 
created, it was randomly linked back to three predicates already created: either rules or else 
predicates used to create the input propositions. For example, when rule 35 was created, there 
were already in place predicates numbered from 1 to 4 corresponding to the input 
propositions, and rules numbered from 5 to 34. Three different predicates between 1 and 34 
were chosen at random; in this case they were p006, p025 and p029. (As an aside, p006, p025 
and p025 would have been disallowed since the predicates had to be different.)  All 
combinations of three different predicates between p001 and p034 were equally likely to be 
chosen, i.e. there wasn’t any preferential selection. A similar approach to growing directed 
networks is described in reference 31.  
 
In Figure 11, all the rules and input predicates to the rules have an arity of two, i.e. each has 
two arguments. With the input predicates to the rules, the order of the arguments was 
swapped according to the toss of an unbiased coin. For example, with p035 the first two input 
predicates had their arguments swapped (Y,X), whereas the third input predicate was not 
swapped (X,Y). Negation was applied to each input predicate according to the toss of an 
unbiased coin. For example, with p035 negation (“not”) was applied to each input predicate 
(this occurrence has a probability of 1/8). Whether a rule employed logical AND (∧) or logical 
OR (∨) was governed by the toss of a coin that could be biased either in favour of logical AND 
or logical OR. For the rules in Figure 11 the coin was biased in favour of logical AND, and, as 
a specific example, p035 employed logical AND. 
 
There are 256 possible different Boolean functions that can relate a rule to three input 
predicates. As a specific example, the Boolean function for p035 is shown in Table 4. In this 
case, all the input predicates must evaluate to FALSE in order for the rule to evaluate to 
TRUE. With reference to the final column in Table 4, the 256 possible Boolean functions 
correspond to the possible permutations of the eight data rows, where each row can have the 
value TRUE or FALSE. 
 

Table 4. The Boolean function for rule p035 in Figure 11
Input Predicate 1 Input Predicate 2 Input Predicate 3 Rule 

TRUE TRUE TRUE FALSE 
TRUE TRUE FALSE FALSE 
TRUE FALSE TRUE FALSE 
TRUE FALSE FALSE FALSE 
FALSE TRUE TRUE FALSE 
FALSE TRUE FALSE FALSE 
FALSE FALSE TRUE FALSE 
FALSE FALSE FALSE TRUE 

 
The simple scheme for rule creation employed in this study can only create a subset of the 256 
possible Boolean functions; in fact, only 16 different functions can be created. The 16 functions 
have a similar form to the final column in Table 4: 
1. If logical AND is chosen for the rule then all rows show FALSE except one row that shows 

TRUE; or 
2. If logical OR is chosen for the rule then all rows show TRUE except one row that shows 

FALSE. 
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The specific row that shows the exception depends upon how negation (“not”) is applied to 
the three input predicates in the rule; note that there are eight possible options for this 
corresponding to the eight data rows in Table 4. For example, since negation is applied to each 
input predicate of rule p035 in Figure 11, each input predicate must evaluate to FALSE in 
order for the rule to evaluate to TRUE, and hence the final row in Table 4 shows the 
“exception” (TRUE). Table 5 shows the 16 Boolean functions employed in this study. The 
eighth function was employed for p035 – refer to Table 4. All 16 functions were equally likely 
to be chosen for a given rule if the AND-OR bias was set to 0.5. The first eight functions were 
more prevalent compared with functions 9 to 16 if logical AND was favoured, and conversely 
functions 9 to 16 were more prevalent if logical OR was favoured. 
 

Table 5. The 16 Boolean functions employed in this study 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
T F F F F F F F F T T T T T T T 
F T F F F F F F T F T T T T T T 
F F T F F F F F T T F T T T T T 
F F F T F F F F T T T F T T T T 
F F F F T F F F T T T T F T T T 
F F F F F T F F T T T T T F T T 
F F F F F F T F T T T T T T F T 
F F F F F F F T T T T T T T T F 
 
Reference 32 refers to the functions shown in Table 5 as canalysing Boolean functions. This 
means that by holding one of the inputs in a certain state, the output is fixed. For example, 
with reference to Table 4, when any of the inputs is held at TRUE, then the output must be 
FALSE. Only a subset of the 256 possible Boolean functions are canalysing, and the 16 Boolean 
functions used in this study are a subset of the full set of canalysing Boolean functions. The 
question then arises as to whether employing this specific subset of canalysing Boolean 
functions (shown in Table 5) has biased the analysis in any way. This question will be 
addressed further in Section 6.3. 
 
Returning to Figure 9, the input propositions and inference rules were processed in Prolog to 
produce two sets of output propositions, one for the ground truth and one for the situation 
assessment. Possible examples of output propositions for the situation assessment are: 
• p003(03,04) 
• p039(02,01) 
• p060(04,02) 
 
As an example of applying a rule (referring to Figure 11), p035(01,03) would evaluate to TRUE 
and be an output proposition for the ground truth if p006(03,01), p025(03,01) and p029(01,03) 
all evaluated to FALSE in the ground truth. 
 
There was a need to determine the level of damage spreading caused by the single 
perturbation to the situation assessment described above. This was achieved by comparison of 
the two sets of output propositions through calculation of the F-value metric described in 
Section 3. This resulted in a normalised measure of the damage spreading, with a value closer 
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to unity indicating lesser damage, and a value closer to zero indicating greater damage. The 
authors note that some other studies employ absolute measures of damage spreading, e.g. 
reference 30, however the authors believe that a normalised measure is more appropriate 
when comparing damage spreading across random inference networks of different size. 
 
There are various parameters that describe the structure of the random inference networks. 
The baseline set of parameters employed in this study are listed in Table 6. For certain 
parameters, the dependence of the F-value was tested by varying the parameter value from 
the baseline and recalculating the F-value. The preliminary results of this experimentation are 
described in Section 6.3. 
 

Table 6. Baseline set of parameters used to create the random inference networks 
Parameter Value Comments 
Arity of the predicates (number of arguments) 2 All predicates had the same arity. 
The number of predicates used to create the input 
propositions 

4 p001, p002, p003, p004 

The number of targets used to create the input 
propositions 

4 01, 02, 03, 04 

Number of input propositions created 24  
The number of input predicates for each rule 3  
Bias in favour of using logical AND during rule creation 0.5 Bias must be between 0 and 1 
Number of rules created 64  
Number of independent networks created 100  
 
Referring to Table 6: 
• The number of input propositions randomly created (24) corresponded to half the total 

number of possible input propositions (48). (Prolog assumed that the 24 “missing” input 
propositions were FALSE.) 

• Regards the bias: 
o A value of 0 corresponded to exclusive use of logical OR. 
o A value of 0.5 corresponded to using an unbiased coin to choose between 

logical AND and logical OR when creating a rule. 
o A value of 1 corresponded to exclusive use of logical AND. 

• The F-value was averaged over 100 independent random inference networks to reduce the 
variance of the results. 

 
6.3 Preliminary Results 

The results obtained thus far are very preliminary. Figure 12 shows the variation of the 
average F-value with the AND-OR bias. The error bars show the standard error. Damage 
spreading appears to be significantly worse as logical AND becomes more prevalent in the 
random inference network (i.e. rules 1 to 8 in Table 5 are more prevalent). Figure 13 shows the 
average number of output propositions for the GT random inference network versus the 
AND-OR bias. The number of output propositions varies linearly with the bias, with a 
significantly greater number of output propositions as logical OR becomes more prevalent (i.e. 
rules 9 to 16 in Table 5 are more prevalent).  These results make sense given that: 
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1. For random inputs, logical OR is seven times more likely to produce a TRUE output 
compared with logical AND. Note in Figure 13 that the maximum number of output 
propositions (when bias = 0) is roughly seven times greater than the minimum (when 
bias = 1). 

2. When the output of logical AND is TRUE, it will switch to FALSE if any of its inputs 
change. 

3. When the output of logical OR is TRUE, this output is more robust to changes in the 
inputs. Thus rules based on logical OR can be expected to be more robust to 
perturbations. 

 
Figure 14 shows the variation of the average F-value with the number of input predicates per 
rule that is effectively the connectivity of the random inference networks. (The AND-OR bias 
was set to the baseline value of 0.5 for these results, i.e. neither logical AND or logical OR was 
favoured during rule creation.)  It is interesting that the damage spreading is worse as the 
number of input predicates per rule decreases from three to one. The random inference 
networks discussed in this report are very similar to the NK networks discussed in Section 6.1 
and references 26 to 32. However with the NK networks the damage spreading is worse as the 
connectivity parameter K increases from one to three; this is opposite to the result shown in 
Figure 14 for the random inference networks.  
 
This apparent anomaly is explained in reference 32 where it is noted that NK networks with 
the connectivity parameter K > 2 can be driven into the ordered regime when canalysing 
Boolean functions are employed instead of randomly selecting from the full set of possible 
Boolean functions. If the full set of 256 possible Boolean functions were employed with the 
random inference networks, then the damage spreading should become worse as the number 
of input predicates increases from one to three. However the opposite result was obtained 
because the analysis used a subset of canalysing Boolean functions. 
 
The key point from Figure 12 and Figure 14 is that the damage spreading in the random 
inference networks is dependent on both the connectivity and the type of Boolean functions 
employed, e.g. whether the functions are canalysing. The key question is whether the study of 
NK networks that has been pursued for almost 40 years can be leveraged to better understand 
damage spreading in random inference networks and more generally inference networks used 
for situation assessment. 
 
Figure 15 shows the average number of output propositions for the GT random inference 
network versus the number of input predicates per rule. The number of output propositions 
appears to be independent of the number of input predicates per rule. 
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Figure 12. The variation of the average F-value with the AND-OR bias 
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Figure 13. The average number of output propositions for the GT random inference network versus the 

AND-OR bias 
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Figure 14. The variation of the average F-value with the number of input predicates per rule 
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Figure 15. The average number of output propositions for the GT random inference network versus the 
number of input predicates per rule 
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6.4 Further work 

The research literature on damage spreading in NK networks should be consulted to 
determine whether lessons learnt in that domain can lead to better understanding of damage 
spreading in inference networks used for situation assessment.  
 
The random inference networks described in Section 6.2 should be further developed so that 
the full set of 256 possible Boolean functions is available for rule creation. This will allow 
confirmation that damage spreading in random inference networks with all Boolean functions 
available is similar to that in NK networks, i.e. damage spreading is worse with increasing 
connectivity. 
  
A more extensive investigation of the variation of the F-value with the parameters in Table 6 
should be undertaken in order to better understand when damage spreading is better or 
worse. 
 
The analysis could be extended by considering perturbations applied to the rule-sets of the 
random inference networks, and not just the input propositions. This is akin to deficiencies in 
the inference rules used for machine-based situation assessment. 
 
 

7. Conclusions 

Under the umbrella of TTCP, algorithms are being developed for machine-based situation 
assessment to assist the human operator in complex situations. This report has discussed a 
technique that could be employed to evaluate the effectiveness of these algorithms in a 
simulation environment where the ground truth is well-defined. The technique involves an 
iterative process of aligning the situation assessment more closely to the ground truth, and is 
based on the F-value metric described in the scientific literature. This report also discusses 
techniques for performing partial matching of propositions when comparing the output 
propositions from the situation assessment and ground truth. Further work is required to test 
this evaluation technique prior to it being employed in TTCP experiments. 
 
Errors in the input object assessment or the situation assessment algorithms can cause 
cascading errors through the inference networks. Complex networks have received attention 
recently in a diverse range of disciplines including the physical sciences, biological sciences, 
economics and sociology. One issue studied has been that of damage spreading through 
complex networks. This report has described how random inference networks were 
constructed to abstractly model the situation assessment process, and to examine how errors 
(damage) spread through such networks. The F-value metric was used to measure how a 
single perturbation spread through a random inference network. The results achieved thus far 
are only very preliminary, but they show that damage spreading depends on: (a) the degree of 
connectedness between the rules and other predicates in the network, and (b) the type of 
Boolean functions that are employed in the network. Further work is needed to produce a 
more complete set of results, and to leverage off the significant body of research into damage 
spreading in NK networks. 
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