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AFIT/GAE/ENY/09-M03 

Abstract 

 The vast majority of aircraft today are piloted (whether from inside the cockpit or 

remotely), and therefore performance and stability are based on a relationship between 

pilot and aircraft.  Understanding this pilot-aircraft relationship is vital for aircraft design 

and mishap prevention.  In 2004 a new concept of the way pilots control aircraft was 

developed.  Termed Boundary Avoidance Tracking (BAT), this concept introduced the 

idea that often pilots control an aircraft not in an attempt to maintain some condition, but 

to avoid some real or perceived boundaries.  The BAT concept has proven to be useful:  

1) in explaining pilot reaction in certain scenarios; 2) in providing objectivity to pilot 

opinion ratings; and 3) in its use as a flight test technique to artificially increase pilot 

workload and expose poor handling qualities. 

 In order to take advantage of the BAT concept, it needs to be fully understood and 

modeled.   This research used ground simulation and flight test to give pilots roll angle 

tracking tasks, with decreasing boundaries imposed around the task, in order to further 

understand and refine BAT theory.  The experimental data were successfully matched to 

the BAT model predictions, providing validation of the model.  Pilot behavior was 

studied during the tasks, and the pilot’s physical workload was shown to increase as 

boundaries decreased.  These decreasing boundaries were also shown to elicit maximum 

performance from the pilot at the minimum achievable boundary size.  Pilot workload 

was quantified during these tasks through the use of a secondary task.  A new method of 

combining this workload data with performance data was developed in order to 

objectively quantify aircraft handling qualities.   
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BOUNDARY AVOIDANCE TRACKING: CONSEQUENCES (AND USES) OF 

IMPOSED BOUNDARIES ON PILOT-AIRCRAFT PERFORMANCE 

 

1. Introduction 

1.1. Motivation 

1.1.1. Importance of Understanding the Pilot-Aircraft System 

 The vast majority of aircraft today are piloted (whether from inside the cockpit or 

remotely), and therefore performance and stability are a function not just of the 

characteristics of the aircraft, but of the pilot-aircraft system.  It is thus impossible to 

discuss the suitability of an aircraft to a mission or task without understanding how the 

pilot will interact with the aircraft in the conduct of that mission or task.  

The qualities of this interaction are termed the handling qualities of the aircraft.   

Handling qualities depend on the characteristics of both the pilot and the aircraft.  In 

contrast, the characteristics of an aircraft in response to impulses, steps, ramps, sinusoids, 

etc. are termed the flying qualities of the aircraft.  Flying qualities depend only on the 

characteristics of the airplane, such as the aerodynamics and control systems.  The 

problem is that, unlike engineer-designed control systems, which can be analyzed and 

predicted because they were designed to be this way, pilots are not easily analyzed or 

predicted.  In other words, flying qualities are fairly easily predicted, but handling 

qualities are much less easy to predict.  Because of this difficulty, evaluating handling 
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qualities is currently a subjective process, based primarily on pilot opinion. In addition, 

the pilot’s lack of predictability forces much of the evaluation to be done after the 

airplane has been built, when problems are costly and difficult to fix.  It is necessary, 

therefore, to research and understand pilot behavior, and to compile this knowledge into a 

usable model. 

 Understanding the pilot-aircraft system is important in design, where money (and 

perhaps lives) can be saved by ensuring good handling qualities, and identifying and 

correcting bad handling qualities, before the aircraft is ever built.  Despite the best efforts 

of engineers, however, problems often surface after an aircraft is built.  In this case, a 

good pilot model can explain the deficiency and suggest improvements.   

1.1.2. Classical Pilot Modeling and the BAT Model 

 Attempts were made at developing a useful pilot model as early as World War II.  

Through the years, research and experiments have developed these early concepts into 

usable mathematical models, such as the Crossover Model, the Structural-Isomorphic 

Model, and the Optimal Control Model (McRuer, 1989).  All of these models assume that 

the pilot produces control actions based on observed error between a desired state and an 

actual state, be it regulation (e.g. keep the wings level) or tracking (e.g. climb/descend/ 

turn to the appropriate altitude/heading).   This type of control will be labeled point 

tracking in this thesis. 

 In 2004, a new concept challenged this assumption.  Developed by Mr. William 

Gray at the US Air Force Test Pilot School (TPS), the concept of Boundary Avoidance 

Tracking (BAT) assumes that a pilot often acts to avoid (rather than maintain) a specific 
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condition.  As an illustration, Mr. Gray envisioned bicycling along a foot-wide stripe on a 

road, which would be an easy task for any bicycler.  Suspending this same foot-wide 

stripe above the Grand Canyon, however, makes the task remarkably more difficult, even 

though the performance requirements are the same.  Classical operator modeling would 

explain that the fear of failure drives the operator gain to a high level during attempts to 

maintain the centerline.  However, intuition and experience suggest that the bicycler is 

focused on the edges (i.e. boundaries) of the path rather than the centerline, and in fact 

may lose awareness of the centerline altogether as control is used to avoid the boundaries 

(Gray, 2004). 

 Taking an aviation example, a pilot who experiences a strong sideways wind-gust 

while attempting to land will most likely maneuver to avoid striking a wingtip on the 

ground, rather than maneuver to return to level flight.  The distinction is critical, because 

the first type of maneuver (ground avoidance) will possibly result in an overshoot of level 

flight and cause the opposite wingtip to approach the ground.  If this continues, a Pilot-

In-the-loop Oscillation (PIO) will result.  In fact, the origins of PIO were the original 

motivation for the idea of Boundary Avoidance Tracking. 

 BAT, then, involves control forces to move away from something, and the force 

decreases as the boundaries move farther away.  This is in direct opposition to point 

tracking, in which control forces are applied to move toward something, and the force 

decreases as the point gets closer.   

 Boundaries causing BAT could be deadly (as in the case of the path over the 

Grand Canyon), or they could be damaging but not deadly (as with a structural g-limit), 

or they could simply be uncomfortable (as with negative g-loads). 
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 The BAT model is not meant to replace the other pilot models, but rather 

supplement them.  The BAT model is a switching model, in which pilots switch between 

point tracking and boundary tracking as required.  When there are no boundaries present, 

the BAT model collapses to a classical pilot model.  In BAT theory, a pilot spends most 

of the time in point tracking (modeled by any of the classical models mentioned above), 

and switches to boundary tracking only when necessary. 

1.1.3. Potential BAT Model Uses 

 If the discussion ended here, BAT would simply be an interesting idea.  If it can 

be modeled appropriately and confirmed experimentally, however, it has several potential 

uses.  In fact, some research has already been done to detail the BAT model and confirm 

it with experiment, and some of the following possibilities are already in use: 

 Prediction of aircraft PIO susceptibility (in the presence of boundaries, as in the 

sideways wind-gust PIO described above) during aircraft design.  This requires a 

validated mathematical pilot model that could be combined with an aircraft model 

for analysis. 

 Exposure of handling qualities deficiencies and PIO tendencies during flight 

testing.  This requires a method to artificially increase pilot workload in order to 

expose poor handling qualities.  Previously, a flight test technique (FTT) known 

as Handling Qualities During Tracking (HQDT) was used to attempt to force a 

pilot to use “high-gain” control inputs in a tracking task.  HQDT required pilots to 

track a target as closely as possible, accepting absolutely no error.  The problem 

was that pilots are taught from the beginning that attempting to track with no error 
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will produce poor results, and it was thus very difficult for them to overcome this 

resistance and force themselves to fly in a manner that they know is unacceptable.  

Using the BAT concept by requiring tracking in the presence of shrinking 

boundaries (what has become known as the Workload Buildup FTT) has solved 

this problem.  In the Workload Buildup FTT, the shrinking boundaries in some 

sense force the pilot to track the target with as little error as possible, resulting in 

maximum performance at the smallest achievable boundary size (Gray, 2007). 

 Quantification of handling qualities, supplementing subjective pilot comments 

with objective performance measurements in the presence of steadily decreasing 

artificial boundaries.  This assumes that aircraft with good handling qualities 

would be able to operate in the presence of smaller boundaries than aircraft with 

poor handling qualities. 

1.2. Research Objectives 

 In just over four years, BAT theory has evolved from an interesting idea into a 

mathematical model supported by simulator and in-flight experiments, and into a flight 

test technique designed to aid in the description of aircraft handling qualities and PIO 

susceptibility.  However, there is still work to do.  Some of the potential uses mentioned 

above are yet to be explored, and doing so requires a fuller characterization of the model.  

In addition, some already demonstrated aspects can be improved or shown in a different 

light.  The research objectives were formulated to address areas for improvement in the 

BAT theory.  The four main objectives for this research were: 
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 Characterize the mathematical BAT model through comparison with simulator 

and flight test data 

 Characterize pilot behavior (in terms of control stick forces and pilot physical 

workload) in the presence of decreasing boundaries 

 Characterize pilot performance (in terms of tracking error) in the presence of 

decreasing boundaries 

 Characterize the relationship between pilot opinion rating and performance/ 

workload in a Workload Buildup task 

1.3. Research Overview 

The research methodology was developed in order to support the objectives listed 

above.  The following sections describe the focus of the research. 

1.3.1. Using the Roll Axis 

 All previous BAT research was in the pitch axis.  This research explored the BAT 

phenomenon in the roll axis for the following reasons: 

 Previous BAT flight tests involved large changes in normal acceleration as 

tracking tasks were followed.  These g-loads provided a potential (and unwanted) 

secondary boundary, because pilot comfort or aircraft limits can in actuality be 

bigger threats than a simulated boundary.  In the presence of unintentional 

secondary boundaries, pilots may react differently than if the simulated primary 

boundaries were actual boundaries.  This corrupts the data and makes BAT model 

characterization difficult.  The roll axis has no such limits, and can provide 
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“cleaner” data.  Cleaner data can result in a more precise mathematical model 

with better predictive and explanatory ability. 

 While pitch PIOs gather a lot of attention, roll PIOs have occurred, often with 

disastrous results.  Several C-17 mishaps have been due to roll PIO during 

landing, and a lateral-directional PIO was listed as a possible cause of the 2001 

crash of an Airbus A300-600 in New York during departure after takeoff (Hess, 

2003).   Since the BAT model holds the promise of predicting and explaining 

PIO, it is important to gather experimental data in all axes for which PIO occurs. 

 A promising correlation has been shown between pilot opinion ratings and 

Workload Buildup performance in the longitudinal axis, offering an objective 

result as a supplement to a subjective rating.  It seems obvious that these results 

should hold in the roll axis, but it still needs to be shown.  The use of the 

Workload Buildup FTT in roll axis handling qualities testing may expose 

deficiencies before they occur in operational flying, and suggest possible 

corrective action. 

1.3.2. Characterizing the BAT Model 

 The first potential use of the BAT theory listed above is the prediction of aircraft 

PIO susceptibility during aircraft design.  As mentioned, this requires a validated 

mathematical pilot model.  The BAT model development prior to this research has been 

encouraging.  The results make intuitive sense, and they match experimental data fairly 

well.  Still, they don’t match perfectly, and it is possible that modifications to some 

parameters or some assumptions could produce better results.   
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 This research almost doubled the amount of BAT data available, and provided the 

only available data in the roll axis.  It compared the BAT model to a large number of tests 

in order to determine its suitability with as many different situations, configurations, and 

pilots as possible.  The BAT model was matched to the test data through the use of 

numerical optimization, which was the first time that optimization had been used for 

BAT research.  In addition, whereas previous research had only exercised portions of the 

mathematical BAT model, this research compared flight test data to the predictions of the 

entire model. 

1.3.3. Characterizing Pilot Behavior 

As listed above, the second use of the BAT theory is the exposure of handling 

qualities deficiencies and PIO tendencies during flight testing.  As mentioned, this 

requires a method to artificially increase pilot workload in order to expose poor handling 

qualities.  Previous research had demonstrated the intuitive result that pilots react to 

boundaries and change their behavior as necessary to avoid boundaries.  This research 

quantified this changed behavior by examining how often, how fast, and how forcefully 

the pilot moves the control stick.  The relatively new concepts of pilot duty cycle and 

aggressiveness were used to provide the quantitative measurements.  These results were 

used to validate the Workload Buildup FTT as a method of increasing pilot workload, in 

order to evaluate aircraft handling qualities during periods of elevated pilot workload. 

1.3.4. Characterizing Pilot Performance 

In addition to elevating pilot workload, the use of the BAT theory during flight 

test (in the form of the Workload Buildup FTT) also attempts to elicit maximum 
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performance from the pilot.  Past research had suggested that decreasing boundaries 

improve pilot performance until the boundaries become too tight and make the task too 

difficult.  Previous flight tests, using a tracking task in the longitudinal axis, suggested 

that a hidden boundary (in the form of pilot aversion to negative g-loads) caused the 

pilots to intentionally accept larger tracking error at the beginning of the task in order to 

decrease the amount of negative g-loads (Dotter, 2007).  As boundaries decreased, the 

pilots were forced to accept these g-loads in order to stay within the boundaries; thus, the 

tracking performance improved as the boundaries tightened.  By using the roll axis, this 

research eliminated the additional boundary and studied pilot performance to see if 

decreasing boundaries still improved pilot performance.  These results were used to 

validate the Workload Buildup FTT as a method of eliciting maximum performance from 

a pilot. 

1.3.5. Characterizing Pilot Opinion Rating in Relationship to a Workload 

Buildup Task 

 The third use of the BAT theory listed above is the quantification of handling 

qualities, supplementing subjective pilot comments with objective performance 

measurements.  A set of previous flight tests attempted to relate pilot opinion ratings to 

performance during a Workload Buildup task.  The performance was defined as the 

length of time the tracking task was flown before the boundaries were exceeded.  This 

single parameter was compared to the pilot opinion rating.  Pilot opinion ratings, 

however, are based on performance and workload.  The uniqueness of the Workload 

Buildup flight test technique is that, at the smallest achievable boundary size, it forces 
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pilots to their highest workload, and thus results in the best performance achievable with 

maximum workload.  It cannot, however, determine what the pilot workload was at any 

point other than the end.  It is possible that two different aircraft could have the same 

performance and workload requirements at the end (i.e. their total test length is the same), 

but one may require a constantly high workload throughout, whereas the other has a 

workload “spike” in the presence of close boundaries.  This is important information that 

would be lost by reducing ratings to a single parameter.   

This research quantified the workload during the test by incorporating a 

secondary task to be performed as pilots continue to perform the primary tracking task.  

This workload information was combined with the performance results in order to more 

fully quantify the relationship between BAT and pilot opinion ratings.   

1.4. Preview of Results 

The methodology developed in this research provided tasks and techniques which 

not only provided useful data for this research, but can also be used in future research.  

The following are the contributions made by this research to BAT test methodology: 

 A roll angle tracking task was developed and confirmed to be challenging enough 

to keep the pilot constantly in the loop, which is important when researching 

pilot-in-the-loop handling qualities.  This is in contrast to the tracking task used in 

previous flight tests, which was too predictable and allowed the pilot to back out 

of the loop for long periods of time. 



11 

 

 A new flight test technique was developed to measure performance and workload 

during a Workload Buildup task, using a primary tracking task and a secondary 

task. 

 Performance of the secondary task was validated as a measure of pilot workload 

by using eye-tracking equipment during ground simulation to measure pilot 

attention to the primary and secondary tasks. 

 

The results of this research validated some previous assumptions and suggested 

new conclusions.  The following are the contributions made by this research to the BAT 

theory and model: 

 Numerical optimization was used to choose the BAT model parameters that 

provided the best match to experimental data, in contrast to previous research in 

which the matching was done qualitatively. 

 The entire BAT model was matched to test data, whereas all previous research 

had only used the boundary tracking portion of the switching model. 

 Based on test results, the BAT model was modified to more accurately model 

pilot inputs during boundary tracking. 

 Pilot physical workload was shown to increase as boundaries decreased.  This was 

the first time that this was demonstrated in the roll axis, and it provided validation 

for the Workload Buildup FTT as a method to artificially increase pilot workload. 

 Pilot performance (in terms of tracking error) was shown, on average, to improve 

as boundaries tightened.  This was a validation of previous findings, but 
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demonstrated for the first time in the roll axis.  This result validated the Workload 

Buildup FTT as a method of eliciting maximum performance from a pilot. 

 A new method of combining performance and workload data from Workload 

Buildup tasks was developed in order to quantify aircraft handling qualities. 

1.5. Thesis Overview 

 The current chapter has laid the foundational concepts of pilot modeling in 

general and Boundary Avoidance Tracking in specific, providing its history and the 

reasons for moving the theory forward.  Chapter 2 goes on to provide the mathematical 

details to these concepts, describing the specifics of past successes and pointing out the 

current deficiencies in knowledge.  Chapter 3 describes the experiment design, in the 

buildup process from fixed-base simulation through motion-base simulation and flight 

test.  Chapter 4 discusses the results from simulator and flight tests.  Finally, Chapter 5 

summarizes the conclusions drawn from the experiments, and gives recommendations for 

their use, as well as areas for further research. 
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2. BAT Model Details and Experimental Background 

2.1. Characterizing the BAT Model 

 The BAT concept is straightforward and intuitive, but in order to use it as a 

predictive tool, a model must be built describing exactly how pilots react to boundaries.   

2.1.1. Mathematical Details 

Mr. Gray hypothesized a model based on switching behavior on the part of the 

pilot (Gray, 2005).  Figure 1 graphically depicts this behavior: 

 

 

Figure 1. Block Diagram of the BAT model 

During point tracking, pilot control input is based on the upper loop, acting on the 

aircraft position, rate, etc. with respect to the point-tracking target.  This loop can be 

modeled by any classical pilot model.  When boundaries become a factor, however, pilot 

control input is based on the lower loop, acting on the time to boundary (calculated using 

the displacement from and rate toward the boundary).  The time to boundary determines 

when and with what force the pilot reacts to the boundaries.  The pilot selects the larger 

of the two control forces, switching to the boundary tracking loop as boundaries become 
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a factor, and switching back to point tracking as the boundaries recede.  The switch in the 

diagram represents this decision. 

 Pilot switching behavior is not a new concept.  The Dual-Mode Controller model 

has been used to explain pilot response to step inputs, and describes different pilot 

behavior for different phases of compensation (McRuer, 1967).  A model in which a pilot 

monitors numerous error signals and acts on them one at a time has also been proposed 

(AFFTC, 2002).  The proposed BAT model, however, is the first to apply switching 

behavior to something other than point tracking. 

 In the hypothesized model, there are four parameters describing pilot 

characteristics in the presence of boundaries (Gray, 2005): 

tmin = time to boundary when the pilot begins to react to boundaries (a larger 

value of tmin implies that the pilot begins reacting to boundaries sooner) 

tmax = time to boundary when the pilot uses maximum gain to avoid boundaries 

(a larger value of tmax implies that the pilot applies maximum force sooner) 

Kbm = maximum gain used by the pilot to avoid boundaries 

τb = pilot time-delay during boundary avoidance 

The time to boundary (tb) is computed using the displacement from and rate 

toward the boundary.  The pilot input is hypothesized to increase linearly from zero at tmin 

to Kbm at tmax, according to equation 1: 

  (1)  
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 Note that tmin is greater than tmax (minimum input occurs at a greater time to 

boundary than maximum input).  If the boundaries are exceeded (which implies that they 

can be exceeded without catastrophic results), Kbm is held until the position is again 

within the boundaries.  Table 1 shows the details of the boundary tracking input 

computation. 

Table 1. Boundary Tracking Input Equations 

Situation 
Perceived Threat 

from Boundaries 
Boundary Tracking Input 

Displacement inside, 

moving away from boundary 
No threat 0 

Displacement inside, 

moving toward boundary 
  

 No threat 0 

 Onset of threat 0 

 

Threat increases  

from no threat to  

maximum threat 

 

 

where 

 

 

 
Onset of maximum 

threat  

 Maximum threat  

Displacement outside 

boundary 
Maximum threat  

 These parameters and control laws are used to predict pilot response, and it is 

important to determine how they vary from pilot to pilot and event to event, or even if 

they fully represent pilot behavior in the presence of boundaries.  They are hypothesized 

parameters which must be confirmed or modified through experiment.  The first objective 

of this research is to provide this confirmation. 
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2.1.2. Conceptual Demonstration 

 After building the model, Mr. Gray demonstrated its performance with computer 

simulation.  Hypothetical boundary-avoidance situations were simulated with the BAT 

model controlling a moderately-damped 2
nd

-order plant subject to disturbance inputs in 

the direction of a boundary.  Only the boundary tracking loop of the model was 

implemented; the point tracking loop was not used.  Therefore, the following model 

responses were due solely to boundary tracking (Gray, 2005): 

1. When the boundaries were far enough away such that the time to boundary 

was never less than tmin, no boundary avoidance inputs were made, and the 

system response damped out naturally (Figure 2). 

 

Figure 2. A Damped System with No Boundary Tracking (Gray, 2005) 

2. When the boundaries were moved closer such that the disturbance made the 

time to boundary less than tmin, a single boundary avoidance input was made, 

and the system response then damped out naturally (Figure 3). 

 

Figure 3. A Single Instance of Boundary Tracking (Gray, 2005) 
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3. If the boundaries were moved even closer, a boundary avoidance input was 

made as before, but in this case the input forced the system toward the 

opposite boundary, and an opposite boundary avoidance input was applied 

before the system finally damped out naturally (Figure 4). 

 

Figure 4. Two Instances of Boundary Tracking (Gray, 2005) 

4. As the boundaries moved closer, this input-overshoot-opposite input pattern 

was repeated, and in fact developed into a PIO (Figure 5). 

 

Figure 5. Onset of Boundary-Driven Oscillation (Gray, 2005) 

 Note that this response seems intuitive, and seems to describe the way pilots 

would actually act if attempting to avoid boundaries.  It does this without a point-tracking 

model at all; in other words, the predictions are based solely on avoiding boundaries, not 

the attempt to maintain zero displacement. 
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2.1.3. Comparison with Experiment 

The above demonstrations seem intuitive, and demonstrate that the model is 

coherent, but they do not demonstrate that actual pilots behave this way.  This requires 

comparison with experimentally-recorded pilot behavior.  To make such a comparison, a 

desktop-computer simulation was created, based on an aerodynamic model of a North 

American Navion aircraft, with varied time-delay and elevator rate limit (Gray, 2005).  

The object of the simulation was to follow a lead aircraft as it climbed and descended.  

The simulation used a simple compensatory display in which only the difference between 

the altitude of the lead aircraft and the test aircraft was displayed, along with error 

boundaries that decreased by 25% every 60 seconds.  Subjects were instructed to treat the 

boundaries as deadly, and in fact the task stopped when a boundary was exceeded.   Time 

histories of altitude error, error rate, and elevator displacement were recorded. 

The predictions of the boundary tracking pilot model (the lower loop of Figure 1) 

were compared to the experimental data.  Note that no point tracking model was used.  

The data were studied to identify possible BAT events, and these time-segments were 

evaluated assuming that the pilot had already switched to boundary avoidance inputs, and 

therefore all pilot inputs were boundary avoidance inputs.  Thus, the full extent of the 

pilot switching behavior was not explored.  The model depicted in Figure 1 was 

evaluated only from the time to boundary signal to the pilot control input signal. 

The experimentally-recorded error and error rate were used to compute a time 

history of the time to boundary, which was used in the boundary tracking pilot model to 

predict pilot control input (as in the demonstrations of the previous section).  The only 

input to the model was the actual tb time history, and the output was the BAT predicted 



19 

 

pilot control deflection.  The four BAT parameters were adjusted for each case so that the 

BAT model predictions matched the experimental data as close as possible.  The 

parameters were adjusted using an iterative process in which the parameters were 

changed and the subsequent results were qualitatively evaluated.  Each test case was 

therefore described by the values of the four parameters.     

 The following two figures show examples of the degree to which the BAT model 

correctly predicted pilot input, based on the assumption that the entire time-segments 

studied were BAT events.  The predictions agree quite well with the data, but there were 

actual pilot inputs in the data which were not predicted by the model.  Since only the 

boundary tracking loop of the model was used, these inputs were theorized to be point 

tracking inputs. 

 

Figure 6. Boundary Tracking Correlation Case 1 (Gray, 2005) 
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Figure 7. Boundary Tracking Correlation Case 2 (Gray, 2005) 

 A total of 27 tests were conducted, and the BAT model parameters were fit to 

each test.  The resulting values of tmin and tmax were then plotted against total test length 

(i.e. the length of time before the boundaries were exceeded) in an attempt to find a 

correlation between BAT parameters and task performance (Figure 8).  

 

Figure 8. Effect of BAT Parameters on Tracking Success (Gray, 2005) 
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No strong correlation was found between the individual parameters and total 

tracking time; however, subjects with a high value of tmax tended to do worse, indicating 

that they selected maximum gain too soon, which resulted in over-controlling and an 

early boundary excursion. 

2.2. Characterizing Pilot Behavior 

 In addition to describing pilot behavior at particular instances of time, with a 

particular time to boundary, the BAT theory also describes how pilot behavior changes 

over time, as boundaries are decreased.  The effect of boundaries on pilot behavior can be 

seen by studying pilot control stick (inceptor) movement.  If the average difficulty of the 

tracking task remains constant with time (by repeating the task to coincide with each 

change in boundary size), then any change in pilot inceptor movement should be due to 

the changing boundaries.  To adequately describe this change, Mr. Gray proposed 

describing pilot inceptor movement with the new concepts of pilot duty cycle and 

aggressiveness (Gray, 2007).  These two parameters are collectively called pilot inceptor 

workload. 

 Duty cycle describes how often the pilot is moving the controls.  It is defined as 

the percentage of time that the pilot is moving the controls (above a pre-defined noise 

threshold).  Aggressiveness describes how fast the pilot is moving the controls.  It is 

defined as the root-mean-square of the control force (or displacement) rate.  These two 

concepts sum up pilot inceptor workload by describing how often and how fast the pilot 

is moving the controls.  Figure 9 shows the relationship between the two parameters. 
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Figure 9. Pilot Duty Cycle and Aggressiveness Theory (Gray, 2007) 

The Workload Buildup FTT (developed from BAT theory) is based on the 

assumption that decreasing boundaries will increase pilot workload, and the technique is 

therefore assumed to be useful in order to evaluate aircraft handling qualities during 

periods of elevated pilot workload.  The concepts of duty cycle and aggressiveness 

provide a way to measure the increased pilot workload and validate the Workload 

Buildup FTT. 

The HAVE BAT flight tests at TPS (Warren, 2006) provided the first flight test 

data used for BAT research.  These tests used the Workload Buildup FTT in order to 

investigate pilot behavior in the presence of boundaries.  The test aircraft (a T-38) was 

required to fly close formation with a target aircraft (another T-38 which maneuvered 
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longitudinally), while maintaining position within certain visual references.  An aircraft-

mounted camera was placed in the test aircraft to record these visual references for use in 

data analysis.  The data proved very difficult to extract from the video, and only limited 

BAT model characterization was possible.  In addition, problems in data recording did 

not allow calculation of duty cycle and aggressiveness.  The tests were successful, 

however, in showing that a PIO often occurred when the boundaries were tightened 

sufficiently, suggesting that the pilot workload had, in fact, increased. 

The BAT DART tests (Dotter, 2007) also used the Workload Buildup FTT, but 

improvements in data recording allowed control stick forces to be accurately recorded.  

These tests used the Variable-stability In-flight Simulator Test Aircraft (VISTA), a 

variable-stability F-16.  The VISTA solved the problems inherent in the T-38 camera 

system by displaying a tracking task and boundaries in the Heads-Up Display (HUD), 

thereby eliminating the need for a target aircraft and video cameras, replacing them with 

on-board software and data recording devices.  It also allowed the simulation of four 

different aircraft-response models in one aircraft during the same flight.  The data from 

the BAT DART tests were analyzed by Mr. Gray using duty cycle and aggressiveness 

(Gray, 2007).  The data showed a general trend of increasing duty cycle and 

aggressiveness as boundaries tightened.  This result was not true in all cases, but it did 

show some promise, and so this research further examined the concept. 

2.3. Characterizing Pilot Performance 

Prior to the advent of the BAT theory, Mr. Gray developed a theory of the 

relationship between required and achieved performance during a piloting task.  This 
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theorized relationship (shown in Figure 10) suggests that as performance tolerances 

become tighter, pilots will respond with increased performance, until the tolerances 

become so tight that the pilot is unable to perform as required.  A PIO often occurs at this 

point. 

 

Figure 10. Achieved and Desired Performance Theory (Gray, 2007) 

 The Workload Buildup FTT provides a method to test the relationship between 

required and achieved performance.  In the Workload Buildup FTT, the shrinking 

boundaries represent changing performance requirements.  According to the theory, pilot 

tracking error should decrease as the boundaries tighten, until the pilot can no longer 

remain within the boundaries. 

 As mentioned in the previous section, the HAVE BAT flight tests were successful 

in showing that a PIO often occurred when the boundaries were tightened sufficiently.  
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However, data recording problems prevented the measurement of tracking error as a 

function of boundary size, and so the relationship between required and achieved 

performance could not be quantified. 

 Improvements in test design and data recording during the BAT DART tests 

allowed performance to be recorded as a function of boundary size.  Figure 11 shows the 

average tracking error as a function of boundary size for three of the aircraft models used 

during the flight tests.  The data support the theoretical relationship shown in Figure 10, 

suggesting that achieved tracking performance was being altered by the required tracking 

performance.  The data do not show the dramatic rise in error that is suggested in Figure 

10, but this is likely due to the fact that the task stopped when a boundary was exceeded.  

This did not leave time for increased error to have much of an effect on the average error 

for the final boundary size. 

 

Figure 11. BAT DART Tracking Error (Dotter, 2007) 
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 It was noted, however, that this trend was clearer in flight test than in ground 

simulation.  It was theorized that during flight test, pilots altered their behavior at the 

beginning of the profile (when the boundaries were wide) in order to minimize the 

required negative g-loads.  This aversion to negative g-loads, then, served as a hidden 

boundary.  The ground simulator was unable to faithfully reproduce the negative g-loads 

experienced during flight, and therefore pilots did not react as they did in flight test.   

2.4. Characterizing Pilot Opinion Rating in Relationship to a Workload Buildup 

Task 

As discussed above, the Workload Buildup FTT is used to artificially increase 

pilot workload (by shrinking boundaries) up to the point of instability or unacceptable 

performance.  This point is the performance limit for a particular pilot-vehicle 

combination.  Intuitively, some aircraft (among a large spread of pilots) should be able to 

operate successfully in the presence of smaller boundaries than others, and should 

probably also receive higher pilot opinion ratings.  If a definite correlation between 

performance during a Workload Buildup FTT (defined as the length of time before 

boundaries are exceeded or, alternatively, the minimum achievable boundary size) and 

pilot opinion rating could be found, this technique could be used to make objective 

measurements in what is currently a subjective aircraft rating process. 

 This was the focus of the BAT DART tests.  In a succession of tests from desktop 

simulation, through fixed-base and motion-base simulation, to flight test, aircraft models 

with different handling qualities were flown during identical Workload Buildup tasks.  

The task was a longitudinal tracking task with shrinking boundaries on both sides of the 
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target.  As in the desktop simulations conducted by Mr. Gray, the pilots were instructed 

to treat the boundaries as deadly, and the task stopped when a boundary was exceeded.  

Pilot-opinion ratings (using the test community standard Cooper-Harper ratings 

(Appendix A)) and corresponding performance (defined as the length of time before 

boundaries were exceeded) were analyzed, and were shown to have a qualitative 

correlation. 

 Figure 12 shows an attempt to find a statistical relationship between Cooper-

Harper rating and BAT performance.  Based on the limited amount of data, there 

appeared to be a correlation.  However, the Cooper-Harper scale is an ordinal scale, and 

therefore statistical curve fitting is not technically appropriate.  Figure 13 shows the same 

data presented in a qualitative way, which does not require curve-fitting.  A qualitative 

correlation between Cooper-Harper ratings and Workload Buildup performance is 

evident. 

 

Figure 12. Statistical Pilot Opinion Rating Analysis (Dotter, 2007) 
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Figure 13. Qualitative Pilot Opinion Rating Analysis (Dotter, 2007) 

2.5. Summary of Past Research 

The BAT theory has been advanced significantly in the four years since it was 

first introduced.  The initial idea that pilots often act to avoid, rather than maintain, a 

certain condition has been developed into a usable mathematical model.  The model has 

been demonstrated through batch computer simulations and real-time simulations with a 

pilot in the loop.  The model predictions have been shown to agree well with the 

experimental data. 

The Workload Buildup FTT, based on artificially increasing pilot workload by 

imposing boundaries on pilot performance, was developed using BAT theory in order to 

evaluate aircraft handling qualities during periods of elevated pilot workload.  Pilot 

workload has been measured using the new concepts of pilot duty cycle and 
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aggressiveness, collectively called pilot inceptor workload.  Flight test has demonstrated 

that inceptor workload tends to increase as boundaries are tightened. 

Pilot performance has also been shown to increase as boundaries are tightened.  

Flight tests using the Workload Buildup FTT demonstrated that decreasing boundaries 

tended to elicit maximum performance from pilots.  Results from these tests showed that 

in cases where pilots are prone to accept large errors (for example, in order to avoid 

physical discomfort), the shrinking boundaries forced the pilots to accept less error in 

order to remain within the boundaries. 

Finally, a promising qualitative correlation has been shown between pilot opinion 

ratings and Workload Buildup performance.  The Workload Buildup FTT offers a 

method to gather objective data to supplement the subjective ratings and comments that 

are currently the basis of handling qualities evaluations. 
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3. Experiment Design 

3.1. Designing for Success 

 As described in Chapter 1, the following were the four main objectives for this 

thesis: 

 Characterize the mathematical BAT model through comparison with simulator 

and flight test data 

 Characterize pilot behavior (in terms of control stick forces and pilot physical 

workload) in the presence of decreasing boundaries 

 Characterize pilot performance (in terms of tracking error) in the presence of 

decreasing boundaries 

 Characterize the relationship between pilot opinion rating and performance/ 

workload in a Workload Buildup task 

The experiment was designed to meet these objectives. 

 A buildup approach was used to develop the appropriate test techniques and data 

analysis procedures, in order to maximize the success during flight test.  Initial 

parameters and techniques were evaluated using desktop simulation without test subjects,   

solely as a means of evaluating the suitability of the aircraft models, tracking task, flight 

test techniques, and data analysis procedures.  These observations were used to design the 

experiment for the first simulator tests.  The first set of simulator tests was conducted in a 

fixed-base simulator.  Lessons learned from this set of tests were used to modify the 

procedures for the motion-base simulator tests.  Likewise, lessons learned from the 

motion-base simulator tests were used to modify the procedures for the flight tests.  Even 
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though the simulator tests were used as a buildup to flight test, the simulator tests were 

still designed to give usable data.  In this way, three sets of data were gathered during the 

research, which were then analyzed and used for advancing BAT theory. 

3.2. Test Team 

 Initial research, test development, and fixed-base simulation were done by the 

author at the Air Force Institute of Technology (AFIT) at Wright-Patterson Air Force 

Base, Ohio.  Further test development and execution, including the motion-base 

simulation and flight test, were accomplished by a five-member test team (including the 

author) at the Air Force Test Pilot School (TPS) at Edwards Air Force Base, California.  

The TPS test program was known as AT BAT (Blake and others, 2008). 

3.3. Test Platforms 

 Both simulator tests were conducted at the Air Force Research Laboratories 

(AFRL) at Wright-Patterson Air Force Base.  The Infinity Cube simulator was used for 

the fixed-base simulation (Figure 14).  This simulator featured out-the-window visual 

displays (200° horizontal by 120° vertical field-of-view), a HUD, a Heads-Down Display 

(HDD) and a fixed side stick.  The Large Amplitude Multi-Mode Aerospace Research 

Simulator (LAMARS) was used for the motion-base simulation (Figure 15).  This 

simulator was a five degree-of-freedom simulator.  (The LAMARS was not capable of 

translation in the longitudinal axis, but this capability was not considered important for 

these roll axis tests.)  The LAMARS also featured out-the-window visual displays (120° 

horizontal by 40° vertical field-of-view), a HUD, and a fixed side stick. 
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Figure 14. Infinity Cube Fixed-Base Simulator 

 

 

Figure 15. LAMARS Motion-Base Simulator 

 The NF-16D VISTA was used for flight test (Figure 16).  The VISTA was a 

modified Block 30 F-16D with a custom Digital Flight Control Computer (DFLCC) 
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installed.  The Variable Stability System (VSS) in the VISTA was a five degree of 

freedom system used to simulate various types of aircraft handling qualities, within the 

control authority and bandwidth of the actuators and flight control surfaces.  The front 

seat was the simulation cockpit and the rear seat had control of the VSS.  This project 

used the fixed side-stick in the VISTA. 

 

Figure 16. VISTA Test Aircraft 

 

3.4. Test Profiles 

 There were no existing techniques for BAT research in the roll axis.  Therefore, 

considerable time and effort were spent in developing appropriate test techniques.  Initial 

desktop simulations were conducted using a variety of profiles and tracking scenarios, 

and the most appropriate profiles were chosen after many hours of comparison testing.   

The method of measuring pilot workload in support of the fourth objective 

(characterizing the relationship between pilot opinion rating and performance/workload 

in a Workload Buildup task) was researched considerably.  Pilot inceptor workload (i.e. 

duty cycle and aggressiveness) was discussed in Chapter 2 as a way to measure pilot 



34 

 

workload.  This method is useful in showing how a pilot’s physical workload increases as 

boundaries decrease, and was explored in this research when characterizing pilot 

behavior in the presence of boundaries.  However, it does not take mental workload into 

account.  Mental workload is an important component of pilot opinion ratings.  Previous 

research had used secondary tasks to measure operator mental workload (Jex, 1987).  The 

secondary task method was chosen for this research.   

Jex’s work used secondary tasks to decrease primary task performance to the 

point of instability.  However, the profiles for this research were developed so that pilots 

were required to sacrifice secondary task performance when necessary to avoid boundary 

excursions.  In this way, decreasing secondary task performance was used to identify 

increasing workload.  The type of secondary task used for these profiles was developed 

after much research into workload measurement and after much initial computer 

simulation, and the secondary task refinement continued throughout each test phase in 

order to produce the most suitable task. 

As a result of the test technique development efforts, three test profiles were 

created in order to support the research objectives.  All three profiles were based on a roll 

tracking task, in which a roll angle target (moving in a random-appearing manner) was 

displayed as a dotted line in the HUD.  The pilot attempted to keep the target aligned with 

a caret at the top of the HUD.  This tracking task was identical in all profiles.  These 

profiles represent a significant contribution to BAT research, because in addition to 

providing data for this research, they can be used for future BAT tests.  The specifics of 

each profile are described in the following sections. 
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3.4.1. Workload Buildup Profile 

 The purpose of the Workload Buildup profile was to observe pilot behavior and 

performance in the presence of boundaries, and to support the objective of further 

refining the BAT model.  In this profile, boundary lines were displayed on both sides of 

the target line, and the boundaries decreased every 30 seconds.  Pilots were instructed to 

treat the boundaries as life-threatening, and maneuver as required to prevent exceeding 

them.  The profile stopped automatically when the boundaries were exceeded for 0.5 

second.  The purpose of the 0.5 second delay was to gather data for pilot behavior outside 

given boundaries. 

 Figure 17 shows an example of the flight test HUD symbology for the Workload 

Buildup profile.  Because of lessons learned in ground simulator tests, and because of 

differences in software implementation, the HUD symbology was slightly different 

among the test platforms. 

 

Figure 17. Workload Buildup Profile HUD Symbology (VISTA) 
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3.4.2. Workload Buildup plus Secondary Task Profile 

 The purpose of the Workload Buildup plus Secondary Task profile was to 

objectively measure performance and workload during a tracking task in the presence of 

boundaries.  This profile, coupled with the Cooper-Harper profile discussed next, was 

designed to explore the relationship between pilot opinion rating and Workload Buildup 

performance/workload.  The profile was identical to the Workload Buildup task, with the 

addition of a secondary task.  The secondary task consisted of four different arrow types 

which were displayed to the pilot one at a time in a random-appearing sequence.  The 

pilot was required to deflect a switch on the throttle in the direction of the displayed 

arrow.  The pilot was instructed to treat staying within the boundaries as the primary task, 

and to sacrifice secondary task performance as required to remain within the boundaries.  

Figure 18 shows an example of the VISTA HUD symbology for the Workload Buildup 

plus Secondary Task profile.  As with the Workload Buildup profile, the HUD 

symbology was slightly different among the test platforms. 

 

Figure 18. Workload Buildup plus Secondary Task HUD Symbology (VISTA) 
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3.4.3. Cooper-Harper Profile 

The purpose of the Cooper-Harper profile was to gather pilot opinion ratings from 

each pilot for each aircraft model.  This profile, coupled with the Workload Buildup plus 

Secondary Task profile discussed above, was designed to explore the relationship 

between pilot opinion rating and Workload Buildup performance/workload.  The profile 

lasted for a fixed period of two-minutes.  There were no boundaries in this profile.  

Instead, two sets of reference lines were displayed on each side of the roll target, 

identified as the “desired” and “adequate” performance regions.  The amount of time 

spent within each region was recorded and displayed to the pilot at the end of the profile, 

and the pilot could compare his or her performance to given performance requirements.  

The pilot then assigned a Cooper-Harper rating based on this performance and a 

subjective assessment of his or her workload.  Figure 19 shows an example of the VISTA 

HUD symbology for the Cooper-Harper profile. 

 

 

Figure 19. Cooper-Harper Profile HUD Symbology (VISTA) 
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3.5. Test Elements 

 In order to implement the test profiles described above, the following elements 

were needed: 

 Aircraft models 

 A tracking task 

 A set of decreasing boundaries 

 A secondary task 

As testing progressed from fixed-base simulation to motion-base simulation to 

flight test, changes were made to these test elements as required to meet the challenges 

and differences of each new test platform.  Changes were also made in order to further 

refine the flight test techniques and provide the best data.  These changes were not 

detrimental to data analysis.  No attempt was made, for example, to match simulator data 

to flight data, or to make the VISTA fly like the simulator.  The tests were treated as 

separate data sets, all of which provided different examples of and insight into pilot 

behavior in the presence of boundaries. 

3.5.1. Aircraft Models 

 In order to observe pilot behavior in the presence of boundaries in a variety of 

situations, and in order to search for a correlation between Workload Buildup 

performance/workload and pilot opinion rating, multiple models were needed to simulate 

aircraft with different handling qualities.  No specific models were required, only that the 

models should be different from each other.  Three models were developed for each test, 

with an attempt to design aircraft models with Level 1, Level 2, and Level 3 handling 
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qualities.  Information on handling qualities Levels can be found in the Department of 

Defense Military Standard Flying Qualities of Piloted Aircraft, MIL-STD-1797B (DOD, 

2006).  

Due to changes made between simulator tests and flight tests, each set of aircraft 

models was different than the others.  This resulted in nine different aircraft models 

(three each for fixed-base simulation, motion-base simulation, and flight test).  The 

models were labeled A through I. 

3.5.1.1.Fixed-Base Simulator Aircraft Models 

 Since no previous BAT research had been done in the roll axis, much effort was 

spent in developing appropriate lateral-directional aircraft models which would be useful 

in support of the research objectives.  Desktop simulations were used to evaluate 

potential models, and the most appropriate models were chosen.  After considerable time 

and effort and many candidate aircraft models, the best models were shown to be those 

that restricted variables to as few as possible.   Minimizing variables simplified analysis 

and allowed tighter control of handling qualities.  Therefore, the fixed-base simulation 

models were developed to respond only in the roll axis, with neutral spiral stability and a 

completely canceled Dutch Roll mode.  Thus, the aircraft response was reduced to the 

roll subsidence mode, and it was modeled as a simple transfer function between stick 

force and roll rate: 

   (2)  
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where 

   = roll rate 

   = stick force 

  = roll mode time constant 

   = Laplace variable 

 This model choice reduced the model design variables to a single parameter.   

MIL-STD-1797B provides ranges of roll mode time constants which are predicted to give 

a range of handling quality levels.  Based on these predictions, the following values were 

used to create three different aircraft models: 

Table 2. Fixed-Base Simulation Model Parameters 

 τr 
Predicted Handling  

Qualities Level 

Aircraft A 0.5 1 

Aircraft B 4 2 

Aircraft C 8 2 

 

The models were further evaluated in the simulator prior to actual testing, and the time 

constant for Aircraft C was reduced from an original value of 10 (which is the predicted 

cutoff in MIL-STD-1797B between Levels 2 and 3),  because the original value proved 

unflyable for the given task.  In addition, the pitch and throttle responses were set to zero, 

simulating a perfect autopilot and autothrottle, in order to focus pilot attention only on the 

given tracking tasks. 
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3.5.1.2.Motion-Base Simulator Aircraft Models 

 The motion-base simulator tests were used to test and evaluate the proposed 

aircraft models for flight test.  The model development was done by Calspan 

Corporation, the operators of the VISTA, based on the requirements of this research.  

These models were given additional degrees of freedom, in an attempt to model a more 

realistic airplane response than a first-order transfer function.  Therefore, a fourth-order 

lateral-directional model was used.  The roll mode time constant, spiral mode time 

constant, and Dutch Roll frequency and damping were the available design parameters.   

 As was done with the fixed-base models, MIL-STD-1797B was used to select 

flying qualities parameters which would provide a range of handling quality levels.  Each 

of the parameters was chosen using the MIL-STD predictions to correspond to the 

desired handling qualities level (Level 1, 2, and 3).   The aircraft model transfer functions 

are shown in the following equations:  

Aircraft D:  (3)  

Aircraft E:  (4)  

Aircraft F:  (5)  

 

where:   = aileron deflection (degrees) 
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 The characteristic equation of the aircraft model transfer functions can be factored 

into the following form: 

  (6)  

where: 

    = Dutch roll damping ratio 

    = Dutch roll natural frequency 

    = roll mode time constant 

    = spiral mode time constant 

 

The four parameters in the factored characteristic equation were the design 

parameters, and they had the following values: 

Table 3. Motion-Base Simulation Model Parameters 

 
 

 

   
Predicted 

Handling 

Qualities Level 

Aircraft D 3 0.3 0.5 99 1 

Aircraft E 1 0.1 1.1 98 2 

Aircraft F 0.4 0.02 2.5 100 3 

 

 Due to the continuously closed-loop nature of the roll tracking task in this project, 

the spiral mode was not considered a factor, and was not changed significantly among the 

models.  A standard, previously verified longitudinal model (resulting in Level 1 

handling qualities in the pitch axis) was used for all three models.  The intent was to 

ensure that the longitudinal handling qualities were not a distraction during the tests.  
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During the simulator tests, none of the pilots complained about the longitudinal response, 

and so the longitudinal handling qualities were considered suitable for the test. The 

longitudinal transfer function is shown in Equation 7: 

  (7)  

where: 

   = pitch rate 

    = elevator deflection (degrees) 

 

During the simulator tests, the achieved lateral-directional handling qualities of 

the models were not as predicted.  The three models had noticeably different handling 

qualities, but were each (in their own way) approximately Level 2 aircraft.  As a result, 

the models were modified for flight test. 

3.5.1.3.Flight Test Aircraft Models 

 In order to provide a larger spread among the handling qualities of the three 

models, the flying qualities parameters were changed from those in the motion-base 

simulation.  These models were analyzed using the predicted VISTA aerodynamics and 

were tested with hardware-in-the-loop simulations.  The analysis and simulations 

suggested that the models would be acceptable for flight test.  However, during the 

calibration sorties, these models proved to be uncontrollable.  Due to inaccuracies in the 

VISTA aerodynamic model, the programmed transfer functions did not provide the 

predicted handling qualities.  Therefore, in order to reduce the effects of aerodynamic 
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uncertainty, the models were all programmed to have the same Dutch Roll characteristics 

(Level 1), and the roll mode time constant was varied to provide the different handling 

qualities (as in the fixed-base simulations).  After multiple iterations, the following 

transfer functions were programmed in the VISTA: 

Aircraft G  (8)  

Aircraft H  (9)  

Aircraft I  (10)  

 

These transfer functions corresponded to the following flying qualities 

parameters: 

Table 4. Flight Test Model Parameters 

 
 

 

   
Predicted 

Handling 

Qualities Level 

Aircraft G 3 0.3 0.3 31 1 

Aircraft H 3 0.3 1.1 50 2 

Aircraft I 3 0.3 2.4  = 380 3 

 

where:            = time to double amplitude. 

The spiral mode time constant was not intentionally changed, but it was allowed 

to change as necessary to appropriately model the roll mode in the VISTA.   The 
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longitudinal model from the LAMARS simulations was used in the VISTA, and the pilots 

confirmed that the longitudinal handling qualities were not objectionable. 

3.5.2. Tracking Task 

 The tracking task for this research was designed as a random-appearing, moving 

roll angle target, displayed as a dotted line in the HUD.  The task was designed to repeat 

every 30 seconds, to correspond with the boundary decrease interval.  This allowed for 

evaluating performance criteria against boundary size without adding tracking task 

differences as a variable.  In other words, if the task did not repeat regularly, there would 

be no way to tell if total tracking time was determined by boundary size or by a 

singularly difficult tracking segment which occurred at an inopportune time.  

 The tracking task used in the BAT DART tests was designed beginning with a 

sum of three sine waves, which was used as the pitch input for an F-16 model; the 

resulting flight-path angle of the F-16 was the displayed tracking task.  Because of the 

arrangement, and limited number, of sine waves, as well as the damping supplied by the 

aircraft model, the tracking task became a series of fairly long climbs and descents, 

followed by oscillations at the top and bottom.  As a result, the tracking task was fairly 

predictable and allowed the pilot to back out of the loop for long periods of time.  Since 

the intent is to evaluate pilot-in-the-loop handling qualities, a more challenging task was 

needed. 

 Previous research has been conducted in building suitable random-appearing 

tracking tasks in human response studies, with recommendations given for the spread of 

the frequency content, the amplitude distribution, etc. (McRuer, 1965).  However, the 
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recommended spread of frequencies (2 decades) included frequencies that were too high 

to be used in this study, because they moved the boundaries faster than the aircraft could 

respond, resulting in an impossible task and almost immediate boundary excursion.  As a 

result, a spread of only 1 decade was used.  Some of the other recommendations were 

incorporated, such as including frequencies below 0.5 radian per second and using at 

least 5 sine waves.   

 In addition to the recommendations above, the tracking task was tailored to the 

aircraft models.  Desktop simulations were conducted using a variety of tracking tasks, 

and the most appropriate task was chosen after many hours of comparison testing.  

Tracking task refinement also continued throughout each test phase in order to produce 

the most suitable task.  Simulation showed that some of the proposed tracking tasks 

resulted in almost identical performance among all three aircraft models, while others 

were extremely difficult even for the best model.  To understand the difference between 

the tasks, the root-mean-square (rms) roll rate and acceleration of the candidate tasks 

were calculated, and a balance was found between values that were too low (resulting in 

no difference between aircraft model performance) or too high (resulting in poor 

performance for even the best model).  Figure 20 compares the final tracking task with 

the task used for the BAT DART tests.  The rms values show that the task designed for 

this research was, in fact, more challenging than the BAT DART task, as desired.  
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Figure 20. Tracking Task Comparison 

 Table 5 lists the frequency and amplitude content of the tracking task.  The listed 

amplitudes were scaled by 33.57 to give a maximum bank angle of 50º. 

 

Table 5. Tracking Task Frequency Content 

Cycles per 30 seconds Frequency (rad/sec) Amplitude / 33.57 

2 .4188 -1 

3 .62832 0.1 

5 1.0472 -0.3 

7 1.4661 0.1 

11 2.3038 -0.2 

 

 As with the aircraft models, changes were required to the tracking task as the 

testing progressed to motion-base simulation and flight test.  In the LAMARS simulator, 

the sine wave amplitudes proved too high.  This moved the roll target faster than was 
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suitable for the aircraft models.  As a result, all of the amplitudes were scaled by a factor 

of 0.67.  Furthermore, even this scaled-down task proved too difficult during flight test.  

The final tracking task used in the VISTA included only the first three sine waves from 

Table 5. 

 Throughout all three series of tests, pilots consistently commented that the 

tracking task was challenging and unpredictable, and so the tracking tasks were 

considered suitable.  This tracking task has already proved useful in other flight tests as 

well, and has been incorporated into handling qualities simulations used in the TPS 

syllabus. 

3.5.3. Boundaries 

 The boundaries were displayed as solid lines to the left and right of the bank angle 

target which moved with the target, thus providing bounds on the error.  In the fixed-base 

simulator, the boundaries started ± 30º from the target, and steadily moved closer as the 

test progressed, with a total decrease of 20% every 30 seconds.  Data analysis from these 

fixed-base simulator tests suggested that the boundaries started too close to the target, and 

so the boundaries for the motion-base simulation were started ± 40º from the target.  

Additionally, the boundaries for all further tests were programmed to shrink step-wise 

every 30 seconds instead of gradually fading in, as in the fixed-base simulation.  This was 

done in order to correspond with the tracking task repetition every 30 seconds, and to 

provide a constant difficulty level (due to boundaries) for each 30 second period. 

 Due to difficulties in programming the VISTA displays, the boundaries were 

implemented differently in the aircraft than in the motion-base simulation.  For flight test, 
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the boundaries began at ± 30º from the target (as in the fixed-base tests) and shrank by 

approximately 8º every 30 seconds (instead of the 20% decrease used in the motion-base 

tests).   

3.5.4. Secondary Task 

 Since this was the first time that secondary tasks had been used in BAT research, 

it was not clear at the start how the task should be designed.  So, in the first set of tests 

(the fixed-base simulations), two types of secondary tasks were explored.  One of them 

consisted of the arrows described in the profile descriptions above, displayed on the 

HDD.  The other task consisted of a small square displayed at random-appearing times in 

the corner of the HUD airspeed display.  When the square was displayed, the pilot was 

required to press and hold a button on the throttle.  When the square was removed, the 

pilot was required to release the button.   

Analysis of the data from these tests showed that the square task was not 

challenging enough, and performance of this task remained relatively constant throughout 

the profiles.  This made the task unsuitable as a measure of pilot workload.  The arrow 

task was challenging enough, and performance of this task degraded appropriately for a 

measure of workload.  However, the crosscheck required from the HUD down to the 

HDD caused several pilots to exceed the boundaries as they were looking down at the 

secondary task.  This was an undesired effect.  Figure 21 compares the two secondary 

tasks.  After the fixed-base simulations, the arrow task was chosen, but was moved to the 

lower left corner of the HUD, in order to relieve the time required for crosscheck, and 
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prevent exceeding boundaries due to secondary task crosscheck.  Both the motion-base 

simulator tests and the flight tests used the new HUD arrow task as the secondary task. 

 

 

Figure 21. Comparison of Secondary Task Candidates 

The secondary task was used as a measure of pilot workload, under the 

assumption that as boundaries decreased, pilots would spend more time focusing on the 

roll tracking task and less time focusing on the secondary task.  Thus it was assumed that 

degraded secondary task performance meant that pilots were looking at the secondary 

task less often.  In order to confirm this assumption, and to validate the secondary task as 

an appropriate measure of pilot workload, eye-tracking equipment was used during the 
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motion-base simulator tests.  This equipment was not cleared for flight test, so it was only 

used in the simulator. 

The eye-tracker system recorded the focal point of the pilot’s eye when 

performing the Workload Buildup plus Secondary Task profile.  The data included a 

series of 24 frames-per-second, MPEG-4 digital video in 752x480 pixel resolution.  The 

eye-tracker used a Charge-Coupled Device (CCD) to track the center of the pilot’s right 

pupil and another CCD to record video in the direction the pilot’s head was pointed.  The 

equipment then superimposed a red cross (representing the center of the pupil) on the 

front view video data.  Eye tracker performance was limited by its lens field-of-view 

(roughly ±15 degrees), CCD sensitivity, and bore-sight alignment.  Additionally, pilot 

blinking would often cause the eye tracker to temporarily lose track.  Even with these 

limitations, the team still gathered representative data to validate the secondary task as an 

appropriate measure of pilot workload. 

Figure 22 shows a typical example of a pilot’s secondary task crosscheck for each 

aircraft model.  A crosscheck was defined as a movement of the pilot’s eye from the 

primary task to the secondary task.  The crosscheck frequency (measured in Hertz) was 

averaged for each 30 second boundary interval.  Decreasing crosscheck meant that the 

pilot was looking at the secondary task less often.  As expected, the crosscheck ability of 

the pilot decreased as the boundaries decreased, and also decreased in proportion to 

decreasing handling qualities. 
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Figure 22. Typical Pilot Crosscheck Frequency (LAMARS) 

 

Figure 23 shows a typical example of a pilot’s secondary task crosscheck 

compared to his secondary task performance on a single Workload Buildup plus 

Secondary Task profile.  The trends of the two sets of data followed each other closely, 

which validated the secondary task as an appropriate measure of pilot workload.  This 

was an important result, and a significant contribution to BAT test methodology.  The 

secondary task developed for this research provided important workload data during 

these tests, and can be used in BAT research in the future in order to measure pilot 

workload. 
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Figure 23. Typical Pilot Crosscheck Frequency and Secondary Task Performance (LAMARS) 

3.6. Test Procedure 

 Combining all of the profiles listed above resulted in a total of nine tests per pilot 

(three profiles for each of the three aircraft models), plus three practice tests to ensure the 

pilots understood the testing procedures.  Common elements to all tests included: 

 Roll-angle tracking, with the same task in all tests 

 A 15 second “warm-up”, during which the pilot could fly the aircraft, but the 

task remained stationary and the boundaries were non-functional. 

The test cards used for the VISTA flight tests are include in Appendix B. 
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3.7. Test Briefing and Order 

 The testing procedures were explained fully to each pilot before any of the tests 

were conducted.  Pilots were told that they would be evaluating different types of aircraft, 

but no specifics were given.  Testing order was randomized for each pilot, in order to 

reduce the effects of learning or fatigue. 

3.8. Test Subjects 

 Twenty-two subjects participated in the fixed-base simulator tests.  All subjects 

were rated military pilots; the least experienced pilot had 800 hours of military flight 

time.  Over 60% of the pilots were fighter pilots, 10% were bomber pilots, and around 

15% each were transport or helicopter pilots. 

 Fourteen subjects participated in the motion-base simulator tests, including the 

five members of the TPS test team.  Four of the subjects had participated in the previous 

fixed-base simulator tests.  Eleven of the subjects were rated military pilots, one subject 

was a military navigator, and two of the subjects (from the TPS test team) were 

engineers.  Of the pilots, 46% were fighter pilots, and 27% each were transport or 

helicopter pilots.  The least experienced pilot had 750 hours of military flight time.   

 The five TPS test team members were the only participants in the flight tests, but 

each member flew two sorties.  All three of the test team pilots were fighter pilots; the 

least experienced pilot had over 1500 hours of military flight time. 

 Thus, in all there were 32 different test subjects and 46 test sets.  Each set 

included 9 profiles, for a total of 414 test events.  Over 60 total hours of ground 

simulation and flight time were accomplished. 
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3.9. Summary of Experiment Design 

Because there were no techniques for BAT research in the roll axis prior to this 

research, considerable time and effort were spent in developing appropriate test 

techniques to support the research objectives.  After research and preliminary simulation, 

three profiles were developed which would collectively address all four objectives. In 

addition to the structure of the profiles, the individual elements of the profiles were 

researched, simulated, and developed to gather the most pertinent data. 

  All three profiles were based on a roll angle tracking task that was developed to 

eliminate unwanted boundaries that were found in previous tests, and to keep the pilot in 

the loop at all times, in contrast to tracking tasks used in previous research.  Three lateral-

directional aircraft models were created, after much iteration, in order to observe pilot 

behavior in the presence of boundaries in a variety of situations, and in order to search for 

a correlation between Workload Buildup performance/workload and pilot opinion rating. 

A secondary task was also developed for one of the profiles in order to explicitly 

measure pilot workload.  This type of workload measurement in the presence of 

boundaries had not been attempted before, and so many hours of research and simulation 

were conducted in order to design the most effective secondary task.  After the task was 

designed, it was validated as a measure of pilot workload through the use of eye-tracker 

equipment.  The eye-tracker data and the secondary task data showed remarkable 

correlation. 

The development of the flight test techniques and test elements present a 

significant contribution to BAT research methodology.  These test techniques were useful 

not only for this research, but can be used in future BAT research as well. 
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4. Test Results 

 As described in Chapter 1, the following were the four main objectives for this 

thesis: 

 Characterize the mathematical BAT model through comparison with simulator 

and flight test data 

 Characterize pilot behavior (in terms of control stick forces and pilot physical 

workload) in the presence of decreasing boundaries 

 Characterize pilot performance (in terms of tracking error) in the presence of 

decreasing boundaries 

 Characterize the relationship between pilot opinion rating and performance/ 

workload in a Workload Buildup task 

 

The test data were analyzed in order to support these objectives.  There were over 

400 test profiles available for analysis, and the amount of data provided a solid base for 

validating assumptions and suggesting new conclusions. 

4.1. Characterizing the BAT Model 

A total of 123 Workload Buildup profiles (one for each pilot-aircraft pair) were 

analyzed and compared to the BAT model predictions.    Previously, all attempts to fit the 

BAT model to experimental data had used only the boundary tracking loop of the model.  

The switching function of the model had not been confirmed.  Therefore, the data 

gathered in this research were used to fully characterize the entire BAT model. 
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4.1.1. Model Matching Procedure 

The basic steps of the model matching procedure were as follows: 

1. Search the data in each profile for an area of suspected boundary tracking. 

2. Vary the four BAT parameters so that the predictions of the boundary tracking loop 

matched the test data for the suspected boundary tracking area. 

3. Keep the four BAT parameters fixed at their values from Step 2, and vary parameters 

from the point tracking loop so that the predictions of the whole model match the data 

from the entire profile. 

These steps are explained fully in the following sections. 

4.1.2. Numerical Optimization Procedure 

Previous BAT model matching had been done using an iterative process in which 

the parameters were changed, and the subsequent results were qualitatively evaluated.  

For this research, the BAT model was matched to test data using numerical optimization 

techniques.  The goodness of the model was the extent to which the predicted control 

forces matched the actual stick forces from the test data.  (All of the simulator and flight 

tests used a fixed side-stick, and so the control stick inputs were in terms of force rather 

than displacement.)  Therefore, the error between the model predictions and the test data 

was minimized.   

For the boundary tracking loop optimization, the predicted stick force from the 

model was calculated using the actual time-to-boundary from the test data.  The predicted 

stick force was a function of tb, which was fixed by the test data, and of the four BAT 

model parameters (tmin, tmax, Kbm, and τb), which were varied during the optimization.  
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These BAT model parameters were the design variables.  A time-history of the error 

between the actual stick force and the predicted stick force was created, as shown in the 

following equations: 

  (11)  

  (12)  

where 

   = model prediction error vector 

   = time vector 

  = actual stick force vector from test data 

   = predicted stick force vector from BAT model 

   = vector of design variables 

 

The error vector was then multiplied with its transpose in order to create a scalar 

cost function in terms of the BAT model parameters, as shown below: 

  (13)  

 The model parameters were all required to be positive, since pilots were assumed 

to always begin reacting to boundaries before the boundaries were exceeded.  In addition, 

tmin was required to be greater than tmax, since minimum input occurs at a greater time to 

boundary than maximum input.  With these constraints, the optimization problem for the 

boundary tracking model was formulated as follows: 
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  (14)  

subject to 

  (15)  

  (16)  

 

 The optimization for the point tracking model was formulated in a similar way.  

The BAT model does not specify what point tracking model to use.  A proportional-plus-

derivative control model was chosen because it could be easily used in the time domain.  

(Previous research showed that operator behavior can be modeled using proportional-

plus-derivative control (Arif and Inooka, 1999)). The point tracking stick force was 

calculated according to the following equation: 

  (17)  

where: 

  = point tracking stick force 

    = proportional control gain 

    = point tracking roll error 

    = derivative control gain 

  = point tracking roll error rate 

For the point tracking model optimization, the predicted stick force from the 

model was calculated using the actual tracking error and error rate from the test data.  

The predicted stick force was a function of ept and , which were fixed by the test data, 
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and of the two point tracking model parameters (Kp and Kd), which were varied during 

the optimization.  These point tracking model parameters were the design variables.  The 

point tracking error equations are as follows: 

  (18)  

  (19)  

 

The point tracking parameters were also required to be positive.  The optimization 

problem for the point tracking model was therefore formulated as follows: 

  (20)  

subject to 

  (21)  

 

During the optimization, the cost function was minimized using a line-search 

method (the fmincon routine in MATLAB®).  In each case, the results were also 

evaluated qualitatively to ensure that the match was reasonable. 

4.1.3. Modification to the BAT Model 

During attempts to achieve the best fit to the boundary tracking data, it appeared 

that pilot boundary tracking inputs did not increase linearly from tmin to tmax (as was 

theorized in Equation 1).  Instead, the rate of change seemed to increase as the time to 

boundary approached tmax.  In an attempt to model this behavior, the BAT model was 
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modified.  In the new model, the stick force increased quadratically from tmin to tmax.  The 

new stick force equation is as follows: 

  (22)  

 Optimizations were performed with the new and old model, and over 80% of the 

time the minimized error was smaller when using the new model, by an average of 2%.  

Thus, the new model was used for all data analysis.   

4.1.4. Model Matching Example 

As in the desktop simulator studies performed by Mr. Gray, the Workload 

Buildup profiles were searched for areas of boundary tracking (based on pilot comments, 

obvious areas of boundary-induced PIO, or areas with very small time to boundary).  The 

boundary tracking loop of the BAT model was then fit to the test data for these limited 

time periods.  As in Mr. Gray’s research, it was assumed that all inputs during these 

periods were due solely to boundary tracking.  The reason for starting with these areas 

was to be sure that the BAT parameters were only being used to describe boundary 

tracking.  Attempting to fit BAT parameters to areas of point tracking would produce 

erroneous results.  Once the BAT parameters were fixed, the point tracking parameters 

could be fit to the rest of the data. 

Figure 24 shows data from a typical Workload Buildup Task.  The circled area on 

the middle plot (a plot of the tracking error) shows a time period where the boundaries 

were closely approached and in fact exceeded (with the 0.5 second tolerance).  

Coincident with this was a large change in stick force, and the shape of the stick force 
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during this period is a classic sign of PIO.  Since the PIO occurred simultaneously with 

the boundary excursion, it was assumed that this was a period of boundary tracking.  A 

numerical optimization of only the boundary tracking model was then performed over 

this limited time period.   

 

Figure 24. Identifying Areas of Boundary Tracking 

 

The results of the boundary tracking model optimization for this example are 

shown in Figure 25.  While the predictions do not match the actual values exactly, they 

do approximate the general shape, height, and location in time.  Importantly, the 

parameters have been optimized, so that this represents the best prediction that the BAT 

model can give.  Once the BAT parameters were optimized over a period of known 

boundary tracking, they were fixed for the rest of the model matching.  Thus, a time 
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history of predicted boundary tracking inputs could be created for the entire profile.  The 

next step was to calculate predicted point tracking inputs.   

 

Figure 25. Fitting the Boundary Tracking Loop of the BAT Model 

 

 With the BAT parameters fixed, the point tracking optimization was performed 

over the whole time history, using the full switching model.  At each step of the 

optimization, the point tracking pilot input was calculated and compared to the boundary 

tracking input (which was fixed from the previous optimization).  For each time step, the 

larger input was chosen, as prescribed by the BAT model.  Thus, for each step of the 

optimization, a time history of predicted input was created which was a combination of 

point tracking and boundary tracking. 

 Figure 26 shows the optimization results for the current example.  Only a portion 

of the profile is shown for the sake of clarity.  The predicted stick force from the model is 
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divided into periods of point tracking and periods of boundary tracking.  Notice that the 

hypothetical inputs switch between the two control strategies according to the model.  

Once again, the predictions do not exactly match the actual values, but the general shape 

and size are correct. 

 

 

Figure 26. Fitting Both Loops of the BAT Model 

 

4.1.5. Model Matching Results 

 The optimization procedure was followed for all 123 pilot-aircraft combinations.  

The results are summarized on the next two pages. 
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Figure 27. BAT Model Parameters Sorted by Pilot 
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Figure 28. BAT Model Parameters Sorted by Aircraft Model 
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 The first conclusion that can be drawn from these results is that the BAT 

parameters vary among pilots, as shown in Figure 27.  For a given aircraft, each pilot has 

a unique set of BAT parameters, representing that pilot’s control strategy.  The HAVE 

BAT flight tests and the desktop simulations by Gray focused on the parameter variations 

among pilots, and the data from this research provide confirmation of the conclusions 

from these previous tests. 

The second conclusion is that there are trends in the BAT parameter variation 

among aircraft, as shown in Figure 28.  For example, there appears to be a general 

upward trend in tmin values among aircraft models of the same platforms (i.e. from A to C 

in the Infinity Cube simulator, from D to F in the LAMARS simulator, and from G to I in 

the VISTA aircraft).  This makes intuitive sense, because pilots adapt their control 

strategies to fit the airplane they are controlling.  It makes sense that a pilot would begin 

reacting to boundaries sooner in an aircraft that he or she knows is sluggish or 

unpredictable.  These trends of BAT parameter variations among aircraft had not been 

demonstrated in previous research. 

 In addition to characterizing pilots, the parameters therefore also characterize 

airplanes.  The average Kbm, for example, was much less in Aircraft A than in Aircraft C.  

Just as pilots compare a Level 1 and a Level 2 airplane, they can now also compare a 

“Kbm 4” and a “Kbm 15” airplane.  This is an important result, because it demonstrates that 

the BAT parameters describe the change in pilot control strategies among aircraft in 

much the same was as frequency, damping, and time constants describe flying qualities. 

 The fourth objective of this research (discussed in a later section) attempts to 

quantify handling qualities, supplementing subjective pilot comments with objective 
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performance measurements.  The trend in parameter variation among aircraft shown here 

provides an additional method to quantify aircraft handling qualities, by describing a 

given aircraft according to the average BAT parameters used by pilots to control that 

aircraft. 

4.1.6. Summary of BAT Model Characterization Results 

The BAT model was matched to the test data from 123 different profiles through 

the use of numerical optimization.  BAT model matching had never before been done on 

this scale, and had never used optimization.  Optimization not only ensured the best fit to 

the test data, but also suggested a change to the boundary tracking stick force equation 

which resulted in better matches.  In addition, whereas previous research had only 

exercised portions of the mathematical BAT model, this research compared flight test 

data to the predictions of both the boundary tracking loop and the point tracking loop of 

the BAT model. 

The results validate the conclusion from previous research that BAT parameters 

vary among pilots.  The results also demonstrated for the first time a trend of changing 

parameters among aircraft.   Since the parameters are based on pilot control strategies 

(i.e. they are based on the pilot-aircraft system), they can therefore be used to provide an 

objective measure to aircraft handling qualities. 

4.2. Characterizing Pilot Behavior 

 A total of 276 profiles with boundaries were performed during this research.  

Analysis of these profiles confirms that pilots do, in fact, react to boundaries.  This is 

intuitive, and is a confirmation of the results from all previous BAT research, but it is the 
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first time that it has been demonstrated in the roll axis.  The PIOs and boundary tracking 

inputs analyzed in the previous section are one way to describe exactly how pilots react to 

boundaries. 

 Another way to describe how pilots react to boundaries is to look at how their 

behavior changes, on average, as boundaries are tightened.  The tracking task in this 

research was designed to repeat every 30 seconds, coincident with the boundary changes.  

This ensured that each 30 second period had the same average tracking difficulty, and the 

only changing parameter was the boundary size.  Thus, any change in a pilot’s average 

behavior from one period to the next should be due solely to changes in boundary size.  

(The fixed-base simulations used constantly decreasing boundaries, but this procedure 

was changed for the motion-base simulator and flight tests.  The fixed-base simulator 

results were analyzed using the average boundary size during each 30 second period.) 

One behavior parameter that can be analyzed is a pilot’s average stick force.  In over 80% 

of the Workload Buildup profiles analyzed, the average stick force during the smallest 

achieved boundary size was higher than the average stick force at the largest boundary 

size.  Figure 29 shows an example of this type of increase.  Once again, nothing changed 

from period to period except the boundaries.  Therefore, this increase can be logically 

attributed to the changing boundaries.   

This monotonically increasing average stick force is not typical of all pilots, but it 

did occur fairly often.  When the data are averaged among pilots, the results are less 

dramatic, but they still show a slight increase in average stick force as boundaries 

decrease.  Figure 30 is one example, in which the results were averaged for those pilots 

whose final boundary size during the Workload Buildup task was 11 degrees.  Averaging 
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only among pilots with the same terminal boundary size prevented skewing the data, 

because pilots with different terminal boundary sizes likely have different control 

strategies and baseline average stick forces. 

 

Figure 29. Example of Increasing Stick Force as Boundaries Decrease 

 

 

Figure 30. Average Stick Force for an 11º Terminal Boundary Size (LAMARS) 
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 Another way to analyze changing pilot behavior is with the concept of duty cycle 

and aggressiveness, described in Chapter 2.  As a reminder, duty cycle describes how 

often the pilot is making control stick inputs.  Aggressiveness describes how fast these 

inputs are made.  Together, these parameters describe pilot inceptor workload.  

Increasing duty cycle and aggressiveness corresponds to higher physical workload. 

 Figure 31 shows the results of a duty cycle and aggressiveness analysis on the 

VISTA flight test data.  (Results were similar for the ground simulator tests.)  As with the 

average stick force, the results were averaged among pilots with the same terminal 

boundary size.  The data show a general increase in both duty cycle and aggressiveness as 

boundaries tighten, with the noticeable exception of the 23 degree terminal boundary 

 

Figure 31. Average Duty Cycle and Aggressiveness (VISTA) 
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size.  A possible explanation for this is that perhaps these pilots exceeded the boundaries 

at such a large terminal boundary size precisely because they failed to increase their 

inceptor workload as required. 

 From the stick force and inceptor workload data, then, it appears that decreasing 

boundaries make pilots work harder.  They use more force, more often, more quickly.  

This is an important conclusion, because it validates the Workload Buildup FTT as a 

method of increasing pilot workload in order to expose handling qualities deficiencies 

and PIO susceptibilities.   

4.3. Characterizing Pilot Performance 

The previous section demonstrated that decreasing boundaries increase pilot 

physical workload.  If workload goes up as boundaries decrease, the next question is: 

what happens to performance?  As theorized in Chapter 2 (Figure 10), tighter tolerances 

drive increased performance, until the tolerances become impossible to work within.  The 

Workload Buildup profiles in this research provide data to test this theory.  

The data in Figure 32 suggest that the increasing performance requirements (in 

the form of boundaries) did, in fact, increase performance.  There is a trend toward lower 

average error for all terminal boundary sizes, with the following exceptions: there is an 

increase in average error for Aircraft H and I in the 16 degree terminal boundary, and for 

Aircraft I in the 8 degree terminal boundary.  However, the performance theory also 

states that at some point requirements can become too stringent, and performance will 

suffer.  This is most likely what occurred during these periods of increasing error. 
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Figure 32. Average Roll Error (VISTA) 

 

The BAT DART flight tests also demonstrated a decrease in average error as 

boundaries decreased.  It was theorized that pilots altered their behavior at the beginning 

of the profile (when the boundaries were wide) in order to minimize the required negative 

g-loads.  This aversion to negative g-loads, then, served as a hidden boundary.  The 

current research does not have this additional boundary, so it is interesting that the results 

from these tests are similar to the results from the BAT DART tests. 
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 The similarity in results can be explained by looking at performance from 

individual profiles.  By studying the individual profiles, it is evident that the 

demonstrated decrease in roll error is true on average, but it is not always true in 

particular.   Figure 33 contrasts the behavior of two different pilots attempting the same 

task in the same aircraft.  Pilot 27 discovered that he could remain within the boundaries 

 

 

Figure 33. Contrasting Pilot Performance as Requirements Increase 
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during the first 30 second period without making any control inputs at all.  As the 

boundaries decreased, he began to make control inputs, but only as little as required.  

Finally, at about the 16 degree boundary size, his performance leveled off.  He had 

reached his maximum performance level.  This perfectly supports the theory that 

increasing performance requirements will increase performance until maximum 

attainable performance is reached. 

 Pilot 29, however, had relatively constant roll error throughout the entire profile.  

From the beginning, he was attempting to faithfully track the target.  In his mind, he had 

given himself performance requirements that were more stringent than the requirements 

from the boundaries.  He apparently continued to use these internal requirements until the 

boundaries became as tight as his own tolerances and he exceeded the boundary. 

 So, it does appear to be true that increasing performance requirements result in 

increasing performance.  But these performance requirements may often reside in a 

pilot’s mind.  The important result is that for those pilots who are willing to accept large 

errors, the Workload Buildup FTT forces them to accept less error as boundaries are 

decreased, and in the end it forces them to perform at their maximum capacity.  This is an 

important validation of the Workload Buildup FTT. 

4.4. Characterizing Pilot Opinion Rating in Relationship to a Workload Buildup 

Task 

Results from the previous sections have provided performance and workload 

measurements which provide objective data to describe how a pilot controls an aircraft, 

and these measurements therefore provide quantitative measures of aircraft handling 
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qualities.  However, since Cooper-Harper ratings are the accepted standard in the flight 

test community for describing handling qualities, it is important to compare these ratings 

to the objective measurements obtained from Workload Buildup tasks. 

4.4.1. Cooper-Harper Ratings 

 The ratings given during the Cooper-Harper profiles are presented in the 

following figures.  Note that according to current practice, these ratings (along with pilot 

comments) are the only available data for handling qualities evaluations. 

 

Figure 34. Infinity Cube Cooper-Harper Ratings 
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Figure 35. LAMARS Cooper-Harper Ratings 

 

Figure 36. VISTA Cooper-Harper Ratings 
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 The aircraft models in the Infinity Cube simulator had overlapping Cooper-Harper 

ratings, but there is still evident separation among the models.  The median and mode 

ratings are 3, 5 and 7 for Aircraft A, B and C, respectively.  This makes the models 

roughly Level 1, Level 2, and Level 3.  The ratings in the LAMARS simulator show even 

more overlap, particularly between Aircraft D and E.  Both Aircraft D and E are roughly 

Level 2 aircraft.  Aircraft F appears to be on the border between Level 2 and Level 3.  

The VISTA ratings are similar. 

4.4.2. Objective Performance and Workload Measurements 

The data from the Workload Buildup plus Secondary Task profiles were analyzed 

in order to provide performance and workload measurements.  Performance was defined 

as the minimum achievable boundary size.  Workload was defined as the last boundary 

size for which the pilot could perform the secondary task correctly 50% of the time.  This 

boundary size was labeled the critical boundary size.  Thus, the performance and 

workload during the profile were summed up by two numbers.  These numbers are 

objective measures that can supplement the subjective opinions of the pilot.  (This is in 

addition to the objective measurements provided by the BAT model parameters.) 

Figure 37 shows an example of how these measurements were made.  When Pilot 

30 flew aircraft F, he achieved greater than 50% secondary task performance during the 

first two boundary sizes (40º and 32º), but fell below 50% secondary task performance 

for the remainder of the profile.  He finally exceeded the boundaries at a 21º boundary 

size.  Thus, for Pilot 30, Aircraft F had a critical boundary size of 32º and a minimum 

achievable boundary size of 21º.  Similarly, Aircraft D had a critical boundary size of 21º 
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and a minimum achievable boundary size of 13º.  With Aircraft E, Pilot 30 maintained 

greater than 50% secondary task performance for the entire profile.  Thus, the critical 

boundary size and minimum achievable boundary size were both equal to 13º for 

Aircraft E. 

 

 

Figure 37. Determining Critical Boundary Size 

 

4.4.3. Comparing Subjective and Objective Results 

 Combining the data from the Workload Buildup plus Secondary Task profile and 

the Cooper-Harper profile, there are three parameters describing an airplane: minimum 

achievable boundary size, critical boundary size, and Cooper-Harper rating.  Figure 38 
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through Figure 40 present critical boundary size versus minimum achievable boundary 

size, with the Cooper-Harper rating placed as a marker.   

Performance increases from left to right along the chart.  Data points on the left 

side of the chart indicate pilot-aircraft pairs that had a high minimum achievable 

boundary size (i.e. boundaries were exceeded early, at a large boundary size, and thus 

performance is poor). 

Workload decreases from top to bottom along the chart.  Data points on the top 

side of the chart indicate pilot-aircraft pairs that had a high critical boundary size (i.e. 

secondary task performance dropped below 50% early, at a large boundary size, and thus 

workload is high). 

 

 

Figure 38. Workload Buildup and Cooper-Harper Ratings (Infinity Cube) 
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Figure 39. Workload Buildup and Cooper-Harper Ratings (LAMARS) 

 

Figure 40. Workload Buildup and Cooper-Harper Ratings (VISTA) 
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The solid black line, running from the top left to the bottom right of the chart, 

represents the situation where a pilot maintains spare capacity all the way to the 

minimum achievable boundary size.  The bottom left half of the chart is unattainable 

(spare capacity has no meaning after the boundaries have been exceeded).  The top right 

half of the chart represents the normal state of affairs: primary task saturation is reached 

before minimum achievable boundary size is reached. 

 Intuitively, better Cooper-Harper ratings should be plotted near the bottom right 

corner of the chart (i.e. aircraft receiving these ratings should have smaller minimum 

achievable and critical boundary sizes).  Worse Cooper-Harper ratings should be plotted 

toward the top and left of the chart.  A Cooper-Harper rating plotted near the top right of 

the chart would theoretically represent an aircraft which performed well (i.e. had a small 

minimum achievable boundary size) but had a high workload (i.e. lost spare capacity 

early). 

 The data from the fixed-base simulations (Figure 38) show Cooper-Harper ratings 

scattered across the chart, with no obvious dividing lines between ratings or even 

handling quality Levels.  However, most of the pilots in the Infinity Cube tests were not 

trained in the use of the Cooper-Harper scale.  Even before these data were analyzed, it 

appeared that many of the pilots were using the scale incorrectly.  There were instances 

of Level 1 ratings given to aircraft which could not attain even adequate performance in 

the Cooper-Harper profile.  Therefore, the fact that the Cooper-Harper ratings are 

scattered across the chart may be due primarily to the misuse of the Cooper-Harper scale.  

The misuse of the Cooper-Harper scale is actually a good reason to adopt the use of 
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critical boundary size and minimum achievable boundary size as handling qualities 

measurements, because these measurements are objective and are not subject to misuse. 

 Likewise, the VISTA data in Figure 40 show quite a bit of scatter.  There are two 

explanations for this.  One explanation is that, as can be seen in the Cooper-Harper rating 

histogram (Figure 36), the aircraft models were similar, and were all roughly Level 2 

aircraft.  It is possible that the entire plotted area in the chart is a Level 2 area.  If an 

actual Level 1 aircraft was tested with these profiles, it is possible that its performance 

and workload would put it at the bottom left corner of the chart, away from the Level 2 

points.  The second explanation is that, as mentioned in Chapter 3, the boundaries during 

the VISTA tests decreased linearly (rather than as a percentage).  The step from ±16º to 

±8º was a large one, and no pilot operated within the ±8º boundaries for more than a few 

seconds.  A finer decrease increment may have exposed difference in performance and 

workload in the boundary regions between 16º and 8º.  This might have separated the 

ratings on the chart and allowed some division between ratings. 

 The LAMARS data in Figure 39 actually do show a correlation between Cooper-

Harper ratings and critical boundary size/minimum achievable boundary size.  The 

handling qualities of the three aircraft models were similar, as in the VISTA tests, but 

there appears to be some spread among the ratings in the chart.  The only aircraft 

receiving a Level 1 rating is plotted in the bottom right corner of the chart, away from the 

others.  The only aircraft receiving a Cooper-Harper rating of 8 is plotted in the upper left 

portion of the chart, fairly well separated from the Level 2 ratings.  Much of the chart in 

the middle is a mix of Level 2 and Level 3 airplanes.  But a line can be drawn through a 

minimum achievable boundary size of 16º, and another through a critical boundary size 
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of 26º.  To the top and left of this line, all ratings are Level 3 (with the exception of one 

outlier, a Cooper-Harper rating of 6). 

 The data were also analyzed by plotting critical boundary size versus minimum 

achievable boundary size as before, but with the aircraft model (instead of the Cooper-

Harper rating) placed as a marker.  The results for the LAMARS simulator are shown in 

Figure 41.  The worst performance (26º minimum achievable boundary size) and the 

highest workload (40º critical boundary size) were achieved by the aircraft with the worst 

predicted handling qualities (Aircraft F).  However, Aircraft F also had performance and 

workload in the bottom right of the chart, equal to the performance and workload of the  

 

Figure 41. Workload Buildup and Aircraft Models (LAMARS) 
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aircraft with the best predicted handling qualities (Aircraft D).  Many of the plotted data 

points include all three aircraft models.  In general, there appears to be a better 

correlation between Workload Buildup measurements and Cooper-Harper rating than 

between Workload Buildup measurements and aircraft model.  The probable reason is 

that some pilots adapt better to certain aircraft than others, and can therefore achieve 

good performance and low workload in an aircraft that another pilot might have difficulty 

with.  This is one reason why Cooper-Harper ratings often show so much scatter; 

different pilots sometimes like different airplanes.  The fact that there is no obvious 

correlation between Workload Buildup measurements and aircraft model is still an 

important observation, because it shows that the Workload Buildup measurements 

behave in much the same way as Cooper-Harper ratings. 

 An important result from the test data is that the theorized relationship between 

Cooper-Harper ratings and critical boundary size/minimum achievable boundary size 

appears to be coherent for individual pilots.  In other words, in most situations pilots 

rated aircraft at the top left of the chart worse than aircraft at the bottom right of the chart.  

Two examples are shown in Figure 42.  In these two examples, the ratings generally 

improve from left to right and top to bottom.  This means that pilots were aware of their 

own performance and workload and assigned Cooper-Harper ratings accordingly.  Thus, 

for a given pilot, the combination of critical boundary size and minimum achievable 

boundary size appear to sum up a pilot’s relative impressions of the handling qualities of 

different aircraft.  This is exactly how the pilot opinion rating process is supposed to 

work, and it validates Workload Buildup measurements as objective measures of 

handling qualities.   
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Figure 42. Workload Buildup and Cooper-Harper Ratings for Individual Pilots 

4.4.4. Summary of the Relationship Between Pilot Opinion Rating and 

Performance/Workload in a Workload Buildup Task 

The data from the Workload Buildup plus Secondary Task profiles were analyzed 

in order to provide objective performance and workload measurements.  These 

measurements were combined in a unique way in order to characterize pilot opinion 

rating in quantitative terms.  As pilot performance (in terms of minimum achievable 

boundary size) improved, and as workload (in terms of critical boundary size) decreased, 

pilots tended to assign better Cooper-Harper ratings.  This trend generally held true for 

individual pilots, and was even shown to be true in aggregate for the LAMARS test data.  

The new method of measuring and presenting objective performance and workload 

measurements is a useful tool which can be used to quantify handling qualities, and 

which should be researched further. 
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5. Conclusions 

In just over four years, the BAT model has evolved from an interesting idea into a 

mathematical model supported by simulator and in-flight experiments, and into a flight 

test technique designed to aid in the description of aircraft handling qualities and PIO 

susceptibility.  Much has been learned about the way pilots behave in the presence of 

boundaries, and these results have been put to use in the flight test community. 

 This research focused on the following four objectives: 

 Characterize the mathematical BAT model through comparison with simulator 

and flight test data 

 Characterize pilot behavior (in terms of control stick forces and pilot physical 

workload) in the presence of decreasing boundaries 

 Characterize pilot performance (in terms of tracking error) in the presence of 

decreasing boundaries 

 Characterize the relationship between pilot opinion rating and performance/ 

workload in a Workload Buildup task 

5.1. Contributions to Test Methodology 

Because there were no techniques for BAT research in the roll axis prior to this 

research, considerable time and effort were spent in developing appropriate test 

techniques to support the research objectives.  The methodology developed in this 

research provided data, such as quantitative workload measurement, which had not been 

previously available.  In addition, the tasks and techniques which were developed have 

been validated and can be used in future research.   
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A new tracking task was developed for this research which was shown to be an 

improvement on tracking tasks used in previous BAT research.  This task not only 

provided much useful data for this research, but has also been incorporated into handling 

qualities simulations used in the TPS syllabus. 

A new flight technique was also developed to measure performance and workload 

during a Workload Buildup task, using a primary tracking task and a secondary task.  

This type of workload measurement in the presence of boundaries had not been attempted 

before, and many hours of research and simulation were conducted in order to design the 

most effective secondary task.  After the task was designed, it was validated as a measure 

of pilot workload through the use of eye-tracker equipment.  The eye-tracker data and the 

secondary task data showed remarkable correlation. 

5.2. Characterizing the BAT Model 

 The mathematical BAT model had been demonstrated in theoretical situations and 

computer simulations in previous research, but it had never before been tested with flight 

data.  In fact, combining both loops of the model and demonstrating its switching 

behavior had never been attempted at all.  In this research, 123 pilot-vehicle systems 

performing a Workload Buildup profile were analyzed using numerical optimization 

techniques. BAT model matching had never before been done on this scale, and had 

never used optimization.  Optimization not only ensured the best fit to the test data, but 

also suggested a change to the boundary tracking stick force equation which resulted in 

better matches.  In addition, whereas previous research had only exercised portions of the 
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mathematical BAT model, this research compared flight test data to the predictions of the 

entire model.   

The results from this analysis suggested new conclusions.  First, the assumption 

that the boundary tracking feedback increases linearly from tmin to tmax was challenged.  A 

proposed change to the model suggested that the feedback increases quadratically from 

tmin to tmax, and this new model produced a lower minimized cost during optimization 

over 80% of the time. 

The parameters from all 123 profiles were collected, and the results suggest that 

the parameters are not constant for a given pilot.  The pilot adapts his or her control 

strategy to fit the airplane, and thus selects different BAT parameters for different 

airplanes.  This also suggests something about the airplanes themselves.  The data 

showed groupings of parameters that varied between airplanes, suggesting that different 

pilots adopt similar boundary tracking strategies for a given airplane.  These BAT 

parameters, then, can be useful not only in describing a pilot, but also in describing an 

aircraft.  The trend in parameter variation among aircraft is a new result, and provides a 

method to quantify aircraft handling qualities, by describing a given aircraft according to 

the average BAT parameters used by pilots to control that aircraft. 

5.3. Characterizing Pilot Behavior 

 The data from the BAT model characterization process demonstrated that 

boundaries affect pilot behavior in measurable ways.  It also possible to describe a pilot’s 

behavior in the presence of boundaries by looking at his or her behavior as boundaries are 

tightened.    The data from this research show that as boundaries are tightened, a pilot’s 
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average stick force tends to increase.  A pilot’s duty cycle and aggressiveness 

(collectively known as inceptor workload) also increase as boundaries are tightened.   

From the stick force and inceptor workload data, then, it appears that decreasing 

boundaries make pilots work harder.  They use more force, more often, more quickly.  

This is an important conclusion, because it validates the Workload Buildup FTT as a 

method of increasing pilot workload in order to expose handling qualities deficiencies 

and PIO susceptibilities.   

5.4. Characterizing Pilot Performance  

 The data also indicate that, on average, decreasing boundaries improve pilot 

performance until the pilot is performing at maximum capacity.  This is a validation of 

previous research results.  Pilots tend to accept a certain amount of error when the 

performance demands are not too stringent, but will tighten control when large error 

could cause exceeding potentially fatal boundaries.  It is important to note that this error 

acceptance on the part of the pilot is internal, but can be forced lower by the imposition 

of boundaries.  (However, as described above, this comes at the expense of higher 

workload.)  Thus a pilot’s performance can actually be improved through the imposition 

of boundaries.  This is an important validation of the Workload Buildup FTT, which was 

designed to elicit the maximum possible performance from a pilot. 

5.5. Characterizing Pilot Opinion Rating in Relationship to a Workload Buildup 

Task 

 Previous research had shown a qualitative relationship between pilot opinion 

rating and performance in a Workload Buildup task.  Since workload is just as important 
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as performance when determining the handling qualities of an aircraft, this research 

attempted to incorporate a quantitative measure of pilot workload in the form of a 

secondary task.  This workload measurement was then combined with performance 

measurements in a Workload Buildup task in order to provide objectivity to what is 

currently a subjective pilot opinion rating process. 

 The performance measure during the Workload Buildup plus Secondary Task 

profile was chosen to be minimum achievable boundary size.  An aircraft that can track a 

target in the presence of tight boundaries is a well performing airplane.  The workload 

measure was chosen to be the boundary size at which the secondary task could no longer 

be completed 50% of the time.  This point was labeled the critical boundary size.  An 

airplane that allows the pilot to maintain spare capacity in the presence of tight 

boundaries is an airplane that requires a low workload.  The two parameters were plotted 

against one another and compared to the Cooper-Harper rating given to the airplane in a 

separate task. 

As pilot performance (in terms of minimum achievable boundary size) improved, 

and as workload (in terms of critical boundary size) decreased, pilots tended to assign 

better Cooper-Harper ratings.  This trend generally held true for individual pilots, and 

was even shown to be true in aggregate for the LAMARS test data.  This new method of 

measuring and presenting objective performance and workload measurements is a useful 

tool which can be used to quantify handling qualities, and which should be researched 

further. 
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5.6. Areas for Further Research 

 The BAT model has now been exercised in its entirety and shown to produce 

reasonable results.  The parameters grouped themselves in interesting ways, providing a 

quantitative measure of aircraft handling qualities, but there is not yet an explanation for 

why the BAT parameters take on certain values.  Future research should attempt to 

discover the basis for these parameters.  The ultimate goal is to develop a BAT model so 

that it does not generally vary among pilots or aircraft.  Such a model could then be used 

in the aircraft design phase in order to predict handling qualities. 

 More research needs to be done into the correlation between pilot opinion rating 

and performance in a Workload Buildup task.  This research was hindered somewhat by 

aircraft models which had very similar handling qualities, thus making the task of 

differentiating between models difficult.  Future research should focus on obtaining 

models with dramatically different handling qualities and widely separated Cooper-

Harper ratings. 
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Appendix A – Cooper-Harper Scale (Cooper and Harper, 1984) 
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Appendix B – VISTA Flight Test Cards 

 
 

AT BAT Data Sortie # 
 

DATE 
 

JON/MSN 

 MT080500 
FREQUENCY 

  286.8 MHz   
STEP 
A/R 

START 

A/R 
TAKEOFF 

  1000 

TEMP/PA 
 

T/O GW 

28899 

ZERO FUEL GW 

21004 

T/O CG 

35.7% 

JOKER 

2.0 

BINGO 

1.5 

CALLSIGN AIRCREW OPS # TAIL# A/A M1/M3 T/O 

       

            

RESTRICTIONS/LIMITATIONS 

 AIRSPEED ACCEL (g)    

CONFIG KCAS MACH SYM  ASYM  AOA ROLL BANK 

Centerline 
 

440 (VSS) 
550 

0.9 (VSS) 
1.2 

-2.4 / +6.8  CAT I 

     

MISSION PROFILE: 

Backseat Takeoff 

Roll Frequency Sweep Y and  Z Aircraft 

Profiles per test matrix 

Task Profile Config D1S AT BAT Run Notes 

1 
BAT 

Plus 
8 1 Fuel 016 200   

2 BAT 8 2 Fuel 016 000   

3 
BAT 

Plus 
8 3 Fuel 016 200   

4 CHR 8 2 Fuel 015 000   

5 BAT 8 1 Fuel 016 000   

6 CHR 8 3 Fuel 015 000   

7 
BAT 

Plus 
8 2 Fuel 016 200   

8 BAT 8 3 Fuel 016 000   

9 CHR 8 1 Fuel 015 000   

 

Backseat approach / landing 

ACCEL ROTATE T/O SPEED DISTANCE 
 

IMMED APP DIST APP SPEED 
+ FUEL 

SFO 

(H/W) 
/ / 

SFO 

(PRAC) 

FUEL 

(             ) 
/ / 
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Configuration 

CR 
RUN 1 1 

Condition Databand Tolerance Limits 

 ALT 20,000ft ±5,000ft N/A 

A/S 300KCAS ±50KCAS N/A 

Procedure 

Profile:   
Aircraft Model:  
Primary Task:  
Secondary Task:  

Data 

Time of Flight: 
CHR (N/A If BAT PLUS or BAT): 
Time to Drop Secondary Task (N/A If CHR or BAT): 
Pilot Comments: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note: Nine test run cards like this one were taken on each sortie 
 
 
 
 
 
 

Next Card Setup Conditions 

 RUN 2 2 
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List of Abbreviations, Symbols, and Acronyms 

Symbol Definition Units 

AFRL Air Force Research Laboratories -- 

BAT Boundary Avoidance Tracking -- 

CCD Charge-Coupled Device  

FTT Flight Test Technique -- 

HDD Heads-Down Display -- 

HQDT Handling Qualities During Tracking -- 

HUD Heads-Up Display -- 

LAMARS Large Amplitude Multi-Mode Aerospace Research Simulator -- 

PIO Pilot-In-the-loop Oscillation -- 

TPS Test Pilot School -- 

VISTA Variable-stability In-flight Simulator Test Aircraft -- 

VSS Variable Stability System -- 

δa aileron deflection deg 

δe elevator deflection deg 

ζdr Dutch Roll damping ratio -- 

τb pilot time-delay during boundary avoidance sec 

τr roll mode time constant sec 

τs spiral mode time constant sec 

ωdr Dutch Roll natural frequency rad/sec 

c cost function for BAT model optimization lbs
2 

e pilot model error lbs 

ept point tracking roll error deg 
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 point tracking roll error rate deg/sec 

F stick force lbs 

Factual actual stick force from test data lbs 

Fpredicted predicted stick force from test data lbs 

FPT point tracking stick force lbs 

g normal load factor -- 

Kbm maximum gain used by the pilot to avoid boundaries A/R 

Kd derivative control gain lbs/deg/sec 

Kp proportional control gain lbs/deg 

p roll rate deg/sec 

q pitch rate deg/sec 

rms root-mean-square A/R 

s Laplace variable 1/sec 

t time sec 

tb time to boundary sec 

td time to double amplitude sec 

tmin time to boundary at which pilot begins to react to boundaries sec 

tmax time to boundary at which pilot uses maximum gain to avoid 

boundaries 
sec 

xb distance to boundary A/R 

xBAT vector of design variables for boundary tracking model 

optimization 
A/R 

xPT vector of design variables for point tracking model optimization A/R 
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