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COVERT, INTELLIGENT, AND SPECTRALLY-EFFICIENT MIMO-
BASED NOISE RADAR NETWORKS

1. OVERVIEW

In this proposal, we had proposed to develop, test, and implement a novel framework for a
covert, intelligent, and spectrally-efficient noise radar network based upon multiple-input
multiple-output (MIMO) architectures. The basic concept revolves around a covert ad-hoc
ultrawideband (UWB) sensor network using random noise waveforms. In this configuration,
various transmitters and receivers communicate with each other to form an intelligent, adaptive,
optimal system with low probability of detection (LPD) and low probability of intercept (LPI).
Our proposal sought to extend and enhance our work on noise radar developed over the past 12
years by incorporating recent advancements in communications theory, such as RF tags and
MIMO channel concepts. These include topics such as MIMO networked transmitters and
antennas, multiple adaptive polarization using an inverse water filling argument, fractal radar
imaging at different levels of detail for different requirements, smart antennas, a radar
communications channel using RF tags, which are integrated to form a system that can be termed
“covert and intelligent”. The minimal cross-interference between the network’s uncorrelated
noise sources also ensures that the system is “spectrally efficient”.

MIMO systems are being increasingly used in radar, wherein multiple transmitters and receivers
achieve better spatial resolution in radar images as well as a higher probability of detection.
These advantages are often critical in military applications where the probability of missed
detection has to be minimized as much as possible, irrespective of cost. Intelligent adaptive
control can be implemented in such systems in various manners, including control of polarization
and transmit power transmitted by different antennas in the system using the reverse filling
argument (that has been successfully used in communications theory for various channels at
various frequency levels), and by using spatial and temporal signal processing. Secure and covert
node-to-node and node-to-base communication channels would be developed using RF tags,
which are devices similar to the radio frequency identification devices (RFIDs) used in consumer
applications. This would enable different radar systems to communicate with each other, and
build a network which would be the basis for the adaptive control. The low probability of
detection and intercept will be achieved using true noise and chaotic transmit waveforms.

The primary significance of this proposed project is to develop a unified force multiplier systein
for military applications involving target detection, battlespace surveillance, and target/terrain
imaging. The order-of-magnitude advantages of the proposed system is that it is simultaneously
covert (i.e., transmissions undetectable by or unintelligible to hostile forces), intelligent (i.e., able
to adapt waveform features and allocate resources on-the-fly for enhanced performance), and
spectrally-efficient (i.e., optimally conserves spectral bandwidth by being able to pack more
systems within the same frequency band). The impact of our proposed research are expected to
be felt in numerous military theaters that use multiple radar systems, either as being part of a
specific radar network or exploiting radars of opportunity.




The major tasks we had proposed to address were:

Study and development of waterfilling scheme for networked radar sensing,

Study and development of distributed adaptive beamforming using noise waveforms,
Study of covert RF tag approaches,

Design of noise radar system and MIMO-based network, and

Preparation of reports and publications.

i R D

2. RESEARCH ACCOMPLISHMENTS
2. 1. Beamforming and Multiple Beam Approaches

Consider the scenario in the MIMO radar system wherein the radars are collocated. In this
case, we use a unique signal (waveform) transmitted by each single radar, and multiple
waveforms are obtained from the entire radar set. The justification for multiple waveforms is
to ensure that the radar system can reliably detect the target in case one transmitted signal
experiences severe distortion, i.e., multipath interference, fading, and so on, while detecting
the target. This is implemented if we use more than one signal to illuminate and detect the
target.

In this scenario, we need to use orthogonal signals so that the radar can “recognize” its own
transmitted signal and cancel out other signals transmitted by other radars. In this case,
orthogonality can be performed either in frequency (using different frequency range) by
using different orthogonal sets of pulse sequences, or in polarization by using different
polarization combinations (horizontal or vertical polarization). For now, we consider the case
where we use different orthogonal sets of pulse sequences, i.e., by employing orthogonal
noise-like pseudorandom pulses as the transmitted waveforms. Adversaries and others that do
not belong to the friendly group will observe these transmitted waveforms as noise. Such a
waveform type will induce the covertness in our system and establish a low probability of
detection (LPD) capability.

Let us consider a MIMO configuration that employs two radars, i.e., Radar 1 and Radar 2.
Each radar (receiver) will then obtain reflected waveforms from the illuminated target that
are transmitted by each radar. However, since the transmitted signals are orthogonal to each
other, each radar’s receiver cancels out the unintended waveform due to orthogonality. This
can happen because each radar has knowledge about its own transmitted waveform, and
hence can “match-filter” and processes only its own waveform. Fig. 1 shows typical transmit
and receive signals for Radars 1 and 2. Although the receive signals have additional noise
brought about in the propagation channel, we note that thresholding can help recover the
original transmit sequence.
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Fig. 1: Transmitted and received signals by (a) Radar 1 and (b) Radar 2.
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through the indicated *“peak” of the autocorrelation process. Since the radars are collocated,

the delays experienced by the transmitted signals that impinge upon the intended target and
are received by the radars are approximately the same between one transmitted signal and the

other.

Fig. 2 shows that our radars still have the capability to recognize the range to the target
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Fig. 2: The autocorrelations of waveforms of Radar 1 (top) and Radar 2 (bottom).

Electromagnetic waves, with any specified polarization, are normally diffracted or scattered
in all directions when incident on a target. These scattered waves are broken down into two
parts:

I. Waves that have the same polarization as the receiving antenna.
2. Waves that have different polarization, to which the receiving antenna does not respond.

The two polarizations are orthogonal and are referred to as the Principal Polarization (PP)
and Orthogonal Polarization (OP) respectively. The intensity of the scattered PP energy is
used to define target Radar Cross Section (RCS).

The received power at radar is a function of several parametersl, i.e., a function of the
transmitter system, the propagation path from the transmitter system to the target, the
propagation path from the target to the receiving system, and the receiving system. The
relationship can be expressed as:

2
5 G 1 1 G2 1 )
r T A7 o 2 T
L 4ar’L,, rage 4d7r°L,, 4rL, L
Transmutti ng system  Propagating medium Propagating medium Re ceiving system  Polarizati on effect

" G. T. Ruck, D.E. Barrick, W.D. Stuart, and C.K. Krichbaum, Radar Cross Section Handbook, Vol. 1. New York.,
NY: Plenum, 1970.




P = received power,

P = transmitter power,

G, = the gain of the transmitting antenna in the direction of the target,

L, = numerical factor to account for losses in the transmitting system,

L, = numerical factor to account for losses in the receiving system,

r = range between the transmitting antenna and the target,

o = radar cross section,

L, L, = numerical factors which allow the propagating medium to have loss,

! = range between the target and receiving antenna,
G, = gain of the receiving antenna in the direction of the target,

r
A, = radar wavelength,
L, = numerical factor to account for polarization losses.

By rearranging (1), the formula for the RCS can be written as:

o= MLLL (az)rir’L ()
Grllo PI G! 8

The RCS fluctuates as a function of radar aspect angle and frequency. For simplicity,
isotropic point scatterers are considered. Let us consider the geometry in Fig. 3. Two unity
(1-m°) isotropic scatterers are aligned, spaced 1 meter, and placed along the radar line of
sight, i.e., zero aspect angle in (a). In other case, radar sees the target with an aspect angle of
45° shown in (b).

radar line of sight scarl scat2
(a) -—— — — — = @ ----@

radas ‘ m

®) '&-- Techilineofslalt _ . 0.707m

Fig. 3: RCS dependency on aspect angle: (a) 0° aspect angle, (b) 45° aspect angle.

We also characterize the RCS using a multiple-input multiple-output (MIMO) architecture of
three different antennas which are spaced to form equilateral triangle with the midpoint of the
two scatterer centers (of the target) as the center of the triangle, as shown in Fig. 4. In this
case, we assume each of the three radars transmit an uncorrelated noise signal.




-

Radar 1 % j Radar 3

Fig. 4: MIMO radar configuration with three equally spaced radars in azimuth.

In Fig. 4, Radar 1 will receives the scattered signals transmitted by Radar 1 (monostatic or
backscattered RCS), and also transmitted by the other two radars, i.e., Radar 2 and Radar 3
(each is considered as a bistatic RCS). Assume that Radar 1 can perfectly differentiate
different noise waveforms transmitted by itself, Radar 2 and Radar 3. At any time instant,
each radar will experience different RCS for the target since each of them sees the two target
scattering centers from different aspect angles. The angle for the bistatic RCS (transmitter-
receiver) is the summation of the angles for the transmitter-target and the target-receiver’.

Similar phenomena occur at Radars 2 and 3. Radar 2 will receive the scattered signals
transmitted by itself and, at the same time, transmitted by Radars 1 and 3, while Radar 3 will
receive the scattered signals transmitted by itself and also transmitted by Radars 1 and 2.

We can then assume that the RCS caused by the two scatterer centers is the accumulation of
the RCS values seen by each radar, where the available transmitted power is distributed
among the three radars. This is justified due to the fact that powers (proportional to RCS) add
when the signals are uncorrelated. In this case, we can also assume that the accumulated RCS
measured by Radar 1 is the same as that measured by Radar 2 or Radar 3.

The RCS dependency on frequency is of interest. Consider two scattering centers are aligned
as shown in Fig. 5. Assume that the distance between scat/ and scar2 is 0.25 m and that we
are using a wideband C-Band noise radar operating over the 4-5 GHz frequency range. The
RCS dependency on frequency is shown in Fig. 5. Since we are considering wideband
frequency operation, the RCS is calculated based upon single frequency as well as frequency-
averaging over a 100 MHz bandwidth for each point on the plot. The advantage of
frequency-averaging in reducing RCS variations, especially the deep fades, is clearly seen.

2 M. L. Skolnik, Introduction to Radar Systems, 3" Edition. New York, NY: McGraw Hill, 2001.
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Fig. 5: Scatterer geometry for computing RCS dependency on frequency.

Using 1 antenna

€
)
ol
©
i€
%)
Q
4
+
o | j
'
70+ DU A T SR [—rTorre freq-averaged
| ; X s Freq-averaged of 100 MHz |
.80 - — o . 1 Il il 1 L Il 1
4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5
Frequency o 109
(a)
Using 1 antenna
B - — = - == - m - e e — e s ma - e -
GT g
4 e
E
W
% 2!" i
<
7]
Q
&

_ [ —— without freq-averaged |
s Froq-averaged of 100 MHz |

1 | i L il 1
4.46 4.48 45 4.52 4.54 4.56 4.58 4.6
Frequency

x10°
(b)
Fig. 5: RCS in monostatic radar case for (a) single frequency and (b) frequency-averaging.

If we incorporate the MIMO architecture shown in Fig. 4, with the aspect angle is fixed 0°
with respect to the Radar 1, we get the RCS dependency on frequency as shown in Fig. 6.
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Fig. 6: RCS enhancement with three radars in a MIMO architecture for (a) single
frequency, and (b) frequency-averaging.

Comparing Fig. 5 and Fig. 6, we can see that the frequency-averaged RCS for the MIMO
architecture is higher than that for the single radar system. Moreover, the fluctuation of
frequency-averaged RCS within the frequency range of 4-5 GHz in the MIMO architecture is
much less than that in the single radar system. Furthermore, we notice that the single-
frequencies RCS in single radar system experiences several very deep fades which is not the
case for the single-frequencies RCS in the MIMO architecture.

In the MIMO-based noise radar architecture, we have multiple transmitted signals. Theretore,
orthogonality is essential in MIMO-based architecture, in order that the receivers can
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differentiate and recognize which signals originate from which transmitter. The orthogonality
can take place as orthogonal in sequences, frequency-bands, or polarization.

Orthogonality in sequences means that the transmitters emit orthogonal random sequences
(similar to the Code Division Multiple Access or CDMA in the wireless communication
system). The receivers have knowledge about the different orthogonal sequences transmitted
and know that a particular transmitter only transmit a particular sequence pattern. In order to
determine which transmitter that a particular signal originates from, the receiver simply
correlates the received signal with the different set of sequences it has. When the correlation
result yields a high “peak”, it means that the transmitted signal has been recognized.

Orthogonality in frequencies means that each transmitter emits a signal that is orthogonal
(unique) in frequency-band to the others. The receivers have different band-pass filters and it
has the capability to pass only the signals that has the expected frequency band. In this way,
the receiver can recognize from which transmitter this signal comes from.

Another possible orthogonality can be induced in polarization. In this case, the transmitter
can transmit either using vertical polarization or horizontal polarization. For example, Radar
| can use horizontal polarization to transmit its signal, while Radar 2 can use vertical
polarization. Thus, if adequate polarization isolation exists, each radar receive antenna will
capture only the signal sent from its own transmit antenna that obviously matches it in
polarization.

Thus, orthogonality is an important aspect in MIMO radar. By transmitting orthogonal
signals, we aim to maximize the probability that radar can distinguish the signals transmitted
by different transmitters and in turns to optimize the probability of detection of the target
(and to increase the signal to noise ratio (SNR)). Therefore, transmitting orthogonal signals
can also be seen as one of the optimization efforts, specifically waveform optimization.

The purpose of the proposed MIMO radar configuration in Fig. 7 is to exploit the redundancy
of the transmitted signal. In this kind of configuration, the antennas are collocated or placed
close to each other, i.e., as in an antenna array. Therefore, if one “route” for the signal (signal
transmitted, target illuminated and rereflected, and signal received) is experiencing a deep
fade, there will be other available “good routes” in order to accomplish the radar ranging and
imaging purposes. We can certainly use real random noise as the transmitted signal. The
receivers need to recognize the frequency dependent transmitted orthogonal signals in order
to distinguish the reflected signals (from the target) before we apply the adaptive
beamforming process for estimation. The orthogonal signals are separated using appropriate
bandpass filters. There are at least two different orthogonality approaches that could be
applied, as described in the following. For simplicity, let us assume that there are two
transmitters and two receivers.

11
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Fig. 7: MIMO radar configuration with collocated antennas with noise transmissions.

Use of orthogonal sequences:

This method is shown in Fig. 8. In Fig. 8(a) (transmitter portion), two orthogonal sequences
are generated. To generate two or more orthogonal sequences, initial weight vectors were
used’. These weight vectors are derived directly from the sample covariance matrix of the
observed data. The initialization methods considered are based on:

» Gram-Schmidt orthogonalization,
» Eigen decompositon,
* QR decomposition.

All of these methods yield orthogonal, or nearly orthogonal, output signals. In our case, we
use QR decomposition method to determine the initial weight vectors.

Each of the two orthogonal sequences is modulated using BPSK modulation with frequency
carrier of 5.15 GHz. This signal is “inserted” into the 5.1-5.2 GHz notched band of 5-6 GHz
bandlimited noise signal to camouflage the information signal, and thus to introduce the
covertness to the system.

" T. E. Biedka, “A comparison of initialization schemes for blind adaptive beamforming,” Proceedings of the 1998
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP’98), Vol. 3, Seattle, WA,
pp- 1665-1668, May 1998.
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These two modulated signal are transmitted through the added-white-Gaussian-noise
(AWGN) channel that has signal-to-noise ratio (SNR) of 35 dB, and Channel 1 and 2 add up.

In Fig. 8(b) (receiver portion), BPSK demodulator with the passband frequency of 5.1-5.2
GHz 1s used to recover the notched band and to retrieve the carrier frequency modulated by
the orthogonal sequences. The orthogonal sequences are obtained by demodulating these
signals using 5.15 GHz frequency carrier. The receiver will be able to distinguish the
transmitted sequences by looking at the correlation results (the receiver has knowledge about
the transmitted signals) as shown in Fig. 9(a) and Fig. 9(b). Also, after going through the
beamforming process, the receiver can determine the estimated transmitted sequences.

In Fig 8, there are two orthogonal random sequences that can be generated using the QR

decomposition method. The random sequences take place in the form of bipolar binary
number that is orthogonal to each other, as shown in Table I for example.

TABLE I: EXAMPLE OF BIPOLAR ORTHOGONAL SEQUENCES

Time 0
sl 1

2 3 4 5] 6 il
1
1

52 1 1

—_ 1 |— t Joo
el

— e |

After going through the modulation processes, they are transmitted by antenna Txl and
antenna Tx2. The receiver will then demodulate the signals. It will be able to distinguish the
two sequences, by observing the result of the cross-correlation and auto-correlation process.
As noted in Fig. 9(a) and Fig. 9(b), when the sequence is correlated by itself (i.e., auto-
correlation), we can see the “obvious peak” compared to when it is correlated with another
sequence (i.e., cross-correlation).

However, there is a slight problem here. As we see in Table I, some of the transmitted signals
have different “polarity”. In the adaptive beamforming process, we need to apply some
weights on the receiver outputs to make a decision. The weights combination on the receiver
is adaptive (i.e., can change from time to time); however, it should always be the same
combination for different transmitted sequences. The beamforming process should be able to
solve this if there is some “workable” combination of the two transmitted sequences.
However, this will be a difficult task for the beamforming, especially when we have more
antennas that transmit different sequences (i.e., if there are s3, s4, and so on). Therefore, we
try to come up with a different way of inducing orthogonality for the transmitted signals,
such as orthogonality in frequency.

13
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Use of orthogonal frequency bands:

This method is shown in Fig. 10. In this scheme, we generate one random sequence which
will modulate different frequency carriers, i.e. 5.15 GHz for Transmitter 1 (we call this sl)
and 5.25 GHz for Transmitter 2 (we call this s2). As in the previous method, we have
bandlimited noise over 5-6 GHz. However, this time it is notched at two different frequency
bands: one at 5.1-5.2 GHz (which is going to be “inserted” by s1) and the other one at 5.2-5.3
GHz (which is going to be “inserted” by s2). The signal sl is transmitted by antenna I and
signal s2 is transmitted by antenna 2.

These signals are transmitted through AWGN channel that has signal-to-noise-ratio (SNR) of
35 dB and is combined at the receiver side.

At the receiver side, each Receiver | and Receiver 2 obtains the signals that contain both
frequency bands (i.e., 5.1-5.2 GHz and 5.2-5.3 GHz). Two BPSK demodulators are used to
demodulate the received signals, one at the frequency band of 5.1-5.2 GHz (with carrier
frequency of 5.15 GHz), and the other one at the frequency band of 5.2-5.3 GHz (with carrier
frequency of 5.25 GHz). The retrieved orthogonal sequences are combined through the
adaptive beamforming process to estimate the original transmitted random signals.

In order to observe the advantage and feature that can be obtained using MIMO architecture,
we intend to build a testbed for our MIMO-based noise radar system. We can use this testbed
as an essential (basic) framework for testing MIMO-based architecture, which can always be
expanded on different architectures, especially when we want to incorporate orthogonality
within the transmitted signals.

Fig. 11 shows the block diagram for MIMO Radar Testbed. The testbed is designed to
demonstrate the MIMO operation for C-Band radar (4-8 GHz frequency range), specifically
that operates on 5 GHz frequency. Four antennas are used as transmitters and four other
antennas are used as receivers.

To simulate the MIMO operation, each of the four transmitter and four receivers operates
consecutively (controlled by a PC). The sequence can be arranged in the form of a
transmitter-receiver combination as the following: Tx1-Rx1, Tx1-Rx2, Tx1-Rx3, Tx1-Rx4,
Tx2-Rx1, ..., Tx4-Rx4. For every Tx-Rx combination, the target is going to be scanned by
variable delay-lines in order to track its exact range location and speed, from the perspective
of that particular pair of antennas.

There are a total of 256 stepped 8-bit delay-lines. The exact location and speed of the target
from each Tx-Rx perspective can be determined whenever the maximum value of cross-
correlation is reached for that particular transmitter-receiver pair (performed by the mixers
and 1/Q detector). Therefore, the information about the target range location and speed is
expected to be more accurate, since it is tracked from 4x4=16 different antenna positions.
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Fig. 10: MIMO radar using orthogonal frequencies:
(a) transmitter portion, and (b) receiver portion.
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Fig. 11: Block diagram of the proposed MIMO Noise Radar Testbed.

This year, we concentrated on detection performance of multi-input multi-output (MIMO)
radar system in a cluttered environment. We were concerned with detecting a target
embedded in clutter whose amplitude is described as a correlated K-distribution. We
observed that because of one of the characteristics of MIMO, viz. spatial diversity, the
receiver operating characteristic (ROC) curve improves as the number of transmitters
increases. We also discuss a number of factors of MIMO radar performance.

Spatial diversity in MIMO radar:

It is well known that in conventional radar system, fluctuations of the target radar cross
section (RCS) degrade radar performance. A novel idea to limit such degradation is by
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collecting more spatial samples®. Obviously, if those samples are highly correlated, they are
helpless for improving the radar performance. For collecting the independent samples and
achieving the spatial diversity, there are several requirements. First of all, unlike standard and
original phased-array radar only transmitting coherent signals, the multiple probing signals in
MIMO may be independent or correlated with each other. Second, transmitters will be
separated with sufficient distance. As a result, it makes the signals illuminating at different
“aspects” of the target’. Here is a brief explanation for the independent samples.

Given that MIMO radar is in its infancy, there is no standard definition of what it is. It is
common, although not ubiquitous, that a bistatic radar configuration comes under the
purview of MIMO radar. Such a scenario is depicted in Fig. 12. The target consists of
multiple scatterers organized in the form of a linear array. There are M elements in the

transmitter array and N elements in the receiver array.

Target
- T = Matrix

N
SRy a4 Scatterers

K ~ Receive Matrix

\

\

\

X
B-E-E---0- ¥

Elements

M
Elements

| dy ]

Transmitter array Recciver array

Fig. 12: Bistatic radar scenario. The target consists of multiple scatters organized in the
form of a linear array.

Assuming there are ) scatterers in the target, and each of them is independent and identically
distributed (i.i.d.) with zero mean and unit-variance. Therefore they can be represented as
Gaussian complex random variables é’q. So, the target is modeled by the diagonal matrix

Gy O =0 1

_ 1 0 & .
2=g|: o o e

O o B G

4 E. Fishler, A. Haimovich, R. Blum, D. Chizhik, L. Cimini, and R. Valenzuela, “MIMO radar: an idea whose time
has come,” Proc. 2004 IEEE Radar Conference, Philadelphia, PA, pp. 71-78, April 2004.
3 N.H. Lehmann, E. Fishler, A. Haimovich, R.S. Blum, D. Chizhik, L.J. Cimini, and R.A. Velenzucla, “Evaluation

of transmit diversity in MIMO-radar direction finding,” IEEE Transactions on Signal Processing, 55(5), pp. 2215-
2225, May 2007.
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Then, considering the radiation from transmitters to every scatterer, the signal vector induced
by m"™ transmit antenna is given by

4

5 = |:l o J2A s gty 12 e—jzﬂsinaﬁ,,.AQ-./l]
m ’

Similarly, from scatterers to receivers, the signal vector received by n"" receive antenna is
given by

k(8) = [l’ejlltsinaﬁl/l,. - ,eIZIISinB(Q—l)A//I} o

Last, a plane wave signal arriving at the array at the angle € excites the elements of the array
with phase shifts given by the vector

g o i
a(6)=|:l,e jZIISlHGd,/l,‘”,e J2rsin@(N )d,//l:l (6)

With above definitions, the received signals which originate from m™ transmitter and
reflected by the target are given by

r=a(@k™(6)> 8,5, (7)
Moreover, since the space of receivers supposed to be smaller than half of wave-length to

achieve unambiguous direction finding, without loss of generality, k(€) can be replaced with

1, =[1,....,1]" . Then, we can modify (7) into

ro=a@1,) 8,5, =a0)a,s, )

For achieving independence, E{, @, }=0.

E{am*amﬂ} = E{gmH & lQlQTngH}

1
=g, E{2, 110" D 180 =2g 8" loBna =0 )
)-1
gmHgm+l - 2 ej2/rl(sm¢,,,,,-sm¢,,,)qA//l] =0 (10)
g=0

Approximate the difference of sine terms in (10) as follows:

sin -sing, =d,/R (1D

m+]

where R is the distance between target and transmitters. Using this in (10), we get
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0-1

Zejzzr[(d,/k)qmu =1 (12)
q=0
Orthogonality is achieved when
dA 1
7:7?_ = 5 ({@3)

However, for large Q, (12) is approximately met when
én > LS (14)
AR O

That means if the distance between transmitters is larger than AR/AQ = AR/ D (D is the

size of target), the reflected signals from the transmitted signals emanating from different
transmitters are independent of each other.

Advantages of MIMO radar system:

As we mentioned in last section, the biggest differences between MIMO and phased-array
radars are the fact that MIMO radars have independent transmitting waveforms and spatial
diversity. In fact, they open the way to a variety of technologies to improve the radar
performance, or to outperform over phased array system.

For example, it is shown that the detection probability is dramatically enhanced because of
the efforts in stabilizing the reflected power6. Because MIMO supports additional
dimensions, the Cramer-Rao bound (CRB) of estimating direction of arrival (DOA) is
decreased’. MIMO systems have been designed for clutter which is much larger than the
targetx. Therefore, the reflected signals from target can be coherently demodulated and its
power can be accumulated. However, reflected signals from clutter will be independent, and
their power is dispersed. It has also been shown that MIMO has better identifiability than a
phased-array systemg. In other words, under certain acceptable accuracy in estimating DOA,
MIMO is able to detect more targets than phased array. Accuracy may depend on algorithms,
so they apply CRB to evaluate the achievable accuracy.

g, Fishler, A. Haimovich, R.S. Blum, L.J. Cimini, D. Chizhik, and R.A. Valenzuela, “Spatial diversity in radars-
models and detection performance,” IEEE Transactions on Signal Processing, 54(3), pp. 823-838, March 2006.

7 S.M. Kay, Fundamentals of Statistical Signal Processing — Estimation Theory. Prentice Hall: Upper Saddle River,
NJ, 1993,

¥ X.Z. Dai, J. Xu, Y.N. Peng, and X.G. Xia, “A new method of improving the weak target detection performance
based on the MIMO radar,” Proc. International Conf. on Radar (CIE’06), Shanghai, China, doi:
10.1109/1CR.2006.343265, October 2006.

?J. Li and P. Stoica, “MIMO Radar with colocated antennas,” IEEE Signal Processing Magazine, 24(5), pp. 106-
114, September 2007.
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Besides the performance improvements mentioned above, there are several techniques that
can be applied in MIMO radar which are not suitable for the phased array radar system. This
is because MIMO has a very powerful characteristic, viz. orthorgonality between the
reflected signals from different transmitters. It guarantees that the covariance matrix of
received signals will be full rank. Therefore, it is possible to use adaptive location and
detection techniques directly. Actually, we can say it is another significant advantage of
MIMO radar system, since adaptive techniques are known to have much better resolution and
much better interference rejection. The following sections depict two examples about how
we apply such adaptive algorithms in MIMO.

Multiple signal classification (MUSIC):

Consider multiple signal classification (MUSIC) algorithm as a first example'®'". Without a
doubt, the covariance matrix of received signal can be treated as the summation of two
matrices. One is for noise, the other is for reflected signal which is a space constructed by the
target direction vectors. The idea of MUSIC is to project the potential direction of received
signal to the noise subspace. If the test direction belongs to signal subspace, the projection
should be zero. This is because the signals and noise subspaces are independent of each
other. Therefore, if we take the inverse of the projection, the peaks are caused only by the
target directions.

Moreover, for correctly determining the number of targets, a requirement for signal
covariance matrix is its rank should be equal to that number. With the features of MIMO,
there is no difficulty to achieve that. For detailed formulation, we can rewrite (8) after
matched filter and normalization as

Tl a, A

> rm’ amZ ZZ
R,=| .7 |=|a(8) a(6,).. a(b,) g [ (15)

Lo a. p Z,

Here, P is the number of targets, Z, is additive white Gaussian noise (AWGN) at the »"

receiver. 7, is the received signal at the n™ receiver from the m™ transmitter. The covariance

m.n

1s calculated from

M
pI I

E{R"R"”}: M'T (16)

' B. Friedlander and A.J. Weiss, “Direction finding using noise covariance modeling,” IEEE Transactions on
Signal Processing, 43(7), pp. 1557-1567, July 1995.

L3 Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE Transactions on Antennas and
Propagation, 34(3), pp. 276-280, March 1986.
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It is easy to tell because of (9) that the rank of signal space in (16) is guaranteed to be full.
That means it is equal to the number of targets, P .

In Fig. 13, M = N =5, and SNR = 24 dB. From the figure, we conclude from the presence of
sharp peaks and deep valleys that good resolution and interference rejection are achieved.
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Fig. 13: Receive beam-pattern of MUSIC direction finding algorithm for 2 and 4 targets.
Capon beamforming:

For another adaptive technique Capon beamforming'z, the received signals of n™ receiver can
be represented as

R =>r +2 =Ya®a,s,+2, (17)

" L. Xu and J. Li, “Iterative generalized-likelihood ratio test for MIMO radar,” IEEE Transactions on Signal
Processing, 55(6), pp. 2375-2385, June 2007.
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For multi-targets, it can be modified in matrix form as
R=A6)aS+Z (18)

where R is NxI matrix, A is NxP, P is the number of targets. The (p,m)" element in & is

a,,, and S i1s Mx1 represented as signal vector. The covariance matrix of R is X

estimated as
P l H =

In (19), L is the number of samples.

The goal of Capon beamforming is to maximize the signal to noise ratio (SNR). So, its
weights are designed for maintaining the signal power and minimizing the total received
power at the same time. Then, it can be formulated as an optimization problem as follows.

rr;vintr(W”XW) subject to W7 A(9) =1 (20)

For solving (20), X l is necessary information. That explains the importance of full rank in
« and S . We determine the optimal weights, W . The received beam pattern is presented
below. Obviously, in Fig. 14, it still has sharp peak and deep valleys that are consistent with
our previous conclusions, viz. excellent resolution and interference rejection.

Detecting target in correlated clutter environment:

In previous sections, from those various approaches that we have seen it is evident that
MIMO radar does gather a lot of attention. These developments improve the radar
performance in many aspects, such as detection, estimation, and resolution. However, in our
opinion, MIMO radar system in correlated clutter environment does not get the sufficient
concern that it deserves. In fact, we can’t ignore clutter in the real world. So, we choose to
further study in this field.

K-distributed clutter

Before we move on, the K-distributed clutter, one of the most popular models of clutter, it
should be introduced first'>'*"*. The clutter distribution is given by

" P.F. Sammartino, C.J. Baker, and H.D. Griffiths, “MIMO radar performance in clutter environment,” Proc.
International Conf. on Radar (CIE’06), Shanghai, China, doi: 10.1109/ICR.2006.343554, October 2006.

" p F. Sammartino, C.J. Baker, and H.D. Griffiths, “Adaptive MIMO radar system in clutter,” Proc. IEEE Radar
Conference, Waltham, MA, pp. 276-281, April 2007.

Bris Raghavan, “A model for spatially correlated radar clutter,” IEEE Transactions on Aerospace and Electronic
Systems, 27(2), pp. 268-275, March 1991.
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. - 2 i v+l £ N ~
K[x,a,v]——al_(v+l)(2a] Kv(ajU(A), v>-—1 20

where U(x) is the unit step function, I'(.) is the Gamma function, K (.) is the modified

Bessel function of order v.
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Fig. 14: Receive beam-pattern of Capon beamforming for 2 and 4 targets.

The simplified form (no modified Bessel function), (21) is represented as

fx(x)=K[X;a,V]=ffX/y(X|Y=)’)fy()’)dy (22)

where

i)




Sy (XY =y)=R[x;y] (23)
and
fy () =Gly;2a*,v] (24)

Above, the instantaneous envelope from the i patch (i denotes the spatial position of the
patch) or range cell is modeled as two statistically independent random variables (RVs) X,

and Y,. The first RV, X,, often referred to as the *“speckle” envelope is described by
Rayleigh distribution with parameter y, R[x; y]. The second RV, Y,, models the local mean

power of the speckle element and follows a Gamma distribution, G[y;2a*,v]. 2a’ is the
scale parameter, and v is for shape parameter. Lastly, the complex echo signal from clutter is
model as Xe’? where ¢ is uniformly distributed in [0,27]. Thus, the complex clutter signal
has a complex Gaussian distribution.

Correlation:

Definition based on speckle component

Both Ref. 13 and Ref. 14 are the related works about detection performance in a correlated
clutter environment. In fact, for these two papers, the correlation is defined based on the
speckle component. Furthermore, signals that reflected successively (time), and observed in
neighboring range cells (space) may be correlated. Therefore, they can be described as a
complex joint Gaussian distribution.

In addition, both of the detection rules in Ref. 13 and Ref. 14 are based on comparing the
received power. Since those clutter signals have the same local mean power, if there is a
target, the received power suppose being larger than target free case. The problem they try to
handle in Ref. 13 is that we may observe strong clutter signals in two neighboring range cells
very possibly, because of correlation. Undoubtedly, that is bad for detection. So, they
proposed a whitening process to eliminate this correlation. Differently, in Ref. 14, they
achieve a more accurate estimate of the local mean power by observing more range cells
(gathering more spatial samples).

Definition based on local mean power

In Ref. 15, there is a completely different definition on correlation. In time domain, the
correlation period of speckle is much shorter than of local mean power. In space, neighboring
range cells, there is no correlation of their speckle, because the author claims that speckle in
different range cells are caused by reflections from different aspects of the target. But, the
correlation of their local mean power should not be ignored. In simple terms, the correlation
is focused on local mean power instead of speckle. It is this definition of correlation that we
adopt in our analysis.
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So, the joint probability density distribution of /™ and ™ range cells is described as

f)")’,(yk’yi):zpnG[yi;bik’n+V]G[yk;bik’n+v] (25)
n=0
where
5 =2a2(1—pik) (26)
i T(v+n+1) p),
=(-p )" ———20% . 2(,],2... 27,
pn ( plk) F(V+1) n! n ( )

Let the correlation coefficient p, be defined as

pszUx—EDngn-EDuﬂ o

Oy

For further reference, conditional pdf given ¥, = y, is

_ S ey

v (Y, =y
S (i i) £, ()

(29)

Replacing (29) by (24) and (25), the conditional pdf is obtained.
Signal model and asswunptions:

Assume that there is a large clutter source behind one target. We further assume that clutter
covers several range cells while the target covers only one range cell. By Capon
beamforming, optimal weights steer the linearly uniform receiver array to scan the whole
range cell. In a certain range cell, the received signals can be modeled as

M M
n(=Y a, (g,()+ > ac, (D, (1) +Z, (30)
m=]

m=|

where 7 (r) is the received signals of n™ receiver, at, (1) 1s the complex reflectivity

proportional to the RCS for the (m, n)" transmit and receive pair and for the target at the
location 8, ac, ,(t) is the complex reflectivity proportional to the RCS for the (in, n)®

transmit and receive pair and for the clutter at the location 8, ¢ (1) is the waveform of m"
transmitter (satisfy the orthogonality: J¢m(t)¢k‘(t)dt=5mk ), and Z_is the noise included

white noise and maybe jamming signals.
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So, after matched filter, equation (30) can be rewritten as

D= ,(N+ac, (V+Z,, 31)

where r._ (1) is the received signal of n™ receiver corresponding to m™ transmit waveform.

n.m

Furthermore, Z', , = I Z' *@ (t)dr is still a normal distributed RV.

Moreover, there are some assumptions for the signal model. First, consistent with the MIMO
radar system, at, (1) and at, (1) will be identical and independent RV, if m#k . So are

ac, (1) and ac, ,(1). ar,

i

(1) has a complex normal distribution and the envelope of

ac,, ,(t) is K-distributed with uniformly distributed phase.

Furthermore, because all range cells are within the correlation length, they are correlated
with each other on their local mean power. Moreover, for convenience, we would like to
assume the time length of waveform is within the speckle correlation period. Therefore, it
will not suffer time selective fading. In other words, for one waveform it will only multiply
one reflectivity in whole waveform period.

Finally, clutter in different range cells will satisfy spatially wide sense stationary (WSS).
That means the correlation will depends on the distance between range cells only. For

g O d
simplicity, we assume the p, = p™*.
For answering the question how we detect target in a cluttered environment, we can describe

this question in two hypotheses in (32). We can apply Capon to estimate reflectivity in (32).
Hypothesis 0, H,, represents the target free case. So, there is only clutter signal. In

Hypothesis 1, H, , there is a target, ¢, ,(1)#0.

Hy:x, = afcmﬂ(r)

H,: %, =l (O)+ o, (1) (32)

Likelihood ratio test:

Parameters estimation for K-distribution

For calculating the likelihood ratio, first of all, we need to glean the parameters of clutter
distribution. An algorithm with a simple calculation and with limited samples to earn the
reliable estimation results is presented in Fig. 15,

Prs Raghavan, “A method for estimating parameters of K-distributed clutter,” IEEE Transactions on Aerospace
and Electronic Systems, 27(2), pp. 238-246, March 1991.
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Of course, correlation coefficient of different range cells needs to be known first. We can
observe the clutter signals, and apply (28).

Sample Number = 20

T T T T
o o actual v=-0.5 ] @ o :
SO 2 e e e ARECEET R tamrenennennes R
> s g
=2 ] B R R
S o4 R i oo T -
B8 @ < o Q" i o é ' 9
~RICH e oae A e S e frnnsneggarianaars R et e e
: : : o :
-0 8 1 1 1 1
O 5 10 15 20 25
142 . .
actual a= 0.7 : : A
LI T e T P e B
q(‘; ONB A o e i s s IR g SRS e R (,.-4: ................ -
‘g > : oo i o 4
ﬁ 06 r'_""[.’\"""""': """"" ?‘S""‘é""" """"""" ..‘ """"" :;""“: """" b= —
(0| R e S PSR =T S s B R 2
0.2 i L i i
O 5) 10 41655 20 25

Fig. 15: Independent 20 trials for parameter estimation.

Calculating the likelihood ratio

Once we know the parameters of clutter distribution, referring to (22), the pdf given H is

fx(x, Ho)= ffx/y(xnily=)’)fy()’)dy (33)
Giveny, ac, , is a complex normal distribution. And, we assume ar,, , is complex normal

distributed, too. Therefore, their summation is still complex normal distributed RV whose
variance is the summation of their individual variance. According to this, given H,, (31)

should be modified to (32), where &7 is the variance of target reflectivity:

Fe G H)= [ fry (5, 1Y = y+67) f ()dy (34)

So, with (33), and (34), the ratio test can be represented as (35)

fX(xm;Hl) —- ,()meiY(xm D/ = y+0-12)f}'(.y)dy -

(39)
FxGaiHo) [ fy(x, ¥ = 3)f, (e

where y is the threshold. If the ratio is larger than the threshold, we claim to detect a target.

Otherwise, it is target free. By using the probability density of x_ further, all possibility of
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local mean power is considered, as presented in (35). This idea is similar with the principle of
Bayesian ratio test'’.

Obviously, such a ratio test totally wastes the information about correlation. In fact, if we can
observe the local mean power of correlated range cells, such additional information will
supposedly improve the radar performance. Following this idea, the pdf given H, should be

modified to (36), where y, is current local mean power in the i™ range cell which is

correlated with the k" . Their correlation coefficient denotes as p, .

fx (X, Hy) = J:fxw(xm VY =y frw (i 1Y, = ¥, )y, (36)

Similarly, the pdf, given H,, is
fx (X, H) = ffX/Y(xm =t +O-,2)fyk|y,(yk 1Y, =y )dy, (37)
And (35) should be modified to

TS0 ffX/Y(xm ¥ = +O—:2)fyk|y,()’k 1Y, =y, )dy,
Fx O o) ffxw(xmlyz)’k)fmy,()’k 1Y, = y. My,

>y (38)

For distinguishing (35) and (38), we term (35) as non-conditional, or Gamma based
likelihood ratio test, because the local mean power is described by Gamma distribution only.
On the other hand, (38) is a conditional likelihood ratio test.

Extending the test to MIMO radar system is not difficult. Since the spatial diversity makes
the channel impulse responses met by different radars independent, the joint pdf given H,

and H, can be represented in (39) and (40)

s =T 858 (39)
@ )= | G2l (40)

From (39), and (40), the hypothesis likelihood ratio test for MIMO become

FGo . s ) =ﬁ SO f) ’ (A1)

(G ) i FGraHl,)

TS M Kay, Fundamenials of Statistical Signal Processing — Detection Theory. Prentice Hall: Upper Saddlc River,
NIJ, 1993.
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Numerical example:

Advantage of correlation and spatial diversity

In the following example, the correlation coefficient between two successive range cells is
0.8. And, the shape and scale factor for Gamma distribution are 0.5 and 2 respectively. For
focusing on advantages of spatial diversity and information on correlation, we begin with an
ideal case, no noise and no error on estimating reflectivity and target location.

In Fig. 16, the dashed line is for target free case. So, following the detection rule, false alarm
happens if the value of likelihood ratio test is larger than y. Taking the wider red dashed line

as an example, set ¥ =2, the false alarm probability is 0.1.

On the other hand, the solid line represents that there is a target. So, according to the
detection mechanism, successful detection happens if the value of likelihood ratio test is
larger than y. Taking the wider red solid line as an example, set y=2, the detection

probability is almost 0.8.

value of test ratio

Fig. 16: CDF of Gamma based and of conditional likelihood test ratio in different number
of transmitters.

Therefore, by setting the threshold, y to be different values, we can obtain the ROC curve in
Fig. 17.

In Fig. 17, the wider and thinner line presents the conditional and Gamma based likelihood
ratio test respectively. Clearly, conditional likelihood ratio test does outperform Gamma
based. We can also have the same conclusion from Fig. 16, because the distance of wider
solid line (detection) and the dashed line (false alarm) is larger than of thinner’s.
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Moreover, as the number of radars increased, the better the performance is. Similarly, in Fig.
16, there is larger separation between solid and dashed lines of more number of radars.

ection probability

1 radar (&)
2 radars (G)
S radars (G)
5 radars (C)
2 radars (C)
| =1 radar ()
s} 0.2 o4 06 08 1
False alarm probability

Fig. 17: ROC of Gamma based and of conditional likelihood test ratio in different
numbers of radars.

Correlation coefficient

Conditional based likelihood ratio test does take the advantage of information of correlation.
However, if there is almost non-correlation between range cells, the conditional likelihood
ratio test should degrade to non-conditional one. So, it will be interesting to determine at
what correlation level conditional likelihood ratio is still worthy to be applied.

There is a numerical example in Fig. 18. There are five (5) or three (3) radars. We observe if
correlation coefficient is equal to 0.2, the system performs similarly with non-conditional
based. And if correlation coefficients are equal to 0.6 and 0.8 respectively, their
performances are comparable.

Given the related information does help to know clutter signal in concerned range cell better.
We try to apply uncertainty measurement to explain the effects of correlation coefficient. The
uncertainty values of non-conditional and conditional are equal to (42) and (43) respectively

Hy (y) == [ £,(3)In(fy (y)dy 42)
0
Hy,(yy)= _JJ‘fYkIY,(-yk Ly In(fy, (i Ly )y dy, (43)
00
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Fig. 18: ROC and CDF of 5 and 3 radars with different correlation coefficient.

Table II shows as correlation coefficient is smaller than 0.4, their uncertainty values are very
close to non-conditional situation. So, in this case, the additional information of the
correlated local mean power in neighbor range cell does not help us to know the clutter signal

in concerned range cell better.

TABLE II: COMPARISON OF UNCERTAINTY IN VARIOUS PARAMETERS

Correlation Shape factor =0.5; Shape factor =
coefficient \ Scale factor =2 0.5;
Parameters Scale factor =4
0.01 0.7757 (nats) 1.45255 (nats)
02 0.7717 (nats) 1.45255 (nats)
04 0.75202 (nats) 1.41447 (nats)
0.6 0.63765 (nats) 1.32678 (nats)
0.8 0.48027 (nats) 1.11952 (nats)
Non-conditional 0.78376 (nats) 1.4769 (nats)
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Comparison of the performance of Likelihood based detection algorithm with Sammartino’s
power based detection algorithm

There are not many works discussing MIMO radar performance in clutter environment. We
could only find Ref. 14. Even though they apply very different clutter model, after slight
modification, it can be changed to another comparable algorithm.

The detection algorithm is

H

500 =23 h,0of 0 (44)
=]

I2h

H

0

where x, (h) is the received signals of the h" range cell from the m™ transmitter. The first

term in (44) is the received power of concerned range cell, and the second one is the
summation of received power in neighbor range cells multiplied by a coefficient. Extending
this equation to MIMO radar system, the detection algorithm become

Hl
M M L
Sl =53 Sl 0f o 45)
m=1 L m=] I=;' <
12 HO

Upon assuming {x,,x,..x, } are i.i.d. RVs, if number of radars, M. is sufficiently large,

according to law of large number, the first term can be approximated as

] (46)

'x"l

i|xm(h)|2 ~M xE|

Moreover, if it is target free, (46) is m-times that of the clutter power. If there is a target. (46)
is m-times of the summation of clutter and target signal power.

Similarly, if the number of spatial samples, MxL, is large enough, the second term can be
approximated as

kML

zZZ|xm(1)|2 =M xk x E[

m=] =]
I=h

] 47)

x"l

So. for a special case, if those L range cells are target free, k = 1, and there is a target in
concerned range cell, (45) is going to be larger than zero. Even though there are targets in
those range cells, we can adjust k to meet the required false alarm probability.
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In Fig. 19, we compare its performance with conditional likelihood based detection
algorithm. Truly, it functions well when the number of spatial samples, MxL, is large.
Therefore, we can conclude the best feature of conditional likelihood ratio test is that less
spatial samples are necessary.

o
H

Detection probabihty
o
W

s i —— M=1. L2 (P)
|; 3 M=2,L=2 (P}
R o I S ; M=3, L=2 (P)
f 4 i M=5, L=2 (P)
e T M=20,L=2 (P)
) e e ). ~MEHicoSZ0B/(C)
M=2, coef=08 (C)
0 8 . $ M=3, coef=038 (C)
0 02 04 06 08 1

False alarm probability

Fig. 19: Comparison of the performance of conditional likelihood based with power based
detection algorithm.

Noise effect

Obviously, noise will atfect the accuracy of reflectivity estimation. And undoubtedly, the
larger the SNR, better is the accuracy. Therefore, with larger SNR, better radar performance
can be achieved.

In Fig. 20, we assume there are three (3) transmitters and correct information about target
location is available. And, when SNR increases from 0 dB to 5 dB, the mean square
estimation error (MSE) in estimating reflectivity reduces from 0.05 to 0.01. That pulls the
ROC curve up and 1s approximated to previous results with perfect reflectivity estimation.
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Fig. 20: ROC with 3 radar in different SNR,

In Fig. 21, we show even though the signals are polluted by additive white Gaussian noise,
both spatial diversity and correlation information still benefit the performance.

Detection probability

5 radars (C)
: : : 3 radars (C)
s L e L e e A L S e P R 2 1 radar (C)
: : : 5 radars (G)
H : : 3 radars (G)
. 4 i i i 1 radar (C)
o 0.2 o4 0.6 a8 1
False alarm probability

Fig. 21: ROC of Gamma based and of conditional likelihood test ratio in different
numbers of transmitters in noisy environment.

Discussion:

From the previous results, we show the advantages of spatial diversity and MIMO in
detecting target in clutter environment. Information about correlation should be utilized to
achieve better performance. And, with limited spatial sample, power based detection
algorithm performs much worse than the likelihood based one. More interestingly, we notice
smaller uncertainty can increase the distance between detection and false alarm line in CDF,

and bigger SNR can provide more accurate reflectivity estimation. Both are very critical to
ROC curve.
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A distinguishable difference between MIMO and phased array system is the transmitted
beam pattern. It has been shown that because of the independence between transmitting
signals, the transmitting array cannot compose a transmit beam pattern to focus its power
illuminating on certain area'®'”. So, radar performance will be worse.

Therefore, after gathering some a priori information, such as number of targets and their
locations, it is necessary to make efforts to redesign transmitting waveforms. For example, in
Ref. 9, the transmitted beam pattern generated by new well designed and correlated
waveforms, not only do focus on targets’ locations, and suppress the interference from other
places, but also meet the requirement about 3 dB beamwidth and minimize its sidelobe level.
Considering the mean square error (MSE) in estimating the target location, it shows with
such modifications, the new system can have 10 dB in SNR gain over the omni-directional
one.

There is another interesting work™. This combines principles of two very different fields,
information and estimation theory, to design waveforms for MIMO radar system. Its goals
are to maximize the mutual information between reflectivity and received signals, and
minimize the mean square error in estimating target impulse response. They observed that
two different criteria reach the same conclusion eventually.

Inspired by these works, we think it should be a good direction to figure out better
waveforms for detecting target in clutter environment. Preliminarily, we think re-allocating
may be the first step.

In our opinion, since each transmitter owns its waveform which is independent with other’s,
and even illuminating on same range cell, spatial diversity makes them meet orthogonal
channel response, they can be considered as independent channels in communication system.
Therefore, with the clutter state information, if we can supply more power on less uncertainty
channel, and stop wasting power on channel with large uncertainty, supposedly, the
likelihood ratio will be more reliable, and the performance will be more improved. We will
investigate this water-filling approach further.

Generalized Likelihood Ratio Test and Tapped Delay Line Beamforming:

Multi-input and multi-output (MIMO) radar systems have captured the attention of many
researchers in recent years. These systems apply independent probing signals, and
sufficiently separated radars to achieve the spatial diversity which is the primary difference
between MIMO and phase array radar systems. This unique feature of MIMO radar has been
further investigated in various topics and many advantages have been discovered. First, it has
been shown that MIMO radar detection performance is dramatically improved which has

s D.A. Gray, “Multi-channel noise radar,” Proc. 2006 International Radar Symp. (IRS 2006), Krakow, Poland, doi:
10.1109/IRS.2006.4338086, May 2006.

" D.A. Gray and R. Fry, “MIMO noise radar - element and beam space comparisons,” Proc. 2007 International
Waveform Diversity and Design Conf., Pisa, Italy, pp. 344-347, June 2007.

Y. Yang and R.S. Blum, “MIMO radar waveform design based on mutual information and minimum mean-square
error estimation,” IEEE Transactions on Aerospace and Electronic Systems, 43(1), pp. 330-343, January 2007.
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contributed to the efforts in stabilizing the reflected power®'. Second, since spatial diversity
provides independent radar cross section (RCS) estimates, the Cramer-Rao bound (CRB) for
the direction of arrival (DOA) estimation is effectively reduced®*. Third, ambiguity function
formulation proved that coherent processing over widely dispersed sensors elements may
lead to range resolutions higher than supported by the waveform’s bandwidth®. Finally, the
different spatial spread characteristics of a small target and clutter in a spatial diversity
MIMO radar can enhance the target detection probability24.

Since an independent waveform set is necessary for MIMO operation, waveform design is
very critical. Early work focused on creating orthogonal waveforms, for which the sidelobe
level in the autocorrelation and cross correlation functions are approximately zero. Examples
include polyphase orthogonal sequences based on the Hadamard matrix™ as well as an
integration of Genetic Algorithm and the traditional iterative code selection method*®. Then,
the idea that the waveform set should maximize the total radar return or match the
illumination to the scene was recognized and developed®’. Another interesting criterion for
designing waveforms, namely, maximizing the conditional mutual information between the
random target impulse response and the reflected waveforms, was then developedzg.

Being consistent with the considerations of MIMO radar waveform design, the UWB noise
waveform is a great candidate. In addition to previously discussed advantages, the UWB
noise waveform has the following benefits. First, the autocorrelation function of noise
waveform has only one peak. Second, the ease of generating a set of independent noise
waveforms 1s another significant advantage. Third, it is well known that waveforms with
ultra-wide bandwidths improve the range resolution, which is inversely proportional to the
bandwidth. Fourth, since random noise waveform is aperiodic, the ambiguity in
range/velocity is suppressed®’. Moreover, noise waveform has potential for further

‘' E. Fishler, A. Haimovich, R.S. Blum, L.J. Cimini, Jr., D. Chizhik, and R.A. Valenzuela, “Spatial diversity in

radars—-models and detection performance,” [EEE Transactions on Signal Processing, 54(3), pp. 823-838, Mar.

2006.

** N.H. Lehmann, E. Fishler, AM. Haimovich, R.S. Blum, D. Chizhik, L.J. Cimini, Jr., and R.A. Valenzucla,
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developments in MIMO radar system. For example, recently, multichannel and MIMO noise
radar architectures have been proposed and theoretically studied**".

Compared to MIMO radar advantages and waveform design, the practical issue of MIMO
radar operation in multi-target environment has not received adequate attention it deserves.
In one of limited studies in this topic, the authors proposed an iterative generalized likelihood
ratio test algorithm (iGLRT) for locating targets’>. The iGLRT does not only iteratively
examine target existences for the whole area, but also exploits the information about
observed targets to help detect new targets. As a result, localization accuracy is improving
sequentially, and almost reaches the CRB when the iterative procedure is finished. However,
since the discussion is restricted to narrow band signals, its extension to MIMO UWB noise
radar is advantageous.

Since multiple targets are dispersed in the environment, the beamforming technique must be
applied to focus the reflected signals from each of them. However, most discussions about
beamforming in radar field are limited in narrow band signals®*>*. Moreover, the applications
of the general broadband beamforming, namely the tag)sped delay line (TDL) system, used in
communications are very different from the radar field*>**?’.

In the following, we first discuss the necessary modifications to apply the TDL based
beamforming to MIMO UWB noise radar. Next, we review GLRT and conditional GLRT
(cGLRT) for our radar system. Subsequently, we integrate the GLRT and TDL system and
propose an iGLRT mechanism. Finally, we demonstrate the iGLRT procedure and verify that
our proposed algorithm can eventually result in an estimation accuracy being very close to
CRB via numerical examples.

System Model:

Consider a UWB MIMO noise radar system with N transmitters and M identical receivers
which are equipped with omni-directional antennas arranged in a linear array. In order to
gain the advantages of spatial diversity, the signals transmitted by different transmitters are
chosen from a statistically independent UWB noise waveform set, and transmitters are

DA, Gray, “Multi-channel noise radar,” Proc. International Radar Symposium (IRS 2006), Krakow, Poland, doi:
10.1109/IRS.2006.4338086, May 2006.
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“ L. Xu and J. Li, “Iterative generalized-likelihood ratio test for MIMO radar,” IEEE Transactions on Signal
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Transactions on Signal Processing, 54(10), pp. 3873-3883, Oct. 2006.
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sufficiently separated. Moreover, the receivers are suitably spaced for achieving direction
unambiguity. We assume that the transmitters, receivers, and targets are all static. Since the
transmit signals are UWB, it is indeed possible to resolve the scatterers on the target.
Therefore, a target is modeled as the combination of several independent scatterers, and
convolution operation is applied to describe the target reflection. The received signals at the
m th receiver from the ¢ th target reflection can be represented as

N T,
Xpo =Y [ (DS, (-7, -7, 76,60, (48)
n=|[

In above equation, &, (r) is the gth target impulse response met by the nth transmitted
band-limited noise waveform, S, (7), and T, is the duration of h (r). Moreover. the
propagation path is separated into three parts. First of all, 7, , is the common propagation
time from the nth transmitter to all scatterers in the qth target and 7,  is the common

propagation time from all scatterers to the m th receiver, as shown in Figure 22(a). Secondly,
the propagation time differences to individual scatterers is denoted as 7(6, ,6,,), shown as

the solid lines in Figure 22(b), which depends on the gth target direction to the nth

transmitter, ﬁn_q , and the direction to the receiver array, (9,_q ;

Since the receivers are close to each other, the relation of arrival times to different receivers
is easy to describe. We assume the distances between target scatterers and between receivers
are much smaller than the distance between the target and the receiver array. This is the well
known criterion for the far field assumption. Therefore, one target reflection arrives at all

receivers at the same angle, 6, . Moreover, since the receivers are arranged in a linear array

as shown in Figure 22(c), the relationship between 7z, —and 7,  is given by

T, , = (m2-ml)d, sin(6, )/ c+7,

fm2

(49)

4

where d, and ¢ denote the distance between two successive receivers, and the speed of light,
respectively.

Since it is easier to develop our discussion in matrix form, we also express the convolution
operation in (48) in discrete-time form as

P N
Xm.q = an.m.qhn.q . (50)
n=1
In (50), X g€ R™" and h,,€ R™ respectively denote the received signal vector and the

5 LxP 5 g
target impulse response, s, € R is the nth transmitted signal to the ¢gth target and

received by the m th receiver, where P is the number of scatterers in the g th target, and L,
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is the number of observed samples. Moreover, the pth column of s
8.,)) where 7,(6,

time for the p th scatter. Since the propagation time is considered in L, it is larger than the

is collected by

num,q

sampling S, (r-7, -7, —7,(6, 6,,) represents the specific response

_q’ 'q7

number of samples 1n the transmitted impulse duration, L.
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Fig. 22: Various geometric configurations. (a) Common propagation time in the channel
model, (b) Different scatterer response times in the channel model, (c) Different
receiver arrival times in the channel model.




Then, we consider Q static targets, a single jammer, and thermal noise in our model. As a
result, the received signal of the m th receiver is

Y
X = i f“ h (DS, (-7, -7, ,~7(6,,.6, Ndt+ j(1-7,,8))+z,(0), (51

g=1 n=l

where j(r = (9j)) is the jamming signal, which is independent of the transmitted signals,

J.m
and its relative delay 7;,(6,) to the mth receiver depends on the direction of jammer.

Moreover, jamming signals are usually band-limited white noise or multi-tone®®. In a UWB
radar system, partial band noise affects the system performance more seriously than multi-
tone does. Therefore, we prefer considering the worst case, and assume that the jamming
signal is partial band noise in following discussions. The thermal noise at the input of the
m th antenna is denoted as gz, (t). Since thermal noise terms in different receivers are

generated by different but identical antenna elements, we can simply assume they are
uncorrelated to each other, and have equal power.

We further simplify the calculation by assuming the scatters are isotropic, as per Ref. 23.
Therefore, different transmitted signals will meet the same target impulse response. Thus,
(51) can be rewritten as

L N
X,0=Y ["h (DY S, -7, =7, ,~70,,.6, )dr+(t-7,,())+2,(0). (52)
g=l n=|
This equation can also be expressed in discrete-time form as

- g N = =
Xo=) D Syndh,+ Jma, +2m (53)

g=1 n=]

where j, ,,zn€ R™™, and the number of observed samples for (53) needs to be large

enough to cover the delays of all target reflections.
TDL-Based Beamformer:

If a narrow band signal is transmitted, the target reflection obtained by different receivers
will have equal amplitude and different phases. Therefore, the principle of beamformer
design is to compensate the phase differences and guarantee observed signals in different
receivers are coherently summed up. This constructive summation efficiently increases not
only the power of the target reflection, but also the probability of detecting the target.
However, if a randomly wideband signal such as UWB noise is transmitted, received signals
at different receivers are very possibly uncorrelated to each other. As a result, constructive

* R.L. Peterson, R.E. Ziemer, and D.E. Borth, Introduction to Spread Spectrum Communications. Englewood
Cliffs, NJ: Prentice Hall, 1995.
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summation is not achievable using only one weight, and we need a more complex
beamforming structure.

We apply the widely studied TDL based beamformer to our MIMO UWB noise radar system
whose structure is presented in Figure 23 [see Ref. 35-37]. Received signals at each antenna
are fed into a tapped-delay line which consists of K taps and K adjustable weights. Then, we
sum up the outputs of all TDLs.

Time delays
'er >
Adjustable
Weights
L)
; )
X.LF . T
i

S

Algorithm
e

Fig. 23: TDL beamformer structure.

In the first tap, the amount of time advance for the m th receiver is denoted as 7, . The values
of T, mell,..,M] are jointly designed for receivers to coherently receive the reflection

m

from a pre-steered direction, 6, . Therefore, considering our system model, the outputs of

the ml th and the m2th receiver’s first tap outputs are
X, (=X, (t+(ml=Dd, sin(@,)/c)y, and X, (t)=X,,(t+(m2-1)d sin(@, )/c),

pre pre

respectively. From (51), we note that if &, is equal to one of the target direction angles,
6,

rg’
signals in each receiver are coherent, it is akin to creating a beam pattern for a certain
direction. Therefore, repeatedly processing the received signals with all possible 8, values

the g th target reflection appears at the first tap outputs simultaneously. Since the

is similar to steering the receiver beam pattern over the whole area. We call a cycle of this
process in the TDL beamformer, a complete ‘scan’.

43



The delay time for the rest K -1 taps, 7., is equal to 1/fs where fs is the sample
frequency. All in all, the output signal of the k th tap in the m th receiver can be represented

as

X, (0=X, (+(m=Dd sin(@ )/ c-(k-Dz,)

pre

= i {"n, (T)i S, (r-7,,+(m-Dd, sin@, )/ c—(k-lz, -7, -7(6,,.6,))dr -
q=1 =1 .

+j(t+0m=d, sin@, )/ c-1,(8)—-(k-Dz,)
+z, (1+(m=1d, sin@, )/ c— (k-7 ,)

pre

The summation of the product of all TDL outputs with different weight is the output of the
overall TDL based beamformer. Therefore, it can be represented as Y =WX where

- -~ ~ — T =
X=[X“,X,‘z,...,X,'K,Xz‘,,...,XM'K] e R™*%in which the element X, is the output

signal vector of  the k th tap in the mth receiver, and
W =W, ,W,,... . W, .W,,..., W, ]e€ R"™X is the vector for the adjustable weights. The

expected power of the TDL outputs is given by
E[YY"]|=E[WXX"W™ | =WR,W'. (55)

This beamforming problem can be formulated as a linearly constrained minimum-variance
(LCMV) optimization problem as

nzvi.nWRXWT subjectto C'W™ = F . (56)

The purpose of constraint function is to guarantee that the reflected signals from pre-steered
directions has a response similar to that of a finite impulse filter (FIR) with parameter vector
Fe R®™ . As we mentioned in previous discussion, the reflections from the pre-steered
direction appear after the first set of taps synchronously. Therefore, the reflection is
processed by a FIR which is unified by all the tapped delay lines. In order to make the
parameters of this FIR to be equal to F, the summation of the k th vertical column weights
must be equal to the & th element of vector F, while C, the constraint function, is given by

C=[lzomn I]T e R"™* 1o formulate the above equality, where / isa K x K identity matrix.

The cost function in (56) is to minimize the total output power. If we follow the assumptions
in Ref. 35-37 that the received signals consist of one target reflection, jamming signals and
noise, and they are independent to each other, R, is the summation of the covariance
matrices of the target reflection R,, jamming signals R;, and thermal noise R, . Moreover,

F in the constraint function could be designed as an almost ideal bandpass filter to limit the
power loss of target reflection. Since the power of desired signals is maintained, minimizing

the total power R, equally reduces the jamming and noise power as much as possible.
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However, the cost function formulation is quite different in a multi-target environment. Since
every target reflection is caused by the combination of all transmitted signals, they are
correlated to each other. If we still apply (56), even though the weights still meet the
requirement of the constraint function, the correlation between reflections will be utilized,
and the signals in pre-steered directions will possibly be eliminated to minimize the total
output power. Therefore, the cost function must be modified, and only the power of
interference from other directions and thermal noise should be minimized, as given by

minW (R, +R, + R, )W subject to C'W' = F. (57)

where R, is the covariance matrix of target reflections from other directions.

According to the discussion in the system model, thermal noise terms at each receiver are
independent of each other and have equal power. Therefore, R, is a scaled identity matrix,

0?1, where o7 is the unknown noise power variance.

Since jamming signals are band-limited white noise, each element of its covariance matrix
R; is a sinc function and its value depends on the jamming signal’s bandwidth, power, and
time shift. Moreover, the time shift depends on the arrival time at different receivers which is
related to the jammer direction. In order to collect the information about jamming signal’s
bandwidth, strength, and direction, we employ a spectrum analyzer to measure the power of
the TDL outputs in each 6, . We can collect the approximate bandwidth and strength, when

the receiver’s look direction correctly steers to the jammer’s direction. Therefore, we are able
to estimate R, by applying these parameters to determine the correlation between different

tap outputs in the TDL.

As defined before, the covariance matrix of target reflections from other directions is denoted
as R. Other reflections also interfere with the desired signals. Therefore, they should be
efficiently suppressed to make the desired signals even more obvious. Moreover, these
reflections consist of independent transmitted signals. Therefore, in order to estimate R,, we
have to consider each transmitted signal strength and arrival time individually. It may bc a

little more complicated. We will discuss arrival time and strength estimation in the next
section.

Finally, we apply the Lagrange multiplier to solve the optimal weights for (57) and they are
given by [Ref. 35]

-1

W 4&+&+&Fc@q&+&+&)ch. (58)

opt

All in all, the weights resulting from (58) lead the TDL beamformer to restrain the influences
from unwanted signals without damaging the desired signals.
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Generalized Likelihood Ratio Test Formulation:

The GLRT is one of the most popular hypothesis tests for target detection. We will review, in
order, the GLRT and cGLRT for the TDL output signals in our MIMO wideband noise radar.

Generalized Likelihood Ratio Test

The TDL based beamformer sequentially processes received signals with different advance
times in the first set of taps. Therefore, the hypothesis problem is formulated as determining
whether a target exists in the concerned direction. Moreover, since we do not have any a
priori environment information and the TDL based beamformer can maintain the reflection
power from the look direction, hypothesis H, implies that only thermal noise feeds in the
TDL beamformer while hypothesis H, implies that both a target reflection and noise enter

the TDL beamformer. Referring to (50), we write the hypothesis problem as
H,:Y=2

N N N _ _ ~ X (59)
H ¥ =71, an‘]‘qhq,an‘z‘qhq,...,an‘M‘qhq +7Z =fw(sl‘qhq,s:,_‘qhq,...,sM_qhq)+Z
n=| n=| n=| p

N
Firstly, we simplify the notation by using 5§, h to represent an'm'qhq. Moreover,

n=]

f..(x,,...,x,, ) is a function that describes the operation of TDL beamformer and it represents
the output of the TDL beamformer when x,,...,x,, are the inputs at the M receivers. In order

to represent the beamformer output in a more succinct form and develop the estimator for 4,

we further study f, (E,‘qhq,iz‘qhq,...,EM‘qhq) which can be expanded as

~ _T r = =
M/ll ‘IIT‘II lsl.qhq
M/IZ ‘I;r‘ll IEI.qhq
Fo BB el )= W |l | 5555, =50k (60)

where J , and J, are matrices representing the time advance of the first tap and time delay

of the k th tap respectively. They are given as
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e ket K}, (61a)
.
(lontasme,] ]
I 0
J = | mefi.n. (61b)
0

Furthermore, we introduce the compact notation S ; defined as

S, = iZWm.kJZJm.Em,,, - (62)

K
k=1

m=}

According to (60-62), the hypothesis test can be recast more compactly as

i, X =Z
~ : (63)
H:Y=Sh+Z

First of all, we investigate the probability density function (PDF) of Y given H,, f(Y |H).

Even though each sample of thermal noise is an independent Gaussian random variable, the
delay and addition operation in the TDL system establish the correlation between noise
samples at the TDL outputs. The correlation is determined by the known weights, length of
TDL, and unknown power of input noise. Moreover, we assume mean value of the noise is
zero. Therefore, if noise has unit variance, f(Y|H;) is denoted as N ~(0,C.) where

C.e R b According to this conclusion, for unknown noise variance, f(Y|H,) is
N ~(0,0:C.) where o7 is an unknown scaling term that makes 0’C. represent the exact

noise covariance matrix. We can similarly argue that f(Y | H,) is N ~ (5qhq,O‘fC:).

We apply the GLRT to determine which hypothesis is more possible. The GLR is defined as
[Ref. 32]

max . SN )
maxaf‘hqf(Y IH,)

Bl (64)
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The maximum likelihood estimate (MLE) for 0'3 in the numerator is°>’

2ol

Gp= fYTC;‘Y. (65)

o

For the denominator, it will be much easier to estimate hq if we know .§q . .§q Is a matrix

determined by known transmitted signals and their unknown arrival times at the receivers. In
order to collect the arrival times, we apply N correlators with N signals which are the
outputs of N independent transmitted signals processed by the FIR with parameter vector,
F of the TDL beamformer. Since the TDL beamformer has effectively suppressed the
unwanted signals, and its linear combination will not at all affect the statistical independence
between UWB noise waveforms, it is possible to observe and estimate the arrival times. As a

result, Sq can be generated with these estimated arrival times, and the MLE for O'f and A, in

H| hypothesis are then given by [Ref. 39]
a2 1 T ~ A

62 —Z(Y—thq) c' (Y -S,4,), (66a)
~ ~ -l o~ 3
hy=(STeS, STy (66b)

q

Conditional Generalized Likelihood Ratio Test

We extend the GLRT discussion to a multi-target environment. In the following discussion,
. 3 g . ~ 1@ .
Q) targets have been observed in the estimated directions {9,,} and we want to determine
q=1

if an additional target lies in a concerned direction. Since Q targets have been detected, their

influences on the desired signal should be included in formulating the hypothesis problem.
The hypothesis problem can be illuminated as

Q ~ L “ Q A
He ot =fw(Zfl,qh,,,Zsz'qh,,,...,ZSM#I1,,]+Z
q=] q=1

q=1

T G N (T TN , (67)
g . & . o .
Sl Zs,.qhq,Zsz'qh,,,...,Zstqhq +Z
q=1 q=l q=1

where IAzQ represents the estimated target impulse response of the ¢ th target. Following the
previous discussion, the hypothesis problem can be further simplified as

' S.M. Kay, Fundamentals of Statistical Signal Processing, Volume II: Detection Theory. Upper Saddle River, NJ:
Prentice Hall PTR, 1993.
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R — =
Hy:Y =Y S ho+Z=Soho+Z _
q=1 i (68)

Y=8 h +Soho+Z

H QO+ 0+

Q+! :

—_ & =~ ~ A A ~ 8
where So = [SI,SZ,...,SQ]E R™ and ho =|:lll,hz,...,hg:| € R Moreover, the PDF of

received signal given different hypothesis, f(YIHQ) is N~(§QﬁQ,GfC:), and

f(Y1Hg,) is N =(§

-0 +§Q};Q,O-:2CZ). The GLR given the Q targets is defined as
[Ref. 32]

l max , f(Y |H,) :
—1_ o} 6C
Poia, max ., f(Y1Hp,) {2

The MLE parameters for the likelihood ratio test are

= =\ =
&, =%(y—sghg) c:' (v -Sohe), (70)
A2 1 = =& =4 2 4 i =1 i 2% oy
O-;(Q‘H) =Z(Y—SQhQ—SQ+th+l) C:I(Y_SQhQ _SQ+th+l)’ (7]21)
~ - = S —_ A
By =185, 500} S;HCZ_](Y—SQIIQ). (71b)

Moreover, another given condition is Q targets and a strong jammer. For one jamming
source, the hypothesis problem is

H,,:Y =Soho+J(6,)+2,
(72)

Hyoy Y =S40y, +Soho+7(6,)+2,

where J (é,) represents the band-limited noise jamming signals from the estimated direction
6. Thus f(Y1Hy)is  N=~(Soho,Cr4a’C.)  and  f(¥1Hg,) s

N“'(S-'QHIIQH"'EQ}IQ,CJ +0'22C:), where C, is the covariance matrix of jammer TDL

outputs. C, depends on the jamming source direction, jamming signal power, and
bandwidth. These parameters can be collected by employing the spectrum analyzer as

mentioned in previous section to estimate C .
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In order to calculate the GLR given by,

max . f(Y1H,,)

=]- 73
'om{é,,}fﬂ;f max ., f(Y1Hg,,) R

we have to find the value of 0'22 which maximizes f(Y |H,,). Differentiating

In f(YIH,,) with respect to 0':2 and setting it equal to zero, we have*

dInf (¥ 1Hy) _
do? -

= —%rr[(d +afcz)'l C2]+—(Y —EQZQ)T (¢, +oc. )_' o ol +afc,)_' (Y —§QZQ) =0.

Z

(714)

The solution to (74) is the MLE 3‘3 Since it is difficult to directly find the solution, we apply
a numerical approach, namely the Newton-Raphson iteration, to solve for MLE 3’7 [Ref. 40].
Note that maximizing In f(Y | H,,,,) is somewhat different from maximizing f(Y IH,,).

First of all, maximizing In f(Y 1 H,,, ) with respect to h,,, is equal to minimizing the

0+
exponential term in f(Y | H,,,,). Taking the first differential to the exponential term with

respect to /1,,,, we obtain the MLE how, which is function of o? as given by

Q+1°

- . ~ SR 00 = -1 S
how = (s(;l (C,+0ic.) SQH) Spa(Ci+0iC,) (Y - SQhQ). (75)

Secondly, differentiating In f(Y | H, ;) with respect to 0':2 and setting it equal to zero yields

aln.f(YIiiQ\»l:!) =

S 0
do.

D—%U'[(éj +0'§C:)—l C:} -(76)

- S A\ s -1 2 -1 _ —
+%(Y—SQH/1Q+,—SQhQ) (€r+a2c.) C.(Cr+02C.) (¥ = Spuihg, ~Soho) =0

Replacing the #,,, in (76) with (75), we apply the Newton-Raphson iteration to solve for the

Qo+
~2 ~2 ~
MLE o first. Then, the MLE o are substituted for 0':2 in (28) to compute the MLE /...

*'S.M. Kay, Fundamentals of Statistical Signal Processing, Volume I: Estimation Theory. Upper Saddle River, NJ:
Prentice Hall PTR, 1993.
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Iterative Generalized Likelihood Ratio Test:

Our iterative generalized likelihood ratio test (iIGLRT) not only calculates the GLR, but also
utilizes the results from the GLRT and the spectrum analyzer to update the weights in the
TDL based beamformer. Both GLRT and spectrum analyzer provide the environment
information. The GLRT confirms the target locations while the spectrum analyzer detects the
jammer directions. Moreover, the TDL based beamformer applies the information provided
by the GLRT and the spectrum analyzer to efficiently suppress the unwanted interferences in
the environment. Since more and more interferences are suppressed during the iterations, this
mechanism is able to sequentially enhance the detection probability and improve the
estimation accuracies of the target directions and the target impulse responses. The detailed
procedure is listed in Table I1I.

TABLE III: iGLRT AND TDL WEIGHTS UPDATE PROCEDURE

Step I: Start first ‘scan’
I.I  Set up initial W in TDL
1.2.  ‘Scan’ the whole area
— Apply GLRT to calculate p, and measure the power p, to each direction.

1.3 If p,<p,and p, < p, for all directions, then stop;

Otherwise orderly denote them 6, ,v=12,... p; >p; >...and ép ,
. " 1 .
v=12,...and P;, > P;. >...

[.4 If 2 or more than 2 directions in épv or épv were observed, go to Step II;
otherwise go to Step III.

Step 11: Start another ‘scan’ from previously observed target directions

II.1 Update the weights
I1.2  Re-‘scan’ the previously noticed directions and its neighbors with new weights
for refining the estimated parameters and apply cGLRT to calculate their Poia

{6.)
orp, ’{

éq}(: |;J

1.3 Go to Step IlI to finish ‘scanning’.

Step H1: Finish ‘scanning’
III.1 Re-‘scan’ the rest of the directions, and apply cGLRT to calculate their p .
o4,

(@,

or
P e»{éq}j A

II1.2 If no additional direction whose p o
ofé.},

Otherwise, orderly denote them év, v=L2,... and p_
]

> p, 1s found, then stop;

), P

the iteration from Step II until no more subject is found.

afa),

>...and repeat
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At the very beginning, we start the first ‘scan’. As mentioned before, each ‘scan’ is achieved
by processing the received signals with all possible time advances in the first taps. In other
words, this is a signal processing procedure rather than mechanical steering.

In Step 1.1, we set up the initial weights. Without any a priori information about the
environment, the weights are designed to minimize WR W . Since thermal noise at every tap

output is independent of each other and has equal power, R, is a scaled identity matrix.
Therefore, minimizing WR W' is equal to minimizing WW'. Another special point to be

noted in the first ‘scan’ is that in addition to calculating the GLR, the power of the TDL
beamformer outputs is also measured for detecting strong jammers.

If multiple sources (i.e., targets or jammers) are noticed in Step I, we refine their parameters
in Step II. We choose one of the observed sources, and adjust the weights to suppress the
influences from the rest to collect more precise parameters on the concerned source. The
refining procedure will repeat until all observed sources have been chosen.

Determining weights to suppress the influences from other sources is very different from
weights determination in the first ‘scan’. In the second ‘scan’, since we already have some
knowledge about the environment, the weights are the solution for the LCMV problem in
(57). Therefore, R, R, and R, need to be investigated. First, we utilize the estimated

thermal noise power of TDL outputs in the first ‘scan’ to calculate the thermal noise power in
cach receiver and R_. Second, R; is determined by applying the observation from the

spectrum analyzer. Third, the arrival times are obtained from the correlators and the
estimated target impulse responses provide us with the reflection strength. These two

parameters are sufficient to determine R,. Finally, the updated weights are calculated in (58).
Moreover, R, and R also change with the time advance values of the first tap in the TDL

beamformer. Therefore, when the TDL beamformer is ‘scanning’, weights should also be
modified.

In Step III, the rest of the scan area is re-checked. The weights are designed to suppress the
observed interferences, and are determined according to the latest parameters collected in
Step IL.

Numerical Examples:

In this section, we first demonstrate the iGLRT and TDL integration mechanism. Then, we
investigate the CRB of our signal model. Last, we compare our system’s performance with

CRB in localization and target impulse response estimation accuracy.

Demonstration the Procedures of iGLRT

In our simulation, we assume four targets located at =5, 10, 17, and 25 degree angles. We
have 5 transmitters and 10 receivers. The transmitters are sufficiently separated. Transmitted
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noise waveforms of different transmitters are independent of each other. The noise signal
bandwidth is 1 GHz and its center frequency is 1.5 GHz. In order to satisfy the Nyquist
sampling condition, the sampling frequency is chosen to be twice the highest frequency. The
transmitted pulse duration is 250 ns. Moreover, the variance of transmitted signals
summation is normalized to 1. If the desired angular resolution is A8, the distance between
two successive receivers d, must be designed to guarantee that the arrival times for the
reflections from directions @ and @+ A@ are separated by at least one sample interval.

Therefore, d, should satisfy the inequality 1/f, <d, [sin(6+A6)—sin(6)]/c. For a small
A6 requirement, sin(A@)=A6 and cos(Af)=1. This approximation simplifies the
inequality and it can be rewritten as d, > ¢c/[A6f, cos 8] . If the maximum value of the angle
then a value of d, =c/[A6f,cos6,,. ] will both

satisfy the above inequality and yet maintain minimum possible receiver spacing for a
compact sized array. For the case wherein f,, 6 , and A@ are 2 GHz, 40 degrees, and 1

over which the scan in performed is 6

max

degree respectively, d, is computed as 11.22 m.

The parameter vector F in equation (57) is designed to be the parameter vector of a FIR
bandpass filter from 1 GHz to 2 GHz, and a Hamming window is applied to determine its
exact value*'. Moreover, the length of the parameter vector is 100. It also means that we have
100 taps in each TDL. Finally, each target consist of 10 independent scatterers, and the
reflectivity of each scatterer is modeled as a Gaussian random variable with zero mean and

variance is equal to 1/v10. We will demonstrate the iGLRT procedure in a multi-target
environment, as well as in a jammer and a multi-target environment, in order below.

We consider a multi-target environment without a jammer. In Figure 24, we set the signal to
noise power ratio (SNR) to 0 dB. After the first ‘scan’, we apply (64) to calculate the GLR
and observe two targets which are located at —5 and 10 degree angles, if the threshold for
GLR is set to be 0.25 as shown in Figure 24(a). The second ‘scan’ starts from refining the
parameters of these two targets and calculating their new GLR using (69). The weights are
designed to suppress the reflection power from the other one. Then, we adjust the time
advance in the first tap to check the rest of the directions by calculating their GLR, with
weights designed to efficiently suppress the interferences from two detected targets. As a
result, the GLRs for the other two targets obviously increase as shown in Figure 24(b). After
another ‘scan’ which also begins from refining the target parameters, their GLRs are even
larger and no additional target are detected as shown in Figure 24(c).

We now add a jammer to the environment. Its power is 40 dB stronger than the received
signals, and it is located at —15 degree angle. The SNR is still maintained at O dB. Moreover,
we assume the worst case scenario in that the bandwidth of jamming signal is also 1-2 GHz.
Therefore, when the pre-steered direction steers towards the direction of the jammer, the
power of the jamming signals will completely pass through the designed bandpass filter and
we can directly measure the variance of the TDL outputs for estimating the jamming power.

*''S.J. Orfanidis, Introduction to Signal Processing. Englewood Cliffs, NJ: Prentice Hall International, 1996.
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Fig. 24: Various GLRs for multi-target environment without jammer. (a) After first ‘scan’,
(b) After second ‘scan’, (c) After third ‘scan’.

After the first scan, no obvious peak is observed in Figure 25(a). It is due to the fact that
under such powerful interference, it is too hard to collect approximate target parameters.
However, in Figurc 25(b), we noticed a strong powcr arriving from an angle of —15 dcgrec.
Its GLR is small, but power is large. Therefore, it is treated as a jammer. Since only one
jamming source was detected, we skip Step II and prepare to start another ‘scan’. Moreover,
weights are updated to limit the power from estimated jammer direction. As shown in Figure
25(c), we observe two targets in the second scan. In the third scan, we refine the target
parameters first. Then, weights are designed to reduce the influences from the jammer and
the two target reflections. Since most of the interferences are suppressed, two more targets
are detected as shown in Figure 25(d). Figure 25(e) illustrates the results after the fourth
scan, and it is easy to note that the GLRs are further increased. Upon comparing this result
with the noise-only situation, we note that the powerful interference leads the values of GLRs
in jamming environment to be smaller than in a noise-only environment.

Cramcr-Rao Bound

Before we apply the CRB to evaluate the estimation accuracy of our iGLRT mechanism, we
develop the CRB of our signal model first.
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Fig. 25: Various GLRs for multi-target environment with jammer. (a) After first ‘scan’,
(b) Variance of TDL outputs for different directions, (c) After second ‘scan’, (d) After
third ‘scan’, (e) After fourth ‘scan’.

According to the previous discussion in the signal model, the received signals for all
receivers can be written as
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. Jue are jointly Gaussian random variables,

zn is also Gaussian and mutually independent of each other. We also assume that the
jammer signal and the thermal noise are uncorrelated. Therefore, the probability density

function of X is given by

Q N
Bt | = =¥ - =T Y
2121 R E[jl-eljlﬂ,:l E[.]]p .]29:] E[-]IG-IMH:I

~ T g a7 = a@
E|:-]2,01-]l.0]} E[Jze 120] : E[Jze JM@}

. (78)

Referring to the discussion in Ref. 32, since only the exponential term in this normal
distribution relates to CRBs of the target impulse response 4, and target directions &, the

Fisher information matrix (FIM) with respect to %, and &, can be written as

[F(H,,H,) F(H,,h)}
FIM = .
F(h,0.) F(hh)

The [i, j] element in block F(8,,6.) in (79) is given by

o . a[r]}

F(6,.6,)=2
(6n8) = {80 ™06

(79)

(80)

The signal part in 7 is function of arrival times which depend on target directions. Therefore,




[~ 0 = V-7 (8.)-7(8. .6,
Z .[)T:. hi(T) |:S" (t T’l»q (Hn) az-;»q( nJ) T( n,i n)):]dr
af] | o
= g . (8])
- 3| s (8,)-7,,(6.)-76,.6,))
i LTh hi(T) [ n (t TrM-q 4 az,,f; n.i 7( n.i? ri) :|dT

Since 6,, is related to 6, we can write 6,, = g (6, ). Using the definition of the differential,

the partial derivative term in (34) can be represented as

3 S, (17, (8,) -7, (6.,) - 7(6,,,6)]

aHri
= lim S"(I_T%-‘l(g’i+A6"')_T’,-lI (g(g"i+A0’i))_r(g(0ri+AHri)’Hri+A0n'))‘ (82)
A8,-0 AHn
_S"([—T q(gn)_rl q(g(gn))_r(g(gn)’gn))

In our target model, each target consists of P independent scatterers. Therefore, they should
be studied separately, and the [i,(q— )P+ p] element in F(6.,h) is the result of taking the
differential corresponding to the p th scatterer of the g th target, i.e.,
a -7 a -~
[7] . 9l7]

F@.,h Y=2{——7 ——>. 83
(n q'p) {agri - ahq-p} 5

Similarly, the I:(‘In 1) P4 pildgn—T) P+ pﬂ] element in F(h,h) is

h )=2{ a[F]T A alj7] } (84)

(AT JIRaRUEN % Jow
ahq.pl’,: ah‘l.:

F(h

WPy
Applying (80)-(84) to calculate (79), then CRB can be derived as
-1 -1
CRB(O)=[ Fy 5 = FyuFinFis | - (85)
or

- = = -1 -
CRB(h)= Fhl: + Fh.I:Fh.H, (Fa,,a, - FH,,hFhI:Fh.B,) FB,,hFh,I:' (86)
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Since the CRBs are functions of the transmitted waveforms and the target impulse responses,
they will be random variables. In order to evaluate the performance in a meaningful way, the
average CRB is a more relevant parameter [Ref. 22].

Comparison between CRBs and iGLRT Performance

Thermal noise in receivers is assumed to be independent of each other. However, the
correlations between jamming signals in different receivers are determined by their arrival
times. Therefore, thermal noise and noise jammer affect the performance very ditferently,
and should be discussed separately. Moreover, in order to make the difference more obvious,
we assume that the jammer is located at O degree angle, and all other parameters are the same
as in the previous discussion.

In Figures 26 and 27, we compare the mean square error (MSE) of target impulse response
estimation resulting from iGLRT with the average CRB. In Figure 26, the noise power is
equal to the signal power (SNR = 0 dB), and we increase the jamming power to achieve
different signal to jammer and noise power (SJINR). In Figure 27, the jammer power is equal
to signal power (SJR = 0 dB), and signal to noise power ratio (SNR) is varied.

T it
H -l CRB [1

................ ]
| =
e S s R
i PP | = \?:.":"; :l‘

R R TS I B TR I :
JR (dB) SJINR (aB)

Fig. 26: iGLRT and CRB comparison of Fig. 27: iGLRT and CRB comparison of
target impulse response estimation target impulse response estimation
when SNR is fixed at 0 dB and SJR is when SJR is fixed at 0 dB and SNR is
varied. varied.

Both figures show iGLRT results are close to CRBs especiaily when the SINR is targe.
Moreover, when the SJR is varied, the CRBs and iGLRT lines are flatter and values are
smaller than when caused by varying the SNR. It proves that the jammer and thermal noise
do aftect the performance differently, and the TDL based beamformer performs better in
eliminating jamming signals better than thermal noise.

In Figures 28 and 29, the target location MSE resulting from iGLRT and CRB are compared.
We can infer similar conclusions with above discussion.
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Fig. 28: iGLRT and CRB comparison of
target location estimation when SNR is
fixed at 0 dB and SJR is varied.
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2. 2. RF Tags
Noise Radar Tag Basics:

Radio frequency (RF) technology is used in many different applications, such as television,
radio, cellular phones, radar, and automatic identification systems. RFID stands for radio
frequency identification and describes the use of radio frequency signals to provide
automatic identification*’. RFID is similar in concept to bar coding. Bar code systems use a
reader and coded labels that are attached to an item, whereas RFID uses a reader and special
RFID devices that are attached to an item. Bar code uses optical signals to transfer
information from the label to the reader; RFID uses RF signals to transfer information from
the RFID device to the reader. These RFID systems are composed of two main components —
an interrogator (reader) and a tag (passive, active, or semi-active).

A tag contains information and a reader queries the tag for the information. A tag is
sometimes called a transponder. The word transponder comes from the words transmitter and
responder. It is an identifier affixed to a certain item or an object holding its identification
information. The tag responds to a reader’s request by transmitting the information. The tag
consists of a microchip connected to an antenna and sometimes a battery. The tag’s antenna
1s physically attached to the chip and is used to draw energy from the reader to energize the
tag. Active tags generate energy from its battery and passive tags receive energy from the
reader that generates a radio frequency (RF) field. A major requirement for tagging and
sensor systems is that the remote devices show long battery life which corresponds to a low
power consumption. Due to limitations of power consumption, the use of a local RF source
is not acceptable on the remote devices. Backscatter modulation is therefore well suited for
such a kind of system“.

The interrogator or reader transmits an unmodulated RF carrier which is modulated on the
tag by a backscatter modulator. In passive backscatter modulator case, it consists of an RF
diode which changes the impedance of an antenna terminal such that the incident RF carrier
from the interrogator is either reflected or absorbed. Usually, periodic fluctuations in the
amplitude of the carrier used to transmit data back from the tag to the reader. There is only
one transmitter — the passive tag (semi-active) is not a transmitter or transponder in the
purest definition of the term,- yet bidirectional communication is taking place through
backscatter modulations. When the backward link is active, the base station (reader)
transmits a CW carrier. By changing the tag’s impedance, the electromagnetic wave
scattered back by the antenna is modulated. This modulated backscattered signal is used for
reverse link from tag to base station (reader). The concept is shown in Fig. 30.

42 R. Weinstein, “RFID: a technical overview and its application to the enterprise,” IT Professional, Vol. 7, No. 3,
pp. 27-33, May-June 2005.

** M. Kossel, H.R. Benedickter, R. Peter, and W. Bachtold, “Microwave backscatter niodulation systems,” /[EEE
2000 Microwave Symposium Digest, Vol. 3, Boston, MA, pp. 11-16, June 2000.
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impedance Znoq OF Rmog-

Modulation of the backscattered wave is achieved by changing the tag’s impedance between
two different states, Z, = R, + jX, and Z, =R, + jX,.

Antenna scattering mechanisms are divided into structural and antenna mode scattering.
Structural mode occurs owing to the antenna’s given shape and material, and is independent
of the fact that the antenna is specifically designed to transmit or receive RF energy. Antenna
mode has to do directly with the fact that the antenna is designed to radiated or receive RF
energy with a specific pattern.

Antenna Mode Structural Mode
1 ¥ + t t ¢+ ¢t
| |

Fig. 31: Antenna scattering: Antenna mode (left) and Structural mode (right).

From Fig. 31, we obtain:

- 14 (87)

\/(Rr +RL053 +RLoad )2 +(XA T XLoad )2

The power delivered from antenna to its load is:

PAnI—)Load = IZRLoad (88)
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Fig. 32: Antenna equivalent circuit.
Substituting (87) into (88), we get:

VZRLoad

> - (89)
Rr + RL().)'S + RLoad )- +(XA it: XIJJU(I )-

PAm—vLoml = (

In an ideal case, the power delivered from an antenna to its load impedance is equal to the
total power the antenna absorbs from the incident field, i.e.,

PAb.\'orbed = SAe_ﬂr (90)

where S is field density at the antenna location and A.¢ is the antenna effective area. From
(89) and (90), we have:

Ay = V-szad 2 )
S|:(Rr +RL0.\‘S +RLoa(I) +(XA +XLoad) :l

When the antenna load is matched to the antenna impedance, A.4 for the lossless case is:

2

v..
A, = . @2y
7 4SR.
When the antenna is short circuited, Ay is:
v2
Ay =—. 93)
eff .SC SR’ (
When the antenna is open circuited, A is:
Aej]'.()C =0. (94)

The RCS, o, of the tag antenna is given by:
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where

R is the distance between the transmitting and the receiving antenna, E., is the E-field at
the receiver in the short circuit case, Ej, is the E-field incident at the tag antenna, T, is the
tag antenna reflection coefficient from load to antenna, and E,, is the E-field strength of
antenna mode at the receiver antenna.

We can show that

2 2
= |(1-T, )R [Seu| ~lozR [Sama _5 [7R [Ssar| (96)
Sinc Sinc Sinc
The power densities at the tag’s and the reader’s locations are, respectively:
G
= AT B=S,. 97
and
G, ar
,=—=2-_pP=—VP=S§ 98
2 47Z'R2 2 AZG 3 scal ( )
where

G is the reader antenna gain, G, is the tag antenna gain, S; is the power density at the tag’s
location (during forward link), S> is the power density at the reader’s location (during
backward link), P> is the power received by the tag, and P; is the backscattered power
received by the reader.

As an RFID tag changes its antenna matching to form the modulation during backscattering,
four different load cases come into play, as follows:

1. short circuit case
2. open circuit case
3. resistor load case
4. IC loaded case

We propose RF tags that comprise of notched filters wherein each unique tag has a unique
set of notch frequencies. The brief descriptions of the operation of the band-limited noise
signal with notched filters are as follows:

63

O




» Radar transmits band-limited UWB noise signal to RF Tags
o RF Tags receive the signal and notch it suitably and retransmit to Radar

e Radar receives signal from RF Tags and correlates with the reference signal to
distinguish RF Tags

A zero mean white Gaussian noise signal is generated and passed through a band-pass filter
1o obtain a band-limited UWB noise signal in the 1-2 GHz range. (This frequency range has
been selected for simulation purpose. In actual practice, the frequency may be different). Fig.
33 shows the simulated waveforms of the Gaussian noise and the output of the transmitter
after band-limited operation. This band-limited noise signal is notched over a sub-band, and
it can be noted that the notched noise transmissions will not be detected by hostile receivers
because the waveform appears random and noise-like, as shown in Fig. 34, Therefore, the
two requirements of LPI and LPD are clearly met by this method.

Ed mvad 0% sET UM B0 TAENTEIY e el
1000 T T T ™
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Fig. 33: Band-limited noise in the (a) time domain, and (b) frequency domain.

[t is imperative that the radar system has appropriate information of the different notch
.frequencies (unique IDs for each tag) and uses this information to distinguish returns from

multiple tags using correlation processing.

During communications, losses are indispensable. Among the losses, channel noise will be
presented in this section. To simulate channel, WGN is added to the channel as shown in Fig.

Siog
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Fig. 34: Signals in time domain (top) and frequency domain (bottom): (a) and (d)
Original band-limited signal, (b) and (e) Notched signal 1, and (c) and (f) Notched
signal 2.
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Fig. 35: Simulation of channel noise.

Once the RF tags receive the signals from the radar, they notch the received signals based on
their pre-designed configurations. Initially, single notch frequencies with different
percentage of notching in a whole frequency band (1%, 10%, and 20%) were simulated.
Later, to have better flexibility, two single notch frequencies are cascaded to make two notch
frequencies in each tag.

When the tags receive the band-limited noise signal, they notch it and retransmit to the radar.
Every tag will have its own notch filters, which have different stopband characteristics, as
depicted in Fig. 36. The stopband information has been pre-agreed and stored at the radar for
correlation with received signals from each tag. The radar will correlate the received signals
with stored notched signals to distinguish tags. Using this method, the numbers of tags
appears to be very limited. Therefore, an alternate method of using two notch frequencies
was also explored.
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Fig. 36: Single notch with different notch percentages: (a) 1%, (b) 10%, and (c) 20%.

The frequency band was 1-2 GHz and 8 main bands were created based on the notch filter
specification shown in Fig. 37. Several such tags were designed to simulate various tags
with various cascaded notch filters, as shown in Fig. 38.
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Fig. 37: Single notch filter characteristics.
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Fig. 38: Various Tags with different dual notch frequencies.
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The characteristics of each tag are as follows:

(a) Tag I: Reference

(b) Tag 2 & Tag 3: No overlapping with a reference signal
(c) Tag 4: Overlapping only one band

(d) Tag 5 & Tag 6: Overlapping one and some of the 2" band
(e) Tag 3, Tag 7, & Tag 8: Different overlapping with one band

Fig. 39 shows additional severe overlapping cases:

(a) Tag la & Tag 2a: Different references
(b) Tag 9 & Tag 10: Different overlapping with Tag la
(c) Tag 11: Overlapping with Tag 2a

4

“‘-‘I.le@f,-' Tag -

Taa T \ \ 7 ,
0,000

Tag 1a .fA\

AY

Fig. 39: Additional tags to simulate severe overlapping.

Fig. 40 shows the three different sample tag configurations.

M.ap thir
TR
o e

Fig. 40: Three different tag configurations:
(a) Tag 1 (Reference 1), (b) Tag 1a, and (c) Tag 2a.

Fig. 41 shows some of the tags which have different dual notch frequencies.
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Fig. 41: Three tags with different dual notch frequencies:
(a) Tag 11, (b) Tag 7, (c) Tag 2.

We now look at the results of identifying returns from tags using the correlation method. The
summary of operations shown in Fig. 42 is as follows:

Radar transmits band-limited noise signal to tags,

Radar stores all the pre-agreed tag information (notch frequencies),
Tags notch the received signal and re-transmit to Radar,

Radar correlates the received signals with the stored tag information.
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Fig. 42: Multi-tag operations with correlations:
(a) Band-limited noise signal, (b) Stored signal ID, (c) Received signal from tags without
WGN, and (d) Received signal from tags with WGN.
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Fig. 43 shows the changes to the received signals with added WGN. The correlation results
are shown in Fig 44 and a description is provided in Table I'V.

WEHN 2R

o
L
A

Fig. 43: Received signals with and without WGN:
(a) Tag 11, (b) Tag 7, (c) Tag 2.

TABLE IV: DESCRIPTION FOR FIGURE 44

Figure Description Remark

Ref.

(a) Reference Signal ® Tag | Auto
Correlation

(b) Reference Signal ® Tag 1 Noisy Added WGN

(c) Reference Signal ® Tag 2

(d) Reference Signal ® Tag 2 Noisy Added WGN

(e) Reference Signal ® Tag 3

(f) Reference Signal ® Tag 3 Noisy Added WGN

(g) Reference Signal ® Tag 4

(h) Reference Signal ® Tag 4 Noisy Added WGN

(1) Reference Signal ® Tag 5

() Reference Signal ® Tag 5 Noisy Added WGN

(k) Reference Signal ® Tag 6

(I Reference Signal ® Tag 6 Noisy Added WGN

(m) Reference Signal ® Tag 7

(n) Reference Signal ® Tag 7 Noisy Added WGN

(0) Reference Signal ® Tag 8

(p) Reference Signal ® Tag 8 Noisy Added WGN
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Fig. 44: Correlation results.
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Simulation results show the added White Gaussian Noise does not affect the correlation.
Figure 45 shows more detail.

Fig. 45: Comparison between (a) and (b) of Table IV.

The previous simulation results show that the suggested correlation method to distinguish
Tags in multi-tag environment 1s quite robust against channel noise.

In addition to the channel noise, there are other losses (attenuations) which might affect the
communications and are investigated. Since tags are different than any other transponders
especially because of the limitation of power, the attenuation will be a major issue for
communications. The attenuation coefficient is the attenuation per unit distance along the
path in a given medium, usually expressed in dB/km. It is usually expressed as a two-way
value in the radar case.

The Friis free space equation is given by

Ay Y
P =PGG, —) = P,(—) ,with G, =G _=1. (99)
4rd 4rd
The path loss is defined as
AY G
PL(dB)=10log| — | =20log| —— |. (100)
4rd 4 fd

The path loss etfect is more pronounced for wideband and UWB waveforms. Equation (100)
shows that the path loss per octave is 6 dB for a fixed distance. The power received for a
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uniform PSD 1-2 GHz random noise waveform is shown in Fig. 46. In the two-way tag
communications, the total path loss will be 12 dB per octave. In our simulations, f, is | GHz

and f, is 2 GHz. Therefore, path loss at 2 GHz will be 12 dB higher compared to 1 GHz.

The following results in Fig. 47 show the path loss simulations. The SNR is -2 dB and the
two-way path loss varies from O to 12 dB from 1 to 2 GHz (i.e., 12 dB/octave).

to Loas §JE Loss

Miymsags y
P Mgy

Frequency (HZ) « 10° Freguency (HI) > 10°

Fig. 46: Received power for a one-way path loss (6 dB/octave).

Simulations indicate that channel noise (SNR of -2 dB) with free space path loss do not
affect performance too much. Various factors which can affect communications have been
simulated, such as channel noise and path losses. According to simulations, the suggested
method which applying correlation to distinguish tags was very strong against to those
factors. However, as Table V shows, in order to distinguish between tags, the receiver
processor should have the capability to distinguish differences less than 20% of the peak
auto-correlation value. This might require a complicated receiver design.

TABLE V: SUMMARY OF PATH LOSS SIMULATIONS (WITH AWGN)

Figure Ref. Description Difference
(a) Reference Signal ® Tag | 0
(Auto-Correlation)

(b) Reference Signal ® Tag 2 21 %
(c) Reference Signal ® Tag 3 21 %
(d) Reference Signal ® Tag 4 12 %
(e) Reference Signal ® Tag 5 0 %
(H Reference Signal ® Tag 6 4 %
(g) Reference Signal ® Tag 7 21°'%
(h) Reference Signal ® Tag 8 16 %

It has thus been demonstrated through simulations that the suggested method of using
correlation to distinguish RF tags is indeed valid.
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Fig. 47: Correlation results with channel noise (SNR = -2 dB) and two-way path loss (12
dB per octave).

RF 1ags for Detecting Target Orientation:

We now explore a newly suggested application of using RF tags to detect target orientation.
First, a sphere will be used as a target for developing a general approach of RCS and then a
simulated tank will be used as a target for further analysis. Consider a sphere as shown in
Fig. 48 whose scattering RCS simulation results are shown in Fig. 49.

Fig. 49 shows the RCS variations with different koa values, where a is the radius of the
sphere. It shows that forward scattering RCS is bigger than backscattering RCS. Fig. 50
shows backscattering RCS from 1-2 GHz with FEKO software and Fig. 51 shows the
bistatic RCS at 1.45 GHz and 2 GHz. It shows that the forward scattering RCS (8 : 180°) is
the highest.
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Backscattering RCS from 1-2 GHz using FEKO software.
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Fig. 51: Bistatic RCS of a sphere: (a) and (b) 1.45 GHz, (c) and (d) 2 GHz.

Let us assume that a tag is located at position P’ in Fig. 52. Therefore, scattered field at the
point P" will be an incident field for the tag. The scattering fields are given as follows. For
simplified analysis, a sphere-shape tag is assumed. As stated before, a new RCS will be
generated with the scattered field at P to detect the target orientation.

To detect target orientation using tag RCS, we use the following assumptions:

« Nine incident plane waves will be used as excitations (simulate target orientations),

e Tags are positioned around the target,

o Target is a perfect electric conductor (PEC).

The geometry of the simulated tank target is shown in Fig. 53. As is seen in Fig. 54, nine (9)

incident plane waves are used for simulations that are related to various target orientations.
The different angles of incidence simulate different target orientations as shown in Fig. 55.
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Fig. 53: Simulated tank target and directions of incident plane waves.
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Fig. 55: Incident plane waves and target orientations.

Target RCS (scattered field) will vary depending upon the angle (i.e., its orientation). In
addition. since tags are passive (or semi-passive) devices, the scattered field amplitude from
a target greater than the threshold level will activate the tags. Therefore, tags which are
located in the area where target RCS (scattered field) is above the threshold level will be
activated, and as a result, the tags can be used to identify the target orientation. This is
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important for military targets such as tanks, as this can provide clues to where the gun barrel
is pointed, for example.

As Fig. 56 shows, tags at locations ' | and || will respond because of the scattered field from
target is significantly higher at these corresponding scattered angles.

Furthermore, in wideband systems, the target will have its unique RCS pattern at certain
angles for each frequency with differen<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>