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Abstract- The unique energy transfer intera
optical protein bacteriorhodopsin (bR) and Cd
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monolayer (I-SAM) techniques to create a 
monolayer system of QDs and bR on a conductiv
Results demonstrate the ability to efficient
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on the nanometer scale.  I-SAM films of this nat
sharp decrease in QD emission when deposited 
to bR, suggesting possible fluorescence resonan
(FRET) effects in a bR/QD nanoscale system
modulate the QD photonic output based on prox
I-SAM films could provide a direct method 
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I. INTRODUCTION 

The evolutionary development of biolog
created an array of natural nano-scale 
capabilities beyond that of curre
Bacteriorhodopsin (bR) is one such materi
intensely studied over the years due to its in
function as a light-driven proton pump [1].  St
to the visual rhodopsin found in the mam
strongly absorbs visible light in the 570nm sp
to the attached retinal chromophore (vitami
absorbed photonic energy, the retinal unde
isomerization and initiates a proton pumping
can be sensed via an electronic substrate.
applications, the fact that bR is an integral m
purified into cell membrane fragments k
membrane (PM), a crystalline structure is pro
the protein to remain functional over a 
environmental conditions [2].   

In the present research efforts, the photoele
bR are utilized as the transducer substrate in a
device.  The proposed sensing mechanism
harnessing the energy transfer interactions of
quantum dots (QDs) at the nano-scale.  Previ
group have shown the ability for QDs to pho
the bR photocycle on the macroscale [3] alon
a fluorescence resonance energy transfer (FR
in a bR/QD aqueous system [4].  As shown
QDs can be selected to allow for maximal o
emission and bR absorbance peak. 
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CdSe/ZnS QDs was specifically selected as to focus maximal 
photonic emission in the general 570nm absorption vicinity of 
bR.  The bR and QD absorption spectra in Figure 1 are 
normalized and thus not quantitatively comparative, but 
bR/QD I-SAM studies suggest that each monolayer of TGA-
capped CdSe/ZnS QDs had approximately twice the 
absorbance peak magnitude (at 545nm) than the bR 570nm 
absorbance peak (data not shown). 

The ITO substrates (5x25x0.5mm) upon which the I-SAM 
films were constructed were cleaned using standard techniques 
and a negative surface charge was achieved by placing the 
substrates into a 2% KOH solution and agitating for 30 minutes 
in an ultrasonic bath.  All ITO slides were stored in Milli-Q ddI 
water until use.  Polydimethyldiallyammonium chloride 
(PDAC) was prepared to 2mg/ml in 0.5M NaCl pH 6.8 
solution for use as the positively charged I-SAM material.   

The dipping mechanism of a Langmuir-Blodgett trough 
(KSV-2000) was used to dip the ITO substrate in a 
stable/consistent manner to the desired adsorbing material.  
The monolayers were assembled by submerging the ITO slide 
into the solution of the desired material for a set length of time: 
bR-5minutes, QDs-10minutes, PDAC-5minutes.  Each 
adsorption period was followed by a thorough rinse in pH 9.4 
Milli-Q ddI and the substrate was dried with nitrogen. 
Experiments were performed building bR/PDAC bilayers, 
QD/PDAC bilayers, and bR/PDAC/QD trilayers.  The 
absorption/emission properties of the I-SAM multi-layered 
films were measured on a Perkin-Elmer Lambda 950 
UV/VIS/NIR spectrometer and a Jobin Yvon Horiba Fluormax 
3, respectively.  Topography measurements were performed 
with a Veeco CP-II atomic force microscope (AFM). 

Measurements of the electrical activity of the bR I-SAM 
films were performed with a Keithley 4200 SMU.  A test 
fixture was created to precisely control contact between the 
thin protein film and a top ITO electrode.  

III. RESULTS AND CONCLUSIONS 

    For a baseline control, I-SAM films of both bR/PDAC 
bilayers and QD/PDAC bilayers were separately assembled.  
As shown in Figure 2, AFM images confirm the absorption a 
single PM monolayer patches which corresponds to the 
published PM thickness of 5.5nm.  Certain sections display 
membrane overlap with thicknesses around 11nm which has 
been observed in previous studies [11].     

The bR/PDAC bilayer assembly was monitored by the 
570nm absorption peak of bR and demonstrated stable film 
deposition up to 12 bilayers as shown in Figure 3.  The inset of 
Figure 3 shows the linear growth in bR absorbance 
corresponding to each deposited layer.  Figure 4 shows the 
photovoltaic response of a 12 bilayer bR/PDAC I-SAM film, 
which is similar to the response observed down to a 3 bilayer 
system.   

As shown in Figure 5, QD/PDAC bilayer films were created 
and show a linear increase in 570nm QD emission as each 
bilayer was assembled.  This inset in Figure 5 tracks the 570nm 
QD emission for each deposited layer and demonstrates a 
linear increase on QD photonic output for each added layer.  

Fig. 2.  AFM images of (a) I-SAM PM monolayer, (b) corresponding height 
profile showing the protein membrane fragments, and comparative 3D-
topography of (c) I-SAM PM monolayer and (d) blank ITO. 

 
Fig 3.  bR absorbance spectra for select bR/PDAC bilayers as it is assembled. 
Bilayers constructed on negatively charded ITO with PDAC (+) and bR (-) 
being alternately deposited. Inset tracks 570nm absorbance of the bR retinal
during consecutive bilayer depositions.
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Fig. 4.  Photoelectric response of a 12 bilayer bR/PDAC I-SAM film excited 
by a 50mW incident halogen light source. 
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 With the results confirming that bR/PDAC and QD/PDAC 
bilayer I-SAM films could be separately constructed with the 
current method, emphasis was placed on the integration of bR 
and QDs into a multilayered I-SAM film.  The layering 
structure of the first layer of this conjugate system, for 
example, is: ITO-PDAC-bR-PDAC-QD, with the pattern 
repeating (excluding the ITO) for consecutive layers.  The 
bR/PDAC/QD conjugate film growth can be tracked by 
monitoring the increasing QD emission peak (λ=570nm), as 
shown in Figure 6.   

Results show a linear increase in QD emission following 
each full trilayer deposition.  Compared to the QD/PDAC 
bilayer I-SAM films, there was on average a 20% reduction in 
QD emission for each respective bR/PDAC/QD trilayer.   The 
QD quenching effect is further exemplified by the half trilayer 
measurements, which correspond to the addition of PDAC/bR 
on top of the previous full trilayer.  The inset in Figure 6 shows 
the quenching effect of the additional bR layer on top of the 
full trilayer, which results to an additional 20% reduction, on 
average, to the QD emission.  The QD quenching effects can 
be attributed to a combination of bR absorption in the QD 
emission spectra along with potential fluorescence resonance 
energy transfer (FRET) between the QDs and bR retinal.  
Future work will focus on verifying the FRET interactions 
along with characterizing the electrical output of bR/QD I-
SAM electrodes.  In conclusion, this work verifies the ability to 
engineer nanoscale bR/QD multilayered films utilizing the I-
SAM technique and allows further research to be performed on 
the nanoelectronic properties of the bR/QD system. 
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Fig. 5.  QD fluorescence emission for each QD/PDAC I-SAM bilayer as it is
assembled.  Inset displays linear trend in QD monolayer assembly.  
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Fig 6.  QD fluorescence emission for each bR/PDAC//QD I-SAM trilayer as it
is assembled.  The ‘half’ layers signify an additional bR monolayer on top of
the existing trilayers.  Inset displays effects of bR on QD emission during tri-
layer assembly. 
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