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Introduction 

 The MATLAB Simulink simulation model of the Megawatt Power Module is a 

deliverable under ONR contract N00014-07-C-036.  This document serves as a User’s Manual 

for the simulation, providing descriptions of the various operator inputs and how to modify and 

execute the simulation.  The Simulink model for the MPM was developed and run on a desktop 

personal computer with Microsoft XP operating system and 2.0 GHz of clock speed.  The latest 

MATLAB/Simulink version and modules used for the MPM simulation are listed in Table 1. The 

overall model schematic is reported in Figure 1. 

 

Table 1. MATLAB/Simulink version and modules used for the MPM simulation 
 MATLAB Version 7.6.0.324 (R2008a) 
 Operating System: Microsoft Windows XP Version 5.1 (Build 2600: Service Pack 2) 
 Java VM Version: Java 1.6.0 w/ Sun Microsystems Inc. Java HotSpot™ Client VM mixed mode 

MATLAB Version 7.6 (R2008a) 
Simulink Version 7.1 (R2008a) 
Control System Toolbox Version 8.1 (R2008a) 
Curve Fitting Toolbox Version 1.2.1 (R2008a) 
Real-Time Workshop Version 7.1 (R2008a) 
Signal Processing Blockset Version 6.7 (R2008a) 
Signal Processing Toolbox Version 6.9 (R2008a) 
SimPowerSystems Version 4.6 (R2008a) 
Simulink Control Design Version 2.3 (R2008a) 
Symbolic Math Toolbox Version 3.2.3 (R2008a) 
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Figure 1. Overall Simulink model diagram 
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Model Overview 

The overall model schematic is reported in Figure 1. This diagram will be examined in 

detail in subsequent sections.  As a general introduction to the simulation model, the following 

comments apply. 

 All items germane to a particular function have been combined into one Simulink block 

with input items pertaining to that block listed in a pop-up dialog box.  All details about the 

construction of the block are available by examining the lower levels within each block. 

 All blocks with a colored background have a pop-up dialog box associated with them that 

must be filled out with the appropriate inputs for each run. The only blocks without input dialog 

box are those with white or gray background, which generally indicate simple measurement or 

signal routing blocks, and those with bright yellow background, that indicate blocks affected 

directly by some input variable. 

 Prior to each run, additional inputs must be entered. These are located in the following 

two files: control_law_parameters.m and Run001.m. 

 Control_law_parameters.mcontains input items needed by the turbine and should never 

be changed. It is located in the simulation root directory together with other files needed to 

support the turbine model. 

 Run001.m contains inputs specific to the current simulation run  that can be changed 

from run to run. It is located in the simulation run directory. The “001” in its name serves as a 

sequential identifier for the inputs proper to run no. 001. Thus, for example, the next set of 

values could be stored in file Run002.m.The content of file type RunXXX.m is explained in the 

next section of this documentation (Figure 2). 

 Both files must be run prior to running a simulation. The root directory must also contain 

all files related to the turbine model (Figure 3). It is recommended that no other files be saved to 

the root directory except the turbine files and the control_law_parameters.m file mentioned 

above: all simulation specific files including the files type RunXXX.m should be saved in 

separate simulation run directories.  
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Figure 2. The file RunXXX.m in the simulation run directory that must be run before every simulation 
 

 

Figure 3. The composition of the simulation root directory - this directory should never be changed 
 

 It is also recommended that prior to running a simulation the MATLAB Workspace be 

cleared. In fact, it is preferable to re-start MATLAB from scratch prior to each simulation to 

avoid potential carry-over of old data into the new simulation (this problem has been 

encountered with the turbine model). 

 Some simplification of the circuit schematic has been achieved by using a small quantity 

of GoTo/From blocks for some signals. While these blocks simplify visually the circuital 
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connections, they also make the circuit less immediately intelligible, if used extensively. Thus 

their use has been limited to few obvious instances. 

 All variables resulting from the simulation are output to the MATLAB workspace with 

variable names that attempt to be mnemonic for ease of identification. They are grouped 

according to the system element to which they refer following the convention below: 

o variables related to a flywheel are preceded by the letter F and end with the number 1 or 

2, depending on the particular flywheel to which they refer (e.g.: FRPM1 = RPM of 

flywheel no. 1) 

o variables related to the turbine are preceded by the letter T 

o variables related to the system electrical load are preceded by the letter L 

 Also, in general, the presence of the letter V (or I) in the second place indicates that the 

variable is a voltage (or current). Finally, if the letters are lower case, the real time dependence of 

the quantity has been captured; if they are capitalized some average or RMS value has been 

recorded. 

 The basic configuration parameters used in the preliminary runs is shown in Figure 4. 

Although other configurations are possible, it was found that the set of parameters shown worked 

best. 

 

Figure 4. Set of basic configuration parameters used for the simulation 
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Program inputs and the file RunXXX.m 

General Inputs 

 The items to be entered are listed below together with their program variable name and 

physical units.  As an example, the values used in the preliminary runs are also shown in 

parenthesis. The file RunXXX.m with the desired inputs must be run prior to starting the 

simulation. 

LVCAmin, V Minimum allowable ac line-to-line load voltage (430) 
VDCmin, V Minimum allowable dc bus voltage (750) 
VDCmax, V Maximum allowable dc bus voltage (1,100) 
∆, V/s Maximum allowable rate of change of dc bus voltage (250) 
LIDCmax, A Maximum allowable dc bus load current (4,348) 
TIDCmax, A Maximum allowable dc bus current from turbine generator (3,623) 
Ts, s Simulation step time (2*10-6) 
Tend, s Time when simulation ends (various, up to 20) 
Tcharge, s Time when it is desired to start re-charging the flywheels (various, as 

appropriate) 
T1-T9, s Activation time of breaker no. 1-9 (various, as appropriate). Breakers can 

change state more than once in a simulation: this has been done, for 
example, for breaker no. 3, for which two activation times are specified: 
T31 and T32. If this is desired for other breakers as well, the file 
RunXXX.m and the breakers’ pop-up input box must be changed 
accordingly. 

Inputs Specific to Program Elements 

 These inputs must be entered via the pop-up dialog boxes associated with the individual 

model elements. They are listed in the following sections where each element is documented in 

detail.  It is imperative that all inputs be provided before each run and that care be taken that no 

intrinsic conflict exists among the various inputs for a successful simulation. 

Rolls-Royce AE1107 turbine model 

The Rolls-Royce AE1107 model used in this simulation tool is a high fidelity model for the 

turbine whose details are contained in the files provided by Rolls-Royce and located in the 

simulation root directory (Figure 3). As mentioned above, among these files is the file 

control_law_parameters.m that must be run in order to properly initialize the turbine model.  
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Figure 5 shows the turbine block in the simulation circuit and Figure 6 shows the input dialog 

box that can be obtained by double-clicking on the turbine block. 

 

Figure 5. Block representing the high fidelity turbine model 

 

Figure 6. Dialog box for input items of high fidelity turbine model 
 

 To view the internal structure of the turbine model, right-click on the block and select 

“Look under Mask”: the first tier of the structure appears as shown in Figure 7, where it is 

evident how the input items are fed to the core of the turbine model (dark yellow block).  
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Double-clicking on this block will provide the information shown in Figure 8 but further clicking 

on the blocks appearing therein will not produce any additional information: the high fidelity 

model of turbine AE1107 is a proprietary item of Rolls-Royce and, thus, it is protected. 

 More information on the turbine model can be obtained reading the Word file 

UT_HF_documentation.doc to be found in the simulation root directory (Figure 3). 

 
Figure 7. First tier of high fidelity turbine model showing input data fed to core block 

 

 
Figure 8. Second tier of high fidelity turbine model - lower level tiers give no additional information as the 

turbine model is proprietary to Rolls-Royce 
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Input from and output to other blocks (Figure 5) 

Power Load power in W for the turbine (obtained from the power of the turbine 

generator). For a number of seconds the turbine runs with a fictitious load 

until its initialization cycle is complete, at which point it switches to the 

actual load demanded in the circuit (see dialog box inputs below). 

RPM  Turbine shaft RPM used to drive turbine generator 

 

Input items in the dialog box (Figure 6) 

(in parentheses are given the values used in preliminary runs) 

TNPSSL, RPM Steady state turbine set speed. For the AE1107 a value 

between 12,000 and 16,000 RPM is recommended 

(14,500). 

TPROPJ, kg*m2 Inertia of turbine rotating members (2.1739). 

TALT, ft    Height above sea level of turbine (0). 

TMachNo Speed in Mach numbers at which the turbine is moving (0). 

TurbInitial, s Time needed for the turbine to initialize properly. Typical 

values are in the range of 5 < t < 7. (5). 

THPLOADinit, HP Fictitious load applied to the turbine during the 

initialization period. For the AE1107 turbine the suggested 

value is 3,000 HP (3,000). 

THPmax, HP   Turbines maximum permissible load (6,400) 

THPmin, HP Turbine minimum load (1,000). If the actual load falls 

below this value, the turbine load is kept fictitiously at this 

floor to avoid instabilities. 

 

 Figure 9 shows the variation of the turbine RPM during the turbine initialization period: 

the turbine load was kept constant in this case so that the speed variation obtained is the result of 

the turbine initialization only. It can be seen that a minimum of 5 s must be allowed for proper 

turbine initialization. 



10 

 

 

Figure 9. Turbine RPM during initialization with constant load equal to THPLOADinit 
 

Turbine Generator Model 

 The turbine generator is modeled as a 3-phase permanent magnet synchronous generator 

with four independent identical stator windings, phase shifted with respect to each other by an 

electrical phase angle.  All stator windings are Y-connected to an internal neutral point.  The flux 

distribution is assumed sinusoidal and the machine is modeled in the dq rotor reference frame.  A 

generator of this type is made by Direct Drive Systems.  

 Figure 10 shows the icon of the turbine generator in the simulation circuit and Figure 11 

shows the input dialog box that can be obtained by double-clicking on the icon.  To view the 

internal structure of the turbine generator model, right-click on the icon and select “Look under 

Mask”: the first tier of the structure appears as shown in Figure 12.  It is evident that the 

generator is modeled as four independent PM generators (dark yellow blocks) which are 

essentially native Simulink models modified to accept a phase input.  The phase inputs are 

shown in the bright yellow blocks.  Each elementary generator has to be artificially loaded with a 

resistive 3-phase load in order to maintain computational stability.  The load used consists of 
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1,000 Ω to neutral per phase per generator.  Although this additional load is the source of a 

systematic error in the calculations for most practical simulations, its impact on the results will 

be negligible.  Figure 12 shows the first tier of turbine generator block showing the four 

independent PM generators (dark yellow blocks) with phase inputs (bright yellow blocks). 

Several measurement blocks are in white: their structure is accessible and rather obvious so as 

not to need special description.  Also visible are the resistive loads at the generator terminals 

needed to maintain computational stability.  These loads would not be needed in the actual 

hardware. 

 Double-clicking on the individual PM generators will bring up a pre-filled dialog box that 

need not be changed.  Right-clicking on the elementary PM generator blocks will provide the 

information shown in Figure 13 that shows the modification made to allow the phase input. 

Figure 13 shows the second tier of turbine generator model with the internal structure of each 

component PM generator.  The circuit native to Simulink had to be altered (area in light blue) to 

allow the input of a phase angle.  Lower level tiers are accessible for the blocks in white, 

although they are not affected directly by user’s inputs and are not discussed herein. 

 

 

Figure 10. Block representing the turbine generator shown between the turbine and the rectifier blocks 
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Figure 11. Dialog box for input items of turbine generator 
 

 

Figure 12. First tier of turbine generator block showing the four independent PM generators (dark yellow 
blocks) with phase inputs (bright yellow blocks) 
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Figure 13. Second tier of turbine generator model showing the internal structure of each component PM 
generator 

 

Input from and output to other blocks (Figure 10) 

RPM  RPM input to turbine generator as output by turbine block. 

TVAC, V Turbine generator output AC voltage line-to-line. The value is obtained by 

taking the average of the RMS value over time. Since TVAC is used for 

control purposes, the RMS value itself cannot be used directly as it 

oscillates in time due to the diode rectifier action. 

Power, W RMS power in Watts required by the turbine generator, calculated as the 

product of the electromagnetic torque and speed. It is used as input to the 

turbine block. 

ak, bk, ck 3-phase outputs of the four individual component stator windings (k = 1, 

2, 3, 4) connected to the rectifier block downstream. 
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Input items in the dialog box (Figure 11) 

(in parentheses are given the values used in preliminary runs) 

Rs, Ω Stator resistance per phase of each individual component winding 

(0.0011).  

Ld, H Direct axis inductance per phase of each individual component 

winding (0.816*10-4).  

Lq, H Quadrature axis inductance per phase of each individual 

component winding (0.816*10-4). 

Flux, Wb Flux induced by magnet per pole per phase of each individual 

component winding (0.2). 

p Number of poles of each individual component generator (4).  

Phase 1-4, Degrees  Electrical phase angle of each component winding (-22.5, -7.5, 

7.5, 22.5). 

An example of turbine generator output with the input values listed above can be seen in Figure 

14. 

 

Figure 14. Typical output of turbine generator into a resistive load 
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Quad Passive Rectifier 

 The output of each individual winding of the turbine generator is rectified individually by 

a passive 3-phase diode rectifier. The quad passive rectifier block is shown in Figure 15 and its 

dialog box in Figure 16.  In general, once determined, the values entered in this input dialog box 

rarely need to be changed.  Figure 14 shows the internal structure of the rectifier. 

 

Figure 15. Quad passive rectifier and quad filter blocks following downstream the turbine generator block 

 

Figure 16. Dialog box for input items of quad passive rectifier - these items are rarely changed 
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Figure 17. First tier of quad passive rectifier - the individual diode rectifiers (blue) are native Simulink 
blocks, thus no further tiers are accessible, white blocks are for measuring currents 

 

Input from and output to other blocks (Figure 15): 

ak, bk, ck 3-phase AC outputs from the four individual turbine generator windings (k 

= 1, 2, 3, 4) connected as inputs to the rectifier block.  

+DCk, -DCk DC outputs from each individual rectifier (k = 1, 2, 3, 4). 

 

Input items in the dialog box (Figure 16) 

(in parentheses are the values used in preliminary runs) 

RsQ, Ω Snubber resistance: each diode has an individual RC snubber (100). 

CsQ, F Snubber capacitance: each diode has an individual RC snubber (0.1*10-6). 

RonQ, Ω  On resistance for each diode (0.001). 

LonQ, H  On inductance for each diode: typically equal to zero (0). 

VonQ, V  On forward voltage for each diode (0.8). 

 

 An example of voltages at the turbine generator outputs (inputs to rectifier) and at the 

rectifier outputs into a resistive load can be seen in Figure 18. 
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Figure 18. Typical voltages input to the turbine generator rectifier and from it output into a resistive load 

Quad Filter 

 The output of each rectifier is individually connected to the dc bus via a filter.  The quad 

filter block is shown in Figure 15 immediately following the quad rectifier and its dialog box is 

shown in Figure 19.  The first tier diagram is shown in Figure 20 while the next and last level 

showing the composition of each T-filter is shown in Figure 21. 

 

Figure 19. Input dialog box of quad filter 
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Figure 20. Structure of the quad filter 

 

 
Figure 21. Diagram of individual T-type filter within the quad filter 

 

Input from and output to other blocks (Figure 15): 

+DCk, -DCk DC inputs from each individual rectifier section of the quad 

rectifier (k = 1, 2, 3, 4). 
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+DC out, -DC out  DC bus output connection points. 

Input items in the dialog box (Figure 19 and Figure 21): 

(in parentheses are the values used in preliminary runs) 

L3, H   Series inductance per section (200*10-6). 

C3, F   Shunt capacitance per section (50,000*10-6). 

R3, Ω   Series resistance per section (0.01). 

DC Bus, Quad DC-AC Converter with Filter, and AC Bus 

 The output of the quad filter is connected, via a measurement block, to the dc bus 

capacitor which is followed by a quad dc-ac converter with filter. The output of this converter is 

the ac bus where the loads are connected (Figure 22). 

 

 

Figure 22. dc bus, quad dc-ac converter with filter, and ac bus - White blocks are used for measurements 
and bright yellow blocks are ideal breakers whose switching times are settable 

 

The dialog box of the dc-ac quad converter is shown in Figure 23. This converter is a multi-

tiered block built up with native Simulink blocks and this documentation will show all levels of 

interest for the proper operation of the model. The first tier diagram is shown in Figure 24. The 

four IGBT converter bridges (blue) operate in parallel and have individual output filters (purple) 
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and a common PWM controller (cyan), The filters are connected together at their output to form 

the ac bus after a measurement block (white). 

 

Figure 23. Input dialog box for the quad dc-ac converter with filter 
 

 

Figure 24. First level of quad dc-ac converter with filter 
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 The dialog box of one of the IGBT bridges is shown in Figure 25 and is the same for all 

bridges.  In general, once determined, the values entered in this input dialog box rarely need to 

be changed. The IGBT bridge is a native Simulink block.  Figure 26 shows the circuit of the four 

identical output filters. 

 

Figure 25. Input dialog box for one of the IGBT bridges - once determined, these rarely need to be 
changed 

 

Figure 26. circuit diagram of one of the output filters of the quad dc-ac converter 
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 The four IGBT bridges are driven by the same PWM controller, whose structure is shown 

in Figure 27.  This is a multi-level block and here only those items that are affected directly by 

the input data under the control of the user will be commented (highlighted, as usual, in bright 

yellow).  

 The discrete PWM pulse generator is affected by the input for the frequency of the 

triangular waveform carrier signal in the dialog box of Figure 23.  

 The reference voltage, also specified in the same figure, is seen to be an input to the 

voltage regulator block whose input dialog box is shown in Figure 28 and whose structure is 

shown in Figure 29. Here the PI controller block is affected by the values entered for the 

proportional gain and integral gain in the dialog box of Figure 28, while the PLL block is 

affected by the values for output frequency and phase entered in the dialog box of Figure 23. It is 

recommended that none of the dialog boxes attached to blocks at levels below the main portal 

shown in Figure 23 be altered as the values used have been proven to give the best results: 

normally, the user should enter values only through the dialog box shown in Figure 23. Many of 

the blocks left with white background have additional structures of their own but are not directly 

affected by the input items and are not discussed further herein. 

 

Figure 27. Structure of PWM controller of Figure 24 
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 Although the PWM Generator and the Voltage Regulator blocks (both bright yellow) 

have input dialog screens of their own, it is not necessary or advisable to change them. 

 

 

Figure 28. Dialog box for voltage regulator block in Figure 27 - the values shown (affecting the PI block in 
Figure 29) have been proven to give the best results, thus, normally they should not be changed 

 

 

Figure 29. Internal diagram of voltage regulator block shown in Figure 27 - although the PLL and the PI 
blocks (both bright yellow) have input dialog screens of their own, it is not necessary or advisable to 

change them 
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Input from and output to other blocks (Figure 22): 

+DC out, -DC out DC bus inputs from the turbine generator quad filter via a 

measurement block (white) and an ideal breaker with settable 

switching times (bright yellow). Contributions to the DC bus come 

also from the flywheel sections (see further below).  

a, b, c Three phase output to the ac bus by way of a measuring block 

(white) and an ideal breaker with settable switching time (bright 

yellow). 

Input items in the main portal dialog box (Figure 23, Figure 26, Figure 27):  

(in parentheses are the values used in preliminary runs) 

VLL, V   Desired output line-to-line voltage on the ac bus (450). 

Freq, Hz   Desired frequency of output ac power (60) 

Vref, pu Reference level of voltage regulator, in per unit of the rated output 

voltage on the ac bus (1.00) 

Fc, Hz Frequency of carrier triangular waveform generating PWM pulses 

(4000) 

Phase, Degrees Electrical phase angle of output ac bus voltages (0) 

Rfilter, Ω  Output filter series resistance per section (0.01) 

Lfilter, H Output filter series inductance per section (0.265*10-3) 

Cfilter, F Output filter shunt capacitance per section (70*10-3) 

Input items in the IGBT bridges dialog boxes (Figure 24 and 25): 

(in parentheses are the values used in preliminary runs) 

Snubber resistance, Ω Each IGBT has an individual RC snubber (5000). 

Snubbercapacitance, F Each IGBT has an individual RC snubber (0.1*10-6). 

On resistance, Ω  For each IGBT (0.25*10-3). 

Onforward voltage, V For each IGBT (2.0) and free-wheeling diode (2.0). 

Fall time and tail time, s For each IGBT (1.0*10-6, 2.0*10-6) 

 

An example of the output available on the ac bus is given in Figure 30,Figure 31, Figure 32 

that were generated varying a 3-phase resistive load in a step-wise fashion across the bus as 

follows: 
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0 < t < 0.4 s 0 Amps  (no-load) 

0.4 < t < 0.7 1,918 Amps (~1.5MW load) 

0.7 < t < 1.0 s 3,836 Amps (~3.0 MW load) 

 

 

 

Figure 30. AC bus voltage as load current is stepped up from initial no-load 
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Figure 31. AC bus total voltage RMS (blue) and fundamental voltage only (green) as load current is 
stepped up from initial no-load. Blue and green traces overlap, indicating minimal harmonic contents. 

Total harmonic distortion (THD) is shown in red times a factor of 100 for scaling purposes. Thus, ignoring 
the initial settling transient (t < 0.2 s) the THD is always less than 4%. Actual simulation readouts are also 

shown above. 
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Figure 32. Detail of ac voltage waveform at the current transition point t = 0.4 s 
 

 

Flywheel 

 The model for the flywheel used in this simulation tool is a direct application of the 

mechanical equations governing its behavior. Figure 33 shows the flywheel block in the 

simulation circuit and Figure 34 shows the input dialog box that can be obtained by double-

clicking on it. To view the internal structure of the flywheel model, right-click on the block and 

select “Look under Mask”: its configuration appears, as shown in Figure 35.  Further double-

clicking on the dark yellow block in Figure 35 opens its second (and last) level as shown in 

Figure 36. 
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Figure 33. One of the two flywheels in the simulation circuit with its motor/generator 
 

 

Figure 34. Dialog box for flywheel data input 
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Figure 35. First level of flywheel showing flywheel block proper (dark yellow) and blocks calculating the 
equivalent electrical power put into or extracted out of the flywheel. The step function block in bright 

yellow is the time when the power flow changes sign due to flywheel re-charging. 
 

 

Figure 36. Internal structure of the flywheel block proper (dark yellow in Figure 33). The calculation of the 
flywheel speed is done by integrating the ratio torque/inertia. The input variables from the dialog box of 

Figure 34, flywheel inertia and initial speed, are used in the bright yellow blocks shown here. 
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Input from and output to other blocks (Figure 33): 

Vabc, V 3-phase AC voltage inputs from the flywheel motor/generator.  

Iabc, A 3-phase AC current inputs from the flywheel motor/generator.  

ω, rad/s Flywheel speed, output to motor/generator.  

 

Input items in the dialog box (Figure 34): 

(in parentheses are the values used in preliminary runs) 

FJ, kg*m2  Flywheel inertia (398). 

w0, RPM  Flywheel initial speed (12,000). 

Flywheel Motor/Generator Model 

 The flywheel motor/generator is modeled as a 3-phase wound field synchronous 

generator with a stationary field winding as in the topology known as homopolar inductor 

alternator (hereinafter indicated by its acronym HIA: see body of final report for details). The 

machine is modeled in the dq rotor reference frame. A generator of this type is not known to be 

available in the market at this time, thus, its basic parameters had to be estimated from a 

preliminary design.  

 The block for the flywheel motor/generator in the simulation circuit is shown in Figure 

33, Figure 37 shows the input dialog box that can be obtained by double-clicking on the icon. To 

view the internal structure of the flywheel motor/generator model, right-click on its icon and 

select “Look under Mask”: the first tier of the structure appears as shown in Figure 1.  
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Figure 37. Input dialog box for the flywheel motor/generator modeled in the rotor dq frame of reference 
 

 

Figure 38. First level structure of flywheel motor/generator. The machine is modeled as a standard 
Simulink wound field synchronous machine (dark yellow block) with three measurement blocks (white). 
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 The motor/generator is modeled as a standard synchronous wound field machine (dark 

yellow block) native to Simulink but its inputs, of course, must reflect the characteristics of the 

homopolar construction. Double-clicking on the synchronous machine block generators will 

bring up a pre-filled dialog box that needs not be changed (Figure 39).  

 The white blocks are for measurements and their contents are shown in Figure 1. It can 

be seen that, as was the case for the turbine generator, the flywheel motor/generator also has to 

be artificially loaded with a resistive 3-phase load in order to maintain computational stability. 

However, here the problem is more severe as it was found experimentally that the load needed 

was 25 Ω to neutral per phase: any larger resistor seemed to produce instability problems.  This 

additional fixed load, of course, is fictitious and the source of a systematic error in the 

calculations.   Even so, this error was found to be typically less than 3%, thus negligible in most 

cases of practical interest. 

 

 

Figure 39. Pre-filled dialog box of synchronous machine shown in Figure 38 - these inputs should never 
be changed 
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Figure 40. Details of both measurement blocks shown in Figure D33 - the artificial resistive load for the 
flywheel motor/generator needed for computational stability is visible in the lower block. 

 

Input from and output to other blocks (Figure 33): 

Vf, V Field voltage input to motor/generator field from field controller. 

w, rad/s Flywheel speed, input to motor/generator from flywheel block.  

Vabc, V 3-phase AC voltage outputs from the flywheel motor/generator to the 

flywheel block. 

Iabc, A 3-phase AC current outputs from the flywheel motor/generator to the 

flywheel block.  

VABk, V RMS voltage line-to-line between phases a and b of the motor/generator (k 

= 1,2 depending on flywheel unit). Output to field and SCR controller 

block. 

Input items in the dialog box (Figure 37): 

(in parentheses are the values used in preliminary runs) 

KVA, kVA  HIA rated power (1,250) 

VLL, V  HIA rated voltage line-to-line (834) 

f, Hz  HIA rated frequency (400) 

IF, A  HIA rated field current (22.6) 
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Rs, Ω  HIA stator resistance per phase (1.346*10-3) 

Ll, H  HIA stator leakage inductance per phase (2.956*10-5) 

Lmd, H  HIA direct axis magnetizing inductance (2.509*10-4) 

Lmq, H  HIAquadrature axis magnetizing inductance (1.676*10-4) 

Rf, Ω  HIA field resistance (1.227*10-3) 

Lfld, H  HIA field leakage direct axis inductance (6.643*10-5) 

Rkd, Ω  HIA equivalent damper direct axis resistance (0.340) 

Lkld, H  HIA equivalent damper leakage direct axis inductance  (9.372*10-4) 

Rkq, Ω  HIA equivalent damper quadrature axis resistance (0.025) 

Lklq, H  HIA equivalent damper leakage quadrature axis inductance (7.18*10-5) 

p   HIA number of poles (4) 

theta, degrees Initial electrical angle position of HIA rotor (Any value will do: e.g.: 0 

was used for HIA machine of flywheel number 1 and 53 for number 2). 

 A typical output of a flywheel generator at the input terminals of the controlled rectifier is 

given in Figure 41. 

 

Figure 41. Output of flywheel generator at input to controlled rectifier 
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Controlled Rectifier 

 The output of each flywheel motor/generator is rectified by a 3-phase controlled rectifier, 

is filtered, and the dc output is then connected to the dc bus common to the rest of the system. 

The active rectifier, implemented by means of SCRs, is shown in Figure 42 and its dialog box, 

obtained by double-clicking its icon, is shown in Figure 43. The structure of the controlled 

rectifier block can be obtained by right-clicking its icon and choosing the option “Look under 

Mask”.  This can be seen in Figure 44. 

 

 

Figure 42. Active rectifier (blue), filter (purple), measurement block (white) and breaker (bright yellow) 
connecting the 3-phase output of a flywheel motor/generator to the dc bus 
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Figure 43. Dialog screen for the SCR controlled rectifier block 
 

 

Figure 44. First level diagram under the SCR controlled rectifier block - the SCR bridge proper is the blue 
block and the firing angle controller is the cyan block 

 

 It can be seen that the active rectifier block consists of a thyristor bridge proper and an 

associated firing controller. Double-clicking the thyristor bridge block yields the dialog box 
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shown in Figure 45. In general, once determined, the values entered in this input dialog box 

rarely need to be changed. The thyristor bridge block is a native Simulink block.  

 Double-clicking the firing control block yields its internal structure shown in Figure 46. 

All blocks used here are native to Simulink and all variables contained herein are controlled by 

the upper level dialog screens, thus no additional information is necessary. 

 

 

Figure 45. Dialog box for the SCR bridge in Figure 44 - once determined, these values need rarely be 
changed 

 

Figure 46. Diagram of the level beneath the firing controller block - all blocks shown here are native 
Simulink blocks, the pulses here generated are used to fire the SCRs in the rectifying bridge 
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Input from and output to other blocks (Figure 42): 

α, Degrees Firing angle input to controlled rectifier from field and SCR controller 

block (see next section). 

Stop (R11) Stop command input from flywheel recharge control block (see later 

section) to halt firing of controlled rectifier during flywheel re-charging 

(via a GoTo/From block shoqn as a flag). 

a, b, c 3-phase AC voltage inputs from the flywheel motor/generator to the 

controlled rectifier block.  

+DCout, -DCout DC output terminals from the controlled rectifier. 

 

Input items in the dialog box (Figure 43): 

(in parentheses are the values used in preliminary runs) 

Fsync, Hz  Frequency of input power (400) 

Pw, Degrees Width of firing pulse (0.5) 

Ts, s  Simulation time step (Ts) 

 

DC Filter and Measurements 

 As described above, the dc rectified power is fed to a filter before being injected into the 

dc bus. The dialog screen of the filter can be obtained by double-clicking its icon (Figure 47), 

while its structure can be shown, as usual, by right clicking and choosing “Look under 

Mask”(Figure 48 top). The detailed circuit of the T-type filter used (one tier lower) is underneath 

the purple icon of the filter in level one and is shown in Figure 48 bottom.  
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Figure 47. Dialog input screen for the DC filter 
 

 

Figure 48. First level structure (top) and second level structure (bottom) for the dc filter 
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Input from and output to other blocks (Figure 40): 

Input (+), Common In (-)  DC input terminals from the controlled rectifier.  

Output (+), Common Out (-) DC output terminals to the dc bus.  

 

Input items in the dialog box (Figure 45): 

(in parentheses are the values used in preliminary runs) 

L1, H  Filter series inductance (200*10-6) 

C1, F  Filter shunt capacitance (500*10-3) 

R1, Ω  Filter series resistance (0.01) 

A typical output of the controlled rectifier and filter is given in Figure 49. 

 

Figure 49. Rectified voltage output of controlled rectifier (blue) and of filter (green) 
 

Field and SCR controller 

 Figure 50 shows the blocks that control the operation of the flywheel energy storage 

section in the simulation circuit. In this section we will cover the field and SCR controller block 

and the others will be covered in subsequent sections.   
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 Figure 51 shows the input dialog box that can be obtained by double-clicking on the icon 

of the field and SCR controller block. To view its internal structure, right-click on the block and 

select “Look under Mask”: the first tier of the structure appears as shown in Figure 52. 

 

Figure 50. The flywheel control blocks: the field and SCR controller, the field balancing controller between 
the two flywheels, and the flywheel re-charge controller 

 

 

Figure 51. Input dialog box for the field and SCR controller block 
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Figure 52. First level structure of the field and SCR controller block 
 

 The overall scheme of the flywheel generator/active rectifier controller can be described 

as the combination of a current loop within a voltage loop. First, the controller checks that the ac 

bus voltage, the dc bus voltage, the dc bus voltage rate of change in time, the turbine generator 

voltage, and the flywheel generator voltage are within pre-established bounds (Voltage loop). If 

they are, the controller proceeds to check that the dc load current, the turbine generator dc 

current, and the flywheel generators dc current are within pre-established bounds (Current loop). 

If any of the bounds are exceeded, corrective action is taken based on both Voltage and Current 

status (Control action).  

 Figure 53 and Figure 54 give the Simulink structures below the cyan blocks shown in 

Figure 52 that implement the aforementioned control scheme. An additional lower level is also 

accessible for each of the cyan blocks in Figure 53 and Figure 54. For sake of clarity, the 

complete control strategy of Figure 52, Figure 53, and Figure 54 has been also summarized in an 

equivalent flow chart that is extensively labeled so as to be self contained and self explanatory 

(Figure 55 through 58). 

 



43 

 

Figure 53. Second level of field and SRC controller block: voltage loop 
 

 

Figure 54. Second level of field and SCR controller block: current loop 
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Figure 55. Voltage loop flow chart, part 1 of 2 
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Figure 56. Voltage loop flow chart, part 2 of 2 
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Figure 57. Current loop flow chart 
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Figure 58. Control action flow chart 
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Input from and output to other blocks (Figure 50): 

VDC, V  DC bus voltage input from dc bus measurement block  
TVAC, V Mean RMS turbine generator voltage input from turbine generator 

block 
FVAC, V Mean RMS flywheel generator voltage input from HIA machine 

block 
LIDC, A Load side dc bus current input from dc bus measurement block 
TIDC, A DC bus current contributed by turbine section; input from dc bus 

measurement block. 
FIDC, A DC bus current contributed by flywheel sections; input from dc bus 

measurement block. 
α, Degrees Firing angle for SCR rectifier input from previous computational 

cycle 
Vf, V Field voltage of HIA machine input from previous computational 

cycle of field balancing circuit 
FRPM, RPM  Flywheel RPM input from flywheel block 
LVAC, V  AC bus RMS voltage input from ac bus measurement block 
α’, Degrees  Revised firing angle output to SCR rectifier block 
Vf’, V  Revised field voltage output to field balancing circuit 
Recharge Command to recharge flywheel output to recharge control block 
 

Input items in the dialog box (Figure 51): 

(in parentheses are the values used in preliminary runs) 

FVACmin, V Minimum allowable ac line-to-line flywheel generator voltage 

(480) 

FVACmax, V Maximum allowable ac line-to-line flywheel generator voltage 

(500) 

FIDCmax, A Maximum allowable dc load current from flywheel sections 

(2,899) 

FRPMmin, RPM Minimum allowable flywheel RPM without re-charging (11,800) 

FRE Flywheel re-charge command: enable = 1, disable = 0 (either) 

Tinit, s Initialization time before field and SCR controller goes into effect 

(0.1)  
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Field Balancing Controller 

 As in all cases where multiple power supplies are in parallel, also in the case of two 

flywheel energy storages it is possible to have unequal distribution of the load between them. To 

minimize the unbalance a field balancing controller block was used to adjust the field voltages to 

the two flywheel generators in order to keep an even load sharing. 

 Figure 50 shows the field balancing block and Figure 59 shows the input dialog box that 

can be obtained by double-clicking on it. To view the internal structure of the field balancing 

controller, right-click on the block and select “Look under Mask”: the structure appears as shown 

in Figure 60. A flow chart is also given in Figure 61. 

 
Figure 59. Input dialog box of field balancing controller 

 

 
Figure 60. Structure of field balancing controller 
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Figure 61. Flow chart of field balancing controller 
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Input from and output to other blocks (Figure 50): 

IDC1, A DC bus current of flywheel storage no. 1, input from dc bus measurement 

block 

IDC2, A DC bus current of flywheel storage no. 2, input from dc bus measurement 

block 

Vf1, V  Field voltage input from field and SCR controller block no. 1 

Vf2, V  Field voltage input from field and SCR controller block no. 2 

Vf1c, V  Corrected field voltage output to HIA machine no. 1 

Vf2c, V  Corrected field voltage output to HIA machine no. 2 

 

Input items in the dialog box (Figure 59): 

(in parentheses are the values used in preliminary runs) 

Vfmax, pu  Maximum allowable field voltage in per unit of Vf0 (1.75) 

Vfmin, pu  Minimum allowable field voltage in per unit of Vf0 (0.75) 

Imax, pu Maximum allowable dc current of flywheel no. 1 in per unit of the dc 

current of flywheel no. 2 (1.05) 

Imin, pu Maximum allowable dc current of flywheel no. 1 in per unit of the dc 

current of flywheel no. 2 (0.95) 

 

Flywheel Recharge Controller 

 The flywheel recharge controller is shown in Figure 50. Its function is to generate a 

proper sequence of signals for the recharge of the flywheel, either if requested by an external 

operator signal (via the input Tcharge in file RunXXX.m) or if triggered automatically when the 

flywheel speed falls below the minimum value specified in the field and SCR controller dialog 

box (Figure 51). In either case, in order for the flywheel recharging to take place, the flywheel 

re-charge variable must be enabled in the same field and SCR controller dialog box (Figure 51).  

 The flywheel recharge controller block does not have an input dialog box and its structure 

is shown in Figure 62. The two possible signals to recharge the flywheels, namely the internal 

one “Recharge” and the external one “Tcharge”, are OR-ed and their resultant is split into four 

signals with various delays to allow the proper sequence of steps at the various components 
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affected. Additionally, the recharge controller generates the initial frequency signal for the 

recharging variable frequency drives.  

 

Figure 62. Structure of flywheel recharge controller 
 

Input from and output to other blocks (Figure 62): 

RPM  Input RPM from flywheel 

Recharge  Input signal to re-charge flywheel from field and SCR controller 

Tcharge Operator’s signal to recharge at time t =  Tcharge as specified in input file 

RunXXX.m 

The following signals are all exchanged via GoTo/From blocks (shown as flags in the 

Simulink model) 

Rechargek Number of poles input from the corresponding HIA machine (k = 1,2) 

R11 Zero delay signal output to stop the trigger pulses to the controlled 

rectifier at the output of the flywheel generator 

R12 50 cycles delay signal output to close the breaker powering the recharging 

variable frequency drive (VFD) from the dc bus (see next section) 

R13 100 cycles delay signal output to start the recharging VFD (see next 

section) 
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R14 200 cycles delay signal output to close the output breaker of the VFD onto 

the flywheel motor (see next section) 

Hz Frequency at which the VFD has to start re-charging the HIA motor 

corresponding to the HIA RPM. Output to VFD block. 

 

Flywheel Recharging Variable Frequency Drives (VFD) 

 One VFD powered by the common dc bus is provided for each flywheel to re-accelerate 

it to top speed. The VFD is structured very similarly to the dc-ac converter covered previously in 

Section 7 and to a general VFD used to accelerate motor loads. Here only the special 

characteristics of these VFDs used to recharge the flywheels will be covered and the reader is 

referred to Section 7 for the common details. 

 Figure 63 shows the icon of the recharging VFD in the simulation circuit and Figure 64 

shows the input dialog box that can be obtained by double-clicking on the icon. The VFD block 

includes also within it an output filter section: this is indicated by the purple rectangle contained 

within the block icon. To view the internal structure of the VFD block, right-click on the icon 

and select “Look under Mask”: the first tier of the structure appears as shown in Figure 65. 

 

Figure 63. VFD circuit used for recharging a flywheel. The VFD is the bright light blue block. The purple 
rectangle within it indicates that the block has a filter incorporated within it. The VFD interfaces to the dc 

bus and to the HIA machine via circuit breakers (bright yellow blocks). 
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Figure 64. recharging VFD dialog box 

 

Figure 65. First level structure of VFD block 
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 It can be seen that the structure is essentially the same as that used for the dc-ac converter 

(Figure 24), where instead of a quad configuration we have now a single converter. In addition, 

the converter now has the option of being powered by either a dc source or by a three-phase ac 

source that is internally rectified (blue rectifier block on left). This requires the presence of a 

smoothing dc bus capacitor (highlighted in bright yellow). The three-phase inputs for the re-

charging VFD are left open since they are powered from the dc bus.  

 The filter and the measuring blocks are the same as in the dc-ac converter. The PWM 

controller block (cyan) has now a modified structure than the one used in the dc-ac converter 

(Figure 27), as shown in Figure 66. Here the items within the shaded area have been added to 

allow for a constant V/Hz acceleration of the load motor. 

 

 

Figure 66. Second level of the VFD: structure of PWM controller - the shaded area is where it differs from 
that of the dc-ac controller (compare with Figure 27) 

 

 The rest of the structure is the same as that of the dc-ac controller save for another 

addition within the PLL block (see bottom left of Figure 29) similar to the one shown in Figure 

66, inserted to allow a smooth acceleration from a given starting frequency up to the maximum 

frequency. This difference in the PLL block is shown again highlighted in Figure 67.  
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Figure 67. PLL block modification (highlighted) to allow starting at an arbitrary frequency and ending at 
the maximum frequency 

 

Input from and output to other blocks (Figure 63): 

Vcap+, Vcap- Input DC bus power connection points via the input breaker. 

R12 Input from recharging controller to close the breaker powering the 

recharging VFD from the dc bus, delayed 50 cycles. 

R13(Start) Input from recharging controller to start the recharging VFD, delayed 100 

cycles.  

R14 Input from recharging controller to the output breaker of the VFD onto the 

flywheel motor, delayed 200 cycles. 

Hz (Fo) Frequency at which the VFD has to start re-charging the HIA motor 

corresponding to the HIA RPM. Input from the recharging controller 

block. 

OutA, B, C Three-phase power output to re-charge the HIA motor via the output 

breaker. 
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Various Loads 

 Several loads can be connected to the ac bus provided they do not exceed the capacity of 

the system. The loads shown in the overall system diagram of Figure 68 have been realized, 

whenever possible, with native Simulink blocks and are listed below in Figure 69 and Figure 70. 

Each load is connected to the ac bus via a breaker. Their operation should be rather transparent 

based also on similar items described previously in this documentation. 

 

 

Figure 68. Resistive loads (e.g. lighting). 0.135 Ohms were used in preliminary runs, equal to 1.5 MW 
each 
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Figure 69. Bottom:  100 HP induction motor started across the line with load torque, applied at 
predetermined time (e.g. positive displacement pump), Top:200 HP induction motor started across the 

line with load torque applied as a ramp (soft start) 
 

 

Figure 70. 200 HP induction motor with square law torque load (e.g. centrifugal pump) started via a 
variable frequency drive much like the one described in the previous section for recharging the flywheel 




