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Photon Noise in Digital Holographic Detection 

Joseph C. Marron 
Lockheed Martin Coherent Technologies 

135 S. Taylor Ave. 
Louisville, CO 80027 

Abstract 

Digital holographic detection is used to measure coherent, complex-valued image or 
pupil-plane data. With the complex-valued data, one has access to a digital representation 
of the optical field and therefore can perform advanced functions such as three- 
dimensional imaging and correction of phase errors imparted by instrumentation or 
atmospheric turbulence. This paper contains a derivation of the signal to noise ratio 
specifically for digital holographic detection in the presence of photon noise and shows 
that quantum-limited detection is achieved as expected from similar analysis for 
temporal heterodyne detection and stellar speckle interferometry. An example signal-to- 
noise calculation is included with a discussion of quadrature detection. 

1.0 Introduction 
Shortly after the invention of lasers and optically recorded holography, researchers 
demonstrated the ability to record holographic interference patterns on a 2D detector 
array and recover images by digital Fourier transformation [1]. Improvements in laser 
power and coherence, detector arrays, and computer processing have led to the 
application of digital holography to numerous fields. Applications of digital holographic 
detection to distant objects was also conducted several years ago [2], but again, 
advancements in laser and detector technologies have enabled additional capabilities 
including obtaining three-dimensional imaging by recording a series of digital holograms 
at different wavelengths [3, 4] and correction of phase errors imparted by optical 
instrumentation and atmospheric turbulence [5, 6, 7]. In applying digital holographic 
detection to imaging of distant objects one is often limited by the return light level. In this 
paper we concentrate on the application of digital holography to the recovery complex- 
valued image data and present a derivation of the signal-to noise- ratio. 

Another method often used to determine coherent or complex-valued information from 
distant objects is temporal heterodyne detection [8] which has been applied extensively to 
the measurement of wind velocity [9]. Temporal heterodyne detection is the temporal 
analogue to digital holographic detection and sometimes digital holographic detection is 
called spatial heterodyne detection. The remarkable property of temporal heterodyne 
detection is that it allows one to perform photon-limited detection of signals that are 
dominated by detector or background noise. This is accomplished by having a strong 
local oscillator. As shown herein, this property also applies to digital holography where 
instead of boosting the strength of the local oscillator, one analogously boosts the 
strength of the reference beam. 



While the SNR calculation for digital holography is analogous to heterodyne detection, it 
is more complicated because of the 2D nature of the signals. For calculation of the SNR 
for digital holography researchers often refer to a related calculations for speckle 
interferometry summarized in Ref. [10]. This paper contains thorough calculation of the 
SNR specifically for digital holography and demonstrates that under low light conditions, 
the unwanted autocorrelation term is negligible which has significant impact on detector 
sampling requirements. We also discuss the implications of quadrature detection. A 
sample SNR calculation for imaging distant objects is included. 

2.0 Digital Holography 
An example digital holographic detection system for imaging distant objects is shown in 
Fig. 1. Here the object is flood illuminated with coherent light from a laser source. The 
return light propagates to the detector array. A beamsplitter is used to insert light from a 
point source; this point source serves as the reference point source for holographic 
recording. These two coherent beam components, object and reference, then interfere at 
the detector and the intensity of the interference pattern is recorded by the detector array. 

Visual inspection of the recorded intensity pattern reveals that for a deterministic point 
object that is located at the same conjugate distance as the reference point, one sees a 
distinct sinusoid corresponding to the interference of the point object with the reference 
point. The spatial frequency of this sinusoid can be analyzed using conventional Fourier 
optics treatments of two-beam interference. It follows that close separations of the object 
and local oscillator points produce fringes with low spatial-frequencies and conversely, 
large separations produce high spatial-frequencies. An example of the sinusoidal intensity 
pattern that results from a point object interfering with the local oscillator is shown in 
Fig. 3. 

The recorded intensity for a diffuse object is a random pattern that is often called a 
speckle pattern because of its random, granular appearance. For this case the object field 
consists of a collection of points with deterministic locations and random amplitudes and 
phases. When the random object field components are mixed with a reference point 
having a sufficient spatial offset, the resulting intensity pattern has a speckled appearance 
with a modulation, or carrier frequency, evident within each speckle. An example speckle 
pattern from a 2D, circular disk object is shown in Fig. 3. 

Following intensity detection, the next step in the detection process is to compute the 
digital Fourier transform. The Fourier transform of the speckle intensity above is shown 
in Fig. 4. 

Notice that there are 3 image terms evident in Fig. 4; two twin disk images with a larger 
disk in the center. Additionally there is a bright point in the center, but this has been 
digitally zeroed in Fig. 4 so that the other image terms are visible. To understand these 
image terms let us denote the disk object as / and the reference point as g with their 
corresponding Fourier transforms given by F and G respectively. The intensity recorded 
by the detector array can be written as 



I=\(F + Gf 

= \F\2+\G\2+FG'+F'G. (1) 

It follows that the Fourier transform of this intensity is given by 
FT(I) = f®f'+g®g'+f®g'+f'®g, (2) 

where ® denotes the convolution operation. If the reference point is a delta function 
centered at x=b, it follows that the Fourier transform of the intensity pattern is given by 

FT(I) = f®f'+S(x) + f(x-b) + f'(x + b). (4) 

Note the correspondence between the terms of Eq. (4) and Fig. 4. The first term in Eq. (4) 
is the autocorrelation of the object; for the disk object this corresponds to the central 
tapered disk in Fig. 4. The second term is a delta function at the origin that is zeroed as 
discussed above. The final two terms are a set of twin images spatially offset from the 
center by ±b. These images are complex-valued and by extracting one of them, for 
example the boxed region in Fig. 4, the complex-valued representation of the object field 
is obtained. 

In order to extract the complex valued image term, the angular offset of the reference 
beam should be large enough so that the image terms do not overlap with the 
autocorrelation term. However, in the case of a weak object return and strong local 
oscillator, the autocorrelation term can be negligible when compared to the strength of 
the image term and thus overlap can be tolerated. This consideration has important 
implications for hardware design and will be discussed further below in the context of 
low object returns. 

In summary, the basic digital holographic detection process is composed of the following 
steps: 

1) Light from an object is interfered with light from a coherent, spatially-offset 
reference beam and the intensity is recorded. 

2) The Fourier transform of the recorded intensity pattern is computed. 
3) The complex-valued object field is obtained by extracting a subsection of the 

Fourier transform. The location of the subsection is determined by the angular 
separation of the object and reference beam components. 

As stated above, the information contained in the complex valued image enables 
subsequent processing steps such as image refocusing, turbulence correction or 3D 
imaging. 

3.0 Signal-to-Noise Ratio 

A feature of digital holographic detection is that the image terms in Eq. (2) are 
proportional to the strength of the reference component multiplied by the strength of the 
object component. Thus, even if the object return is weak it can be boosted by using a 
strong reference beam. In the analysis below we will derive expressions for the SNR and 
concentrate on the weak object field case. To simplify notation below we abbreviate local 



oscillator as LO and since the local oscillator is analogous to the reference beam we use 
LO to refer to the reference beam in digital holographic detection. 

As we begin this analysis, consider an example case that includes the effects of photon 
noise. A convenient quantity for characterizing the object return strength is the number of 
photons per detector pixel in an array detector shown for example in Fig. 1. The size of 
the detector pixel is ideally matched to the Nyquist frequency limit which depends on the 
object size and spatial carrier frequency or LO angular offset. These sampling 
considerations will be discussed below in Section 4. Consider a disk object for which the 
return level is 100 photons per pixel. Also consider an LO level of 105 photons per pixel. 
Note that the selection of LO level is typically chosen relative to the electron well 
capacity of the detector pixel; exceeding the well capacity results in detector saturation. 

An example of the recorded intensity pattern for the low-return case described above is 
shown in Fig. 5 below. Note the reduced contrast and granular appearance of the pattern 
relative to the high-return case shown in Fig. 3. While this data seems noisy, the 
corresponding Fourier transform, shown in Fig. 6, reveals a quality image. 

An important feature of the image shown in Fig. 6 is that the central term corresponding 
to the object's autocorrelation is not visible. This is because the image terms are 
amplified by the LO signal level, as mentioned above, whereas the autocorrelation term is 
not. The absence of the autocorrelation is especially serendipitous because one can 
employ lower spatial carrier frequencies while still achieving separation of the image 
terms appearing in the autocorrelation. This feature is discussed further in Section 4 
below. 

Another visible feature is that Fig. 6 appears to have a higher noise bias than Fig. 4. This 
noise bias is caused by the photon noise (shot noise) in the LO. In fact the SNR for digital 
holography is a quantification of the image strength relative to this photon noise bias. 

To compute the SNR consider the case of a deterministic point object. We can write the 
optical field in the object plane as two delta functions, one from the object at lateral 
location a and one from the reference beam at lateral location b. The strengths of the 
delta function fields are the square roots of their intensities given by Is and lw for the 
object and local oscillator respectively. Let us also include a relative phase, # on the 
object. We can then write the optical field in the object plane as 

U{x) = V/7exp0W(;c - a) + JT^Six - b). (5) 

Propagation of the optical field to the detector plane in the far field corresponds to a 
Fourier transform in the arrangement shown in Fig. 1. The field at the detector is then 

£/(#) = j/V^exp(/(0--|^)) + V7^"expH^^)j, 
(6) 

where K is an inessential constant that we can ignore at this point. We can now write the 
intensity signal recorded by the detector array as 



hv 
(7) 

+ E.JP. 
hv M exp «,-£«.. b)) + exp 

2z -W- — £(a-b)) 
V 

where Ps and />£o are the powers per detector pixel with an additional bias term, PB, 

added to represent the uniform background contribution from dark current to each pixel. 
The factor r)t/hv converts from incident power to output signal in units of photoelectrons 
where 7] is the detector quantum efficiency, ris the integration time and hv is the photon 
energy. 

With detector output, we can now move to step 2 of the digital holography process and 
compute the inverse Fourier transform of the recorded intensity. This gives 

D(s) = ^-(Ps+Pu>+PB)S(s) + 
hv 

(8) 

~JK^yfK(^V(f^~(a-b) +exp(-i»/* + ^(n-« 

D[%(a ~b))= *7 V^V^"exPW) • (9) 

The presence of the phase and amplitude shows that the complex-valued signal can 
indeed be determined by evaluating the Fourier transform of the detected intensity pattern 
at the corresponding location and that the signal strength is boosted by the local oscillator 
strength. 

To evaluate the noise level, consider the constant terms in Eq. (7). It follows that the 
dominant noise source is the photon noise that originates from these constants; this gives 
rise to the noise 'floor' that is visible in Fig. 6. To determine the magnitude of this noise, 
let us also regard the signal as being composed of a series of photoevents that occur at 
discrete locations in the detection plane. For simplicity let us combine the bias terms into 
a single quantity P = PL0+PS+PB. Following Ref. 10 we write the contribution from 

this term as a summation of K photoevents occurring at locations £n or 

K is related to P by 
n=\ 

NPTJt K ~~z—' nv 
where N is the total number of detectors. 

(10) 

(11) 

Now consider the Fourier transform of d which is the second step in the digital 
holographic detection process. We have 



= 7»Pm-i2<S) (.2, 
which shows that Dfs) is a sum of a series of random phasors indicating that the noise is 
zero-mean Gaussian in nature. The vN normalizing constant follows from Parseval's 
theorem. To evaluate the noise level in the transform, we take the expected value of 
D|2or 

<|D(*)|2> = ^<t Xexp(-/2^(#n-^))>. (I3) 
m=l    n=l 

Note that there are two types of terms in Eq. (13); K diagonal terms for which n=m and 
the phasor reduces to unity. And there are the remaining K2-K non-diagonal terms for 
which we need to compute the expected value of the phase term in Equation (13). Using 
the probability density function of the spatial distribution of the photoevents, p{%m,4„) 
we have 

<exp(-J2^m -£,))>= J J/,<£..£)exp(-/2»(£ -OVtf.tf.- 
(14) 

For the non-diagonal case of n^m, p(^m,£„) = p(£m )/?(£,)giving 

(exp(-/2^(^m-^))>= Jp(^)exp(-/2^(#J^m{^n)exp(i2^(^))^n .       (15) 

Inspection of the right hand side of Eq. (15) reveals that it is equivalent to the squared 
magnitude of the characteristic function [1] where the characteristic function is defined to 
be the Fourier transform of the probability density function. Also, because the spatial 
distribution of the photoevents is typically uniform over the detector array, the 
characteristic function reduces to a delta function at s=0. This gives 

(\D(s)\2)=±(K + (K2-K)S(s)). (16) 

For this analysis we can ignore the location s=0 because measurements at this location 
are not useful. It then follows that the noise background is given by 

<|D(**0)f> = %, (i7) 

which indicates that this background noise intensity is uniform over the image (as 
observed in Fig. 5) and is proportional to the total number of photons received divided by 
the number of detectors. 

This SNR for measurement of the intensity of a point using digital holographic detection 
is the ratio of the signal given by the squared magnitude of Eq. (9) and the noise given by 
Eq. (17) which yields 

SNR -        ^u)^tT 

hV{pw+ps+pBy <18) 



For the case of the background and signal being dominated by the local oscillator, Eq. 
(18) becomes 

*"K        /hv' (19) 
which corresponds to quantum-limited detection and agrees with results for conventional 
heterodyne detection [2]. Note here that Ps is the power per detector pixel, and thus the 
SNR is given by the number of photons per detector pixel. 

4.0 Sampling Considerations 

Fielded systems are typically designed so that the detector array pixels sample the 
received light at the Nyquist sampling limit. If we assume that the pixel size is equal to 
the pixel separation, it follows that sampling finer that the Nyquist frequency results in an 
unnecessary reduction in SNR and sampling more coarsely than the Nyquist frequency 
results in image aliasing. 

To achieve Nyquist sampling in the detection system shown in Fig. 1, one would match 
the detector pixel size to the maximum spatial frequency incident on the detector array 
which depends on the maximum apparent angular offset between the signal and local 
oscillator beams. For the case of high object-return level, an object of width W would be 
separated from the local oscillator by a lateral distance equal to W so that the object and 
autocorrelation terms do not overlap. This separation is sometimes called the holography 
condition. In this case the detector spacing, or size, is given by 

s -W ^HOLOGRAPHY  ~     /4W ' ,~(\,. 

where X is the source wavelength, R is the range to the object and W is the object width. 
Equation 20 corresponds to one-fourth of the average speckle width or speckle size [11]. 

As demonstrated in Fig. 6, for the low-signal case one can reduce the angular offset so 
that the local oscillator is at the edge of the object boundary. In this case the apparent 
maximum angular separation of the object and local oscillator is reduced and thus the 
Nyquist sample spacing is increased so that the detector pixel size for the low-light level 
case is given by 

S =W 
^LOW-UGHT /2W (21) 

which corresponds to one half of the speckle size. 

A further increase in the detector pixel size can realized if quadrature detection is 
employed. Quadrature detection involves recording a series of digital holograms with the 
phase of the local oscillator shifted [3] and then the digital holograms are algebraically 
combined to isolate a single, complex-valued image term. This same principal is used in 
phase shifting interferometry and it is common to use 4 values for the local oscillator 
phase: 0, n/2, ;rand 3^/2 however other versions involving fewer or more phase values 
have been developed [12], With quadrature detection the detector pixel size becomes 

S =W ° QUADRATURE /\\?> ,yy\ 



which is equal to the speckle size. 

Equations (20-22) indicate that quadrature detection can provide the best SNR because 
the detector pixels are the largest and thus the number of photons per detector pixel is 
largest. This advantage, however, comes at the cost of the increased instrumentation 
complexity required for phase shifting. Also, if the quadrature frames are collected as a 
temporal sequence the data can experience temporal decorrelation under dynamic 
situations. One other point is that the algebraic combination of the frames used in 
quadrature detection does improve the SNR via averaging; however, this same advantage 
applies to non-quadrature detection if multiple realizations of photon noise are used. 

5.0 SNR Example 

Consider the case of imaging an object of width W that is located at a distance of R. Let 
us represent the object reflectivity as p and assume that the object reflects diffusely with 
Lambertian weighting and that the system is near monostatic. Also, consider the low-light 
case with the detector size given by Eq. (21). For a laser illumination power P, it follows 
that the signal level Ps is given by 

''-43F- <23) 

Substitution of Eq. (23) into Eq. (19) gives 
qxPftp 

SNR = — ^-r. (id) 
Ahem1 K^} 

For a specific case, let us consider illumination of a distant object with a 10 ml laser 
pulse; thus tP = 10 mJ. Other parameters are: 7]= 0.8, X= 1.0 \im, and p = 0.1. Also let 
us take the object size to be W=5 m and the distance R=l km. From Eq. (21) we find that 
the detector size is 100 urn and from Eq. (23) it follows that for this scenario SNR = 12.8. 

Note that in practice the detector pixels size required for Nyquist sampling can be larger 
(or smaller) than the detector pixel size for commercially available detectors. In this case 
a simple relay optical system is used to re-image pupil-plane speckle data onto the 
detector array with the appropriate magnification. 

Also note that anamorpnic optics or asymmetric detector pixels can be used with 
holographic and low-light detection systems to better match the detector sizes to the 
intensity pattern and thereby improve the SNR. Such improvements are not considered in 
this analysis. 

6.0 Conclusion 

This paper contains a derivation of the SNR for digital holographic detection. It is shown 
that the method is capable of quantum limited detection when the intensity of the 



reference point dominates the background intensity level. This conclusion corresponds to 
the analogous result obtained for temporal heterodyne detection. 

Acknowledgement 

This paper was prepared with partial support from Lockheed Martin Internal Research 
and Development funding and funding from the Air Force Research Laboratory under 
contract FA9451-06-C-0376. 



References 

1. J. W. Goodman and R. W. Lawrence, "Digital Image Formation from 
Electronically Detected Holograms," Applied Physics Letters, 11,77-79,1967. 

2. J. W. Goodman, D. W. Jackson, M. Lehmann, J. Knotts, 'Experiments in Long- 
Distance Holographic Imagery', Appl. Opt., 8,1581-1586, 1969. 

3. J. C. Marron and K. S. Schroeder, "Three-Dimensional Lensless Imaging Using 
Laser Frequency Diversity," Applied Optics, 31,255-262,1992. 

4. J. C. Marron and K. S. Schroeder, "Holographic Laser Radar," Optics Letters, 18, 
385-387,1993. 

5. R. G. Paxman and J. C. Marron, "Aberration Correction of Speckled Imagery 
With an Image Sharpness Criterion," In Proceedings of the SPIE Conference on 
Statistical Optics, 976, San Diego, CA, August 1988. 

6. J. R. Fienup and J. J. Miller, "Aberration Correction by Maximizing Generalized 
Image Sharpness Metrics," J. Opt. Soc. Am, A, 20,609-620, 2003. 

7. J. C. Marron, R. L. Kendrick "Distributed Aperture Active Imaging,", In Proc. 
SPIE, Conference on Laser Radar, 6550, Orlando, FL, April 2007. 

8. A. Yariv, Introduction to Optical Electronics, (Holt, Rhinehart and Winston, New 
York, 1977, Section 11.4). 

9. S. Henderson, P. Gatt, D. Rees, and R. M. Huffaker, "Wind Lidar", in Laser Remote 
Sensing, Takashii Fujii and Tetsuo Fukuchi, ed., (CRC Press, Boca Raton, Florida, 2005). 

10. J. W. Goodman, Statistical Optics, (John Wiley and Sons, New York, 1984, 
Section 9.6). 

11. J. W. Goodman, "Statistical Properties of Laser Speckle Patterns," in Laser 
Speckle and Related Phenomenon, J.C. Dainty, ed., (Springer-Verlag, Berlin, 
1984). 

12. J. E. Greivenkamp and J. H. Bruning, "Phase shifting interferometers," in Optical 
Shop Testing, D. Malacara, ed. (Wiley, New York, 1991), Chap. 14, pp. 501-598. 



Laser 
Illumination 

Source 
I 

Detector 
Array 

Flood 
Illumination 

Distant 
Object 

Return Light 

Figure 1. Example measurement configuration for digital holographic detection of distant 
objects. 

Figure 2. Example sinusoidal intensity pattern that results from interference of point 
object with point local oscillator. 
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Figure 3. Example of modulated speckle pattern from disk object with spatially offset 
local oscillator. 

Figure 4. Fourier transform of speckle intensity from disk object and local oscillator. 



Figure 5. Speckle pattern corresponding to low object signal level (100 photons per 
detector pixel) and high LO level (105 photons per detector pixel). 

Figure 6. Speckle pattern corresponding to low object signal level (100 photons per 
detector pixel) and high LO level (105 photons per detector pixel). 


