
REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports
1215 Jefferson Davis Highway. Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget.
Paperwork Reduction Project (0704-0188) Washington, DC 20503
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)
4 April 20

2. REPORT TYPE
Final Technical Report

3. DATES COVERED (From - To)
1 Oct 2005 to 30 Sept 2008

4. TITLE AND SUBTITLE

Design of Adaptive Organizations for Effects Based Operations

5a. CONTRACT NUMBER

5b. GRANT NUMBER
N00014-06-1-0081

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Levis, Alexander H.
Wagenhals, Lee W.
Liles, Stewart W.

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
System Architectures Laboratory
Dept. of Electrical and Computer Engineering
The Volgenau School of Information Technology and Engineering
George Mason University, Fairfax, VA 22030

8. PERFORMING ORGANIZATION
REPORT NUMBER
SAL/FR-09-01

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
OFFICE OF NAVAL RESEARCH
875 N. RANDOLPH ST.
ONE LIBERTY CENTER
ARLINGTON VA 22203-1995

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER

12. DISTRIBUTION AVAILABILITY STATEMENT
Unclassified Unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Results from several basic research tasks are reported. In order to respond to operations other than conventional major
theater war, organizational designs that enable adaptation to to changing situations are needed. In order to enable such
adaptation, the supporting physical system of systems must also be adaptable and agile. Measures for assessing the
adaptivity and agility of systems of systems that support the command and control functions were developed and a
methodology based on executable models of architectures was designed and applied to a naval example. A second
thread re-examined organization design algorithms to enhance them so that they can address cultural differences in
coalition operations. A third thread used Timed Influence nets to develop and evaluate Courses of Action that would
result in achieving desired effects. Model Driven Experimentaion was used to develop and assess measures for
evaluating the extent of to which effecst based planning resulted in achieving the desired effects.

15. SUBJECT TERMS
Organization Design, Adaptive Organizations, System of Systems, Architecture Framework, Timed Influence Nets,
Colored Petri Nets

16. SECURITY CLASSIFICATION OF:

a. REPORT
Unclassified

b. ABSTRACT
Unclassified

C. THIS PAGE
Unclassified

17. LIMITATION OF
ABSTRACT
SAR

18. NUMBER
OF PAGES
x + 224

19a. NAME OF RESPONSIBLE PERSON
Alexander H. Levis

19b. TELEPONE NUMBER (Include area code)
703 993 1619

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI-Std Z39-18

^ THE VOLGENAU SCHOOL OF INFORMATION
^GEORGE TECHNOLOGY AND ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER
ENGINEERING

SYSTEM ARCHITECTURES LABORATORY
UNIVERSITY

DESIGN OF ADAPTIVE ORGANIZATIONS FOR
EFFECTS BASED OPERATIONS

FINAL TECHNICAL REPORT

Contract No. N00014-06-1-0081

for the period

1 October 2005 to 30 September 2008

20090408190

Submitted to: Prepared by:
Office of Naval Research
Attn: Mr. Gerald Malecki Alexander H. Levis
Code 342 Principal Investigator
825 N. Randolph Street, Suite 1425
Arlington, VA 22203-1995 April 4, 2009

TABLE OF CONTENTS

List of Figures v
List of Tables ix

1. Executive Summary I
1.1 Objectives I
1.2 Tasks I

2. Computational Models of Multi-National Organizations 5
2.1 Introduction 5
2.2 Decision Maker Model and Organization Design 2
2.3 Modeling Cultural Attributes 7
2.4 Coalition Modeling Using CAESAR III 9
2.5 Conclusions 15
2.6 References 15

3. Using Architectures to Support Experimentation 17
3.1 Introduction 17
3.2 Architecture-Based Model Driven Experimentation 18
3.3 Application of Model Driven Experimentation 20
3.4 Conclusions 27
3.5 References 27

4. Course of Action Analysis in a Cultural Landscape Using Influence Nets 29
4.1 Introduction 29
4.2 Timed Influence Nets 30
4.3 Case Study 34
4.4 Observations and Comments 43
4.5 References 44

5. Service Oriented Architectures, the DoD Architecture Framework 1.5,
and Executable Architectures 45
5.1 Introduction 45
5.2 Background and Challenges 46
5.3 Process Descriptions 50
5.4 Case Study 54
5.5 Comments and Conclusion 85
5.6 References 86

6. Analysis and Evaluation of System of Systems Architectures 87
6.1 Introduction 87
6.2 Related Work 90
6.3 Assessment Measures 107
6.4 Methodology 135

in

6.5 Transformation 153
6.6 Conclusion 161
6.7 References 164

7. Case Study: Expeditionary Strike Group 171
7.1 Introduction 171
7.2 Scenario 171
7.3 Operational Architecture 172
7.4 System Architectures 178
7.5 System of System Instance Architecture 190
7.6 Assessment Measure Calculation for P2P SOSI 208
7.7 Case Study Results 210
7.8 P2P Results 211
7.9 CS Results 213
7.10 SOA Results 217
7.11 Overall Results 218
7.12 Conclusions 221

IV

Fig- 2.1.
Fig. 2.2.
Fig. 2.3.
Fig. 2.4.
Fig. 2.5.
Fig. 2.6.
Fig. 2.7.
Fig. 2.8.
Fig. 2.9.
Fig- 2.10.
Fig. 2.11.
Fig. 2.12.

LIST OF FIGURES

Model of the Five Stage Decision Maker 6
One Sided Interaction Between DM, and DMj 6
Flowchart for Culturally Constrained Solution 9
Level-1 Organizational Block Diagram 11
Solution Space for Level-1 Organization Design as Seen in CAESAR III I 1
MINO of Level-1 Design 11
MAXO of Level-1 Design 12
Block Diagram of ACE 12
Block Diagram of GCE 12
Block Diagram for CSSE 13
GCE Structure Selected for US 14
GCE Structure Selected for Country A 14

Fig. 2.13. GCE Structure Selected for Country B 14
Fig. 2.14. Percent of Tasks Unserved for Coalition Options 15

Fig. 3.1. Architecture Based MDE Process 19
Fig. 3.2. External System Diagram 23
Fig. 3.3. A0 Page 23
Fig. 3.4. Colored Petri Net Executable Model, A0 Page 24

Fig. 4.1. An Example Timed Influence Net (TIN) 31
Fig. 4.2. Probability profile for Node C 32
Fig. 4.3. Complete TIN Model 36
Fig. 4.4. Static Quantitative COA Comparison 38
Fig. 4.5. Dynamic Temporal Analysis Input 40
Fig. 4.6. Probability profiles of Scenario (COA) of Fig. 4.5. 41
Fig. 4.7. Comparison of the Effect of Different Scenarios 42

g. 5.1. Architecture Design and Evaluation 49
g. 5.2. DoDAF Architecture Design Process 51
g. 5.3. Architecture Evaluation with Executable Model 54
g. 5.4. OV-1, Operational Concept Graphic 56
g. 5.5. OV-4 Organizational Relationship Diagram 57
g. 5.6. Initial Sketch of Systems Nodes and System 58
g. 5.7. Basic UML Activity Diagram (OV-5) 58
g. 5.8. Activity Diagram OV-5 with Swim Lanes 59
g. 5.9. UML Sequence Diagram used for OV-6c 60
g. 5.10. UML Communications Diagram 61
g. 5.11. State machine Diagram for the Sense Node (OV-6b) 61
g. 5.12. Class Diagram 62
g. 5.13. OV-3 Operational Information Exchange Matrix 63
g. 5.14. OV-5 Based on IDEFO 63
g. 5.15. OV-7 Based on IDEFlx 64
g. 5.16. Mapping form Operational Activities to Systems and their Functions 65

g. 5.17. SV-5a, Operational Activity to System Function Traceability Matrix
g. 5.18. SV-5b, Operational Activity to Systems Traceability Matrix

5.19. SV-5c, Operational Activity to Services Traceability Matrix
5.20. SV-4a, Systems Functionality Description
5.21. SV-lOc, Services Event Trace Description
5.22. SV-4b, Service Specification
5.23. Systems Communication Diagram
5.24. Component Diagram
5.25. Component Diagram (with Services)
5.26. Component Diagram (with Interfaces)
5.27. SV-11, Physical Schema
5.28. SV-1, Systems Interface Description
5.29. SV-1, Services Interface Description
5.30. SV-6, Systems/Services Data Exchange matrix

g. 5.31. SV-2, Systems/Services Communications Description
g. 5.32. SV-3, Systems to Systems Matrix
g. 5.33. SV-7, Systems Performance Parameters Matrix
g. 5.34. SV-8, Systems/Services Evolution Description
g. 5.35. SV-9, Systems/Services Technology Forecast
g. 5.36. CPN Model of the ATIS Operational View
g. 5.37. Parameter Locus
g. 5.38. Simulation Run
g. 5.39. Performance Locus for Simulation Run
g. 5.40. Projection of the Performance Locus onto the Leaks/

Average Response Time Plane
Fig. 5.41. Requirements Locus Superimposed on Performance Locus
Fig. 5.42. Projection of Requirements Locus onto the Parameter Locus

66

67
68

69
70
70

71

71

72
73

74
74

75
70

77
7S

78
7')

70

80

81
82

83

83
84
S4

g 6 1
g.6.2.
g 6.3.
g-6.4.
g-6.5.
g .6.6.
g-6.7.
g-6.8.
g.6.9.
g-6.10
g. 6.11
B- 6.12
g 6.13
g-6.14
g.6.15
g 6.16
g. 6.17
g-6.18

System of Systems [Brown, 2005] 89
Graphical View of DeLaurentis Taxonomy 93
Department of Defense (DoD) Architecture Registry System (DARS) Role 98
Role of UML Common Core [OMG, 2007a] 100
UML-MOF Meta-Levels [OMG: 2007b] 100
Four Layer Meta-Model Hierarchy [OMG, 2007b] 101
Model Driven Architecture Fundamental Concept [OMG: 2007b] 103
SOSI Taxonomy 109
System of Systems (SOS) Boundary 111
SOS Taxonomy Relationships Venn Diagram 113
Simple Information Flow Path 116
Cohesion Example 117

Node with Loops 117
Cobb-Douglas Production Function 121
Adaptability Plot 122
Adaptability Contour 122
Contour Calculation 123
Effects of Elasticity Constant on Adaptability 124

VI

Fig 6.19
Fig 6.20
Fig 6.21
Fig 6.22
Fig 6.23
Fig 624
Fig 6.25
Fig 6.26
Fig 6.27
Fig 6.28
Fig 6.29
Fig 6.30
Fig 6.31
Fig 6.32
Fig 6.33
Fig 6.34
Fig 6.35
Fig 6.36
Fig 6.37
Fig 6.38
Fig 6.39
Fig. 6.40
Fig 641
Fig. 6.42
Fig- 6.43
Fig. 6.44
Fig. 6.45
Fig 6 46
Fig. 6.47
Fig. 6.48
Fig. 6.49
Fig 650

Fig 7 1
Fig- 7 •>

Fig 7.3.
Fig.. 7.4.
Fig- 7 >

Fig. 7.6.
Fig. "7 "J

Fig- 7.8.
Fig 7.9.
Fig- 7.10.
Fig. 7.11.
Fig. 7.12.

Relationship of Cohesion and Coupling to Adaptability
Agility Plot
Working Example for Adaptability Calculations with Nodes
CPNfornU
Colored Petri Net (CPN) for nl,2
Colored Petri Net (CPN) for nl,3
Coupling Results for SOSI fl
Adaptability Results for SOSI fl
SOSI f 1 with Three SOSIC
Example Results for Adaptability and Agility
Methodology

Piecewise Constant SOSI
SOSI Analysis Process
Operational Node Connectivity Diagrams, OV-2s
Operational Data Model OV-7
Operational Activity Diagram, OV-5
System Interface Descriptions: SV-ls
Physical Schema, SV-11
Systems Functionality Description, SV-4
SOSI Architecture SV-1
SOSI Architecture SV-11
SOSI Architecture SV-4
SOS Model Driven Development Process
Transformation Process
Element Activity Diagrams
Element SOSIC Participation
Activity Diagram Transformation Rules
CPN Data Model
Transformation Process
Example CPN Data Model
Top-level CPN Representation
Sub-pages for Example CPN

ESG Operational Concept Graphic (OV-1)
Planning and Coordination OV-2
Blue Force Tracking OV-2
Process and Disseminate Intelligence Information OV-2
Planning and Coordination Capability OV-7
Blue Force Tracking Capability OV-7
Process and Disseminate Intelligence Information Capability OV-7
Planning and Coordination OV-5
Blue Force Tracking OV-5
Process and Disseminate Intelligence Information OV-5
Relationship Among Architecture Views
Planning and Coordination SV-1

125
127
128
129
129
130
131
132
132
134
136
136
139
141
142
143
145
146
148
149
150
151
153
154
155
156
157
158
159
160
160
161

172
173
174
174
177
177

178
179
179
180
ISO
1S1

v u

Fig

Fig

Fig.

Fig
Fig.
Fig

.13.

.14.

.15.

16
.17.
.18.

7.20.

7.21.
7 ">•">

Fig. 7.19.
Fig.

Fig.
Fig
Fig.
Fig

Fig-

Fig
Fig
Fig

Fig-
Fig.

124
7 2^

7-27.
728
7.29.
7.30.

Fig. 7.31.
Fig. 7.32.
Fig 7.33.
Fig. 7 34
Fig. 7.35.
Fig. 7 }6
Fig. 7.37.
Fig. 7.38.
Fig. 139.
Fig. 7.40.
Fig .7.41.
Fig. 7.42.
Fig. 7.43.
Fig. 7 44
Fig 7 45
Fig 7 46.
Fig. 7.47.
Fig. 7.48.
Fig.. 7.49.
Fig. 7.50.
Fig. 7.51.
Fig. 7.52.
Fig. 7.53.
Fig. 7 54.
Fig. 7.55.
Fig. 7.56.
Fig 7.57.

Blue Force Tracking SV-1
Process and Disseminate Intelligence Information SV-1
Planning and Coordination SV-11
Blue Force Tracking SV-11
Process and Disseminate Intelligence information SV-11
Planning and Coordination SV-4
Blue Force Tracking SV-4
Process and Disseminate Intelligence Information SV-4
Tactical Level Command and Control System Activity Diagram
Peer-to-Peer Architecture
Client Server SOSI with One Server
Service Oriented Architecture with One Instance of Each Service
P2P SOSI Architecture SV-11. part 1
P2P_1 SV-1 Six Nodes
P2P_2 SV-1 Eight Nodes
P2P_3 SV-1 Four Nodes
P2P SOSI Architecture SV-11
P2P SOSI Architecture Process and Disseminate Intelligence
Information SOSIC
Conduct Support Operations SOSIC
Blue Force Tracking SOSIC
Conduct Security Operations SOSIC
P2P_1 SOSI Alternative Top Level CPN Representation
P2P_1 Port Node CPN
P2P_1 SOSI Ground Station Node CPN
P2P_1 SOSI Tarawa Node Colored Petri Net
P2P_1 SOSI Harper's Fern- Node CPN
P2P_1 SOSI Beach Node CPN
P2P_1 SOSI Satellite Node CPN
P2P SOSI Architecture Results
P2P SOSI Group Adaptability
CS1 SOSI Group Adaptability
CS2 SOSI Group Adaptability
CS3 SOSI Group Adaptability
High Cohesion Node Example CS Architecture
CS Low Cohesion Node
CS SOSI Architecture Adaptability
SOA1 SOSI Group Adaptability
SOA2 SOSI Group Adaptability
SOA3 SOSI Group Adaptability
SOA SOSI Architecture Adaptability
Impact of Highly Reused Elements
Case Study Adaptability Results
Case Study Exclusiveness Results
Case Study Agility Results
Summary Graphic of Case Study Results

182

182
185

185
1S6
187

188
189

190
192
193

194
194

195
196
196

199

200
201
202
203
205

206
206
206

207
207

208
212
213

214
214

214
215
216

216
217

217

218
218

219
220

220
221
•>•>">

Vlll

LIST OF TABLES

Table 2.1 Hofstede's Scores for the Three Countries
Table 2.2 Cultural Constraints Corresponding to ACE
Table 2.3 Cultural Constraints Corresponding to GCE
Table 2.4 Cultural Constraints Corresponding to CSSE

13
13
L3
13

Table 6.1.
Table 6.2
Table 6.3
Table 6.4.
Table 6.5.
Table 6.6.
Table 6.7.
Table 6.8.
Table 6.9.
Table 6.10
Table 6.11
Table 6.12
Table 6.13
Table 6.14
Table 6.15
Table 6.16

Table 7.1.
Table 7 i

Table 7 J .

Table 7 4.
Table 7 5

Table 7 6
Table 7 n

Table 7 s.
Table 7 9
Table 7 10
Table 7 11
Table 7 12
Table 7 13
Table 7 14
Table 7 15
Table 7 16
Table 7 17
Table 7 IS

System of Systems Characteristics [Maier, 1996]
Taxonomy for Describing a System of Systems [DeLaurentis, 2005]
All View Products [DODAF,2007b]
Operational View Products [DODAF, 2007b]
System View Products PODAF, 2007b]
Technical Standards View Products [DODAT\ 2007b]
Cohesion Example
Degree of Reuse Example Data
Degree of Reuse Calculation for SOSI fl
Operational Information Exchange Matrix: OV-3
Operational Rules Model, OV-6a
Systems Data Exchange Matrix, SV-6
Operational Activity to Systems Function Traceability Matrices, SV-5s
Systems Rules Models, S\'-10as
SOSI Architecture SV-6
SOSI Architecture Rules Models, SV-lOa

ESG Operational Information Exchange Matrix OV-3
ESG Operational Rules Model OV-6a
Planning and Coordination SV-6
Blue Force Tracking SV-6
Process and Disseminate Intelligence Information SV-6
Planning and Coordination SV-10a
Blue force Trackin SV-lOa
Process and Disseminate Intelligence Information SV-lOa
Planning and Coordination SV-5
Blue Force Tracking SV-5
Process and Disseminate Intelligence Information SV-5
P2P Systems Data Exchange Matrix, SV-6
P2P Systems Rule Model, SV-lOa
P2P SOSI Architecture SV-5
Cohesion SOSI P2P_1
SOSI P2P_1 Coupling Results
P2P Degree of Reuse Data
P2P Degree of Reuse and Exclusiveness Results

91
9:
9:
9:;

%
97

130
133
133
141
141
145
146
147
149
150

175
H6
183
183
183
184
184
184
191
191
192
197
19S
204
209
209
210
210

IX

SECTION 1

Executive Summary

1.1 Objectives

The objectives of this research effort were: (a) to develop a process for conducting effects

based operations and design an adaptive command and control architecture for the organization

that executes this process; and (b) to develop an executable model of the organization suitable
for the conduct of experiments using a model-based experimental paradigm. The technical
approach to both problems is based on work carried out under the Adaptive Architectures for
Command and Control (A2C2) program and constitutes a major extension of that work in several
ways: it addresses the changes that have been initiated by DoD in the design of architectures that
now require the inclusion of services as a key enabler for net centric operations; it introduces a
set of metrics and an approach for evaluating systems of systems; and it applies these results to
an Expeditionary Strike Group. The Expeditionary Strike Group functions at both the tactical and
the operational level. The perspective of the commander and the staff of an ESG is at the
operational level of war; that of the component commanders can be at the tactical or the
operational level. For example, operational assessment occurs at the ESG commander's level but
also at the Marine Expeditionary Unit (MEU) Commander's level.

1.2 Tasks

The proposed research effort was organized in six tasks. The first four tasks represented the
basic research effort; Task 5 was the outreach effort, while Task 6 wass the documentation task.

Task 1. On the basis of the definitions that articulate the Effects Based Operations (EBO)
construct, develop a process for conducting EB planning, execution monitoring, and
assessment. Take an architectural approach in describing the process for conducting
Effects based Operations. Develop the Operational View of the architecture and use an

executable model of the architecture to determine its properties.

Task 2. Using the five stage decision maker model and the Lattice algorithm, design the family
of organizational architectures that have embedded in them the process defined in Task
1. Since the behavior and performance characteristics of each member of the family of
organizations will differ, develop a characterization of these architectures so that a
selection can be made based on mission defined parameters.

Task 3. Construct a scenario and a mission appropriate for an ESG. Use this scenario to identity
the selection parameters and select the organizational structures that are appropriate for
the defined mission. Conduct computational experiments to evaluate Measures of
Performance and Measures of Effectiveness.

Task 4. Consider a scenario in which the organization needs to adapt. Use the morphing
algorithm of Perdu and the evaluation approach of Handiey' to determine the adaptive
architecture for the organization. Conduct additional computational experiments to
measure the performance and effectiveness of the adaptive organization.

Task 5. Continue to conduct an outreach program with Expeditionary Strike Groups and develop

prototype tools that can be transitioned for experimental use by operators.

Task 6. Document the research results in technical reports in accordance with ONR requirements
and in conference and journal papers.

In the three year period of the research project, a number of major changes in the architecture
environment took place that led to some changes in the emphasis placed in these tasks.
Consequently, the research tasks in the proposal were organized into different research units that
covered the same scope of work. The results are presented in the six technical sections of this
report.

As naval operations become other than conventional war - whether against transnational

terrorist threats or conducting stabilization operations - the need to broaden the focus of models
that support effects based planning and operations has become critical. One major weakness is
the absence of socio-cultural attributes used in the models for course of action selection and
effects based planning.

In Section 2, an algorithm for the design of multi-national organizations that takes into
account cultural dimensions is presented. This is based on an extension of the work of Perdu and
Handiey as described in Task 4. The approach was illustrated through an example based on an
Expeditionary Strike Group (ESG) conducting a Humanitarian Assistance/Disaster Relief

mission (Tasks 3 and 5).

One of the key issues in Effects Based Operations is the ability to assess how effective a
course of action would be (Task 1). The model driven experimentation process, developed
further so that it can utilize executable models of DOD Architecture Framework compliant
architectures, was used in conjunction with a critical experiment to explore procedures for effects
based assessment. The results are documented in Section 3.

In Section 4, an approach based on Influence Nets that enables analysts to evaluate a
complex situation in which an adversary is embedded in a society from which he is receiving
support. A layered modeling approach is described that enables analysts to examine and explain
how actions of the military and other entities may result in desired and undesired effects, both on
the adversary and the population as a whole. Several techniques and associated metrics are used
for comparing contemplated courses of action. This is an extension of Task 1.

Both developed under earlier ONR grants

As the net centricity concept began to be integrated into the Global Information Grid, the
Service Oriented Architecture paradigm became a key driver to architecture development. A new
version of the DOD Architecture Framework, version 1.5, was released that enabled the use of
services as a method for implementing required operational activities. In lieu of the original Task
4, a Task 4' was articulated in which the architecture design methodology was re-examined and
then extended to accommodate the Service Oriented Architecture (SOA) construct. Similarly, it

was recognized that in order to accomplish Task 4, an approach to assess or evaluate adaptive
architectures was needed. A major basic research effort was undertaken to address adaptability in
the context of a System of Systems that enables adaptability. This became Task 4". Section 5
describes a process for creating a DoDAF 1.5 compliant architecture that includes the description
of the SOA aspects, a mapping and a process for converting that architecture to an executable
model, and the use of that executable model in the evaluation of logical, behavioral, and
performance aspects of the architecture. The concepts are illustrated with a detailed Case Study.

Sections 6 and 7 contain new work that extends substantially the scope of Task 3. A goal of
an agile organization is the ability to adapt its structure to constantly changing operating
environments so it can provide the multiple capabilities that enable mission accomplishment. A
challenge for the system of systems (SOS) engineer is that while the SOS is being developed, the
operating environment it was designed for changes. This situation causes significant uncertainty
as to whether the SOS will meet the needs of the organization when finally deployed. To

mitigate this uncertainty, SOS architectures need to be assessed for their ability to deploy in
more than one configuration so that they can support adaptive organizations. Past architecture

assessments and performance characteristics are primarily system focused and do not address the
dynamics of the adapting organization and the consequences on the interacting constituent
systems of the SOS. In this work, a first attempt is made to provide measures for assessing and
comparing SOS architectures for their ability to adapt to the current operating environment and
their ability to provide multiple capabilities concurrently.

A SOS is defined as being composed of individual Elements that can be organized into
Nodes. Each Element belongs to one and only one Node. Cohesion is a measure of the
relatedness of the Elements within a Node. Coupling is a measure of the interdependence among
the Nodes. Adaptability is defined as the ability of a SOS to respond to changes in the allocation

of Elements to Nodes; it is computed using the concepts of Coupling and Cohesion. The Degree
of Reuse measures the extent to which Elements support multiple capabilities. Agility measures
the ability of the SOS to execute multiple processes concurrently and adapt to changing
situations. Agility is a function of Adaptability and Degree of Reuse.

The methodology provides the information required to assess the Adaptability and Agility of
a proposed or actual SOS architecture. The process begins by identifying from the operational
view of the architecture the capabilities that must be realized by the SOS alternatives. The SOS
architecture describes how a particular subset of Elements organized into Nodes will realize the
capabilities: it is the system view of the architecture. The SOS is transformed automatically into

an executable model using Colored Petri Nets; invariant analysis and simulation are used to
compute Coupling and Cohesion while the Degree of Reuse is computed directly for each SOS.
These three measures are then used to compute the Adaptability and Agility measures.
Alternative architecture patterns are then compared in terms of their adaptability and agility.
One advantage of the approach is that it can be applied early in the systems engineering process
to help select preferred architecture alternatives.

In Section 7, a case study based on a complex mission for an Expeditionary Strike Group is
presented to illustrate the application of the assessment methodology. It shows that different
architecture types or patterns yield distinct values for the Adaptability and Agility measures that
are consistent with the qualitative differences in the tested architectures.

SECTION 2

Computational Models of Multi-National Organizations

A. H. Levis, Smriti K. Kansal, A. E. Olmez, and Ashraf M. AbuSharekh

2.1 Introduction
A key objective in organization design is to relate structure to behavior, An executable

model, i.e., a formal mathematical model with characteristics that are traceable to the static
architecture designs, is used to determine the properties of the model and its performance
characteristics. A wealth of theoretical results on discrete event dynamical systems, in general,
and Colored Petri nets, in particular, can be applied to the executable model.

The problem of modeling multi-national organizations such as those found in military

coalition operations has received renewed attention. Coalition partners may have differences in
equipment or materiel, differences in command structures, differences in constraints under which

they can operate, and, last but not least, differences in culture. The differences in equipment and
in operational constraints can be handled easily in the existing modeling framework. Differences
in command structures require some additional work to express them in structural and
quantitative ways. The real challenge is how to express cultural differences in these, primarily
mechanistic, models of organizations.

This work focuses on the ability to introduce attributes that characterize cultural differences
into the organization design and use simulation to see whether these parameters result in
significant changes in structure. The objective, therefore, is to relate performance to structural
features but add attributes that characterize cultural differences. Specifically, the attributes or
dimensions defined by Hofstede (2001) are introduced in the design process in the form of
constraints on the allowable interactions within the organization. In Section 2.2, the modeling

approach is described briefly since it has been documented extensively in the literature. In
Section 2.3, the Hofstede dimensions are introduced and then applied to the organization design
algorithm. In Section 2.4, an illustrative example is presented, followed by conclusions.

2.2 The Decision Maker Model and Organizational Design
The five-stage interacting decision maker model (Levis, 1993) had its roots in the

investigation of tactical decision making in a distributed environment with efforts to understand
cogtive workload, task allocation, and decision-making. This model has been used for fixed as
well as variable structure organizations (Perdu and Levis, 1998). The five-stage decision maker
(DM) model is shown in Figure 2.1.

The DM receives signals from the external environment or from another decision maker. The

Situation Assessment (SA) stage represents the processing of the incoming signal to obtain the

assessed situation that may be shared with other DMs. The decision maker can also receive
situation assessment signals from other decision makers within the organization; these signals are
then fused together in the Information Fusion (IF) stage. The fused information is then processed
at the Task Processing (TP) stage to produce a signal that contains the task information necessary
to select a response. Command input from superiors is also received. The Command
Interpretation (CI) stage then combines internal and external guidance to produce the input to the
Response Selection (RS) stage. The RS stage then produces the output to the environment or to
other organization members. The key feature of the model is the explicit depiction of the
interactions with other organization members and the environment.

Information
Sharing

Command
Input

Information
Sharing

Results
Sharing

Figure 2.1: Model of the Five-Stage Decision Maker

These interactions follow a set of rules designed to avoid deadlock in the information flow.
The representation of the interactions can be aggregated into two vectors e and s, representing
interactions with the external environment and four matrices F, G, H and C specifying intra-
organizational interactions (Fig. 2.2).

o . SA TP

ofofoto

c>+<>4<>l<>k>i-<3
SA IF TP CI RS

Figure 2.2: One-Sided Interactions Between DM, and DM,

The analytical description of the possible interactions between organization members forms
the basis for an algorithm that generates all the architectures that meet some structural constraints
as well as application-specific constraints that may be present. The most important constraint
addresses the connectivity of the organization - it eliminates information structures that do not
represent a single integrated organization.

Remy and Levis (1988) developed an algorithm, named the Lattice algorithm, that
determines the maximal and minimal elements of the set of designs that satisfy all the
constraints; the entire set can then be generated from its boundaries. The algorithm is based on
the notion of a simple path - a directed path without loops from the source to the sink. Feasible
architectures are obtained as unions of simple paths. Consequently, they constitute a partially
ordered set. The algorithm receives as input the matrix tuple of dimension n {e, s, F, G, H, C},

where n is the number of organization members. A set of four different structural constraints is
formulated that applies to all organizational structures being considered.

Rl A directed path should exist from the source to every node of the structure and from
every node to the sink.

R2 The organizational structures should be acyclical.

R3 There can be at most one link from the RS stage of a DM to each one of the other
DMs; i.e., for each i and j, only one element of the triplet {Gy, Hy, Cy} can be
nonzero.

R4 Information fusion can take place only at the IF and CI stages. Consequently, the SA

and RS stages of each DM can have only one input.

To introduce user-defined constraints that will reflect the specific application the
organization designer is considering, appropriate Os and Is can be placed in the arrays {e. s, F. G.
H, C}. The other elements will remain unspecified and will constitute the degrees of freedom of
the design.

A feasible structure is one that satisfies both the structural and user-defined constraints. A
maximal element of the set of all feasible structures is called a maximally connected organization
(MAXO). Similarly, a minimal element is called a minimally connected organization (MINO).
The design problem is to determine the set of all feasible structures corresponding to a specific
set of constraints. The Lattice algorithm generates, once the set of constraints is specified, the
MINOs and the MAXOs that characterize the set of all organizational structures that satisfy the
requirements. This methodology provides the designer of organizational structures with a
rational way to handle a problem whose combinatorial complexity is very large. Having

developed a set of organizational structures that meets the set of logical constraints and is, by
construction, free of structural problems, we can now address the problem of incorporating
attributes that characterize cultures.

2.3 Modeling Cultural Attributes
Hofstede (2001) distinguishes dimensions of culture that can be used as an instrument to

make comparisons between cultures and to cluster cultures according to behavioral
characteristics. Culture is not a characteristic of individuals; it encompasses a number of people
who have been conditioned by the same education and life experience. Culture, whether it is
based on nationality or group membership such as the military, is what the individual members

of a group have in common (De Mooij, 1998). To compare cultures, Hofstede originally
differentiated them according to four dimensions: uncertainty avoidance (UAI), power distance
(PDI), masculinity-femininity (MAS), and individualism-collectivism (IND). The dimensions

were measured on an index scale from 0 to 100, although some countries may have a score
below 0 or above 100 because they were measured after the original scale was defined in the

70's. The hypothesis here is that these dimensions may affect the interconnections between
decision makers working together in an organization. Organizations with low power distance
values are likely to have decentralized decision making characterized by a flatter organizational
structure; personnel at all levels can make decisions when unexpected events occur with no time
for additional input from above. In organizations with low scores on uncertainty avoidance,
procedures will be less formal and plans will be continually reassessed for needed modifications.

The trade-off between time and accuracy can be used to study the affect of both power
distance and uncertainty avoidance (Handley and Levis, 2001). Messages exchanged between
decision makers can be classified according to three different message types: information,
control, and command ones. Information messages include inputs, outputs, and data; control
messages are the enabling signals for the initiation of a subtask; and command messages affect
the choice of subtask or of response. The messages exchanged between decision makers can be
classified according to these different types and each message type can be associated with a
subjective parameter. For example, uncertainty avoidance can be associated with control signals
that are used to initiate subtasks according to a standard operating procedure. A decision maker
with high uncertainty avoidance is likely to follow the procedure regardless of circumstances,
while a decision maker with low uncertainty avoidance may be more innovative. Power distance

can be associated with command signals. A command center with a high power distance value
will respond promptly to a command signal, while in a command center with a low power
distance value this signal may not always be acted on or be present.

Cultural constraints help a designer determine classes of similar feasible organizations by
setting specific conditions that limit the number of various types of interactions between decision
makers. Cultural constraints are represented as interactional constraint statements. An approach
for determining the values of these constraints has been developed by Olmez (2006). The
constraints are obtained using a linear regression on the four dimensions to determine the change

in the range of the number of each type of interaction that is allowed.

dY = c + a(PDI) + P(UAI) + y(MAS) + 8 (IND)

where Y is #F or #G or #H or #C

Example: #F < 2, #G = 0, 1<#H<3, #C = 3

C-Lattice Algorithm. This is an extension of the Lattice algorithm that allows cultural
constraints to be imposed as additional structural constraints, R5-R8, on the solution space. For
the cultural constraint example given above, they become:

R5: The number of F type interactions must be between 0 and 2

R6: The number of G type interactions must equal 0

R7: The number of H type interactions must lie between 1 and 3

R8: The number of C type interactions must equal 3

The flowchart in Fig. 2.3 explains the generation of the culturally constrained solution.
MAXOs and MINOs are generated using the same algorithm described in Remy and Levis
(1988). The "Build Lattices'' step checks if a MINO is contained within a MAXO. If it is, then

the MINO is connected to that MAXO and forms part of a lattice. For each lattice, we check the
MINO to see if it violates the cultural constraints. For example, if the number of F type

interactions in the MINO is two and cultural constraint allows only one, then the MINO does not
satisfy the cultural attributes and since the MINO is the minimally connected structure in that
lattice, no other structure will satisfy the constraints. Hence the lattice can be discarded. If the
MINO does pass the boundary test, then simple paths are added to it to satisfy the cultural
constraints R5 to R8. The corresponding minimally connected organization(s) is now called the
C-MINO(s) (culturally bound MINO). Similarly, by subtracting simple paths from the MAXO,
C-MAXO(s) can be reached. The step "Build C-Lattices" connects the C-MINOs to the C-
MAXOs. The advantage of using this approach is that the designer does not have to know the

cultural attributes at the start of the analysis. He can add them at a later stage. This also enables
him to study the same organization structure under different cultures, which will be useful in our

coalition scenario.

Get MINOs and MAXOs

Build Lattices

For each Lattice

Build C -Lattices

Figure 2.3: Flowchart for Culturally Constrained Solution

2.4 Coalition Modeling Using CAESAR III
The proposed computational approach for the design of coalition operations is illustrated

using a hypothetical example in which an emergency situation in an island nation requires rapid

humanitarian assistance and disaster relief as well as securing military assets. The alternative
architecture designs and the associated simulations to evaluate performance were carried out
using a new application called CAESAR III developed in System Architectures Lab at GMU.

The scenario depicts a situation in which anarchy has risen on an island due to a recent
earthquake that caused substantial damage. The infrastructure and many of the government
buildings are destroyed in the island's capital. The US maintains a ground station that receives

data from space assets. It is concerned about the rising tensions, as there has been opposition to
its presence on the island. As a result, the US decides to send an Expeditionary Strike Group

(ESG) to the island to provide timely Humanitarian Aid/ Disaster Relief (HA/DR) to three
sectors of the island and to counteract the effects of any hostile attacks which may impede the
operations of the HA/DR mission and the security of the ground station. As the ESG is away for
the first critical day of the operation, countries A and B offer help to support the mission and
agree to take part in a Coalition Force that would be commanded remotely by the ESG
commander. Since they are close to the island, both countries can deploy elements in a matter of
hours, while the ESG rushes to the island.

A team of five units carries out the HA/DR mission. The team is organized in the divisional

structure and each unit under the team has its sub-organizations and staff to perform the tasks
allocated to it. The five units are: (1) ESGC: Commander; (2) MEUC: Commander of the Marine
Expeditionary Unit; (3) ACE: Air Combat Element with its Commander and sub-organizations;
(4) GCE: Ground Combat Element with its Commander and sub-organizations; and (5) CSSE:
Combat Service Support Element with its Commander and sub-organizations.

It is assumed that country A can provide support as ACE, GCE and CSSE while country B
can only provide support as GCE and CSSE. The roles of ESGC and MEUC remain with the US.

The countries are able to provide rapid assistance in coordination with each other and the design
question becomes the allocation of different tasks to partners in this ad-hoc coalition.

This is a multi-level design problem in which interactions between different decision making
units need to be determined both at the higher level (Level-1) as well as at the lower level
(Level-2). Level-1 interactions are interactions between culturally homogenous subunits, while
the Level-2 problem consists of designing the internal structure of these homogenous subunits on
the basis of a defined set of interactional constraints and culture. The structure of the ESG
imposes user constraints to design the Level-1 organization. Figure 2.4 shows the block diagram
of this organization as designed in CAESAR III; the matrices describing the interactions are
shown below.

Figure 2.5 shows the result of running the lattice algorithm on level-1 organization. The
solution space contains one MINO, Fig. 2.6, and one MAXO, Fig. 2.7. The designer can pick a
structure from this space and use it to design the sub-organizations at level-2.

10

1 1 1 0].v=[0 0 I 1 l]

"0 0 0 0 0" "ooooo"
1 0 1) 0 (1 0 0 0 0 1

0 0 0 1 1 (; = ooooo
0 0 X 0 < ooooo
0 0 0 0 0 ooooo

"0 0 0 0 0" r0 1 0 0 0"

0 0 0 0 0 0 0 110

0 0 0 0 0 c» ooooo
0 0 1) 0 0 ooooo
0 0 0 (1 0 ooooo

Figure 2.4: Level-1 Organizational Block Diagram.

\ /
ITTtl fTST, rPTTI ^rv <rr> prz^

•

ei£ tea
\ j

:i afco

/ /
I /

Figure 2.5: Solution Space For Level-1 Organization Design as Seen in CAESAR

ESGC

f
UEUC /—

I

I
GCE

CSSE_

I

Figure 2.6: MINO of Level-1 Design

Level-1 design is free of cultural constraints. However Level-2 design uses the C-Lattice
algorithm to include cultural attributes to form the various coalition options. The sub-
organizations of ACE, GCE and CSSE are designed using CAESAR III. Figures 8, 9 and 10
show the respective block diagrams along with the matrices specifying the user constraints. Since
the US always performs the roles of ESGC and MEUC, these sub-organizations are not
decomposed further.

1 1

© *§- •**• --?§ Hd =B *• «|v

: 0 *,J-'-' ,-0-~-<^—-^—-o^-;,,,,^.,,,

• '# •• 1: • • H» £ >• ^^jr^f---^ »J

I*1--** %- -«•—-»§"-••—•§-—*<>

Figure 2.7: MAXO of Level-1 Design

0 x 1 1

"0 0 0 0" "0 0 0 0"

A- 0 0 -V

0 A 0 .V
G =

0 0 0 0

0 0 0 0

0 0 0 0 0 0 0 0

"0 0 0 0" "0 1 A- X

0 0 0 0

0 A 0 A
c =

0 0 1 A

0 0 0 0

0 0 A 0 0 0 0 0

Figure 2.8: Block Diagram for ACE

.••-i-

MM'

" |

K>
<*/:• .

.=[1 A].V = [0 1 1 l]

"0 0 0 0" 0 X X A

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

H =

"0 0 0 0" "0 x x x

0 0 A A

0 0 0 A
c = 0 0 0 0

0 0 0 0

0 0 0 0 0 0 0 0

Figure 2.9: Block Diagram for GCE

Table 2.1 gives the Hofstede's scores for US, Country A and Country B. Using a multiple linear
regression model, these scores are converted into limits to be placed on allowable interactions
based on culture. These are imposed as additional structural constraints on the solution space of
the sub-organizations. The cultural constraints for the three sub-organizations are shown in tables
2.2, 2.3 and 2.4. Maximum indicates the limit placed on the number of interactions by user
constraints.

12

110 0 0.v=0 0 1 1 v

F =

0 x 1 0 0

.x 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 x

0 0 0 0 x

0 0 .x .x 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 1 0 x x

0 0 0 11

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

Figure 2.10: Block Diagram for CSSE

Table 2.1. Hofstede's Scores for the Three Countries

Country PDI IND MAS UAI
US
A
B

40
38
66

91
80
37

62
14
45

46
53
85

Table 2.2 . Cultural Constraints Corresponding to ACE

Country #F #G #H #C
Maximum 0<F<4 0 0<H<3 2<C<5
US 3<F<4 0 2<H<3 3
A 2 0 2<H<3 3
U 2 0 1 4<C<5

Table 2.3. Cultural Constraints Corresponding to GCE

Country #F #G #H #C
Maximum 0 0<G<3 0<H<3 0<C<3
US 0 2 2<H<3 2
A (I 2 2<H<3 1
B 0 2<G<3 2 2<C<3

Table 2.4. Cultural Constraints Corresponding to CSSE

Country #F #G #H #C
Maximum 1<F<3 • 0<H<4 3<C<5
US 2<F<4 [] 3<H<4 •
D D [] 3<H<4 D
• D D 4<C<5

Using the C-Lattice algorithm, the solution space for each sub-organization is computed for
each culture and a suitable structure is selected by the user. These structures are then used to
form the different coalition options and analyze the performance. In view of the limited space,
the complete solution spaces are not shown here. Figures 2.11-12.3 show the structures selected

13

by the user for each country for CSSE. A similar approach can be use to select different
structures to be used for ACE and GCE.

(•• • ' J
MVP

(' >
• C

()
AB

(D

Figure 2.11: GCE Structure Selected for US

• - •

a •
•;

1
$ • •

i

Figure 2.12: GCE Structure Selected for Country A

I

- I

~

•

Figure 2.13: GCE Structure Selected for Country B

Once the structure is selected, CAESAR III exports it as a Colored Petri net to CPN Tools
where it can be simulated to analyze performance. For the given scenario, based on the
availability of support from the two countries, eight coalition options are possible, excluding the
homogeneous option of all US. The five sub-organizations are combined together using Level-1
M1NO and the eight options were simulated to study performance in terms of tasks served. The
following assumptions were made. Each process (transition) needs 50 units of processing time.
Each additional incoming link increases this time by 50 units. The reasoning is that the additional
input(s) will require more processing. Hence, structures that have more interactions will take

14

more time to process the tasks, which will affect the overall performance. Figure 2.14 shows the
results of this analysis for all combinations. The x-axis shows the percentage of tasks un-served.

Based on these results, the US-US-US-B-A coalition structure performs best. Most options
with country B in the CSSE role perform badly. This is because country B needs a high number
of command relationships and the structure of CSSE allows for this to occur, thereby increasing
the processing delay. User constraints on GCE allow for very similar cultural constraints for all
countries; changing the ordering in this role does not change the performance very much. Similar
results were obtained when the coalition options were simulated using a Level-1 MAXO
organization.

us-us-us-us-us 1

US-US-US-B-B

US-US-A-B-B

1

US-US-US-A-B

1

1

US-US-US-A-A

• Series!

Figure 2.14: Percent of tasks un-served for coalition options.

2.5 Conclusion
A previously developed methodology for the computational design of information processing

and decision making organizations has been enhanced to include cultural constraints that affect
the choice of organizational structures. While the Hofstede cultural dimensions have been used,
other cultural metrics can be used to derive the cultural constrains. A simple example illustrates
the approach for designing coalition organizations and analyzing their performance. The results
indicate that culture does affect the structure and working of organizations thereby affecting the
overall performance. This could aid in the allocation of different tasks to partners in an ad-hoc
coalition.

2.6 References

4.

Handley H, Levis, A H (2001) Incorporating heterogeneity in command center interactions.
Information Knowledge Systems Management 2(4).

Hofstede G (2001) Culture's Consequences: Comparing Values, Behaviors, Institutions, and
Organizations Across Nations, 2nd edn. Sage, CA .

Levis A H (1993). A Colored Petri Net Model of Command and Control Nodes. In: Jones R
(ed.) Toward a Science of Command Control and Communications. AIAA Press,
Washington, DC.

De Mooij M (1998) Global Marketing and Advertising: Understanding Cultural Paradoxes.
Sage, CA

15

5. Olmez, A E (2006) Exploring the Culture-Performance Link in Heterogeneous Coalition
Organizations. PhD Thesis, George Mason University, Fairfax, VA.

6. Perdu D M and Levis A H (1998) Adaptation as a morphing process: A methodology for the
design and evaluation of adaptive organization structures. Computational and Mathematical
Organization Theory 4(1): 5-41

7. Remy P and Levis A H (1988) On the Generation Of Organizational Architectures Using
Petri Nets. In: G Rozenberg (ed) Advances in Petri Nets 1988, Springer-Verlag, Berlin.

16

SECTION 3

Using Architectures to Support Experimentation

Lee W. Wagenhah and Alexander H. Levis

3.1 Introduction

As new technology and new environments for military operations have evolved over the past
10 years, DoD has been attempting to formulate, evaluate, and implement new command and
control concepts. The notion is to build plans based on the effects that will lead to
accomplishing the goals and objectives and then to link actions to those effects through known or
plausible cause and effect relationships. This shifts the emphasis from focusing on targets to
higher level effects that actions that impact those targets may have. Effects Based Operations
(HBO) has evolved as the new concept for planning and executing operations. Evolving with
this concept are the techniques and procedures needed to develop courses of action and the
associated detailed plans. Once plans are made and execution starts, it is necessary to
continually assess how well the plans are working. With EBO, this is more than just determining
whether targets have been affected as planned (e.g. checking off targets serviced), but also
collecting and assessing information to see if the actions are indeed leading to the overall desired
effects. The difficulty is that Effects Based Assessment (EBA), particularly at the higher
operational level, requires a different approach than the one that has been used in the past, and
the techniques and procedures, along with the supporting information processing systems, have
not been established. This has created a need to provide a new capability for command and
control, but the concepts for supporting EBA at the operational level are not in place. In short,
the problem is complex and unprecedented, and the needs of the user are ill structured.

In a concurrent project1, the System Architectures Laboratory participated in a critical
experiment (CE) in which a spiral approach had been selected consisting of a repetitive sequence
of development and experimentation to evolve the concepts, techniques, and procedures along
with the systems that will support them for Effects Based Assessment (EBA).

Because the needs of the users are ill structured and because DoD has mandated the use ol'
architectures, an architecture based approach was adopted for the critical experiment.
Furthermore, a model driven experimentation technique was selected to conduct the various
spirals of the experiment.

This section describes the implementation of the architecture-based model-driven
experimentation. Specifically, the section illustrates how an executable model of an architecture

AFRL/RI's Dynamic Air and Space Execution and Assessment (DASEA)

17

has been used to guide the design of both computational and human-in-the-loop experiments to
test and verify a new concept and supporting processes and systems for Effects Based
Assessment A repetitive, or spiral, approach was used to test and refine, at increasing levels of
specificity, the proposed processes that will be used by operators and the supporting systems to
conduct the assessments. Since initially there was no operational concept for operational level
EBA, one had to be postulated. Then this initial concept was refined using a DOD Architecture
Framework (DODAF) compliant Operational View (OV) of the operational concept. The OV
was used to design a human-based table-top experiment to examine and evaluate the processes
defined in the architecture. Lessons learned were used to refine the architecture. An initial
Systems View of the architecture was created based on the OV to help guide the design and
development of systems that would support the processes defined in the OV. This systems view
also guides the design of the next spiral that broadens the experiment with the use of humans and
the system.

The rest of the section is organized as follows. Section 3.2 provides the highlights of the
model driven experimentation process showing the relationships between the architecture,
executable models and model-based computational and human-based experimentation. Section
3.3 provides the detail of the first spiral that followed the process including the development of
the operational concept, its refinement using the DODAF compliant architecture views, and the
development of the discrete event executable model of the architecture views. It also describes
how the executable model was used to conduct computational experiments and to verify the
correctness of the architecture and thus of the new concepts. Section 3.4 summarizes the
findings of the architecture-based model driven experimentation approach.

3.2 Architecture-Based Model Driven Experimentation

Model Driven Experimentation (MDE) is a concept that has evolved over the past 20 years
[Levis and Vaughan, 1999]. For the last 15 years, the GMU System Architectures Lab has
participated in and refined MDE with a research team set up by ONR consisting of the Naval
Postgraduate School and several universities [Handley et al., 1999]. Nine experiments have been
conducted (both human-in-the-loop and computational ones) using MDE. The focus of these
experiments has been on the design of command and control organizations and the understanding
of how different organizational structures can effect behavior and performance, particularly in a
changing environment where the ability to adapt is important.

Within the Critical Experiment project, the concept for organizational experimentation was
expanded as follows: Given (1) an operational concept, a process for carrying out the
operational concept, an organizational design, and a system that supports that organization in
carrying out the process, and (2) a set of hypotheses or propositions about those items that need
to be evaluated, develop a rigorous process to design and conduct experiments that that will test
the hypotheses and use the results of the experiments to refine the operational concept, process,
organization, and system. The unprecedented, complex, and ill-structured nature of the problem
led to the conclusion that an architecture modeling paradigm used in conjunction with the MDH

18

that had been developed for organizational experimentation would be appropriate. Using the
DODAF views facilitates the experimental design. The OV provides a rigorous framework for
describing the operational concept, the organizational structure, and the operational process.
Executable models can be derived from the OV products and used to conduct computational
experiments focusing on the proposed process and organizational structure. The DODAF
Systems View (SV) describes the arrangement and interconnections of a set of systems and their
components that can support the processes and organizations described in the Operational View.
Executable models of the Systems View also can be derived from the SV products and evaluated
experimentally. The SV can then be used to drive the design of the actual systems that will
support the process that will be used in the experiments. Figure 3.1 shows the basic process.

Figure 3.1: Architecture Based MDE Process

The process starts with the formulation of questions, propositions, or hypotheses to be
examined in the experiment. In the case of DASEA, the initial hypothesis was that it is possible
to develop a process that would enable useful operational level assessment of progress in the
execution of an Effects Based Plan. Next, an operational concept is needed to support the
development of an architecture. The hypothesis and the operational concept then are used to help
create an initial architecture model of the process or system that will be the subject of the
experiment. A critical element of this step is the determination of the boundary between the
process and system that are being used and the environment. The environment contains the
things that interact with the process, i.e., the sources of inputs and the sinks that receive the
outputs. The understanding of these interactions will be needed to develop the scenario that will
be used to conduct the experiment and collect the data needed to answer the questions or test the
hypothesis. Once the model of the architecture has been completed, it can be converted into an
executable model. The procedures for doing this have been described in [Wagenhals et al., 2000
and 2003]. Once the executable model is created, it can be used to verify the architecture,
detecting errors and flaws in the architecture design (Loopl). These findings also can be used to
refine the scenarios that will be used in the experiments. After the architecture and the scenario
have been verified, the executable model can be used in a series of computational experiments
generating preliminary analyses about the hypotheses. These analyses may result in changes and
improvements to the executable model (Loop 2). The final results may also result in a
refinement of the architecture which may be used to drive the design of systems that support the

19

processes (Loop 3). The primary reason for developing the model, both architecture and
executable, is to "tune" the experiment before it is conducted. In general, these experiments are
conducted with human subjects (operators). These experiments using humans can be much more
realistic than those done computationally, but they can be quite costly to conduct. Usually, data
about a limited number of vignettes of the overall scenario can be obtained. In many cases, the
actual experiment will deviate from the planned experiment due to changes in personnel,
equipment, or other factors. Despite the limited nature of the human-based experiment, the
results can be used to test the accuracy and predictability of the executable model (Loop 4). This
is done by setting the conditions that were actually used in the experiment and comparing the
executable results with those of the experiment. Changes may be necessary in the executable
model and such changes should be reflected in the architecture (Loop 5). Once the executable
model has been verified, it can be used to explore computationally many other vignettes. The
data collected from both the human-based and the model-based experiments is analyzed to
generate the answers to the questions and to address the hypotheses. When used in a spiral
approach, the verified architecture and executable model along with the results of the entire
spiral are used to start the next spiral in which the MDE process is repeated.

3.3 Application of Model Driven Experimentation

A plan composed of eight steps was developed for the first spiral of the architecture-based
model-driven critical experiment.

1. Postulate an operational concept for Operational Level Effects Based Assessment;
develop an understanding of the factors and unknowns involved.

2. Use this understanding to define the hypothesis to be evaluated in the spiral.

3. Refine the operational concept using an architecture description. The DODAF 1.0
Operational View was be used.

4. Convert the operational view of the architecture into an executable model to verify the
architecture.

5. Develop, conduct, and analyze a table top experiment based on the operational concept
and its architecture.

6. Refine the architecture and its executable model based on the findings from step 5.

7. Plan, conduct, and analyze a computational experiment using the executable model to
verify the soundness and completeness of the architecture description. Adjust the
architecture description based on the findings.

8. Develop an initial Systems View of the architecture that is congruent to the Operational
View and use it to guide the design of technology and systems that will be used in the
next spiral.

20

The first step in setting up the experiment was to define an operational concept for effects
based assessment capability that is the subject of the experiment. This included defining the
boundary between the capability under investigation and the environment in which that
capability is used. The capability being investigated is the ability to dynamically conduct
operational level EBA based on actions and activities that have taken place, so-called post
execution EBA. It is assumed that an Effects Based Plan (EBP) has been developed that is
designed to achieve some operational level objectives based on attainment of the commander's
intent. The plan is based on an analysis that shows that accomplishing a set of tactical tasks and
actions will cause direct effects to occur, and these in turn will cause the higher level effects to
be achieved. The achievement of the higher level effects will result is the attainment of the
commander's operational level objectives. The desired EBA capability uses the EBP and an
incoming stream of data and reports about the execution of that plan and observations about
effects to continually determine progress being made toward achieving the Air Component
commander's intent. Note that in this operational concept the process of creating and selecting
the EBP and the execution of that plan are outside the scope of the EBA capability. Those two
activities continually provide inputs to the capability and the capability in turn dynamically
assesses the outcomes (or effects) of executed air & space operations with regards to the
attainment, or progress towards attainment, of commander's intent.

Once the operational concept was defined, Step 2 in designing the experiment was to
establish the experimental hypothesis or proposition to be evaluated. For the first spiral the
hypothesis was: Given an effects-based plan that meets commander's intent, data relating to
execution outcomes, and an operational-level, post-execution EBA process; it is possible to
produce an assessment of the progress towards attaining commander's intent. Note that this is a
rather abstract hypothesis. We wanted to first show that the operational concept contained the
process and data flows that could be used to create the operational level EBA before exploring
the quality and timeliness of that EBA. The latter concerns will be explored only after the first
spiral successfully shows that the operational concept and the process derived there from
worked.

In Step 3, the operational concept needed to be refined, and this was done by creating an
architecture description of the operational concept. Because this is a DoD effort, the architecture
was created in compliance with the DODAF 1.0. At this point, only an Operational View was
developed. The OV is a description of the tasks and activities, operational elements, and
information exchanges required to accomplish DoD missions. It conveys these elements using a
combination of products including activity, data, and rule models, dynamic descriptions,
organization descriptions, and descriptions that identify the activities performed by
organizational elements and the information that is exchanged between those elements to carry
out the operational concept. The structured analysis methodology was chosen over the object
oriented approach because of the familiarity with this methodology by the program manager.

21

One of the key concepts described in the OV is the set of activities and their relationships.
This concept maps directly to the structured analysis approach which is based on functional (or
activity) decomposition. One was created using four levels of decomposition. The first level
was the context level with the overall activity being "Conduct Operational Level Effects Based
Assessment". It was decomposed into three activities, Al, Process Incoming Information, A2,
Assess Progress Toward Objectives, and A3, Generate Recommendations and Reports. Each of
these was further decomposed to provide more detail into the activities that would be used to
carry out the operational concept.

An Activity Model (OV-5) was created based on the functional decomposition using the
IDEFO formalism. The analysis started with an External System Diagram that shows the system
(in this case the overall EBA process) in the context of the systems (in this case the
organizations) that it interacts with (Figure 3.2). It helped define the system boundary. Note the
explicit expression of the purpose and the viewpoint on the diagram.

The AO page (first level of decomposition) is shown in Figure 3.3. The main inputs (the
various messages and data that will be received giving progress reports and observations about
effects) are shown coming into Al. The controls are the Effects Based Plan (EBP), System of
System Models (SOS Models), EBA Standard Operating Procedures, and Command Guidance.
The process produces the four types of output products, the three shown exiting A3 and the
Requests for Information (RFI) from Al and A2. In addition to the Activity Model, other OV
products were produced including the Operational Concept Graphic, the Operational Node
Connectivity Description, and the Operational Event Trace Diagram. The analysis that led to
these architecture artifacts yielded a much more detailed description of the operational concept.

In Step 4, the operational architecture view description was converted to an executable model
of the OV using the procedures described in Wagenhals et al., [2000]. The Colored Petri Net
methodology implemented in CPNTools® Version 1.4 was used [www.daimi.au.dk]. Colored
Petri Nets are the most general form of discrete event dynamical models. They have a graph
theoretic basis which allows the analysis of properties of the model and they are executable, so
that they can be used in simulation. Figure 3.4 shows the CPNTools® model page that
corresponds to the IDEFO AO page of Figure 3.3. Note the correspondence of CPN model to the
IDEFO model: the three activity boxes of the IDEFO are transformed into the transitions
represented as boxes in the CPN model and each ICOM flow is modeled as an arc leaving the
output transition and connect to a place where tokens that represent the output data can reside
and then an arc going from that place to the appropriate receiving transition. The transitions on
the page are substitution transitions meaning that they are decomposed on a lower level page.
Thus there is a one to one correspondence between the pages of the IDEFO model and the CPN
model.

22

Command
A-DI ^~>

Develop
Effects

Based Plan
A-02

'
—fr- > '

' 1

/—

Perform ISR
Activities

A-03

• Measures and Indicator Data —•
J^ < '

Conduct
EBA

All

> EB Operational Assessment Products •>
—• Effects Based Plan Recommendations x

» Model Change Recommendations .
f~

\

>—

>

Execute
OrdersA (|,

 • RFI/PIR v

P, »
J J

V J

Purpose: to describe EBA process in order to develop technology to support it and the OASEA CE
Viewpoint: Operational Assessors

Fig. 3.2 External System Diagram

"undicatoS—
ti2i3Inputr7s

(.BDAREP 1 \ \ /

' •npiitDatvFi ^—a c
I Process Hew

Information
'

InputData Assess Progress
Towards Objectives"

Ssessmeljt
tResultsy

Repository

**»^\W
ORep

Generate
Recommendation

and Reports

E5 :x:--r:—~ -rr~ ~•,-) R'?iSw;f .1

OR*p

EBP
•ndajBons

ORep

ORep

Fig. 3.3 AOPage

Running this executable model in simulation with the various inputs verified that the process
described in the Operational View indeed could produce the EBA products described in the
Activity Model of the OV. This gave indication that the IDEFO activity model was sound. This
was an initial iteration of Loop 1 of Figure 1. However, the model was still at a high level of
abstraction, and it was unknown what would happen if a team of assessors actually followed the
operational concept.

23

Step 5 was to design a human-based experiment in which a small group of subject matter
experts attempted to follow the process defined by the architecture using real input and control
artifacts. To do this, a scenario was created including an EBP, a SOS Model, and a set of input
messages. Particular attention was paid to the latter to evaluate the process through a set of
progressively more complicated inputs. Three separate "threads" were designed, each expected
to take about 4 hours to complete. All three threads used the same EBP and SOS Model, and
each thread had enough content to allow the humans to be able to produce at least some of the
output products, especially updates on the progress toward achieving commander's intent. The
first thread consisted of at set of messages whose content unambiguously matched the expected
information found in the EBP and the SOS Model. The challenge was to match the content of
the input information to the appropriate elements of the EBP and then produce the update to the
assessment. The second thread contained the same inputs as the first thread, along with
additional inputs that changed or updated the input data from the first thread. The goal was to
create the situation where the humans had to aggregate or combine results to produce the output
products. The third thread contained the same inputs as the first thread, but also contained
additional inputs that did not exactly match the expected information contained in the EBP.
This, the most challenging thread, was designed to determine how the humans would resolve
such ambiguities.

EBA SOPS

EBP

SOS Models

Measures and Indicator Data •

BDAREPs

Standard Intel Reports

MISREPs

Process
New

Information

P A

Command Guidance

 I

Model Updates

Parameter and
Structural Changes

^
Assess

Progress
Toward

Objectives

P. 9 A

-• RFI/PIR

Progress Forecast

EBP Assessment Results

T T
Generate

Recommendations
and Reports

• EB Operational Assessment Products

Effects Based Plan Recommendations

' Model Change Recommendations

Fig. 3.4 Color Petri Net Executable Model, AO Page

This human experiment took several weeks to design, three days to conduct, and several
more days to analyze. Many comments and observations were made by the subject matter
experts including suggestions for adjustments to the process that had been defined in the
architecture. With the changes that were made on the fly during the threads, the humans were
able to produce the key outputs including updates to the progress being made toward achieving
commander's intent. Thus this initial experiment demonstrated that it was possible to produce an

24

operational level EBA given the EBP, SOS Model, the process, and various sets of input
information which was the hypothesis being evaluated.

In Step 6 the results of this human based experiment and the observations and suggestions for
changes were used to refine the architecture and then the executable model (see Loops 3 &4 of
Figure 3.1). In this case, the refinements were small.

The human based experiment had provided valuable insight into the operational concept and
the process defined in the architecture and resulted in some refinements of that architecture. Due
to the time limitations, only a few threads through the process were evaluated. Therefore in Step
7 of the spiral the refined executable model was used to conduct a computational experiment
over an entire range of inputs and thereby verify that the process and its OV description were
sound and complete. The Colored Petri Net executable, synthesized from the refined
architecture description, was used as the experimental test bed for this computational experiment.
Two types of evaluation were accomplished with the executable model; (1) simulation using
each and every legitimate type of input to review the process flow through the model and
determining the types of output produced for each input and (2) state space analysis to identify
all the combinations of sequences through the process and to identify potentially erroneous ones.

The focus of the computational experiment was on the input data sets. An analysis of the
content of the input data indicated that there were a total of 180 valid types of inputs to this
executable model. Each input represented a particular set of characteristics that can be contained
in the data in any incoming message. It was decided to examine all 180 possible inputs using
simulation. Multiple runs were made for each of the 180 legitimate input data types.
Approximately 600 simulation runs were made with each run taking less than two seconds to
complete.

As expected many of the input types could result in more that one set of output products.
This is because the process allows for choices to be made as the process unfolds. Different
choices result in different paths through the process and potentially different outputs for the same
type of input. Overall, the simulation runs confirmed an analysis of the model indicating there
are 11 different types of output products that can be generated depending on the nature of the
input. These outputs include measures of effectiveness comparisons, progress toward
commander's intent updates, target system analyses, EBP change recommendations, and various
briefings associated with these output. Most inputs generated one or more of these outputs. A
review of each input and the resultant output showed that in the final version of the executable,
every legitimate input produced the desired outputs.

While each simulation run of the executable model shows particular sequence or trajectory
of processing for a given input, state space analysis shows all possible trajectories for a given
input. State space analysis [Kristensen et al., 1998] provides a detailed look at of all possible
sequences of states that can occur given a specific input. It can determine several important
properties of the state space of a CPN model given a specific initial state. These include
statistics on the state space such as the total number of states and transitions between states, and

25

liveness properties such as the number and identify of final states, and the number and identity of
CPN transitions that never fired in any sequence. The analysis determines boundedness
properties that identify the minimum and maximum number and type of tokens that occur in each
place. It also captures the marking (distribution of tokens) for any state including the final states
so that these can be examined.

State Space analysis is used to see if it is possible for an input to generate an undesired
sequence or output. Because State Space analysis can take more time than running simulations,
there was concern that it would take too long to conduct State Space analysis on all 180 inputs.
Fortunately, by reviewing the process using simulation, it was discovered that it was possible to
group the inputs into sets that would result in the same behavior. This meant that only one
example from each group needed to be examined using the state space analysis to check the
complete behavior of the architecture. Five groups were identified. For groups 1 and 2 (the
least complex) CPNTools® was able to generate completed State Spaces with no unexpected
final states. The first group had a single final state and the second two final states. Examination
of these final states indicated that the process had completed successfully

The state space analysis for the more complex groups 3, 4, and 5 resulted in state space
explosion meaning the state space analysis algorithm did not generate a complete state space
after a reasonable amount of time (30 minutes). To work around this problem the executable
model was divided into two parts. The first part included only processes Al and A2 representing
the processing of the input data and the assessment analysis. The second part was A3 (Generate
Recommendations and Reports) by itself. This partitioning of the model allowed the state space
analysis algorithm to generate complete state spaces. First, the state space for the model that
contained Al and A2 was generated and its final state(s) were examined. The state space analysis
for A1 and A2 for the most complex input had 42 states and two final states. These final states
contained one and five data elements, respectively. These were used as the initial input to the
model of A3 and the state space analysis was run in it. For the case of the five inputs, it was not
possible to provide all inputs at once because state space explosion occurred. Instead, the state
spaces for combinations of the five inputs were examined and showed that there are no
unexpected or undesirable final states for even the most complex of inputs to the process.

The overall conclusion from the computational experiments was that the operational view of
the architecture was sound and complete. It demonstrated the truth of the basic hypothesis
although it did not prove that the hypothesis is always true.

With the soundness of the operational view established, Step 8 of the process was to develop
a systems view of the architecture that can be used to guide the development of systems that
support the OV processes so that the second spiral of the Critical Experiment can be conducted.
The second spiral and later spirals will again rely on the use of the architecture based model
driven experimentation approach. These more complex spirals will use a combination of humans
and new systems that are based on the system view of the architecture. The ultimate goal is to
produce technology and systems that can support a sound operational level EBA process.

26

3.4 Conclusions

The architecture-based model-driven experimentation methodology has been successful in
guiding the Critical Experiment through a series of spirals. It appears to be particularly relevant
to situations were operational concepts and requirements are ill structured and the desired
capability is complex and unprecedented. It follows a layered approach starting with the most
abstract description of the problem or capability and, through a succession of steps, a continual
refinement of that description unfolds until a final design is developed and evaluated. It is
important not to go into too much detail early in the process. It must be shown that the abstract
concepts work before going into more detail. The development of the operational concept is
critical in the process; without one the rest of the process cannot be undertaken. In addition, a
clear demarcation of the boundary of the system or capability must be defined. The process
relies on a combination of static and executable architecture models and human-based
experiments whose results feed one another. The development of the architecture description
requires a few key subject matter experts. The conversion to the executable model is a straight
forward process, and new tools are being developed to support the automation of this process
which will make this step even easier. The subsequent analysis of the executable model allows a
rigorous and complete or nearly complete exploration of the set of input conditions that can be
expected. The human based experiments are critical, but demand the most resources and are the
most time consuming. They are critical because they provide a depth of understanding that
cannot be obtained with the architecture models by themselves. While they yield valuable
information, they generally only relate to a relatively small portion of what is potentially a large
number of probable vignettes that will be faced by the real system that will ultimately be
developed and fielded. The bottom line is that the use of executable models of the architecture in
conjunction with the more traditional human-based experiments can provide greater insight into
the complex interactions that exist in these systems and allow developers and operators to make
informed choices early to guide the development and create new technologies that will
effectively support the operators.

3.5 References

H. A. H. Handley, Z. R. Zaidi, and A. H. Levis, "The use of Simulation Models in Model Driven
Experimentation," Systems Engineering, 1999, Vol. 2, No. 2, pp. 108-128.

http://wiki.daimi.au.dk/cpntools/cpntools.wiki

L.M. Kristensen, S. Christensen, K. Jensen: The Practitioner's Guide to ColouredPetri Nets.
International Journal on Software Tools for Technology Transfer, 2 (1998), Springer Verlag.
98-132.

L. W. Wagenhals, I. Shin, D. Kim and A. H. Levis. "C4ISR Architectures II: A Structured
Analysis Approach for Architecture Design," Systems Engineering, Vol. 3, No. 4, Fall 2000

Lee W. Wagenhals, Sajjad Haider, and A. H. Levis, "Synthesizing Executable Models of Object
Oriented Architectures," Systems Engineering, Vol. 6, No. 4, 2003.

27

A. H. Levis and W. S. Vaughan, "Model Driven Experimentation," Systems Engineering, 1999,
Vol. 2, No. 2,

28

SECTION 4

Course of Action Analysis in a Cultural Landscape
Using Influence Nets

Lee W. Wagenhals and Alexander H. Levis

4.1 Introduction

Two challenges are addressed: (a) the need to understand how actions taken by the military
or other elements of national power may affect the behavior of a society that includes an
adversary and non adversarial elements, and (b) the need to be able to capture and document
data and knowledge about the cultural landscape of an area of operations that can be used to
support the understanding of the key issues, beliefs, and reasoning concepts of the local culture
so that individuals that are new to the region can quickly assimilate this knowledge and
understanding.

The first challenge relates to capabilities that enable the analysis needed to conduct focused
effects based planning and effects based operations. Models to support Effects Based Operations
developed to date relate actions to effects on the adversary [1]. Such models can be quite
effective in informing the comparison of alternative courses of action provided the relationships
between potential actions and the effects are well understood. This depends on the ability to
model an adversary's intent and his reactions and identifying his vulnerable points of influence.
But as the nature of Blue's military operations goes well beyond the traditional major combat
operations, there is the need to anticipate the effects of actions not only on the adversary (Red),
but also on the local population which may support or oppose that adversary. Such support may
depend in part on the actions taken by Blue.

The second challenge involves the need for new personnel to rapidly assimilate the local
knowledge needed to analyze the local situation and to analyze and formulate the effects based
plans and operations. Data about a culture exists in many forms and from many sources
including historical reference documents, observations and reports by intelligence analysts, and
unclassified (and unverified) sources such as the internet. The data is often incomplete and
partially incorrect and includes contradictions and inconsistencies. Analysts, particularly those
new to an area of operation, who are responsible for formulating courses of action, are hard
pressed to quickly develop the necessary understanding of the cultural factors that will affect the
behavior of the adversary and the society in which it is embedded.

29

A case study based on a particular province in Iraq has been used to examine and test an
approach to these challenges. The case study demonstrated the development of a model of an
adversary and the culture that can be used to assess various courses of action designed to achieve
several high level effects. A timed influence net (TIN) modeling technique was used that
enables analysts to create executable (probabilistic) models based on knowledge about the
cultural environment that link potential actions with their timing to effects. Such models capture
the rationale for courses of action and explain how various actions can achieve effects. Given a
set of potential actions, the model is then used to determine the course of action that maximizes
the likelihood of achieving desired effects as a function of time.

The rest of this section is organized as follows. Section 4.2 gives a brief formal description
of a TIN and describes a process that can be used for course of action analysis. Section 4.3
describes the case study and how a specific objective along with detailed data about the cultural
environment was used to create and analyze a TIN. The rationale and thought processes that
were used to determine the content of the TIN are described first, followed by a description of
how the TIN was used in a layered analysis process to examine various courses of action to
determine their impact on the overall effects over time. Section 4 provides some observations
and comments.

4.2 Timed Influence Nets
Several modeling techniques are used to relate actions to effects. With respect to effects on

physical systems, engineering or physics based models have been developed that can predict the
impact of various actions on systems and assess their vulnerabilities. When it comes to the
cognitive belief and reasoning domain, engineering models are much less appropriate. The
purpose of affecting the physical systems is to convince the leadership of an adversary to change
its behavior, that is, to make decisions that it would not otherwise make. However, when an
adversary in imbedded within a culture and depends upon elements of that culture for support,
the effects of physical actions may influence not only the adversary, but the individuals and
organizations within the culture that can choose to support, be neutral, or oppose the adversary.
Thus, the effects on the physical systems influence the beliefs and the decision making of the
adversary and the cultural environment in which the adversary operates. Because of the
subjective nature of belief and reasoning, probabilistic modeling techniques such as Bayesian
Nets and their influence net cousin have been applied to these types of problems. Models
created using these techniques can relate actions to effects through probabilistic cause and effect
relationships. Such probabilistic modeling techniques can be used to analyze how the actions
affect the beliefs and decisions by the adversary.

Influence Nets (IN) and their Timed Influence Nets (TIN) extension are abstractions of
Probabilistic Belief Nets also called Bayesian Networks (BN) [2, 3], the popular tool among the
Artificial Intelligence community for modeling uncertainty. BNs and TINs use a graph theoretic
representation that shows the relationships between random variables. These random variables

30

can represent various elements of a situation that can be described in a declarative statement,
e.g., X happened, Y likes Z, etc.

Influence Nets are Directed Acyclic Graphs where nodes in the graph represent random
variables, while the edges between pairs of variables represent causal relationships. While
mathematically Influence Nets are similar to Bayesian Networks, there are some key differences.
BNs suffer from the often intractable task of knowledge elicitation of conditional probabilities.
To overcome this limitation, INs use CAST Logic [4, 5], a variant of Noisy-OR [6, 7], as a
knowledge acquisition interface for eliciting conditional probability tables. This logic simplifies
knowledge elicitation by reducing the number of parameters that must be provided. INs are
appropriate for modeling situations in which the estimate of the conditional probability is
subjective, e.g., when modeling potential human reactions and beliefs, and when subject matter
experts find it difficult to fully specify all conditional probability values.

The modeling of the causal relationships in TINs is accomplished by creating a series of
cause and effect relationships between some desired effects and the set of actions that might
impact their occurrence in the form of an acyclic graph. The actionable events in a TIN are
drawn as root nodes (nodes without incoming edges). Generally, desired effects, or objectives the
decision maker is interested in, are modeled as leaf nodes (nodes without outgoing edges). In
some cases, internal nodes are also effects of interest. Typically, the root nodes are drawn as
rectangles while the non-root nodes are drawn as rounded rectangles. Figure 1 shows a partially
specified TIN. Nodes B and E represent the actionable events (root nodes) while node C
represents the objective node (leaf node). The directed edge with an arrowhead between two
nodes shows the parent node promoting the chances of a child node being true, while the
roundhead edge shows the parent node inhibiting the chances of a child node being true. The
inscription associated with each arc shows the corresponding time delay it takes for a parent
node to influence a child node. For instance, event B, in Fig. 1, influences the occurrence of
event A after 5 time units.

E - 1
+ 1 1

B ° fc A k * A * D

"^~-^ 1^^

C

Fig 4.1. An Example Timed Influence Net (TIN)

Formally, a TIN is described by the following definition.

31

Definition 4.1: Timed Influence Net (TIN)

A TIN is a tuple (V, E, C, B, DE, Dv, A) where

V: set of Nodes,

E: set of Edges,

C represents causal strengths:

E -> { (h, g) such that -1 < h, g < 1 },

B represents Baseline / Prior probability: V -> [0,1],

DE represents Delays on Edges: E -> Z+ (where Z+ represent the set of positive integers),

Dy represents Delays on Nodes: V -> Z+, and

A (input scenario) represents the probabilities associated with the state of actions and the
time associated with them.

A: R -> {([p,, p2,..., pn],[[tll,t,2], [t2l,t22],,[tnl,tn2]])

such that p, = [0, 1], ty -> Z and tn <tj2, V i = 1, 2,, nandj = 1,2 where RcVj

(where Z represent the set of nonzero positive integers)

The purpose of building a TIN is to evaluate and compare the performance of alternative
courses of actions. The impact of a selected course of action on the desired effects is analyzed
with the help of a probability profile. Consider the TIN shown in Fig. 1. Suppose the following
input scenario is decided: actions B and E are taken at times 1 and 7, respectively. Because of the
propagation delay associated with each arc, the influences of these actions impact event C over a
period of time. As a result, the probability of C changes at different time instants. A probability
profile draws these probabilities against the corresponding time line. The probability profile of
event C is shown in Fig. 4.2.

Fig 4.2. Probability Profile for Node C

32

To construct and use a TIN to support effects based operations, the following process has
been defined.

1. Determine the set of desired and undesired effects expressing each as a declarative
statement that can be either true or false. For each effect, define one or more observable
indicators that the effect has or has not occurred.

2. Build an IN that links, through cause and effect relationships, potential actions to the
desired and undesired effects. Note that this may require defining additional intermediate
effects and their indicators.

3. Use the IN to compare different sets of actions in terms of the probability of achieving
the desired effects and not causing the undesired effects.

4. Transform the IN to a TIN by incorporating temporal information about the time the
potential actions will occur and the delays associated with each of the arcs and nodes.

5. Use the TIN to experiment with different timings for the actions to identify the "best"
COA based on the probability profiles that each candidate generates. Determine the time
windows when observation assets may be able to observe key indicators so that
assessment of progress can be made during COA execution.

6. Create a detailed execution plan to use the resources needed to carry out the COA and
collect the information on the indicators.

7. Use the indicator data to assess progress toward achieving the desired effects.

8. Repeat steps 2 (or in some cases 1) through 7 as new understanding of the situation is
obtained.

In building the IN, the modeler must assign values to the pair of parameters that show the
causal strength (usually denoted as g and h values) for each directed link that connects pairs of
nodes. Each non-root node has an associated baseline probability that must be assigned by the
modeler (or left at the default value of 0.5). It represents the probability that the random variable
will be true in the absence of all modeled influences or causes. The CAST logic is based on a
heuristic that uses these quantified relationships and the baseline parameter to compute the
conditional probability matrix for each non-root node. Finally, each root node is given a prior
probability, which is the initial probability that the random variable associated with the node
(usually a potential action) is true.

When the modeler converts the IN into a TIN (step 4), each link is assigned a corresponding
delay d (where d > 0) that represents the communication delay. Each node has a corresponding
delay e (where e > 0) that represents the information processing delay. A pair (p, t) is assigned to
each root node, where p is a list of real numbers representing probability values. For each
probability value, a corresponding time interval is defined in t. In general, (p, t) is defined as

([Pi, P2 Pn], [[tll,t]2], [t2l,t22],, [tnl,tn2]]),

33

where t,i < tj2 and ty > 0 V i = 1,2 , n andj = 1,2

The last item is referred to as an input scenario, or sometimes (informally) as a course of
action.

To analyze the TIN (Step 5), the analyst selects the nodes that represent the effects of interest
and generates probability profiles for these nodes. The probability profiles for different courses
of action can then be compared.

4.3 Case Study
A case study was used to demonstrate a capability to address the two challenges described in

the introduction. The challenge was to create (demonstrate) a capability to allow rotating and in-
country forces to easily and quickly access data and knowledge about the cultural landscape of
their area of operations that can be used to support their understanding of the key issues, beliefs,
and reasoning concepts of the local culture. The specific need that the case study addressed was
stated as follows: given a military objective and a set of desired effects derived from statements
of commander's intent, develop and analyze alternative courses of actions (COAs) that will
cause those desired effects to occur and thus achieve the military objective. The use of TINs was
the approach taken. Specifically, the case study demonstrated the use of a TIN tool called Pythia
that has been developed at George Mason University. This demonstrated the use of the tool to
create knowledge about an adversary and the population that potentially supports or resists that
adversary and the use of the TIN to analyze various COAs.

A scenario was chosen based on the problem of suppressing the use of Improvised Explosive
Devices (IEDs) in a specific province of Iraq, denoted as province D. Specifically, it is assumed
that IED incidents have increased along two main east-west routes between the capital town C of
the province and a neighboring country M. Both roads are historically significant smuggling
routes.

There were hundreds of documents about Iraq in general and D province in particular that
were reviewed to get a better understanding of the situation. The province includes substantial
fractions of Kurdish, Shia, and Sunni populations as well as other minorities. It was noted that
the northern route was in the predominantly Kurdish region and the southern route was in a
predominantly Shia region. A dynamic tension existed between these regions particularly with
regard to the flow of commerce because of the revenue the flow generates. It was noted that
some revenue was legitimate, but a significant amount was not and was considered covert.
Increased IEDs in one region tended to suppress the trade flow in that region and caused the flow
to shift to the other. Consequently, each region would prefer to have the IEDs suppressed in its
region, but not necessarily in the neighboring region. The IED perpetrators needed support from
the local and regional populations as well as outside help to carry out their attacks. The support
was needed for recruiting various individuals to help manufacture the IEDs and to carry out the
operations necessary to plant them and set them off. It was postulated that improving the local
economy and the quality of the infrastructure services would reduce the local and regional

34

support to the insurgents. Of course this required effective governance and willingness on the
part of the workers to repair and maintain the infrastructure that in turn requires protection by the
Iraqi security and coalition forces.

With this basic understanding, the following steps were taken to create the TIN. First the
overall key effects were determined to be 1) IED attacks are suppressed on routes A and B (note
these were modeled as separate effects because it may be possible that only one of the routes
may have the IED attacks suppressed), 2) Covert economic activity improves along each of the
two routes. 3) Overall Overt economic activity increases in the region. 4) Insurgent fires are
suppressed, 5) Local support for the insurgents exist and 6) Regional support for the insurgents
exists. Nodes for each of these effects were created in the Pythia TIN modeling tool. It was
noted that suppression of IED attacks on one route could have an inverse effect on the covert
economic activity on the other, but each could improve the overall overt economic activity. The
suppression of the insurgent fires positively affected both covert and overt economic activity.

The next step was to identify the key coalition force (Blue) actions that would be evaluated
as part of the potential overall COA. To be consistent with the level of model abstraction the
follow high level actions were considered: Blue coalition forces (CF) exercise their standard
Tactics, Techniques, and Procedures (TPPs) (including patrols, searches, presence operations,
and the like). Blue Coalition Forces actively conduct surveillance operations. Blue CF actively
conduct Information Operations. Blue CF continue to train the local Iraqi security forces and
police. Blue CF broker meetings and discussions between various Iraqi factions (Green).

Of course, it is not possible to just connect these actions to the key effects, and therefore
several other sub-models were constructed and then linked together to produce the final model.
These models include a model of the process the insurgents must use to conduct IED operations,
a sub-model for the infrastructure and economic activity, and a sub model of the political and
ethno-religious activities. In addition, it was recognized that the region was being influenced by
outside sources, so these also were added to the model.

The sub model of the insurgent IED activities was based on the concept of how the
insurgents develop an IED capability. They must have the IEDs, the personnel to carry out the
IED operation, the communication systems to coordinate the operation and the surveillance
capability to determine where to place the IED and when to set it off. Each of these in turn
requires additional activities. For example, the personnel must be trained and in order to get the
personnel they must be recruited. The IEDs must be manufactured, and this requires material
and expertise. Furthermore, the insurgents must be motivated to use their capability. Much of
this capability relies on support for the local and regional population and funding and material
from outside sources. The nodes and the directed links between them were added to the TIN
model to reflect the Insurgents' Activities.

The economic and infrastructure sub-model included nodes for each of the main essential
services: water, electricity, sewage, health, and education. It also included financial institutions
(banks, etc.) and economic activities such as commerce and retail sales of goods. The nodes for

35

the economic and infrastructure aspect of the situation were linked to the local and regional
support as well as to the overall effect on the overt economic activity.

Of course, the economic and infrastructure services will not function properly without the
support oi' the Political and Ethno-Religious entities in the region. Thus a sub-model for these
factors was also included. To do this, three facets of the region were considered: the religious
activities including Shia, Sunni, and Kurdish (who are either Shia or Sunni) groups, political
party activities (Shia, Sunni, and Kurdish), and the Shia, Sunni, and Kurdish activities within the
government structure including the civil service and the police and law enforcement institutions.
The nodes for all of these activities were created and appropriate links were created between
them. Links were also created to other nodes in the model such as local and regional support of
the insurgents, economic activity and infrastructure development.

Finally, the outside influences were added to the model. These include external support for
the insurgents, anti-coalition influences from neighboring countries, and external financial
support for the local government and the commercial enterprises of the region. All of these
nodes were modeled as actions nodes with no input links. With this model design, analysts could
experiment with the effects of different levels of external support, both positive and negative, on
the overall outcomes and effects.

The complete model is shown in Figure 4.3. The model has 62 nodes, including 16 nodes
with no parents, and 155 links.

international influences

CF Actions

Insurgents Activities

Local and
Regional
Support

Political and Religious
Structures

,, —
Overall Effects

Economic'Infrastructure

Fig. 4.3 Complete TIN Model

36

Once the structure of the models was completed, the next step was to assign the values to the
parameters in the model. This was done in two steps. First, the strengths of the influences (the g
and h parameters on each link) and the baseline probability of each node were selected. This
may seem like a daunting task given the subjective nature of the problem and the number of links
and nodes. However, TINs and the Pythia tool limit the choices that can be made for these
parameters. For each link, the model determines the impact of a parent node on a child node first
if the parent is true and then if the parent is false. The choices range from very strongly
promoting (meaning nearly 100%), strong (quite likely, but not 100%), moderate (50% or
greater, but less than strong), slight (greater than 0% but not likely), or no effect. The modeler
can also select a similar set of inhibiting strengths ranging from very strongly inhibiting to no
effect. The second set of parameters is the baseline probabilities of the node. These are set to a
default value of 0.5 meaning that the probability of the node being true is 0.5 given no other
influences or causes (we don't know). In many cases, the default value was selected.

At this point it is possible, if not prudent, to perform some analysis on the model to observe
its behavior. We will describe this in detail shortly. The final step in creating the TIN model
was to assign the temporal parameter values to the nodes and the links. The default value for
these is 0. With all values set to 0 the model is identical to an ordinary Influence Net. The
process for assigning the time delay values is similar to that for assigning the strengths of the
influences and the baseline probabilities. For each link, the modeler determines how long it will
take for the child node to respond to a change in the probability of the parent node. In some
cases the change is instantaneous, so the default value of 0 is appropriate. In others, a time delay
may be expected. Part of this process requires that the modeler establish the time scale that will
be used in the model and thus what actual time length of one unit of delay is. Any unit of
measure can be selected from seconds to days, weeks, months or even years. In this particular
model each time delay unit was set to be one week. In setting the time delay of the arcs, it may
also be useful to set the time delay of the nodes. Again the default value for this delay is 0. This
delay represents processing delay. It reflects the concept that if there is a change in one or more
of the parent nodes, once the child node realizes that the change has occurred, there may be some
time delay before it processes this new input and changes its probability value.

Once the complete TIN was created, a validation of the model was undertaken. This was
done by consulting with several subject matter experts who had been in the region and were
familiar with the situation. Each node and link was checked to see if the node and the
relationships to and from that node made sense. In short, we were confirming that the overall
structure of the model made sense. Several suggestions were made and the changes were
incorporated. Once the structure had been vetted, then the parameters were checked. This was
done link by link and node by node. First the strengths of the influences were checked, then the
baseline probabilities, and finally the time delays.

Once the TIN model was finished and validated, two levels of analysis were accomplished to
demonstrate the utility of the approach. The first level is the logical level. This can be done

37

without using the parameters because it only requires the structure of the model. At this level of
analysis the model shows the complex causal and influencing interrelationships between Blue
CF, the external influence, the religious and political factions, the adversary (Red), and the local
and regional population (Green). This particular model shows that while Blue CF has some
leverage, there are many other outside influences that also can affect the outcome of any actions
that Blue may take. The model identifies these influences and how they may help inhibit the
progress that is made as a result of Blue CF actions. Furthermore, the model shows relationships
between the actions and activities of major religious and ethnic groups and effects on
government activities (police, judiciary, public works and service, etc.). It shows the impact of
the adequacy of government and public services on support of the insurgency. It captures the
IED development, planning, and employment processes and the impact of the other activities, the
status of public services, and coalition interventions on those processes. Finally the model
captures interaction of IED attack suppression on two major trade routes (suppressing one route
increases attacks on the other). In short, the model has captured Blue's understanding of a very
complex situation and can help articulate concepts and concerns involved in COA analysis and
selection.

The second level of analysis involves the behavior of the model. It is divided into a static
quantitative and a dynamic temporal analysis. The static quantitative analysis requires the
structure of the model and the non temporal parameters to be set. The temporal, time delay
parameters should be set to the default value of 0. This analysis enables one to compare COAs
based on the end result of taking the actions in the COA. In the Province D model, four major
COAs were assessed as shown in Fig. 4.4. This table has four parts, an Action stub in the upper
left corner, the Action or COA matrix to the right of the Action stub, an Effects stub below the
Action stub, and the Effects matrix adjacent to the Effects stub. In the COA matrix, the set of
COAs that have been evaluated are listed with an X showing the actions that comprise the COA.
The Effects matrix shows the corresponding effects as the probability of each effect.

Actions Situation

(COA) 1

Situation

(COA] 2

Situation

(COA) 3

Situation

(COA) 4

International Interference X X X X

External Financial Support X X X

CF HP.! and Surveillance X X X

CF 10, training, brokering X X

Iraqi political and religious group participation X

EFFECTS

Local and Region Support for insurgents Exist* 0.97 0.92 0.26/0.36 0.22/0.14

IED Attacks Suppressed on Route A / B 0.17/0.15 0.31/0.34 0.67/0.68 0.85/0.74

Insurgent's fires suppressed 0.14 0.65 0.9 0.93

Public services adequate 0.12 0.39 0.39 0.55

Overt Economic Activity Increasing 0.02 0.08 0.31 0.89

Covert Economic Activity Increasing along routes

AandB

0.37 0.50 0.56 0.57

Fig. 4.4 Static Quantitative COA Comparison

38

COA 1 was a baseline case in which only international interference and support to the
insurgency occurs. There is no action from the Blue CF, no external financial support to the
infrastructure and the economy, and the religious and political factions are not participating in
the governance of the area. The overall effects are shown in the lower part of the matrix. The
results for this COA are very poor. There is support for the insurgency and it is very unlikely
that the IED attacks will be suppressed on either route. With an ineffective local government, the
basic services are inadequate which encourages the support to the insurgency and there is little
chance for economic increase.

COA 2 represents the case where external financial support is provided and the coalition
forces are active both in presence operations and in conducting surveillance. However,
Information Operations, training of Iraqi forces and workers, and brokering of meetings and
agreement between Iraqi factions are not occurring. In addition, the political and religious groups
are not participating in positive governance and support to civil service. In this case, there is
some improvement compared to COA 1, but still there are many problems. Local support for the
insurgents is still very strong, although there is some suppression of the IED attacks and
insurgent fires due to the activities of the coalition forces. As a result there is some improvement
in public services and an increase in covert and overt economic activity, due in part to the
reduction in IED attacks and insurgent fires.

The third COA contains all of the actions of COA 2 plus the addition of coalition force
information operations, training of Iraqi security and police forces as well as civilian
infrastructure operations and significant brokering of meetings and agreements between the
various Iraqi agencies and factions. The result is a significant improvement in the suppression of
the IED attacks and insurgent fires due to the improved capabilities of the Iraqi security and
police forces and the significant drop in the local and regional support of the insurgents. There is
also a significant improvement in the covert and overt economic activity. However, there is little
change in the adequacy of the public services, due primarily to the lack of effective participation
of the Iraqi governance function.

The last COA has all actions occurring. In addition to the activities of the previous three
COAs, COA 4 includes the active participation of the Iraqi religious and political groups in the
governance activities. It results in the highest probabilities of achieving the desired effects.
While there is still some likelihood or local and regional support for the insurgents (0.22 and
0.14, respectively), many of the IED attacks are suppressed as are the insurgent fires. The result
is significant increases in overt economic activity and moderate increase in the covert economic
activity. Public services are still only moderately adequate, with room for improvement.

While the static quantitative analysis provides a lot of insight into the potential results of
various COAs, it does not address the questions of how long it will take for the results to unfold
or what should the timing of the actions be. The dynamic temporal analysis can provide answers
to these types of questions.

39

Having created the TIN model with the time delay information, it is possible to experiment
with various COAs and input scenarios. Fig. 4.5 shows an example of COA and input scenarios
that illustrate such an experiment. The second column of the Table in Fig. 5 shows a summary
of the input nodes that were used in the experiment. They are divided into two types, those listed
as Scenario and those listed as COA Actions. The scenario portion contains actions that may
take place over which limited control is available. These set the context for the experiment. The
second group contains the actions over which control exists, that is the selection of the actions
and when to take them is a choice that can be made. The last column shows the scenario/action
combinations that comprise the COA/Scenario to be examined. The column provides a list of
ordered pairs for each Scenario Action or COA Action. Each pair provides a probability (of the
action) and a time when that action starts. For example, the listing for the second scenario
actions is [0.5. 0] [1.0, 1] which means that the probability of Country M and Country L
interfering is 0.5 at the start of the scenario and changes to 1.0 at time = 1. In this analysis, time
is measured in weeks.

The entries under the column labeled "COA 4a" mean that the scenario/under which the
COA being tested is one in which there is immediate and full support for the insurgency
(financial, material, and personnel) from international sources, and it is expected to exist
throughout the scenario. The same is true for support from Country S. Countries M and L are
modeled with the probability of providing support at 0.5 initially, but it immediately increases to
1.0 at week 1. All of the COA actions are assumed to not have occurred at the start of the
scenario, thus the first entry of each is [0, 0]. The coalition force (Blue) actions start at week 1
with a probability of 1.0, meaning that all of the elements of Blue actions start at the beginning.
With regard to religious activities, the Kurds begin at week 1 with probability 1.0. The Shia and
Sunni have a probability of 0.5 starting at week 10 and then increase to 1.0, becoming fully
engaged at week 20. In terms of political activity, the Kurds and Shia become fully active at
week 1. The Shia become more likely to be active at week 10, fully active at week 20, then
become less likely to be active at week 30 (probability 0.5) and then become fully active again at
week 40. Finally, the External Financial support begins at week 26.

Action COA 4a: List [p. t]
i Scenario

Ac tic n*.

Int'l Support to Insurgent* [i.o, oi

Interference by countries M and L [0.5, 0], [1.0, 1]

Interference by country S [1.0.0]
\ COA

Actions

„.,,,„.,,„

Blue FTPS activated [0.0], [1.0. 1]

Blue Surveillance, 10. Training. Brokering [0.0], [1.0,1]

Shia and Sunni Religious Activity [0,0], [0.5, 10], [1.0,20]

Kurd Religious Activity [0,0], [1.0,1]

Kurd and Shu Political Activity [0,0], [1.0, 1]

Sunni Political Activity [0. 0], [1.0, 20], [0.5, 30], [1.0, 40] \

International Investment [0. 0], [1.0, 26]

Fig. 4.5 Dynamic Temporal Analysis Input

40

To see what the effect of this input scenario on several key effects, the model is executed and
the probabilities of the key effects as a function of time are plotted as shown in Fig. 4.6. In the
figure, the probability profiles of four effects are shown: IEDs are suppressed on Routes A and B
and Local and Regional support for the Insurgents exists. Figure 4.6 shows that the probability of
suppression of the IED attacks on the two routes increases significantly under this scenario. This
means that the number of IED attacks should decrease, more on Route A than on Route B. The
improvement can be expected to occur more rapidly along Route A than along Route B by about
35 weeks or 8 months. Route A is the northern route that is controlled by the Kurds and Route
B is the southern route controlled by the Shia and Sunni. This can be attributed to the rapid and
steadfast political and religious activities of the Kurds as opposed to the more erratic activities of
the others as modeled in the input scenario (Fig. 4.5). Also note that it is expected to take 80 to
100 weeks (nearly 2 years) for the full effect to occur. Figure 4.6 also shows a significant decline
in support for the insurgents both by the local and the regional populace with the local support
decreasing more as the situation with respect to governance and services improves.

53 Probability Profile for Probability Profiles...

1.0_

0.9 L

in

0 0 50 100 150

TIME

IED Attacks on Route A are suppressed

Regional Support for insurgents exists

Local Support for insurgents exists

IED attacks on route B are suppressed

Fig. 4.6 Probability Profiles of Scenario (COA) of Fig. 4.5

41

Of course it is possible to examine the behavior of any of the nodes in the model, by plotting
their probability profdes. This can increase the understanding of the complex interactions and
dependencies that in the situation that have been expressed in the TIN model. The TIN model
provides a mechanism to experiment with many different scenarios and COAs. Questions like
what will happen if some of the Blue CF actions are delayed or what will happen if the Shia or
Sunni decide not to participate after some period of time can be explored. By creating plots of
the probability profde of key effects under different scenarios, it is possible to explore the
differences in expected outcomes under different scenarios. This can be illustrated by changing
the input scenario. Suppose that it is believed to be possible to get other countries or external
organizations to reduce the support to the insurgents by some means, for example diplomatic or
military action. It is postulated that we could reduce the likelihood of such support to about 50%
but it will take 6 months to do this. The results can be modeled by changing the input scenario
of Fig. 4.5. In this case the first line of Fig. 4.5 is changed from [1.0, 0] to [1.0, 0] [0.5,26]. All
of the other inputs remain the same. Fig. 4.7 shows a comparison of effect of this change on the
suppression on IED attacks along Route B. The reduction in international support for the
insurgents at week 26 can cause a significant improvement in the suppression of the IED attacks
along Route B (and a corresponding improvement along Route A, not shown). The improvement
begins about 6 months after the reduction in international support or about 1 year into the
scenario. Thus, decision makers may wish to pursue this option.

§9 Probability Profile for Effects of Successful Di... l-"][n)Q

0 0 50 100 150

TIME

IED attacks on route B ate suppressed Hi Intl Support

IED attacks on route B are suppressed Lower Intl Support

Fig. 4.7 Comparison of the Effect of Different Scenarios

42

4.4 Observations and Comments
Creating TIN models of situations appears to help address the two challenges described in the

beginning of this paper. It provides a representation of knowledge about a situation that is
derived from an understanding of the capabilities of an adversary and the interactions and
dependencies of that adversary with the local and regional social, religious, and economic
condition. Once created, the TIN model can be used to conduct computational experiments with
different scenarios and COAs. In a sense, it provides a mechanism to assess various COAs based
upon comparisons of the change in the probability of key effects over time.

It is important to emphasize that the purpose of these models is to assist analysts in
understanding the potential interactions that can take place in a region based on actions taken by
one or perhaps many parties. It is not appropriate to say that these models are predictive. They
are more like weather forecasts, which help us to make decisions, but are rarely 100% accurate
and are sometimes wrong. To help deal with this uncertainty, weather forecasts are continually
updated and changed as new data becomes available from the many sensors that make a variety
of observations in many locations. Since these models cannot be validated formally, the
appropriate concept is that of credibility. Credibility is a measure of trust in the model that is
developed over time through successive use and comparison of the insights developed through
the model and the occurrence of actual events and resulting effects.

We believe that the techniques described in this paper can make an important contribution to
a variety of communities that need to evaluate complex situations to help make decisions about
actions they may take to achieve effects and avoid undesired consequences. The approach offers
at least three levels of analysis, a qualitative evaluation of the situation based on the graph that
shows the cause and effect relationships that may exist in the environment, and two levels of
quantitative evaluation. The first level of quantitative analysis is static, and shows, a coarse way,
what the likelihood of different effects occurring are given different sets of actions. The second
quantitative level is dynamic, and shows how the scenario may play out over time. The relevant
aspect is that the approach allows the inclusion of diplomatic, information, military, and
economic (DIME) instruments and highlights their cumulative effects.

This modeling approach can provide analysts with a rich vehicle for explanation and
computational experimentation with COAs so that important recommendations can be made to
the decision makers. The models can be used to illustrate areas of risk including undesired
effects, and risks associated with the amount of time it will take to achieve desired effects. It
should also be noted that these models are not likely to be created on a one time basis. It can be
expected that the understanding of the situation will continue to evolve requiring updates or even
new models to be created. Perhaps the best contribution is that the technique offers a standard
way to analyze and describe very complex situations.

43

ACKNOWLEDGMENT The invaluable advice that Dr. Susan Numrich, Institute for Defense
Analyses, provided throughout the conduct of this work is gratefully acknowledged.

4.5 References

111 L.W. Wagenhals, A. H. Levis, and Maris McCrabb, "Effects Based Operations: a Historical
Perspective for a Way Ahead," Proc. 8th Int'l Command and Control Research and
Technology Symposium, NDU, June 2003

[2] Jensen, F. V., Bayesian Networks and Decision Graphs, Springer-Veralg, 2001.

[3] Neapolitan, R. E., Learning Bayesian Networks, Prentice Hall, 2003.

[4] Chang, K. C, Lehner, P. E., Levis, A. H., Zaidi, S. A. K., and Zhao, X., "On Causal
Influence Logic", Technical Report, George Mason University, Center of Excellence for
C3I,Dec. 1994.

[5] Rosen, J. A., and Smith, W. L., "Influence Net Modeling with Causal Strengths: An
Evolutionary Approach", Proceedings of the Command and Control Research and
Technology Symposium, Naval Post Graduate School, Monterey CA, Jun. 1996.

[6] Agosta, J. M, "Conditional Inter-Causally Independent Node Distributions, a Property of
Noisy-OR Models", In Proceedings of the 7' Conference on Uncertainty in Artificial
Intelligence, 1991.

[7] Drudzel, M. J., and Henrion, M., "Intercausal Reasoning with Uninstantiated Ancestor
slodes
1993.
Nodes", In the Proceedings of the 9th Conference on Uncertainty in Artificial Intelligence,

44

SECTION 5

Service Oriented Architectures, the DoD Architecture Framework
1.5, and Executable Architectures

Lee W. Wagenhals and Alexander H. Levis

5.1. Introduction

The Department of Defense (DoD) Net Centric Warfare (NCW) concept is key to the
transformation of DoD capabilities in the information age. Developing both operational concepts
and systems that support those concepts based on ubiquitous information and data sharing across
traditional boundaries is at the heart of NCW and its enabler called Net Centric Operations
(NCO). This implies a shift from platform orientation based on tightly coupled or large-scale
monolithic systems to a spectrum of integration techniques that include loosely coupled systems-
of-systems. The DoD views architectures as the mechanism for designing solutions for this
transformation, and the use of Service Oriented Architectures (SOAs) has been selected as an
approach for achieving many of the goals of this transformation.

To support this transformation, DoD has issued a major revision in its DoD Architecture
Framework that enables the inclusion of services-based architectures. The result of this
transformation and DoDAF decisions is that there is much to analyze and many choices to be
made. The behavior and performance (e.g., quality of service) of the information sharing
approaches supported by SOA have not been proven within the DoD environment. It is well
known that the dynamic behavior of these systems is complex. Any engineering approach,
including those that are architecture based, requires an ability to determine stakeholder needs
(requirements) and techniques for evaluating potential solutions based on the projected
capabilities of the design to meet those requirements. DoDAF 1.5 as an architecture description
specification relies on static pictures (diagrams) and tables. These are capable of describing the
behavior of the architecture only in a limited way. If architectures are the mechanism for
designing solutions and the solutions are complex, there is a strong need for architecture
evaluation techniques that go beyond static diagrams and examine behavior and performance in
detail. Converting the architecture description into an executable model and applying evaluation
processes to that model can support this expanding analysis and evaluation need.

By intent, the DoDAF does not specify or provide a process for designing or evaluating
architectures. The methodologies, tools, techniques, and processes for design and evaluation
need to be selected and executed by the practitioners that will be creating and analyzing

45

architectures to support the transformation concepts. Such processes and techniques have been
developed, but the majority of the DoD community effort has focused primarily on the creation
of architecture descriptions without rigorous behavior and performance evaluation, because that
is what has been the required deliverable in most cases. Explicit evaluation processes are much
less evident.

The objective of this paper is to describe and illustrate the processes and techniques that can
support end-to-end design, analysis, and evaluation of architecture descriptions, particularly in
light of the shift in direction from designing large scale, tightly coupled or monolithic systems to
the more loosely coupled constructs needed to support the NCO vision. Section 5.2 summarizes
the background and challenges facing architectures including the motivation for architectures
and a discussion of some of the issues with services, SOA, integration, and coupling. Section 5.3
introduces an overall end-to-end process for generating architecture descriptions and supporting
evaluations using executable models. Three sub processes are described. The first is a process for
creating DoDAF compliant architecture descriptions that contain all the necessary information
needed to derive the executable model from the architecture description. Two variants are
discussed, one using object orientation with UML as the architecture description language, and
the other using Structured Analysis. Second, the techniques and processes for converting the
architecture description into an executable model are discussed with Colored Petri Nets serving
as the mathematical framework for the executable model. Finally, analysis and evaluation needs
and the techniques to address them using the executable model are described. Section 5.4
describes a recently completed case study that was tailored to illustrate the processes for creating
and analyzing a DoDAF 1.5 compliant architecture that incorporates NCO concepts. This case
study gives a detailed description of how a DoDAF 1.5 compliant architecture can be created, the
type of analysis that can be done based on that architecture description, the process for
conversion of the architecture to an executable model, and a process for analysis of the
architecture by using the executable model to address questions that cannot be answered by the
architecture description alone. Section 5.5 concludes the paper with observations and challenges.

5.2. Background And Challenges
In 1998, the Department of Defense released and approved the Command, Control.

Communications, and Computers, Intelligence, Surveillance, and Reconnaissance Architecture
Framework (C4ISR AF) Version 2.0. Motivated by growing interoperability challenges, DoD
viewed architectures as the means to analyze interoperability solutions rather than attempting to
deal with detailed design descriptions which can change very rapidly. The goal was to
standardize the manner in which DoD organizations represented the descriptions of architectures
and to provide a common framework for coping with uncertainty, change, and complexity in
requirements, missions, organizational structures (e.g., joint and coalition operations), and
technology. Organizations were directed to create architectures to support the analysis of
requirements and capabilities, budgetary needs, and acquisition plans and processes.

46

As military challenges expanded, the need to be able to respond to a variety of situations by
assembling coalitions of different components that may be geographically dispersed became a
major driver for a transformation of military capability. The notion of composing forces using a
"plug and play" construct where component systems can plug into an Internet-like Global
Information Grid (GIG) was postulated and NCW was established as the overarching concept.
Net Centric Warfare was focused on generating combat power by networking the warfighting
enterprise, and making essential information available to authenticated, authorized users when
and where they need it. This ability is at the core of net-centricity and essential to achieving Net
Centric Operations (NCO). Migrating to the NCO concept poses several challenges. It implies a
shift in policy from a need to know to a need to share. It means carefully reexamining the
tradition of building large scale monolithic system constructs that do excellent jobs in their own
right, but pose challenges when an attempt is made to interoperate many of these systems.
Developing more loosely coupled constructs is considered essential to the information sharing
goals. To address these challenges, DoD developed and issued a Data Strategy and released the
Net Centric Operations in Warfare (NCOW) Reference Model Version 1.1. The NCOW RM
supports the concept of services and SOA as a means for achieving the goals of NCO. As the
NCOW RM was being developed, DoD worked to update the C4ISR Architecture Framework
Version 2.0 by releasing the DoD Architecture Framework (Do- DAF) Version 1.0 in 2004. This
version made only slight changes to the basic construct of its predecessor. However, in April
2007, DoD released the DoDAF Version 1.5 which included important changes that respond to
the transformation to NCO.

The DoDAF provides the guidance and rules for developing, representing, and understanding
architectures based on a common denominator across DoD, Joint, and multinational boundaries.
The DoDAF is intended to ensure that architecture descriptions can be compared and related
across programs, mission areas, and the enterprise. While the DoDAF provides a standardized
format for describing architectures, it does not provide a procedure for developing the artifacts
and data that are used in the description. DoDAF 1.5 is a transitional version that responds to the
DoD's migration towards NCW. It applies essential net-centric concepts in transforming the
DoDAF and acknowledges that the advances in enabling technologies—such as services within a
SOA—are fundamental to realizing the Department's Net-Centric Vision. DoDAF 1.5 maintains
the standard views of its predecessors, the Operational, System, and Technical Standards Views,
so as to maintain backward compatibility with the DoDAF 1.0, but it extends the System View
now calling it the Systems and Services View. Each view is composed of standardized products.
Within the Systems and Services View two products include extensions to support the
description of services and SOA constructs. These views are the Systems and Services
Functionality Description (SV-4a and b), and the Operational Activity to System and Services
Functionality Traceability Matrices (SV-5a, b, and c). Each of the other SV products includes
techniques for explicitly representing services in addition to systems. There is a considerable
amount of flexibility in describing services and SOA in the DoDAF 1.5.

47

There are many organizations that are designing and implementing systems using SOA. and
there are many SOA variants. SOA is an approach to defining integration- architectures based on
the concept of service. SOA is not the implementation of a specific technology. A service is a
collection of applications, data, and tools with which one interacts via message exchange. The
services are (1) defined using a common language and are listed in a registry, (2) distributed
across the network, but are computer/platform independent, and (3) independent of the
communication protocol they utilize. Web Services is one example of services that is focused on
the use of browsers to access and provide data and implement processes, but there are other
concepts that link together services to support processes. SOAs allow organizations to
communicate data without intimate knowledge of each other's IT systems. As DoD migrates
from the past point-to-point approach for data exchange to a service approach, it has defined a
set of core infrastructure services for the GIG. These comprise the Net-Centric Enterprise
Services (NCES), which also are the Assistant Secretary of Defense (Networks and Information
Integration) program for creating them. Other non-NCES services are expected to be developed
under other programs.

There are many definitions for SOA. One definition is as follows [Hurwitz et al. 2007: 27].
"A SOA is an architecture for building business applications as a set of loosely coupled black-
box components orchestrated to deliver a well-defined level of service by linking together
business processes." According to this definition, SOA is for building business applications (that
is applications to support business processes), not all software. SOA is a black box component
architecture, hiding complexity, and enabling reuse of existing applications via "adaptors." In
other words, one can encapsulate existing applications and provide an adaptor that provides a
standard interface. SOA components are loosely coupled (simplicity and autonomy). Each
component carries out a small range of simple services. Components can be combined in a
variety of ways. Perhaps the key concept is that SOA components are orchestrated to link
together business processes. This orchestration concept can deliver very complex process
services and can adapt to maintain specified levels of service. It provides the flexibility, but also
increases complexity in terms of both components and messages.

There is a lot of "stuff going on in a SOA. It isn't enough just to make a set of adaptors for
existing applications to make the processes work. SOA requires the creation of several software
components, some that make up or support the business processes and others to ensure that they
work properly and reliably. The SOA Registry contains reference information about where the
components of the SOA are located (an electronic catalog for components) and detailed
specification about how to interface with each service. Governance processes must be
established to ensure the specifications are published and maintained in the Registry. A
Workflow Engine is needed to define the business processes that connect people to people,
people to processes, and processes to processes. These process descriptions also are placed in the
Registry. Whenever a business process is needed, a Service Broker connects the needed services
together using the information in the Registry. An SOA Supervisor ensures that all of the
platforms that support the SOA (the plumbing) are running in a consistent and predictable

48

manner, providing the required service levels. The supervisor monitors all of the running
business processes and takes corrective action, if the quality of service is not being met. Finally,
an Enterprise Service Bus (ESB) may be required to transport the plethora of messages that
passes between the software components so that the end-to-end message passage occurs reliably.
Indeed, a full SOA implementation is very dynamic.

The introduction of SOA as the solution to the DoD Data Strategy for assured, secure,
authenticated information sharing and the need to incorporate services and SOA in the
architecture descriptions create greater analysis and evaluation challenges than those faced prior
to SOA. The architecture description mandated as the mechanism for describing solutions for
transformation provides a static representation of highly dynamical systems, but quality of
service, including performance, is a major requirement and concern for many DoD systems and
capabilities. We therefore need to go beyond the typical architecture descriptions to a more
complete examination of the logic, behavior, and performance of proposed systems.

Figure 5.1, which was first presented in Wagenhals, Haider, and Levis [2003: 281], provides
a framework for a process for achieving a reliable architecture description with rigorous
evaluation. In addition to the architecture description and the evaluation outputs. Figure 1 shows
the feedback that occurs from the development of the executable model and its use both in
evaluation and in the refinement of the architecture design. This diagram provides a high level
view of a process for building and evaluating concepts with the help of an executable model of
an architecture description. Three processes need to be addressed: (1) a process for creating the
architecture description (DoDAF does not specify any process), (2) a process for converting the
architecture description to the executable model and (3) a process for using the executable model
for analysis and evaluation.,

Required Behavior and Performance

Static Vieyvs

ARCHITECTURE
DESIGN

/ -

'••
' I
I - •

\

EXECUTABLE

MODEL

CONSTRUCTION -

Executable f

EVALUATION
OF

ARCHITECTURE

Evaluation
Results

-T

Errors

Logical.
Behavior.
Performance.
Effectiveness
Analysis and
Evaluation

Changes

DoDAF
•>- Test-Bed for Design

DoDAF
PRODUCT

GENERATION

To Design Systems,
•Conduct Experiments.
Demonstrate Capability

Fig. 5.1: Architecture Design and Evaluation.

49

The architecture creation process relies on one of two prevalent methodologies. Object
Orientation and Structured Analysis. Either methodology can produce all the information needed
for conversion to the executable model [Wagenhals et al., 2000] and [Wagenhals, Haider, and
Levis, 2003], but care must be taken to follow procedures that ensure all the needed data are
captured. A key concept is that all elements of the executable model must be traceable to
elements in the architecture description. As more is learned about the behavior and performance
of the architecture from the creation of the executable model and the detailed analysis of
behavior, any changes detected using the executable model are used to modify the architecture
description. Discrete event dynamical system models are appropriate for the executable model,
and the Colored Petri Net (CPN) is a sufficiently general and rigorous model
[http://wiki.daimi.au.dk/cpntools/cpntools.wiki].

Other modeling approaches such as State Machines, Queuing Models, Automata, etc. can be
used, but CPNs subsume all of these. CPNs were chosen because they are graph theoretic,
executable, and enable both simulation and analysis of properties. They are rigorous in the way
they handle concurrent and asynchronous events. Once created, the executable model can be
used to support logical, behavioral, and performance evaluations as will be described in Section
5.4.

5.3. Process Descriptions
Wagenhals et al. [2000] developed and described a process for creating the DoDAF

Operational and System Views using Structured Analysis. A process for using Object
Orientation and the Unified Modeling Language (UML) was described and illustrated in
[Wagenhals, Haider, and Levis, 2003]. A model of this UML process is shown in Fig. 5.2. The
process evolves through six stages. Stage 0 initiates the effort and includes the articulation of the
purpose and scope of the architecture, as well as the identification of background documentation
needed to create the architecture. Stage 1 focuses on developing the operational concept.
Organizations and their relationships are defined in Stage 2 along with an initial sketch of the
system nodes and links of the Systems and Services View. Stage 3 involves a full analysis of the
Operational View. If Object Orientation is used, both structure and behavior diagrams are
developed to understand and describe the operational activities carried out by organizations and
the information that needs to be generated and exchanged. If Structured Analysis is used, this
analysis is accomplished using activity, data, rule, and dynamics models. Stage 3 also turns to
the Systems and Services View by developing mappings from the operational activities to the
systems, services and system functions. In Stage 4, summary Operational View products are
generated, and the detailed analysis effort shifts to the Systems and Services View. The same
Object Oriented or Structured Analysis techniques are used, but the focus is on system
components and their functions along with system data that is exchanged. In the last stage. Stage
5, the architect extracts data and concepts from the Stage 4 analysis and generates system and
service interface descriptions, the communications infrastructure description, the system and
service performance parameters documentation, and the system, service, and technology

50

evolution descriptions. Both Structured Analysis and Object Orientation based on UML can
produce a complete architecture description conformant to the DoDAF products.

Both will describe the same operational activities, information exchanges, operations nodes,
etc. in the Operational View, and the same systems, services, nodes, interfaces, data exchanges,
and communications systems, in the Systems and Services View. When using Structured
Analysis, the key models are activity models (IDEFO or Data Flow Diagrams), data models (e.g..
IDEF1X or Entity Relationship Diagrams), rule models, and dynamic models (e.g., state charts
and event traces). If Object Orientation is used, structural diagrams (class, component, and
deployment diagrams) and behavior diagrams (activity, state machine, and sequence diagrams)
are developed. Some of the UML products look different than products developed using
Structured Analysis models, but the concept content is the same.

In following the process described in Figure 2, the development of the architecture must
adhere to certain design constraints in order for the architecture data to be converted into the
CPN executable model using the techniques described in Wagenhals et al. [2000: 230- 236] and
Wagenhals, Haider, and Levis [2003: 275- 278]. This means that both the Operational and the
Systems and Services Views must be designed to carry out the operational concept.

Doclruteand TTP»
D4

Evolving Technology
and SystemH

011

Fig. 5.2: DoDAF Architecture Design Process.

51

The views must include all activities or functions and their relationships, define all of the
information or data exchanges (messages), and express the logic of each activity or function.
This architecture data are used to produce the CPN with the functions being modeled as
transitions and the relationships between the functions using directed arcs and places. The color
set declarations for the tokens in each place are obtained from data descriptions, and the logic-
descriptions are used as arc inscriptions or guard functions. These architecture data are contained
in both Structured Analysis and UML models, although the format is different. This means that a
Structured Analysis derived CPN will not appear to be identical to one derived from a UML
description of the same architecture, but since the same functions, relationships, data, and logic
will be described, the behavior of the two should be identical. Concordance must be maintained
wherein consistency and completeness are assured across all of the data and the descriptions that
are created using the various UML or Structured Analysis diagrams.

Once the executable model has been created, it can be used to address, in part, the following
layered questions: (1) Is the architecture logically correct? (2) Does the architecture exhibit the
desired behavior? (3) Are the instantiations of the architecture in the Systems and Services View
consistent with the Operational View? (4) Do instantiations of this architecture exhibit the
desired performance characteristics? (5) Do systems built in conformance to the architecture
provide the desired capability? (6) Can we analyze alternatives?

The construction of the executable model, especially of the one based on the operational
view, provides the basis for checking the logical consistency and correctness. The first step is to
validate the logic of the model. The static views describe the structure, data, and rules that
manipulate that data to accomplish tasks. We need to verify that the combination of rules, data,
and structure "works," e.g., the rules are consistent and complete. This can be accomplished by
executing the model to be sure that it runs properly. In a sense, we are "debugging" the
architecture. Any errors found must be corrected in the appropriate static views to preserve
traceability.

We can execute the model using notional inputs to determine whether activities do indeed
use data specified by the information exchange requirements. "Flaws" can result in either an
incorrect response or a deadlock. We can test the sequence of events; i.e., does the executable
model produce the sequences specified by the sequence diagrams? And we can see whether the
execution of activities is a correct implementation of the operational concept.

Once we verify that the executable model runs properly we can examine the behavior of the
architecture; this is an examination of the functionality of the architecture. The behavior of the
executable model and the behavioral diagrams should correlate. This behavior evaluation has
several facets: Does the architecture produce all the correct output for a given stimulus? Does the
information arrive at the right functions in the right sequence, i.e., are the inputs processed in the
required way? The behavior of the architecture can be compared to the user's requirements.

52

The behavioral correctness can be approached from two perspectives: the operational
perspective and the systems and services perspective. For the operational perspective, scenarios
are developed and executed to determine whether the desired behaviors (as reflected in the state
charts or event traces) are obtained. What is of particular interest here is the identification of
undesired behaviors or the possibility of undesired states. Note that state transition descriptions
(OV-6b and SV- 10b) and the event trace descriptions (OV-6c and SV- 10c) capture only a few
of the desired behaviors. A real system may exhibit many more behaviors and the use of an
executable model is one way of determining them. If CPNs are used for the executable model,
then algorithms based on invariants can be used to relate the structure of the model to its
behavior [Valraud and Levis, 1991].

Once behavioral correctness has been established, performance can be examined. With
DoDAF architectures, performance of the implementation of an architecture can be evaluated
only through the use of the executable model derived from the architecture data in the systems
and services view. The performance parameters of the systems and services used to implement
the architecture are obtained from the Systems/Services Performance Matrix (SV-7). Scenarios
need to be developed that are consistent with the use cases. Data collected from simulation can
be used to compute relevant Measures of Performance (MOPs). CPNs offer more than just
simulation to support the analysis and evaluation. CPNs in general (and CPNTools [2008] in
particular) allow behavioral properties to be verified by analysis without resorting to simulation.
State Space Analysis is an analysis technique that provides a variety of properties about a CPN
[Kristensen, Christensen, and Jensen, 1998: 122-129]. State Space Analysis techniques have
been implemented in CPNTools. While each simulation run of the executable model shows
particular sequence or trajectory of processing for a given input set. State Space Analysis shows
all possible trajectories for a given input. State Space Analysis provides a detailed look at all
possible sequences of states that can occur given a specific input set. Thus, it can be used to see
if it is possible for a set of inputs to generate undesired sequences or outputs. In addition, State
Space Analysis can determine several important properties of the state space of a CPN model.
These include statistics such as the total number of states and transitions between states, liveness
properties such as the number and identity of final states, and the number and identity of CPN
transitions that can never fire in any sequence. The analysis determines boundedness properties
that identify the minimum and maximum number and type of tokens (a CPN representation of an
instance of data, e.g., messages) that occur in each place. It also captures the marking
(distribution of tokens) for any state including the final states so that these can be examined.
Figure 5.3 illustrates the relationships that can exist between the Architecture Description and its
executable model as the latter is used both in simulation and State Space Analysis.

53

Questions
Hypothesis
Scenario

Computational Experimentation

Architecture Description

Refinements

Executable Simulation
 1

Refinements

Static Structural and
Behavioral Representation

Logical. Behavioral.
Performance Evaluation
and Visualizations

Executable State Space Analysis Evaluation of Properties

Fig. 5.3: Architecture Evaluation with Executable Model.

It is important to understand that building the executable model does not provide in itself an
evaluation. The logical, behavioral, and performance aspects described above outline the steps of
a process for evaluation, and the executable model becomes an important tool in that process.
Each step requires more effort and additional information. One advantage of this staged approach
is that one does not need to enter the details of the systems, a very laborious and costly
undertaking, until the previous stages are completed satisfactorily.

5.4. Case Study
A Case Study has been created to demonstrate the process for completing a full DoDAF 1.5

compliant architecture. It is based on a hypothetical operational concept for a new Theater
Ballistic Missile Defense (TBMD) system called the Airborne TBM Intercept System (ATIS). It
is not an accurate description of such a system—it has been created for the express purpose of
illustrating the architecture design process, especially the case where incorporating new
information technology (e.g., net centric concepts and a modified interceptor missile) in existing
large legacy systems provides a new capability. It was assumed that the architecture will be used
to inform decision-makers about the nature of a new TBMD system and some of the tradeoffs
involved in building one.

All DoDAF 1.5 products were produced using the previously described process; both Object
Orientation (using UML) and Structure Analysis were used to illustrate the techniques for both
methodologies. An Executable model using CPNs and the CPNTools software was created for
the Operational View. Logical, behavior, and high level performance evaluations were
accomplished using the simulation capabilities of the tool. We describe the process for creating
the DODAF 1.5 All View 1 product, plus all of the Operational and System and Services View
products. We will illustrate the conversion to the CPN and the use of the CPN to perform the
analysis.

As shown in Fig. 5.2, the first part (Stage 0) of the process involves the collection of data and
information that is pertinent to the architecture. This includes any description of the operational
concept, potential operational activities from authoritative sources such as the Universal Joint
Task Lists [2002], doctrine, tactics, techniques, and procedures, etc. It also includes information
about systems, services, and communications networks. During Stage 0, it is imperative that the

54

architect or architecting team establish the purpose and the scope of the architecture description.
The purpose defines the questions that the architecture description will answer and the time
frame of the architecture. In the case study, the purpose was to develop an understanding of the
arrangement and interoperation of organizations and systems that support the concept of
operations for ATIS. The architecture is designed to determine if the operational concept can be
made to work and to assess the impact of evolving this system into the Net Centric Environment
including its evolution to incorporate Net Centric Enterprise Services and create special services
of its own. An additional goal is to be able to assess the ability of the proposed system to destroy
incoming TBMs based on the capabilities of Adversary A and B to launch them. Since we have
knowledge about the individual TBMs, but do not know exactly how many TBMs each
adversary has or how many can be launched at one time, we need to bound the problem and
define how many ATIS assets will be needed to give us the capability to defeat them.
Supplementing the purpose is a point of view; in this case, it is that of the ATIS Commander
who would understand all of the operating procedures and know the basic systems. The scope
includes a time frame between 2010 and 2015. All of this initial analysis, i.e. purpose, scope, and
reference data will be cataloged in the All View Overview and Summary Information (AV-1).
After the architecture has been completed the results of the analysis also will be included in the
AV-1. I

In Stage 1 of the basic process, the architect develops the operational concept and creates
both a graphic and a textual description. This becomes the OV-1, Operational Concept Graphic
product. Figure 5.4 show the Operational Concept graphic. Note that the elements of the graphic-
represent types of operational nodes not systems. Of course, in a system like ATIS, the
operational concept will rely heavily on systems (Radar, Interceptors, Command Centers, etc.),
but it is important not to constrain the design of the material solution by specifying exact systems
in the operational concept. Indeed, the concept could support a nontraditional airborne laser
"interceptor" where the "missile" is a laser shot. This OV-1 would not need to be modified
significantly to support this material solution. Note that the boundary of the ATIS architecture
has been depicted in the graphic to distinguish what the ATIS architecture is composed of as well
as the entities that will be external to ATIS but that will interact with it. The textual description
explains that the operational concept is based on the use of existing legacy systems that will be
given modifications to support the concept of intercepting Tactical Ballistic Missiles using
modified interceptors and interceptor missiles.

55

LAUNCH
WARNING
NODE

THREAT/TBM

System
Boundary

HIGHER
HEADQUARTERS

Fig. 5.4: OV-1, Operational Concept Graphic.

In Stage 2 of the basic process, the architect determines the organizations that will execute
the operational concept and the relationships that will exist between those organizations. Figure
5.5 shows the OV-4, the Organization Relationship Diagram. The UML format is shown. If
Structured Analysis is used, the resulting diagram would be very similar. It would not have the
UML symbology for the relationships between the organization, but rather different styles of
lines to show the different types of relationship. Understanding these relationships is key to most
military command and control architectures.

The organizations will provide the operators who are responsible for performing the
operational activities that will be defined in other OV products. These operational activities will
be allocated to what are called operational nodes in the Operational Views. At this point it is
possible to determine what the operational nodes will be. The designation of operational nodes
may be based on the organizations that will carry out the operational activities at those nodes or
on logical groupings of operational activities that will be carried out by one or more
organizations. In the case study, four ATIS operational nodes were created: a Command Node, a
Sense Node, a Control Node, and an Intercept Node. In the case study, these operational nodes
have a one-to-one mapping to the organizations, but that will not always be the case. In selecting
organization, the architect also must be aware of the assets (systems) that the organizations
possess and use. This understanding of the organization along with the operational concept can
be used to create an initial sketch of the systems and services view SV-1. While this is only a
sketch, it can start the process of creating the SV products. In the case study it was assumed that
existing systems such as Radars, Command Centers, Control Centers, and Interceptors would be
used as the systems. Figure 5.6 shows an initial sketch of those Systems using the UML
deployment diagram. A similar sketch can be created without using UML.

56

The process now shifts to Stage 3, which has two foci. The first is on a detailed analysis and
description of the operational view. The effort describes the operational activities and their
relationships, the operational information, and the dynamic behavior of the operational view. The
second focus is on the System and Services View and mapping the operational activities to the
systems, system functions, and services that will support those activities.

«org »
TBM Launch

Warning Center

Suwxxts «org»

HiqherHQ 1 1

i

i
OPCON

«org»
ATIS Command

1
TACON

1
TACON

1 " i

«erg»
ISR

Supporting «org»
Controller 1 ' 1

i
1 •

TACON

«org»
Interceptor

Reporting,

Fig. 5.5: OV-4 Organization Relationship Diagram

The Operational View models and products of Stage 3 include the Activity Model (OV-5),
the Logical Data Model (OV-7), and the behavior descriptions including the Operational Rules
Model (OV-6a), the Operational State Transition Description (OV-6b) and the Operational Event
Trace Description (OV-6c). These products can be represented using either UML diagrams or the
various models that are traditionally used in the structured analysis methodology (activity
models, data, models, rule models, and dynamic models).

Figure 5.7 shows a UML activity diagram that was created for the case study. The activities
were derived from a functional decomposition that was created to represent the type of
information that is in the Universal Joint Task List [UJTL, 2002]. Only the leaf level tasks were
used to create the diagram. If the architect allocates the operational activities to the operational
nodes, then the activity diagram can be created using swim lanes, one swim lane for each
operational node. Figure 5.8 shows this version of the OV-5. Note that there may be more than
one activity diagram for OV-5. In the case study, there were two, one for Adversary type A and
one for type B.

57

Threat. <Sy<K^»

TBM^I

 SdSQi
j<3w» la** Fore*

HHO System S|

•
-SrtN*i»-- R*l*i Sitt

| AN/MIS €
L /

 t.Ji.ii Alls CaMmlta

Operator sjj

Control and

Display

Controllefi!
Database

\

t
Awborrw irueicePHX

Sensor (fl Weapon |y

| Missile l||

V

Fig. 5.6: Initial Sketch of System Nodes and System.

My Jr
Issue Aiiih(iiu.i!iuii , 1 \

Issue Suiv Uii

|!H Kill-a-

rrack Threat

I
Generaie \

Tac Pic

Issue Order

issue Surv Oil •"

T
Conlrol Engage

Track

Generate

Tac Pic ,

Issue Surv Oil

Assess Kii(>ess»

Fig. 5.7: Basic UML Activity Diagram (OV-5).

58

• Operational Node •

HHO HEMS SfftM ^mniarvl Control Intercept

/ ISiU« \
\ Au^honratioin./'

\Fly (mto AORp

;^B* Killed h>

•/"" Process
\ Authorisation

J^ Isw* Surv_D<r

Track Threat

Generate Tac
\ fit

\

•f Issue $urv_0ii

n
I Track Intrcptr s

v and Threat ,
T

(Generate Tac •
'\ Pic. J

«

•'

Issue Order

Issue Surv Dir

7
Control

Engage

Assess K.ll --« »

(, Retur Return to Base

•

Fig. 5.8: Activity Diagram OV-5 with Swim Lanes.

Once the activity diagrams with swim lanes have been created, it is a simple matter to
convert them to UML sequence diagrams that can be used for OV-6c. Figure 5.9 gives an
example from the case study. Note that each arrow that crosses a swim lane in the OV-5 becomes
a message between the life lines of the UML sequence diagram. We have provided labels for
these messages.

In UML it is easy to convert a sequence diagram to a communications diagram. These have
more of a structure like appearance than the sequence diagrams. They describe links between the
objects* life lines. Each link will be an instance of an association that exists between the

59

classifiers of each object. Figure 5.10 shows the UML communications diagram that corresponds
to the sequence diagram of Fig. 5.9.

Threat

••-«OpN<xk» '

Sense
<--OpNode»

Command
«OpN<xte»

Control

Incoming

Authorizatior

In firing rjWQjj

Destroyed

Survi II ance Directive

Sun*

Survitllance Directive

Tactical Picture
 >

» ~ Tactical Picture,

lance Dirtctivc

Tactical Picture,

(lew)

i pdate)

Fig. 5.9: UML Sequence Diagram used for OV-6c.

UML does not have a "rule model" per se. OV-6a is a description of operational rules and
must be consistent with the other diagrams. The rules can be created for each operational node.
By using the activity diagram with swim lanes, it is straightforward to create rules in the
Structured English form of "IF (conditions), Then (Condition or Action), Else, (Condition or
Action)." By looking at the arcs that cross swim lanes into an operational node and the activities
and their output that are a result of those inputs, one can describe the behavior using Structured
English. For example, the rules for the Sense node in the case are:

Rule 1: If Surveillance Directive (Track Threat) and Threat Status (Incoming) then
Track Object and Generate Tactical Picture (new).

Rule 2: If Surveillance Directive (Track Intercept) and Threat Status (Incoming) then
Track Object, Associate Threat ID, and Int. ID and Generate Tactical Picture
(engaged).

Rule 3: If Surveillance Directive (Assess Kill) then Track Objects, Perform Kill
Assessment, and Generate Tactical Picture (Killed).

These rules indicate some of the attributes that the operational information exchanges must
have. These operational information exchanges and attributes will be described in the logical
data model (OV-7). With UML it is possible to create state machine diagrams to describe the
behavior of instances of classifiers. These can be used to provide OV-6b. In the case study, four
state machine diagrams were created, one for each operational node. One must define the various

60

states for the operational node and then describe the events (usually the arrival of a message or
the completion of an activity or task) that cause the transitions between the states. The behavior
described in each state machine diagram should match the flows in the activity diagram with
swim lanes and the sequence diagrams. Figure 5.11 shows the state machine diagram for the
Sense operational node.

«OpNodt»

:HHQ

1. Authorization

«OpNod«»

Threat

3., 10., 17. •*., ii., IO. tactical nciuier

ThreatStatus
 >

«OpNod«»
:Sense

«OpNodt»

Command . 2., 8.. 16 Surveillance

14 Weap

/ >v Directive

on i /
i /
i /
i /

/ 4., 11.Tactical Pictured _ „_ _
/ ^v 7. 15. Report

'9. Interceptor ^v 5

Status \.

., 12. Order

"OpN «!•>:• 6. ,13. Control to Interceptor «OpNod<»

: Control

Fig. 5.10: UML Communications Diagram.

Each element of the UML behavior diagram represents an instance of a classifier. A UML
class diagram can be created based on the behavior descriptions that created for the OV-5 and -6
series. Figure 5.12 shows the UML class diagram for the case study. Note that classes have been
created for each operational node. The operational activities are represented as operations of the
classes. Association classes are used to describe the operational information that is exchanged
between operational nodes. The association classes enable the architect to describe the attributes
of each operational information exchange. Attributes have been included for each operational
node. These attributes represent operational information that each operational node knows or
stores in order to carry out the operational concept.

Sense Node

Tactical Picture (Killed)
1

-* Standby

1 Surveillance Directive [Track Threat) and
[Threal Incoming)

Tactical Picture Updated i Sensing

Do: Track Objects

Ob|ect Track

Tactical Picture
Generation

Surveillance Directive [Track Intercept)

urveillance Directive [Assess Kill)

Fig. 5.11: State Machine Diagram for the Sense Node (OV-6b).

61

Threat

ID
Status

• Enter AOR ()
I* Emit Status!)
+ Be Destroyed ()

threat Status

• status: via emissions

Missile

Sense Node

• ThreatID: int
•ThreatStatus: data

+ Track Object ()
+ Generate Tactical

Picture ()
+ Assess Kill ()

Intercept Status

Intercept ID int

Intercept Node

Intercept ID: int
ThreatID: int

HHO

• Authorization

t IssueAuthonzation (I

E
Command Node

Authorization: str

• Process Authorization
+ lssu»_Order()
+ Issue^SurvDirec ()

Intercept Report

• trackiD: int
• Intercept ID: int
• EnemyResponse: str

Authorization

- state

Order

•trackiD: int
-Intercept ID: int

' - OrderComent str

Act Report

;• trackiD int
• Intercept ID int
• ReportContent: int

+ Engage!) Controltolntercept

trackiD: int
Intercept ID: int
Action: str

Control Node

intercept ID: int
ThreatStatus: str

+ issue Action |)

Fig. 5.12: Class Diagram.

The class diagram can be used as the Logical Data Model (OV-7) by hiding the operations. It
can also serve the basis for the Operational Node Connectivity Description (OV-2). In this case
the attributes are hidden, operations are shown, and each association class is given an operational
information exchange identification number. These identification numbers will be used in the
Operational Information Exchange Matrix (OV- 3). The case study OV-3 is shown in Fig. 5.13.
It shows each operational information exchange and the operational node and activity that
produces it and the operational node and activity that receives it. OV-3 reflects the analysis
shown in OV-5, the -6 series, and -7.

The OV products that have been shown are based on UML diagrams. If the Structured
Analysis methodology is used, the same architecture data would have been created, and all of the
OV products except for OV-5 and OV-7 would be the same. OV-5 and -7 would have a different
appearance because different modeling languages would be used. Figures 5.14 and 5.15
respectively show the OV-5 and OV-7 based on IDEFO and IDEF1X modeling languages.
Structured Analysis is based on functional decomposition; therefore, the IDEFO would follow the
activity decomposition provided by the UJTL. Figure 14 shows the decomposition of the context
(A-0) page; the full model had three levels. Note that the IDEF1X description of the operational
information exchanges and their attributes is the same as described in the OV-7 based on UML.

62

Description Producer Consumer Performance Security

Needlme
ID

info
Exchange
ID

Name Op Node Activity Op Node Activity Timeliness Protection

1 1.1 Threat Status
(Radar
Return)

Threat N A Sense Sense (Track
Threat
Assess Kill)

Real Time none

2 2.1 Threat Threat N A Intercept Engage Real Time none

3 3.1 Authorization HHO N A Command Process
Authorization

5 seconds Secure

4 4.1 Tactical
Picture

Sense Generate
Tactical
Picture

Command Issue
Intercept
Order

5 Seconds Secure

K 4.2 Tactical
Picture

Sense Generate
Tactical
Picture

Control Control 5 Seconds Secure

5.1 Surveillance
Directive

Command Issue
Surveillance
Directive

Sense Sense (Track
Threat
Assess Kill)

5 seconds Secure

: 6.1 Order Command issue Order Control Control 5 Seconds Secure

7.1 Report Control Control Command Issue
Surveillance
Directive

5 Seconds Secure

9 8.1 Control to
Interceptor

Control Control Intercept Engage 5 Seconds Secure

10 9.1 Interceptor
Report

Intercept Engage Control Control 5 Seconds Secure

THREAT-

Fig. 5.13: OV-3 Operational Information Exchange Matrix.
AUTHORIZATION

SURVEILLANCE-DIRECTIVE

£
SENSE

A1

TACTICAL-PICTURE

K7

P. 1

COMMAND

A2

ORDER

P. 2

NEW-TRACK
 I ACT

REPORT

 I— l3
». NON_ENGAGED_THREAT

+DESTROYED_THREAT

*• LEAKED THREAT

Fig. 5.l4:OV-5 Based on IDEFO.

63

As Stage 3 nears completion, it is possible to start the design of the Systems and Services
View. This work should not begin until the Stage 3 of the Operation View is complete because
the Systems and Services View shows how the material resources will support the operational
view. The first step is to develop the mapping between the operational activities and the system
functions, the systems, and any services. These mappings are described in the SV-5 products.
Producing these mappings is a systems engineering activity involving trade-offs between
different potential configurations of systems and services to support the operational view. In the
case study, it was assumed that the architecture would rely on as many legacy systems as
possible. In addition, one of the questions to be explored with the architecture was the impact of
employing services within the architecture. The systems and their system functions were
fabricated for the case study. The basic systems have been shown in the initial sketch of Figure
5.6. For services it was assumed that three of the Net Centric Enterprise Services being
developed by DoD will be available. In addition, it was assumed that a Global Ballistic Missile
Warning Service would be available. Two ATIS specific services were postulated: a tactical
picture service capable of providing tactical picture of the TBM engagements and a special kill
assessment service that could support the determination of success of each TBM engagement.

AUTHORIZATION /5
THREAT/1

J
SURVEILLANCE-DIRECTIVE 12

Track-ID
Threat-Status

Interceptor-ID (FK)

Time sensed

Time engaged

Track-ID (FK)
Interceptor-ID (FK)

Surv-Dir-Content

TBM Data

is reported in

1 i >i~ constrains the construction of

is consistent with

r~
I

ORDER /4

constrain the generation of

TACTICAL-PICTURE /3

Track-ID (FK)

Interceptor-ID (FK)

TP-Update

Track-ID (FK)

is used for the generation of Interceptor-ID (FK

ata (FK

Order-Content

Order-NB(AKI)

REPORT /6
can trigger

results in

triggers

Track-ID (FK)

Interceptor-ID (FK)

Report-NB(AKI)

r

fj Report_Type

CONTROL-TO-INTERCEPTOR/7 ACT-REPORT /8 INTERCEPTOR-REPORT/9

to engage Track-ID (FK)
Interceptor-ID

Action

Track-ID (FK)

Interceptor-ID (FK)

Report-Content

Track-ID (FK)

Interceptor-ID (FK)

Enemy-Response

Owned Attributes in Italics

Fig. 5.15: OV-7 Based on IDEF1X

Figure 5.16 shows a matrix that was generated to map the operational activities to existing
systems and the system functions they provide. Figures 5.17, 5.18, and 5.19 show the three
DoDAF 1.5 SV-5 products. SV-5b and c are new products in DoDAF 1.5. SV-5b maps
capabilities defined as a grouping of operational activities to system and their system functions.
SV-5c maps the capabilities to services. Note that the latter two SV-5 products allow the use of a

64

stop light color coding system to describe how well each system or service supports the
operational activity and thus the capability. It is important that these products be provided with a
time stamp or time window as the ability of a system or service to support a capability may
change over time. In the case study example the SV-5b and c were developed assuming an initial
operational capability in 2010. Thus some of the system functions and the services will not be
fully capable in that time frame. Instead of a stop light system, a grey scale has been used to
reflect the readiness of the system function or service with light, medium, and dark grey meaning
good, partial, and non-satisfactory capability, respectively. The SV-5b and c products are shown
in Figs. 5.18 and 5.19.

Activities System Functions System

Track Objects Search Sector
Detect Objects
Identify Objects
Track Objects

Missile Tracking and Surveillance RADARs
(AN/MTS)

Generate Tactical Picture Generate Tactical Picture Data Missile Tracking and Surveillance RADARs

Create Tactical Picture
Maintain Threat Status
Display Tactical Picture

TBMS (Tactical Picture Service)

Display

Assess Kill Detect Objects
Identify Objects
Track Objects
Assess Status

Missile Tracking RADAR
Kill Assessment (Weapon Effects Analysis)

Service

Process Authorization Parse Authorization
Relay Authorization
Display Authorization

TBMS

Display

Issue Surveillance
Directive

Generate Surveillance Directive
Display Surveillance Directive
Select Surveillance Directive

TBMS
Display
Operator Client

Issue Intercept Order Generate Intercept Directive
Display Intercept Directive
Select Intercept Directive

TBMS
Display
Operator Client

Control Display Local Tactical Picture
Plan Intercept
Process Messages

Operator Control and Display System

Fngage Find. Fix, Track Objects
Target TBM
Assess Boost
Launch Interceptor
Detonate

Interceptor Sensors
Weapon Control System

Interceptor Missile

i

Fig. 5.16: Mapping from Operational Activities to Systems and their Functions.

Once the mapping from operational activities to systems and services has been postulated,
the architect moves to a detailed analysis of those systems, services, and functions in Stage 4.
The techniques are similar to the ones used for the operational view. When using UML, the
architect will create a set of behavior and structure diagrams. The behavior diagrams consist of
the activity, sequence, communications, and state machine diagrams using the same techniques

65

that were used for the Operational View. Instead of class diagrams for structure diagrams,
component and deployment diagrams will be used to focus on the systems and their interfaces. If
the Structured Analysis methodology is used, then activity models (e.g. IDEFO or Data Flow
Diagrams), data models (e.g. IDEF1X or Entity Relationship Diagrams), rule models, and
dynamic models such as state transition diagrams, and sequence diagrams will be used. Instead
of focusing on operational activities, the organizations or operational nodes that will perform
them, and the operational information exchanges, the System and Service View analysis is
focused on system nodes, systems and their function, or services, and system data that is
exchanged. We will first show some of the products produced using UML. Every diagram will
not be shown; we omit the diagram if the diagram creation technique is similar to that used in the
Operational View.

Operational Activities

System
Functions

Track
Object
A11

Generate
Tactical
Picture
A12

Assess
Kill
A13

Process
Authorization
A21

Issue
Surveillance
Directive
A22

Issue
Order
A23

Control
A31

Engage
A32

Search Sector

Detect Objects •

Track Object •

ID Object •

Generate Tactical
Picture Data

Create Tactical
Picture

•

Store Track Data a •

Display Tactical
Picture

•

Assess Kill •

Parse
Authorization

•

Relay
Authorization

•

Display
Authorization

•

Fig. 5.17: SV-5a, Operational Activity to Systems Function Traceability Matrix (partial).

We start with the activity diagram which will be used to produce the SV-4. As we did with
the operational view, we will use swim lanes. In the Systems and Services View, the swim lanes
will be created for the instances of the components that represent the systems or services rather
than operational nodes as was done for the Operational View. The activities in the activity
diagram will be the functions that the systems or services perform. Figure 5.20 shows part of an

66

activity diagram that is based on systems and their functions. This activity diagram can be used
for SV-4a, the Systems Functionality Description.

TBM Tracking C apabiutv TBM Intercept Capabilrt

rem Svstern Functions Track
Object

All

Generate

Tactical

Picture

AI:

Assess

Kill

A13

Process.

Authorization

A:I

[sine
Surveillance

Directive

A::

Issue

Older

A2i

Control

A.U

Engage

A3 2

M: ile Tracking

Radar AN MTS

Seaich Sectei G

Detect Objects G
Tiact Object G !

ID Object G
Generate Tactical

?:ctuje Inpu'
G

Store Track Data G G

Assess Kill H * an

TBMS

C leate Tactual
Picture

G

Display Tactical
Picture

G

Pane

Messages
G

Display

Authorization

G

Generate

Surveillance

Directive

G

Display
Surveillance
Directive

G

Gene: ate

Intercept Otdei

G

Display Intercept

Order '

G

C ontrcl Operator
(onicl and

Display System

Display Local

Tactical Pictwe

G

Plan Intercept

Process Messages G

Interceptor
Auctaft

Find Fix Track
Objects

Assess Boost

Target TIM

Lauocb
later ceptci

Interceptor

Missile

Fly and Detonate

Fig. 5.18: SV-5b, Operational Activity to Systems Traceability Matrix.

67

A similar diagram can be created showing services as components. Such an activity diagram
would be used as the SV-4b, Services Functionality Description. Both activity diagrams can be
converted to sequence diagrams in the same manner as was done for the Operational View. To
focus on the service aspect of the ATIS architecture, a sequence diagram was created that
showed the major services (but not the Machine-to-Machine Messaging Net Centric
Environment Service). This diagram is shown in Fig. 5.21. It shows the major systems and the
services as component life-lines. The service life lines are labeled with the stereotype
"<Service>." Figure 5.21 shows the sequence of data messages that are exchanged to carry out
the operational concept when services are incorporated. This diagram can be presented as SV-
1 Oc. but DoDAF 1.5 says that this type of diagram also can be used as an SV-4.

TBM Tracking Capability TBM Intercept Capability

Services Track
Object
A11

Generate
Tactical
Picture
A12

Assess
Kill
A13

Process
Authorization
A21

issue
Surveillance
Directive
A22

Issue
Order
A23

Control
A31

Engage
A32

Missile Tracking
Service

Y Y

Tactical Picture
Service

Kill Assessment
(Weapons Effects)
Service

NCES Content
Delivery Service

NCES Discovery
Service

NCESM2M
Messaging Service
(part of NCES EBS) I I I

Fig. 5.19: SV-5c, Operational Activity to Services Traceability Matrix.

DoDAF 1.5 states that the SV-4b should include a Service Specification. DoDAF 1.5
provides a minimum set of data each Service Specification should have. Figure 22 shows the
case study Service Specification. Only the services that will be part of the ATIS are included.

As we illustrated with the Operational View, it is easy to convert the sequence diagram, once
it has been created, to a communications diagram. While these diagrams are not part of the
Systems and Services View products, they can lead to products such as the SV-1, the Systems
and Services Interface Description. Figure 23 shows the communications diagram for the case
where no services are provided and the interfaces are point-to-point. It was derived from the
sequence diagram for SV-lOc, the Systems Event-Trace Description (not shown).

68

>• Jonipwwn:*-'

HHQ TBW RADAR TrtckFitt T6MS
S«'rtf DiiplJ)

TBMSCI»i» OpCcni*

Display Sensor

Intwceftfor
Wtapcn

Coffticwlw

Issue
Aulhorualioit Parse

n .. * Surveillance •
Message , Message Directive

, Enter AOR1;

/ Create "\ / Display x

A Tactical ** Tactical '' !_

1*-/ ' ^'^.ectOtde,;,^

/i:pa,e -4 ! .Process'
Order 7 „,.

\ / - , * / Select
•Parse , J Display Su(w|tance

GenetateK

:' Search V

(Genet ate-

; Surveillance
Directive/

-M Fly '

J^
Fig. 5.20: SV-4a, Systems Functionality Description.

Once communications diagrams are created, they can be transformed into component
diagrams that reflect the interfaces between components that represent systems or services,
figures 24 and 25 show the basic component diagrams for ATIS systems and services,
respectively. Note that the UML artifact classifier has been used to represent the system or
service data exchange messages. Figure 26 elaborates on the component diagram of Figure 24
showing provided and required interfaces and listing the system functions of each component. A
similar diagram can be created for the services.

The interfaces define the system data that must be exchanged in the Systems and Services
View design. Further specification of the systems data can be captured in the SV-11, the Physical
Schema. Figure 27 shows the case study SV-11.

This completes the Stage 4 effort. The SV 10a (Systems/ Services Rule Model) and SV-1 Ob
(Systems/Services State Transition Description) are created in the same manner as was illustrated
for OV-6a and b. They will not be shown here.

69

TBM
UunflT

«SfefV(C<»

Missile
Tracking
Service HHQ

RADAR

Tactical
Picture
Service

«Sfctvi<;a»

Kill §3
Assess
ment
Service
T

si
NCES
Discovery

1 <<S*?fVKe»

NCES i:
Content
Delivery
Service Service TBMS

1 1—'

Control
 -T-

 -1
Inters

ceptor

Launch,
Warning

Emissbi s

Authorrz il on Messaj«

Emissions

Track Data

Track 0, -i

T-

KA Data

KA.
Request

Surveillance Pi e

ATIS Tadtical Picture (Siream)

* rveillance

Picture

3i ective Message

Int N :eptor Data

ATIS Tacical Picture (siream)

Surveillance

KA Reques

KA Result

KA Data

live Message

ATIS Tactical

ATIS Tactical

Picture

irective Message

KA Result

Order

Report

Order

Intercc p

Report
^—•

Control

Message

Control
Message
or Missili

Fig. 5.21: SV-lOc, Services Event Trace Description.

Name Version Description SAP Info
category

SAP
Info

POC SIS

Tactical 1.0 Subscribes to In Development SOAP XYZ NRT(2
Picture entities that deliver

airspace individual
track files and
produces
continuous data
stream of Tactical
Picture data

over
HTTP

Corp seconds
latency) to
the
network

Kill 1.0 Subscribes to In Development SOAP ABC Product
Assessment entities that deliver

airspace track files
and
phenomenology.
Produces
probability that an
object has broken
up into many
pieces.

over
HTTP

Corp delivered
to the
network
within 10
seconds
of receipt
of track
files
showing
breakup of
TBM

Fig. 5.22: SV-4b Service Specification.

70

•v** 4.14.. 29.

"^ Track A

DM

3.. 13.1.28. EmtssioS

••TracKFHt
Database g

TBMS
Ditplav

TBMS
Client \

Trl.ao. 7., 17., 32. Tactical Picture W
Track Data 12.. 22.SM«cVon Suggestion \\

!| 4-
2., 12.. 24. Surveillance Directive

1. Authorization Message
-LULSjaan [|

9.19. Order Message

Fig. 5.23: Systems Communications Diagram.

\ V
imereemor

Sensors S3

"jrgi! CM
v

interceptor/ x
WoaocraCanlroHor

Uuns.n 1
—

Rtport D
Mottene

- Xlj Control

: Missiit i

Control
M*"i1a?

tamut

Fig. 5.24: Component Diagram (with only the missile tracking service).

71

Fig. 5.25: Component Diagram (with services).

In Stage 5, the results of Stage 4 are summarized in a set of Systems and Services View
products. Figures 5.28 and 5.29 show the two versions of the SV-1 (Systems/ Service Interface
Description). These are UML deployment diagrams and were derived from the component
diagrams shown in Figs. 5.24, 5.25, and 5.26. Note that a key interface designation has been
added to each interface. These diagrams are analogous to the OV-2, Operational Node
Connectivity Description. The details of the system data exchanges will be described in SV-6.
the Systems Data Exchange Matrix, which is analogous to the OV-3. Details about each interface
are provided in the SV-3 product.

The case study SV-1 shows two concepts. The first SV-1 shows the ATIS without services
(other than the TBM Warning Service). The Radar sends and receives system data messages
directly to and from the Command Center systems. This design is tightly coupled, and system
may need to be designed that way given the time critical nature of the system. Adding services
reduces coupling but increase complexity. The radar sends track data to the tactical picture
service that converts into the ATIS tactical picture and posts it in the NCES Content Delivery
Service. Users can subscribe to this content, and the users can include the other ATIS system
nodes. Furthermore, the ATIS Tactical Picture Service may receive data from non-ATIS sensors
that could enhance the tactical picture. The Kill Assessment Service is decoupled from the Radar

72

(but it is shown as part of the Radar system, although it could be located elsewhere). Instead of
tightly coupled to the Radar, it can be open to other inputs and processes that may enhance the
overall kill assessment product. In a complex SOA environment, the equivalent of a service
broker might link together all of the services and data providers prior to any actual TBM
intercept. The details of this type of SOA have not been included in the architecture description.

: Track File Database e

«Provided lnterface»
Retrieved Track

"Required lnterface»
Store Track

: TBMS Disdav S : TBMS Client [f

«Required hterface»
Tactical Picture

«Provided lnterface»
Selection

Q
Track Data I BO I

: Missile
Tracking

Service

:TBM^1|-

: Emission

: Tactical
Picture [V

:RADAR

«Provided biterface»
Track Data
Tactical Picture Data
Kill Assessment

« Required lnterfaces»
-Q— Emission (Detect-Track-ld|

Surveillance Directive
Retrieved Track Data
Interceptor Oata

Surveillance u
Directive

-rv-

H-0
\

1
: Selection •

: TBMS Server

"Provided lnterface»
Proposed Selection
Tactical Picture
Surveillance Directive
Order

<<Required lnterfaces»
Message

Selection

Tactical Picture Data

: JTF Sy3tem

"Required lnterface»
Emission (Find-F ix-Track)
Tactical Picture Data

«Provided lnterface»
Target Data

"Required lnterface»
Target Data

Control Message
"Provided lnterface»

Launch Command
Report Message Or

"Provided lnterface»
Report Message

"Required lnterfaces>>
Order Message

Tactical Picture Data

: Target Data : Launch 1
:Control a

Message

: Interceptor Missile

"Required lnterface»
Launch Command

Fig. 5.26: Component Diagram (with interfaces).

73

ATI5Me»jj]t

Dan Ttmi Group Int

^•ssagt ID and typt; tnt

:90rdiMM 111. RtCQrd

TrjcjiFil*

Track Diu

Stor«

1 Provid* 1..'

Track Data

* frack !d Numeric

T
:Mistil» Track Data 0

Event: String

InttrctpUK DJIJ

Inttrctptor Id Nunwric

: ATI5 Tactsejl
Piclurt

• KA pan -

R«qu»st

A R»;ulf.

Rnult: String

iAuthoraatjorJJ«ssag«^^

Evtnt: String

Action; String

Survollanct D

DirMtiv*

Ord»r v

Mcssaot

Control J Q

Mtssagt

Reoon M^jajjf

R«utt: String

:l RtBOtl Pa
Mtssag*

Villftiaa)
"!lM

': <|IJ

Fig. 5.27: SV-11, Physical Schema.

iKS 15

[uD

/^ «Sjj!«rnKo«»
u-wnsixffwter

:?BMS _

AStrtHitodi*
IBM

JiME

' x<Sni«raNode>

Inttrtac*

•KJi«K»y
S»rv>ei

Inttrtxt

Swww 2

•...-•• N...

! Center

JILSlSSffi =

BNpm»Ci)nMri

jjrtJSJS

\ £3flfifoiM» /
\ j Cowafctnur

:0pC«api

JSSSl MA

Fig. 5.28: SV-1, Systems Interface Description.

74

y<cSystern ltode»

Control Cen(er

KSI =Key Service Interface :Op Contiol

Processor/
Display

Fig. 5.29: SV-1, Services Interface Description.

The SV-6 (Systems and Services Data Exchange Matrices) are constructed in the same
manner as the OV-3. Figure 5.30 shows part of this product that was produced for the Case
Study. Other parts show Systems and Services Data Exchanges.

The focus now shifts to the Systems/Services Communications Description (SV-2). Given
the interfaces that have been developed in the SV-4 and SV-1, the communications infrastructure
description is developed. Generally this will require expertise in communications networks and
systems. Figure 5.31 shows a high level description of this infrastructure that was created for the
case study. Note that the connection to the NCES to reach the non-ATIS services is depicted as a
satellite communications link. The time delays associated with these links will need to be
considered. If delays are too long, the ATIS will not be fast enough to carry out the operational
concept. For the initial case study, very short time delays were assumed.

The SV-3 (Systems-Systems Matrix, Systems-Services Matrix, and Services-Services
Matrix) defines the interfaces, including communications that are depicted in the SV-1 and SV-2.
A legend is created that provides codes for the different types of interfaces. Figure 5.32 shows a

75

portion of the case study Systems-Systems Matrix. The Systems-Services and Services-Services
matrices of this product are not shown.

Description Producer Consumer Performance Security

interlace

ID

Data

Exchange ID

Name Sending

System

System

Function

Receiving

System

System

Function

Timeliness Protection

KSIIa U.1 Missile Track Missile
Warning

Service

NA ANMTS
Radar

Search.
Track.ID

2 seconds SIPRNET

KSI lb 1I).1 Missile Track Missile

Warning

Service

NA TBMS Tactical

Picture

Service

2 seconds SIPRNET

KI2 2,1 Authorization

Message

JTFHG N A TBMS Parse

Messages
2 seconds SIPRNET

KI3 3.1 Surveillance
Directive

Message

TBMS Generate
Surveillance

Directive

ANMTS
Radar

Search.
Generate

KA

2 seconds Secure
TDMA

KSI 3 3.2 Track Data ANTPS
Radar

Generate
Tactical

Picture Data

TMBS (Tactical
Picture

Service!

2 seconds Secuie
TDMA

KSI/ 3.3 Kill
Assessment

Data

AN'TPS
Radar

Generate
Kill

Assessment

Data

NCES Content
Oelivery

2 seconds Secure
TDMA

KSI 8a 3.3 Kill

Assessment
Data

NCES Content

Delivery

ANMTS
Radar

Kill

Assessment
Service

2 seconds Secure

TDMA

KSI 6 3.1 Kill

Assessment
Request

AN'TPS

Radar
Generate

Kill
Assessment

Data

NCES Discovery

Service

2 seconds Secure

TDMA

KSI 6 3.4 Kill
Assessment

Request

NCES Discovery

Service
ANTPS
Radar

Kill
Assessment

Service

2 seconds Secuie
TDMA

Fig. 5.30: SV-6, Systems/Services Data Exchange Matrix (partial).

The remaining products, SV-7 (Systems/Services Performance Parameter Matrix), SV-8
(Systems/Services Evolution Description), and SV-9 (Systems/Services Technology Forecast)
show aspects of the evolution of the architecture. Figures 5.33, 5.34, and 5.35 show these
products.

As the architecture team completes the architecture development, it returns to the original
questions that the architecture was designed to answer. For the case study there were three
questions:

1. Can the operational concept be made to work? The answer seems to be yes, based on the
architecture, but more detailed analysis of the engagement envelope capabilities of the
proposed interceptors and missiles should be undertaken.

2. Can net centric concepts be leveraged, particularly the NCES? The answer seems to be a
qualified yes, but the time critical aspects of the operational concept may require a

76

combination of loosely coupled service-based concepts backed up by a tightly coupled
point to point solution.

Can we answer questions about the capability of the ATIS system to respond against two
different types of adversaries whose exact launch capability is not known? This cannot be
answered with the architecture description, but by converting that description to an
executable model, some insights can be provided.

<£SjstemKode>*
IBM Warning I

^SystemNorJ
SATCOM
System

; Missile
Tracking
Service

SATCOM

de^J
SATCOM

W *

- *
: SATCOMJl
System

«Systein Node»

RADAR

NCES
ES8

SATCOM

-«5yslemNc>(Te»
Command Center

/ «System Node»
interceptof

f-- SATCOM ,

.AN10MBSTCP1P

i. t* :TBMS.
Client

«System:Noilfi»

Control Center [STI

Radio

Router 3
:Qp Contiol
Processor'

Oaptey i

SATCOM

jgSS&SmSuSEi
; JTF Command
; Center

: JTF System ?T

• The intra-nodal communications
infrastructure has been included

- LANs

- SATCOM Terminal

- Radios

- Routers

• RADAR AN/MTS Server provides Kill
Assessment Service

• TBMS Server provides Tactical Picture
Service

• Services connect to the NCES ESB
(Discovery and Content Delivery) via
SATCOM terminals and system

Fig. 5.31: SV-2, Systems/Services Communications Description.

To address question 3, the architecture description was converted to a CPN executable model.
The structured analysis version of the architecture was used, and the executable model was
created from the operational view. The technique described in Wagenhals et al. [2000] was used.
CPNTools was the CPN software application. Figure 5.36 shows the first level of decomposition
of the CPN model. Note the similarities between this CPN model page and the IDEFO page
shown in Figure 5.14.

77

To

From

Radar
(AN/MPS)

TBMS TBMS
Client

TBMS
Display

Operator
Control/
Display

Interceptor
Sensor

Weapon
Controller

Missile Missile
Tracking

JTFHq
System

Radar
(AN/MPS)

S2,P1,
C2,M2,
K1

TBMS S2.P1.C2,
M2.K1

S1.P1,
C2.M2,
K1

S1.P1,
C2,M2,
K1

S2.P1.C2,
M2.K1

S2.P1.C2,
M2.K1

TBMS
Client

S1,Pt,
C2,M2,
K1

TBMS
Display

Operator
Control/

Display

S1.P1,
C2.M2,
K1

S1.P1.C2,
M2.K1

Interceptor
Sensor

S1.P1.C2.
M2.K1

S1.P1.C2,
M2.K1

Weapon
Controller

St,P1,C2,
M2.K1

S1.P1.C2,
M2.K1

S1,P1,C2,
M2K1

JWICS Ml

Missile
Status

Existing 81

Planned S2

Means

Radio Net P1
Potential S3

Radio Link P2
Missile
Tracking

S2.PJ.C2,
M2.K1

S1.PJ,
C2.M2,
K1

Purpose

C2 P1
SATCOM T1 P3
link/WAN Intel P2

Logishcs P3 10/100 MBS P4

JTFHq
System

S1.P1,
C2.M2,
K1

Classification

Unclassified [C1 LAN

Secret C2 Key interl ace Yes K1

Leve Top Secret I C3 No K2

Fig. 5.32: SV-3, Systems to Systems Matrix.

Performance Range Measures

Time 2008 Time 2010 Time 2015

System
Name

Performance

Parametets
Baseline Objective Base me Objective Base ne Object ve

AN/MTS-
Hardware

element-
Radar

MTTR
MTTF

Data T'ans'e- Rate

24 Hr

lOMbs

I2hr

Syr

lOOMbs

12 hr

Syr

lOOMbs

Shr

7yf
: COMBS

bhr

5 yr

lOOMbs

3hr

7yr
lOOMbs

AN.'MTS-

Software
element-
Radar

Throughput
Response Time

Operator Response
time

lOOKFJs
Ims

ICs

IOC KB/s
Ims

10 s

lOOKB/s
Ims

10s

1 MB/s
1ms

Is

1 MB/s
Ims

lus

10 MB/s
1 ms

is

TBMS-
Hardware
element

fv'-TR

MnF

Data Transfer Rate

24 Hr
3 vf

CMbs

I2hr

lOOMbs

12 hr

Syr

lOOMbs

6hr
7yl

; COMBS

6hi

5 yr

lOOMbs

3hr
7 yr

lOOMbs

TBMS-
Soflware
element

Throughput

Response Time

Operator Response

time

100 KB*
Ims

5 s

100 KB/s
Ims

Is

100 KB/s
1ms

3s

1 MB/s

ims

Is

1 MB/s
Ims

Is

lOMB/s
Ims
Is

Fig. 5.33: SV-7, Systems Performance Parameter Matrix.

7S

Boost Assess
Algorithm Installation

Legacy
System

2010

vv:

,2011 2013 2015

V2.D VM V 4.D

Global

Net Centric
Capable

Interceptor Missile
Upgrade

Initial Use of NCES Discovery
and Content Delivery Services

Initial Installation of Kill
Assessment Service

Initial Installation of Tactical
Picture Service

Full NCES integration with Tactical Picture and
Kill Assessment Service

\
ATIS

Fig. 5.34: SV-8, Systems/Service Evolution Description.

DISR Standard 0-12 Months 12-36 Months 38-60 Months 60* Months

NCES Discovery

Service

Initial Capability Upgrade Upgrade 2 Full Discovery Service

NCES Content
Delivery Service

Initial Capability Full Capability

New Joint Tactical

Radio

Initial Capability Full Capability

Hi Speed Sensor

Technology for
Missile

Initial Capability Increased

Sensitivity

Dual

Phenomenology

Upgrade

Fig. 5.35: SV-9, Systems/Services Technology Forecast.

Once the CPN model was created, it was executed to check the logical correctness of the
Operational View architecture description. As errors in it were detected, corrections were made
in the CPN model and the architecture. Then the architecture was tested for various sets of inputs
to be sure that the behavior of the architecture was satisfactory. This included checking the
behavior of the system against both Adversary A and Adversary B. The sequencing of the

74

events, messages, and activities was checked and compared with the descriptions in the OV-5
and -6b and c. Again necessary changes were made to both the architecture description and the
CPN model. The architecture description presented in this paper contains the architecture in its
corrected form.

Autnc

Fig. 5.36: CPN Model of the ATIS Operational View.

Once the initial logical and behavioral correctness was verified, a scenario was established to
address the question about the capability of the ATIS against the adversaries. It was assumed that
the adversaries would have a capability to launch multiple TBMs. It also was assumed that the
ATIS system would be deployed and would have sufficient warning of potential adversary action
to have all of its systems in place including the interceptor aircraft. Two questions to be
addressed: (1) can the ATIS system issue the appropriate commands and data so that it can shoot
down the TBMs that may be launched and (2) how many interceptors will be required to handle
various threat capabilities?

The scenario was parameterized as follows. We assumed that that the ATIS system must be
able to launch its interceptor missile at the TBM within 400 s of initially detecting the TBM with
the ATIS Radar. If it takes more than 400 s (6 min 40 s) to launch the interceptor missile, the
TBM will be out of range and will be declared as a "leaker." Indeed we would like the average
response time to be less than 400 s.

80

100 •

Z 8°r
I TO

2 so
0)
£ 40

a. yo
c

20

0 •

o

o—c—0

Q £ 0

0 (V-—c

O Selected
Values

1
1 2 3 4 5 6 7

Number of Interceptors

Fig. 5.37: Parameter Locus.

To address these questions it was necessary to set the CPN model up as a timed CPN. This is
because the performance of the ATIS would be based on the number of successful intercepts it
could make against multiple TBMs. Whether an intercept is successful or not is based on the
amount of time it takes for the interceptor to get into position and for the ATIS system to issue
the order to launch the interceptor missile. Time delays were estimated for each operational
activity and applied as delays for each transition that represented an operational activity. These
estimates were based on the notion that the systems, system functions, and services supporting
the operational activities would be able to accomplish each task in a few seconds (see SV-7, Fig.
5.33). Additional time delay was added to each activity (transition) to account for operator
reactions. For our initial analysis, we assumed that communications delays would be negligible
compared to the processing and human decision making delays and therefore zero time delay for
the communications network was assumed. Indeed the communications network was not
modeled explicitly. The approach for modeling explicitly the communications network and
linking it to the executable model of the architecture was described in Shin and Levis [2003].

Input, ATIS System, and Output variables were established for the scenario. The inputs to the
ATIS model included the individual TBMs and the authorization message. For the TBMs the
variables were the total number of TBMs and the time interval between TBM arrivals. For the
Authorization variable the values were Adversary A and Adversary B. For the ATIS system the
number of interceptors was the main variable. The output variables were four Measures of
Performance (MOPs): Average Response Time (in seconds), Throughput Rate (kills per second),
the number of kills (integer), and the number of leakers (integer).

To evaluate the potential performance the total number of TBMs fired was fixed at 10. and
two parameters were varied. The TBM inter-arrival time was varied between 0 and 100 s, and the
number of interceptors was varied between 3 and 5 (integer) interceptors. The range of these two
parameters can be viewed as a parameter locus as shown in Figure 5.37. The 15 input pairs
shown as the small circles indicate that values that were used for the analysis. Note that the TBM

inter arrival time is a continuous variable while the number of interceptors in a discrete variable.
The area between the points has been shaded to aid in visualization.

The executable CPN was run in simulation mode at each of the 15 points in the parameter
locus. The CPN has been set up so it records the time each TBM entered the ATIS system and
the time that the intercept occurred. The CPN determines for each TBM if the intercept occurred
within the 400 s requirement. If it did, it was considered a kill, and if not it is a leaker. Collecting
these data enables the calculation of the values of the average time for intercept (average
response time) and the throughput rate MOPs. Figure 5.38 shows an example of the results of a
simulation run. The values on the tokens show the TBM number, the interceptor number, the
time the TBM entered the ATIS system, and the time that the interceptor missile was fired. The
figure shows that with four interceptors and 10 TBMs that arrive within the ATIS area every 20
s, 8 TBMs are successfully intercepted and 2 are not.

i

r(l,destroy*d.2,0,H3)®148ttt
l'(2,destroyed,4,20,174)3>179+++

0«jl'(3,destroy«d,l,40,189)<8>194++4
l'(4,destroysd,3,60.212)©217+++
1' (5,destroyad,2,80,406)94l l+t-t
1' (6,destroyed,U00,463)@«8++-
1' (9,destroyed,4,167,437)0442++-
1' (lO,destroyed,3,18l,477)<a>482

l'(7,lealed,4,120,700)«i705+++:
r(8,leaked,2,140,669)»674

Fig. 5.38: Simulation Run (20 second interarrival time; 4 interceptors).

The results of the 15 simulation runs are plotted as a performance locus in a 3-dimension
performance space as shown in Figure 5.39. The values of three key MOPs were calculated from
the data in the simulation runs: average time per intercept, throughput rate, and number of
leakers. Requirements were established for these MOPs (no more than two leakers and maximum
allowed average intercept time of 400 s). The projection of the performance locus onto the
Leaker—Average Response Time plane is shown in Figure 5.40. The combination of MOPs and
requirements can be visualized in a plot showing a Requirements Locus overlaid on the
projection of Figure 40, as shown in Figure 5.41. To help determine the potential effectiveness.

82

the mapping of the intersection of the requirements locus and the performance locus onto the
parameter locus was accomplished as shown in Figure 5.42. A Measure of Effectiveness (MOE)
value of 75% was calculated based on the percentage of the parameter locus that would result in
meeting the performance requirements.

10.

Throughput Rate
i/sec)

Average Response Time (Sec)

Fig. 5.39: Performance Locus for Simulation Run (20 second interarrival time; 4
interceptors).

100 200 300 400 500 600
Average Response Time (sec)

70C1

Fig. 5.40: Projection of Performance Locus onto the Leaks/Average Response Time Plane.

Additional results of the analysis are summarized as follows:

• Three interceptors can handle the 10 threats (with a max of 2 leakers) if they arrive at
a rate slower than 1 in 45 s.

• Four interceptors can handle the 10 threats (with a max of 2 leakers) if they arrive at a
rate slower than 1 in 20 s.

• Five interceptors can handle the 10 threats (with a max of 2 leakers) if they arrive at a
rate slower than 1 in 10 s.

83

10

9

8

7

6

5

A

3

2

1 •

C

Requirements
Locus Performance Locus

200 300 400 500 600
Average Response Time (sec)

Measure of
Effectiveness

MOE
S(Lp-Lr)

S(Lp)

700

30%

Fig. 5.41: Requirements Locus Superimposed on Performance Locus.

100-

90*

SO-

g ,J'

m 60-

? 50-

t 40- I
-£ 30-

20

•o

o-

Portion of
Parameter

- Locus that
meets
requirements

MOE = 75 %

3 4
Number of Interceptors

Fig. 5.42: Projection of Requirements Locus onto Parameter Locus.

A similar set of results was determined against Adversary A.

These results are based on the CPN executable model of the operational view. They are based
on estimates of how long it will take to accomplish the operational activities. This time will be
based on a combination of the time it takes for humans to interact with the systems that are
supporting them and on the processing and communications delays of the systems, services, and
communications networks that are described in the Systems and Services View. For our
executable model we made a rough order of magnitude estimate of these time delays. An
executable model of the Systems and Services view could be created using the same techniques
that was used of the Operational View to better understand the system and communications time
delays. Executable models of the alternative Systems and Services Views (such as the peer-to-
peer architecture or the one based on Services) could be made to determine if these architectures
can meet the requirements.

84

5.5. Comments and Conclusion
We have illustrated three interrelated processes for developing DoDAF 1.5 compliant

architectures, deriving a CPN executable model from that architecture data, and using the CPN
model to support analysis and evaluation. The techniques described allow for a much more
thorough examination of the behavior and performance aspects of the architecture than what can
be done using only the architecture description. Conducting this type of analysis and evaluation
is becoming more critical as DoD continues its migration to net centricity with SOA as the
postulated solution. However, the move to SOA increases the complexity (there are many
moving parts). Research is underway to develop techniques for creating executable models that
will examine behavior and performance with SOA. Various Communities of Interest (COIs) are
considering SO As. The desire to enable ubiquitous information sharing across domains and COIs
implies the possibility of Federated SOAs which will require further investigation of behavior
and performance. There are many ways to implement a SOA; there are many choices to be made.
These choices can be informed by rigorous analysis and evaluation. A high level of abstraction
has been used for our illustration. It is important not to go into too much detail early in the
process as it must be shown that the abstract concepts work before investing a lot of time in more
detailed descriptions. Evaluation becomes more complex as the communications infrastructure is
considered in the systems view. To deal with this complexity, layered approaches that involve
interconnecting the CPN executable with network simulators have been demonstrated [Shin and
Levis, 2003]. These capabilities will enhance evaluation.

The process for conversion of the architecture description to the executable model is well
understood. However, there is a need for improved tools that can generate the executable
automatically from the architecture data which will make this step even easier. Some in the
software community have been developing techniques (e.g., xUML) that will enable the
automatic generation of executable models from UML representations [Mellor and Balcer,
2002]. The improved semantics and meta model of UML 2.1.1 are enablers of this automatic
executable model generation. Recently, Liles [2008] developed and demonstrated a capability
incorporated in Rational System Developer that enables the automatic generation of the CPN
model (for CPNTools) from a UML architecture description using techniques similar to the ones
described in this paper. If tool vendors will provide this mechanism in their tools, then the
architect can have the executable model generated automatically as the architecture is developed,
provided that the architect develops the complete description of the architecture in UML as
required for the conversion. This will enable architects to "experiment" with the architecture
description as it is developed. It is important to be sure that the execution model "engine"
handles issues of concurrency and conflict properly; not all simulation engines do. This is why
we have chosen CPN as the executable model.

Generation of the executable model is a necessary step in the detailed analysis and evaluation
of the architecture description, but it is not sufficient. A basic executable model can help the
architect check the logic and some aspect of behavior, but addressing more complex performance
issues requires additional data to be incorporated in the executable as was illustrated in our case

85

study. It would be desirable to have evaluation techniques included in the tools. Education and
training of practitioners in the concepts of the architecture descriptions and the use of the
executable model along with training on the use of specific tools are also needed. Architectures,
if done properly in a layered way, are a great tool for innovative design. They allow the
exploration of radical alternatives in a short amount of time, thus expanding the number of
alternatives to be considered. They provide a way—using executable models— for new ideas to
be explored. However, we have not developed adequate algorithms, tools, and techniques to
support the use of architectures in concept development and in considering many (including
radical) alternatives. We understand the fundamentals. There is sufficient theory in mathematics
and computer science as well as modeling & simulation technology that should be exploited for
this class of problems. We need to refocus our efforts and develop applications that will take us
to the desired end: an efficient, architecture based systems engineering process that enables us to
integrate legacy systems with new systems and exploit technology advances to provide desired
capabilities to the users.

5.6 References
CPNTools, http://wiki.daimi.au.dk/cpntools/cpntools.wiki,2008.

J.R. Hurwitz, C. Bloor, C. Baroudi, and M. Kaufman, Service oriented architectures for
dummies, Wiley, Hoboken, NJ, 2007, p. 27.

L.M. Kristensen, S. Christensen, and K. Jensen, The practitioner's guide to coloured Petri nets,
Int J Software Tools Technology Transfer 2 (1998), 98-132.

S.W. Liles, On the characterization and analysis of system of systems architectures, Ph.D.
Dissertation, George Mason University, Fairfax, VA, 2008.

S.J. Mellor and M.J. Balcer, Executable UML: A foundation for model-driven architecture.
Addison-Wesley, Reading, MA, 2002

I. Shin and A.H. Levis, Performance prediction of networked information systems via Petri nets
and queuing nets, SystEng 6(1) (2003).

Universal Joint Task List (UJTL), CJCSM 3500.04C, Joint Chiefs of Staff, Department of
Defense, Washington, DC, 2002.

F.R.H. Valraud and A.H. Levis, "On the quantitative evaluation of functionality in C3 systems."
Information technology for command and control, S.J. Andriole and S.M. Halpin (Editors),
IEEE, New York, 1991, pp. 558-563.

L.W. Wagenhals, S Haider, and A.H. Levis, Synthesizing executable models of object oriented
architectures, SystEng 6(4) (2003), 266-300.

L.W. Wagenhals, I. Shin, D. Kim, and A.H. Levis, C4ISR architectures II: A structured analysis
approach for architecture design, Syst Eng 3(4) (2000), 225-247.

86

SECTION 6

Analysis and Evaluation of System of Systems Architectures

Stewart W. Liles and Alexander H. Levis

6.1 Introduction

Agility is a necessary response to uncertainty. If planners do not know what to expect then the
plan must address a much broader set of contingencies than when there is no uncertainty.
[Alberts and Hayes, 2007] Inherent to Alberts' and Hayes' comments on agile planning, is the
need for systems to possess the ability to adapt to an operating environment that may be
significantly different from the one for which they were originally designed. One way to address
the agility issue, is to build systems that are composed of different types of systems and
components that operate together to accomplish the tasks required by the organization - a system
of systems (SOS). An approach for studying the effects of design decisions and modeling the
capabilities required by the organization is to produce an architecture that describes the
interactions of constituent systems used to provide capabilities to the organization. The goal is to
produce an architecture that will satisfy the needs of the customer by providing multiple
capabilities concurrently and possess the ability to adapt its structure to unforeseen operating
environments.

This research addresses the design and development of SOS solutions very early in the
development process to assess the ability of the SOS to adapt to structural configurations for
which it was not originally designed. The methodology uses model-driven development
techniques to combine multiple operational and system architectures into a combined
architecture that represents the attributes of the SOS implementation. That SOS implementation
is then transformed into a dynamic model that enables an analysis of the interaction of the
constituent systems of the SOS.

A challenge to system engineers when developing SOS solutions is analyzing characteristics
that assess the aggregate performance of the SOS. Most SOS definitions focus on the managerial
aspects rather than technical aspects of the SOS. System engineers need measures and
characteristics that can be assessed early in the development process in order to contribute to
analyses of alternative SOS architectures. When defined as described, SOS engineers tend to
measure constituent system characteristics and aggregate those measures for the architecture as a
whole. This leads to bounding the problem by defining particular operating scenarios and
optimizing configurations for a particular scenario. This optimization can result in SOS
configurations that are not able to adapt to unpredictable operating environments. "The wide

This section consists of the slightly edited Ph.D. thesis of LCOL Stewart W. Liles, USA.
87

range of threats faced today, their dynamic nature, and the complexity of the environments in
which they must be defeated make it imperative to avoid 'optimizing' (perhaps more clearly
said, 'fixating') on an approach that handles only one type of threat or situation well" [Alberts
and Hayes, 2007]. The methodology presented here assesses alternative SOS implementations
for SOS characteristics that address the interaction of the constituent systems and the ability of
the architecture to provide multiple capabilities for the organization.

System of Systems

Figure 6.1 illustrates the enormity of the Department of Defense (DOD) SOS as an example
of the complexity of some organizations. This is a partial list of the resources available to the
DOD enterprise. It is futile to model the interactions among the constituent systems of the SOS
in their entirety. The environments each can be deployed in are diverse and virtually
unpredictable. The various configurations cannot be accurately predicted and the potential
adversaries have not been defined. Additionally, technological advances add further uncertainty
to the deployed environment. Finally, the organizational structure is unpredictable given the
uncertainty of the factors already mentioned.

An extended definition of SOS specifies the resources available to the enterprise and
differentiates specific implementations used for particular purposes. The resources available to
the enterprise compose the SOS. The resources are used by the enterprise to realize specific
capabilities required by the organization. Identifying the specific implementation provides a
structure on which to make measurements. It also provides a way to identify alternatives for
comparison. A specific implementation requires a set of resources that are configured to provide
a specific set of capabilities to the organization. The specific implementation is developed using
the specification of the structural and behavioral relationships between resources defined in the
architecture. The specific implementations of the architecture can be assessed for their ability to
address the needs of the organization. The specific properties of the SOS will be detailed in
Section 6.3.

Architecture Modeling

The goal of the SOS engineer is to demonstrate to the organization that a SOS architecture will
meet the needs of the organization. In construction engineering, the vehicle for demonstration
would be a paper model or a 3D computer generated representation. For the system engineer the
vehicle for demonstration is an executable model that can represent the dynamic nature of the
interacting systems modeled by the architecture. Operational architectures describe
organizational roles that interact to provide a particular capability. System architectures describe
a physical implementation that can be used to realize the capability. Current architecture
modeling techniques tend to focus on the single system or single capability. However, a SOS
architecture must describe multiple concurrently executing capabilities. While modeling a
realization of a capability at the system level may require the use of multiple systems, engineers
rarely model the multiple capabilities that a particular implementation must realize. The
methodology uses operational and system architecture data to produce a combined SOS

88

architecture representation. The SOS architecture is used to create a specific implementation for
analysis. The specific implementation is transformed into an executable form that enables the
analysis of architecture alternatives in a static and dynamic environment. The measures
developed for the methodology assess the ability of the architecture to adapt to configurations
other than one for which it was designed.

AWACS

ACS

AALPS AWCATT BATES C-6

AfATDS

APACHE

APKWS

AMDWS

A2C2S

AS AS

CAMEL CCTT

MOV
ACSW
CED
MK-44

uov
ARV(L)

JAVELIN
MULE

GSTAMIDS

DLS
TACSNI
Training Uniquo Ammo

OneSaf

IEWTPT

NETWORK
WIN-T
MTS
JTRS1
JWARN
GCSS-A

TC-AIMSII IW

TES SLAMRAMM

UAV-CLIV-b TAIS

WARS1M TSV

Profiler

REBt.

SOLOIF.R
RADIACSET
HSTAMIDS
ACSW
JTBS8
JAVELIN
MK VII

UAV Ct. iv
ASTAMIOS/EO/in
SIGINT PAYIOAD
UAV-SAR/GMTI

Artillery & MORTAR PROJECTILES * Mobil.
LIGHTVKEIGHTIJOMM cannon
NON-LETHAL MUNITIONS
EXCALIBUR
CKEU
FGUM

MRM/ERM
Electronic Time Fume
MOFA
MFCS
MACS J^-

'NIOS-LS
LAM

CROCHET PAU^,

PAFCS

UndelmcrJ ProQTl
ACTF
BSM
DCTS
Engineer Vehicle
FIOP
QK3
NCES
PKI

Fig. 6.1. System of Systems [Brown, 2005]

The methodology presented effectively models the interaction of constituent systems of the
SOS and creates a boundary that allows the creation of multiple alternatives for comparison.
This research focuses on the interaction between constituent systems and the nodes they occupy.
Additionally, a method to capture the dynamic nature of the SOS at an architectural level is to
produce an executable model from the architectural model. This research, then, uniquely
characterizes the SOS and describes a methodology for assessing candidate architectures using
the SOS measures Adaptability and Agility.

The problem statement for this research is: To develop a methodology for measuring and
evaluating a set of characteristics that uniquely describe a system of systems.

Hypothesis: The performance measures Adaptability, Agility, and Degree of Reuse enable the
comparison of alternative architectures for their ability to adapt to unforeseen configuration as
the requirements of the organization change.

89

There are three primary contributions of this research: (1) Analytical measures that describe
unique technical aspects of the system of systems; (2) Methodology for combining behavior
models to create an executable model for analysis; and (3) SOS architecture assessment of SOS
characteristics given the analytical measures and the methodology.

This section is organized around the technologies required to implement the concepts
described above. Section 6.2 presents related research in the primary domains that were used to
address the problem. Section 6.3 presents the SOS characteristics that were developed to assess
the SOS architecture alternatives. Section 6.4 presents the methodology used to develop and
assess the SOS architecture alternatives using the measures described in Section 6.3. Section 6.5
presents the process for transforming the static architecture representation into a dynamic
representation for analysis. Section 6.6 details a case study that provides evidence concerning
the validity of the assessment methodology, SOS characteristics, and the executable models used
to evaluate them. Section 6.7 concludes with the contributions of the methodology and ideas for
future research concerning SOS architecture development and analysis.

6.2 Related Work

The primary product of the methodology presented here is a formally defined executable
model that enables a static analysis of the graph representing the executable model and a
dynamic analysis that uses simulation results from the model. Each section of this chapter
addresses a particular concept or technology that is used by the methodology to facilitate the
creation of a dynamic representation of the SOS architecture for the purposes of assessing
specific attributes that affect its ability to adapt to unpredicted structural configurations.

System of Systems

There are many perspectives on what constitutes a System of Systems (SOS). This section
discusses some of the more common definitions. While they are workable definitions, they tend
to address a SOS's managerial aspects rather than its technological aspects. While managerial
aspects are important, this research is focused on the technological aspects.

Maier [1996] offers five SOS characteristics (listed in Error! Reference source not
found.). They are: Operational Independence, Managerial Independence, Evolutionary
Development, Emergent Behavior, and Geographic Distribution.

The Defense Acquisition Guidebook states that the objective of SOS engineering is to satisfy
capabilities that can only be met with a mix of multiple, autonomous, and interacting systems.
The mix of constituent systems may include existing, partially developed, and yet-to-be-designed
independent systems. [DAU, 2006] Additionally, Sage and Cuppan [2001] offer a
comprehensive paper on the subject of SOS management in which they address the
characteristics of the SOS and differentiate between a SOS and a federation of systems (FOS).
The discussion is mentioned here to highlight that what constitutes a SOS is much in the eye of
the beholder. A formal definition of a SOS is offered in Section 6. 3.

90

Table 6.1. System of Systems (SOS) Characteristics [Maier, 1996]

Operational Independence of the Elements: If the system-of-systems is disassembled
into its component systems the component systems must be able to usefully operate
independently. The system-of-systems is composed of systems which are independent
and useful in their own right.

Managerial Independence of the Elements: The component systems not only can
operate independently, they do operate independently. The component systems are
separately acquired and integrated but maintain a continuing operational existence
independent of the system-of-systems.

Evolutionary Development: The system-of-systems does not appear fully formed. Its
development and existence is evolutionary with functions and purposes added,
removed, and modified with experience.

Emergent Behavior: The system performs functions and carries out purposes that do
not reside in any component system. These behaviors are emergent properties of the
entire system-of-systems and cannot be localized to any component system. The
principal purposes of the systems-of-systems are fulfilled by these behaviors.

Geographic Distribution: The geographic extent of the component systems is large.
Large is a nebulous and relative concept as communication capabilities increase, but
at a minimum it means that the components can readily exchange only information
and not substantial quantities of mass or energy.

Maier's characteristics and those offered by Sage and Cuppan are appropriate to manage and
acquire a SOS, but are not very informative in SOS testing and performance analysis. This
research will attempt to answer part of the question of what, technically, must be modeled in
order to accurately reflect the behavior and interaction among individual systems in the SOS.
After all, it is the interaction among the constituent systems that provides synergistic or emergent
behavior that is thought to be a SOS's primary characteristic.

A shortfall of the above definitions is that they fail to bound the SOS is a way that allows
SOS engineers to measure aggregate characteristics. When defined as described, SOS engineers
tend to measure constituent system characteristics and aggregate those measures for the
architecture as a whole. This leads to bounding the problem by defining particular operating
scenarios and optimizing configurations for a particular scenario. This optimization can result in
SOS configurations that are not able to adapt to unpredictable operating environments. "The
wide range of threats faced today, their dynamic nature, and the complexity of the environments
in which they must be defeated make it imperative to avoid 'optimizing' (perhaps more clearly

91

said, 'fixating') on an approach that handles only one type of threat or situation well" (Alberts
and Hayes, 2007).

SOS Taxonomy

SOS is an emerging research area. Because there is no generally accepted set of attributes
that characterize a SOS, it is difficult to describe where research fits in the SOS domain. For
example, when discussing a SOS acquisition is the research addressing managerial aspects of the
SOS, as described by Maier, or structural aspects as described by DeLaurentis [2005] in his
taxonomy. While not comprehensive, it does provide a start that will be built upon as the
research domain matures. The DeLaurentis taxonomy is summarized in Table 6.2.

Table 6.2. Taxonomy for Describing a System of Systems [DeLaurentis, 2005]

Category Description

Resources The entities (systems) that give physical
manifestation to the system-of-systems

Stakeholders The non-physical entities that give intent
to the SOS operation through values

Operations The application of intent to direct the
activity of physical and non-physical
entities

Policies The external forcing functions that
impact the operation of physical and non-
physical entities

Level Description

Alpha(a) Base level of entities in each category,
further decomposition will not take place.

Beta (p) Collections of a-level systems (across
categories), organized in a network.

Gamma (y) Collections of [3-level systems (across
categories), organized in a network.

Delta (8) Collections of y-level systems (across
categories), organized in a network.

While Maier addresses managerial aspects and DeLaurentis addresses structural aspects, this
research concentrates on the SOS's technical characteristics. The SOS is composed of structural
and behavioral characteristics that must be included in the model to accurately represent the
SOS's dynamic characteristics. A specific definition is used by the methodology to express the
difference between a system and SOS. While DeLaurentis offers a hierarchical approach to

92

differentiate specific instances of the SOS (Fig. 6.2), the methodology presented defines the SOS
in terms of a set of resources that provide a specific set of capabilities to the organization. An
instance of a SOS architecture might display certain aspects of this taxonomy, but the SOS
architecture is not a static hierarchical structure. The methodology presented provides an
extended definition of a SOS that differentiates the SOS from a specific implementation of a
SOS architecture.

r

Gamma 1

Delta

•-I
Betal

Alphal

Alpha_2

Alpha_3

Alpha_5
J

Gamma 2
i

i

V

Beta_2

Alpha J

Alpha 2

Alpha_4
\

Figure 6.2. Graphical View of DeLaurentis Taxonomy

Architecture Modeling

The goal of the SOS engineer is to demonstrate to the organization that a SOS architecture
will meet the needs of the organization. In construction engineering, the vehicle for
demonstration would be a paper model or a 3D computer generated representation. For the
system engineer the vehicle for demonstration is an executable model that can represent the
dynamic nature of the interacting Elements modeled by the architecture. This section provides
an overview of the technology used to create the executable models that will enable the
assessment of the SOS architectures.

Levis and Wagenhals [2000] describe the information that must be available in the
architecture to accurately create an executable model. "To obtain a specification of the
architecture that allows the derivation of the executable model, an activity model, a data model, a
rule model, and a dynamics model are required." The executable model can also be a tool for

93

modeling concurrently executing behavior; therefore it is important that the architecture be
complete enough to create an executable and that the behavior and data represented in the
executable model be traceable to the architecture representation.

Operational architectures describe organizational roles that interact to provide a particular
capability. System architectures describe a physical implementation that can be used to realize
the capability. Current architecture modeling techniques tend to focus on the single system or
single capability. However, a SOS architecture must describe multiple concurrently executing
capabilities. While modeling a realization of a capability at the system level may require the use
of multiple systems, engineers rarely model the multiple capabilities that a SOS implementation
must realize. Rechtin and Maier [1996] and again Rechtin [1991 and 1992] offer detailed system
engineering approaches that integrate multiple components, but they do not address a SOS
development environment. The following sections discuss languages and frameworks that assist
engineers in the development and assessment of SOS architectures.

DODAF

The Department of Defense Architecture Framework (DODAF) provides a framework for
representing both operational and system architectures.

"The Framework provides the guidance, rules, and product descriptions for developing and
representing architecture descriptions that ensure a common denominator for understanding,
comparing, and integrating Families of Systems (FOSs), Systems of Systems (SOSs), and
interoperating and interacting architectures." [DODAF, 2007a]

The DODAF uses a series of products to represent the architecture. The products are first
divided into 4 categories: the Operational View, the System View, the Technical Standards
View, and the All Views. The Operational Views primarily address the operational nodes and
the data that must pass between them for operational success. The System Views address the
specific physical systems that support the exchange of information between operational nodes.
The Technical Standards Views describe the technological standards that will constrain the
physical system design. The All Views describe those overarching aspects that apply to all three
views. For example, they set the architecture's scope and context. The DODAF documents
provide a comprehensive explanation of each architecture product. As this research addresses
aspects of the SOS, the appropriate DODAF product will be discussed in that context.

Tables 6.3, 6.4, 6.5, and 6.6 show the various DODAF Architecture View products: All
View, Operational View, System View, and Technical Standards View.

94

Table 6.3. All View Products [DODAF, 2007b]

Product Framework
Product Name

General Description

AV-1 Overview and
Summary
Information

Scope, purpose, intended
users, environment depicted
analytical findings

AV-1 Integrated
Dictionary

Architecture data repository
with definitions of all terms
used in all products

Table 6.4. Operational View Products [DODAF, 2007b]
Product Framework Product

Name
General Description

OV-1 High-Level
Operational Concept
Graphic

High-level graphical/textual
description of operational concept

OV-2 Operational Node
Connectivity
Description

Operational nodes, connectivity, and
information exchange need lines
between nodes

OV-3 Operational
Information
Exchange Matrix

Information exchanged between nodes
and the relevant attributes of that
exchange

OV-4 Organizational
Relationships Chart

Organizational, role, or other
relationships among organizations

OV-5 Operational Activity
Model

Capabilities, operational activities,
relationships among activities, inputs,
and outputs; overlays can show cost,
performing nodes, or other pertinent
information

OV-6a Operational Rules
Model

One of three products used to describe
operational activity—identifies
business rules that constrain operation

OV-6b Operational State
Transition
Description

One of three products used to describe
operational activity—identifies
business process responses to events

OV-6c Operational Event-
Trace Description

One of three products used to describe
operational activity—identifies
business process responses to events

OV-7 Logical Data Model Documentation of the system data
requirements and structural business
process rules of the Operational View

95

Table 6.5. System View Products [DODAF, 2007b]

Product Framework Product
Name

General Description

SV-1 Systems Interface
Description

Identification of systems nodes, systems,
system items, and their interconnections.

SV-2 Systems
Communications
Description

Systems nodes, systems, system items,
and their related communications.

SV-3 Systems-Systems
Matrix

Relationships among systems in a given
architecture.

SV-4 Systems
Functionality
Description

Functions performed by systems and the
data flows among system functions

SV-5 Operational Activity
to Systems Function
Traceability Matrix

Mapping of system functions to
operational activities

SV-6 Systems Data
Exchange Matrix

Details of system data elements being
exchanged between systems and the
attributes of that exchange

SV-7 Systems
Performance
Parameters Matrix

Performance characteristics of SV
elements for the appropriate time frame

SV-8 Systems Evolution
Description

Planned incremental steps toward
migrating a suite of systems to a more
efficient suite, or toward evolving a
current system to a future version

SV-9 Systems Technology
Forecast

Emerging technologies and
software/hardware products will affect
future development of the architecture

SV-lOa Systems Rules
Model

Identifies constraints that are imposed on
system functionality due to some aspect
of system design.

SV-1 Ob Systems State
Transition
Description

Identifies responses of a system to events

SV-lOc Systems Event-
Trace Description

Identifies system specific refinements of
critical sequences of events described in
the Operational View

SV-11 Physical Schema Physical implementation of the Logical
Data Model entities

96

Table 6.6. Technical Standards View Products [DODAF, 2007b]

Framework
Product

Framework
Product Name

General Description

TV-1 Technical
Standards
Profile

Listing of standards that apply to
Systems and Services View
elements in a given architecture

TV-1 Technical
Standards
Forecast

Description of emerging
standards and potential impact
on current Systems and Services
View elements, within a set of
time frames

To support the representation of DODAF architectures in a methodology independent way,
the DOD has developed the Core Architecture Data Model (CADM). CADM facilitates the
data-centric environment by providing the data model for all data in the DODAF, including
metadata about the architecture to facilitate interoperability and reuse of architecture data. The
CADM enhances the DODAF through increased interoperability and reuse. The CADM is a
primary enabler for the common framework, vocabulary, discovery, and exchange of architecture
information.

The CADM provides a structure on which DODAF architectures can be stored and
referenced by SOS engineers. The repository that catalogs architectures that are completed and
in development is called the DOD Architecture Registry System.

"The DOD Architecture Registry System (DARS) provides for registration and linking of
architecture metadata to enable the creation of a navigable and searchable enterprise architecture.
It enforces the policies and governance that surround the usage of architecture, thus reinforcing
robust interfaces and data relationships." [DODAF, 2007]

The CADM is a primary enabler for the DARS by providing the data model for information
stored in or referenced by the registry. The information exchange mechanism of architecture
data is the CADM XML. The use of the CADM XML and the architecture metadata allow the
registry of architecture data to be a significant asset in the Net-Centric Operating Environment
(NCOE). The NCOE is the networked shared space that facilitates the interoperability of
systems acquired by the DOD. Figure 6.3 illustrates how architecture producers register the
developed architecture data in the DARS. The structure allows consumers to access the data to
conduct enterprise architecture analysis and aid decision making. The DARS provides a
mechanism that allows SOS developers to access the models that represent the constituent
systems that they will use to build the SOS. It is these system representations that will be the
basis for developing SOS architecture alternatives for comparison.

97

Net-Centric Operating Environment

^COE Shared Space
Content Metadata

^Enterprise Catalog^
Sttuctuial Metadata

Service Metadata

Architects
ToOt»*

Repositoms EA Analysis and Decisions

EA = Enterprise Architecture
COI = Community of Interest
CADM = Core Architecture Data Model
DDMS = Defense Discovery Metadata Specification

Figure 6.3. Department of Defense (DOD) Architecture Registry System (DARS) Role
in the Net-Centric Operating Environment (NCOE) [DODAF, 2007]

Unified Modeling Language

The DODAF does not prescribe a language for the representation of architecture data.
Rather it defines the type of data that must be present for each architecture view product. The
methodology presented here uses the Unified Modeling Language (UML) to represent the
architecture and uses the DODAF products to provide a common view of that data.

The Unified Modeling Language (UML) superstructure specification states that "the Unified
Modeling Language is a visual language for specifying, constructing, and documenting the
artifacts of systems" [Object Management Group (OMG), 2007b]. UML is primarily a graphical
language that uses specific modeling artifacts to illustrate a system's structural and behavioral
aspects. The UML specification defines both structural and behavioral diagrams used to describe
various aspects of a system. The Structural Diagrams include the Use Case Diagram. Class
Diagram, Object Diagram, Component Diagram and Deployment Diagram. Behavior Diagrams
include the Sequence and Communication Diagrams, the Activity Diagram and the State
Machine Diagram. Fowler [2004] and Eriksson, et al. [2004] both offer descriptions of each

98

diagram and the purpose for each. The methodology presented makes extensive use of Activity
Diagrams to model the behavior of constituent systems of the SOS and the interaction of those
systems.

The UML is a formal language with a complete data model that facilitates an abstract syntax
that describes all the components of the diagrams mentioned above. The component
relationships that exist across diagrams are maintained by representing the common components
in a high level data model. The high level model, or meta model, describes the UML
components that are instantiated to create the relationships and behavior modeled in the
diagrams. The meta model provides a standard representation that is used to facilitate
transformations to other model representations and for exchanging model data between tools
using XML files built to the UML specification. Additionally, the UML semantics describe the
meaning conveyed by the interaction of model elements in both the structural and behavior
diagrams. The UML uses a detailed architecture to describe the language and its interactions.
The next section offers an overview of the UML language architecture. The UML Infrastructure
and Superstructure Specification [OMG, 2007a, 2007b] has a more detailed explanation of the
UML specification. This research makes extensive use of the UML meta model to facilitate a
transformation from UML to an executable representation.

The UML designers use modularity, layering, and partitioning to facilitate the UML's
extensibility and reuse. The UML has two primary layers: the infrastructure layer and the
superstructure layer. The Core packages of the infrastructure describe highly re-useable
constructs that are used throughout the superstructure layer. The superstructure reuses the
constructs of the infrastructure to create the top-level constructs that are used every day by
modelers. Figure 6.4 shows an example of this reuse by illustrating the use of the Core packages
in other modeling languages sponsored by the OMG, and shows how the Core packages underlie
the Meta Object Facility (MOF), the Common Warehouse Model (CWM), the UML, and
Profiles. The items relevant to this research are the MOF and UML. The Core underlies the
Meta-Object Facility (MOF). The UML and other languages are described using the common
meta-model MOF [OMG, 2007a]. There is a recursive relationship between the MOF and UML
because the Core packages from UML are used to describe the MOF.

Figure 6.5 illustrates how the MOF is the meta-model used to describe artifacts in the UML.
Figure 6.6 shows the OMG meta-model hierarchy, depicting the relationship of model artifacts
from the runtime instance to the MOF model at level M3. The runtime instance is denoted at the
M0 level and represents a runtime instance of the Class Video described by the user model at the
Ml level. At the Ml level, modeled Class Video and modeled instance ":Video" represent
instances of the UML artifacts at the M2 level. Notice that the artifact Class is used at both the
M2 and M3 levels. Recall that UML and MOF share the core packages—i.e. Class is a part of
the Core package. Finally, UML Class and Instance are instances of the MOF artifact Class. It
is important to note that each sublevel is an instance of artifacts at the level above.

99

UML = Unified Modeling Language
MOF = Meta object Facility

CWM = Common Warehouse Model

Figure 6.4. Role of UML Common Core [OMG, 2007a]

V? 1
-metamodeU

MOF

«ins*anceOf* instanceOf*

* \
M2 :'

«metamodeu
UML

«metamodel*
CWM

UML = Unified Modeling Language
MOF = Meta object Facility

CWM = Common Warehouse Model

Figure 6.5. UML-MOF Meta-Levels [OMG, 2007b]

100

This relationship facilitates data exchange among modeling tools and transforming models
between domains. It especially facilitates transformations between languages that share the same
meta-model. The methodology concentrates on modeling system behavior for alternative
instances of a specific SOS Architecture and transforming that model into an executable form at
the level M1. Then the executable model is created thus instantiating model components at the
level MO. The SOS implementations are Ml level instances of the SOSI Architecture described
at M2 using UML.

M3 MOF Class

4 \ ^\

*ins:anceOf» *ir<s:anceQf» \ * mstanceOf»

<:.: Ml Attribute

7T
Class

W

classifier
K 4

Instance
~r- y

«!nstanceOt» «ms»nceOf» «in&an$feOf» . msianoeQf*

Video
M1set model

•title String
.«snapshot.,' : Video

title = 20C • A Space Od yss ey*

< instanced»

MC Run time nstances) aVideo

Figure 6.6. Four Layer Meta-Model Hierarchy [OMG, 2007b]

The meta model hierarchy is a key component that enables the model transformation
developed for the methodology. The transformation makes extensive use of the M2 layer of the
UML meta model hierarchy to accomplish the transformation.

Model Driven Development

Model Driven Development (MDD) is a general term used in the system and software
engineering domains to describe a development process that makes extensive use of an abstract
representation of the system to make analysis and design decisions. The basic concept is to use
graphical models to provide a higher level of abstraction of the system rather than using code or
written documentation.

101

"Models are used to reason about the problem domain and the solution domain.
Relationships between these models provide a web of dependencies that record the process by
which a solution was created and help us to understand the implications of the changes at any
point in the process." [Beydeda et al., 2005]

The Model Driven Architecture (MDA) is an approach to MDD championed by the Object
Management Group. MDA's underlying principles are described in differing levels of detail in
Beydeda et al. [2005] and Kleppe et al. [2003]. The MDA principles follow:

1. Models expressed in a well-defined notation are the cornerstone to system understanding
for enterprise-scale solutions.

2. Building systems can be organized around a set of models by imposing a series of
transformations between models, organized into an architectural framework of layers and
transformations.

3. A formal underpinning for describing models in a set of meta-models facilitates
meaningful integration and transformation among models and is the basis for automation
through tools.

4. Acceptance and broad adoption of this model-based approach requires industry standards
to provide openness to consumers, and foster competition among vendors.

Figure 6.7 represents the fundamentals of MDA. One of the primary concepts of MDA is
platform independence of the initial model, also called the Platform Independence Model (PIM).
The PIM is transformed into a Platform Specific Model (PSM) that adds the specific
requirements of the target language or platform. For example, a PIM represented as a class
diagram in UML might be transformed into a model form that adds the details for a Java-specific
implementation PSM. The final step in the MDA process would be to generate the Java code
from the PSM. In MDA, the code generation is viewed as another automated transformation.
Note that this process is Model driven, any changes required in the PSM are first implemented in
the PIM and then the PSM is regenerated. The idea is that the PIM is the reference, not the code.

This research used a modified Model Driven Architecture approach to provide a Model
Driven Development environment for modeling the dynamic behavior of a SOS architecture.
This transformation includes creating a PIM using UML and performing two transformations to
create an executable representation of the UML. The primary advantage of an MDD
environment for the methodology presented is the ability to trace model artifacts that appear in
the transformed representation (PSM) to the original representation (PIM). Then changes
required in the PSM are mad in the PIM and the PSM regenerated. This ensures the model
remains consistent with the implementation.

102

PIM

first
transformatior

/

/
A first r

PSM PSM

second
transformation

second
transformation

V

Code Code

PIM = Platform Independent Model, PSM = Platform Specific Model

Figure 6.7. Model Driven Architecture Fundamental Concept [OMG, 2007b]

Executable Modeling Languages

Carl Petri [1966] first described the nets that bear his name in 1962. While we will not use
this initial representation for this research, Petri's paper is the seminal work for this concept and
provides the foundation for all Petri Net (PN) work to date.

The "low level" nets described by Petri require the developer to model at a very low level of
abstraction. Research was done to raise the level of abstraction of Petri Nets. Genrich and
Lautenbach [1979] developed Predicate Transition Nets which extended the range of application
of the Petri Net construct. Predicate Transition Nets also maintain a close relationship to lower
level nets. Jensen (1991) described High-level Petri Nets which add the ability to describe
conditions and actions that cause a transition to fire. This raises the net's level of abstraction by
allowing the transition to consider the characteristics of input tokens and model the action
represented by the transition.

Jensen [1991] once again extended the state-of-the-art of Petri Nets by adding the concept of
color to the tokens, analogous to data types in functional programming. This addition allows the
tokens to hold specific characteristics that are passed from place to place through the logic
contained in the transitions that represent the actions performed. This allows the modeler to use
complex logic at the transition to more completely model the system's behavior. Jensen also
offers 12 advantages of CPNs:

1. CPNs have a graphical representation.
2. CPNs integrate the description of control and synchronization with the description of data

manipulation.
3. CPNs offer hierarchical descriptions.

103

4. CPNs offer interactive simulations.
5. CPNs have a number of formal analysis methods by which properties of CP-nets can be

proved.
6. CPNs have computer tools supporting their drawing, simulation and formal analysis.
7. CPNs have a well-defined semantics which unambiguously defines the behavior of each

CP-net.
8. CPNs are very general and can be used to describe a large variety of different system.
9. CPNs have very few, but powerful, primitives.
10. CPNs have an explicit description of both states and actions.
11. CPNs have a semantics which build upon true concurrency, instead of interleaving.
12. CPNs are stable towards minor changes of the modeled system.

In addition to color, Jensen [1991] also introduced hierarchies in Colored Petri Nets. The
hierarchy allows analysts to structure a complex model into a series of related "subpages" that
relate to one another using specific constructs that define the subpage's inputs and outputs and
the relationship of the subpage to a transition on a higher-level page. The techniques that
provide the ability to decompose the CPN into a set of hierarchical set of subpages do not extend
the theoretical underpinnings of the CPN. A hierarchical CPN can be "flattened" to represent a
non-hierarchical CPN. In fact, Jensen [1991] showed that the hierarchical nets are equivalent to
the flattened CPNs. This research takes advantage of these hierarchies and transforms
hierarchical UML Activity Diagrams into hierarchical CPNs.

The grounding of PN and CPN in graph theory allows the use of formal algorithms for the
analysis of such graphs. One such analysis is the identification of invariants of the graph.
Farkas [1902],Genrich and Lautenbach [1979] and Hillion [1986] offer algorithms for
identifying the invariants of a PN graph. This methodology uses the Farkas algorithm and
concepts developed by Hillion to analyze the graphs that represent the executable models created
by this methodology.

Levis and Wagenhals [2000] offer the basic ingredients of an executable model when using
the results of a system architecture development as the input into the executable representation.
The architecture must provide the activity model, data model, and rule model to completely
address the requirements of the executable. Levis and Wagenhals do not address the semantics
of the architecture model, nor that there be a requirement for a model driven development
environment. The semantics define the behavior of each model artifact. A model driven
environment demands clear description of the effects each model artifact has on the behavior of
the system. Semantics are particularly important for constructs that represent dynamic behavior,
like State Machine Diagrams, Activity Diagrams and, Interaction Diagrams.

Jensen [1992] described how to translate an activity model based on functional
decomposition to a CPN, when the activity model is expressed in IDEFO (Integration Definition
for Function Modeling (IDEFO) [National Institute for Standards and Technology, 1993]). Levis
and Wagenhals [2001] and Wagenhals et al. [2000] built on the concept in their process for both

104

developing a DODAF architecture and analyzing the architecture using a CPN. The CPN
provides formal semantics to the IDEFO so a dynamic model can be created [Jensen, 1992.
1997].

Breton and Bezivin [2001] and Hansen [2001] address executable models from the
perspective of the meta-model for PN and CPN respectively. Breton and Bezivin address the PN
meta-model in an attempt to provide the tools to do a Meta Object Facility (MOF) style
transformation from the UML. They concentrate on the advantages of meta modeling for the
purposes of transformation, and use the dynamic aspects, as opposed to the static aspects, to
address shortcomings in the semantics for UML. They use PNs as an example to support their
argument that the UML needs a clear set of semantics to deal with the models' executability.
Hansen [2001] proposes to create a profile for UML so it can represent the semantics of CPN.
His approach proposes to extend UML to represent a CPN as another diagram available to the
UML modeler to represent behavior: "CPN have, in contrast to UML state machines, a precise
semantics and powerful analysis methods. Thus, CP-nets should be separate to state machines
and could, possibly, replace state machines in the UML." Both approaches address what must be
included in the meta-model to accurately describe the semantics for UML models especially the
dynamic portions of those models. The methodology presented uses the attributes that must be
included in the UML model to properly represent the SOS characteristics and the associated
executable model attributes.

Much of this research makes use of methods from the software engineering community.
Selic [1994] describes a modeling technique for a specific subset of the software domain
concerning real-time systems. The Real-Time Object Oriented Modeling (ROOM) technique
uses an executable model to analyze the behavior of the software design. Together with the
ObjecTime• environment, ROOM provides a construct that allows architects to create
executable models at all phases of development: from the analysis phase though design and
implementation [Selic, 1994]. The ObjecTime environment was based on the state machine
model. While not as general as a CPN, it was very effective for developing real-time systems.

UML to Colored Petri Net (CPN) Transformation

Most of the literature concerning transformation of UML to Petri Net (PN) addresses the
state machine and collaboration diagrams. Merseguer [2002], Bernardi et al. [2002], Pooley and
King [1999], and Saldhanna and Shatz [2000] all address the transformation of state machines
and collaboration/communication diagrams for the purposes of system performance analysis.
They address developing a PN but do not fully address the types of analysis that can be
conducted with the PN. Eshuis and Wieringa [2001a], Lopez-Grao et al. [2004], Petriu and Shen
[2002], and Storrle [2005] address the transformation of activity diagrams to Petri Nets. Once
again, the transformation is the primary goal. The analysis and what can be represented in the
UML model are left to the reader. This research describes a transformation from UML Activity
Diagrams to create an executable model of the SOS.

105

Software Metrics

Coupling and cohesion are important concepts used in this research. In this section their
traditional definitions will be discussed followed by a short overview of each metric and its
usefulness in the software engineering community. Both the static and dynamic measurement of
cohesion and coupling are addressed. There is also research that compares the validity of
dynamic measures to static measures [Briand et al., 1999; Hassoun et al., 2005].

Traditionally, software coupling is defined as "the degree of interdependency between
modules" [Yourdon and Constantine, 1979]. The software engineering community agrees that it
is good practice to minimize coupling, as lower coupling promotes reusability and
maintainability of the class or module [Chidamber and Kemerer, 1994]. Most of the work
concerns static measures of coupling in which the code is developed then analyzed for inter-
object coupling [Chidamber and Kemerer, 1994; Yourdon and Constantine, 1979]. More recent
work has been done addressing dynamic metrics for coupling. These measures involve
analyzing the application as it is running to understand the dynamic interaction of the
interoperating objects. The direction of coupling between objects is described as Import
Coupling and Export Coupling. The concept depends on the object's perspective: When an
object calls a method in another object, this is import coupling. When an object's method is
invoked by another object is referred to as export coupling [Arisholm et al., 2004]. The concept
is that the result of the method call either exports data out of the object or imports data from
another object. Much of the research is differentiated by when the analysis is accomplished in
the development process. There is research where coupling is analyzed late in the design
process, Arisholm et al. [2002] analyzes running code. While other research addresses the
dynamic coupling metric earlier in the development phase [Yacoub, 1999]. Yacoub's research
contained two measures Import Object Coupling (IOC) and Export Object Coupling (EOC) and
was completed in the context of developing a real-time system using the Real-Time Object
Oriented Modeling (ROOM) paradigm. The ROOM charts that are analogous to a state
transition diagram are used to create a simulation of the application before final application code
development. An analysis of the ROOM-derived simulation provided the measures for import
and export coupling [Yacoub, 1999].

Cohesion is the practice of keeping related things together. In large part, this is fundamental
to object oriented design. Cohesion relates to the idea of "similarity" of methods and attributes
in a class. In other words, the cohesiveness of a class is the degree to which a given class
encapsulates a set of consistent, semantically related attributes and methods [Chidamber and
Kemerer, 1994]. Chidamber and Kemerer [1994] approach the relatedness of attributes and
methods of a class obliquely with their lack of cohesion measure (LCOM). A class with a high
LCOM may not have a focused objective and may be trying to achieve unrelated objectives. The
behavior of such a class may be harder to predict than a class with a lower LCOM. Additionally,
lack of cohesion also increases the complexity of a class, thus increasing the likelihood of errors
during the development process. The lack of cohesion could also reveal positive attributes for

106

the purposes of SOS development. A component that lacks cohesion because it lacks a particular
focus may be more flexible because it can be used in more situations without reconfiguring the
system. This aspect of cohesion will be explored in Section 6.3.

Summary

The methodology describes a method for assessing the ability of a SOS architecture to adapt
to unpredicted operating environments. To that end, this research uses methods from both the
systems engineering and software engineering communities to create a dynamic model that
represents the interacting systems of the SOS. This chapter provided an overview of the
technology that provided the foundation for the methodology presented.

The concept of the SOS is described and the weaknesses of the current definitions are
discussed. The literature addresses the managerial aspects of the SOS but fails to address the
technical aspects especially as they apply to the requirements of the organization. The
discussion also point out that without clear boundary it is very difficult to create alternative
architectures for comparison.

In order to create the dynamic representation of the architecture, the rule model, data model
and behavior model must be represented in the architecture. The DODAF was presented as a
common framework for identifying and presenting the data required for the executable model.
Additionally, the UML is used to represent the required architecture information.

The methodology requires the executable model so the UML must be transformed in to the
executable form. A CPN is the chosen executable form of the methodology. The transformation
of UML into CPN is well understood; however the analysis of multiple SOS processes is not
addressed fully. The methodology creates an executable model for analysis of the
simultaneously executing processes that a SOS must support in order to provide the set of
capabilities desired by the organization. Finally, neither discipline addresses architecture-wide
measures that enable the comparison of SOS performance in the initial analysis and design
phases of development. The following chapters address the transformation of multiple process
descriptions into an executable form and describe assessment measures that identify
characteristics important to an agile organization.

6.3 Assessment Measures

This section provides a technical definition of a SOS and specific characteristics that relate to
the SOS's ability to change is structural configuration to adapt to a new operational environment.
The first section establishes the conceptual relationship between the components of the SOS
definition. The second section defines a SOS and several properties. The third section describes
assessment measures and the formulas used to calculate them. The last section is an example
illustrating how the assessment measures are calculated.

107

System of Systems Definition

The relationship between SOS components is significant and warrants discussion and
clarification in the context of this methodology. Thus, in order to properly define the SOS, the
relationships between its various components must be established. An extended definition of
SOS specifies the resources available to the enterprise and differentiates the specific
implementation used for a particular purpose. The resources available to the enterprise compose
the SOS. The resources are used by the enterprise to realize specific capabilities required by the
organization. Identifying the specific implementation provides a structure on which to make
measurements. It also provides a way to identify alternatives for comparison. A specific
implementation requires a set of resources that are configured to provide a specific set of
capabilities to the organization. The specific implementation is developed using the
specification of the structural and behavioral relationships between resources defined in an
architecture. The specific instances of the architecture can be assessed for their ability to address
the needs of the organization.

Figure 6.8 is a concept map of the component relationships of the SOS taxonomy. Concept
maps "are graphical tools for organizing and representing knowledge" [Novak and Canas. 2006].
Concept maps are usually organized with the most abstract component at the top of the diagram
and the more specific concepts arranged below. This hierarchical structure of the concept map is
effective for illustrating the taxonomic relationships of the components of the SOS. The concept
map provides a succinct graphical method for communicating the relationship of SOS concepts.

We define a particular resource available to the enterprise as an Element. An Element can
represent any level of abstraction. Examples used here represent the Element as an information
system. The specific implementation of an architecture for a particular purpose is the SOS
Instance (SOSI). The SOSI consists of a subset of the Elements available to the enterprise. A
Node provides structure to the SOSI since each Element is assigned to one and only one Node.
Nodes possess a communication structure that ensures the internal communication between
Elements assigned to the Node and an external Link that represents the presence of a
communication facility between Nodes. The behavior of the SOSI is described by a SOSI
Capability (SOSIC). A SOSIC represents a process that uses a subset of SOSI Elements to
realize a capability required by the organization. Elements of a SOSI may be members of more
than one SOSIC. Messages represent the data passed between Elements in the execution of the
SOSIC. Finally, the SOSI Architecture is a description of the relationship between the Elements.
Nodes, SOSICs, Links and Messages; therefore the SOSI is a particular instance of a SOSI
Architecture that uses a subset of the Elements, allocated to Nodes, to model specific behavior
represented by a SOSIC.

108

/'

SOSI

composed of
\

composed of

Node
•

connected by

I
Link

-• composed of ^-

Element

use

I

SOSIC

Message

SOSI = System of Systems
Instance

SOSIC = SOSI Capability

Figure 6.8. SOSI Taxonomy

The next section discusses the properties that differentiate the SOSI from the SOSI.

SOS Properties

1. The SOS defines a predetermined set of capabilities.

2. The set of Elements that compose the SOS changes over time.

3. The SOS Elements are heterogeneous.

4. The SOS Elements are at different program maturity levels.

SOS Property 1

Each SOS defines a set of predetermined capabilities—the planned capabilities. The
predetermined capabilities are the ones that are specifically provided by a set of Elements that
are members of the SOS. The planned capabilities are described in operational and systems
architectures available to the SOS engineer.

SOS Property 2

The SOS Elements change over time. The individual Elements enter and leave the SOS as
required. As the organization's focus changes, Elements will be retired and new Elements will
be introduced to enhance existing capability or realize a newly defined capability. This property
addresses the nature of organizations as they evolve. The available Elements must change to
meet the needs of the organization.

109

SOS Property 3

The various Elements are heterogeneous. From an information technology perspective, they
execute on different platforms and are developed using various technologies and languages.
Also, some systems are primarily hardware and others are primarily software. Elements can also
represent the behavior of humans in the SOS.

SOS Property 4

The SOS Elements are at different program maturity levels. The SOS can contain both
experimental Elements and Elements that have existed for some time. The abstraction level is
high, so systems and capabilities can be tested at the analysis and early design phases of
development rather than waiting for lab tests of development software and hardware.

Definition 6.1 is the formal description of the SOS. The SOS Q is a triple {E, F, M} where E is
the set of Elements that compose the SOS, F is the set of SOSI defined from elements of E in the
SOS, and M is the set of messages used by the Elements and SOSI of the SOS. Each member of
the set F is a disjoint subset of E.

Definition 6.1: n = {E,F,M}

where,

E = {e,,e2,e3,...,ev};set of Elements that compose SOS

F = {f,,f2,f,,...,fk};set of SOSI developed from E

M = {m,,m2,m3,...,mh};set of messages used by SOS

SOSI Properties

1. A SOSI is created/instantiated from available Elements of the SOS based on the
relationships described in the SOSI Architecture.

2. A SOSI provides a particular subset of the planned capabilities.

3. Each SOSI is unique.

SOSI Property I

A SOSI is instantiated from existing Elements in the SOS following the relationships
described in the SOSI Architecture. It is very important to understand the relationship of
Elements, Nodes, and SOSICs, so careful decisions must be made as to how the SOSI will be
configured. Additionally, as new Elements are developed to add capability to the SOS, we must
effectively evaluate the effects of the new Elements on the SOSI Architecture and the SOSI.
New Elements can be added to the set of SOS Elements; they are not necessarily added to the
SOSI. Finally, Elements leave the SOS as they are retired, damaged, or the mission changes.

110

When an Element leaves, the SOSI Architecture and any SOSI using that Element must be
reevaluated. Figure 6.9 illustrates the changing nature of the SOS. The cloud represents the
SOS's dynamic nature while the SOSI objects show that, at least for specific periods of time, the
SOSI is constant and can be observed. A challenge in previous SOS analysis was the attempt to
analyze the SOS as whole. Thus, the cloud also represents the difficulty in defining a boundary
around the SOS. Without a clear boundary, how do you analyze the SOS's characteristics? The
methodology presented addresses the individual SOSI created from Elements available in the
SOS. The individual SOSI have boundaries which makes assessment and comparison of SOSI
alternatives possible.

SOSL

SOS^ SOSL

SOSI. SOSL

Figure 6.9. System of Systems (SOS) Boundary

SOSI Property 2

The SOSI is instantiated to provide a specific set of capabilities that have proven challenging
to acquire with a single system. It is difficult to decide what Elements will comprise the SOSI
and test the attributes of their interaction in the SOSI. The decisions on what Elements and how
they are configured require rigorous analysis that is not provided before the Elements are brought
together for integration. This can produce tightly coupled configurations that are difficult to
modify as the situation for their use changes.

SOSI Property 3

Each SOSI is unique. The SOSI Architecture describes the relationships between Nodes.
Elements and SOSICs. A particular operating environment and mission governs the way the

11

SOSI will be instantiated. SOSIs can differ in the number of Elements, how the Elements are
distributed on the Nodes, and how the Nodes are linked together. They can also differ in the way
Elements are used to provide the specific SOSIC. This methodology specifically addresses
structural changes.

SOSI fk is a 5-tuple {Ek, Nk, Pk, Mk, Ck} formally described by definition 6.2. The
components of the SOSI fk are the sets Ek, Nk, Pk , Mk , and Ck that represent the Elements,
Nodes, SOSICs. Messages and Links of fk, respectively. The set of Elements Ek represents the
subset of E from the SOS that composes the SOSI fk. The set of the Nodes Nk represents the
Nodes that provide the structure for SOSI fk. The set of SOSIC Pk represents the SOSICs that
describe the capabilities present in the SOSI fk. The set of Messages Mk represents the
Messages used by SOSI fk. The set of Links Ck represents the communication facility between
Nodes.

Definition 6.2: fk = {Ek,Nk,Pk,Mk,Ck}

where,

Ek = {ekl,ek2,ek3,...,eks};set of Elements in fk

Nk = {nkl,nk2,nk3,...,nkw};setofNodesinfk

pk ={Pk.>Pk2>Pk3--> Pkr};setofSOSICinfk

Mk = {mkl,mk2,mk3,...,mki]};set of Messages in fk

ck ={ck,.ck2,ck3,...,ckb};setofLinksinfk

Equations 6.1 and 6.2 describe the relationship of the Node to the SOSI. Equation 6.1 shows
that an Element of SOSI fk shall be a member of one and only one Node. This is expressed
formally stating that the Nodes in fk are disjoint. Equation 6.2 shows that the union of all the
Nodes in the SOSI fk accounts for all the Elements in SOSI fk. The elements of set Nk are a
partition on the set of Elements Ek. Equation 6.3 shows that Elements may be members of more
than SOSIC. Equation 6.4 shows that all SOSIC Pk that compose the SOSI fk shall account for
only elements of Ek. The set Pk is a cover of the Elements of Ek. Figure 6.10 includes a diagram
showing the relationships described in Equations 6.1, 6.2, 6.3, and 6.4. The box on the left
shows that the Nodes nl,l, nl,2 and nl,3 contain all the elements of Ek and that each Element is
a member of one and only one Node. The box on the right shows that the Elements of the SOSI
fk can be members of more than one SOSIC and that it is possible for an Element to stand alone.

n os (61)

j-i

12

Ill

11

where,

m = the number of Nodes in SOSI f

(6.2)

f>^0

CjP^E
k

where

n = the number of SOSICs in SOSI f.

(6.3)

(6.4)

nu!

'i,i

"u! el-5

SOSI, f,
-1.2
;1.4

1U_

-1,6
el,7 el,14

el,8el,9el,10

ny! el,ll el,12el,13

fl = {Ev Nv P1# MJ
E[is the set of the all the elements
N: is the set of Nodes
Pj is the set of SOSIC
N1 and Pt are subsets of E1

M1 is the set of Messages used by f1

--1-' /^ "NSOSI, fx
/PM) eK2 \
/ ,'---el,4 \

e, t p ei.u

\ >g ?i.-
Y|t,8el. 9eUj/ (Py,A

^vjjj^i.n ei,i2 Q\,\j£y

M, i

h.\
Cl,l>el,2'

e. 3>el,4'

ei 5>el,6'

e, 7'el,8'

e, 9'el,IO-

S| Il'el.l2

e. 13'ei,l4
ei I5'el,16

C| l7-ei,l8
el I9'el,20

e. :i-l-'i.::
ei 23'el,24
ei 25-el,26

Figure 6.10. SOS Taxonomy Relationships Venn Diagram

SOSI Measures

The proposed measures that will enable the assessment of SOSI alternatives describe the
degree of interaction of the Elements within and among the Nodes of the SOSI and the degree of

13

reuse of the Elements among the SOSICs. Five measures are defined: Cohesion, Coupling,
Degree of Reuse, Adaptability and Agility.

Cohesion

Cohesion is a measure of "how tightly bound or related internal elements [of a software
engineering module] are to one another." [Yourdan and Constantine, 1979] Bieman [1998]
defines cohesion as a measure of the relatedness of inputs to outputs of a Module. In the SOSI. a
Node with low cohesion is easier to reconfigure than a Node with high cohesion. In the software
engineering domain, a class with low cohesion can and should be split into more cohesive
classes. This aids in the maintenance of the software because cohesive classes do specific tasks
effectively encapsulating functionality and aiding maintenance. This methodology uses the idea
to show that adaptable Nodes should show low Cohesion. That means they can be reconfigured
without significantly effecting the execution of the SOSI. The level of cohesion can be measured
in various ways to provide insight into how strongly Node inputs are related to Node outputs.

The computation for cohesion is adapted from Bieman's work [1998] on Design Level
Cohesion measures. Fundamentally, Bieman's metric is a measure of the relationship between
inputs and outputs of a module. Most software measures of cohesion analyze the application
code to compute the cohesion measure. A contribution of this research is the idea that the
cohesion measure can be computed by analyzing the paths connecting inputs and outputs
modeled by a graph the represents the interaction of Elements on a Node. The cohesion measure
is a significant departure from Bieman, but capitalizes on the relationship between inputs and
outputs. A Node with high cohesion will have a high proportion of inputs related to the outputs.
A Node with low cohesion will have a low proportion of inputs that are related to the outputs.

Cohesion is measured by calculating the number of paths that can be traced through the
Elements from the Node inputs to Node outputs. The more paths that connect inputs to outputs
the higher the cohesion of the node. Equation 6.5 shows the calculation of Node Cohesion.
SOSI Cohesion, Equation 6.6, is the average Node Cohesion. The following section is a
discussion on computing the number of paths.

z, (6.5)
Coh(nkl) = ^

X,,;

where,

zkl = number of paths in Node nki

xk,=ik,*Qk,
where,

Ikl = number of inputs for the Node

Qkl = number of outputs for the Node

114

» (6.6)
£coh(nkl)
i=I Coh(fk) =

m

where,

m = number of Nodes in SOSI

The paths that connect the inputs to the outputs can be computed formally using algorithms
that rely on formally defined graphs that represent the Nodes and the Elements that are assigned
to them. There are many different graphs styles that are formally defined. For the purposes of
this methodology, a Colored Petri Net (CPN) is used to represent the Node and the Elements.
The transitions of the CPN represent the Elements of the SOSI assigned to the Node. The paths
that connect inputs to outputs are computed by calculating the S-invariants of the Petri-net (PN)
that represents a Node. For the purposes of this methodology, the S-invariants of the graph
identify the paths that connect the Node inputs to the Node outputs. The "Farkas Algorithm"
[Farkas, 1902] is used to compute the S-invariants of the Node. The methodology described here
creates a CPN for each Node. Figure 6.11 illustrates the modification of the CPN that represents
the Node and the calculation of the paths. Figure 6.1 la is converted to a PN by removing the
hierarchical constructs and colors from the net. The remainder is a PN that represents the
structure of the inter-connections between the inputs and outputs of the Node. Next, the PN must
be modified to include a common input transition that connects to all input places and an output
transition that all output places are connected to. This technique was developed by Hillion
[1986]. The output and input transition are connected with a connecting place. Figure 6.1 lb
shows the addition of the connecting place and transitions. Then, the resulting S-invariants are
computed on the modified CPN. All S-invariants that include the common connecting place are
paths that connect Node inputs to Node outputs. Figures 6.11 c and d show the paths for this net.

Figure 6.12 shows two CPNs that represent SOSI Nodes. Nodel is an example of low
cohesion. Node2 is an example of higher cohesion. Both Nodes have three inputs and three
outputs. In Nodel the inputs are associated with only one output, so the cohesion is lower than
that of Node2 where all the inputs affect all the outputs.

115

a)

b)

c)

o

o
d) IK^

Figure 6.11: Simple Information Flow Path

Figure 6.12 shows a more complicated node with loops in the CPN representation. In the
case of Figure 6.13, Node3 has nine direct paths that touch the four loops created by places PI,
P2, P3, and P4. This makes the total number of paths 36 because each of the nine direct paths
now has four more paths that it could follow through the loops.

16

c*
1 = 3
Q=3

O

°2 u -o
X = 3(3) = 9
Z = 3

Coh = z/x = 3/9

1 = 3 X = 3(3) = 9
Q=3 Z=9

Coh = z/x = 9/9

Figure 6.12. Cohesion Example

1 = 3 X = 3(3) = 9
Q = 3 Z = 9(4) = 36

Coh = z/x = 36/9 = 4

Figure 6.13. Node with Loops

117

Coupling

Coupling is a measure of the interdependence between Nodes of the SOSI. Node coupling is
the degree that one Node is dependent on another Node in the SOSI. Node coupling will be
measured dynamically in this methodology, which helps the developer understand the extent of
the relationship between Nodes within the SOSI. As mentioned in Chapter 2, coupling can be
measured as import coupling or export coupling. This methodology measures export coupling
among the Nodes of the SOSI.

Because the coupling measure is dynamic, there is a requirement for a Scenario that sets the
parameters of the executable model and provides the initial conditions. Definition 6.3 is the
formal definition of the Scenario for the calculation of the Coupling measure. In order to get
consistent execution results from multiple architectures, a common scenario must be defined.
The scenario X is defined by setting the initial conditions IX and the parameters RX for the SOSI
under consideration.

Definition 6.3 Scenariox = {Ix, Rx ,fk}

Ix = the initial condition

Rx = parameters

fk = the particular SOSI

Equation 6.7 shows the formula for Node Coupling. This indicates the degree of
dependence of a Node to all the other Nodes.

XK(nkl,nkj)| (6-7)
Coupx K,) = ——p

where,

x = scenario generated for the analysis

Mx = messages generated by Scenario x

C -\ *• y~ = number of possible connections

between Nodes in SOSI fk

m = number of Nodes in SOSI

Nodes that are highly coupled reduce the ability of the SOSI to change because changes in
the highly coupled Nodes propagate changes to other Nodes. The propagation of change reduces
the ability of the organization to adapt because highly coupled systems are difficult change due

118

to the complexity of the interface between Nodes. This is similar to the notion of coupling in
software engineering. The more interconnected two classes are the more difficult it is to make
changes in one without reflective changes in the other. The coupling measure reveals the level
of dependence among the Nodes of the SOSI.

The SOSI Coupling measure is the average of the Node Coupling measures. This measure is
shown in equation 6.8.

- (6-8)
Z.CouPxK,)

C°UPx(fk) =
i=l

m

Adaptability Computation

Adaptability is a function of the product of Cohesion and Coupling. Equation 6.9 is the
formula for Adaptability. D is the Cobb-Douglas [1928] production function. Cobb-Douglas
provides an effective method for relating Coupling and Cohesion. Cobb-Douglas is explored
later in the section. Equation 6.9 is the formula for calculating Node Adaptability. Equation 6.9
uses Node Coupling and Node Cohesion and the inputs for the calculation. Equation 6.10 is the
SOSI level measure of Adaptability. It uses the SOSI level measure of Cohesion and Coupling
from Equations 6.6 and 6.8, respectively.

1 (6-9)
Adaptx(nkj) = -

where,

D = Coh(nkl)
aCoup(nkl)

|,

a = elasticity constant for Cohesion

P = elasticity constant for Coupling

<x + p = l

Adaot - V (6-10) Adapt^-/coh(fkrcouPx(fk^

Two assumptions must be made in relation to Equation 6.9 and 6.10. These are modified
from Cobb and Douglas [1928] to reflect the context of coupling and cohesion.

119

1. The Adaptability score is proportional to the Adaptability of an actual system when
measuring only Coupling and Cohesion.

2. Other factors are accounted for with the scaling factor B. We will make use of the
scaling factor to calculate Agility.

The Cobb-Douglas form is inverted to make lower Cobb-Douglas products result in higher
Adaptability. Figure 6.14 shows Cobb-Douglas in its traditional form with different values for a
and p. Notice how the value of production changes with the value of the elasticity constants.
The elasticity constant can be used to adjust the function for the particular characteristics valued
by the organization.

Cobb and Douglas made similar assumptions to account for factors not measured by labor
and capital. The scale factor is used to account for other factors that are not measured by
Coupling and Cohesion.

Figure 6.15 illustrates the relationship of Cohesion to Coupling and how that relationship can
be used to identify a SOSI's level of Adaptability. The figure shows that a SOSI that has low
Cohesion and low Coupling will have a higher level of adaptability than a SOSI that has high
Cohesion and low Coupling. Cohesion is the primary driver for the Adaptability measure
indicated by an associated elasticity value of 0.8. If Coupling remains constant, Adaptability
will increase as Cohesion increases. However, if Cohesion is constant and Coupling increases,
the Adaptability score increases but at a much lower rate than when Cohesion increases. The
elasticity constants, a and P define the relationship between changes in Cohesion and Coupling.

Figure 6.16 is a contour plot of Fig. 6.15. These diagrams show the relationship of Coupling
and Cohesion in the computation of the Adaptability. Adaptability will be low when both
Coupling and Cohesion are low. Figure 6.16 shows an example contour diagram of the
Adaptability plot in Figure 6.15. Notice how the score decreases with the increase in cohesion as
opposed to an increase in coupling.

Figure 6.17 illustrates how the contour plot is calculated. The contour diagram (bottom) has
a contour line indicating the Adaptability value (z-axis of Figure 6.15) for the values 1 through
10. The top diagram shows planes intersecting the surface thus illustrating how the contour lines
are created. The planes are depicted at the odd numbered values of the Adaptability function for
illustration purposes.

Figure 6.18 shows three Adaptability plots with different a and (3 values to show how the
shape changes with changes in the elasticity constants. The middle plot with a and P equal to 0.8
and 0.2 respectively, is the shape used to make the calculations for all the examples and case
study in this research. The top left plot shows the shape when a and p are reversed. The top
right plot shows a and P equal to 0.5.

[20

8 8 S 3 S °8
uoipnpoj(j

8 u
02

c
S-
o

o 4->

"5 3 -a o
s-

0- U

o o
O

C/3
II ll II II

£ c- U hJ C2

c
0

C
O

-a
o

-
0

c
U

u

r I

Cohesion 0 0
Coupling

5

4.5

4

3.5

3

£ 2.5 .c

2

1.5

1

0.5

0

Figure 6.15. Adaptability Plot

X=0.7
Y- 1.1
Leveh 0.9951 X=3.7

Y=07
Level= 1.024

X=0 2
Y=0.1
LeveN 8.7055

[.
0.5 1

! L

1.5 2 2.5 3
Coupling

3.5 4 5

Figure 6.16. Adaptability Contour

122

Cohesion 0 0
Coupling

5

4.5

4

3.5

3

2

1.5

1

0.5

0
0.5 1 1.5 2 2.5 3

Coupling
35 4 5

Figure 6.17. Contour Calculation

[23

1
-
<
c
3

c
o u

i
-
o

-

—

-r
r i

*li|iqeidepv

Therefore, given a set of Elements assigned to Nodes, an Architecture that describes the
relationships among Nodes and their Elements, and a set of capabilities enabled by the
architecture, we distinguish four cases of SOSI Adaptability:

Low Cohesion and Low Coupling = High Adaptability

Low Cohesion and High Coupling = Medium Adaptability

High Cohesion and Low Coupling = Medium Adaptability

High Cohesion and High Coupling = Low Adaptability

Figure 6.19 shows the four cases graphically. A SOSI with high adaptability has relatively
low Cohesion and Coupling. This also applies in the limiting cases - zero Coupling and zero
Cohesion results in infinite Adaptability while Coupling and Cohesion at extremely high levels
cause Adaptability to approach zero (very few if any changes are possible). The first extreme
describes a SOSI that has zero interaction between Elements within a Node and zero interaction
among Nodes so it can be deployed in any configuration. This is a set of totally uncoupled
Nodes with each Node containing a single element - this is not a system of systems. The second
extreme of a highly cohesive and coupled SOSI might only be capable of being deployed in one
configuration.

£
"5, a
o
U Medium

Adaptability
Low

Adaptability

High
Adaptability

Medium
Adaptability

-*• Cohesion
Low •+ High

Figure 6.19. Relationship of Cohesion and Coupling to Adaptability

Degree of Reuse and Exclusiveness

The Degree of Reuse measures the extent of reuse of the Elements among the SOSICs of the
SOSI. It reflects the ability of the SOSI to execute multiple SOSICs concurrently. It is
calculated by counting the number of SOSICs that an Element supports. The Degree of Reuse

125

for the SOSI is the average Degree of Reuse computed for each Element. The higher the Degree
of Reuse the lower the ability of the organization to execute the SOSICs concurrently. In order
to create an index with values between 0 and 1 where 1 indicates that each Element in the SOSI
supports one and only one SOSIC, Exclusiveness is calculated as the inverse of the Degree of
Reuse. The Elements with highest reuse are identified as "highly reused Elements." High reuse
affects the ability of the SOSI to execute SOSICs concurrently because of the potential
contentions for resources (use of Element).

Equation 6.11 is a generic function that returns 1 if x is an element of A. The member
function is used to calculate the number of SOSICs that use a particular Element. Equation 6.12
computes the Degree of Reuse (DoR) for a particular SOSIC pki. It is the average Degree of
Reuse of the Elements in the SOSIC.

fl.xeA (6.11)
member, (x) = <

0,x*A

where,

A = a set

x = a possible element of A

££memberpi(e)

DoR(pkl) = ^^
r

where,

r = number of Elements in SOSIC p

(6.12)

Equation 6.13 shows the SOSI computation for Degree of Reuse. It measures the overall
Degree of Reuse for the SOSI. Equation 6.14 identifies the Elements that are members of the
most SOSICs. This helps identify "highly reused" Elements of the SOSI for the assessment
methodology.

]T Y, memberpk (e) (6.13)

DoR(fk) = eeEk Pkl6Pk
s

where,

s = the number of Elements in SOSI fk

126

E max(fk) = ^ max ^ memberpk (e)
eeEk VPk.ePk

(6.14)

Finally. Exclusiveness is computed as the inverse of degree of reuse. It is calculated for the
SOSI as a whole. Equation 6.15 shows the formula to Exclusiveness.

(6.15)
Exclusiveness(f,) =

1

DoR(fk)

Agility

Agility is Adaptability times Exclusiveness. Exclusiveness represents the scale factor
defined by Cobb-Douglas. Agility is the degree that a SOSI can adapt to different configurations
and execute SOSIC simultaneously, reflecting the notion that the Agility of the SOSI will be
reduced if the Exclusiveness measure is low. Equation 6.16 shows the agility computation.
Agility is a SOSI level computation because the measure is revealing the aggregate ability of the
SOSI to provide capability concurrently and adapt its configuration to different operating
environments. Figure 6.20 shows an Adaptability plot from Figure 6.15 that has been scaled by
Exclusiveness = 0.5.

Agilityx(fk) = Exclusiveness(fk)Adapt(fk) (6.16)

Cohesion 0 0
Coupling

Figure 6.20. Agility Plot

127

Example Calculations

The working example for the adaptability calculations extends the concurrence example from
earlier in the chapter. Adaptability addresses the effects of the SOSI's structure by measuring
the level of coupling between each node and the SOSI. Adaptability also addresses the cohesion
of each Node. Figure 6.21 shows the concurrently available SOSICs and the Nodes to which the
Elements have been allocated. The set of Nodes, Nl = {nl,l, nl,2, nl,3} in Figure 6.21
graphically illustrates the allocation of elements. Figures 6.22, 6.23, and 6.24 show the Nodes
represented as CPNs, in which a graph analysis of the CPN will identify the number of paths that
connect inputs to the outputs.

Pi I start

Pi; start

\ p, , start ...» p,, end
•le,, "n V •> ' ^—'
I, , . "^^Kmiii^H^^^^^B^b. Pi I end

•• lei io I
• tA Cl 4 I «^- T • -pZ • «| Pi 4 end

e13 | lel lltlel 12f~"1el 13 I ..

p,, start } -leinrje

Pi 5 start
e121 r

Liilj Jen
l£mJ

el 19 1 * -120

el 26 l '125

»e 124

Pi i *Pi: ••••Pi] --
P, 4 — IV Pj 5 — » shared

SOSI, f.
p, 5 end

Figure 6.21. Working Example for Adaptability Calculations with Nodes

Cohesion

The cohesion computation begins with computing the number of paths that connect Node
inputs with Node outputs represented in the CPN. Node nl,l from Figure 6.21 will be the initial
example. Figure 6.22 includes the common input and output transitions and the common place
that connects input and output transitions. The ovals marked with an "in" box are the input
places and the ovals marked with an "out" box are the output places. The common place is
named PI3. Next, the Farkas algorithm in applied to the modified graph to identify the
invariants that include the common place PI3. The invariants that include PI 3 identify the paths
that connect the node inputs to the node outputs. The number of paths in this case is 11. There
are 4 inputs 1 output therefore cohesion for Node nl,l is 11/4. Figures 6.23 and 6.24 show the
CPN for Node nl,2 and Node nl,3 from the example. The results of the Cohesion computation
appear at the bottom of each diagram. Table 6.7 summarizes the Cohesion results of the example.

128

Simple Information Flow Paths

PI.PI2 P3,P7. P9, P12
P2, P5, P7, P9, P12 P3, P7, P10, PI 1, P12
P2, P5, P7. P10, PI 1, P12 P3, P6, P8, P9, P12
P2, P5, P6, P8, P9, P12 P3, P6, P8, P10. PI 1, P12
P2, P5, P6, P8. P10, PI I, P12 P4, P8, P9, P12

P4,P8, P10,P11,P12

1 = 4. Q =
x = 4(l) =

z = 11

Coh(n, ,)= 11/4

Figure 6.22. CPNfornl,!

20.

v.<
v<2

F

P23
In _

t\ •» ^S

l = 3,Q = 3
x = 3(3) = 9

z=3

Coh(n12) = 3/9

Figure 6.23. Colored Petri Net (CPN) for nl,2

129

I = 2, Q = 4
x = 2(4) = 8

z=ll

Coh(nu)= 11/8

Figure 6.24. Colored Petri Net (CPN) for nl,3

Table 6.7. Cohesion Example

Node I
(Inputs)

Q
(Outputs)

z
(poss. paths)

X

(total paths)
Coh

nl,l 4 1 4 11 11/4

nl,l 3 3 9 3 3/9

nl,l 2 4 8 11 11/8

SOSIfl 3/2

Coupling

The second component of Adaptability is Coupling. The coupling measure is a ratio of the
number of messages sent by a Node to other Nodes in the SOSI and the total number of
connections possible in the SOSI. In this example, 60 messages were generated by the scenario
and there are three Nodes so there are three possible connections between Nodes in the SOSI.
Figure 6.25 shows the results for the coupling calculations for SOSI fl. Node nl,l exported 20
messages to Node nl,3 and zero to Node nl,2. That resulted in a coupling measure of 20/3 =
6.67. The coupling measure does not include messages generated internally in the node - the
only messages that are counted are those that cross from one Node to another.

130

Importer

nu nu n1.3 Total

>-c

l-C

O

X
W

nu X 0 20 20

nl,2 10 X 10 20

n1.3 0 20 X 20

C°UPx(nki)

S|Mx(nk,'nK,)|
'*J

c
C = 3(2)/2 = 3

Coupx(n, ,) = 20/3 = 6.67

Coupx(n12) = 20/3 = 6.67

Coupx(n, 3) = 20/3 = 6.67

Coupx(f,) = 6.67

Figure 6.25. Coupling Results for SOSI fl

With the calculation for Coupling and Cohesion completed, adaptability can be calculated.
The Adaptability results for the example are shown in Figure 6.26. This example shows how
the measures are calculated. The numbers are meant for comparison among architecture
alternatives. The results here show that the Nodes have different values for Adaptability.

Degree of Reuse

The set of interest for these calculations is the set of SOSIC PI associated with SOSI fl.
There are three SOSIC represented. Figure 6.27 shows a Venn diagram that shows the SOSICs
supported by the Elements. The overlap of the Venn diagram illustrates the Degree of Reuse of
the Elements. For example, Element el,8 supports all three SOSICs.

131

1.20

1.00

= 0.80

2 0.60 a
•a 0.40
<

0.20

0.00

SOSI

Node Coup Coh Adapt

1 1.00 3.96 0.33

2 4.67 0.63 1.07

3 4.00 0.65 1.07

SOSI 3.22 1.74 0.51

Figure 6.26. Adaptability Results for SOSI fl

El lel,l'el,2'el,4'el,5'el,8'el,10'el,14'
eU5'eU7'el,19'el,2o}

Pl = {Pl.hPl.24>l,3}

Pi = lel.4'el,5'e1.8'e1.10'e1.14/

P2 = {el,l'el,2'el,4'el,8i

P3 = lel,2' el,8'el ,14»el,15'el,17' e1.19'el,20/

Figure 6.27. SOSI fl with Three SOSIC

132

The Degree of Reuse of each Element is calculated in the numerator of Equation 3.6. The
degree of reuse for each Element is 9, 8, and 11 for SOSIC pl,l, pl,2, and pi,3, respectively.
This results in degree of reuse values for the SOSIC pi, 1, pl,2, and pi,3 of 9/5. 8/4 and 11/7,
respectively. The SOSI Degree of reuse is 16/11. The Overlap calculations are summarized in
Tables 6.8 and 6.9. Each x in Table 6.8 indicates the SOSICs that include a particular Element.
The total (tot) shows the total number of SOSICs for that Element. Table 6.9 shows the Degree
of reuse for the SOSIC and SOSI. It also shows the Exclusiveness measures and high reuse
elements results for the SOSI. Higher Exclusiveness means that the SOSI has more ability to
execute SOSIC concurrently because there are few Elements that are reused by the SOSICs. An
Exclusiveness score of 1 means there is no reuse of Elements in the SOSI. Low overlap scores
mean that reuse of Elements among the SOSIC is high increasing the potential for resource
conflict.

Table 6.8. Degree of Reuse Example Data

el.l el,2 el,4 el,5 el,8 el,10 el,14 el,15 el,17 el,19 el.20

pl.l X X X X X

pl,2 X X X X

pl,3 X X X X X X X

tot 1 2 2 1 3 1 2 1 1 1 1

Table 6.9. Degree of Reuse Calculation for SOSI fl

Num
Elements

Total
Reuse

Degree of Reuse Summary

pl.l 5 9 9/5 1.8 High Reuse

pl,2 4 8 8/4 2.0 el,8

pl,3 7 11 11/7 1.57 Exclusiveness 0.69

fl 11 16 16/11 1.45

The working example shows that SOSIC pi,3 has the highest degree of reuse and SOSIC
pi.2 has the lowest; therefore, we can conclude, in relative terms, that pi,3 has less potential for
resource conflict than pi,2. Degree of Reuse also indicates Elements that may be used beyond
their capacity. In this simple example, Element el,8 is a highly reused Element. It is used by all
SOSICs indicating that the Element might be an integral component of the SOSI and its
utilization deserves further analysis.

133

Agility

Agility is Adaptability scaled by Exclusiveness. Figure 6.28 shows the effect of Exclusiveness
on the overall Agility of the SOSI. In this example, Agility is less than Adaptability because the
Degree of Reuse is high among the Elements of the SOSI. The reuse reduces the ability of the
SOSI to execute SOSICs concurrently and reduces the overall Agility of the SOSI.

1.00

fi

Figure 6.28. Example Results for Adaptability and Agility

Summary

This section defined specific SOS properties that are different from the traditional
definitions. The definitions and the associated properties help structure the SOS so that a
boundary can be defined and assessments conducted. The measures provide a way to make
comparisons of alternative architectures very early in the development process. Adaptability
measures the ability of the SOSI to adapt different structural configurations. Degree of Reuse
measures the ability of the SOSI to execute multiple capabilities concurrently. The product of
Exclusiveness and Adaptability provides a measure of the SOSI's Agility. Section 6.4 presents
the methodology used to gather the information required to generate the executable model and
conduct the analysis.

134

6.4 Methodology

This section describes the methodology used to create the SOSI Architectures and SOS I
alternatives for comparison. The operational architecture views that describe the capability
required by the organization and their associated system architecture views are the inputs. The
system views are combined in a SOSI Architecture that merges the rule and data model and
represents the processes described in the system architectures as SOSICs. The SOSI alternatives
are created from the SOSI Architecture and transformed it into an executable form for a static
and dynamic analysis of the interaction between Elements and Nodes of the SOSI.

Figure 6.29 shows the methodology graphically. The operational architectures and system
architectures that realize the capability are taken as input. The dotted line connecting the system
view box and the operational view box shows that they are not independent. System architecture
views are developed to meet the needs of the organization described in the operational
architecture views. The combined SOSI Architecture model (represented in the center box)
illustrates multiple system architecture views realizing multiple capabilities. The ovals in the
center box represent the SOSICs. SOSICjk represents the kth capability realized by the jth
system architecture. The overlapping SOSICs illustrate the reuse of Elements as multiple system
architecture views are merged to create a combined model of the SOSI Architecture. The
process of merging of the system architecture views reveals Elements that are used by more than
one SOSIC. Then the combined model of a SOSI is transformed into an executable form. If the
behavior of the executable is acceptable, then Adaptability and Agility are calculated using the
SOSI executable model and architecture view. If its behavior is not acceptable, then the SOSI
Architecture must be modified to correct inaccurate behavior. The feedback into the SOSI
Architecture representation ensures the behavior of the executable can be traced to the model
representation.

One of the challenges in SOSI analysis is the dynamic nature of the SOS. Recall SOS
property 2, the set of elements that compose the SOS changes over time, meaning that potentially
the Elements chosen to compose a SOSI will also change. The process described as part of this
methodology analyzes the SOSI for those periods where the Elements of the SOSI are constant.
Figure 6.30 shows the SOSI's piecewise constant nature. The SOSI existed in an initial
configuration prior to time tl. The changes at times tl, t2, and t3 are meant to illustrate
significant changes to the SOSI environment —and so the SOSI must change in order to address
the new operating environment. Many things can happen to change the composition of the
SOSI. When a change occurs, if the SOSI is not adaptable enough to accommodate the new
environment and new Elements or SOSIC are required, then the SOSI must change and a new
SOSI is instantiated. The analysis of each SOSI, therefore, is done piecewise for the time period
that the SOSI is not expected to change Elements. The next section describes the specific
comparisons accomplished by the methodology.

Operational
Architecture

System
Architecture

j"' System
Realization

k"1 Capability

SOSI

Model
Transformation

Executable
Model

Behavior
Accurate0

[yes]
SOSI

Alternative
Analysis

Figure 6.29. Methodology

c
o

en
i+—
c
o
O
CO
O
CO MbSw

m - m

 1-
Time t.

Comparisons

Figure 6.30. Piecewise Constant SOSI

There are many ways that a SOSI can change. Some require a change to the SOSI
Architecture and others only change a particular instance of a SOSI Architecture. Given that the
methodology describes the SOSI in terms of Nodes, Elements, and SOSICs. If the type of
Nodes. Elements or SOSIC change then a change in the SOSI Architecture is required, because
the relationships between the Elements, Nodes and SOSIC must be modified to reflect the
change. If the number of instances of Elements, Nodes or SOSICs change then the SOSI

136

representation must be modified, but the SOS I Architecture remains the same as long the new
SOSI does not attempt to associate Elements or Nodes that are unrelated in the SOS1
Architecture representation.

Given the types of changes that can occur, the problem is scoped in the following way. SOSI
groups are SOSI alternatives composed of the same set of Elements and based on the same SOSI
Architecture. There are two comparisons. Comparison A and Comparison B. Comparison A
compares SOSI within a SOSI group. That means that the instances of Elements and SOSIC sets
are held constant and the alternatives are differentiated by the allocation Elements to Nodes.
Comparison B compares the assessment results between SOSI Architecture alternatives using the
results from Comparison A. This way the effects of adding and deleting Elements to the SOSI
can be assessed by comparing SOSI groups. Comparing SOSI groups created from different
SOSI Architecture assesses the relative Adaptability and Agility of the SOSI Architecture.

Assumptions

Because the thrust of the analysis is based on the SOSI characteristics, assumptions
concerning the performance of individual systems, the Operational Capabilities, and the
execution scenario need to be made.

The Elements that interact within the SOSI are assumed to be interoperable. If there is a
noted data dependency, then it is assumed that the protocol and associated communications
details are sufficient.

The behavior model of individual Elements is assumed accurate. The Elements of the SOSI
are assumed to perform in the modeled manner. Because concurrently executing capabilities are
modeled, we assume that the Elements used to accomplish the capability do indeed enable the
capability and that they have been modeled accurately.

The modeled capability that is represented by the Operational View is accurate. The
operational activities described in the OV products are accurate and provide the capability
modeled. The performance of the capability is assumed to meet the stakeholder's requirements.

The mission of the implementing organization is known. In order to identify required
capabilities, the organization's mission must be known before analysis can begin. The mission
provides the purpose for the SOSI Architecture.

The required set of capabilities does not change. The number of each type of capability may
change, but the organization does not modify the list of required capabilities. The measures are
relative, so the set of capabilities cannot change in order to ensure that the performance
characteristics of the candidate architectures can be compared.

Behavior models exist for each Element modeled. Because the Elements represent the
constituent systems and their functions, these models must be available so they can be executed
to ensure that the capabilities required are provided by the mix of Nodes and Elements in the
SOSI.

137

Given the methodology and the assumptions described above, the following are the steps
required develop the structural, operational, and behavior information required to construct the
combined SOSI architecture.

SOS Instance Assessment Process

The process developed realizes the requirements of the methodology and uses concrete
representations for the types of architecture products required to combine the system architecture
views and create the executable model. The Department of Defense Architecture Framework
(DODAF) (DISA, 2007) provides a framework for the representation of the various architecture
views required by the analysis process. The DODAF prescribes multiple views represent
pertinent aspects of the architecture from different perspectives. Operational views describe
aspects of the operational architecture and system views describe aspects of the system
architecture. While, the DODAF does not stipulate a modeling language, the process described
here uses the Unified Modeling Language (UML) (OMG, 2007) to represent the relationship
between components of the models because it uses a high level data model that can be used to
facilitate the transformation to the executable form. The executable form used for the analysis is
Colored Petri Nets (CPN) [Jensen, 1991]. Colored Petri Nets possess the formal execution
semantics and a formal graph theoretic representation. The formal execution semantics of the
CPN enable an accurate transformation of the UML execution semantics for an accurate
representation of the modeled behavior of the SOSI which enables the model to simulate the
interaction of the Elements and Nodes of the SOSI in order to compute Coupling. The formal
graph theory that underlies the CPN enables the use of tan invariant analysis of the graph
generated by the transformation for the computation of Cohesion. The process, Figure 6.31, is
described in seven steps.

1. Identify/Develop Operational Views of the Architecture for the desired capabilities.

2. Identify/Develop System Views of the Architecture that realize the capabilities describe
in Step 1.

3. Produce SOSI Architectures. Combine the system views of the architectures from Step 3
to produce a SOSI Architecture that represents an architecture alternative. (Multiple
alternatives can be developed from the information gathered in steps one and two.) The
SOSI Architecture uses DODAF system architecture view products to model the
architecture information.

4. Transform the SOSI alternatives created from the SOSI Architectures into CPN for each
alternative.

5. Develop an execution scenario that complements the organization's operational
environment.

6. Conduct the analysis for each alternative using the assessment measures, Cohesion.
Coupling, Degree of Reuse, Adaptability and Agility.

138

7. Draw conclusions and complete the comparison analysis.

2) Identify/Develop
System View of the

Architecture

3) Produce SOSI
Architectures

4) Transform SOSI
Alternatives into

CPN Model

1) Identify/Develop
Operational View of the

Architecture

5) Develop
and Execute

Scenario

7) Conclusions
and

Comparisons

6) Conduct
Analysis

Figure 6.31. SOSI Analysis Process

Step 1. Identify/Develop Operational View of the Architecture

This step identifies the DODAF operational architecture view products (OV) that describe
the organization's required capabilities. It also identifies the organizational roles that are
expected to interact to provide the specific capability. Furthermore, it identifies the required
information exchanges of each role, and identifies the operational activities that must be
executed by each to role accomplish the capability. Then the capability must have a rule and
data model defining the data exchanged that rules governing the exchange. Finally, an
operational activity model shows how the operational activities interact and the data passed
between them.

Each product defines a particular aspect of the operational architecture. In order to meet the
methodology requirements, the following operational view (OV) products are required:

OV-2 Operational Node Connectivity Description describes the roles that organization
requires to accomplish the capability, and each role's information needs. Information needs
are described the form of inputs and outputs for each role that are required to accomplish the
capability.

OV-3 Operational Information Exchange Matrix identifies the data exchanged between roles
and the attributes that compose that data. The OV-2 and OV-3 are related and pivot on the
information represented by the data transferred between roles.

139

OV-5 Operational Activity Model describes the operational activities that must be
accomplished to provide the capability. The OV-5 can also show the roles that should
contain those activities. The relationships between activities and the data produced and
consumed by each activity are also important in this product.

OV-6a Operational Rules Model describes the rules that govern the behavior of the
operational activities.

OV-7 Logical Data Model describes abstract relationships between Elements and Messages
and the attributes of the Messages.

This is a simple example used to show the primary data elements provided by the products.
There are two operational architectures modeled that represent two different capabilities.
Capability 1 and Capability 2. The products for each operational architecture view will be
shown together. Capability 1 is represented in OA1. It has two roles Sender and Receiver.
Capability 2 has two roles, Receiver and Executor. There are messages and simple
operational activities that implement a rudimentary rule model. The Operational Node
Connectivity Diagrams, OV2s, shown in Figure 6.32, describe the roles required, their
interaction, and the data exchanged for the two capabilities. The lines connecting the roles
identify the information exchanged between roles. In this case, the Receiver receives Msgl
and sends Msg2 and Msg3.

The Operational Information Exchange Matrices, OV-3s add more detail about the data
exchanged. The OV-3s are shown in Table 6.10. In this simple case, the OV-3 shows the
size and type of the data exchanged between roles. For example, Msgl is sent from role
Sender to role receiver. Msgl is of type Text and expected to be 10 characters long.

The Operational Rules Model, OV-6a shows the rules that govern the behavior of the
activities that are used by the roles described in the OV-2. Table 6.11 represents the rule
models for the example. The simple rules show that Msgl is received by the Receiver who
then decides whether to send a Msgl or a Msg2 depending on who sent the message.

The Operational Data Models, OV-7s in Figure 6.33 show the messages and roles that appear
in the Operational Architecture Views for each capability.

140

Capability 1

M<;n?

tf

Sender Receiver

'

Capability 2

Msg1

Msg3

Figure 6.32. Operational Node Connectivity Diagrams, OV-2s

Table 6.10 . Operationa Information Exchange Matrix, OV-3
Capability 1

Sender Receiver Type Length
Msgl Sender Receiver Text 10
Msg2 Receiver Sender Text 20
Capability 2

Sender Receiver Type Length
Msgl Executor Receiver Text 10
Msg3 Receiver Executor Text 32

Tab e 6.11. Operational Rules Model, OV-6a

Capability

Sender if msg2 send msgl

Receiver if msgl = yes send msg2
Capability 2

Receiver

Executor

if msgl = no send msg3

if msg3 then send msgl

141

ReceiveMsg:Msg2
ProcessMsg:Msgl

JsmdMsgjMsgl

ReceiveMsgliMsgl
ProcessMsg:Msgl
ProcessMsg:Msgl
SendMsg3:Msg3
SendMsg2:Msg2

Msg
String: body

Capability 2

Msgl Msg3

ReceiveMsg:Msg3
ProcessMsg:Msg3
SendMsg:Msgl

Receiver

ReceiveMsgl :Msgl
ProcessMsg:Msgl
ProcessMsg:Msgl
SendMsg3:Msg3
SendMsg2:Msg2

Figure 6.33. Operational Data Model, OV-7

The final diagram, Figure 6.34, is the Operational Activity Model, OV-5. This diagram uses
the information from the other operational views. The activities implement the rules shown
in the OV-6a and the data passed from activity to activity is represented by the OV-7. The
interacting roles and the information exchanged are shown in the OV-2 and OV-3.

The Operational Architecture products presented above represent the minimum information
required by the methodology. The system view products for step 2 realize the operational
capabilities illustrated by the operational views developed for step 1.

142

Capability 1

Sender Reciever

Msg2

SendMsg2
>-

r,

ReceiveMsg

Asg2

J
MSgl

_L
il

ProcessMsg ProcessMsg

Msgl \ Msg2

. J ... r - Msgl I
SendMsg - ReceiveMsgl

Capability 2

Receiver Executor

Msgl
*

ReceiveMsg l

n_
SendMsg

1

Msgl Msgl

ProcessMsg

Msg3 :

\

ProcessMsg

•

Msg3

Msg3

SendMsg3 - ReceiveMsg3
v.

Figure 6.34. Operational Activity Diagram, OV-5

143

Step 2. Identify/Develop System View of the Architecture

This step involves identifying the Elements that will be grouped in Nodes to accomplish the
capability. Step 2 describes how the capabilities will be provided and with what Elements.
The system architecture must include the following system view products:

SV-1 Systems Interface Description depicts the Nodes and the Elements resident on those
Nodes. It also describes the interfaces between Elements and Nodes. The SV-1 is related to
the OV-2 in that the SV-1 shows which Elements are fulfilling the roles described in the OV-
2. The interfaces of the SV-1 map to data exchanges between roles in the OV-2.

SV-6 Systems Data Exchange Matrix describes the data exchanges between systems and the
attributes that compose those exchanges. The information described in the OV-3 must be
reflected in the SV-6.

SV-lOa Systems Rules Model is the rule model that governs the behavior of the system
functions that realize the operational activities.

SV-11 Physical Schema is the physical data model used to show the relationships between
Elements, Nodes and Messages. The schema must reflect data embodied in the OV-7.

SV-4 Systems Functionality Description depicts system functions and the data flows between
functions. This product can also provide the individual Element behavior model, which is a
union of the behaviors of that particular Element type described in all the capabilities where
the Element type is employed. This view is analogous to the OV-5.

SV-5 Operational Activity to Systems Function Traceability Matrix provides the mapping
between the implemented system functions and the required operational activity. This is not
always a one-to-one mapping. There are many instances where multiple system functions are
required to accomplish a single operational activity and vice versa.

The example develops two system architecture views that realize the capabilities described
by the operational architecture views identified in step 1. SA-1 realizes Capability 1 and SA-
2 realizes Capability 2.

The System Interface Descriptions, SV-1, identify the Elements will realize the roles defined
in the OV-2. Figure 6.35 shows the SV-ls for both capabilities. It shows the Elements,
Nodes they are member of, and the Messages exchanged between the systems. System 1
represents the Sender. System2 and System 3 represent the Receiver and Executor,
respectively.

Similar to the OV-3, the Systems Data Exchange Matrices, SV-6s, shown in Table 6.12.
identify the details of the data exchanged between the systems. In this case the SV-6s
describe the size and type of the Message classes exchanged between systems. The table
reflects the details of the interface between systems shown in the SV-ls.

144

The Physical Schemas, SV-1 Is, in Figure 6.36 show the physical format of the data that is
exchanged between the systems. The SV-11 is the physical representation of the logical data
model represented by the OV-7.

SA1 SV-1

LandNode
«Sender»

System 1 Inst:
System 1

Messagel

Message2

SeaNode
«Receiver»
System2_Inst:

System2

SA2 SV-1

SeaNode
«Receiver»
Svstem2 Inst:

Svstem2

Message3 «Executor»
Svstem3 Inst:

Svstem3
-4

Messagel

Figure 6.35. System Interface Descriptions, SV-ls

Table 6.12. Systems Data Exchange Matrix, SV-6

SA1

Sender Receiver Type Length

Vlsgl System 1 System2 Text 10

Msg2 System2 System 1 Text 20

SA2

Sender Receiver Type Length

Msgl System3 System2 Text 10

Msg3 System2 System3 Text 32

The SV-5s, shown in Table 6.13. show the mapping between operational activities the
Element functions that realize the activity. This methodology defines a type of Element as a
system. For example, the role Sender has three operational activities, ReceiveMsg,
ProcessMsg and SendMsg that are all mapped to one Element function Sysl Action that is
part of the System 1 Element.

145

SA1 SV-11

System 1 System2

Sys2Action: Message 1 SyslAction Message2

Message
-

Messagel Message2
Enum: yes|no i Enum: m2

SA2 SV-11

System3

Sys3Action: Message3

System2

Sys2Action: Messagel

Message

Messagel
Enum: yes|no

Message3
Enum m3

Figure 6.36. Physical Schema, SV-

Table6.13. Operational Activity to Systems Function Traceability Matrices, SV-5s

SAl System l System 2
Role- Op Activity SyslAction Sys2Action
Sender ReceiveMsg X

ProcessMsg X
SendMsg X

Receiver ReceiveMsg X
ProcessMsg X
SendMsg2 X

SA2 System 2 System 3
Role Op Activity Sys2Action2 Sys3Action
Receiver ReceiveMsg X

ProcessMsg X
SendMsg3 X

Executor R.eceiveMsg3 X
ProcessMsg X
SendMsg X

The final representations describe the behavior of the system architecture. The Systems

Rules Model, SV-lOa, Table 6.14 . defines the rules that govern the behavior of the Elements

of the system architecture views. The SV-lOa is implemented by the Systems Functionality

Description, SV-4. For example, if System 1 receives a msg2 then it should send a msgl.

146

Table 6.14. Systems Rules Models. SV-1 Oa's

SA1

System 1

if msg2 send msgl

System2

if msgl = no send msg3

if msgl = yes send msg2

SA2

System2

if msgl = no send msg3

if msgl = yes send msg2

System3

if msg3 send msgl

The SV-4 is represented as a UML Activity Diagram. The SV-4 provides an integrated
model of the previously described system architecture view products. The SV-4s, Figure
6.37, implement the rule models and use the data described in the respective SV-1 Is to
model the behavior of the interaction between the Elements of the architecture. This SV-4
shows the interaction of System 1 and System2 in SA1 and the interaction of System3 and
System2 in SA2. The behavior of Systeml and System2 implement the rules modeled in the
SV-lOa. Message2 and Message 1 are represented on the ports on the actions.

Step 3. Produce SOSI Architecture

Step 3 combines the system architecture views to produce a architecture model that
represents the combination of the system view products described in step 2. Combining the
system views ensures a concordant architecture that includes all the system architecture
behavior models in combined system architecture view. The behaviors for each Element
type must be combined, and the data models must be correlated to provide the data described
in the SV-1 and SV-6 of each capability. This single UML model represents each capability
in at least one SOSIC that is modeled in an Activity Diagram and viewed as a SV-4. This
provides an opportunity to ensure that the Physical Schema and the Rule Model are
concordant across the Activity Diagrams.

The process of merging the systems architecture begins with the SV-ls. The SOSI
Architecture must represent the types of Nodes that the Elements will occupy. Each SOSI
alternative generated from the SOSI Architecture will need a unique SV-1 showing the
Nodes that the Elements occupy for that alternative. Figure 6.38 is an SV-1 for a SOSI

147

alternative. It shows that an instance of System 1 is assigned to a LandNode and the instances
of System2 and System3 are assigned to a ShipNode.

SA1 SV-4

System 1 System2

[var:msg2]

Messaged: mp2_1

System 1_AD

Message1:mp1_1

Message2:mp2_2

System2_AD

Message1:mp1_2

[var:msg1]
Message3:mp3

SA2 SV-4

System3 System2

[var:msg3]

Message3:mp3_3

System3_AD
v

Message1:mp1_3

Message3:mp3_2

System2_AD

Message1:mp1_2

[var:msg1]
Message2:mp2

Figure 6.37. Systems Functionality Description, SV-4

[48

SOSI SV-1
ShipNode

LandNode

System 1 Inst:
System 1

Svstem3 Inst:
Svstem3

\
Mess

>

Message2

>ag e1 / % /

/ > /
/^ Messagel /

Svstem2 Inst:
Svstem2

Figure 6.38. SOSI Architecture SV-1

The SV-6, shown in Table 6.15, merges the SV-6s from the two system architecture views
presented in step 2. System2 appeared in both architecture views. It appears only once in
this view and will be used in two SOSICs. System2 processes two types of messages. The
combined behavior model of System2 should contain system functions that address both
messages. This is an example of the importance of merging the system views.

Table 6.15. SOSI Architecture SV-6

SA1

Sender Receiver Type Length

Msgl System 1 System2 Text 10

Msgl System3 System2 Text 10

Msg2 System2 System 1 Text 20

Msg3 System2 System3 Text 32

The SV-lls are merged to ensure that all the data in both system architecture views is
represented in the SOSI architecture. Figure 6.39 is the merged SV-11. The merged SV-11
shows that System2 has an association with both System 1 and System3.

Table 6.16 is the merged rule model, SV-lOa. This table reveals that System2 must respond
with two types of messages msg2 or msg3 depending on the content of the input message
msgl.

149

SOSISV-11

Message

Message 1
Enum: yes|no

Message2
Enum: m2

Message3
Enum: m3

«Element»
System 1

Sysl Action: Message2

«Element»
System3

Sys3Action: Message3

«Element»
System2

Sys2Action: Message 1

Figure 6.39. SOSI Architecture SV-11

Table 6.16. SOSI Architecture Rules Mode s, SV-lOa

SOSI Architecture

System 1

if msg2 send msgl

System 2

if msgl = no send msg3

if msgl = yes send msg2

System 3

if msg3 send msgl

With the rule and data represented, the SOSICs are modified versions of the SV-4s taken
from the identified system architecture views. Figure 6.40 shows the SV-4s that represent
this SOSI architecture. Notice that the Elements are identified with Element numbers.
Element2 appears in both SOSICs and represents System2_Inst. The behavior of Element2 is
represented by the Activity Diagram, System2_AD. The resulting Element behavior models
reflect a union of the Element functionality represented in the system architecture views that

150

contain the same Element. This product also models the interaction of the Elements to
realize the operational capabilities. This example has a one to one relationship between
SOSIC and capabilities modeled. This is not the case in general. Multiple SOSICs can be
developed that accomplish particular tasks using the same capability.

SOSICl Example

Element 1 :Systeml Inst Element2:System2_Inst

[var:msg2]

Message2:mp2

System 1 AD

Message l:mpl 1

Message2:mp2_2

System2_AD
V

Messagelrmpl 2

[var:msgl]
Message3:mp3

SOSIC2 Example

Element3:System3_Inst Element2:System2_Inst

Message3:mp3 3

System3 AD

iiugjj

Message3:mp3_2

)
System2 AD \

Message l.mpl 3

\\J'A 11

•

Messagel:mpl_2

Message2:mp2
r.msg 'J

Figure 6.40. SOSI Architecture SV-4

Step 4. Transform the Combined Model into an Executable Form

Step 4 transforms the SOSI representation developed from the SOSI Architecture into a CPN
model of the combined behaviors of the SOSI. This ensures that the concurrent use of the
Element in multiple SOSICs is modeled in the CPN. The transformation of the UML
Activity Diagrams into a CPN is detailed in Section 6.5.

151

Step 5. Develop an Execution Scenario

Step 5 develops an execution scenario that complements the organization's operational
environment. This step also sets the parameters of the executable model and the initial
conditions for the scenario that is to be executed. Additionally, the executable model is
instrumented to facilitate the collection of appropriate data for the coupling measurements.
This step is detailed in section 6.5.

Step 6. Conduct the Analysis for Each Alternative

Step 6 conducts the analysis for each alternative using the measures described in section 6.3.
This step involves computing the measures for each architecture alternative and conducting
an analysis of the results. This step includes computing Cohesion, Coupling and Degree of
Reuse for each SOSI alternative. Then, the level of Adaptability and Agility must be
computed to provide points of comparison among the SOSI alternatives. The Adaptability of
each Node in the SOSI is computed so that the Nodes that are driving the SOSI assessment
can be identified. This is a tools SOS architects can use to make decisions about where
certain Elements should be placed in the architecture.

The last part of step 6 involves computing the Adaptability and Agility for the SOSI
alternatives. This data provides the information required to make comparisons of the SOSI
Architecture based on the results of the various SOSI alternatives.

Step 7. Draw Conclusions and Complete the Comparison Analysis

The final step completes the comparison analysis and draws conclusions as to why certain
SOSIs assess better than others in terms of Coupling, Cohesion and Degree of Reuse.

Summary

This chapter described the methods used to evaluate SOSI Architecture alternatives. The
methodology has seven steps. It begins with identifying the operational capabilities required by
the organization and ends with an analysis of the performance of the SOSI with regard to its
Adaptability and Agility. There are many way to structure the comparison of SOSI alternatives.
This methodology described the two comparisons that were used in the research. Comparison A
compares SOSI alternatives that are the same except for the way Elements are distributed on
Nodes. Comparison B uses the results of Comparison A to facilitate comparisons between SOSI
Architecture alternatives. An example was presented that provides simple examples of the
DODAF products used by the methodology. The entire methodology is outlined in this chapter
with particular attention on steps one, two, three and six. These steps identify the capabilities
required by the organization; develop the system architecture views that meet the operational
architecture view requirements and produce the combined SOSI Architecture view that
represents all the capabilities required. Finally step six discusses the way the comparisons are
carried out. The details of the transformation, step four and five, from the UML Activity
Diagram to the CPN are detailed in section 6.5.

152

6.5 Transformation

This chapter describes the transformation from the UML Activity Diagrams that describe the
various SOSICs that the SOSI will execute into an executable model expressed as a Colored
Petri Net (CPN). Each SOSI defines multiple SOSICs. This chapter describes the details of step
4 and step 5 of the assessment methodology described in section 6.4. Levis and Wagenhals
[2000]. Calderon [2005], and Pettit [2003] all offer processes to produce a CPN from
architecture information. Levis and Wagenhals' transformation is not automatic, but it does
offer a process to transform an architecture into an executable form in a traceable manner. Pettit
and Calderon create automatic transformations to a Petri Net. The methodology provides an
automated transformation from the UML Activity Diagrams to a CPN. The first part provides
an overview of the methodology for transforming the Activity Diagram into a CPN. The second
part describes the transformation of an Activity Diagram. This transformation into the CPN
represents Step 4 of the primary methodology. The last part is Step 5 of the primary
methodology and describes the unique modeling artifacts that are required to complete the
executable model.

Transformation Process

The steps in the transformation process are similar to the MDA process depicted in Figure
6.41. An idealized MDA process begins with a Platform Independent Model (PIM). The first
transformation creates a PSM from the PIM. The second transformation creates an executable
form from the PSM. The process developed for this methodology represents the PIM as the
static representation of the SOSI in UML. The first transformation creates a PSM that represents
an instance of a CPN data model. The second transformation creates the xml file that is executed
by the CPNTools.

Traditional MDA SOS Analysis MDD

PIM IIIUII MnHnl
:> «SOS Profile»

first \
:ransformation V 1

first
transform; ition

PSM PSM >- CPN Model >
—

t
second

ransformatioi 1

• •

se
transf

cond
armatior

> CPNTools
XML format

Code Code :>
-—-.

PIM = Platform Independent Model
PSM = Platform Specific Model
CPN = Colored Petri Net

Figure 6.41: SOS Model Driven Development Process

153

The transformation process has four steps that follow closely the MDD environment
described in Figure 6.41. These steps are subtasks of step 4.

Step 4. Transform SOSI alternatives into CPN Model.

Step 4.1. Transform automatically the UML to the CPN data model.

Step 4.2. Transform Automatically the CPN data model to CPN XML format.

Step 5. Configure and execute the CPN model.

Figure 6.42 shows the process with some the steps described in section 6.4 grayed out. Step
3 produces the Platform Independent Model (PIM) it is the static representation of the SOSI.
Step 4.1 is the first transformation from the Activity Diagrams that represent the SOSICs to a
PSM representing an instance of the CPN data model. Step 4.2 represents the second
transformation and is the transformation from the CPN data model to the CPNtools XML
format. Step 5 instruments the CPN for data gathering based on the way the Elements have
been arrayed in the Nodes. The next section explains the specific tasks accomplished in each
step.

Step 3 builds the UML model and is the fundamental architecture development step. All
aspects of the architecture must be addressed in order to ensure that executable model can
execute. These aspects are detailed in Steps 1 through 3 of the methodology. The resulting
static UML representation of the SOSI alternative is the PIM for the transformation.

•Step 3 Produce SOSI Architectures
•SOSI static representation
•Platform Independent Model
(PIM)
•Activity Diagrams of the SOSICs

Step 2
Identif) De\ek>p

System View of the
Architecture

Slep I
Identity Develop

Operational View of
the Architecture

First Transformation

•Step 4.1 Create PSM
•CPN Data Model instance
•PSM representing all SOSICs

Second Transformation

•Step 4.2 Create Executable
•CPNTools XML format
•Creates the executable form

CPN Preparation

•Step 5 Develop and Execute Scenario
•Configure CPN

•Distribute Elements on Nodes
•Configure Monitors for data collection
•Input Scenario Data

•Execute Scenario

Step -
([inclusions

.iml
1 oinpaiisons

Slept.
i ondiicl
Analysis

Figure 6.42. Transformation Process

154

The examples used in this chapter extend the example begun in section 6.4. Figure 6.43 shows
the Activity Diagrams for the Element behavior. The Element Activity Diagrams are connected
together to create the SOSIC Activity Diagram. Figure 6.44 shows the SOSICs that the
Elements participate in. Notice that System2 is used in both SOSICs but different inputs are
required. The unused inputs from each SOSIC are combined in the transformation to create a
single executable that represents both activities executing simultaneously in one instance of
System2. The next step addresses the first transformation in the MDD process and produces the
Platform Specific Model.

System 2_AD

[varmsgl]

Rec

[ifmsgl=no]

.Icssag'

SyS

Message l:mp3
[it'msgl=yes|

ys2Action2

Message3:mp5
- rrmj

Message3:mp6

[varmsgl] Sys2Action [l'm2]

Message l:mpl Message2:mp4 Message2:mp2

System I AD

Message 2 :mp2

Message 1: mp4

[var:msg2] - SyslAction j

Message2:mp3 [1 no]

Message 1: mp 1

System 3_AD

Message 3 :mp2

Message 1: mp4

[var:msg3] -: SyslAction .:•

Message3:mp3 lyes

Message I: nip 1

Figure 6.43. Element Activity Diagrams

Step 4.1 performs the transformation from the PIM to the PSM. The primary transformation
is from the Activity Diagram to the CPN data model. Note that the transformation occurs with
multiple SOSICs represented in multiple Activity Diagrams. The artifacts of the Activity
Diagram are mapped to CPN constructs. The components described below are the ones that are
used to model the behavior of the SOSI.

The transformation process translates the Activity Diagram components into CPN
components. The basic components of the Activity Diagram used by this methodology are:
Action ((action)), Object Node (I•*6!), Call Behavior Action (•), Fork/Join Node (^H). Decision
Node (O), Initial Node (•), Final Node (®),Stop Node (*), and Activity Parameter Node (£«»•).
The components of the CPN are: Transition (I —» I), Place (o), and Substitution Transition (f^T).

155

S0SIC1 Example

Element1:System1_lnst

Message2:mp2_1

System 1_AD

Element2 :System2_l nst

[var:msg2]

T
Message1:mp1_1

Message2:mp2_2

System2_AD

Message1:mp1_2

[varmsgl]
Message3:mp3

SOSIC2 Example

Element3:System3_lnst Element2:System2_lnst

[var:msg3]

I

Message3:mp3_3

v
System3_AD

Message1:mp1_3

Message3:mp3_2

-a -
SysIem2_AD

Message1:mp1_2

[var:msg1]
Message2:mp2

Figure 6.44 Element SOSIC Participation

An Action describes a fundamental unit of executable functionality. It represents some
processing in the modeled system. [OMG, 2007] Actions are translated into Transitions in the
CPN. Transitions represent actions that take specific input from places and produce specific
output to places. In many cases, the Element functions defined in the SV-4 will be represented
by groups of actions that accomplish a specific task.

CallBehaviorAction is an action used by the methodology to create a hierarchy of Activity
Diagrams. (This action can call other behavior representations not used in this methodology like
a state transition diagram or a sequence diagram). The CallBehaviorAction invokes lower level
Activity Diagrams described for each Element. This Activity Diagram component translates to a
Substitution Transition in the CPN which is a transition that is associated with another page in
the CPN.

Object Nodes assist in describing the data that passes from Action to Action. [OMG, 2007J
Four types of Object Nodes are used: Activity Parameter Node, Input/Output Ports, Data Stores,
and Buffers. All of these Activity Nodes are transformed into CPN Places.

156

Four types of Control Nodes are used: Fork, Join, Decision, and Merge. All the Control
Nodes translate into CPN transitions. Decision Nodes require accompanying arc inscriptions
that control the passing of tokens based on the value of variables represented in the token. These
inscriptions are translated from the associated guards inscribed on the Decision Node output arcs
represented in the Activity Diagram.

Finally, the terminal Nodes: Initial and Final, represent the beginning and end of each
Activity. They are transformed into places in the CPN.

Figure 6.45 summarizes the above discussion. The Activity diagram components are shown
in the top row and first column of Figure 6.45. The second row and column show the
components of the CPN as well as their transformational relationship with the Activity Diagram
components in the first row/column. The interior cells describe the CPN components that are
used to connect the Elements described in the outside rows and columns.

* target (action) — o TYPE | ® call
[behavior ® ptype

source | trans | trans | 1 trans C) o subst o o
(action) ^ >X >X X X

socket
X X trans

— X >X ^ X X socket X X trans j

O
^Iguard) «Jguard]

T3L
^guard]

^guard] X ft *\J *
ssocket X

,[guard]

| trans J

TYPE O X X X forbidden forbidden X lauxi lauxi

• o X X X lauxi forbidden X forbidden forbidden

C \

call
[behavior] socket socket socket

X X
socket

forbidden port
subst

® O forbidder forbidden forbidden forbidden forbidden forbidden forbidden forbidden

ptype O X X X lauxi forbidden port ^ forbidden laux i

Figure 6.45. Activity Diagram Transformation Rules

The transformation described requires a data model for the CPN so that an Activity Diagram
can be transformed into the CPN construct. The data model in Figure 6.46 is the template for the
CPN PSM. All the transformation constructs described above are represented. The concept of a
page, PNPage, is utilized as well as that of the Substitution Transition that facilitates creating the
hierarchical representation of an Activity Diagram enabled by the CallBehaviorAction. The
Place and Transition Nodes are also represented.

.57

Brwme : Sling t
—J-* TW1>W

tHob J« H (la J t ion\o<k>

-^-ak^laai

I'M'.KK

piurrv : Sting

Mad Stnru

 fV~

an$Olptton : Sting

 1
l Madid

-w_J
J Color

,.j|i^anw: Stjixj

Figure 6.46. CPN Data Model

£/ML to CPN transformation

Figure 6.47 illustrates the concrete syntax transformation using a fragment of an Activity
Diagram and the transformation rules shown in Figure 6.45. In the upper left is a fragment of an
Activity Diagram for transformation. Step a) identifies the ends of the connecting arcs as
actions. Actions are located in the first cell of the outside row and column of Figure 6.45. Step
b) shows the transformation of the actions into transitions (as is shown in the second row and
column) and a connecting place between them to hold the tokens generated by the actions. The
connecting arcs and place are found at the intersection of the source and target in the interior of
the matrix. Step c) creates the CPN data representation with the actions named in the transitions
and the places used to hold the tokens generated by the actions. Notice that the type of the place
is the type of the input and output ports on the actions. Next the transformation is applied to a
simple example extended from section 6.4.

The first transformation creates the PSM from the SOSIC represented as an Activity
Diagram. Figure 6.48 shows an excerpt of the SOSIC Example from Figures 6.43 and 6.44
transformed into an instance of the CPN data model representation. Figure 6.46. The PSM is an
intermediate representation before finally creating the executable. The figure is a UML Object
Diagram and represents an instance of the CPN data model. The boxes represent instances of
classes. The transitions and places have been transformed using the rules represented in Figure

158

6.45. The diagram shows an instance of PNPage called Example. This represents the top level
of the CPN. The Elements modeled in the SOSICs are represented as SubstituionTransitions that
compose the PNPage. The SubstitutionTransition objects are connected by Arc objects to Port
objects that represent the interfaces into the subpage CPNs represented by the
SubstitutionTransition objects. The other PNPage objects represent instances of System 1 and
System 2. These PNPage objects are composed of Transition objects that represent the Actions
modeled in the Activity Diagrams for System 1 and System2.

-|var msg2]-

Messaga3 mp3 3

'
System3 AD

Messag«3.mp3..2

System3_AD

g
System2 AD

Messaga! mp1_3

-[varmsglj-

Step a)

<^Mpl_3_mpl_2 ~~^)

Messaged :mp1 2
Message2:mp2

Action Transition

Men b)

mp3 2_mp3_J

msg.i

System2_AD

Stepc)

X X
*(Action

Transition

Figure 6.47. Transformation Process

Step 4.2 is the transformation of the CPN data model to the CPNtools xml representation.
Figure 6.49 is the top-level CPN page created from the example Activity Diagrams. The boxes
represent substitution transitions that represent the instances of the Elements: System 1, System2
and System. The ovals are places that model the interfaces into the subpages that represent the
Activity Diagrams of the Elements. Figure 6.50 are the subpages from the example. Using the
connection between System3 and System2 as an example, the place P31 in Figure 6.49 is
represented in Figure 6.50 in the CPN pages that represent System2 and System3. Place P31 is
an input place for System2 and an output place for System3. The toplevel CPN page, Figure
6.49, shows this relationship between System2 and System3.

159

cpn

PNModal

System 1 Insl
SubstitutionTransition

Arc

Ajc mp2 2 mp2 1
Port

Example:
PJJEagj

mp1 1 mp1 2
Port

Are

Arc

Svslem2 Insl:
SubstitulionTransition

SYStemZ.lnst
PNPage

mo2 2 mp2 1.
Port

5ys2Action.
Transition

its

mp1 1 mp1 2
Port

Arc

Figure 6.48. Example CPN Data Model

Example

pn

S Message2

System 1_lnst
System2_lnst

Message 1

System3Jnst

Figure 6.49. Top-level CPN Representation

160

System2_lnst

-K P3

Message 1

P32
Oilt -
Messages

' m2 CU -
Message2

System1_lnst

Sys1 Action

Message2

Messagel

System3_lnst

Sys3Actlon

Message3

Figure 6.50. Sub-pages for Example CPN

Step 5 completes the executable model by adding monitors to count the messages passing
between Nodes, and grouping the Elements into the particular Node configuration required by
the SOSI alternative. CPNtools produces a report that shows the data collected by the monitors
instrumenting the CPN. This report is analyzed and used to create the coupling assessments for
the SOSI.

Summary

This section outlined the transformation of the UML Model into a CPN. The transformation
uses a process similar to the MDA to accomplish the transformation. The example shows the
ability of the transformation to create the representative CPN model given the UML Activity
diagrams. The resulting CPN is a combined model of all the Activity diagrams associated with
the SOSI. The next chapter completes the discussion of the SOSI measures with a case study
that illustrates the use of the Adaptability and Agility measures

6.6 Conclusion

Adaptability and Agility provide a qualitative assessment of the interaction of the Elements
and Nodes of the SOSI very early in the development process. This allows SOS engineers to
assess the ability of the architecture to adapt to the deployed environment given that it is highly
unlikely that the deployed environment will duplicate the scenarios used to test the SOSI. The
combined executable model enables an analysis of the internal interaction of the Elements on a
Node (Cohesion) and the degree of dependence of the Node to the rest of the SOSI (Coupling).

161

Degree of Reuse reveals Elements that might be over-utilized and thus inhibit the ability of the
SOSI to provide the required capabilities concurrently.

The SOS architecture development methodology produces an executable model with
behavior that is traceable to the static representation. The methodology ensures the rule, data
and dynamic behavior models are accurately represented in the executable. Furthermore, the
executable is a representation of the concurrently executing SOSICs derived from multiple
system views of the architecture. The Coupling measure reveal the influence of the combined
rule models on SOSI Adaptability by simulating the behavior of the Elements in concurrently
executing SOSICs.

The ambiguity caused by changing adversaries, technological advancements and changing
organizational structures will cause a significant amount of uncertainty as to what will be the
deployed structure of the organization. The SOS engineering challenge is to assess the ability of
alternative architectures to adapt to the operating environment in which it is deployed in order to
provide a SOS that facilitates the level of Agility required by the organization.

This research contributes significantly in several areas. First the assessment measures
Coupling, Cohesion and Degree of Reuse assess two aggregate performance characteristics of
the SOSI, Adaptability and Agility. Adaptability describes the ability of a SOSI to respond to
changes in the operating environment. Adaptability is modeled as a product of Cohesion and
Coupling using the Cobb-Douglas [1920] form. The methodology distinguishes four cases of
SOSI Adaptability:

Low Cohesion and Low Coupling = High Adaptability

Low Cohesion and High Coupling = Medium Adaptability

High Cohesion and Low Coupling = Medium Adaptability

High Cohesion and High Coupling = Low Adaptability

The case study reinforces the findings. The P2P and SOA alternatives have similar
assessments for Adaptability, but the values of Coupling and Cohesion are different. The
measures Coupling and Cohesion allow developers to identify traits that can be modified to
improve the Adaptability of the SOSI.

Degree of Reuse and Exclusiveness assess the ability of the SOSI to execute the SOSICs
concurrently. The case study illustrated the importance of the highly reused Elements and how
reducing the overall reuse of Elements can improve the Exclusiveness and reduce the potential
for contention for Element resources.

Adaptability and Exclusiveness combine to assess the overall Agility of a SOSI. This last
measure provides an aggregate measure for assessing the ability of the SOSI to provide SOSICs
concurrently and adapt to unpredicted operating environments.

162

Second, the methodology for combining multiple behavior models into a single combined
executable significantly contributes to SOS engineer's ability to ensure the acceptability of the
architectures and the ability to analyze the performance of the architectures in various scenarios.
Structural architects depend on 3D representations in paper or computer generated to obtain
feedback from the stakeholder about whether the proposed solution meets the needs of the
organization. SOS engineers must rely on the executable model to provide a representation that
allows the stakeholder to observe modeled performance and assess the appropriateness of the
architecture. The model driven development environment adds validity to the process by
ensuring the executable behavior is directly traceable to model artifacts in the architecture. The
environment created for this methodology creates such an environment.

Third, SOS assessment requires that the SOS I be bounded for analysis and the structural and
behavioral aspects of the architecture are modeled accurately. The SOS taxonomy developed for
the methodology provides such a description. The SOSI is a bounded subset of the resources
available to the organization. The Nodes provides structure for the SOSI, while the SOSICs
model the processes that realize the capabilities for the organization.

Furthermore, the methodology provides the required architecture data early in the
development process to improve early decisions concerning technologies and architecture design
tradeoffs.

Finally, the Cobb-Douglass production function is used in a unique manner to relate
Coupling and Cohesion for the computation of Adaptability.

There are many aspects of adaptability and agility that could be measured from the
information provided by the methodology. This research concentrated on structural changes
denoted by changing the configuration of the SOSI Nodes and holding all other aspects of the
SOSI constant. Further work could be conducted measuring the ability of the SOSI to adapt to
new SOSIC processes given a fixed set of Elements. The analysis might include performance
analysis or a gap analysis that reveals shortcomings in the ability of the SOSI to provide a
particular capability because a particular system function is not available in the current set of
Elements. Another analysis might include the ability of the SOSI to operate in a degraded mode
because certain Elements have been compromised in some fashion. Finally, there is a security
aspect that should be considered to ensure that the SOSI Architecture implements the required
security capabilities to ensure an uncompromised operating environment.

Another area of future work is further analysis of the ability of the SOSI to provide the
operational capability described in the operational architecture view. Developers need the ability
to ensure the operational concept described in the operational architecture view is actually met
by the SOSI Architecture for a particular SOSI. The SV-5 assists in this arena, but only
addresses the obvious modeled functions. Research in this area could reveal contradictions in
the state space of the SOSI Architecture when compared to the state space of the operational
architecture views. This could be true for a single capability or true when multiple capabilities
are being provided.

163

Finally, more work is required to ensure UML semantics defined in the UML specification
are formally defined. This work revealed semantics for the Activity Diagram that are not
supported in the SOS environment. Such work might entail modification of current UML
profiles or a new UML profile that supports the development of SOSI Architectures. Improved
semantics would also assist in analyzing the UML model directly. In order for the UML to
support graph analysis like invariant and state space analysis, the semantics of the language must
be constrained to that reduce the ambiguity currently in the UML specification.

6. 7 References

Alberts, D.S. and Hayes, R.E. (2003), Power to the Edge: Command and Control in the
Information Age, 2003, Washington, D.C.: Command and Control Research Program.

Alberts, D.S. and Hayes, R.E. (2007), Planning: Complex Endeavors, 2007, Washington, D.C.:
Department of Defense Command and Control Research Program.

Arisholm, E., Dynamic Coupling Measures for Object-Oriented Software, in Proceedings of the
8th International Symposium on Software Metrics. 2002, IEEE Computer Society.

Arisholm, E., Briand, L.C. and Foyen, A., Dynamic coupling measurement for object-oriented
software. Transactions on Software Engineering, 2004. 30(8): p. 491-506.

Baldassari, M., Bruno, G. and Castella, A. (2001), RPTOB: an Object-oriented CASE Tool for
Modeling and Prototyping Distributed Systems. Software-Practice and Experience, 1991.
21(8): p. 823-844.

Baresi. L. and Pezze, M. (2001) On Formalizing UML with High-Level Petri Nets. Lecture
Notes in Computer Science, ed. Agha, G.A., Cindio, F.D. and Rozenperg, G. eds. 2001.
Springer-Verlag: Berlin.

Bernardi, S., Donatelli, S. and Merseguer, J.E. (2002). From UML Sequence Diagrams and
Statecharts to Analysable Petri Net Models, in 3rd International Workshop on Software and
Performance 2002. Rome, Italy: ACM Press.

Beydeda, S., Book, M. and Gruhn, V. (2005), Model Driven Software Development. 2005.
Berlin, Germany: Springer-Verlag.

Bieman, J. andKang, B.K. (1998) Measuring Design-Level Cohesion. IEEE Transactions on
Software Engineering, 1998. 24(2).

Bienvenu, M.P., Shin, I. and Levis, A.H. (2000), C4ISR Architectures: III. An Object-Oriented
Approach for Architecture Design. Systems Engineering, 2000. 3(4).

Breton, E. and Bezivin, J. (2001). Towards an Understanding of Model Executability. in FOIS.
2001. Ogunquit, ME: ACM.

Briand, L.C, Morasca, S. and Basili, V.R.(1999), Defining and Validating Measures for Object-
Based High-Level Design. IEEE Transactions on Software Engineering, 1999. 25(5).

Brown, M.(2005), Personal Interview. Sep 2005: Fort Belvoir.

Brownsword, L.L.(2004), et al., Current Perspectives on Interoperability. SEI Technical Note.
2004. CMU/SEI-2004-TR-009.

164

Buede, D. (2000), The Engineering Design of Systems: Models and Methods. 2000, New York:
John Wiley and Sons, Inc.

Calderon, M. (2005), Model Transformation Support for the Analysis of Large-Scale Systems, in
Software Engineering. 2005, Texas Tech University.

Carney. D..et al (2005), Some Current Approaches to Interoperability. CMU, 2005 (CMU/SEI-
2005-TN-033).

Carney, D.. Fisher, D. and Place, P. (2005), Topics in Interoperability: System-of-Systems
Evolution. SEI Technical Note, 2005. CMU/SEI-2005-TN-002.

Chidamber, S.R. and Kemerer, C.F. (1994), A Metrics Suite for Object-Oriented Design. IEEE
Transactions on Software Engineering, 1994. 20(6): p. 476-493.

Cobb, C.W. and Douglas, P.H. (1928), A Theory of Production. The American Economic
Review, 1928. 18(1): p. 139-165.

Cook, S.C. (2001) On the Acquisition of Systems of Systems, in 2001 INCOSE International
Symposium. 2001. Melbourne AU.

CPNGroup, CPN Tools 2.2.0. 2008, University of Aarhus: Denmark..
http://wiki.daimi.au.dk/cpntools/cpntools.wiki

DAU (2006), Defense Acquisition University, Defense Acquisition Guidebook. Department of
Defense, Editor. 2006, DAU.

DeLaurentis, D.A. (2005), "A Taxonomy-based Perspective for Systems of Systems Design
Methods," Systems, Man and Cybernetics, 2005 IEEE International Conference on , vol.1,
no., pp. 86-91 Vol. 1. 10-12 Oct. 2005

Dickerson, C.E., et al.(2004), Using Architectures for Research, Development, and Acquisition.
O.O.T.A.S.O.T.N.R.D.A. ACQUISITION), Editor. 2004, Defense Technical Information
Center.

DODAF(2007a), Department of Defense Architecture Framework Version 1.5 Vol 1, 2007.
Defense Information Security Agency.

DODAF(2007a), Department of Defense Architecture Framework Version 1.5 Vol 2, 2007.
Defense Information Security Agency.

DODAF(2007a), Department of Defense Architecture Framework Version 1.5 Vol 3, 2007.
Defense Information Security Agency.

Eshuis, R. and Wieringa, R. (2001), A Comparison of Petri Net and Activity Diagram Variants,
in 2nd Int. Collaboration on Petri Net Technologies for Modelling Communication Based
Systems. 2001: DFG Research Group "Petri Net Technology".

Eshuis, R. and Wieringa, R. (2001), A Real-Time Execution Semantics for UML Activity
Diagrams, in Fundamental Approaches to Software Engineering : 4th International
Conference, FASE 2001 : Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2001, Genova, Italy, April 2-6, 2001, Proceedings. 2001. p. 76.

Farkas. J. (1902), Theorie der einfachen Ungleichungen. Journal Fur reine und angew, 1902.
Mathematik(124).

165

Fowler, M.(2003), Who Needs an Architect? IEEE Software, vol. 20, no. 5, pp. 11-13, Sept/Oct.

Fowler, M.(2004), UML Distilled, Object Technology Series, ed. Addison-Wesley. 2004:
Pearson Education, Inc.

Genrich, H. and Lautenbach, K. (1979), The Analysis of Distributed Systems by Means of
Predicate/Transition-nets, in Semantics of Concurrent Computation. 1979. p. 123-146.

Grady, J.O.(1994), System Integration. Systems Engineering Series. 1994, Boca Raton: CRC
Press. 256.

Greenwood, R.M., et al.(1995), Active Models In Business, in Business IT Conference. 1995.
Manchester.

Hansen, K.M.(2001), Towards a Coloured Petri Net Profile for the Unified Modeling Language -
Issues, Definition, and Implementation. 2001: University of Aarhus.

He, X. and Ding, Y. (2001), Object Orientation in Hierarchical Predicate Transition Nets. LNCS,
2001.2001(2001).

Hillion, H.P.(1986), Performance Evaluation of Decisionmaking Organizations, in Laboratory
for Information and Decision Systems. 1986, MIT: Cambridge.

Hong, J.-E. and Bae, D.-H. (2000), Software Modeling and Analysis Using a Hierarchical
Object-oriented Petri Net. Information Sciences, 2000. 130(1-4): p. 133-164.

Hassoun, Y., Counsell, S. and Johnson, R. (2005), Dynamic Coupling Metric: Proof of Concept.
IEE Proceedingd in Software Engineering, 2005. 152(6).

IEEE (2000), Recommended Practice for Architectural Description of Software-Intensive
Systems. 2000, IEEE.

JCS(2007), Joint Chiefs of Staff, Dictionary of Military and Associated Terms, Department of
Defense, Editor. 2007, Joint Chiefs of Staff.

Jensen, K. (1991), High-Level Petri nets: Theori and Application. 1991, Berlin, Gernany:
Springer-Verlag.

Jensen, K.(1992), Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use.
Monographs on Theoretical Computer Science, ed. W. Brauer, G. Rozenberg, and A.
Salomaa. Vol. 1. 1992, New York: Springer-Verlag.

Jensen, K.(1993), Coloured Petri Nets. Discrete Event Systems: A New Challenge for Intelligent
Control Systems, IEE Colloquium on,, 1993(4): p. 1-3.

Jensen, K.(1995), Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use.
Monographs on Theoretical Computer Science, ed. W. Brauer, G. Rozenberg. and A.
Salomaa. Vol. 2. 1995, New York: Springer-Verlag.

Jensen, K.(1997), Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use.
Monographs on Theoretical Computer Science, ed. W. Brauer, G. Rozenberg, and A.
Salomaa. Vol. 3. 1997, New York: Springer-Verlag.

Kasunic, M. and Anderson, W. (2004), Measuring Systems Interoperability: Challenges and
Opportunities. CMU/SEI-2004-TN-003, 2004.

166

Kleppe. A., Warmer, J. and Bast, W. (2003), MDA Explained The Model Driven Architecture:
Practice and Promise. Object Technology Series, ed. Addison-Wesley. 2003: Pearson
Education Group, Inc.

Lehman, M. M.(1996), Laws of Software Evolution Revisited, in EWSPT. 1996. Nacy, France:
Springer-Verlag.

Leite, M. (1998), Interoperability Assessment, in MORS Symposium. 1998. Monterey, CA.

Levis, A.H. and Wagenhals, L.W. (2000), C4ISR Architectures: I. Developing a Process for
C4ISR Architecture Design. Systems Engineering, 2000. 3(4).

Lopez-Grao, J.P., Merseguer, J. and Campos, J. (2004), From UML Activity Diagrams to
Stochastic Petri nets: Application to Software Performance Engineering. SIGSOFT Softw.
Eng. Notes. 2004. 29(1): p. 25-36.

Maier, M.W.(1996), "Architecting Principles for Systems-of-Systems". in 6th Annual
International Council on System Engineering (INCOSE) Symposium Proceedings. 1996.

Maier, M.W. (1998), Architecting principles for systems-of-systems. Systems Engineering,
1998. 1(4): p. 267-284.

Maqbool, S. (2005), Transformation of the Core Scenario Model and Activity Diagrams into
Petri Nets, in Computer Science. 2005, University of Ontario: Ottawa, p. 172.

Merseguer, J., et al. (2002), A Compositional Semantics for UML State Machines Aimed at
Performance Evaluation. 2002.

NIST (1993),National Institute for Standards and Technology, Integration Definition For
Function Modeling (IDEF0), FIPS 183, Federal Information Processing Standards
Publications.

Novak. J.D. and Canas, A.J. (2006) The Theory Underlying Concept Maps and How to
Construct Them., Technical Report IHMC CMapTools 2006-01, 2006; Available from:
http://cmap.ihmc.us/Publications/ResearchPapers/TheoryUnderlyingConceptMaps.pdf.

OMG.(2006a), Object Management Group, UML Profile for DODAF and MODAF Request for
Proposal, 2006 [cited. 1 May 2007] http://www.omg.org

OMG.(2006b), Object Management Group, System Modeling Language version 1.0. 2006 [cited.
1 May 2007] , http://www.omg.org

OMG.(2006c), Object Management Group, Meta Object Facility Core Specification Version 2.0,
2006 [cited. 1 May 2007] http://www.omg.org

OMG.(2005),Object Management Group, XML Metadata Interchange Version 2.1, 2005 [cited.
1 May 2007] http://www.omg.org

OMG.(2007a), Object Management Group, Unified Modeling Language: Infrastructure. 2007
[cited 2008 Feb 2008]. http://www.omg.org

OMG.(2007b), Object Management Group, Unified Modeling Language: Superstructure. 2005
[cited. 1 May 2007] http://www.omg.org

Peterson, J.(1981), Petri Net Theory and the Modeling of Systems. 1981, Upper Saddle River,
NJ: Prentice Hall.

167

Petri, C.A.(1966), Communcation with Automata. Defense Technical Information Center. 1966.

Petriu, D.C. and Shen, H. (2002), Applying the UML Performance Profile: Graph Grammar-
Based Derivation of LQN Models from UML Specifications, in Computer Performance
Evaluation : Modelling Techniques and Tools 12th International Conference, TOOLS 2002
London, UK, April 14-17, 2002. Proceedings. 2002. p. 159.

Pettit, R.(2003), Analyzing dynamic Behavior of concurrent Object-Oriented Software Designs,
in Information and Software Systems Eengineering. 2003, George Mason university: Fairfax.
VA.

Pooley, R. and King, P. (1999), Using UML to derive stochastic Petri net models. Petri Nets
Performance Models '99, 1999.

Rechtin, E.(1991), Systems architecting: Creating & building complex systems. Prentice Hall,
Englewood Cliffs, NJ, 1991.

Rechtin, E.(1992), The Art of Systems Architecting, IEEE Spectrum (October 1992), pp. 66-69.

Rechtin, E. and Maier M.(1996), The Art of Systems Architecting, CRC Press, Boca Raton, FL.
1996.

Sage, A.P. and Cuppan, C. D. (2001), On the Systems Engineering and Management of Systems
of Systems and Federations of Systems,. Information, Knowledge, and Systems
Management, 2001. 2(4).

Saldhana, J. and Shatz, S. (2000), UML Diagrams to Object Petri Net Models: An Approach for
Modeling and Analysis, proceedings of the International Conference on Software
Engineering and Knowledge Engineering(SEKE), 2000: p. 103-110.

Selic, B., Gullekson, G. andWard, P. (1994), Real-Time Object-Oriented Modeling. 1994: John
Wiley and Sons.

Sommerville, I. (2004), Software Engineering. 7 ed. 2004, Essex: Pearson Education Limited.

Storrle, H.(2005), Towards a Petri-net Semantics of Data Flow in UML 2.0 Activities, in
Technical Report 0504. 2005, Ludwig-Maximilians-Universitat Miinchen.Institut fur
Informatik,.

Sunye, G., et al.(2001), Using UML Action Semantics for Executable Modeling and Beyond.
Advanced Information Systems Engineering: 13th International Conference, CAiSE 2001.
Interlaken, Switzerland, June 4-8, 2001. Proceedings, 2001. 2068: p. 433.

TheOpenGroup (2004), The Open Group Architecture Framework, Version 8.1 'Enterprise
Edition'. 2004.

folk, A.(2003), Beyond Technical Interoperability - Introducing a Reference Model for
Measures of Merit for Coalition Interoperability, in 8th CCRTS. 2003. Washington, DC:
National Defense University.

Varro, D. and Pararicza, A. (2003), UML Action Semanitcs for Model Transformation Systems.
Peridica Politechnica, 2003. 47(3): p. 167-186.

Wagenhals, L.W., Haider, S. and Levis, A.H. (2003), Synthesizing Executable Models of Object
Oriented Architectures. Systems Engineering, 2003. 6(4).

168

Wagenhals, L.W., et al.(2000), C4ISR Architectures II: A Structured Analysis Approach for
Architecture Design. Systems Engineering, 2000. 3(4).

Whittle, J.(2002), Transformations and Software Modeling Languages: Automating
Transformations in UML. LNCS, 2002. 2460.

Yacoub, S.M., Ammar, H.H. and Robinson. T. (1999), Dynamic Metrics for Object Oriented
Designs, in Software Metrics Symposium. 1999. Boca Raton, Florida.

Yourdon, E. and Constantine, L., Structured Design. 1979, Englewood Cliffs, NJ: Prentice Hall.

169

170

SECTION 7

Case Study: Expeditionary Strike Group

Stewart W. Liles and Alexander H. Levis
7.1 Introduction

The case study is an idealized military example with diverse capabilities that must be
executed concurrently in an unpredictable operating environment. The case study requires an
assessment of multiple SOSI architectures in order to decide how to configure the organization
for its upcoming deployment.

7.2 Scenario

The fictional mission in this case is as follows. On a small island in the Pacific called
Efcratia the US maintains a ground station that receives data down-linked from national security
assets. It also has had ready access to the port facilities. The population in Efcratia is diverse.
The majority is Moslem but with a significant minority that is Christian (Catholic). The
government and the population of Efcratia are generally pro-US, but there exists a small vocal
opposition to US presence on the island. More recently, in response to world events, a local
instantiation of a terrorist organization, the Shining Crescent, has established a presence on the
island and is fomenting anti-US attitudes.

The recent earthquake and the resulting tsunami caused substantial damage to the
infrastructure of the island and destroyed many of the government buildings in Efcratia's capital
- the main port city. It has also caused damage to the airport so transport planes cannot land -
only small planes. As a result of the tsunami and the destruction, there is anarchy on the island.
Consequently, in addition to the dire need for humanitarian assistance and disaster relief, there is
also need for rapid re-establishment of public order and for Efcratia's government to function
and provide services.

The US Government, through the Pacific Command (PACOM), has decided to send an ESG
that was in the area with two primary objectives: (a) provide some protection to the humanitarian
assistance and disaster relief that is being sent to the island through the port city; and (b) protect
the ground station from possible politically or financially motivated attack. The ESG X receives
the orders while at sea on its way to the Southwest Asia area of operations.

We need to develop SOSI Architecture alternatives and present our assessment of the
alternatives to the commander. Figure 7.1 shows the operational concept graphic. This graphic
shows the island of Efcratia and identifies the various Nodes that will be used to structure the
ESG for its operations. The Tarawa, Austin and Harper's Ferry ships represent command ships

This section consists of the slightly edited Chapter 6 of the Ph.D. thesis of LCOL Stewart W. Liles, USA.
171

that can act as Nodes for the ESG. The Satellite Node is used to Link geographically separated
Elements together with common communication facilities. The other Nodes represented are the
Beach, Ground Station, and Port.

T U. W«^b •LMMJ—fa,

Tarawa

Austin

J&3&. ̂ L
Harper's Ferry

Satellite

Figure 7.1. ESG Operational Concept Graphic (OV-1)

Given the mission scenario and the provided operational architectures that represent the
required capabilities, assess the architecture alternatives for their ability to adapt to unplanned
configurations. The resulting SOSI Architectures are built from the perspective of the lead
System Engineer.

7.3 Operational Architectures

Step 1 of the methodology identifies the Operational Architectures that describe the required
capabilities. This section illustrates the required capabilities in simplified operational
architectures using DODAF products to describe the kind of data required. The assessment
process requires four operational views for each capability: the Operational Node Connectivity
Diagram, OV-2; the Operational Activity Model, OV-5; Operational Rules Model, OV-6a; and
the Logical Data Model, OV-7.

The OV-2 shows the particular roles that are represented in the capability and the data that is
passed between the roles. Figure 7.2 through 7.4 show the OV-2s for each capability. Figure 7.2
is the OV2 for the Planning and Coordination Capability. A Requestor initiates the Operational
activity by sending a Request to a Coordinator. The Coordinator then sends an Order to the

172

Planners and the Planners respond with a revised Order. The Order is then sent to the
appropriate Executor. The Executor coordinates with the Requestor and sends Status to the
Coordinator.

Figure 7.3 is the Blue Force Tracking (BFT) Capability. The capability begins with the
Reporter sending new BluePLI (Blue Position Location Information) to the Distributor. The
Distributor then sends BluePLI Messages to all connected Receivers.

Figure 7.4 is the Process and Disseminate Intelligence Information Capability. This
capability begins with personnel or equipment being sensed by a Sensor. Then a Sensor sends an
Input to the Controller. Input types are Blip, Signal, and Sighting. The controller sends a
SpotReport to the Analyzer. The Analyzer uses multiple SpotReports to synthesize opposing
force locations. The Analyzer then passes the RedPLI (Red Position Location Information) to a
Distributor. The Distributor distributes the RedPLI to Receivers.

\ 5: Order
7: Status -*

Planner

Coordinator

Figure 7.2. Planning and Coordination OV-2

173

Figure7.3 Blue Force Tracking OV-2

-I 3: SpotReport ^
jv, v-4: Rpli

Figure 7.4. Process and Disseminate Intelligence Information OV-2

The Operational Information Exchange Matrix, OV-3, further defines the data exchanges
identified in the OV-2 by describing the attributes of the messages passed between the
represented roles.

Table 7.1 represents the OV-3s for the required capabilities. For example, a Request
message is sent from the Requester to a Coordinator. A Request message is of type text and is
32 characters long.

174

Table 7.1. ESG Operational Information Exchange Matrix OV-3

Planning and Coordination Capability

Sender Receiver Type Length

Request Requester Coordinator Text 32

Order Coordinator Planner Text Variable

Order Planner Coordinator Text Variable

Status Executor Coordinator Text 48

Coordination Executor Requestor Text 32

Blue Force Tracking Capability

Sender Receiver Type Length

BluePLI Reporter Distributor Text 32

BluePLI Distributor Receiver Text 32

Process and Disseminate Intelligence Information

Sender Receiver Type Length

Input Sensor Controller Text 48

SpotReport Controller Distributor Text 48

SpotReport Distributor Analyzer Text 48

RedPLI Analyzer Distributor Text 48

RedPLI Distributor Receiver Text 48

Operational activities describe the actions that each role executes to create the capability.
The Operational Rules Models, OV-6a, Table 7.2, document the rules governing the behavior of
operational activities. The rules are modeled in the Operational Activity Model. OV-5. For
example the Coordinator role has an activity called ProcessRequest
(CoordinatonProcessRequest). This operational activity implements the rule, If Request =
req_sec then Order = ord_sec, which means if a request for security is received send an Order for
security.

175

Table 7.2. ESG Operational Rules Model OV-6a

Planning and Coordination Capability

Requester: SendRequest Send all generated Request

Requester: RecieveCoordination Receive all Coordination messages

CoordinatonReceiveRequest Send all Request

Coordinator: ProcessRequest If Request = req_sec then Order = ord_sec

Coordinator: ProcessRequest If Request = req_sup then Order = ordsup

Coordinator: SendOrder Send all Order

Coordinator:DistributeOrder Send all Order to connected Executor

Coordinator:ReceiveStatus Receive and Store all Status reports

PlannenReceiveOrder Receive all Order

Planner:ProcessOrder If Order = ord_pass then stop

Planner:ProcessOrder If Order = ordsec or ordsup then SendOrder

Planner:SendOrder Send all Order

Executor:ReceiveOrder If Order then send Coordination

Executor:ComputeStatus Send Order then send Status

Blue Force Tracking Capability

ReportenComputeBpli Compute location and sendBpli

Reporter: SendBpli Send all BluePLI

DistributonReceiveBpli If BluePLI o bpli_pass DistributeBpli

Distributor:DistributeBpli Send all BluePLI

Receiver:ReceiveBpli Receive all BluePLI

Receiver:ReceiveBpli Store all BluePLI

Process and Disseminate Intelligence Information Capability

Sensor:Sense If Sense then Sendlnput

SensonSendlnput Send all Input

Controller:ProcessInput If Input = input_pers then SpotReport = sr_pers

176

ControllerProcessInput If Input = inputequip then SpotReport = srequip

Controller:SendSpotReport Send all SpotReport

Analyzer: ProcessSpotReport If SpotReport = srpers then RedPLI = rpli_pers

Analyzer: ProcessSpotReport If SpotReport = sr_equip then RedPLI = rpliequip

AnalyzenSendRedPLI Send all RedPLI

Distributor:DistributeRedPLI If RedPLI =rpli_pass then empty

Receiver:RecieveRpli Receive and Store all RedPLI

The OV-7 describes the messages passed between Elements and the operations expected of
the roles defined in the OV-2. The OV-7s for each capability are shown in Figs. 7.5. 7.6 and 7.7.
The body of each Message is represented as a String. The contents of the Message body are
interpreted based on the type of Message received. Each role type is defined for each capability.

Message
Stringbody

Role

7T

Order

Status

Coordination

Request

Requester
SendRequest
ReceiveCoordination

Planner
ReceiveOrder
ProcessOrder
SendOrder

Coordinator
ReceiveRequesI
ProcessRequest
SendOrder
DistributeOrder
ReceiveStatus

Executor
ReceiveOrder
ComputeStalus

Figure 7.5. Planning and Coordination Capability OV-7

Message

String:body

BIuePLI
Reporter

ComputeBpli
SendBpli

Distributor
ReceiveBpli
SendBpli
DistributeBpli
DistributeRpli

Figure 7.6. Blue Force Tracking Capability OV-7

177

Message
Stnng:body

SpotReport

Signal

RedPLI

Blip Sighting

Role

Distributor
Receiver

ReceiveBpli
SendBpli
DislribuleBpli
DistribuleRpli

ReceiveBpli
ReceiveRpli

'—i

Controller Analyzer
Processlnput
SendSpolRepon

ProcessSpotReort
SendRpli

Figure 7.7. Process and Disseminate Intelligence Information Capability OV-7

The OV-6a, OV-2, and OV-7 are integrated in the Operational Activity Model, OV-5. The
rules are realized in the actions shown in the UML Activity Diagrams representing each
capability. Figure 7.8 is the Activity Diagram for Planning and Coordination followed by Figure
7.9 and Figure 7.10 for Blue Force Tracking and Process and Disseminate Intelligence
Information, respectively. The operational roles from the OV-2s are identified in the swim lanes
of each Activity Diagram. The activities modeled here are identified in the rule model and the
data model. The Activity Model shows how the activities are connected and what data is passed
between them.

7.4 System Architectures

Step 2 of the assessment process identifies the applicable system architecture views that
realize the required capabilities defined in the operational architecture views identified in step 1.
There is a one-to-many relationship between the operational architecture views and the system
architecture views for this case study. The system architecture views use different architecture
approaches to realize the capabilities described in the operational architecture views. There are
three patterns described in the system architectures, peer-to-peer, centralized-server and service
oriented architecture. Figure 7.11 shows the relationships between the operational architecture
views and the system architecture views. The three architecture patterns resulted in three
different SOSI Architectures that created related groups of SOSI alternatives. The P2P system
architecture view will be presented in detail, the remaining approaches will only contribute to the
results presented in step 6 and 7.

178

Requester Coordinator Planner

SendRequest

T
J

r •%

ReceiveCoordination

X

Coordination

Request

: SendCoordination

r

ReceiveRequest

A

Request
'C7T

Order

4 ReciveOrder

Process Request

SendWamingOrder

DistributeOrder I*

ReceiveStatus

Order Status -•

J_ --
ReceiveOrder SendStatus

, Order

.

Coordination j«e ProcessOrder

Status

<*~-»| ComputeStatus

Order

Order

V.

Figure 7.8. Planning and Coordination OV-5

Order

ProcessOrder

Order

SendOrder j

Reporter Distributor Receiver

\ \

1 ComputeBpli I j ReceiveBpl
1

'
/ >

1
BluePLI j- -^[ReceiveBpli j

\ 1 BluePLI 1 BluePLI t

j

)
BluePLI \

1

\ I \

0-
DistributeBpli

BluePLI i

1

BpliStore

<

J

Figure 7.9. Blue Force Tracking OV-5

179

Sensor Controller Analyzer Distributor

| Sense I

X
•-6 rocesslnput

I Input
Input | rA .

I Sendlnput I

| ProcessSpotReport

SpotReport

SpotReport

! SendSpolReporl]~

RedPLI

]
SendRedPLI

> RedPLI v DistributeRedPLI

RedSA StoreRpli RedPLI ReceiveRpli j

RedPLI

ZD—

Figure 7.10. Process and Disseminate Intelligence Information OV-5

Operational
Architectures

System SOSI SOSI
Architectures Architectures Alternatives

Planning and
Coordination

(PC)

Blue Force
Tracking

(BFT)

Process and Disseminate
Intelligence Information

(PDII)

P2P_PC
P2P_BFT
P2P PDII

P2P
P2P_1
P2P_2
P2P 3

CS_PC
CS_BFT
CS PDII

SOA_PC
SOA_BFT
SOA PDII

SOA

SOA1_1
SOA1_2
SOA1 3

SOA3_1
SOA3_2
SOA3 3

SOA2_1
SOA2_2
SOA2 3

Figure 7.11. Relationship Among Architecture Views

The DODAF system architecture views required by the methodology follow: System
Interface Description (SV-1), Systems Functionality Description (SV-4), Operational Activity to
System Function Traceability Matrix (SV-5), System Data Exchange Matrix (SV-6), Systems
Rules Model (SV-lOa) and the Physical Schema (SV-11). There are three system architecture
views, one for each capability described by the operational architecture views. The System
Views will be grouped by DODAF product.

180

The SV-1 represents the system Elements used to realize the capability. It also represents the
nodes the Elements are assigned and the messages passed between them. The SV-ls are
represented as modified UML Communications Diagrams by adding the node assignments for
the Elements. The SV-ls are shown in Figures 7.12, 7.13, and 7.14. The roles from the
corresponding operational architecture are shown in the angle brackets for each Element
instance. The node each Element is assigned to is identified by the box. There are four types of
Elements: Tactical Level Command and Control System (TLC2S), Operational Level Command
and Control System (OLC2S), Blue Force Tracking (BFT) and Intelligence Control System
(ICS). These Elements interact in the following system architecture views to realize the
capabilities described in methodology step 1.

3. Request

«Coordinator»
J3Plans

ShipNode

OLC2S

2. Request

«Coordinator»
DROps
OLC2S

«Coordinator»
J30ps
OLC2S

4. Order
11. Statusx 5. Order

12. Status

±
«Planner»
MEUS30ps

OLC2S

«Planner»
MEUS3Plans

OLC2S

1. Request 10. Status 6. Order

«Requestor»
NGOHQ
TLC2S

LandNode

,
7. Order

8. Coordination

«Executor»
BLTTroopOps

TLC2S

V

2L_L .
«Planner»
BLTS30ps

TLC2S

9. Status
'

Figure 7.12. Planning and Coordination SV-1

The system architecture views are further defined by the SV-6. It provides the attributes of
the Messages exchanged between the Systems. The SV-6s for are shown in Tables 7.3, 7.4. and
7.5. Each exchange between a Sender and Receiver shown in the SV-1 is a row in the SV-6. For
example. Request Messages are sent from the TLC2S Elements to the OLC2S element. The
message is text and its length is 32 characters.

181

I andNode

«Reporter>>
«Distributor>>

NGOConvoy
BFT

<<Reporter»
<<Distributor»

BLTTroops
BFT

«Reporter»
<<Distributor>>

BLTHQ
BFT

1. BluePLI LandNode

. «Receiver» »
BLTTroopOps

TLC2S

«Receiver»
NGOHQ
TLC2S

. «Receiver» «
BLTS30ps

TLC2S

«Receiver>>
BLTS20ps p

ICS

«Receiver>>
GrndStationOps -

TLC2S

1. BluePLI

jePLI

•

 y «Receiver>>
MEUS20ps

ICS

«Receiver»
J20ps

ICS

<<Receiver>>
J30ps
OLC2S

^
<<Receiver>>
MEUS30ps

OLC2S

1 Bli

v^
«Receiver>>

J3Plans
OLC2S

- J
<<Receiver»
MEUS3Plans

OLC2S

=<Receiver>>
DROps
OLC2S

ShipNode

Figure 7.13. Blue Force Tracking SV-1

«Sensor»
HS1

HumanSensor

1 Sighting

«Controller»
«Distributor»
«Analyzer»
MEUS20ps

ICS

2 RedPLI

«Controller»
«Distributor»
<<Analyzer>>

BLTS20ps
ICS

ShipNode

«Receiver»
MEUS30ps

OLC2S

3. RedPLI

.
«Receiver»
MEUS3Plans

OLC2S

LandNode

«Sensor»
HS2

HumanSensor

1. Sighting

«Sensor»
SS1

SignalSensor

1. Signal

I

ShipNode

«Sensor»
SR1

SurfaceRadar

«Controller»
«Distributor»
«Analyzer»

J20ps
ICS

2 RedPLI

1. Blip

«Receiver>>
J3Plans
OLC2S

^_
«Receiver»

J30ps
OLC2S

Figure 7.14. Process and Disseminate Intelligence Information SV-1

!82

Table 7.3. Planning and Coordination SV-6

Sender Receiver Type Len

Request TLC2S OLC2S Text 32

Request OLC2S OLC2S Text 32

Order TLC2S TLC2S Text *

Order OLC2S OLC2S Text *

Order OLC2S TLC2S Text *

Coordination TLC2S TLC2S Text 32

Status TLC2S TLC2S Text 56

Status OLC2S OLC2S Text 56

Status OLC2S TLC2S Text 56

Table 7.4. Blue Force Tracking SV-6

Sender Receiver Type Len

BluePLI BFT OLC2S Text 32

BluePLI BFT TLC2S Text 32

BluePLI BFT ICS Text 32

BluePLI BFT BFT Text 32

Table7.5. Process and Disseminate Intelligence Information SV-6

Sender Receiver Type Len

Sighting HumintSensor ICS Text 48

Sighting SigintSensor ICS Text 48

Signal SurfaceRadar ICS Text 48

RedPLI ICS OLC2S Text 48

RedPLI ICS TLC2S Text 48

The SV-lOa describes the rules that define the behavior of the system functions. In this case,
the rules describe the action that the system takes upon receiving a particular type of message.
Tables 7.6, 7.7, and 7.8 are the rule models for the system architectures. Table 7.6 shows that if
a Request message is received send a Request message.

83

Table 7.6. Planning and Coordination SV-lOa

TLC2S

if Request then Request

if Order o ordwarning then SendOrder

if Status then SendStatus

OLC2S

if Request then Request

if Order o ordwarning then SendOrder

if Status then SendStatus

Table 7.7. Blue force Trackin SV-10a

TLC2S

ifBluPLIthen PassBpli

OLC2S

ifBluPLIthen PassBpli

BFT

ifBluePLIo rpli_pass the rpli

Table 7.8. Process and Disseminate Intelligence Information SV-lOa

TLC2S

ifRedPLIthenSendRpli

OLC2S

ifRedPLIthenSendRpli

ICS

if SpotReport = sr_pers then rpli_pers

if SpotReport = srequip then rpliequip

if RedPLI = rplipass then empty

if Blip = blip_pers then sr_pers

if Blip = blipequip then srequip

if Signal = signal_pers then sr_pers

if Signal = signal_equip then sr_equip

if Sighting = sighting_pers then sr_pers

if Sighting = sightingequip then srequip

The SV-11, shows the physical schema for each system architecture. Figure 7.15, 7.16, and
7.17 show the physical schemas for the system architectures. Each one describes the Messages
and Systems that realize the capability.

184

Order

Enum:{ord_sec, ordsup,
ordact, ordwaming}

Message

Status

Enum:{sta_good,
sta bad}

Request

Enum:{req_sec,
req_sup, req_pass}

Coordination

Enum:{coord_bad,
coordgood, coordinfo}

System

OLC2S
SendReq
RecReq
RecOrder
SendOrder
CoordOps
ProcSA

Figure 7.15. Planning and Coordination SV-1

TLC2S
SendReq
RecReq
RecOrder
SendOrder
CoordOps
ProcSA

Message

BluePLI

Enum:{bpli_act,
bplievt, bpliloc}

System

\

OLC2S TLC2S

ProcSA ProcSA

BFT
SendBpli

Figure 7.16. Blue Force Tracking SV-11

The SV-4 is represented in this methodology as an UML Activity Diagram. The activity
diagram uses the information from all the system views presented to model the dynamic behavior
of the system architecture view. The data represented in the SV-11 and SV-6 is represented by
the ports showing the Message types passed between systems. The rules defined in the SV-lOa
are implemented in the Activity Diagram. The diagrams shown here represent the top level of a
hierarchy of activity diagrams. The fork icon in means there is a lower level activity diagram the
further represents the behavior of the system. Figures 7.18, 7.19, and 7.20 represent the SV-4s
for the system architectures.

185

Message
System

Sighting

Enum:{sight_pers,
sightequip}

RedPLI

Blip

Enum:{blip_pers,
blip equip, blipair}

Signal

Enum:{signal_air,
signalgrnd}

Enum:{rpli_pers,
rpliequip, rpli_air}

SignalSensor
SendSignal

HumintSensor

SendSighting

RadarSensor

BluePLI

Enum:{bpli_act,
bplievt, bpliloc}

SpotReport

Enum:{sr_pers,
srequip}

SendBlip

r~
OLC2S ICS TLC2S

ProcSA ProcSR
ProcSighting
ProcessSig
ProcBlip
Proclntel
SendRpli

ProcSA

Figure 7.17 Process and Disseminate Intelligence information SV-11

Figure 7.21 is an example of one of the lower activity diagrams that describes the behavior

of a system. It represents the behavior of the TLC2S. Notice that the actions defined in the

diagram map to the functions described in the SV-6, SV-5 and SV-11.

The SV-5 is a matrix that maps the operational activities shown in the columns on the left

with the system functions shown in the rows at the top. This matrix provides the traceability

from the system architecture view back to the operational architecture view. It is used to ensure

that all the operational activities are realized by a system function. Using Table 7.9as an

example, the operational role Coordinator has an activity ProcessRequest. The TLC2S and

OLC2S systems both realize this operational activity. The name of the system function that

realizes the activity in both systems is Rec Req (ReceiveRequest). The SV-5s for each capability

are represented in Tables 7.9, 7.10, and 7.11.

186

-t

>
ir.
a a
—-
ca a

o o
U
c
M
C

"3 s
c3

v
3

</3

O
_l o

1

55
on "•
V
V

2 H 3

1
a:

A
A
i—

>
Q) o
CD

cr
V
V

w tt> •
CL CN < o q £ffl' U CM CO —1
-> O -I

o

V

c . —

s
-
u u •—
o

—

.—

•->

3

to

m
A

co 45
v ^ v 3

co

12
c/) 0> w

gf
c v
o
O
V
v

A

I 3. s o
||
a) ->

CC UJ

a

o

A

t m co </,
> a.
S o
tr ^
V
v

A
A <"
i- Q.

Is < LU

S2

O 0)
<2 CO

,£ • CO c

v -5

g
&
m

€5

A s
O Q)
<2 co

,9! « CO c

v 3

>

C
c • —
C3

<2
U u
a o

o

r3

Q
-a

en
x
U u o

o
n

u
5
DO

_y

TLC2S_AD

Request
Rec*uest Receive

Request

Order Order

Status

Coordination

RedPLI

BluePLI

"T

Request Request Send Request

Request

Request

Receive
Order

Order Order
.'

Send
Order

Order

Status Status

Coordinate
Operations

Coordination

RedPLI

BluePLI

Coordination

RedPLI

BluePLI

-

Order

Status

Coordination

RedPLI

BluePLI

-

Figure 7.21. Tactical Level Command and Control System Activity Diagram

7.5 System of System Instance Architecture

Step 3 of the methodology merges the system architecture views into SOSI Architectures that
represent the different approaches used by the system architecture views and requirements
described by the implementing organization. There are four SOSICs created from the system
architecture views. They are Conduct Security Operations, Conduct Support Operations, Blue
Force Tracking and Process and Disseminate Intelligence Information. Conduct Security
Operations and Conduct Support Operations are both realizations of the Planning and
Coordination Capability. The ESG requires diverse capabilities. By modeling both SOSICs the
utilization of Element resources that must be applied to disparate tasks can be assessed.

The system architecture views identified in step 2 yielded three different architectural
approaches: P2P, CS and SOA. The P2P SOSI Architecture will be shown in detail while only
the results of the analysis will be shown for the CS and SOA SOSI Architectures. The P2P SOSI
Architecture fulfills the requirement of the operational view using a peer to peer architecture
concept. In P2P there are no central servers. Each Element is connected to its peers in a
predetermined fashion. Figure 7.22 shows a diagram the represents the P2P SOSI without Nodes
assigned. The lines represent connections between Elements that facilitate the sending and
receiving of messages defined in the SOSICs.

190

Table 7.9. Planning and Coordination SV-5

System TLC2S OLC2S

Role
Activity/
Function

Send
Req

Rec
Req

Rec
Ord

Send
Order

Coord
Ops

Send
Req

Rec
Req

Rec
Ord

Send
Ord

Coord
Ops

Requestor SendRequest X X X X

Receive
Coordination

X X

Coordinator
Receive
Request

X X

ProcessRequest X X

SendOrder X X

Distribute
Order

X X

RecieveStatus X X

Planner RecieveOrder X X

ProcessOrder X X

SendOrder X X

Executor ReceiveOrder X

ProcessOrder X

Send
Coordination

X

Compute
Status

X X

Table 7.10. Blue Force Tracking SV-5

System TLC2S OLC2S BFT

Role Activity/Function
Proc SA Proc SA Send Bpli

Reporter ComputeBpli X

SendBpli X

Distributor ReceiveBpli X X

DistributeBpli X X

Receiver RecieveBpli X X

Table 7.11. Process and Disseminate Intelligence Information SV-5

System TLC2S OLC2S ICS Sensor

Role Activity /Function
Proc
SA

Proc
SA

Proc
SR

Proc
Sight

Proc

Sig

Proc
Blip

Proc
Intel

Send
Rpli

SRSS
HS

Sensor Sense X

Sendlnput X

Controller Processlnput X X X

SendSpotReport X

Analyzer ProcessSpotReport X

SendRedPLI X X

Distributor DistributeRedPLI X X

Receiver ReceiveRpli X X X X

StoreRpli X X X X

GrndStationOps
TLC2S

BLTS30ps
TLC2S

J3Plans
OLC2S mm

Figure7.22. Peer-to-Peer Architecture

[92

The second SOS I Architecture used for comparison in the case study is the centralized-server
(CS) architecture. As the name implies there are central servers that facilitate the passage of
information from one Element to another. Where the P2P architecture used direct connection
between Elements, the CS architecture relies on a server to pass information from one Element to
another. There are three CS SOSI groups. They differ in the number of servers up to three
servers in the SOSI. Figure 7.23 shows the architectures for the one server SOSI.

GrndStationOps
TLC2S

BLTHQ

BLTTroops
BFT NGOConvoy

BFT

Figure 7.23. Client Server SOSI with One Server

The last SOSI Architecture represents a Service Oriented Architecture. This type of
architecture is characterized by instances of services that accomplish specific tasks for the
organization and facilitate communication between the Elements. The SOA SOSI groups are
differentiated by the number of instances of each service type. There are five services defined:
Planning, Coordination; Request, ISR and BFT. There are three different SOSI groups that use
SOA architecture configuration. They are differentiated by the number of instances of each
service. SOA1 SOSI, Figure 7.24, shows a single instance of each service.

The P2P SOSI Architecture will be used as the example for the remaining steps of the
methodology. Figure 7.25 is part of the SV-11 for the P2P SOSI Architecture. It shows the
relationships between the Nodes and Elements. Another diagram completes the SV-11 by
showing the Message types. The Expeditionary Strike Group System (ESGS) is the top level
class and represents the SOSI as a whole. There are two types of Nodes, ShipNode and
LandNode. There are four types of Elements: Tactical Level Command and Control System
(TLC2S), Operational Level Command and Control System (OLC2S), Intelligence Control
System (ICS) and Blue Force Tracker (BFT). Finally there are three Elements that represent
sensors in the SOSI: SurfaceRadar (SR), SignalSensor (SS) and HumanSensor (HS).

193

BLTTroops NGOConvov BLTHQ
BFT BFT BFT

J3Plans
0LC2S

Figure 7.24. Service Oriented Architecture with One Instance of Each Service

«Node»
ShipNode

«Node»
LandNode

«Element» «Element» «Element» «Element»
TLC2S OLC2S ICS BFT

«Element» «Element» «Element»
SurfaceRadar SignalSensor HumanSensor

Figure 7.25. P2P SOSI Architecture SV-11, part 1

The methodology requires the SV-1, SV-4,SV-5,SV-6, SV-lOa and SV-11. The case study
looks at three SOSI alternatives of the P2P SOSI Architecture differentiated by the Node

194

configuration shown in the SV-ls. The SV-1 changes for each node configuration. Figures 7.26.
7.27, and 7.28 show the three different Node configurations used for evaluation of the P2P
SOSI. The measures will reveal that certain configurations are more adaptable to change than
others.

The first Node partition, Figure 7.26 partitions the Elements by echelon. There are two
nodes on the island that represent the supported population, Ground Station and Port. The
Ground Station represents the communication station described in the scenario. The Port Node
represents a connection to the government of Efcratia. The Tarawa Node is the ESG command
ship. The Harper's Ferry Node is the Marine Expeditionary Unit (MEU) Headquarters command
ship. The Beach Node is the location of the Battalion Landing Troops that are controlled by the
other echelons.

The second Node partition. Figure 7.27, is functional. The Tarawa Node has the operations
Elements and the Harper's Ferry Node has the Planning Elements. The rest of the Elements are
arrayed over 6 other Nodes. The third partition, Figure 7.28 groups all the elements strictly by
echelon. This is different from the first partition because the MEU and BLT are all on the same
Node in this partition.

BLTHQ
BFT

BLTTroops
BFT

Satellite

NGOConvoy
BFT

Ground
Station

GrndStationOps
TLC2S

Beach
BLTS20ps

ICS
BLTTroopOps

TLC2S

HS1
HumanSensor

BLTS30ps
TLC2S

Port

NGOHQ
TLC2S

HS2
HumanSensor

MEUS30ps
OLC2S Harper's

MEUS20ps
ICS

MEUS3Pians Ferry
OLC2S

DROps
OLC2S

J30ps
OLC2S

J3Plans
OLC2S

Tarawa

J20ps
ICS

SS1 SR1
SignalSensor SurfaceRadar

Figure 7.26. P2P1 SV-1 Six Nodes

195

Ground Station
NGOHQ GrndStationOps
TLC2S TLC2S

Beach
BLTHQ

BFT
BLTTroopOps

TLC2S

Satellite2

HS1
HumanSensor

HS2
HumanSensor

Harper's Ferry
MEUS20ps MEUS3Plans

ICS OLC2S

J3Plans J20ps
OLC2S ICS

Satellite
BLTTroops NGOConvoy

BFT BFT

Austin

BLTS20ps
ICS

BLTS30ps
TLC2S

Oliver Hazard

SR1
SurfaceRadar

SS1
SignalSensor

MEUS30ps
OLC2S

DROps
OLC2S

Tarawa

J30ps
OLC2S

Figure 7.27. P2P_2 SV-1 Eight Nodes

Tarawa

DROps J3Plans SS1

OLC2S OLC2S SignalSensor

J30ps J20ps SR1
OLC2S ICS SurfaceRadar

Ground Station
NGOHQ
TLC2S

GrndStationOps
TLC2S

BLTTroops
BFT

BLTHQ
BFT

Satellite

NGOConvoy
BFT

HS1
HumanSensor

BLTS20ps
ICS

MEUS20ps
ICS

MEUS3Plans
OLC2S

Harper's
Ferry

BLTTroopOps
TLC2S

BLTS30ps
TLC2S

HS2
HumanSensor

MEUS30ps
OLC2S

Figure 7.28. P2P3 SV-1 Four Nodes

[96

The SOSI Architecture SV-6, Table 7.12, is the result of merging the SV-6s from the P2P
system architecture views. This view is focused on the interfaces between Elements. For
example, Element TLC2S sends Request messages which are received by Element OLC2S. A
Request message is text and 32 characters in length. These interfaces will be represented in the
SOSICs modeled as SV-4s.

Table 7.12. P2P Systems Data Exchange Matrix, SV-6

Sender Receiver Type Len

Request TLC2S OLC2S Text 32

Request OLC2S OLC2S Text 32

Order TLC2S TLC2S Text *

Order OLC2S OLC2S Text *

Order OLC2S TLC2S Text *

Coordination TLC2S TLC2S Text 32

Status TLC2S TLC2S Text 56

Status OLC2S OLC2S Text 56

Status OLC2S TLC2S Text 56

BluePLI BFT OLC2S Text 32

BluePLI BFT TLC2S Text 32

BluePLI BFT ICS Text 32

BluePLI BFT BFT Text 32

Sighting HumintSensor ICS Text 48

Sighting SigintSensor ICS Text 48

Signal SurfaceRadar ICS Text 48

RedPLI ICS OLC2S Text 48

RedPLI ICS TLC2S Text 48

The SV-lOa, Table 7.13, merges the rules implemented by the various Elements of the
system architecture views. For example the ICS Element has a rule: if Blippers then sr_pers.
The rule means that when an ICS instance receives a blip_pers message it should send out a
srpers SpotReport message.

The SV-11, Figure 7.29, is the merged data model from the system architecture views. It
completes the SV-11 from Figure 7.25. In this case the various message contents are represented
by enumerated values. For example, Status can be either good or bad. The enumerated values
are stagood and stabad. In this view the Elements show the system functions that are modeled
in each.

197

Table 7.13. P2P Systems Rule Model, SV-lOa

TLC2S

if Request then Request

if Order o ord_warning then SendOrder

if Status then SendStatus

if SpotReport then PassSpotReport

ifBluPLIthenPassBpli

ifRedPLIthenSendRpli

OLC2S

if Request then Request

if Order o ordwarning then SendOrder

if Status then SendStatus

if SpotReport then PassSpotReport

ifBluPLIthenPassBpli

ifRedPLIthenSendRpli

BFT

if BluePLI <> rpli_pass the rpli

ICS

if SpotReport = sr_pers then rpli_pers

if SpotReport = sr_equip then rpliequip
ifDaJDI I — ~~i; „„or, tkon Q•„ + ,, if RedPLI = rpli_pass then empty

if Blip = blip_pers then sr_pers

if Blip = blipequip then srequip

if Signal = signal_pers then sr_pers

if Signal = signalequip then srequip

if Sighting = sighting_pers then sr_pers

if Sighting = sightingequip then sr_equip

The SV-4 describes the SOSICs. The SOSIC remain the same for each P2P SOSI
alternative. The Elements may occupy various Nodes but the interconnections between
Elements defined by the SOSIC remains the same. The activity diagrams used to model the SV-
4 implement the rule model and data model defined above. They also implement the data
exchanges defined in the SV-6 and the data types represented in the SV-11.

[98

Sighting

Enum {sightjers,
sight equip

Blip

Enum {bhp_pers,

blipequip, bhpair}

Signal

Enuni {signal air

SLgnal_grnd|

Order

Enum {ord sec, ordsup,

ord act. ord warning}

OLC2S ICS TLC2S
SendReq ProcSR SendReq

RecReq ProcSighting RecReq
RecOrder ProcessSig RecOrder

SendOrder ProcBlip SendOrder

CoordOps ProcIntel CoordOps

ProcSA SendRpli ProcSA

BFT
ScndBpli

SignalSensor

Hum
SendS

intSensor

B"»"g

SendSignal

RadarSensor

SendBlip

Figure 7.29. P2P SOSI Architecture SV-11

Figures 7.30, 7.31, 7.32, and 7.33 are the Activity diagrams that represent the SV-4s for each
SOSIC. Each partition represents a specific Element instance. Each partition contains the
Activity diagram for the Element type of the instance. Notice that there are many unused
Element interfaces in each SV-4. There is reuse of Elements among the SOSICs and each
SOSIC may use different interfaces. The combined CPN captures this reuse of Element
instances and ensures the CPN models all the interfaces connected in the SOSICs.

For example, Element6 represents the MEUS30ps instance of an OLC2S Element.
Element6 appears in every SOSIC, identified by the box.. All the interfaces used by Element6
will be modeled. Those interfaces in the OLC2S_AD that are not used by Element6 in any
SOSIC will be stubbed out in the transformed CPN.

The SV-5 merges the SV5s from the P2P system architectures. Table 7.14 is the merged SV-
5. There are four Systems that are represented. The Operational Activities are distributed across
the elements. This system view helps trace system functions modeled in the executable back to
the operational architecture representing the capability.

199

^w

f

£
a <

i
m «

)

Q
Q_ <

3 w
c c
0} CD

E E

CL r »
u U

-l
O

UJ "» V J

en
O -/:
Pn
r i

—'
m

I
'•Z

o o
f I

3 •» si -i a)
3
CO .

CO CT

/— —\ e Si
a

</>
6 . --.—

3 a: ? 0)

i o
(1) CO

§ d O
rd

e
r

E
le

m
e

n
t7

IE

U
S

3
P

la
i

•2 I
° -E8 •

d >s>
8 1

J 2
1 v
o

tr

U
HH

! s VJ

o c o
5 .8 ^ §

c/2
C/3

3 (0

a? ro c
E Q_
Q) CO 2-.

5 T "
5 -E !

C
1

.>
J
5

I

?§ ! 9 i-8
f I£ fa k
« m" « 3 s

a: . ui

a
o

1
tu
OH o
t!

8" s o
K CO

55 Q, a,
3

OO
« +-<
3 O

s
I

35
3

-a
1 a

o
un

El
\
• n .1

O
rd

e
r

m
en

t9

ro
o

p
O

p
s

O
rd

e
r

rh

C
2
S

_
A

D

at
us

O

i

U

i" * -Eg 1 wt | t-55 r^
§ d 6 m y . §

§
1 So

' § 8 UH
cJ o
K

o

8
V)
Ifl

B • !0 i_
£ 92

!
o
t 1
a
3
w
o
3

n "J r I 6 CM

E O

co "2

« o
S _ Si

O < 5
C <^ CD 3
co O •§ <,
En: ft r v)

UJ u 1 * *4 * 4i 55

I
O 1 .•«

A •>

5 v <"

o a>

t
8 (£
a-

-
r i

CL
O
CO

E CO
Z>

UJ LU
2

E
le

m
en

t 1
1

D
R

O
ps

<
T CM

u
—I

t/3
o
oo
c

• —

3

0
—
•J

s
m

O

ao
• —

r I

rs

y
53 c
w)
c ^c
c3
s-
U
d,
C

3
U u

o
3

-o
3
O u

—
3

—

C 1

t c
a) 3
HI 2

CD

g

1
§ *
U

o
_l
1-

a

U

B
CO

0)
or

>
S:
u

o

IE
o '—
<

O
173

2-
ri

-C

-

Q

"J

CO
CO

CO I

X X

- —
T.

•a ._

co CQ
X X

CO y

co a!
X X X

sl X X X X

2 = X

O Of
a. co

X

^ -2
S 2-
c c/5

X

X X

r-l
y _
c

2 <
CU CO

X X X

T3

O V5 0 5- u o
X X X X

^0
X X X

U 4-
o5 O

X X

X X

co a!
X X

y
-

2 <
2. y.

X X X

-a

o a
O O

X X X X X

-a <o

co C
X X X X

aJ O
X X X

o a X X X

"2 a
CO ci

X

s —

— -
J~

—
5

Q
u

CJ
u

3
C7

ci
>
'o
u
Ig

tin
rj

cr
U

•
c
G

pu

0
c

5—

U

5
3

c

R

co

CO
u

u
u

—
5
u
u Q
u

—
C

u
p

p.

CJ —
0 — c
u

u
—
c
u

8
u

U
i-

c
X.

c
0.

-a
1—

o
0

—
u

3

CO

5
a
E
q
y

(A
3
ca

CO
-a c
'J

CO

"a
BQ
o
3

g
c
y

a

— c
u

"E

*>_
''j

•->
•j

~c-

u
s

P

"S
CQ
u

o

u
-r. a
u

CO

3
c.
c

— c
u

3
D
c

'-J -^
c

£1

£
=i

I
—
S

c/;

1
I
o

c_

HI —
u

— c
CO

13
•a
u

(2)

~£c
Ci
u -~

Ci

"a
ci

o

—
"-J
si

0

g
•5

i—
o
o
y

u

1
o

-
o

u
cv

c
B

2

>
--J

o /.
c

CO

0

S
0

5

1
c
<

0

5

Ci

o
r i

Step 4 transforms the SOSICs from Step 3 into the executable model. This methodology
transforms the activity diagrams that represent the SOSICS into a hierarchical CPN that
represents the Elements and the behavior of the Elements. The Elements are allocated to
particular Nodes based on the SV-ls. The following diagrams show the CPN created for the
P2P_1 alternative. Figure 7.34 represents the top level CPN graph. The Nodes have been
transformed into substitution transitions that represent the subpages shown in the following six
figures. The ovals are places that represent the inputs and outputs of the Nodes. The Elements
are represented as substitution transitions and represent the Node configurations from the SV-ls.

;TLC2S10ut4 7TLP2S_ln3_1

PORT

TLC2SAD NGOHQ

2S_ln4_4

is
IOlX2S_ln1_4

Request

TARAWA

"Group 1

Figure 7.34. P2P1 SOSI Alternative Top Level CPN Representation

205

D_TLC2S(Out4_7TLp2S_lri3_1 • TLC2SAD NGOHQ

TLC2SAD NGOHQ

D_TLC2&iOut1_10LP2S_ln1.

' Request

D_TLC2WOut2_1 OLp2S_ln4_4

Out m

Figure 7.35. P2P_1 Port Node CPN

D_BFT_0(it1_101TLQ2SJpfi_9

3(Out4 /TLVS-1"3 ^ " —B'uePLI

Coordination

In quest

TLC2SAD_GrndStationOps

TLC2SAD_GrndStationOps

D_TLC2NOut 1 _90Lg2S_l i

Out •—rtequest

Figure 7.36. P2P_1 SOSI Ground Station Node CPN

0_TLC2SjOut1_1OLpS_ln1_4

In Request

D_TLC2SiOut2_10U
Status

Figure 7.37. P2P_1 SOSI Tarawa Node Colored Petri Net

206

(Out2_1lTUC2S.

Out k -Order

Figure 7.38. P2P_1 SOSI Harper's Ferry Node CPN

D OLC2S

HRSAD HumintSensor2

HRSAD_HumintSensor2

ICSAD_BLTS20ps

ICSAD BLTS20ps

TLC2SAD_BLTS30ps

TLC2SAD_BLTS30ps

dPLI D_TLC2S_[Out2
rpli

D BFT

TLC2SAD_BLTTroopOps

TLC2SAD_BLTTroopOps coordination

Figure 7.39. P2P_1 SOSI Beach Node CPN

207

bp4BFTJnlVwi bpti •
ln ~—BtuePLI

BFTAD_BLTTroopsBFT

- BFTAD_BLTTroopsBFT

_b62BFT_lnlHe2 bplt-

ln -—rjfiJePLI

BFTAD_NGOConvoyBFT

1 BFTAD_NGOConvoyBFT

_b|^6BFT_ln1}rtee bptt-
ln

BluePLI

BFTAD BLTHQBFT

-BFTAD.BLTHQBFT"

2S In6

Figure 7.40. P2P_1 SOSI Satellite Node CPN

7.6 Assessment Measure Calculations for P2P SOSI

This section shows the calculation of the SOSI performance measures for the first SOSI
alternative of the P2P SOSI Architecture. There are three alternative SOSI configurations:
figures 7.26, 7.27, and 7.28. In this example, the Elements are distributed by echelon over six
Nodes. Then Adaptability and Agility are calculated for each SOSI alternative. The example
starts with the calculation of Overlap which is the same for all SOSI alternatives in the group.

Cohesion

The CPN for each SOSI reflects the Node configuration. The Cohesion measure was made
on each resulting Node structure using a graph analysis of the CPN that represents each Node.
All Nodes are shown in the figures above. The Cohesion measurements for each Node are
summarized in Table 7.15. The Tarawa Node has 12 inputs and 2 outputs. The number of
possible connections is 24. The number of paths connecting inputs and outputs is 66 for Node
Cohesion of 2.75. The SOSI Cohesion is the average Node Cohesion with a value of 1.22.

208

Table 7.15. Cohesion SOSI P2P 1

Figure Node Name I Q X z Coh

Fig. 7.35 1.1 Port 5 l 5 3 1.0

Fig. 7.36
1,2

Ground
Station

3 1 3 "3 1.0

Fig. 7.37 1,3 Tarawa 12 2 24 66 2.75

Fig. 7.38
1,4

Harper's
Ferry

8 5 40 35 .88

Fig. 7.39 1,5 Beach 10 4 40 54 1.35

Fig. 7.40 1,6 Satellite 3 14 42 14

SOSI 1.22

Coupling

Coupling was calculated using the CPN that was created for the P2P SOSI group. The CPN
model was modified for each SOSI alternative to model the three different Node configurations.
Then the monitors were added that count the number messages that are exchanged between
Nodes. After execution of the CPN, the results of the data collected by the monitors is
summarized into the Coupling results shown in Table 7.16. The sending Nodes are the columns
and the receiving Nodes are the rows. The Port Nodes sends 15 messages to the Ground Station
Node. There are 6 Nodes which makes the number of possible Links equal to (6*5)/2 = 15
Links. The SOSI Coupling is the average of the Node Coupling with a value of 3.21.

Table 7.16. SOSI P2P1 Coupling Results

Node Port
Ground
Station

Tarawa
Harper's

Ferry
Beach Satellite Coupling

Port X 15 15/15 1

Ground
Station

20 X 50 70/15 4.67

Tarawa 30 X 30 60/15 4

Harper's
Ferry

40 30 50 X 10 10 140/15 9.33

Beach 2 X 2/15 .13

Satellite 2 X 2/15 .13

SOSI 3.21

209

Degree of Reuse and Exclusiveness

The Degree of Reuse calculations for the P2P SOSI group appear below. Tables 7.17 and
7.18 show the data and results of the Degree of Reuse and Exclusiveness calculations. The P2P
SOSI alternative group average Degree of Reuse is 2.08. This results in an Exclusiveness
measure of 0.48. That means that there reuse among the Elements of the SOSI. There is
potential for contention of Element resources, the Elements that are members of three or four
SOSIC warrant scrutiny. The highest degree of reuse is 4. This analysis highlights to developers
the potential importance of the highly reused Elements.

Table 7.17. P2P Degree of Reuse Data

1 2 3 4 5 6 7 8 9 11 14 15 100 101 102 200 300 301 400

BFT X X X X X X X X X X X X X X X

1SR X X X X X X X X X X X

GRN X X X X X X X

NGO X X X X X X X

2 4 4 2 4 3 1 3 2 2 3 2 2 1 1 1 1 1 1 1

Table 7.18. P2P Degree of Reuse and Exclusiveness Results

Degree of Reuse

Avg
Element 2.08

High
Reuse 4.00

Exclusiveness 0.48

7.7 Case Study Results

To accomplish the methodology comparisons, three SOSI alternatives (vary Node
configuration) were developed for each SOSI group. The same SOSI Architecture can describe
SOSIs that have different Element sets therefore the SOSI groups are SOSI alternatives that
share the same Element set. SOSI groups share the same SOSIC definitions. Every SOSI
alternative has the same set of end Elements and Sensor Elements but differ by the infrastructure
Elements that differentiate the architecture patterns. There are three alternative SOSI
Architecture concepts that are compared in the case study: peer-to-peer (P2P), centralized-server
(CS) and service oriented architecture (SOA). The P2P SOSI Architecture generated three SOSI
alternatives for comparison. The CS and SOS SOSI Architectures have three SOSI groups each
with three SOSI alternatives for each group for a total of nine SOSI alternatives for CS and SOA
SOSI Architectures.

210

7.8 P2P Results

This section describes the results for the P2P SOSI Architecture. Adaptability is computed
for each Node in each P2P alternative. The Node results reveal Nodes that assess low
Adaptability relative to the other Nodes. This can show SOS architects the Nodes that
significantly affecting overall SOSI Adaptability. This can assist in focusing development effort
to improve the assessed Adaptability.

Fig. 7.41 shows the Adaptability results for the P2P alternatives by node. The last result in
each graph is the SOSI Adaptability. In P2P_1 the Adaptability of the Satellite Node is
dramatically higher than the other nodes. The cohesion and coupling of that Node is much lower
than the other Nodes. The Satellite Node is shown in Fig. 7.40. The Satellite Node has high
Adaptability because it has low Coupling and low Cohesion. Changes to this Node will result in
less impact on the SOSI than changes to the Tarawa Node that has lower Adaptability.

The SOSI results also show the impact of the highly reused Elements on Adaptability. The
P2P SOSI group has three Elements that are used by all four SOSIC. The Nodes with lowest
Adaptability in P2P_1 and P2P_2, Tarawa and Harper's Ferry Node, respectively, contain one or
more of the Elements that are highly reused. The highly reused Elements are spread over more
Nodes in P2P_2 so the Adaptability scores on each Node are relatively higher that the Nodes of
the other P2P alternatives. This reinforces the claim that Degree of Reuse affects the overall
Agility of the SOSI.

Figure 7.42 shows the Adaptability results for the P2P SOSI Architecture. P2P_1 and P2P3
were partitioned by echelon. The Adaptability scores show that the grouping by echelon is not
as Adaptable as the grouping by function, P2P_2. This is illustrated by the higher overall
Adaptability of P2P2 when compared to P2P1 and P2P3.

4.00

£ 3.00

2 2.00 a,
at

< 1.00

0.00

3T60-

Port GS Tarawa Harpers Beach Sattelite P2P
Ferry

211

4.00

£ 3.00

2 2.00
c

I i-oo

P2P 2
T$7-

1.07 1.23

0.00 an
 1.29 I]ib - ill

1.31 "^38"
1.07

&
/ .S S S * f / jf *>

e?

& **
&

«?

4.00

£> 3.00

S 2.00

< 1.00

0.00

.08

GS

P2P 3

~07R~
0.17

1.28

0.33

Tarawa Harpers Sattelite P2P3
Ferry

Figure 7.41. P2P SOSI Architecture Results

1.20

1.00

£' 0.80

S 0.60 c

5 0.40

0.20

0.00

P2P

Figure 7.42. P2P SOSI Group Adaptability

212

7.9 CS Results

This section discusses the results for the CS SOSI Architecture. The CS SOSI Architecture
groups use server Elements to facilitate communication. CS1 adds a single Server Element,
while CS2 and CS3 and two and three Server Elements, respectively.

Figures 7.43, 7.44, and 7.45 show a sample of the for each SOSI group: CS1. CS2 and CS3,
respectively. The SOSI groups show the effects of high cohesion and excessive coupling. The
Nodes with very low Adaptability in the diagrams are the Nodes that contain Server Elements.
The Server Elements have a high Degree of Reuse and are very interconnected with the other
Elements in the Node which increases Cohesion. The Nodes with servers are highly coupled
because all the Elements in the SOSI are connected to the server Elements which increases the
number of Messages sent between the Node with the server and the other Nodes in the SOSI.
Nodes with higher Adaptability have fairly low cohesion thus the increased Adaptability. This
shows that the changes to any other Node than the one with the Server will result in low impact
of change on the SOSI as a whole. But, if the Server Element is moved to another Node or
otherwise incapacitated then the impact of the change on the SOSI would be significant. The
aggregate measure of Adaptability is low for each CS SOSI Group alternative. The results for
CS2 and CS3 also show the impact of the Server Elements.

For illustrative purposes. Figures 7.46 and 7.47 show the CPN for Tarawa and Harpers Ferry
Nodes. The Tarawa Node is an example of a high cohesion node and the Harper's Ferry Node is
an example of a low cohesion Node. The Tarawa Node is an example of the cohesion that is
present when a Server Element is a member of a Node. The Harper's Ferry Node is an example
of Nodes with server Elements in the CS alternatives. Notice there is little communication
directly between Elements on the Harper's Ferry Node because all the communication between
Elements is brokered by the server Element. The Elements on the Harper's Ferry Node could be
easily moved to other Nodes with much impact on the SOSI. Changing the Node with the Server
would cause significant impact on the SOSI which is illustrated by the very low Adaptability of
the Tarawa Node.

Figure 7.48 Shows the Adaptability results for all CS alternatives. Adaptability assessment is
better for the alternatives with the most server Elements. This shows the effects of reduces reuse
and reduced coupling because the SOSIs with more server Elements have lower Node Coupling
than the SOSIs with only one server. However, the Cohesion on the Nodes with servers is still
very high and reduces the overall Adaptability of the alternatives.

213

CS1 1 1-97 i.gg 2.02
£ 2-00

1 1.50

|- I.OO

< 0.50

0.00

Port GS Tarawa Harpers Beach Sattelite CS1
Ferry

Figure 7.43. CS1 SOSI Group Adaptability

CS2 1

0.05 0.07

Port GS Tarawa Harpers Beach Sattelite CS2
Ferry

Figure 7.44. CS2 SOSI Group Adaptability

USTT ~^TT

< °-50 ~O05 0M~ "0TT3- -(JIT
0.00

Port GS Tarawa Harpers Beach Sattelite CS3
Ferry

Figure 7.45. CS3 SOSI Group Adaptability

214

--)

u

-S u

U
_o
5.
E

—

O

0
"5
u
0

U
-c

t

1

in

r i

otReport

HRSAD_HumintSensor1

Figure 7.47. CS Low Cohesion Node

CS1 CS2 CS3

Figure 7.48. CS SOSI Architecture Adaptability

7.10 SOA Results

The SOA SOSI Architecture uses services to facilitate the communication between Elements
and accomplish each SOSIC. Each SOA SOSI group has different number instances of each of
five services: BFTService, ISRService, PlanningSerivce, RequestService and
CoordinationService.

The Adaptability results in Figures 7.49, 7.50, and 7.51 are all examples from each SOA
SOSI group. The Adaptability is lowest on the Nodes that contain the Service Elements.
Adaptability increases as the number of service Elements increases. This is because the
Cohesion of the Nodes is going down as the number of Service Elements increase because the
number of connections to each service decreases as the number of Service elements increases.

2.50

& 2.00

n

&

1.50

1.00

< 0.50

0.00

SOA1 1 1.97 1JT

1.50

I
 = 1. •

I 111.
Port GS Tarawa Harpers Beach Sattelite SOA 11

Ferry

Figure 7.49. SOAl_l SOSI Adaptability

2.50

,^2.00

IS 1.50

£-1.00
-a
«I0.50

0.00

.50 1.50
SOA2 1 U4

2.02

 H 0^5

I • -
Port GS Tarawa Harpers Beach Sattelite SOA21

Ferry

Figure 7.50. SOA21 SOSI Adaptability

217

2.50

& 2.00
—
-c 1.50
*-
a 1.00

-o
< 0.50

0.00

SOA3 1 2.11

1.50 1.50

HH

1.40

1.20

£ 1.00

S
a

<

0.80

0.60

0.40

0.20

0.00

Port GS Tarawa Harpers Beach Sattelite S0A3J
Ferry

Figure 7.51. SOA3_l SOSI Adaptability

k30-

SOA1 SOA2 SOA3

Figure 7.52. SOA SOSI Architecture Adaptability

7.11 Overall Results

This section compares the assessed Adaptability and Agility of the SOSI groups. Figure 7.54
shows Adaptability for all the SOSI alternatives. The results for CS are clearly lower than the
P2P and SOA alternatives.

Figure 7.55 shows the Exclusiveness results for each SOSI group. The Degree of reuse is
higher among the CS alternatives because the servers are used by every SOSIC. Degree of
Reuse is lower for the SOA alternatives because the services are members of at most two
SOSICs which is less than the Degree of Reuse for the server Elements which is four.

218

c u
B

u
ai
>>
00

m
>r,

u —
so

1.00
0.90

0.80

| 0.70

g 0.60
•I 0.50
I 0.40
w 0.30

0.20

0.10

0.00

P2P CS1 CS2 CS3 SOA1 SOA2 SOA3

Figure 7.54. Case Study Adaptability Results

 0.57
0.48 0.48 ^50 •

11^ 0-38 Q,37 • || I mill
P2P CS1 CS2 CS3 SOA1 SOA2 SOA3

Figure 7.55 Case Study Exclusiveness Results

1.40

1.20

1.00

& 0.80 • —
WD
< 0.60

0.40

0.20

0.00

0.65 TTM-

0.09
040-

0.07n 04 0.06g 03 0.04^.03

P2P CS1 CS2 CS3 SOA1 SOA2 SOA3

Figure 7.56. Case Study Agility Results

Exclusiveness for the P2P alternatives is driven by the end Elements that are members of
each SOSIC. There are three Elements that are members of all four SOSIC. This reduces the
Exclusiveness of the SOSI and reduces the Agility of the SOSI.

Agility is the final assessment measure and the results show that the P2P and SOA
alternatives assess higher for Agility than the CS alternatives. The results show that low
Exclusiveness. especially in the CS alternatives, reduces the overall Agility of the SOSI
alternatives.

Figure 7.53 has the high reuse Elements circled. Notice how these Elements connect four of
the Service Elements. The highly reused Elements participate in all the SOSICs, therefore they
are directly connected to all but one of the Service Elements and indirectly connected to the
other. This situation causes the relationship of the inputs and outputs to increase thus increasing
cohesion and reducing the Adaptability of the Node. While low compared to the other Nodes,
the level of Adaptability on the nodes with Services is still significantly higher than their CS
alternative counterparts. This is a result of the ability of the Services to be distributed across
more Nodes where a Server can occupy only one Node but may accomplish many of the tasks in
a single Element that may be accomplished by multiple Service Elements. This reduces the level
of the Cohesion between Elements on the Node and the level of Coupling between the Nodes:
the end result being higher Adaptability.

7.12 Conclusions

Step 7 presents the case study results. The ESG operates with a high level of uncertainty
based on the multiple missions that it must be able to accomplish and the diverse operating
environments that it expected to operate in. The assessment is used to illustrate the effects of

221

architecture decisions on the Adaptability and Agility of the ESG to increase the confidence of
the ESG commander that the SOSI that supports his organization can adapt to unpredicted
operating environments.

The assessment reveals to developers that the P2P and SOA alternatives are more adaptable
than the CS alternatives. The CS alternatives have low Adaptability because they contain Nodes
that have extremely high coupling and cohesion compared to the other Nodes in the SOSI
alternatives. The primary reason for the low Adaptability is the server Elements increase the
number of highly reused Elements. The server Elements and the highly reused Elements cause
extremely high coupling and cohesion on the Nodes they are assigned to dramatically reducing
the Adaptability of the SOSI alternative. Fig. 7.57 summarizes the results of the case study.
Based on the assessment, SOA and P2P have similar Adaptability measures but for different
reasons. The SOA alternatives showed higher coupling than the P2P alternatives. This result is
surprising because the conventional wisdom is that SOA implementations will have lower
coupling. The Coupling measure identifies data dependence; therefore the SOA paradigm may
reduce the dependence of an Element on a particular instance of a service but not the dependence
on the data generated by the service.

at

Medium
Adaptability

SOA

Low cs

Adaptability

High
Adaptability

P2P
Medium

Adaptability

-> Cohesion
Low # High

Figure 7.57. Summary Graphic of Case Study Results

Additionally, the P2P alternatives had higher Cohesion than the SOA alternatives. This is
because the services in the SOA alternatives diffused the interaction between the highly reused
Elements and the other Elements in SOSI. In the P2P alternatives, the highly reused elements
cause an increase in the number of paths through the Node because the highly reused Elements
are connected to more Elements than in the SOA alternatives. Furthermore, both SOA and P2P

222

offer higher Adaptability than the CS alternatives because the CS alternatives displayed much
higher Coupling and Cohesion than the P2P or SOS alternatives because the server Elements
were highly reused and connected to every other Element on the Node. This made every
Element in the SOSI dependent on a Server Element for it data. Finally, all the SOSI alternatives
possessed highly reused Elements that reduced the Exclusiveness measure and had a
corresponding effect on Agility for all the alternatives. The SOA alternatives had the best
Exclusiveness measure because the total number of Elements is increased by the number of
service Elements.

223

224

