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SECTION 1 

Executive Summary 

1.1 Objectives 

The objectives of this research effort were: (a) to develop a process for conducting effects 

based operations and design an adaptive command and control architecture for the organization 

that executes this process; and (b) to develop an executable model of the organization suitable 
for the conduct of experiments using a model-based experimental paradigm.    The technical 
approach to both problems is based on work carried out under the Adaptive Architectures for 
Command and Control (A2C2) program and constitutes a major extension of that work in several 
ways: it addresses the changes that have been initiated by DoD in the design of architectures that 
now require the inclusion of services as a key enabler for net centric operations; it introduces a 
set of metrics and an approach for evaluating systems of systems; and it applies these results to 
an Expeditionary Strike Group. The Expeditionary Strike Group functions at both the tactical and 
the operational level. The perspective of the commander and the staff of an ESG is at the 
operational level of war; that of the component commanders can be at the tactical or the 
operational level. For example, operational assessment occurs at the ESG commander's level but 
also at the Marine Expeditionary Unit (MEU) Commander's level. 

1.2 Tasks 

The proposed research effort was organized in six tasks. The first four tasks represented the 
basic research effort; Task 5 was the outreach effort, while Task 6 wass the documentation task. 

Task 1. On the basis of the definitions that articulate the Effects Based Operations (EBO) 
construct, develop a process for conducting EB planning, execution monitoring, and 
assessment. Take an architectural approach in describing the process for conducting 
Effects based Operations. Develop the Operational View of the architecture and use an 

executable model of the architecture to determine its properties. 

Task 2. Using the five stage decision maker model and the Lattice algorithm, design the family 
of organizational architectures that have embedded in them the process defined in Task 
1. Since the behavior and performance characteristics of each member of the family of 
organizations will differ, develop a characterization of these architectures so that a 
selection can be made based on mission defined parameters. 

Task 3. Construct a scenario and a mission appropriate for an ESG. Use this scenario to identity 
the selection parameters and select the organizational structures that are appropriate for 
the defined mission. Conduct computational experiments to evaluate Measures of 
Performance and Measures of Effectiveness. 



Task 4. Consider a scenario in which the organization needs to adapt. Use the morphing 
algorithm of Perdu and the evaluation approach of Handiey' to determine the adaptive 
architecture for the organization. Conduct additional computational experiments to 
measure the performance and effectiveness of the adaptive organization. 

Task 5. Continue to conduct an outreach program with Expeditionary Strike Groups and develop 

prototype tools that can be transitioned for experimental use by operators. 

Task 6. Document the research results in technical reports in accordance with ONR requirements 
and in conference and journal papers. 

In the three year period of the research project, a number of major changes in the architecture 
environment took place that led to some changes in the emphasis placed in these tasks. 
Consequently, the research tasks in the proposal were organized into different research units that 
covered the same scope of work. The results are presented in the six technical sections of this 
report. 

As naval operations become other than conventional war - whether against transnational 

terrorist threats or conducting stabilization operations - the need to broaden the focus of models 
that support effects based planning and operations has become critical. One major weakness is 
the absence of socio-cultural attributes used in the models for course of action selection and 
effects based planning. 

In Section 2, an algorithm for the design of multi-national organizations that takes into 
account cultural dimensions is presented. This is based on an extension of the work of Perdu and 
Handiey as described in Task 4. The approach was illustrated through an example based on an 
Expeditionary Strike Group (ESG) conducting a Humanitarian Assistance/Disaster Relief 

mission (Tasks 3 and 5). 

One of the key issues in Effects Based Operations is the ability to assess how effective a 
course of action would be (Task 1). The model driven experimentation process, developed 
further so that it can utilize executable models of DOD Architecture Framework compliant 
architectures, was used in conjunction with a critical experiment to explore procedures for effects 
based assessment. The results are documented in Section 3. 

In Section 4, an approach based on Influence Nets that enables analysts to evaluate a 
complex situation in which an adversary is embedded in a society from which he is receiving 
support. A layered modeling approach is described that enables analysts to examine and explain 
how actions of the military and other entities may result in desired and undesired effects, both on 
the adversary and the population as a whole. Several techniques and associated metrics are used 
for comparing contemplated courses of action. This is an extension of Task 1. 

Both developed under earlier ONR grants 



As the net centricity concept began to be integrated into the Global Information Grid, the 
Service Oriented Architecture paradigm became a key driver to architecture development. A new 
version of the DOD Architecture Framework, version 1.5, was released that enabled the use of 
services as a method for implementing required operational activities. In lieu of the original Task 
4, a Task 4' was articulated in which the architecture design methodology was re-examined and 
then extended to accommodate the Service Oriented Architecture (SOA) construct. Similarly, it 

was recognized that in order to accomplish Task 4, an approach to assess or evaluate adaptive 
architectures was needed. A major basic research effort was undertaken to address adaptability in 
the context of a System of Systems that enables adaptability. This became Task 4".     Section 5 
describes a process for creating a DoDAF 1.5 compliant architecture that includes the description 
of the SOA aspects, a mapping and a process for converting that architecture to an executable 
model, and the use of that executable model in the evaluation of logical, behavioral, and 
performance aspects of the architecture. The concepts are illustrated with a detailed Case Study. 

Sections 6 and 7 contain new work that extends substantially the scope of Task 3. A goal of 
an agile organization is the ability to adapt its structure to constantly changing operating 
environments so it can provide the multiple capabilities that enable mission accomplishment. A 
challenge for the system of systems (SOS) engineer is that while the SOS is being developed, the 
operating environment it was designed for changes. This situation causes significant uncertainty 
as to whether the SOS will meet the needs of the organization when finally deployed. To 

mitigate this uncertainty, SOS architectures need to be assessed for their ability to deploy in 
more than one configuration so that they can support adaptive organizations. Past architecture 

assessments and performance characteristics are primarily system focused and do not address the 
dynamics of the adapting organization and the consequences on the interacting constituent 
systems of the SOS. In this work, a first attempt is made to provide measures for assessing and 
comparing SOS architectures for their ability to adapt to the current operating environment and 
their ability to provide multiple capabilities concurrently. 

A SOS is defined as being composed of individual Elements that can be organized into 
Nodes. Each Element belongs to one and only one Node. Cohesion is a measure of the 
relatedness of the Elements within a Node. Coupling is a measure of the interdependence among 
the Nodes. Adaptability is defined as the ability of a SOS to respond to changes in the allocation 

of Elements to Nodes; it is computed using the concepts of Coupling and Cohesion. The Degree 
of Reuse measures the extent to which Elements support multiple capabilities. Agility measures 
the ability of the SOS to execute multiple processes concurrently and adapt to changing 
situations. Agility is a function of Adaptability and Degree of Reuse. 

The methodology provides the information required to assess the Adaptability and Agility of 
a proposed or actual SOS architecture. The process begins by identifying from the operational 
view of the architecture the capabilities that must be realized by the SOS alternatives. The SOS 
architecture describes how a particular subset of Elements organized into Nodes will realize the 
capabilities: it is the system view of the architecture. The SOS is transformed automatically into 



an executable model using Colored Petri Nets; invariant analysis and simulation are used to 
compute Coupling and Cohesion while the Degree of Reuse is computed directly for each SOS. 
These three measures are then used to compute the Adaptability and Agility measures. 
Alternative architecture patterns are then compared in terms of their adaptability and agility. 
One advantage of the approach is that it can be applied early in the systems engineering process 
to help select preferred architecture alternatives. 

In Section 7, a case study based on a complex mission for an Expeditionary Strike Group is 
presented to illustrate the application of the assessment methodology. It shows that different 
architecture types or patterns yield distinct values for the Adaptability and Agility measures that 
are consistent with the qualitative differences in the tested architectures. 



SECTION 2 

Computational Models of Multi-National Organizations 

A. H. Levis, Smriti K. Kansal, A. E. Olmez, and Ashraf M. AbuSharekh 

2.1 Introduction 
A key objective in organization design is to relate structure to behavior, An executable 

model, i.e., a formal mathematical model with characteristics that are traceable to the static 
architecture designs, is used to determine the properties of the model and its performance 
characteristics. A wealth of theoretical results on discrete event dynamical systems, in general, 
and Colored Petri nets, in particular, can be applied to the executable model. 

The problem of modeling multi-national organizations such as those found in military 

coalition operations has received renewed attention. Coalition partners may have differences in 
equipment or materiel, differences in command structures, differences in constraints under which 

they can operate, and, last but not least, differences in culture. The differences in equipment and 
in operational constraints can be handled easily in the existing modeling framework. Differences 
in command structures require some additional work to express them in structural and 
quantitative ways. The real challenge is how to express cultural differences in these, primarily 
mechanistic, models of organizations. 

This work focuses on the ability to introduce attributes that characterize cultural differences 
into the organization design and use simulation to see whether these parameters result in 
significant changes in structure. The objective, therefore, is to relate performance to structural 
features but add attributes that characterize cultural differences. Specifically, the attributes or 
dimensions defined by Hofstede (2001) are introduced in the design process in the form of 
constraints on the allowable interactions within the organization. In Section 2.2, the modeling 

approach is described briefly since it has been documented extensively in the literature. In 
Section 2.3, the Hofstede dimensions are introduced and then applied to the organization design 
algorithm. In Section 2.4, an illustrative example is presented, followed by conclusions. 

2.2 The Decision Maker Model and Organizational Design 
The five-stage interacting decision maker model (Levis, 1993) had its roots in the 

investigation of tactical decision making in a distributed environment with efforts to understand 
cogtive workload, task allocation, and decision-making. This model has been used for fixed as 
well as variable structure organizations (Perdu and Levis, 1998). The five-stage decision maker 
(DM) model is shown in Figure 2.1. 



The DM receives signals from the external environment or from another decision maker. The 

Situation Assessment (SA) stage represents the processing of the incoming signal to obtain the 

assessed situation that may be shared with other DMs. The decision maker can also receive 
situation assessment signals from other decision makers within the organization; these signals are 
then fused together in the Information Fusion (IF) stage. The fused information is then processed 
at the Task Processing (TP) stage to produce a signal that contains the task information necessary 
to select a response. Command input from superiors is also received. The Command 
Interpretation (CI) stage then combines internal and external guidance to produce the input to the 
Response Selection (RS) stage. The RS stage then produces the output to the environment or to 
other organization members.   The key feature of the model is the explicit depiction of the 
interactions with other organization members and the environment. 

Information 
Sharing 

Command 
Input 

Information 
Sharing 

Results 
Sharing 

Figure 2.1:  Model of the Five-Stage Decision Maker 

These interactions follow a set of rules designed to avoid deadlock in the information flow. 
The representation of the interactions can be aggregated into two vectors e and s, representing 
interactions with the external environment and four matrices F, G, H and C specifying intra- 
organizational interactions (Fig. 2.2). 

o . SA TP 

ofofoto 

c>+<>4<>l<>k>i-<3 
SA IF TP CI RS 

Figure 2.2: One-Sided Interactions Between DM, and DM, 

The analytical description of the possible interactions between organization members forms 
the basis for an algorithm that generates all the architectures that meet some structural constraints 
as well as application-specific constraints that may be present. The most important constraint 
addresses the connectivity of the organization - it eliminates information structures that do not 
represent a single integrated organization. 



Remy and Levis (1988) developed an algorithm, named the Lattice algorithm, that 
determines the maximal and minimal elements of the set of designs that satisfy all the 
constraints; the entire set can then be generated from its boundaries. The algorithm is based on 
the notion of a simple path - a directed path without loops from the source to the sink. Feasible 
architectures are obtained as unions of simple paths. Consequently, they constitute a partially 
ordered set. The algorithm receives as input the matrix tuple of dimension n {e, s, F, G, H, C}, 

where n is the number of organization members. A set of four different structural constraints is 
formulated that applies to all organizational structures being considered. 

Rl    A directed path should exist from the source to every node of the structure and from 
every node to the sink. 

R2    The organizational structures should be acyclical. 

R3    There can be at most one link from the RS stage of a DM to each one of the other 
DMs; i.e., for each i and j, only one element of the triplet {Gy, Hy, Cy} can be 
nonzero. 

R4    Information fusion can take place only at the IF and CI stages. Consequently, the SA 

and RS stages of each DM can have only one input. 

To introduce user-defined constraints that will reflect the specific application the 
organization designer is considering, appropriate Os and Is can be placed in the arrays {e. s, F. G. 
H, C}. The other elements will remain unspecified and will constitute the degrees of freedom of 
the design. 

A feasible structure is one that satisfies both the structural and user-defined constraints. A 
maximal element of the set of all feasible structures is called a maximally connected organization 
(MAXO). Similarly, a minimal element is called a minimally connected organization (MINO). 
The design problem is to determine the set of all feasible structures corresponding to a specific 
set of constraints. The Lattice algorithm generates, once the set of constraints is specified, the 
MINOs and the MAXOs that characterize the set of all organizational structures that satisfy the 
requirements. This methodology provides the designer of organizational structures with a 
rational way to handle a problem whose combinatorial complexity is very large.   Having 

developed a set of organizational structures that meets the set of logical constraints and is, by 
construction, free of structural problems, we can now address the problem of incorporating 
attributes that characterize cultures. 

2.3 Modeling Cultural Attributes 
Hofstede (2001) distinguishes dimensions of culture that can be used as an instrument to 

make comparisons between cultures and to cluster cultures according to behavioral 
characteristics. Culture is not a characteristic of individuals; it encompasses a number of people 
who have been conditioned by the same education and life experience. Culture, whether it is 
based on nationality or group membership such as the military, is what the individual members 



of a group have in common (De Mooij, 1998). To compare cultures, Hofstede originally 
differentiated them according to four dimensions: uncertainty avoidance (UAI), power distance 
(PDI), masculinity-femininity (MAS), and individualism-collectivism (IND). The dimensions 

were measured on an index scale from 0 to 100, although some countries may have a score 
below 0 or above 100 because they were measured after the original scale was defined in the 

70's. The hypothesis here is that these dimensions may affect the interconnections between 
decision makers working together in an organization. Organizations with low power distance 
values are likely to have decentralized decision making characterized by a flatter organizational 
structure; personnel at all levels can make decisions when unexpected events occur with no time 
for additional input from above. In organizations with low scores on uncertainty avoidance, 
procedures will be less formal and plans will be continually reassessed for needed modifications. 

The trade-off between time and accuracy can be used to study the affect of both power 
distance and uncertainty avoidance (Handley and Levis, 2001). Messages exchanged between 
decision makers can be classified according to three different message types: information, 
control, and command ones. Information messages include inputs, outputs, and data; control 
messages are the enabling signals for the initiation of a subtask; and command messages affect 
the choice of subtask or of response. The messages exchanged between decision makers can be 
classified according to these different types and each message type can be associated with a 
subjective parameter. For example, uncertainty avoidance can be associated with control signals 
that are used to initiate subtasks according to a standard operating procedure. A decision maker 
with high uncertainty avoidance is likely to follow the procedure regardless of circumstances, 
while a decision maker with low uncertainty avoidance may be more innovative. Power distance 

can be associated with command signals. A command center with a high power distance value 
will respond promptly to a command signal, while in a command center with a low power 
distance value this signal may not always be acted on or be present. 

Cultural constraints help a designer determine classes of similar feasible organizations by 
setting specific conditions that limit the number of various types of interactions between decision 
makers. Cultural constraints are represented as interactional constraint statements. An approach 
for determining the values of these constraints has been developed by Olmez (2006). The 
constraints are obtained using a linear regression on the four dimensions to determine the change 

in the range of the number of each type of interaction that is allowed. 

dY = c + a(PDI) + P(UAI) + y(MAS) + 8 (IND) 

where Y is #F or #G or #H or #C 

Example:   #F < 2, #G = 0,  1<#H<3, #C = 3 

C-Lattice Algorithm. This is an extension of the Lattice algorithm that allows cultural 
constraints to be imposed as additional structural constraints, R5-R8, on the solution space. For 
the cultural constraint example given above, they become: 

R5: The number of F type interactions must be between 0 and 2 



R6: The number of G type interactions must equal 0 

R7: The number of H type interactions must lie between 1 and 3 

R8: The number of C type interactions must equal 3 

The flowchart in Fig. 2.3 explains the generation of the culturally constrained solution. 
MAXOs and MINOs are generated using the same algorithm described in Remy and Levis 
(1988). The "Build Lattices'' step checks if a MINO is contained within a MAXO. If it is, then 

the MINO is connected to that MAXO and forms part of a lattice. For each lattice, we check the 
MINO to see if it violates the cultural constraints. For example, if the number of F type 

interactions in the MINO is two and cultural constraint allows only one, then the MINO does not 
satisfy the cultural attributes and since the MINO is the minimally connected structure in that 
lattice, no other structure will satisfy the constraints. Hence the lattice can be discarded. If the 
MINO does pass the boundary test, then simple paths are added to it to satisfy the cultural 
constraints R5 to R8. The corresponding minimally connected organization(s) is now called the 
C-MINO(s) (culturally bound MINO). Similarly, by subtracting simple paths from the MAXO, 
C-MAXO(s) can be reached. The step "Build C-Lattices" connects the C-MINOs to the C- 
MAXOs. The advantage of using this approach is that the designer does not have to know the 

cultural attributes at the start of the analysis. He can add them at a later stage. This also enables 
him to study the same organization structure under different cultures, which will be useful in our 

coalition scenario. 

Get MINOs and MAXOs 

Build Lattices 

For each Lattice 

Build C -Lattices 

Figure 2.3: Flowchart for Culturally Constrained Solution 

2.4 Coalition Modeling Using CAESAR III 
The proposed computational approach for the design of coalition operations is illustrated 

using a hypothetical example in which an emergency situation in an island nation requires rapid 



humanitarian assistance and disaster relief as well as securing military assets. The alternative 
architecture designs and the associated simulations to evaluate performance were carried out 
using a new application called CAESAR III developed in System Architectures Lab at GMU. 

The scenario depicts a situation in which anarchy has risen on an island due to a recent 
earthquake that caused substantial damage. The infrastructure and many of the government 
buildings are destroyed in the island's capital. The US maintains a ground station that receives 

data from space assets. It is concerned about the rising tensions, as there has been opposition to 
its presence on the island. As a result, the US decides to send an Expeditionary Strike Group 

(ESG) to the island to provide timely Humanitarian Aid/ Disaster Relief (HA/DR) to three 
sectors of the island and to counteract the effects of any hostile attacks which may impede the 
operations of the HA/DR mission and the security of the ground station. As the ESG is away for 
the first critical day of the operation, countries A and B offer help to support the mission and 
agree to take part in a Coalition Force that would be commanded remotely by the ESG 
commander. Since they are close to the island, both countries can deploy elements in a matter of 
hours, while the ESG rushes to the island. 

A team of five units carries out the HA/DR mission. The team is organized in the divisional 

structure and each unit under the team has its sub-organizations and staff to perform the tasks 
allocated to it. The five units are: (1) ESGC: Commander; (2) MEUC: Commander of the Marine 
Expeditionary Unit; (3) ACE: Air Combat Element with its Commander and sub-organizations; 
(4) GCE: Ground Combat Element with its Commander and sub-organizations; and (5) CSSE: 
Combat Service Support Element with its Commander and sub-organizations. 

It is assumed that country A can provide support as ACE, GCE and CSSE while country B 
can only provide support as GCE and CSSE. The roles of ESGC and MEUC remain with the US. 

The countries are able to provide rapid assistance in coordination with each other and the design 
question becomes the allocation of different tasks to partners in this ad-hoc coalition. 

This is a multi-level design problem in which interactions between different decision making 
units need to be determined both at the higher level (Level-1) as well as at the lower level 
(Level-2). Level-1 interactions are interactions between culturally homogenous subunits, while 
the Level-2 problem consists of designing the internal structure of these homogenous subunits on 
the basis of a defined set of interactional constraints and culture. The structure of the ESG 
imposes user constraints to design the Level-1 organization. Figure 2.4 shows the block diagram 
of this organization as designed in CAESAR III; the matrices describing the interactions are 
shown below. 

Figure 2.5 shows the result of running the lattice algorithm on level-1 organization. The 
solution space contains one MINO, Fig. 2.6, and one MAXO, Fig. 2.7. The designer can pick a 
structure from this space and use it to design the sub-organizations at level-2. 
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Figure 2.4: Level-1 Organizational Block Diagram. 
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Figure 2.5: Solution Space For Level-1 Organization Design as Seen in CAESAR 
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Figure 2.6: MINO of Level-1 Design 

Level-1 design is free of cultural constraints. However Level-2 design uses the C-Lattice 
algorithm to include cultural attributes to form the various coalition options. The sub- 
organizations of ACE, GCE and CSSE are designed using CAESAR III. Figures 8, 9 and 10 
show the respective block diagrams along with the matrices specifying the user constraints. Since 
the US always performs the roles of ESGC and MEUC, these sub-organizations are not 
decomposed further. 

1 1 
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Figure 2.7: MAXO of Level-1 Design 
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Figure 2.9: Block Diagram for GCE 

Table 2.1 gives the Hofstede's scores for US, Country A and Country B. Using a multiple linear 
regression model, these scores are converted into limits to be placed on allowable interactions 
based on culture. These are imposed as additional structural constraints on the solution space of 
the sub-organizations. The cultural constraints for the three sub-organizations are shown in tables 
2.2, 2.3 and 2.4. Maximum indicates the limit placed on the number of interactions by user 
constraints. 
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Figure 2.10: Block Diagram for CSSE 

Table 2.1. Hofstede's Scores for the Three Countries 

Country PDI IND MAS UAI 
US 
A 
B 

40 
38 
66 

91 
80 
37 

62 
14 
45 

46 
53 
85 

Table 2.2 . Cultural Constraints Corresponding to ACE 

Country #F #G #H #C 
Maximum 0<F<4 0 0<H<3 2<C<5 
US 3<F<4 0 2<H<3 3 
A 2 0 2<H<3 3 
U 2 0 1 4<C<5 

Table 2.3. Cultural Constraints Corresponding to GCE 

Country #F #G #H #C 
Maximum 0 0<G<3 0<H<3 0<C<3 
US 0 2 2<H<3 2 
A (I 2 2<H<3 1 
B 0 2<G<3 2 2<C<3 

Table 2.4. Cultural Constraints Corresponding to CSSE 

Country #F #G #H #C 
Maximum 1<F<3 • 0<H<4 3<C<5 
US 2<F<4 [] 3<H<4 • 
D D [] 3<H<4 D 
• D D 4<C<5 

Using the C-Lattice algorithm, the solution space for each sub-organization is computed for 
each culture and a suitable structure is selected by the user. These structures are then used to 
form the different coalition options and analyze the performance. In view of the limited space, 
the complete solution spaces are not shown here. Figures 2.11-12.3 show the structures selected 
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by the user for each country for CSSE. A similar approach can be use to select different 
structures to be used for ACE and GCE. 
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Figure 2.11: GCE Structure Selected for US 
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Figure 2.12: GCE Structure Selected for Country A 
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Figure 2.13: GCE Structure Selected for Country B 

Once the structure is selected, CAESAR III exports it as a Colored Petri net to CPN Tools 
where it can be simulated to analyze performance. For the given scenario, based on the 
availability of support from the two countries, eight coalition options are possible, excluding the 
homogeneous option of all US. The five sub-organizations are combined together using Level-1 
M1NO and the eight options were simulated to study performance in terms of tasks served. The 
following assumptions were made. Each process (transition) needs 50 units of processing time. 
Each additional incoming link increases this time by 50 units. The reasoning is that the additional 
input(s) will require more processing. Hence, structures that have more interactions will take 
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more time to process the tasks, which will affect the overall performance. Figure 2.14 shows the 
results of this analysis for all combinations. The x-axis shows the percentage of tasks un-served. 

Based on these results, the US-US-US-B-A coalition structure performs best. Most options 
with country B in the CSSE role perform badly. This is because country B needs a high number 
of command relationships and the structure of CSSE allows for this to occur, thereby increasing 
the processing delay. User constraints on GCE allow for very similar cultural constraints for all 
countries; changing the ordering in this role does not change the performance very much. Similar 
results were obtained when the coalition options were simulated using a Level-1 MAXO 
organization. 

us-us-us-us-us 1 

US-US-US-B-B 

US-US-A-B-B 

1 

US-US-US-A-B 

1 

1 

US-US-US-A-A 

• Series! 

Figure 2.14: Percent of tasks un-served for coalition options. 

2.5 Conclusion 
A previously developed methodology for the computational design of information processing 

and decision making organizations has been enhanced to include cultural constraints that affect 
the choice of organizational structures. While the Hofstede cultural dimensions have been used, 
other cultural metrics can be used to derive the cultural constrains. A simple example illustrates 
the approach for designing coalition organizations and analyzing their performance. The results 
indicate that culture does affect the structure and working of organizations thereby affecting the 
overall performance. This could aid in the allocation of different tasks to partners in an ad-hoc 
coalition. 
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SECTION 3 

Using Architectures to Support Experimentation 

Lee W. Wagenhah and Alexander H. Levis 

3.1 Introduction 

As new technology and new environments for military operations have evolved over the past 
10 years, DoD has been attempting to formulate, evaluate, and implement new command and 
control concepts. The notion is to build plans based on the effects that will lead to 
accomplishing the goals and objectives and then to link actions to those effects through known or 
plausible cause and effect relationships. This shifts the emphasis from focusing on targets to 
higher level effects that actions that impact those targets may have. Effects Based Operations 
(HBO) has evolved as the new concept for planning and executing operations. Evolving with 
this concept are the techniques and procedures needed to develop courses of action and the 
associated detailed plans. Once plans are made and execution starts, it is necessary to 
continually assess how well the plans are working. With EBO, this is more than just determining 
whether targets have been affected as planned (e.g. checking off targets serviced), but also 
collecting and assessing information to see if the actions are indeed leading to the overall desired 
effects. The difficulty is that Effects Based Assessment (EBA), particularly at the higher 
operational level, requires a different approach than the one that has been used in the past, and 
the techniques and procedures, along with the supporting information processing systems, have 
not been established. This has created a need to provide a new capability for command and 
control, but the concepts for supporting EBA at the operational level are not in place. In short, 
the problem is complex and unprecedented, and the needs of the user are ill structured. 

In a concurrent project1, the System Architectures Laboratory participated in a critical 
experiment (CE) in which a spiral approach had been selected consisting of a repetitive sequence 
of development and experimentation to evolve the concepts, techniques, and procedures along 
with the systems that will support them for Effects Based Assessment (EBA). 

Because the needs of the users are ill structured and because DoD has mandated the use ol' 
architectures, an architecture based approach was adopted for the critical experiment. 
Furthermore, a model driven experimentation technique was selected to conduct the various 
spirals of the experiment. 

This section describes the implementation of the architecture-based model-driven 
experimentation.  Specifically, the section illustrates how an executable model of an architecture 

AFRL/RI's Dynamic Air and Space Execution and Assessment (DASEA) 
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has been used to guide the design of both computational and human-in-the-loop experiments to 
test and verify a new concept and supporting processes and systems for Effects Based 
Assessment A repetitive, or spiral, approach was used to test and refine, at increasing levels of 
specificity, the proposed processes that will be used by operators and the supporting systems to 
conduct the assessments. Since initially there was no operational concept for operational level 
EBA, one had to be postulated. Then this initial concept was refined using a DOD Architecture 
Framework (DODAF) compliant Operational View (OV) of the operational concept. The OV 
was used to design a human-based table-top experiment to examine and evaluate the processes 
defined in the architecture. Lessons learned were used to refine the architecture. An initial 
Systems View of the architecture was created based on the OV to help guide the design and 
development of systems that would support the processes defined in the OV. This systems view 
also guides the design of the next spiral that broadens the experiment with the use of humans and 
the system. 

The rest of the section is organized as follows. Section 3.2 provides the highlights of the 
model driven experimentation process showing the relationships between the architecture, 
executable models and model-based computational and human-based experimentation. Section 
3.3 provides the detail of the first spiral that followed the process including the development of 
the operational concept, its refinement using the DODAF compliant architecture views, and the 
development of the discrete event executable model of the architecture views. It also describes 
how the executable model was used to conduct computational experiments and to verify the 
correctness of the architecture and thus of the new concepts. Section 3.4 summarizes the 
findings of the architecture-based model driven experimentation approach. 

3.2 Architecture-Based Model Driven Experimentation 

Model Driven Experimentation (MDE) is a concept that has evolved over the past 20 years 
[Levis and Vaughan, 1999]. For the last 15 years, the GMU System Architectures Lab has 
participated in and refined MDE with a research team set up by ONR consisting of the Naval 
Postgraduate School and several universities [Handley et al., 1999]. Nine experiments have been 
conducted (both human-in-the-loop and computational ones) using MDE. The focus of these 
experiments has been on the design of command and control organizations and the understanding 
of how different organizational structures can effect behavior and performance, particularly in a 
changing environment where the ability to adapt is important. 

Within the Critical Experiment project, the concept for organizational experimentation was 
expanded as follows: Given (1) an operational concept, a process for carrying out the 
operational concept, an organizational design, and a system that supports that organization in 
carrying out the process, and (2) a set of hypotheses or propositions about those items that need 
to be evaluated, develop a rigorous process to design and conduct experiments that that will test 
the hypotheses and use the results of the experiments to refine the operational concept, process, 
organization, and system. The unprecedented, complex, and ill-structured nature of the problem 
led to the conclusion that an architecture modeling paradigm used in conjunction with the MDH 
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that had been developed for organizational experimentation would be appropriate. Using the 
DODAF views facilitates the experimental design. The OV provides a rigorous framework for 
describing the operational concept, the organizational structure, and the operational process. 
Executable models can be derived from the OV products and used to conduct computational 
experiments focusing on the proposed process and organizational structure. The DODAF 
Systems View (SV) describes the arrangement and interconnections of a set of systems and their 
components that can support the processes and organizations described in the Operational View. 
Executable models of the Systems View also can be derived from the SV products and evaluated 
experimentally. The SV can then be used to drive the design of the actual systems that will 
support the process that will be used in the experiments. Figure 3.1 shows the basic process. 

Figure 3.1: Architecture Based MDE Process 

The process starts with the formulation of questions, propositions, or hypotheses to be 
examined in the experiment. In the case of DASEA, the initial hypothesis was that it is possible 
to develop a process that would enable useful operational level assessment of progress in the 
execution of an Effects Based Plan. Next, an operational concept is needed to support the 
development of an architecture. The hypothesis and the operational concept then are used to help 
create an initial architecture model of the process or system that will be the subject of the 
experiment. A critical element of this step is the determination of the boundary between the 
process and system that are being used and the environment. The environment contains the 
things that interact with the process, i.e., the sources of inputs and the sinks that receive the 
outputs. The understanding of these interactions will be needed to develop the scenario that will 
be used to conduct the experiment and collect the data needed to answer the questions or test the 
hypothesis. Once the model of the architecture has been completed, it can be converted into an 
executable model. The procedures for doing this have been described in [Wagenhals et al., 2000 
and 2003]. Once the executable model is created, it can be used to verify the architecture, 
detecting errors and flaws in the architecture design (Loopl). These findings also can be used to 
refine the scenarios that will be used in the experiments. After the architecture and the scenario 
have been verified, the executable model can be used in a series of computational experiments 
generating preliminary analyses about the hypotheses. These analyses may result in changes and 
improvements to the executable model (Loop 2). The final results may also result in a 
refinement of the architecture which may be used to drive the design of systems that support the 
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processes (Loop 3). The primary reason for developing the model, both architecture and 
executable, is to "tune" the experiment before it is conducted. In general, these experiments are 
conducted with human subjects (operators). These experiments using humans can be much more 
realistic than those done computationally, but they can be quite costly to conduct. Usually, data 
about a limited number of vignettes of the overall scenario can be obtained. In many cases, the 
actual experiment will deviate from the planned experiment due to changes in personnel, 
equipment, or other factors. Despite the limited nature of the human-based experiment, the 
results can be used to test the accuracy and predictability of the executable model (Loop 4). This 
is done by setting the conditions that were actually used in the experiment and comparing the 
executable results with those of the experiment. Changes may be necessary in the executable 
model and such changes should be reflected in the architecture (Loop 5). Once the executable 
model has been verified, it can be used to explore computationally many other vignettes. The 
data collected from both the human-based and the model-based experiments is analyzed to 
generate the answers to the questions and to address the hypotheses. When used in a spiral 
approach, the verified architecture and executable model along with the results of the entire 
spiral are used to start the next spiral in which the MDE process is repeated. 

3.3 Application of Model Driven Experimentation 

A plan composed of eight steps was developed for the first spiral of the architecture-based 
model-driven critical experiment. 

1. Postulate an operational concept for Operational Level Effects Based Assessment; 
develop an understanding of the factors and unknowns involved. 

2. Use this understanding to define the hypothesis to be evaluated in the spiral. 

3. Refine the operational concept using an architecture description. The DODAF 1.0 
Operational View was be used. 

4. Convert the operational view of the architecture into an executable model to verify the 
architecture. 

5. Develop, conduct, and analyze a table top experiment based on the operational concept 
and its architecture. 

6. Refine the architecture and its executable model based on the findings from step 5. 

7. Plan, conduct, and analyze a computational experiment using the executable model to 
verify the soundness and completeness of the architecture description. Adjust the 
architecture description based on the findings. 

8. Develop an initial Systems View of the architecture that is congruent to the Operational 
View and use it to guide the design of technology and systems that will be used in the 
next spiral. 
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The first step in setting up the experiment was to define an operational concept for effects 
based assessment capability that is the subject of the experiment. This included defining the 
boundary between the capability under investigation and the environment in which that 
capability is used. The capability being investigated is the ability to dynamically conduct 
operational level EBA based on actions and activities that have taken place, so-called post 
execution EBA. It is assumed that an Effects Based Plan (EBP) has been developed that is 
designed to achieve some operational level objectives based on attainment of the commander's 
intent. The plan is based on an analysis that shows that accomplishing a set of tactical tasks and 
actions will cause direct effects to occur, and these in turn will cause the higher level effects to 
be achieved. The achievement of the higher level effects will result is the attainment of the 
commander's operational level objectives. The desired EBA capability uses the EBP and an 
incoming stream of data and reports about the execution of that plan and observations about 
effects to continually determine progress being made toward achieving the Air Component 
commander's intent. Note that in this operational concept the process of creating and selecting 
the EBP and the execution of that plan are outside the scope of the EBA capability. Those two 
activities continually provide inputs to the capability and the capability in turn dynamically 
assesses the outcomes (or effects) of executed air & space operations with regards to the 
attainment, or progress towards attainment, of commander's intent. 

Once the operational concept was defined, Step 2 in designing the experiment was to 
establish the experimental hypothesis or proposition to be evaluated. For the first spiral the 
hypothesis was: Given an effects-based plan that meets commander's intent, data relating to 
execution outcomes, and an operational-level, post-execution EBA process; it is possible to 
produce an assessment of the progress towards attaining commander's intent. Note that this is a 
rather abstract hypothesis. We wanted to first show that the operational concept contained the 
process and data flows that could be used to create the operational level EBA before exploring 
the quality and timeliness of that EBA. The latter concerns will be explored only after the first 
spiral successfully shows that the operational concept and the process derived there from 
worked. 

In Step 3, the operational concept needed to be refined, and this was done by creating an 
architecture description of the operational concept. Because this is a DoD effort, the architecture 
was created in compliance with the DODAF 1.0. At this point, only an Operational View was 
developed. The OV is a description of the tasks and activities, operational elements, and 
information exchanges required to accomplish DoD missions. It conveys these elements using a 
combination of products including activity, data, and rule models, dynamic descriptions, 
organization descriptions, and descriptions that identify the activities performed by 
organizational elements and the information that is exchanged between those elements to carry 
out the operational concept. The structured analysis methodology was chosen over the object 
oriented approach because of the familiarity with this methodology by the program manager. 
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One of the key concepts described in the OV is the set of activities and their relationships. 
This concept maps directly to the structured analysis approach which is based on functional (or 
activity) decomposition. One was created using four levels of decomposition. The first level 
was the context level with the overall activity being "Conduct Operational Level Effects Based 
Assessment". It was decomposed into three activities, Al, Process Incoming Information, A2, 
Assess Progress Toward Objectives, and A3, Generate Recommendations and Reports. Each of 
these was further decomposed to provide more detail into the activities that would be used to 
carry out the operational concept. 

An Activity Model (OV-5) was created based on the functional decomposition using the 
IDEFO formalism. The analysis started with an External System Diagram that shows the system 
(in this case the overall EBA process) in the context of the systems (in this case the 
organizations) that it interacts with (Figure 3.2). It helped define the system boundary. Note the 
explicit expression of the purpose and the viewpoint on the diagram. 

The AO page (first level of decomposition) is shown in Figure 3.3. The main inputs (the 
various messages and data that will be received giving progress reports and observations about 
effects) are shown coming into Al. The controls are the Effects Based Plan (EBP), System of 
System Models (SOS Models), EBA Standard Operating Procedures, and Command Guidance. 
The process produces the four types of output products, the three shown exiting A3 and the 
Requests for Information (RFI) from Al and A2. In addition to the Activity Model, other OV 
products were produced including the Operational Concept Graphic, the Operational Node 
Connectivity Description, and the Operational Event Trace Diagram. The analysis that led to 
these architecture artifacts yielded a much more detailed description of the operational concept. 

In Step 4, the operational architecture view description was converted to an executable model 
of the OV using the procedures described in Wagenhals et al., [2000]. The Colored Petri Net 
methodology implemented in CPNTools® Version 1.4 was used [www.daimi.au.dk]. Colored 
Petri Nets are the most general form of discrete event dynamical models. They have a graph 
theoretic basis which allows the analysis of properties of the model and they are executable, so 
that they can be used in simulation. Figure 3.4 shows the CPNTools® model page that 
corresponds to the IDEFO AO page of Figure 3.3. Note the correspondence of CPN model to the 
IDEFO model: the three activity boxes of the IDEFO are transformed into the transitions 
represented as boxes in the CPN model and each ICOM flow is modeled as an arc leaving the 
output transition and connect to a place where tokens that represent the output data can reside 
and then an arc going from that place to the appropriate receiving transition. The transitions on 
the page are substitution transitions meaning that they are decomposed on a lower level page. 
Thus there is a one to one correspondence between the pages of the IDEFO model and the CPN 
model. 
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Running this executable model in simulation with the various inputs verified that the process 
described in the Operational View indeed could produce the EBA products described in the 
Activity Model of the OV. This gave indication that the IDEFO activity model was sound. This 
was an initial iteration of Loop 1 of Figure 1. However, the model was still at a high level of 
abstraction, and it was unknown what would happen if a team of assessors actually followed the 
operational concept. 
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Step 5 was to design a human-based experiment in which a small group of subject matter 
experts attempted to follow the process defined by the architecture using real input and control 
artifacts. To do this, a scenario was created including an EBP, a SOS Model, and a set of input 
messages. Particular attention was paid to the latter to evaluate the process through a set of 
progressively more complicated inputs. Three separate "threads" were designed, each expected 
to take about 4 hours to complete. All three threads used the same EBP and SOS Model, and 
each thread had enough content to allow the humans to be able to produce at least some of the 
output products, especially updates on the progress toward achieving commander's intent. The 
first thread consisted of at set of messages whose content unambiguously matched the expected 
information found in the EBP and the SOS Model. The challenge was to match the content of 
the input information to the appropriate elements of the EBP and then produce the update to the 
assessment. The second thread contained the same inputs as the first thread, along with 
additional inputs that changed or updated the input data from the first thread. The goal was to 
create the situation where the humans had to aggregate or combine results to produce the output 
products. The third thread contained the same inputs as the first thread, but also contained 
additional inputs that did not exactly match the expected information contained in the EBP. 
This, the most challenging thread, was designed to determine how the humans would resolve 
such ambiguities. 
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This human experiment took several weeks to design, three days to conduct, and several 
more days to analyze. Many comments and observations were made by the subject matter 
experts including suggestions for adjustments to the process that had been defined in the 
architecture. With the changes that were made on the fly during the threads, the humans were 
able to produce the key outputs including updates to the progress being made toward achieving 
commander's intent. Thus this initial experiment demonstrated that it was possible to produce an 
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operational level EBA given the EBP, SOS Model, the process, and various sets of input 
information which was the hypothesis being evaluated. 

In Step 6 the results of this human based experiment and the observations and suggestions for 
changes were used to refine the architecture and then the executable model (see Loops 3 &4 of 
Figure 3.1). In this case, the refinements were small. 

The human based experiment had provided valuable insight into the operational concept and 
the process defined in the architecture and resulted in some refinements of that architecture. Due 
to the time limitations, only a few threads through the process were evaluated. Therefore in Step 
7 of the spiral the refined executable model was used to conduct a computational experiment 
over an entire range of inputs and thereby verify that the process and its OV description were 
sound and complete. The Colored Petri Net executable, synthesized from the refined 
architecture description, was used as the experimental test bed for this computational experiment. 
Two types of evaluation were accomplished with the executable model; (1) simulation using 
each and every legitimate type of input to review the process flow through the model and 
determining the types of output produced for each input and (2) state space analysis to identify 
all the combinations of sequences through the process and to identify potentially erroneous ones. 

The focus of the computational experiment was on the input data sets. An analysis of the 
content of the input data indicated that there were a total of 180 valid types of inputs to this 
executable model. Each input represented a particular set of characteristics that can be contained 
in the data in any incoming message. It was decided to examine all 180 possible inputs using 
simulation. Multiple runs were made for each of the 180 legitimate input data types. 
Approximately 600 simulation runs were made with each run taking less than two seconds to 
complete. 

As expected many of the input types could result in more that one set of output products. 
This is because the process allows for choices to be made as the process unfolds. Different 
choices result in different paths through the process and potentially different outputs for the same 
type of input. Overall, the simulation runs confirmed an analysis of the model indicating there 
are 11 different types of output products that can be generated depending on the nature of the 
input. These outputs include measures of effectiveness comparisons, progress toward 
commander's intent updates, target system analyses, EBP change recommendations, and various 
briefings associated with these output. Most inputs generated one or more of these outputs. A 
review of each input and the resultant output showed that in the final version of the executable, 
every legitimate input produced the desired outputs. 

While each simulation run of the executable model shows particular sequence or trajectory 
of processing for a given input, state space analysis shows all possible trajectories for a given 
input. State space analysis [Kristensen et al., 1998] provides a detailed look at of all possible 
sequences of states that can occur given a specific input. It can determine several important 
properties of the state space of a CPN model given a specific initial state. These include 
statistics on the state space such as the total number of states and transitions between states, and 
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liveness properties such as the number and identify of final states, and the number and identity of 
CPN transitions that never fired in any sequence. The analysis determines boundedness 
properties that identify the minimum and maximum number and type of tokens that occur in each 
place. It also captures the marking (distribution of tokens) for any state including the final states 
so that these can be examined. 

State Space analysis is used to see if it is possible for an input to generate an undesired 
sequence or output. Because State Space analysis can take more time than running simulations, 
there was concern that it would take too long to conduct State Space analysis on all 180 inputs. 
Fortunately, by reviewing the process using simulation, it was discovered that it was possible to 
group the inputs into sets that would result in the same behavior. This meant that only one 
example from each group needed to be examined using the state space analysis to check the 
complete behavior of the architecture. Five groups were identified. For groups 1 and 2 (the 
least complex) CPNTools® was able to generate completed State Spaces with no unexpected 
final states. The first group had a single final state and the second two final states. Examination 
of these final states indicated that the process had completed successfully 

The state space analysis for the more complex groups 3, 4, and 5 resulted in state space 
explosion meaning the state space analysis algorithm did not generate a complete state space 
after a reasonable amount of time (30 minutes). To work around this problem the executable 
model was divided into two parts. The first part included only processes Al and A2 representing 
the processing of the input data and the assessment analysis. The second part was A3 (Generate 
Recommendations and Reports) by itself. This partitioning of the model allowed the state space 
analysis algorithm to generate complete state spaces. First, the state space for the model that 
contained Al and A2 was generated and its final state(s) were examined. The state space analysis 
for A1 and A2 for the most complex input had 42 states and two final states. These final states 
contained one and five data elements, respectively. These were used as the initial input to the 
model of A3 and the state space analysis was run in it. For the case of the five inputs, it was not 
possible to provide all inputs at once because state space explosion occurred. Instead, the state 
spaces for combinations of the five inputs were examined and showed that there are no 
unexpected or undesirable final states for even the most complex of inputs to the process. 

The overall conclusion from the computational experiments was that the operational view of 
the architecture was sound and complete. It demonstrated the truth of the basic hypothesis 
although it did not prove that the hypothesis is always true. 

With the soundness of the operational view established, Step 8 of the process was to develop 
a systems view of the architecture that can be used to guide the development of systems that 
support the OV processes so that the second spiral of the Critical Experiment can be conducted. 
The second spiral and later spirals will again rely on the use of the architecture based model 
driven experimentation approach. These more complex spirals will use a combination of humans 
and new systems that are based on the system view of the architecture. The ultimate goal is to 
produce technology and systems that can support a sound operational level EBA process. 
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3.4 Conclusions 

The architecture-based model-driven experimentation methodology has been successful in 
guiding the Critical Experiment through a series of spirals. It appears to be particularly relevant 
to situations were operational concepts and requirements are ill structured and the desired 
capability is complex and unprecedented. It follows a layered approach starting with the most 
abstract description of the problem or capability and, through a succession of steps, a continual 
refinement of that description unfolds until a final design is developed and evaluated. It is 
important not to go into too much detail early in the process. It must be shown that the abstract 
concepts work before going into more detail. The development of the operational concept is 
critical in the process; without one the rest of the process cannot be undertaken. In addition, a 
clear demarcation of the boundary of the system or capability must be defined. The process 
relies on a combination of static and executable architecture models and human-based 
experiments whose results feed one another. The development of the architecture description 
requires a few key subject matter experts. The conversion to the executable model is a straight 
forward process, and new tools are being developed to support the automation of this process 
which will make this step even easier. The subsequent analysis of the executable model allows a 
rigorous and complete or nearly complete exploration of the set of input conditions that can be 
expected. The human based experiments are critical, but demand the most resources and are the 
most time consuming. They are critical because they provide a depth of understanding that 
cannot be obtained with the architecture models by themselves. While they yield valuable 
information, they generally only relate to a relatively small portion of what is potentially a large 
number of probable vignettes that will be faced by the real system that will ultimately be 
developed and fielded. The bottom line is that the use of executable models of the architecture in 
conjunction with the more traditional human-based experiments can provide greater insight into 
the complex interactions that exist in these systems and allow developers and operators to make 
informed choices early to guide the development and create new technologies that will 
effectively support the operators. 
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SECTION 4 

Course of Action Analysis in a Cultural Landscape 
Using Influence Nets 

Lee W. Wagenhals and Alexander H. Levis 

4.1   Introduction 

Two challenges are addressed: (a) the need to understand how actions taken by the military 
or other elements of national power may affect the behavior of a society that includes an 
adversary and non adversarial elements, and (b) the need to be able to capture and document 
data and knowledge about the cultural landscape of an area of operations that can be used to 
support the understanding of the key issues, beliefs, and reasoning concepts of the local culture 
so that individuals that are new to the region can quickly assimilate this knowledge and 
understanding. 

The first challenge relates to capabilities that enable the analysis needed to conduct focused 
effects based planning and effects based operations. Models to support Effects Based Operations 
developed to date relate actions to effects on the adversary [1]. Such models can be quite 
effective in informing the comparison of alternative courses of action provided the relationships 
between potential actions and the effects are well understood. This depends on the ability to 
model an adversary's intent and his reactions and identifying his vulnerable points of influence. 
But as the nature of Blue's military operations goes well beyond the traditional major combat 
operations, there is the need to anticipate the effects of actions not only on the adversary (Red), 
but also on the local population which may support or oppose that adversary. Such support may 
depend in part on the actions taken by Blue. 

The second challenge involves the need for new personnel to rapidly assimilate the local 
knowledge needed to analyze the local situation and to analyze and formulate the effects based 
plans and operations. Data about a culture exists in many forms and from many sources 
including historical reference documents, observations and reports by intelligence analysts, and 
unclassified (and unverified) sources such as the internet. The data is often incomplete and 
partially incorrect and includes contradictions and inconsistencies. Analysts, particularly those 
new to an area of operation, who are responsible for formulating courses of action, are hard 
pressed to quickly develop the necessary understanding of the cultural factors that will affect the 
behavior of the adversary and the society in which it is embedded. 
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A case study based on a particular province in Iraq has been used to examine and test an 
approach to these challenges. The case study demonstrated the development of a model of an 
adversary and the culture that can be used to assess various courses of action designed to achieve 
several high level effects. A timed influence net (TIN) modeling technique was used that 
enables analysts to create executable (probabilistic) models based on knowledge about the 
cultural environment that link potential actions with their timing to effects. Such models capture 
the rationale for courses of action and explain how various actions can achieve effects. Given a 
set of potential actions, the model is then used to determine the course of action that maximizes 
the likelihood of achieving desired effects as a function of time. 

The rest of this section is organized as follows. Section 4.2 gives a brief formal description 
of a TIN and describes a process that can be used for course of action analysis. Section 4.3 
describes the case study and how a specific objective along with detailed data about the cultural 
environment was used to create and analyze a TIN. The rationale and thought processes that 
were used to determine the content of the TIN are described first, followed by a description of 
how the TIN was used in a layered analysis process to examine various courses of action to 
determine their impact on the overall effects over time. Section 4 provides some observations 
and comments. 

4.2 Timed Influence Nets 
Several modeling techniques are used to relate actions to effects. With respect to effects on 

physical systems, engineering or physics based models have been developed that can predict the 
impact of various actions on systems and assess their vulnerabilities. When it comes to the 
cognitive belief and reasoning domain, engineering models are much less appropriate. The 
purpose of affecting the physical systems is to convince the leadership of an adversary to change 
its behavior, that is, to make decisions that it would not otherwise make. However, when an 
adversary in imbedded within a culture and depends upon elements of that culture for support, 
the effects of physical actions may influence not only the adversary, but the individuals and 
organizations within the culture that can choose to support, be neutral, or oppose the adversary. 
Thus, the effects on the physical systems influence the beliefs and the decision making of the 
adversary and the cultural environment in which the adversary operates. Because of the 
subjective nature of belief and reasoning, probabilistic modeling techniques such as Bayesian 
Nets and their influence net cousin have been applied to these types of problems. Models 
created using these techniques can relate actions to effects through probabilistic cause and effect 
relationships. Such probabilistic modeling techniques can be used to analyze how the actions 
affect the beliefs and decisions by the adversary. 

Influence Nets (IN) and their Timed Influence Nets (TIN) extension are abstractions of 
Probabilistic Belief Nets also called Bayesian Networks (BN) [2, 3], the popular tool among the 
Artificial Intelligence community for modeling uncertainty. BNs and TINs use a graph theoretic 
representation that shows the relationships between random variables.   These random variables 
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can represent various elements of a situation that can be described in a declarative statement, 
e.g., X happened, Y likes Z, etc. 

Influence Nets are Directed Acyclic Graphs where nodes in the graph represent random 
variables, while the edges between pairs of variables represent causal relationships. While 
mathematically Influence Nets are similar to Bayesian Networks, there are some key differences. 
BNs suffer from the often intractable task of knowledge elicitation of conditional probabilities. 
To overcome this limitation, INs use CAST Logic [4, 5], a variant of Noisy-OR [6, 7], as a 
knowledge acquisition interface for eliciting conditional probability tables. This logic simplifies 
knowledge elicitation by reducing the number of parameters that must be provided. INs are 
appropriate for modeling situations in which the estimate of the conditional probability is 
subjective, e.g., when modeling potential human reactions and beliefs, and when subject matter 
experts find it difficult to fully specify all conditional probability values. 

The modeling of the causal relationships in TINs is accomplished by creating a series of 
cause and effect relationships between some desired effects and the set of actions that might 
impact their occurrence in the form of an acyclic graph. The actionable events in a TIN are 
drawn as root nodes (nodes without incoming edges). Generally, desired effects, or objectives the 
decision maker is interested in, are modeled as leaf nodes (nodes without outgoing edges). In 
some cases, internal nodes are also effects of interest. Typically, the root nodes are drawn as 
rectangles while the non-root nodes are drawn as rounded rectangles. Figure 1 shows a partially 
specified TIN. Nodes B and E represent the actionable events (root nodes) while node C 
represents the objective node (leaf node). The directed edge with an arrowhead between two 
nodes shows the parent node promoting the chances of a child node being true, while the 
roundhead edge shows the parent node inhibiting the chances of a child node being true. The 
inscription associated with each arc shows the corresponding time delay it takes for a parent 
node to influence a child node. For instance, event B, in Fig. 1, influences the occurrence of 
event A after 5 time units. 

E    -          1 
+ 1              1  

B °     fc          A                            k *      A                   * D 

"^~-^                        1^^ 

C 

Fig 4.1. An Example Timed Influence Net (TIN) 

Formally, a TIN is described by the following definition. 
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Definition 4.1: Timed Influence Net (TIN) 

A TIN is a tuple (V, E, C, B, DE, Dv, A) where 

V: set of Nodes, 

E: set of Edges, 

C represents causal strengths: 

E -> { (h, g) such that -1 < h, g < 1 }, 

B represents Baseline / Prior probability: V -> [0,1], 

DE represents Delays on Edges: E -> Z+     (where Z+ represent the set of positive integers), 

Dy represents Delays on Nodes: V -> Z+, and 

A (input scenario) represents the probabilities associated with the state of actions and the 
time associated with them. 

A: R ->  {([p,, p2,..., pn],[[tll,t,2], [t2l,t22], ....,[tnl,tn2]] ) 

such that p, = [0, 1], ty -> Z   and tn <tj2, V i = 1, 2, ...., nandj = 1,2 where RcVj 

(where Z represent the set of nonzero positive integers) 

The purpose of building a TIN is to evaluate and compare the performance of alternative 
courses of actions. The impact of a selected course of action on the desired effects is analyzed 
with the help of a probability profile. Consider the TIN shown in Fig. 1. Suppose the following 
input scenario is decided: actions B and E are taken at times 1 and 7, respectively. Because of the 
propagation delay associated with each arc, the influences of these actions impact event C over a 
period of time. As a result, the probability of C changes at different time instants. A probability 
profile draws these probabilities against the corresponding time line. The probability profile of 
event C is shown in Fig. 4.2. 

Fig 4.2. Probability Profile for Node C 
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To construct and use a TIN to support effects based operations, the following process has 
been defined. 

1. Determine the set of desired and undesired effects expressing each as a declarative 
statement that can be either true or false. For each effect, define one or more observable 
indicators that the effect has or has not occurred. 

2. Build an IN that links, through cause and effect relationships, potential actions to the 
desired and undesired effects. Note that this may require defining additional intermediate 
effects and their indicators. 

3. Use the IN to compare different sets of actions in terms of the probability of achieving 
the desired effects and not causing the undesired effects. 

4. Transform the IN to a TIN by incorporating temporal information about the time the 
potential actions will occur and the delays associated with each of the arcs and nodes. 

5. Use the TIN to experiment with different timings for the actions to identify the "best" 
COA based on the probability profiles that each candidate generates. Determine the time 
windows when observation assets may be able to observe key indicators so that 
assessment of progress can be made during COA execution. 

6. Create a detailed execution plan to use the resources needed to carry out the COA and 
collect the information on the indicators. 

7. Use the indicator data to assess progress toward achieving the desired effects. 

8. Repeat steps 2 (or in some cases 1) through 7 as new understanding of the situation is 
obtained. 

In building the IN, the modeler must assign values to the pair of parameters that show the 
causal strength (usually denoted as g and h values) for each directed link that connects pairs of 
nodes. Each non-root node has an associated baseline probability that must be assigned by the 
modeler (or left at the default value of 0.5). It represents the probability that the random variable 
will be true in the absence of all modeled influences or causes. The CAST logic is based on a 
heuristic that uses these quantified relationships and the baseline parameter to compute the 
conditional probability matrix for each non-root node. Finally, each root node is given a prior 
probability, which is the initial probability that the random variable associated with the node 
(usually a potential action) is true. 

When the modeler converts the IN into a TIN (step 4), each link is assigned a corresponding 
delay d (where d > 0) that represents the communication delay. Each node has a corresponding 
delay e (where e > 0) that represents the information processing delay. A pair (p, t) is assigned to 
each root node, where p is a list of real numbers representing probability values. For each 
probability value, a corresponding time interval is defined in t. In general, (p, t) is defined as 

([Pi, P2 Pn], [[tll,t]2], [t2l,t22], ...., [tnl,tn2]]), 
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where t,i < tj2 and ty > 0 V i = 1,2 , n andj = 1,2 

The last item is referred to as an input scenario, or sometimes (informally) as a course of 
action. 

To analyze the TIN (Step 5), the analyst selects the nodes that represent the effects of interest 
and generates probability profiles for these nodes. The probability profiles for different courses 
of action can then be compared. 

4.3 Case Study 
A case study was used to demonstrate a capability to address the two challenges described in 

the introduction. The challenge was to create (demonstrate) a capability to allow rotating and in- 
country forces to easily and quickly access data and knowledge about the cultural landscape of 
their area of operations that can be used to support their understanding of the key issues, beliefs, 
and reasoning concepts of the local culture. The specific need that the case study addressed was 
stated as follows: given a military objective and a set of desired effects derived from statements 
of commander's intent, develop and analyze alternative courses of actions (COAs) that will 
cause those desired effects to occur and thus achieve the military objective. The use of TINs was 
the approach taken. Specifically, the case study demonstrated the use of a TIN tool called Pythia 
that has been developed at George Mason University. This demonstrated the use of the tool to 
create knowledge about an adversary and the population that potentially supports or resists that 
adversary and the use of the TIN to analyze various COAs. 

A scenario was chosen based on the problem of suppressing the use of Improvised Explosive 
Devices (IEDs) in a specific province of Iraq, denoted as province D. Specifically, it is assumed 
that IED incidents have increased along two main east-west routes between the capital town C of 
the province and a neighboring country M. Both roads are historically significant smuggling 
routes. 

There were hundreds of documents about Iraq in general and D province in particular that 
were reviewed to get a better understanding of the situation. The province includes substantial 
fractions of Kurdish, Shia, and Sunni populations as well as other minorities. It was noted that 
the northern route was in the predominantly Kurdish region and the southern route was in a 
predominantly Shia region. A dynamic tension existed between these regions particularly with 
regard to the flow of commerce because of the revenue the flow generates. It was noted that 
some revenue was legitimate, but a significant amount was not and was considered covert. 
Increased IEDs in one region tended to suppress the trade flow in that region and caused the flow 
to shift to the other. Consequently, each region would prefer to have the IEDs suppressed in its 
region, but not necessarily in the neighboring region. The IED perpetrators needed support from 
the local and regional populations as well as outside help to carry out their attacks. The support 
was needed for recruiting various individuals to help manufacture the IEDs and to carry out the 
operations necessary to plant them and set them off. It was postulated that improving the local 
economy and the quality of the infrastructure services would reduce the local and regional 
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support to the insurgents. Of course this required effective governance and willingness on the 
part of the workers to repair and maintain the infrastructure that in turn requires protection by the 
Iraqi security and coalition forces. 

With this basic understanding, the following steps were taken to create the TIN. First the 
overall key effects were determined to be 1) IED attacks are suppressed on routes A and B (note 
these were modeled as separate effects because it may be possible that only one of the routes 
may have the IED attacks suppressed), 2) Covert economic activity improves along each of the 
two routes. 3) Overall Overt economic activity increases in the region. 4) Insurgent fires are 
suppressed, 5) Local support for the insurgents exist and 6) Regional support for the insurgents 
exists. Nodes for each of these effects were created in the Pythia TIN modeling tool. It was 
noted that suppression of IED attacks on one route could have an inverse effect on the covert 
economic activity on the other, but each could improve the overall overt economic activity. The 
suppression of the insurgent fires positively affected both covert and overt economic activity. 

The next step was to identify the key coalition force (Blue) actions that would be evaluated 
as part of the potential overall COA. To be consistent with the level of model abstraction the 
follow high level actions were considered: Blue coalition forces (CF) exercise their standard 
Tactics, Techniques, and Procedures (TPPs) (including patrols, searches, presence operations, 
and the like). Blue Coalition Forces actively conduct surveillance operations. Blue CF actively 
conduct Information Operations. Blue CF continue to train the local Iraqi security forces and 
police.   Blue CF broker meetings and discussions between various Iraqi factions (Green). 

Of course, it is not possible to just connect these actions to the key effects, and therefore 
several other sub-models were constructed and then linked together to produce the final model. 
These models include a model of the process the insurgents must use to conduct IED operations, 
a sub-model for the infrastructure and economic activity, and a sub model of the political and 
ethno-religious activities. In addition, it was recognized that the region was being influenced by 
outside sources, so these also were added to the model. 

The sub model of the insurgent IED activities was based on the concept of how the 
insurgents develop an IED capability. They must have the IEDs, the personnel to carry out the 
IED operation, the communication systems to coordinate the operation and the surveillance 
capability to determine where to place the IED and when to set it off. Each of these in turn 
requires additional activities. For example, the personnel must be trained and in order to get the 
personnel they must be recruited. The IEDs must be manufactured, and this requires material 
and expertise. Furthermore, the insurgents must be motivated to use their capability. Much of 
this capability relies on support for the local and regional population and funding and material 
from outside sources. The nodes and the directed links between them were added to the TIN 
model to reflect the Insurgents' Activities. 

The economic and infrastructure sub-model included nodes for each of the main essential 
services: water, electricity, sewage, health, and education. It also included financial institutions 
(banks, etc.) and economic activities such as commerce and retail sales of goods.  The nodes for 
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the economic and infrastructure aspect of the situation were linked to the local and regional 
support as well as to the overall effect on the overt economic activity. 

Of course, the economic and infrastructure services will not function properly without the 
support oi' the Political and Ethno-Religious entities in the region. Thus a sub-model for these 
factors was also included. To do this, three facets of the region were considered: the religious 
activities including Shia, Sunni, and Kurdish (who are either Shia or Sunni) groups, political 
party activities (Shia, Sunni, and Kurdish), and the Shia, Sunni, and Kurdish activities within the 
government structure including the civil service and the police and law enforcement institutions. 
The nodes for all of these activities were created and appropriate links were created between 
them. Links were also created to other nodes in the model such as local and regional support of 
the insurgents, economic activity and infrastructure development. 

Finally, the outside influences were added to the model. These include external support for 
the insurgents, anti-coalition influences from neighboring countries, and external financial 
support for the local government and the commercial enterprises of the region. All of these 
nodes were modeled as actions nodes with no input links. With this model design, analysts could 
experiment with the effects of different levels of external support, both positive and negative, on 
the overall outcomes and effects. 

The complete model is shown in Figure 4.3. The model has 62 nodes, including 16 nodes 
with no parents, and 155 links. 

international influences 

CF Actions 

Insurgents Activities 

Local and 
Regional 
Support 

Political and Religious 
Structures 

,,  — 
Overall Effects 

Economic'Infrastructure 

Fig. 4.3 Complete TIN Model 
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Once the structure of the models was completed, the next step was to assign the values to the 
parameters in the model. This was done in two steps. First, the strengths of the influences (the g 
and h parameters on each link) and the baseline probability of each node were selected. This 
may seem like a daunting task given the subjective nature of the problem and the number of links 
and nodes. However, TINs and the Pythia tool limit the choices that can be made for these 
parameters. For each link, the model determines the impact of a parent node on a child node first 
if the parent is true and then if the parent is false. The choices range from very strongly 
promoting (meaning nearly 100%), strong (quite likely, but not 100%), moderate (50% or 
greater, but less than strong), slight (greater than 0% but not likely), or no effect. The modeler 
can also select a similar set of inhibiting strengths ranging from very strongly inhibiting to no 
effect. The second set of parameters is the baseline probabilities of the node. These are set to a 
default value of 0.5 meaning that the probability of the node being true is 0.5 given no other 
influences or causes (we don't know). In many cases, the default value was selected. 

At this point it is possible, if not prudent, to perform some analysis on the model to observe 
its behavior. We will describe this in detail shortly. The final step in creating the TIN model 
was to assign the temporal parameter values to the nodes and the links. The default value for 
these is 0. With all values set to 0 the model is identical to an ordinary Influence Net. The 
process for assigning the time delay values is similar to that for assigning the strengths of the 
influences and the baseline probabilities. For each link, the modeler determines how long it will 
take for the child node to respond to a change in the probability of the parent node. In some 
cases the change is instantaneous, so the default value of 0 is appropriate. In others, a time delay 
may be expected. Part of this process requires that the modeler establish the time scale that will 
be used in the model and thus what actual time length of one unit of delay is. Any unit of 
measure can be selected from seconds to days, weeks, months or even years. In this particular 
model each time delay unit was set to be one week. In setting the time delay of the arcs, it may 
also be useful to set the time delay of the nodes. Again the default value for this delay is 0. This 
delay represents processing delay. It reflects the concept that if there is a change in one or more 
of the parent nodes, once the child node realizes that the change has occurred, there may be some 
time delay before it processes this new input and changes its probability value. 

Once the complete TIN was created, a validation of the model was undertaken. This was 
done by consulting with several subject matter experts who had been in the region and were 
familiar with the situation. Each node and link was checked to see if the node and the 
relationships to and from that node made sense. In short, we were confirming that the overall 
structure of the model made sense. Several suggestions were made and the changes were 
incorporated. Once the structure had been vetted, then the parameters were checked. This was 
done link by link and node by node. First the strengths of the influences were checked, then the 
baseline probabilities, and finally the time delays. 

Once the TIN model was finished and validated, two levels of analysis were accomplished to 
demonstrate the utility of the approach.   The first level is the logical level.   This can be done 
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without using the parameters because it only requires the structure of the model. At this level of 
analysis the model shows the complex causal and influencing interrelationships between Blue 
CF, the external influence, the religious and political factions, the adversary (Red), and the local 
and regional population (Green). This particular model shows that while Blue CF has some 
leverage, there are many other outside influences that also can affect the outcome of any actions 
that Blue may take. The model identifies these influences and how they may help inhibit the 
progress that is made as a result of Blue CF actions. Furthermore, the model shows relationships 
between the actions and activities of major religious and ethnic groups and effects on 
government activities (police, judiciary, public works and service, etc.). It shows the impact of 
the adequacy of government and public services on support of the insurgency. It captures the 
IED development, planning, and employment processes and the impact of the other activities, the 
status of public services, and coalition interventions on those processes. Finally the model 
captures interaction of IED attack suppression on two major trade routes (suppressing one route 
increases attacks on the other). In short, the model has captured Blue's understanding of a very 
complex situation and can help articulate concepts and concerns involved in COA analysis and 
selection. 

The second level of analysis involves the behavior of the model. It is divided into a static 
quantitative and a dynamic temporal analysis. The static quantitative analysis requires the 
structure of the model and the non temporal parameters to be set. The temporal, time delay 
parameters should be set to the default value of 0. This analysis enables one to compare COAs 
based on the end result of taking the actions in the COA. In the Province D model, four major 
COAs were assessed as shown in Fig. 4.4. This table has four parts, an Action stub in the upper 
left corner, the Action or COA matrix to the right of the Action stub, an Effects stub below the 
Action stub, and the Effects matrix adjacent to the Effects stub. In the COA matrix, the set of 
COAs that have been evaluated are listed with an X showing the actions that comprise the COA. 
The Effects matrix shows the corresponding effects as the probability of each effect. 

Actions Situation 

(COA) 1 

Situation 

(COA] 2 

Situation 

(COA) 3 

Situation 

(COA) 4 

International Interference X X X X 

External Financial Support X X X 

CF HP.! and Surveillance X X X 

CF 10, training, brokering X X 

Iraqi political and religious group participation X 

EFFECTS 

Local and Region Support for insurgents Exist* 0.97 0.92 0.26/0.36 0.22/0.14 

IED Attacks Suppressed on Route A / B 0.17/0.15 0.31/0.34 0.67/0.68 0.85/0.74 

Insurgent's fires suppressed 0.14 0.65 0.9 0.93 

Public services adequate 0.12 0.39 0.39 0.55 

Overt Economic Activity Increasing 0.02 0.08 0.31 0.89 

Covert Economic Activity Increasing along routes 

AandB 

0.37 0.50 0.56 0.57 

Fig. 4.4 Static Quantitative COA Comparison 
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COA 1 was a baseline case in which only international interference and support to the 
insurgency occurs. There is no action from the Blue CF, no external financial support to the 
infrastructure and the economy, and the religious and political factions are not participating in 
the governance of the area. The overall effects are shown in the lower part of the matrix. The 
results for this COA are very poor. There is support for the insurgency and it is very unlikely 
that the IED attacks will be suppressed on either route. With an ineffective local government, the 
basic services are inadequate which encourages the support to the insurgency and there is little 
chance for economic increase. 

COA 2 represents the case where external financial support is provided and the coalition 
forces are active both in presence operations and in conducting surveillance. However, 
Information Operations, training of Iraqi forces and workers, and brokering of meetings and 
agreement between Iraqi factions are not occurring. In addition, the political and religious groups 
are not participating in positive governance and support to civil service. In this case, there is 
some improvement compared to COA 1, but still there are many problems. Local support for the 
insurgents is still very strong, although there is some suppression of the IED attacks and 
insurgent fires due to the activities of the coalition forces. As a result there is some improvement 
in public services and an increase in covert and overt economic activity, due in part to the 
reduction in IED attacks and insurgent fires. 

The third COA contains all of the actions of COA 2 plus the addition of coalition force 
information operations, training of Iraqi security and police forces as well as civilian 
infrastructure operations and significant brokering of meetings and agreements between the 
various Iraqi agencies and factions. The result is a significant improvement in the suppression of 
the IED attacks and insurgent fires due to the improved capabilities of the Iraqi security and 
police forces and the significant drop in the local and regional support of the insurgents. There is 
also a significant improvement in the covert and overt economic activity. However, there is little 
change in the adequacy of the public services, due primarily to the lack of effective participation 
of the Iraqi governance function. 

The last COA has all actions occurring. In addition to the activities of the previous three 
COAs, COA 4 includes the active participation of the Iraqi religious and political groups in the 
governance activities. It results in the highest probabilities of achieving the desired effects. 
While there is still some likelihood or local and regional support for the insurgents (0.22 and 
0.14, respectively), many of the IED attacks are suppressed as are the insurgent fires. The result 
is significant increases in overt economic activity and moderate increase in the covert economic 
activity. Public services are still only moderately adequate, with room for improvement. 

While the static quantitative analysis provides a lot of insight into the potential results of 
various COAs, it does not address the questions of how long it will take for the results to unfold 
or what should the timing of the actions be. The dynamic temporal analysis can provide answers 
to these types of questions. 
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Having created the TIN model with the time delay information, it is possible to experiment 
with various COAs and input scenarios. Fig. 4.5 shows an example of COA and input scenarios 
that illustrate such an experiment. The second column of the Table in Fig. 5 shows a summary 
of the input nodes that were used in the experiment. They are divided into two types, those listed 
as Scenario and those listed as COA Actions. The scenario portion contains actions that may 
take place over which limited control is available. These set the context for the experiment. The 
second group contains the actions over which control exists, that is the selection of the actions 
and when to take them is a choice that can be made. The last column shows the scenario/action 
combinations that comprise the COA/Scenario to be examined. The column provides a list of 
ordered pairs for each Scenario Action or COA Action. Each pair provides a probability (of the 
action) and a time when that action starts. For example, the listing for the second scenario 
actions is [0.5. 0] [1.0, 1] which means that the probability of Country M and Country L 
interfering is 0.5 at the start of the scenario and changes to 1.0 at time = 1. In this analysis, time 
is measured in weeks. 

The entries under the column labeled "COA 4a" mean that the scenario/under which the 
COA being tested is one in which there is immediate and full support for the insurgency 
(financial, material, and personnel) from international sources, and it is expected to exist 
throughout the scenario. The same is true for support from Country S. Countries M and L are 
modeled with the probability of providing support at 0.5 initially, but it immediately increases to 
1.0 at week 1. All of the COA actions are assumed to not have occurred at the start of the 
scenario, thus the first entry of each is [0, 0]. The coalition force (Blue) actions start at week 1 
with a probability of 1.0, meaning that all of the elements of Blue actions start at the beginning. 
With regard to religious activities, the Kurds begin at week 1 with probability 1.0. The Shia and 
Sunni have a probability of 0.5 starting at week 10 and then increase to 1.0, becoming fully 
engaged at week 20. In terms of political activity, the Kurds and Shia become fully active at 
week 1. The Shia become more likely to be active at week 10, fully active at week 20, then 
become less likely to be active at week 30 (probability 0.5) and then become fully active again at 
week 40. Finally, the External Financial support begins at week 26. 

Action COA 4a: List [p. t] 
i      Scenario 

Ac tic n*. 

Int'l Support to Insurgent* [i.o, oi 

Interference by countries M and L [0.5, 0], [1.0, 1] 

Interference by country S [1.0.0] 
\        COA 

Actions 

„.,,,„.,,„ 

Blue FTPS activated [0.0], [1.0. 1] 

Blue Surveillance, 10. Training. Brokering [0.0], [1.0,1] 

Shia and Sunni Religious Activity [0,0], [0.5, 10], [1.0,20] 

Kurd Religious Activity [0,0], [1.0,1] 

Kurd and Shu Political Activity [0,0], [1.0, 1] 

Sunni Political Activity [0. 0], [1.0, 20], [0.5, 30], [1.0, 40]    \ 

International Investment [0. 0], [1.0, 26] 

Fig. 4.5 Dynamic Temporal Analysis Input 

40 



To see what the effect of this input scenario on several key effects, the model is executed and 
the probabilities of the key effects as a function of time are plotted as shown in Fig. 4.6. In the 
figure, the probability profiles of four effects are shown: IEDs are suppressed on Routes A and B 
and Local and Regional support for the Insurgents exists. Figure 4.6 shows that the probability of 
suppression of the IED attacks on the two routes increases significantly under this scenario. This 
means that the number of IED attacks should decrease, more on Route A than on Route B. The 
improvement can be expected to occur more rapidly along Route A than along Route B by about 
35 weeks or 8 months. Route A is the northern route that is controlled by the Kurds and Route 
B is the southern route controlled by the Shia and Sunni. This can be attributed to the rapid and 
steadfast political and religious activities of the Kurds as opposed to the more erratic activities of 
the others as modeled in the input scenario (Fig. 4.5). Also note that it is expected to take 80 to 
100 weeks (nearly 2 years) for the full effect to occur. Figure 4.6 also shows a significant decline 
in support for the insurgents both by the local and the regional populace with the local support 
decreasing more as the situation with respect to governance and services improves. 

53 Probability Profile for Probability Profiles... 

1.0_ 

0.9   L 

in 

0 0 50 100 150 

TIME 

IED Attacks on Route A are suppressed 

Regional Support for insurgents exists 

Local Support for insurgents exists 

IED attacks on route B are suppressed 

Fig. 4.6 Probability Profiles of Scenario (COA) of Fig. 4.5 
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Of course it is possible to examine the behavior of any of the nodes in the model, by plotting 
their probability profdes. This can increase the understanding of the complex interactions and 
dependencies that in the situation that have been expressed in the TIN model. The TIN model 
provides a mechanism to experiment with many different scenarios and COAs. Questions like 
what will happen if some of the Blue CF actions are delayed or what will happen if the Shia or 
Sunni decide not to participate after some period of time can be explored. By creating plots of 
the probability profde of key effects under different scenarios, it is possible to explore the 
differences in expected outcomes under different scenarios. This can be illustrated by changing 
the input scenario. Suppose that it is believed to be possible to get other countries or external 
organizations to reduce the support to the insurgents by some means, for example diplomatic or 
military action. It is postulated that we could reduce the likelihood of such support to about 50% 
but it will take 6 months to do this. The results can be modeled by changing the input scenario 
of Fig. 4.5. In this case the first line of Fig. 4.5 is changed from [1.0, 0] to [1.0, 0] [0.5,26]. All 
of the other inputs remain the same. Fig. 4.7 shows a comparison of effect of this change on the 
suppression on IED attacks along Route B. The reduction in international support for the 
insurgents at week 26 can cause a significant improvement in the suppression of the IED attacks 
along Route B (and a corresponding improvement along Route A, not shown). The improvement 
begins about 6 months after the reduction in international support or about 1 year into the 
scenario. Thus, decision makers may wish to pursue this option. 

§9 Probability Profile for Effects of Successful Di... l-"][n)Q 

0 0 50 100 150 

TIME 

IED attacks on route B ate suppressed Hi Intl Support 

IED attacks on route B are suppressed Lower Intl Support 

Fig. 4.7 Comparison of the Effect of Different Scenarios 
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4.4 Observations and Comments 
Creating TIN models of situations appears to help address the two challenges described in the 

beginning of this paper. It provides a representation of knowledge about a situation that is 
derived from an understanding of the capabilities of an adversary and the interactions and 
dependencies of that adversary with the local and regional social, religious, and economic 
condition. Once created, the TIN model can be used to conduct computational experiments with 
different scenarios and COAs. In a sense, it provides a mechanism to assess various COAs based 
upon comparisons of the change in the probability of key effects over time. 

It is important to emphasize that the purpose of these models is to assist analysts in 
understanding the potential interactions that can take place in a region based on actions taken by 
one or perhaps many parties. It is not appropriate to say that these models are predictive. They 
are more like weather forecasts, which help us to make decisions, but are rarely 100% accurate 
and are sometimes wrong. To help deal with this uncertainty, weather forecasts are continually 
updated and changed as new data becomes available from the many sensors that make a variety 
of observations in many locations. Since these models cannot be validated formally, the 
appropriate concept is that of credibility. Credibility is a measure of trust in the model that is 
developed over time through successive use and comparison of the insights developed through 
the model and the occurrence of actual events and resulting effects. 

We believe that the techniques described in this paper can make an important contribution to 
a variety of communities that need to evaluate complex situations to help make decisions about 
actions they may take to achieve effects and avoid undesired consequences. The approach offers 
at least three levels of analysis, a qualitative evaluation of the situation based on the graph that 
shows the cause and effect relationships that may exist in the environment, and two levels of 
quantitative evaluation. The first level of quantitative analysis is static, and shows, a coarse way, 
what the likelihood of different effects occurring are given different sets of actions. The second 
quantitative level is dynamic, and shows how the scenario may play out over time. The relevant 
aspect is that the approach allows the inclusion of diplomatic, information, military, and 
economic (DIME) instruments and highlights their cumulative effects. 

This modeling approach can provide analysts with a rich vehicle for explanation and 
computational experimentation with COAs so that important recommendations can be made to 
the decision makers. The models can be used to illustrate areas of risk including undesired 
effects, and risks associated with the amount of time it will take to achieve desired effects. It 
should also be noted that these models are not likely to be created on a one time basis. It can be 
expected that the understanding of the situation will continue to evolve requiring updates or even 
new models to be created. Perhaps the best contribution is that the technique offers a standard 
way to analyze and describe very complex situations. 
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SECTION 5 

Service Oriented Architectures, the DoD Architecture Framework 
1.5, and Executable Architectures 

Lee W. Wagenhals and Alexander H. Levis 

5.1. Introduction 

The Department of Defense (DoD) Net Centric Warfare (NCW) concept is key to the 
transformation of DoD capabilities in the information age. Developing both operational concepts 
and systems that support those concepts based on ubiquitous information and data sharing across 
traditional boundaries is at the heart of NCW and its enabler called Net Centric Operations 
(NCO). This implies a shift from platform orientation based on tightly coupled or large-scale 
monolithic systems to a spectrum of integration techniques that include loosely coupled systems- 
of-systems. The DoD views architectures as the mechanism for designing solutions for this 
transformation, and the use of Service Oriented Architectures (SOAs) has been selected as an 
approach for achieving many of the goals of this transformation. 

To support this transformation, DoD has issued a major revision in its DoD Architecture 
Framework that enables the inclusion of services-based architectures. The result of this 
transformation and DoDAF decisions is that there is much to analyze and many choices to be 
made. The behavior and performance (e.g., quality of service) of the information sharing 
approaches supported by SOA have not been proven within the DoD environment. It is well 
known that the dynamic behavior of these systems is complex. Any engineering approach, 
including those that are architecture based, requires an ability to determine stakeholder needs 
(requirements) and techniques for evaluating potential solutions based on the projected 
capabilities of the design to meet those requirements. DoDAF 1.5 as an architecture description 
specification relies on static pictures (diagrams) and tables. These are capable of describing the 
behavior of the architecture only in a limited way. If architectures are the mechanism for 
designing solutions and the solutions are complex, there is a strong need for architecture 
evaluation techniques that go beyond static diagrams and examine behavior and performance in 
detail. Converting the architecture description into an executable model and applying evaluation 
processes to that model can support this expanding analysis and evaluation need. 

By intent, the DoDAF does not specify or provide a process for designing or evaluating 
architectures. The methodologies, tools, techniques, and processes for design and evaluation 
need to be selected and executed by the practitioners that will be creating and analyzing 
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architectures to support the transformation concepts. Such processes and techniques have been 
developed, but the majority of the DoD community effort has focused primarily on the creation 
of architecture descriptions without rigorous behavior and performance evaluation, because that 
is what has been the required deliverable in most cases. Explicit evaluation processes are much 
less evident. 

The objective of this paper is to describe and illustrate the processes and techniques that can 
support end-to-end design, analysis, and evaluation of architecture descriptions, particularly in 
light of the shift in direction from designing large scale, tightly coupled or monolithic systems to 
the more loosely coupled constructs needed to support the NCO vision. Section 5.2 summarizes 
the background and challenges facing architectures including the motivation for architectures 
and a discussion of some of the issues with services, SOA, integration, and coupling. Section 5.3 
introduces an overall end-to-end process for generating architecture descriptions and supporting 
evaluations using executable models. Three sub processes are described. The first is a process for 
creating DoDAF compliant architecture descriptions that contain all the necessary information 
needed to derive the executable model from the architecture description. Two variants are 
discussed, one using object orientation with UML as the architecture description language, and 
the other using Structured Analysis. Second, the techniques and processes for converting the 
architecture description into an executable model are discussed with Colored Petri Nets serving 
as the mathematical framework for the executable model. Finally, analysis and evaluation needs 
and the techniques to address them using the executable model are described. Section 5.4 
describes a recently completed case study that was tailored to illustrate the processes for creating 
and analyzing a DoDAF 1.5 compliant architecture that incorporates NCO concepts. This case 
study gives a detailed description of how a DoDAF 1.5 compliant architecture can be created, the 
type of analysis that can be done based on that architecture description, the process for 
conversion of the architecture to an executable model, and a process for analysis of the 
architecture by using the executable model to address questions that cannot be answered by the 
architecture description alone. Section 5.5 concludes the paper with observations and challenges. 

5.2. Background And Challenges 
In 1998, the Department of Defense released and approved the Command, Control. 

Communications, and Computers, Intelligence, Surveillance, and Reconnaissance Architecture 
Framework (C4ISR AF) Version 2.0. Motivated by growing interoperability challenges, DoD 
viewed architectures as the means to analyze interoperability solutions rather than attempting to 
deal with detailed design descriptions which can change very rapidly. The goal was to 
standardize the manner in which DoD organizations represented the descriptions of architectures 
and to provide a common framework for coping with uncertainty, change, and complexity in 
requirements, missions, organizational structures (e.g., joint and coalition operations), and 
technology. Organizations were directed to create architectures to support the analysis of 
requirements and capabilities, budgetary needs, and acquisition plans and processes. 
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As military challenges expanded, the need to be able to respond to a variety of situations by 
assembling coalitions of different components that may be geographically dispersed became a 
major driver for a transformation of military capability. The notion of composing forces using a 
"plug and play" construct where component systems can plug into an Internet-like Global 
Information Grid (GIG) was postulated and NCW was established as the overarching concept. 
Net Centric Warfare was focused on generating combat power by networking the warfighting 
enterprise, and making essential information available to authenticated, authorized users when 
and where they need it. This ability is at the core of net-centricity and essential to achieving Net 
Centric Operations (NCO). Migrating to the NCO concept poses several challenges. It implies a 
shift in policy from a need to know to a need to share. It means carefully reexamining the 
tradition of building large scale monolithic system constructs that do excellent jobs in their own 
right, but pose challenges when an attempt is made to interoperate many of these systems. 
Developing more loosely coupled constructs is considered essential to the information sharing 
goals. To address these challenges, DoD developed and issued a Data Strategy and released the 
Net Centric Operations in Warfare (NCOW) Reference Model Version 1.1. The NCOW RM 
supports the concept of services and SOA as a means for achieving the goals of NCO. As the 
NCOW RM was being developed, DoD worked to update the C4ISR Architecture Framework 
Version 2.0 by releasing the DoD Architecture Framework (Do- DAF) Version 1.0 in 2004. This 
version made only slight changes to the basic construct of its predecessor. However, in April 
2007, DoD released the DoDAF Version 1.5 which included important changes that respond to 
the transformation to NCO. 

The DoDAF provides the guidance and rules for developing, representing, and understanding 
architectures based on a common denominator across DoD, Joint, and multinational boundaries. 
The DoDAF is intended to ensure that architecture descriptions can be compared and related 
across programs, mission areas, and the enterprise. While the DoDAF provides a standardized 
format for describing architectures, it does not provide a procedure for developing the artifacts 
and data that are used in the description. DoDAF 1.5 is a transitional version that responds to the 
DoD's migration towards NCW. It applies essential net-centric concepts in transforming the 
DoDAF and acknowledges that the advances in enabling technologies—such as services within a 
SOA—are fundamental to realizing the Department's Net-Centric Vision. DoDAF 1.5 maintains 
the standard views of its predecessors, the Operational, System, and Technical Standards Views, 
so as to maintain backward compatibility with the DoDAF 1.0, but it extends the System View 
now calling it the Systems and Services View. Each view is composed of standardized products. 
Within the Systems and Services View two products include extensions to support the 
description of services and SOA constructs. These views are the Systems and Services 
Functionality Description (SV-4a and b), and the Operational Activity to System and Services 
Functionality Traceability Matrices (SV-5a, b, and c). Each of the other SV products includes 
techniques for explicitly representing services in addition to systems. There is a considerable 
amount of flexibility in describing services and SOA in the DoDAF 1.5. 
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There are many organizations that are designing and implementing systems using SOA. and 
there are many SOA variants. SOA is an approach to defining integration- architectures based on 
the concept of service. SOA is not the implementation of a specific technology. A service is a 
collection of applications, data, and tools with which one interacts via message exchange. The 
services are (1) defined using a common language and are listed in a registry, (2) distributed 
across the network, but are computer/platform independent, and (3) independent of the 
communication protocol they utilize. Web Services is one example of services that is focused on 
the use of browsers to access and provide data and implement processes, but there are other 
concepts that link together services to support processes. SOAs allow organizations to 
communicate data without intimate knowledge of each other's IT systems. As DoD migrates 
from the past point-to-point approach for data exchange to a service approach, it has defined a 
set of core infrastructure services for the GIG. These comprise the Net-Centric Enterprise 
Services (NCES), which also are the Assistant Secretary of Defense (Networks and Information 
Integration) program for creating them. Other non-NCES services are expected to be developed 
under other programs. 

There are many definitions for SOA. One definition is as follows [Hurwitz et al. 2007: 27]. 
"A SOA is an architecture for building business applications as a set of loosely coupled black- 
box components orchestrated to deliver a well-defined level of service by linking together 
business processes." According to this definition, SOA is for building business applications (that 
is applications to support business processes), not all software. SOA is a black box component 
architecture, hiding complexity, and enabling reuse of existing applications via "adaptors." In 
other words, one can encapsulate existing applications and provide an adaptor that provides a 
standard interface. SOA components are loosely coupled (simplicity and autonomy). Each 
component carries out a small range of simple services. Components can be combined in a 
variety of ways. Perhaps the key concept is that SOA components are orchestrated to link 
together business processes. This orchestration concept can deliver very complex process 
services and can adapt to maintain specified levels of service. It provides the flexibility, but also 
increases complexity in terms of both components and messages. 

There is a lot of "stuff going on in a SOA. It isn't enough just to make a set of adaptors for 
existing applications to make the processes work. SOA requires the creation of several software 
components, some that make up or support the business processes and others to ensure that they 
work properly and reliably. The SOA Registry contains reference information about where the 
components of the SOA are located (an electronic catalog for components) and detailed 
specification about how to interface with each service. Governance processes must be 
established to ensure the specifications are published and maintained in the Registry. A 
Workflow Engine is needed to define the business processes that connect people to people, 
people to processes, and processes to processes. These process descriptions also are placed in the 
Registry. Whenever a business process is needed, a Service Broker connects the needed services 
together using the information in the Registry. An SOA Supervisor ensures that all of the 
platforms that support the SOA (the plumbing) are running in a consistent and predictable 
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manner, providing the required service levels. The supervisor monitors all of the running 
business processes and takes corrective action, if the quality of service is not being met. Finally, 
an Enterprise Service Bus (ESB) may be required to transport the plethora of messages that 
passes between the software components so that the end-to-end message passage occurs reliably. 
Indeed, a full SOA implementation is very dynamic. 

The introduction of SOA as the solution to the DoD Data Strategy for assured, secure, 
authenticated information sharing and the need to incorporate services and SOA in the 
architecture descriptions create greater analysis and evaluation challenges than those faced prior 
to SOA. The architecture description mandated as the mechanism for describing solutions for 
transformation provides a static representation of highly dynamical systems, but quality of 
service, including performance, is a major requirement and concern for many DoD systems and 
capabilities. We therefore need to go beyond the typical architecture descriptions to a more 
complete examination of the logic, behavior, and performance of proposed systems. 

Figure 5.1, which was first presented in Wagenhals, Haider, and Levis [2003: 281], provides 
a framework for a process for achieving a reliable architecture description with rigorous 
evaluation. In addition to the architecture description and the evaluation outputs. Figure 1 shows 
the feedback that occurs from the development of the executable model and its use both in 
evaluation and in the refinement of the architecture design. This diagram provides a high level 
view of a process for building and evaluating concepts with the help of an executable model of 
an architecture description. Three processes need to be addressed: (1) a process for creating the 
architecture description (DoDAF does not specify any process), (2) a process for converting the 
architecture description to the executable model and (3) a process for using the executable model 
for analysis and evaluation., 
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The architecture creation process relies on one of two prevalent methodologies. Object 
Orientation and Structured Analysis. Either methodology can produce all the information needed 
for conversion to the executable model [Wagenhals et al., 2000] and [Wagenhals, Haider, and 
Levis, 2003], but care must be taken to follow procedures that ensure all the needed data are 
captured. A key concept is that all elements of the executable model must be traceable to 
elements in the architecture description. As more is learned about the behavior and performance 
of the architecture from the creation of the executable model and the detailed analysis of 
behavior, any changes detected using the executable model are used to modify the architecture 
description. Discrete event dynamical system models are appropriate for the executable model, 
and the Colored Petri Net (CPN) is a sufficiently general and rigorous model 
[http://wiki.daimi.au.dk/cpntools/cpntools.wiki]. 

Other modeling approaches such as State Machines, Queuing Models, Automata, etc. can be 
used, but CPNs subsume all of these. CPNs were chosen because they are graph theoretic, 
executable, and enable both simulation and analysis of properties. They are rigorous in the way 
they handle concurrent and asynchronous events. Once created, the executable model can be 
used to support logical, behavioral, and performance evaluations as will be described in Section 
5.4. 

5.3. Process Descriptions 
Wagenhals et al. [2000] developed and described a process for creating the DoDAF 

Operational and System Views using Structured Analysis. A process for using Object 
Orientation and the Unified Modeling Language (UML) was described and illustrated in 
[Wagenhals, Haider, and Levis, 2003]. A model of this UML process is shown in Fig. 5.2. The 
process evolves through six stages. Stage 0 initiates the effort and includes the articulation of the 
purpose and scope of the architecture, as well as the identification of background documentation 
needed to create the architecture. Stage 1 focuses on developing the operational concept. 
Organizations and their relationships are defined in Stage 2 along with an initial sketch of the 
system nodes and links of the Systems and Services View. Stage 3 involves a full analysis of the 
Operational View. If Object Orientation is used, both structure and behavior diagrams are 
developed to understand and describe the operational activities carried out by organizations and 
the information that needs to be generated and exchanged. If Structured Analysis is used, this 
analysis is accomplished using activity, data, rule, and dynamics models. Stage 3 also turns to 
the Systems and Services View by developing mappings from the operational activities to the 
systems, services and system functions. In Stage 4, summary Operational View products are 
generated, and the detailed analysis effort shifts to the Systems and Services View. The same 
Object Oriented or Structured Analysis techniques are used, but the focus is on system 
components and their functions along with system data that is exchanged. In the last stage. Stage 
5, the architect extracts data and concepts from the Stage 4 analysis and generates system and 
service interface descriptions, the communications infrastructure description, the system and 
service performance parameters documentation, and the system, service, and technology 

50 



evolution descriptions. Both Structured Analysis and Object Orientation based on UML can 
produce a complete architecture description conformant to the DoDAF products. 

Both will describe the same operational activities, information exchanges, operations nodes, 
etc. in the Operational View, and the same systems, services, nodes, interfaces, data exchanges, 
and communications systems, in the Systems and Services View. When using Structured 
Analysis, the key models are activity models (IDEFO or Data Flow Diagrams), data models (e.g.. 
IDEF1X or Entity Relationship Diagrams), rule models, and dynamic models (e.g., state charts 
and event traces). If Object Orientation is used, structural diagrams (class, component, and 
deployment diagrams) and behavior diagrams (activity, state machine, and sequence diagrams) 
are developed. Some of the UML products look different than products developed using 
Structured Analysis models, but the concept content is the same. 

In following the process described in Figure 2, the development of the architecture must 
adhere to certain design constraints in order for the architecture data to be converted into the 
CPN executable model using the techniques described in Wagenhals et al. [2000: 230- 236] and 
Wagenhals, Haider, and Levis [2003: 275- 278]. This means that both the Operational and the 
Systems and Services Views must be designed to carry out the operational concept. 
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Fig. 5.2: DoDAF Architecture Design Process. 
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The views must include all activities or functions and their relationships, define all of the 
information or data exchanges (messages), and express the logic of each activity or function. 
This architecture data are used to produce the CPN with the functions being modeled as 
transitions and the relationships between the functions using directed arcs and places. The color 
set declarations for the tokens in each place are obtained from data descriptions, and the logic- 
descriptions are used as arc inscriptions or guard functions. These architecture data are contained 
in both Structured Analysis and UML models, although the format is different. This means that a 
Structured Analysis derived CPN will not appear to be identical to one derived from a UML 
description of the same architecture, but since the same functions, relationships, data, and logic 
will be described, the behavior of the two should be identical. Concordance must be maintained 
wherein consistency and completeness are assured across all of the data and the descriptions that 
are created using the various UML or Structured Analysis diagrams. 

Once the executable model has been created, it can be used to address, in part, the following 
layered questions: (1) Is the architecture logically correct? (2) Does the architecture exhibit the 
desired behavior? (3) Are the instantiations of the architecture in the Systems and Services View 
consistent with the Operational View? (4) Do instantiations of this architecture exhibit the 
desired performance characteristics? (5) Do systems built in conformance to the architecture 
provide the desired capability? (6) Can we analyze alternatives? 

The construction of the executable model, especially of the one based on the operational 
view, provides the basis for checking the logical consistency and correctness. The first step is to 
validate the logic of the model. The static views describe the structure, data, and rules that 
manipulate that data to accomplish tasks. We need to verify that the combination of rules, data, 
and structure "works," e.g., the rules are consistent and complete. This can be accomplished by 
executing the model to be sure that it runs properly. In a sense, we are "debugging" the 
architecture. Any errors found must be corrected in the appropriate static views to preserve 
traceability. 

We can execute the model using notional inputs to determine whether activities do indeed 
use data specified by the information exchange requirements. "Flaws" can result in either an 
incorrect response or a deadlock. We can test the sequence of events; i.e., does the executable 
model produce the sequences specified by the sequence diagrams? And we can see whether the 
execution of activities is a correct implementation of the operational concept. 

Once we verify that the executable model runs properly we can examine the behavior of the 
architecture; this is an examination of the functionality of the architecture. The behavior of the 
executable model and the behavioral diagrams should correlate. This behavior evaluation has 
several facets: Does the architecture produce all the correct output for a given stimulus? Does the 
information arrive at the right functions in the right sequence, i.e., are the inputs processed in the 
required way? The behavior of the architecture can be compared to the user's requirements. 
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The behavioral correctness can be approached from two perspectives: the operational 
perspective and the systems and services perspective. For the operational perspective, scenarios 
are developed and executed to determine whether the desired behaviors (as reflected in the state 
charts or event traces) are obtained. What is of particular interest here is the identification of 
undesired behaviors or the possibility of undesired states. Note that state transition descriptions 
(OV-6b and SV- 10b) and the event trace descriptions (OV-6c and SV- 10c) capture only a few 
of the desired behaviors. A real system may exhibit many more behaviors and the use of an 
executable model is one way of determining them. If CPNs are used for the executable model, 
then algorithms based on invariants can be used to relate the structure of the model to its 
behavior [Valraud and Levis, 1991]. 

Once behavioral correctness has been established, performance can be examined. With 
DoDAF architectures, performance of the implementation of an architecture can be evaluated 
only through the use of the executable model derived from the architecture data in the systems 
and services view. The performance parameters of the systems and services used to implement 
the architecture are obtained from the Systems/Services Performance Matrix (SV-7). Scenarios 
need to be developed that are consistent with the use cases. Data collected from simulation can 
be used to compute relevant Measures of Performance (MOPs). CPNs offer more than just 
simulation to support the analysis and evaluation. CPNs in general (and CPNTools [2008] in 
particular) allow behavioral properties to be verified by analysis without resorting to simulation. 
State Space Analysis is an analysis technique that provides a variety of properties about a CPN 
[Kristensen, Christensen, and Jensen, 1998: 122-129]. State Space Analysis techniques have 
been implemented in CPNTools. While each simulation run of the executable model shows 
particular sequence or trajectory of processing for a given input set. State Space Analysis shows 
all possible trajectories for a given input. State Space Analysis provides a detailed look at all 
possible sequences of states that can occur given a specific input set. Thus, it can be used to see 
if it is possible for a set of inputs to generate undesired sequences or outputs. In addition, State 
Space Analysis can determine several important properties of the state space of a CPN model. 
These include statistics such as the total number of states and transitions between states, liveness 
properties such as the number and identity of final states, and the number and identity of CPN 
transitions that can never fire in any sequence. The analysis determines boundedness properties 
that identify the minimum and maximum number and type of tokens (a CPN representation of an 
instance of data, e.g., messages) that occur in each place. It also captures the marking 
(distribution of tokens) for any state including the final states so that these can be examined. 
Figure 5.3 illustrates the relationships that can exist between the Architecture Description and its 
executable model as the latter is used both in simulation and State Space Analysis. 
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Fig. 5.3: Architecture Evaluation with Executable Model. 

It is important to understand that building the executable model does not provide in itself an 
evaluation. The logical, behavioral, and performance aspects described above outline the steps of 
a process for evaluation, and the executable model becomes an important tool in that process. 
Each step requires more effort and additional information. One advantage of this staged approach 
is that one does not need to enter the details of the systems, a very laborious and costly 
undertaking, until the previous stages are completed satisfactorily. 

5.4. Case Study 
A Case Study has been created to demonstrate the process for completing a full DoDAF 1.5 

compliant architecture. It is based on a hypothetical operational concept for a new Theater 
Ballistic Missile Defense (TBMD) system called the Airborne TBM Intercept System (ATIS). It 
is not an accurate description of such a system—it has been created for the express purpose of 
illustrating the architecture design process, especially the case where incorporating new 
information technology (e.g., net centric concepts and a modified interceptor missile) in existing 
large legacy systems provides a new capability. It was assumed that the architecture will be used 
to inform decision-makers about the nature of a new TBMD system and some of the tradeoffs 
involved in building one. 

All DoDAF 1.5 products were produced using the previously described process; both Object 
Orientation (using UML) and Structure Analysis were used to illustrate the techniques for both 
methodologies. An Executable model using CPNs and the CPNTools software was created for 
the Operational View. Logical, behavior, and high level performance evaluations were 
accomplished using the simulation capabilities of the tool. We describe the process for creating 
the DODAF 1.5 All View 1 product, plus all of the Operational and System and Services View 
products. We will illustrate the conversion to the CPN and the use of the CPN to perform the 
analysis. 

As shown in Fig. 5.2, the first part (Stage 0) of the process involves the collection of data and 
information that is pertinent to the architecture. This includes any description of the operational 
concept, potential operational activities from authoritative sources such as the Universal Joint 
Task Lists [2002], doctrine, tactics, techniques, and procedures, etc. It also includes information 
about systems, services, and communications networks. During Stage 0, it is imperative that the 
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architect or architecting team establish the purpose and the scope of the architecture description. 
The purpose defines the questions that the architecture description will answer and the time 
frame of the architecture. In the case study, the purpose was to develop an understanding of the 
arrangement and interoperation of organizations and systems that support the concept of 
operations for ATIS. The architecture is designed to determine if the operational concept can be 
made to work and to assess the impact of evolving this system into the Net Centric Environment 
including its evolution to incorporate Net Centric Enterprise Services and create special services 
of its own. An additional goal is to be able to assess the ability of the proposed system to destroy 
incoming TBMs based on the capabilities of Adversary A and B to launch them. Since we have 
knowledge about the individual TBMs, but do not know exactly how many TBMs each 
adversary has or how many can be launched at one time, we need to bound the problem and 
define how many ATIS assets will be needed to give us the capability to defeat them. 
Supplementing the purpose is a point of view; in this case, it is that of the ATIS Commander 
who would understand all of the operating procedures and know the basic systems. The scope 
includes a time frame between 2010 and 2015. All of this initial analysis, i.e. purpose, scope, and 
reference data will be cataloged in the All View Overview and Summary Information (AV-1). 
After the architecture has been completed the results of the analysis also will be included in the 
AV-1. I 

In Stage 1 of the basic process, the architect develops the operational concept and creates 
both a graphic and a textual description. This becomes the OV-1, Operational Concept Graphic 
product. Figure 5.4 show the Operational Concept graphic. Note that the elements of the graphic- 
represent types of operational nodes not systems. Of course, in a system like ATIS, the 
operational concept will rely heavily on systems (Radar, Interceptors, Command Centers, etc.), 
but it is important not to constrain the design of the material solution by specifying exact systems 
in the operational concept. Indeed, the concept could support a nontraditional airborne laser 
"interceptor" where the "missile" is a laser shot. This OV-1 would not need to be modified 
significantly to support this material solution. Note that the boundary of the ATIS architecture 
has been depicted in the graphic to distinguish what the ATIS architecture is composed of as well 
as the entities that will be external to ATIS but that will interact with it. The textual description 
explains that the operational concept is based on the use of existing legacy systems that will be 
given modifications to support the concept of intercepting Tactical Ballistic Missiles using 
modified interceptors and interceptor missiles. 
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Fig. 5.4: OV-1, Operational Concept Graphic. 

In Stage 2 of the basic process, the architect determines the organizations that will execute 
the operational concept and the relationships that will exist between those organizations. Figure 
5.5 shows the OV-4, the Organization Relationship Diagram. The UML format is shown. If 
Structured Analysis is used, the resulting diagram would be very similar. It would not have the 
UML symbology for the relationships between the organization, but rather different styles of 
lines to show the different types of relationship. Understanding these relationships is key to most 
military command and control architectures. 

The organizations will provide the operators who are responsible for performing the 
operational activities that will be defined in other OV products. These operational activities will 
be allocated to what are called operational nodes in the Operational Views. At this point it is 
possible to determine what the operational nodes will be. The designation of operational nodes 
may be based on the organizations that will carry out the operational activities at those nodes or 
on logical groupings of operational activities that will be carried out by one or more 
organizations. In the case study, four ATIS operational nodes were created: a Command Node, a 
Sense Node, a Control Node, and an Intercept Node. In the case study, these operational nodes 
have a one-to-one mapping to the organizations, but that will not always be the case. In selecting 
organization, the architect also must be aware of the assets (systems) that the organizations 
possess and use. This understanding of the organization along with the operational concept can 
be used to create an initial sketch of the systems and services view SV-1. While this is only a 
sketch, it can start the process of creating the SV products. In the case study it was assumed that 
existing systems such as Radars, Command Centers, Control Centers, and Interceptors would be 
used as the systems. Figure 5.6 shows an initial sketch of those Systems using the UML 
deployment diagram. A similar sketch can be created without using UML. 
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The process now shifts to Stage 3, which has two foci. The first is on a detailed analysis and 
description of the operational view. The effort describes the operational activities and their 
relationships, the operational information, and the dynamic behavior of the operational view. The 
second focus is on the System and Services View and mapping the operational activities to the 
systems, system functions, and services that will support those activities. 
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Fig. 5.5: OV-4 Organization Relationship Diagram 

The Operational View models and products of Stage 3 include the Activity Model (OV-5), 
the Logical Data Model (OV-7), and the behavior descriptions including the Operational Rules 
Model (OV-6a), the Operational State Transition Description (OV-6b) and the Operational Event 
Trace Description (OV-6c). These products can be represented using either UML diagrams or the 
various models that are traditionally used in the structured analysis methodology (activity 
models, data, models, rule models, and dynamic models). 

Figure 5.7 shows a UML activity diagram that was created for the case study. The activities 
were derived from a functional decomposition that was created to represent the type of 
information that is in the Universal Joint Task List [UJTL, 2002]. Only the leaf level tasks were 
used to create the diagram. If the architect allocates the operational activities to the operational 
nodes, then the activity diagram can be created using swim lanes, one swim lane for each 
operational node. Figure 5.8 shows this version of the OV-5. Note that there may be more than 
one activity diagram for OV-5. In the case study, there were two, one for Adversary type A and 
one for type B. 
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Fig. 5.8: Activity Diagram OV-5 with Swim Lanes. 

Once the activity diagrams with swim lanes have been created, it is a simple matter to 
convert them to UML sequence diagrams that can be used for OV-6c. Figure 5.9 gives an 
example from the case study. Note that each arrow that crosses a swim lane in the OV-5 becomes 
a message between the life lines of the UML sequence diagram. We have provided labels for 
these messages. 

In UML it is easy to convert a sequence diagram to a communications diagram. These have 
more of a structure like appearance than the sequence diagrams. They describe links between the 
objects* life lines. Each link will be an instance of an association that exists between the 
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classifiers of each object. Figure 5.10 shows the UML communications diagram that corresponds 
to the sequence diagram of Fig. 5.9. 
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Fig. 5.9: UML Sequence Diagram used for OV-6c. 

UML does not have a "rule model" per se. OV-6a is a description of operational rules and 
must be consistent with the other diagrams. The rules can be created for each operational node. 
By using the activity diagram with swim lanes, it is straightforward to create rules in the 
Structured English form of "IF (conditions), Then (Condition or Action), Else, (Condition or 
Action)." By looking at the arcs that cross swim lanes into an operational node and the activities 
and their output that are a result of those inputs, one can describe the behavior using Structured 
English. For example, the rules for the Sense node in the case are: 

Rule 1: If Surveillance Directive (Track Threat) and Threat Status (Incoming) then 
Track Object and Generate Tactical Picture (new). 

Rule 2: If Surveillance Directive (Track Intercept) and Threat Status (Incoming) then 
Track Object, Associate Threat ID, and Int. ID and Generate Tactical Picture 
(engaged). 

Rule 3: If Surveillance Directive (Assess Kill) then Track Objects, Perform Kill 
Assessment, and Generate Tactical Picture (Killed). 

These rules indicate some of the attributes that the operational information exchanges must 
have. These operational information exchanges and attributes will be described in the logical 
data model (OV-7). With UML it is possible to create state machine diagrams to describe the 
behavior of instances of classifiers. These can be used to provide OV-6b. In the case study, four 
state machine diagrams were created, one for each operational node. One must define the various 
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states for the operational node and then describe the events (usually the arrival of a message or 
the completion of an activity or task) that cause the transitions between the states. The behavior 
described in each state machine diagram should match the flows in the activity diagram with 
swim lanes and the sequence diagrams. Figure 5.11 shows the state machine diagram for the 
Sense operational node. 
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Fig. 5.10: UML Communications Diagram. 

Each element of the UML behavior diagram represents an instance of a classifier. A UML 
class diagram can be created based on the behavior descriptions that created for the OV-5 and -6 
series. Figure 5.12 shows the UML class diagram for the case study. Note that classes have been 
created for each operational node. The operational activities are represented as operations of the 
classes. Association classes are used to describe the operational information that is exchanged 
between operational nodes. The association classes enable the architect to describe the attributes 
of each operational information exchange. Attributes have been included for each operational 
node. These attributes represent operational information that each operational node knows or 
stores in order to carry out the operational concept. 
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Fig. 5.11: State Machine Diagram for the Sense Node (OV-6b). 
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Fig. 5.12: Class Diagram. 

The class diagram can be used as the Logical Data Model (OV-7) by hiding the operations. It 
can also serve the basis for the Operational Node Connectivity Description (OV-2). In this case 
the attributes are hidden, operations are shown, and each association class is given an operational 
information exchange identification number. These identification numbers will be used in the 
Operational Information Exchange Matrix (OV- 3). The case study OV-3 is shown in Fig. 5.13. 
It shows each operational information exchange and the operational node and activity that 
produces it and the operational node and activity that receives it. OV-3 reflects the analysis 
shown in OV-5, the -6 series, and -7. 

The OV products that have been shown are based on UML diagrams. If the Structured 
Analysis methodology is used, the same architecture data would have been created, and all of the 
OV products except for OV-5 and OV-7 would be the same. OV-5 and -7 would have a different 
appearance because different modeling languages would be used. Figures 5.14 and 5.15 
respectively show the OV-5 and OV-7 based on IDEFO and IDEF1X modeling languages. 
Structured Analysis is based on functional decomposition; therefore, the IDEFO would follow the 
activity decomposition provided by the UJTL. Figure 14 shows the decomposition of the context 
(A-0) page; the full model had three levels. Note that the IDEF1X description of the operational 
information exchanges and their attributes is the same as described in the OV-7 based on UML. 
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As Stage 3 nears completion, it is possible to start the design of the Systems and Services 
View. This work should not begin until the Stage 3 of the Operation View is complete because 
the Systems and Services View shows how the material resources will support the operational 
view. The first step is to develop the mapping between the operational activities and the system 
functions, the systems, and any services. These mappings are described in the SV-5 products. 
Producing these mappings is a systems engineering activity involving trade-offs between 
different potential configurations of systems and services to support the operational view. In the 
case study, it was assumed that the architecture would rely on as many legacy systems as 
possible. In addition, one of the questions to be explored with the architecture was the impact of 
employing services within the architecture. The systems and their system functions were 
fabricated for the case study. The basic systems have been shown in the initial sketch of Figure 
5.6. For services it was assumed that three of the Net Centric Enterprise Services being 
developed by DoD will be available. In addition, it was assumed that a Global Ballistic Missile 
Warning Service would be available. Two ATIS specific services were postulated: a tactical 
picture service capable of providing tactical picture of the TBM engagements and a special kill 
assessment service that could support the determination of success of each TBM engagement. 
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Fig. 5.15: OV-7 Based on IDEF1X 

Figure 5.16 shows a matrix that was generated to map the operational activities to existing 
systems and the system functions they provide. Figures 5.17, 5.18, and 5.19 show the three 
DoDAF 1.5 SV-5 products. SV-5b and c are new products in DoDAF 1.5. SV-5b maps 
capabilities defined as a grouping of operational activities to system and their system functions. 
SV-5c maps the capabilities to services. Note that the latter two SV-5 products allow the use of a 
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stop light color coding system to describe how well each system or service supports the 
operational activity and thus the capability. It is important that these products be provided with a 
time stamp or time window as the ability of a system or service to support a capability may 
change over time. In the case study example the SV-5b and c were developed assuming an initial 
operational capability in 2010. Thus some of the system functions and the services will not be 
fully capable in that time frame. Instead of a stop light system, a grey scale has been used to 
reflect the readiness of the system function or service with light, medium, and dark grey meaning 
good, partial, and non-satisfactory capability, respectively. The SV-5b and c products are shown 
in Figs. 5.18 and 5.19. 
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Fig. 5.16: Mapping from Operational Activities to Systems and their Functions. 

Once the mapping from operational activities to systems and services has been postulated, 
the architect moves to a detailed analysis of those systems, services, and functions in Stage 4. 
The techniques are similar to the ones used for the operational view. When using UML, the 
architect will create a set of behavior and structure diagrams. The behavior diagrams consist of 
the activity, sequence, communications, and state machine diagrams using the same techniques 
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that were used for the Operational View. Instead of class diagrams for structure diagrams, 
component and deployment diagrams will be used to focus on the systems and their interfaces. If 
the Structured Analysis methodology is used, then activity models (e.g. IDEFO or Data Flow 
Diagrams), data models (e.g. IDEF1X or Entity Relationship Diagrams), rule models, and 
dynamic models such as state transition diagrams, and sequence diagrams will be used. Instead 
of focusing on operational activities, the organizations or operational nodes that will perform 
them, and the operational information exchanges, the System and Service View analysis is 
focused on system nodes, systems and their function, or services, and system data that is 
exchanged. We will first show some of the products produced using UML. Every diagram will 
not be shown; we omit the diagram if the diagram creation technique is similar to that used in the 
Operational View. 
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Fig. 5.17: SV-5a, Operational Activity to Systems Function Traceability Matrix (partial). 

We start with the activity diagram which will be used to produce the SV-4. As we did with 
the operational view, we will use swim lanes. In the Systems and Services View, the swim lanes 
will be created for the instances of the components that represent the systems or services rather 
than operational nodes as was done for the Operational View. The activities in the activity 
diagram will be the functions that the systems or services perform. Figure 5.20 shows part of an 
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activity diagram that is based on systems and their functions. This activity diagram can be used 
for SV-4a, the Systems Functionality Description. 
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Fig. 5.18: SV-5b, Operational Activity to Systems Traceability Matrix. 
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A similar diagram can be created showing services as components. Such an activity diagram 
would be used as the SV-4b, Services Functionality Description. Both activity diagrams can be 
converted to sequence diagrams in the same manner as was done for the Operational View. To 
focus on the service aspect of the ATIS architecture, a sequence diagram was created that 
showed the major services (but not the Machine-to-Machine Messaging Net Centric 
Environment Service). This diagram is shown in Fig. 5.21. It shows the major systems and the 
services as component life-lines. The service life lines are labeled with the stereotype 
"<Service>." Figure 5.21 shows the sequence of data messages that are exchanged to carry out 
the operational concept when services are incorporated. This diagram can be presented as SV- 
1 Oc. but DoDAF 1.5 says that this type of diagram also can be used as an SV-4. 
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Fig. 5.19: SV-5c, Operational Activity to Services Traceability Matrix. 

DoDAF 1.5 states that the SV-4b should include a Service Specification. DoDAF 1.5 
provides a minimum set of data each Service Specification should have. Figure 22 shows the 
case study Service Specification. Only the services that will be part of the ATIS are included. 

As we illustrated with the Operational View, it is easy to convert the sequence diagram, once 
it has been created, to a communications diagram. While these diagrams are not part of the 
Systems and Services View products, they can lead to products such as the SV-1, the Systems 
and Services Interface Description. Figure 23 shows the communications diagram for the case 
where no services are provided and the interfaces are point-to-point. It was derived from the 
sequence diagram for SV-lOc, the Systems Event-Trace Description (not shown). 
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Fig. 5.20: SV-4a, Systems Functionality Description. 

Once communications diagrams are created, they can be transformed into component 
diagrams that reflect the interfaces between components that represent systems or services, 
figures 24 and 25 show the basic component diagrams for ATIS systems and services, 
respectively. Note that the UML artifact classifier has been used to represent the system or 
service data exchange messages. Figure 26 elaborates on the component diagram of Figure 24 
showing provided and required interfaces and listing the system functions of each component. A 
similar diagram can be created for the services. 

The interfaces define the system data that must be exchanged in the Systems and Services 
View design. Further specification of the systems data can be captured in the SV-11, the Physical 
Schema. Figure 27 shows the case study SV-11. 

This completes the Stage 4 effort. The SV 10a (Systems/ Services Rule Model) and SV-1 Ob 
(Systems/Services State Transition Description) are created in the same manner as was illustrated 
for OV-6a and b. They will not be shown here. 
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Fig. 5.22: SV-4b Service Specification. 
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Fig. 5.25: Component Diagram (with services). 

In Stage 5, the results of Stage 4 are summarized in a set of Systems and Services View 
products. Figures 5.28 and 5.29 show the two versions of the SV-1 (Systems/ Service Interface 
Description). These are UML deployment diagrams and were derived from the component 
diagrams shown in Figs. 5.24, 5.25, and 5.26. Note that a key interface designation has been 
added to each interface. These diagrams are analogous to the OV-2, Operational Node 
Connectivity Description. The details of the system data exchanges will be described in SV-6. 
the Systems Data Exchange Matrix, which is analogous to the OV-3. Details about each interface 
are provided in the SV-3 product. 

The case study SV-1 shows two concepts. The first SV-1 shows the ATIS without services 
(other than the TBM Warning Service). The Radar sends and receives system data messages 
directly to and from the Command Center systems. This design is tightly coupled, and system 
may need to be designed that way given the time critical nature of the system. Adding services 
reduces coupling but increase complexity. The radar sends track data to the tactical picture 
service that converts into the ATIS tactical picture and posts it in the NCES Content Delivery 
Service. Users can subscribe to this content, and the users can include the other ATIS system 
nodes. Furthermore, the ATIS Tactical Picture Service may receive data from non-ATIS sensors 
that could enhance the tactical picture. The Kill Assessment Service is decoupled from the Radar 
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(but it is shown as part of the Radar system, although it could be located elsewhere). Instead of 
tightly coupled to the Radar, it can be open to other inputs and processes that may enhance the 
overall kill assessment product. In a complex SOA environment, the equivalent of a service 
broker might link together all of the services and data providers prior to any actual TBM 
intercept. The details of this type of SOA have not been included in the architecture description. 
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Fig. 5.29: SV-1, Services Interface Description. 

The SV-6 (Systems and Services Data Exchange Matrices) are constructed in the same 
manner as the OV-3. Figure 5.30 shows part of this product that was produced for the Case 
Study. Other parts show Systems and Services Data Exchanges. 

The focus now shifts to the Systems/Services Communications Description (SV-2). Given 
the interfaces that have been developed in the SV-4 and SV-1, the communications infrastructure 
description is developed. Generally this will require expertise in communications networks and 
systems. Figure 5.31 shows a high level description of this infrastructure that was created for the 
case study. Note that the connection to the NCES to reach the non-ATIS services is depicted as a 
satellite communications link. The time delays associated with these links will need to be 
considered. If delays are too long, the ATIS will not be fast enough to carry out the operational 
concept. For the initial case study, very short time delays were assumed. 

The SV-3 (Systems-Systems Matrix, Systems-Services Matrix, and Services-Services 
Matrix) defines the interfaces, including communications that are depicted in the SV-1 and SV-2. 
A legend is created that provides codes for the different types of interfaces. Figure 5.32 shows a 
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portion of the case study Systems-Systems Matrix. The Systems-Services and Services-Services 
matrices of this product are not shown. 
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Fig. 5.30: SV-6, Systems/Services Data Exchange Matrix (partial). 

The remaining products, SV-7 (Systems/Services Performance Parameter Matrix), SV-8 
(Systems/Services Evolution Description), and SV-9 (Systems/Services Technology Forecast) 
show aspects of the evolution of the architecture. Figures 5.33, 5.34, and 5.35 show these 
products. 

As the architecture team completes the architecture development, it returns to the original 
questions that the architecture was designed to answer. For the case study there were three 
questions: 

1. Can the operational concept be made to work? The answer seems to be yes, based on the 
architecture, but more detailed analysis of the engagement envelope capabilities of the 
proposed interceptors and missiles should be undertaken. 

2. Can net centric concepts be leveraged, particularly the NCES? The answer seems to be a 
qualified yes, but the time critical aspects of the operational concept may require a 
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combination of loosely coupled service-based concepts backed up by a tightly coupled 
point to point solution. 

Can we answer questions about the capability of the ATIS system to respond against two 
different types of adversaries whose exact launch capability is not known? This cannot be 
answered with the architecture description, but by converting that description to an 
executable model, some insights can be provided. 
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Fig. 5.31: SV-2, Systems/Services Communications Description. 

To address question 3, the architecture description was converted to a CPN executable model. 
The structured analysis version of the architecture was used, and the executable model was 
created from the operational view. The technique described in Wagenhals et al. [2000] was used. 
CPNTools was the CPN software application. Figure 5.36 shows the first level of decomposition 
of the CPN model. Note the similarities between this CPN model page and the IDEFO page 
shown in Figure 5.14. 
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Fig. 5.32: SV-3, Systems to Systems Matrix. 
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Fig. 5.33: SV-7, Systems Performance Parameter Matrix. 
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Fig. 5.35: SV-9, Systems/Services Technology Forecast. 

Once the CPN model was created, it was executed to check the logical correctness of the 
Operational View architecture description. As errors in it were detected, corrections were made 
in the CPN model and the architecture. Then the architecture was tested for various sets of inputs 
to be sure that the behavior of the architecture was satisfactory. This included checking the 
behavior of the system against both Adversary A and Adversary B. The sequencing of the 
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events, messages, and activities was checked and compared with the descriptions in the OV-5 
and -6b and c. Again necessary changes were made to both the architecture description and the 
CPN model. The architecture description presented in this paper contains the architecture in its 
corrected form. 

Autnc 

Fig. 5.36: CPN Model of the ATIS Operational View. 

Once the initial logical and behavioral correctness was verified, a scenario was established to 
address the question about the capability of the ATIS against the adversaries. It was assumed that 
the adversaries would have a capability to launch multiple TBMs. It also was assumed that the 
ATIS system would be deployed and would have sufficient warning of potential adversary action 
to have all of its systems in place including the interceptor aircraft. Two questions to be 
addressed: (1) can the ATIS system issue the appropriate commands and data so that it can shoot 
down the TBMs that may be launched and (2) how many interceptors will be required to handle 
various threat capabilities? 

The scenario was parameterized as follows. We assumed that that the ATIS system must be 
able to launch its interceptor missile at the TBM within 400 s of initially detecting the TBM with 
the ATIS Radar. If it takes more than 400 s (6 min 40 s) to launch the interceptor missile, the 
TBM will be out of range and will be declared as a "leaker." Indeed we would like the average 
response time to be less than 400 s. 
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Fig. 5.37: Parameter Locus. 

To address these questions it was necessary to set the CPN model up as a timed CPN. This is 
because the performance of the ATIS would be based on the number of successful intercepts it 
could make against multiple TBMs. Whether an intercept is successful or not is based on the 
amount of time it takes for the interceptor to get into position and for the ATIS system to issue 
the order to launch the interceptor missile. Time delays were estimated for each operational 
activity and applied as delays for each transition that represented an operational activity. These 
estimates were based on the notion that the systems, system functions, and services supporting 
the operational activities would be able to accomplish each task in a few seconds (see SV-7, Fig. 
5.33). Additional time delay was added to each activity (transition) to account for operator 
reactions. For our initial analysis, we assumed that communications delays would be negligible 
compared to the processing and human decision making delays and therefore zero time delay for 
the communications network was assumed. Indeed the communications network was not 
modeled explicitly. The approach for modeling explicitly the communications network and 
linking it to the executable model of the architecture was described in Shin and Levis [2003]. 

Input, ATIS System, and Output variables were established for the scenario. The inputs to the 
ATIS model included the individual TBMs and the authorization message. For the TBMs the 
variables were the total number of TBMs and the time interval between TBM arrivals. For the 
Authorization variable the values were Adversary A and Adversary B. For the ATIS system the 
number of interceptors was the main variable. The output variables were four Measures of 
Performance (MOPs): Average Response Time (in seconds), Throughput Rate (kills per second), 
the number of kills (integer), and the number of leakers (integer). 

To evaluate the potential performance the total number of TBMs fired was fixed at 10. and 
two parameters were varied. The TBM inter-arrival time was varied between 0 and 100 s, and the 
number of interceptors was varied between 3 and 5 (integer) interceptors. The range of these two 
parameters can be viewed as a parameter locus as shown in Figure 5.37. The 15 input pairs 
shown as the small circles indicate that values that were used for the analysis. Note that the TBM 



inter arrival time is a continuous variable while the number of interceptors in a discrete variable. 
The area between the points has been shaded to aid in visualization. 

The executable CPN was run in simulation mode at each of the 15 points in the parameter 
locus. The CPN has been set up so it records the time each TBM entered the ATIS system and 
the time that the intercept occurred. The CPN determines for each TBM if the intercept occurred 
within the 400 s requirement. If it did, it was considered a kill, and if not it is a leaker. Collecting 
these data enables the calculation of the values of the average time for intercept (average 
response time) and the throughput rate MOPs. Figure 5.38 shows an example of the results of a 
simulation run. The values on the tokens show the TBM number, the interceptor number, the 
time the TBM entered the ATIS system, and the time that the interceptor missile was fired. The 
figure shows that with four interceptors and 10 TBMs that arrive within the ATIS area every 20 
s, 8 TBMs are successfully intercepted and 2 are not. 
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Fig. 5.38: Simulation Run (20 second interarrival time; 4 interceptors). 

The results of the 15 simulation runs are plotted as a performance locus in a 3-dimension 
performance space as shown in Figure 5.39. The values of three key MOPs were calculated from 
the data in the simulation runs: average time per intercept, throughput rate, and number of 
leakers. Requirements were established for these MOPs (no more than two leakers and maximum 
allowed average intercept time of 400 s). The projection of the performance locus onto the 
Leaker—Average Response Time plane is shown in Figure 5.40. The combination of MOPs and 
requirements can be visualized in a plot showing a Requirements Locus overlaid on the 
projection of Figure 40, as shown in Figure 5.41. To help determine the potential effectiveness. 
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the mapping of the intersection of the requirements locus and the performance locus onto the 
parameter locus was accomplished as shown in Figure 5.42. A Measure of Effectiveness (MOE) 
value of 75% was calculated based on the percentage of the parameter locus that would result in 
meeting the performance requirements. 

10. 

Throughput Rate 
i/sec) 

Average Response Time (Sec) 

Fig. 5.39: Performance Locus for Simulation Run (20 second interarrival time; 4 
interceptors). 
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Fig. 5.40: Projection of Performance Locus onto the Leaks/Average Response Time Plane. 

Additional results of the analysis are summarized as follows: 

• Three interceptors can handle the 10 threats (with a max of 2 leakers) if they arrive at 
a rate slower than 1 in 45 s. 

• Four interceptors can handle the 10 threats (with a max of 2 leakers) if they arrive at a 
rate slower than 1 in 20 s. 

• Five interceptors can handle the 10 threats (with a max of 2 leakers) if they arrive at a 
rate slower than 1 in 10 s. 
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Fig. 5.42: Projection of Requirements Locus onto Parameter Locus. 

A similar set of results was determined against Adversary A. 

These results are based on the CPN executable model of the operational view. They are based 
on estimates of how long it will take to accomplish the operational activities. This time will be 
based on a combination of the time it takes for humans to interact with the systems that are 
supporting them and on the processing and communications delays of the systems, services, and 
communications networks that are described in the Systems and Services View. For our 
executable model we made a rough order of magnitude estimate of these time delays. An 
executable model of the Systems and Services view could be created using the same techniques 
that was used of the Operational View to better understand the system and communications time 
delays. Executable models of the alternative Systems and Services Views (such as the peer-to- 
peer architecture or the one based on Services) could be made to determine if these architectures 
can meet the requirements. 
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5.5. Comments and Conclusion 
We have illustrated three interrelated processes for developing DoDAF 1.5 compliant 

architectures, deriving a CPN executable model from that architecture data, and using the CPN 
model to support analysis and evaluation. The techniques described allow for a much more 
thorough examination of the behavior and performance aspects of the architecture than what can 
be done using only the architecture description. Conducting this type of analysis and evaluation 
is becoming more critical as DoD continues its migration to net centricity with SOA as the 
postulated solution. However, the move to SOA increases the complexity (there are many 
moving parts). Research is underway to develop techniques for creating executable models that 
will examine behavior and performance with SOA. Various Communities of Interest (COIs) are 
considering SO As. The desire to enable ubiquitous information sharing across domains and COIs 
implies the possibility of Federated SOAs which will require further investigation of behavior 
and performance. There are many ways to implement a SOA; there are many choices to be made. 
These choices can be informed by rigorous analysis and evaluation. A high level of abstraction 
has been used for our illustration. It is important not to go into too much detail early in the 
process as it must be shown that the abstract concepts work before investing a lot of time in more 
detailed descriptions. Evaluation becomes more complex as the communications infrastructure is 
considered in the systems view. To deal with this complexity, layered approaches that involve 
interconnecting the CPN executable with network simulators have been demonstrated [Shin and 
Levis, 2003]. These capabilities will enhance evaluation. 

The process for conversion of the architecture description to the executable model is well 
understood. However, there is a need for improved tools that can generate the executable 
automatically from the architecture data which will make this step even easier. Some in the 
software community have been developing techniques (e.g., xUML) that will enable the 
automatic generation of executable models from UML representations [Mellor and Balcer, 
2002]. The improved semantics and meta model of UML 2.1.1 are enablers of this automatic 
executable model generation. Recently, Liles [2008] developed and demonstrated a capability 
incorporated in Rational System Developer that enables the automatic generation of the CPN 
model (for CPNTools) from a UML architecture description using techniques similar to the ones 
described in this paper. If tool vendors will provide this mechanism in their tools, then the 
architect can have the executable model generated automatically as the architecture is developed, 
provided that the architect develops the complete description of the architecture in UML as 
required for the conversion. This will enable architects to "experiment" with the architecture 
description as it is developed. It is important to be sure that the execution model "engine" 
handles issues of concurrency and conflict properly; not all simulation engines do. This is why 
we have chosen CPN as the executable model. 

Generation of the executable model is a necessary step in the detailed analysis and evaluation 
of the architecture description, but it is not sufficient. A basic executable model can help the 
architect check the logic and some aspect of behavior, but addressing more complex performance 
issues requires additional data to be incorporated in the executable as was illustrated in our case 
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study. It would be desirable to have evaluation techniques included in the tools. Education and 
training of practitioners in the concepts of the architecture descriptions and the use of the 
executable model along with training on the use of specific tools are also needed. Architectures, 
if done properly in a layered way, are a great tool for innovative design. They allow the 
exploration of radical alternatives in a short amount of time, thus expanding the number of 
alternatives to be considered. They provide a way—using executable models— for new ideas to 
be explored. However, we have not developed adequate algorithms, tools, and techniques to 
support the use of architectures in concept development and in considering many (including 
radical) alternatives. We understand the fundamentals. There is sufficient theory in mathematics 
and computer science as well as modeling & simulation technology that should be exploited for 
this class of problems. We need to refocus our efforts and develop applications that will take us 
to the desired end: an efficient, architecture based systems engineering process that enables us to 
integrate legacy systems with new systems and exploit technology advances to provide desired 
capabilities to the users. 
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SECTION 6 

Analysis and Evaluation of System of Systems Architectures 

Stewart W. Liles and Alexander H. Levis 

6.1 Introduction 

Agility is a necessary response to uncertainty. If planners do not know what to expect then the 
plan must address a much broader set of contingencies than when there is no uncertainty. 
[Alberts and Hayes, 2007] Inherent to Alberts' and Hayes' comments on agile planning, is the 
need for systems to possess the ability to adapt to an operating environment that may be 
significantly different from the one for which they were originally designed. One way to address 
the agility issue, is to build systems that are composed of different types of systems and 
components that operate together to accomplish the tasks required by the organization - a system 
of systems (SOS). An approach for studying the effects of design decisions and modeling the 
capabilities required by the organization is to produce an architecture that describes the 
interactions of constituent systems used to provide capabilities to the organization. The goal is to 
produce an architecture that will satisfy the needs of the customer by providing multiple 
capabilities concurrently and possess the ability to adapt its structure to unforeseen operating 
environments. 

This research addresses the design and development of SOS solutions very early in the 
development process to assess the ability of the SOS to adapt to structural configurations for 
which it was not originally designed. The methodology uses model-driven development 
techniques to combine multiple operational and system architectures into a combined 
architecture that represents the attributes of the SOS implementation. That SOS implementation 
is then transformed into a dynamic model that enables an analysis of the interaction of the 
constituent systems of the SOS. 

A challenge to system engineers when developing SOS solutions is analyzing characteristics 
that assess the aggregate performance of the SOS. Most SOS definitions focus on the managerial 
aspects rather than technical aspects of the SOS. System engineers need measures and 
characteristics that can be assessed early in the development process in order to contribute to 
analyses of alternative SOS architectures. When defined as described, SOS engineers tend to 
measure constituent system characteristics and aggregate those measures for the architecture as a 
whole. This leads to bounding the problem by defining particular operating scenarios and 
optimizing configurations for a particular scenario. This optimization can result in SOS 
configurations that are not able to adapt to unpredictable operating environments. "The wide 
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range of threats faced today, their dynamic nature, and the complexity of the environments in 
which they must be defeated make it imperative to avoid 'optimizing' (perhaps more clearly 
said, 'fixating') on an approach that handles only one type of threat or situation well" [Alberts 
and Hayes, 2007]. The methodology presented here assesses alternative SOS implementations 
for SOS characteristics that address the interaction of the constituent systems and the ability of 
the architecture to provide multiple capabilities for the organization. 

System of Systems 

Figure 6.1 illustrates the enormity of the Department of Defense (DOD) SOS as an example 
of the complexity of some organizations. This is a partial list of the resources available to the 
DOD enterprise. It is futile to model the interactions among the constituent systems of the SOS 
in their entirety. The environments each can be deployed in are diverse and virtually 
unpredictable. The various configurations cannot be accurately predicted and the potential 
adversaries have not been defined. Additionally, technological advances add further uncertainty 
to the deployed environment. Finally, the organizational structure is unpredictable given the 
uncertainty of the factors already mentioned. 

An extended definition of SOS specifies the resources available to the enterprise and 
differentiates specific implementations used for particular purposes. The resources available to 
the enterprise compose the SOS. The resources are used by the enterprise to realize specific 
capabilities required by the organization. Identifying the specific implementation provides a 
structure on which to make measurements. It also provides a way to identify alternatives for 
comparison. A specific implementation requires a set of resources that are configured to provide 
a specific set of capabilities to the organization. The specific implementation is developed using 
the specification of the structural and behavioral relationships between resources defined in the 
architecture. The specific implementations of the architecture can be assessed for their ability to 
address the needs of the organization. The specific properties of the SOS will be detailed in 
Section 6.3. 

Architecture Modeling 

The goal of the SOS engineer is to demonstrate to the organization that a SOS architecture will 
meet the needs of the organization. In construction engineering, the vehicle for demonstration 
would be a paper model or a 3D computer generated representation. For the system engineer the 
vehicle for demonstration is an executable model that can represent the dynamic nature of the 
interacting systems modeled by the architecture. Operational architectures describe 
organizational roles that interact to provide a particular capability. System architectures describe 
a physical implementation that can be used to realize the capability. Current architecture 
modeling techniques tend to focus on the single system or single capability. However, a SOS 
architecture must describe multiple concurrently executing capabilities. While modeling a 
realization of a capability at the system level may require the use of multiple systems, engineers 
rarely model the multiple capabilities that a particular implementation must realize. The 
methodology uses operational and system architecture data to produce a combined SOS 
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architecture representation. The SOS architecture is used to create a specific implementation for 
analysis. The specific implementation is transformed into an executable form that enables the 
analysis of architecture alternatives in a static and dynamic environment. The measures 
developed for the methodology assess the ability of the architecture to adapt to configurations 
other than one for which it was designed. 
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Fig. 6.1. System of Systems [Brown, 2005] 

The methodology presented effectively models the interaction of constituent systems of the 
SOS and creates a boundary that allows the creation of multiple alternatives for comparison. 
This research focuses on the interaction between constituent systems and the nodes they occupy. 
Additionally, a method to capture the dynamic nature of the SOS at an architectural level is to 
produce an executable model from the architectural model. This research, then, uniquely 
characterizes the SOS and describes a methodology for assessing candidate architectures using 
the SOS measures Adaptability and Agility. 

The problem statement for this research is: To develop a methodology for measuring and 
evaluating a set of characteristics that uniquely describe a system of systems. 

Hypothesis: The performance measures Adaptability, Agility, and Degree of Reuse enable the 
comparison of alternative architectures for their ability to adapt to unforeseen configuration as 
the requirements of the organization change. 
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There are three primary contributions of this research: (1) Analytical measures that describe 
unique technical aspects of the system of systems;   (2) Methodology for combining behavior 
models to create an executable model for analysis; and (3) SOS architecture assessment of SOS 
characteristics given the analytical measures and the methodology. 

This section is organized around the technologies required to implement the concepts 
described above. Section 6.2 presents related research in the primary domains that were used to 
address the problem. Section 6.3 presents the SOS characteristics that were developed to assess 
the SOS architecture alternatives. Section 6.4 presents the methodology used to develop and 
assess the SOS architecture alternatives using the measures described in Section 6.3. Section 6.5 
presents the process for transforming the static architecture representation into a dynamic 
representation for analysis. Section 6.6 details a case study that provides evidence concerning 
the validity of the assessment methodology, SOS characteristics, and the executable models used 
to evaluate them. Section 6.7 concludes with the contributions of the methodology and ideas for 
future research concerning SOS architecture development and analysis. 

6.2 Related Work 

The primary product of the methodology presented here is a formally defined executable 
model that enables a static analysis of the graph representing the executable model and a 
dynamic analysis that uses simulation results from the model. Each section of this chapter 
addresses a particular concept or technology that is used by the methodology to facilitate the 
creation of a dynamic representation of the SOS architecture for the purposes of assessing 
specific attributes that affect its ability to adapt to unpredicted structural configurations. 

System of Systems 

There are many perspectives on what constitutes a System of Systems (SOS). This section 
discusses some of the more common definitions. While they are workable definitions, they tend 
to address a SOS's managerial aspects rather than its technological aspects. While managerial 
aspects are important, this research is focused on the technological aspects. 

Maier [1996] offers five SOS characteristics (listed in Error! Reference source not 
found.). They are: Operational Independence, Managerial Independence, Evolutionary 
Development, Emergent Behavior, and Geographic Distribution. 

The Defense Acquisition Guidebook states that the objective of SOS engineering is to satisfy 
capabilities that can only be met with a mix of multiple, autonomous, and interacting systems. 
The mix of constituent systems may include existing, partially developed, and yet-to-be-designed 
independent systems. [DAU, 2006] Additionally, Sage and Cuppan [2001] offer a 
comprehensive paper on the subject of SOS management in which they address the 
characteristics of the SOS and differentiate between a SOS and a federation of systems (FOS). 
The discussion is mentioned here to highlight that what constitutes a SOS is much in the eye of 
the beholder. A formal definition of a SOS is offered in Section 6. 3. 
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Table 6.1. System of Systems (SOS) Characteristics [Maier, 1996] 

Operational Independence of the Elements: If the system-of-systems is disassembled 
into its component systems the component systems must be able to usefully operate 
independently. The system-of-systems is composed of systems which are independent 
and useful in their own right. 

Managerial Independence of the Elements: The component systems not only can 
operate independently, they do operate independently. The component systems are 
separately acquired and integrated but maintain a continuing operational existence 
independent of the system-of-systems. 

Evolutionary Development: The system-of-systems does not appear fully formed. Its 
development and existence is evolutionary with functions and purposes added, 
removed, and modified with experience. 

Emergent Behavior: The system performs functions and carries out purposes that do 
not reside in any component system. These behaviors are emergent properties of the 
entire system-of-systems and cannot be localized to any component system. The 
principal purposes of the systems-of-systems are fulfilled by these behaviors. 

Geographic Distribution: The geographic extent of the component systems is large. 
Large is a nebulous and relative concept as communication capabilities increase, but 
at a minimum it means that the components can readily exchange only information 
and not substantial quantities of mass or energy. 

Maier's characteristics and those offered by Sage and Cuppan are appropriate to manage and 
acquire a SOS, but are not very informative in SOS testing and performance analysis. This 
research will attempt to answer part of the question of what, technically, must be modeled in 
order to accurately reflect the behavior and interaction among individual systems in the SOS. 
After all, it is the interaction among the constituent systems that provides synergistic or emergent 
behavior that is thought to be a SOS's primary characteristic. 

A shortfall of the above definitions is that they fail to bound the SOS is a way that allows 
SOS engineers to measure aggregate characteristics. When defined as described, SOS engineers 
tend to measure constituent system characteristics and aggregate those measures for the 
architecture as a whole. This leads to bounding the problem by defining particular operating 
scenarios and optimizing configurations for a particular scenario. This optimization can result in 
SOS configurations that are not able to adapt to unpredictable operating environments. "The 
wide range of threats faced today, their dynamic nature, and the complexity of the environments 
in which they must be defeated make it imperative to avoid 'optimizing' (perhaps more clearly 
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said, 'fixating') on an approach that handles only one type of threat or situation well" (Alberts 
and Hayes, 2007). 

SOS Taxonomy 

SOS is an emerging research area. Because there is no generally accepted set of attributes 
that characterize a SOS, it is difficult to describe where research fits in the SOS domain. For 
example, when discussing a SOS acquisition is the research addressing managerial aspects of the 
SOS, as described by Maier, or structural aspects as described by DeLaurentis [2005] in his 
taxonomy. While not comprehensive, it does provide a start that will be built upon as the 
research domain matures. The DeLaurentis taxonomy is summarized in Table 6.2. 

Table 6.2. Taxonomy for Describing a System of Systems [DeLaurentis, 2005] 

Category Description 

Resources The entities (systems) that give physical 
manifestation to the system-of-systems 

Stakeholders The non-physical entities that give intent 
to the SOS operation through values 

Operations The application of intent to direct the 
activity of physical and non-physical 
entities 

Policies The external forcing functions that 
impact the operation of physical and non- 
physical entities 

Level Description 

Alpha(a) Base level of entities in each category, 
further decomposition will not take place. 

Beta (p) Collections of a-level systems (across 
categories), organized in a network. 

Gamma (y) Collections of [3-level systems (across 
categories), organized in a network. 

Delta (8) Collections of y-level systems (across 
categories), organized in a network. 

While Maier addresses managerial aspects and DeLaurentis addresses structural aspects, this 
research concentrates on the SOS's technical characteristics. The SOS is composed of structural 
and behavioral characteristics that must be included in the model to accurately represent the 
SOS's dynamic characteristics. A specific definition is used by the methodology to express the 
difference between a system and SOS. While DeLaurentis offers a hierarchical approach to 
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differentiate specific instances of the SOS (Fig. 6.2), the methodology presented defines the SOS 
in terms of a set of resources that provide a specific set of capabilities to the organization. An 
instance of a SOS architecture might display certain aspects of this taxonomy, but the SOS 
architecture is not a static hierarchical structure. The methodology presented provides an 
extended definition of a SOS that differentiates the SOS from a specific implementation of a 
SOS architecture. 
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Figure 6.2. Graphical View of DeLaurentis Taxonomy 

Architecture Modeling 

The goal of the SOS engineer is to demonstrate to the organization that a SOS architecture 
will meet the needs of the organization. In construction engineering, the vehicle for 
demonstration would be a paper model or a 3D computer generated representation. For the 
system engineer the vehicle for demonstration is an executable model that can represent the 
dynamic nature of the interacting Elements modeled by the architecture. This section provides 
an overview of the technology used to create the executable models that will enable the 
assessment of the SOS architectures. 

Levis and Wagenhals [2000] describe the information that must be available in the 
architecture to accurately create an executable model. "To obtain a specification of the 
architecture that allows the derivation of the executable model, an activity model, a data model, a 
rule model, and a dynamics model are required." The executable model can also be a tool for 
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modeling concurrently executing behavior; therefore it is important that the architecture be 
complete enough to create an executable and that the behavior and data represented in the 
executable model be traceable to the architecture representation. 

Operational architectures describe organizational roles that interact to provide a particular 
capability. System architectures describe a physical implementation that can be used to realize 
the capability. Current architecture modeling techniques tend to focus on the single system or 
single capability. However, a SOS architecture must describe multiple concurrently executing 
capabilities. While modeling a realization of a capability at the system level may require the use 
of multiple systems, engineers rarely model the multiple capabilities that a SOS implementation 
must realize. Rechtin and Maier [1996] and again Rechtin [1991 and 1992] offer detailed system 
engineering approaches that integrate multiple components, but they do not address a SOS 
development environment. The following sections discuss languages and frameworks that assist 
engineers in the development and assessment of SOS architectures. 

DODAF 

The Department of Defense Architecture Framework (DODAF) provides a framework for 
representing both operational and system architectures. 

"The Framework provides the guidance, rules, and product descriptions for developing and 
representing architecture descriptions that ensure a common denominator for understanding, 
comparing, and integrating Families of Systems (FOSs), Systems of Systems (SOSs), and 
interoperating and interacting architectures." [DODAF, 2007a] 

The DODAF uses a series of products to represent the architecture. The products are first 
divided into 4 categories: the Operational View, the System View, the Technical Standards 
View, and the All Views. The Operational Views primarily address the operational nodes and 
the data that must pass between them for operational success. The System Views address the 
specific physical systems that support the exchange of information between operational nodes. 
The Technical Standards Views describe the technological standards that will constrain the 
physical system design. The All Views describe those overarching aspects that apply to all three 
views. For example, they set the architecture's scope and context. The DODAF documents 
provide a comprehensive explanation of each architecture product. As this research addresses 
aspects of the SOS, the appropriate DODAF product will be discussed in that context. 

Tables 6.3, 6.4, 6.5, and 6.6 show the various DODAF Architecture View products: All 
View, Operational View, System View, and Technical Standards View. 
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Table 6.3. All View Products [DODAF, 2007b] 

Product Framework 
Product Name 

General Description 

AV-1 Overview and 
Summary 
Information 

Scope, purpose, intended 
users, environment depicted 
analytical findings 

AV-1 Integrated 
Dictionary 

Architecture data repository 
with definitions of all terms 
used in all products 

Table 6.4. Operational View Products [DODAF, 2007b] 
Product Framework Product 

Name 
General Description 

OV-1 High-Level 
Operational Concept 
Graphic 

High-level graphical/textual 
description of operational concept 

OV-2 Operational Node 
Connectivity 
Description 

Operational nodes, connectivity, and 
information exchange need lines 
between nodes 

OV-3 Operational 
Information 
Exchange Matrix 

Information exchanged between nodes 
and the relevant attributes of that 
exchange 

OV-4 Organizational 
Relationships Chart 

Organizational, role, or other 
relationships among organizations 

OV-5 Operational Activity 
Model 

Capabilities, operational activities, 
relationships among activities, inputs, 
and outputs; overlays can show cost, 
performing nodes, or other pertinent 
information 

OV-6a Operational Rules 
Model 

One of three products used to describe 
operational activity—identifies 
business rules that constrain operation 

OV-6b Operational State 
Transition 
Description 

One of three products used to describe 
operational activity—identifies 
business process responses to events 

OV-6c Operational Event- 
Trace Description 

One of three products used to describe 
operational activity—identifies 
business process responses to events 

OV-7 Logical Data Model Documentation of the system data 
requirements and structural business 
process rules of the Operational View 
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Table 6.5. System View Products [DODAF, 2007b] 

Product Framework Product 
Name 

General Description 

SV-1 Systems Interface 
Description 

Identification of systems nodes, systems, 
system items, and their interconnections. 

SV-2 Systems 
Communications 
Description 

Systems nodes, systems, system items, 
and their related communications. 

SV-3 Systems-Systems 
Matrix 

Relationships among systems in a given 
architecture. 

SV-4 Systems 
Functionality 
Description 

Functions performed by systems and the 
data flows among system functions 

SV-5 Operational Activity 
to Systems Function 
Traceability Matrix 

Mapping of system functions to 
operational activities 

SV-6 Systems Data 
Exchange Matrix 

Details of system data elements being 
exchanged between systems and the 
attributes of that exchange 

SV-7 Systems 
Performance 
Parameters Matrix 

Performance characteristics of SV 
elements for the appropriate time frame 

SV-8 Systems Evolution 
Description 

Planned incremental steps toward 
migrating a suite of systems to a more 
efficient suite, or toward evolving a 
current system to a future version 

SV-9 Systems Technology 
Forecast 

Emerging technologies and 
software/hardware products will affect 
future development of the architecture 

SV-lOa Systems Rules 
Model 

Identifies constraints that are imposed on 
system functionality due to some aspect 
of system design. 

SV-1 Ob Systems State 
Transition 
Description 

Identifies responses of a system to events 

SV-lOc Systems Event- 
Trace Description 

Identifies system specific refinements of 
critical sequences of events described in 
the Operational View 

SV-11 Physical Schema Physical implementation of the Logical 
Data Model entities 
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Table 6.6. Technical Standards View Products [DODAF, 2007b] 

Framework 
Product 

Framework 
Product Name 

General Description 

TV-1 Technical 
Standards 
Profile 

Listing of standards that apply to 
Systems and Services View 
elements in a given architecture 

TV-1 Technical 
Standards 
Forecast 

Description of emerging 
standards and potential impact 
on current Systems and Services 
View elements, within a set of 
time frames 

To support the representation of DODAF architectures in a methodology independent way, 
the DOD has developed the Core Architecture Data Model (CADM). CADM facilitates the 
data-centric environment by providing the data model for all data in the DODAF, including 
metadata about the architecture to facilitate interoperability and reuse of architecture data. The 
CADM enhances the DODAF through increased interoperability and reuse. The CADM is a 
primary enabler for the common framework, vocabulary, discovery, and exchange of architecture 
information. 

The CADM provides a structure on which DODAF architectures can be stored and 
referenced by SOS engineers. The repository that catalogs architectures that are completed and 
in development is called the DOD Architecture Registry System. 

"The DOD Architecture Registry System (DARS) provides for registration and linking of 
architecture metadata to enable the creation of a navigable and searchable enterprise architecture. 
It enforces the policies and governance that surround the usage of architecture, thus reinforcing 
robust interfaces and data relationships." [DODAF, 2007] 

The CADM is a primary enabler for the DARS by providing the data model for information 
stored in or referenced by the registry. The information exchange mechanism of architecture 
data is the CADM XML. The use of the CADM XML and the architecture metadata allow the 
registry of architecture data to be a significant asset in the Net-Centric Operating Environment 
(NCOE). The NCOE is the networked shared space that facilitates the interoperability of 
systems acquired by the DOD. Figure 6.3 illustrates how architecture producers register the 
developed architecture data in the DARS. The structure allows consumers to access the data to 
conduct enterprise architecture analysis and aid decision making. The DARS provides a 
mechanism that allows SOS developers to access the models that represent the constituent 
systems that they will use to build the SOS. It is these system representations that will be the 
basis for developing SOS architecture alternatives for comparison. 
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Figure 6.3. Department of Defense (DOD) Architecture Registry System (DARS) Role 
in the Net-Centric Operating Environment (NCOE) [DODAF, 2007] 

Unified Modeling Language 

The DODAF does not prescribe a language for the representation of architecture data. 
Rather it defines the type of data that must be present for each architecture view product. The 
methodology presented here uses the Unified Modeling Language (UML) to represent the 
architecture and uses the DODAF products to provide a common view of that data. 

The Unified Modeling Language (UML) superstructure specification states that "the Unified 
Modeling Language is a visual language for specifying, constructing, and documenting the 
artifacts of systems" [Object Management Group (OMG), 2007b]. UML is primarily a graphical 
language that uses specific modeling artifacts to illustrate a system's structural and behavioral 
aspects. The UML specification defines both structural and behavioral diagrams used to describe 
various aspects of a system. The Structural Diagrams include the Use Case Diagram. Class 
Diagram, Object Diagram, Component Diagram and Deployment Diagram. Behavior Diagrams 
include the Sequence and Communication Diagrams, the Activity Diagram and the State 
Machine Diagram. Fowler [2004] and Eriksson, et al. [2004] both offer descriptions of each 
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diagram and the purpose for each. The methodology presented makes extensive use of Activity 
Diagrams to model the behavior of constituent systems of the SOS and the interaction of those 
systems. 

The UML is a formal language with a complete data model that facilitates an abstract syntax 
that describes all the components of the diagrams mentioned above. The component 
relationships that exist across diagrams are maintained by representing the common components 
in a high level data model.   The high level model, or meta model, describes the UML 
components that are instantiated to create the relationships and behavior modeled in the 
diagrams. The meta model provides a standard representation that is used to facilitate 
transformations to other model representations and for exchanging model data between tools 
using XML files built to the UML specification. Additionally, the UML semantics describe the 
meaning conveyed by the interaction of model elements in both the structural and behavior 
diagrams. The UML uses a detailed architecture to describe the language and its interactions. 
The next section offers an overview of the UML language architecture. The UML Infrastructure 
and Superstructure Specification [OMG, 2007a, 2007b] has a more detailed explanation of the 
UML specification. This research makes extensive use of the UML meta model to facilitate a 
transformation from UML to an executable representation. 

The UML designers use modularity, layering, and partitioning to facilitate the UML's 
extensibility and reuse. The UML has two primary layers: the infrastructure layer and the 
superstructure layer. The Core packages of the infrastructure describe highly re-useable 
constructs that are used throughout the superstructure layer. The superstructure reuses the 
constructs of the infrastructure to create the top-level constructs that are used every day by 
modelers. Figure 6.4 shows an example of this reuse by illustrating the use of the Core packages 
in other modeling languages sponsored by the OMG, and shows how the Core packages underlie 
the Meta Object Facility (MOF), the Common Warehouse Model (CWM), the UML, and 
Profiles. The items relevant to this research are the MOF and UML. The Core underlies the 
Meta-Object Facility (MOF). The UML and other languages are described using the common 
meta-model MOF [OMG, 2007a]. There is a recursive relationship between the MOF and UML 
because the Core packages from UML are used to describe the MOF. 

Figure 6.5 illustrates how the MOF is the meta-model used to describe artifacts in the UML. 
Figure 6.6 shows the OMG meta-model hierarchy, depicting the relationship of model artifacts 
from the runtime instance to the MOF model at level M3. The runtime instance is denoted at the 
M0 level and represents a runtime instance of the Class Video described by the user model at the 
Ml level. At the Ml level, modeled Class Video and modeled instance ":Video" represent 
instances of the UML artifacts at the M2 level. Notice that the artifact Class is used at both the 
M2 and M3 levels. Recall that UML and MOF share the core packages—i.e. Class is a part of 
the Core package. Finally, UML Class and Instance are instances of the MOF artifact Class. It 
is important to note that each sublevel is an instance of artifacts at the level above. 
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UML = Unified Modeling Language 
MOF = Meta object Facility 

CWM = Common Warehouse Model 

Figure 6.4. Role of UML Common Core [OMG, 2007a] 
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Figure 6.5. UML-MOF Meta-Levels [OMG, 2007b] 
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This relationship facilitates data exchange among modeling tools and transforming models 
between domains. It especially facilitates transformations between languages that share the same 
meta-model. The methodology concentrates on modeling system behavior for alternative 
instances of a specific SOS Architecture and transforming that model into an executable form at 
the level M1. Then the executable model is created thus instantiating model components at the 
level MO. The SOS implementations are Ml level instances of the SOSI Architecture described 
at M2 using UML. 
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Figure 6.6. Four Layer Meta-Model Hierarchy [OMG, 2007b] 

The meta model hierarchy is a key component that enables the model transformation 
developed for the methodology. The transformation makes extensive use of the M2 layer of the 
UML meta model hierarchy to accomplish the transformation. 

Model Driven Development 

Model Driven Development (MDD) is a general term used in the system and software 
engineering domains to describe a development process that makes extensive use of an abstract 
representation of the system to make analysis and design decisions. The basic concept is to use 
graphical models to provide a higher level of abstraction of the system rather than using code or 
written documentation. 
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"Models are used to reason about the problem domain and the solution domain. 
Relationships between these models provide a web of dependencies that record the process by 
which a solution was created and help us to understand the implications of the changes at any 
point in the process." [Beydeda et al., 2005] 

The Model Driven Architecture (MDA) is an approach to MDD championed by the Object 
Management Group. MDA's underlying principles are described in differing levels of detail in 
Beydeda et al. [2005] and Kleppe et al. [2003]. The MDA principles follow: 

1. Models expressed in a well-defined notation are the cornerstone to system understanding 
for enterprise-scale solutions. 

2. Building systems can be organized around a set of models by imposing a series of 
transformations between models, organized into an architectural framework of layers and 
transformations. 

3. A formal underpinning for describing models in a set of meta-models facilitates 
meaningful integration and transformation among models and is the basis for automation 
through tools. 

4. Acceptance and broad adoption of this model-based approach requires industry standards 
to provide openness to consumers, and foster competition among vendors. 

Figure 6.7 represents the fundamentals of MDA. One of the primary concepts of MDA is 
platform independence of the initial model, also called the Platform Independence Model (PIM). 
The PIM is transformed into a Platform Specific Model (PSM) that adds the specific 
requirements of the target language or platform. For example, a PIM represented as a class 
diagram in UML might be transformed into a model form that adds the details for a Java-specific 
implementation PSM. The final step in the MDA process would be to generate the Java code 
from the PSM. In MDA, the code generation is viewed as another automated transformation. 
Note that this process is Model driven, any changes required in the PSM are first implemented in 
the PIM and then the PSM is regenerated. The idea is that the PIM is the reference, not the code. 

This research used a modified Model Driven Architecture approach to provide a Model 
Driven Development environment for modeling the dynamic behavior of a SOS architecture. 
This transformation includes creating a PIM using UML and performing two transformations to 
create an executable representation of the UML. The primary advantage of an MDD 
environment for the methodology presented is the ability to trace model artifacts that appear in 
the transformed representation (PSM) to the original representation (PIM). Then changes 
required in the PSM are mad in the PIM and the PSM regenerated. This ensures the model 
remains consistent with the implementation. 
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Figure 6.7. Model Driven Architecture Fundamental Concept [OMG, 2007b] 

Executable Modeling Languages 

Carl Petri [1966] first described the nets that bear his name in 1962. While we will not use 
this initial representation for this research, Petri's paper is the seminal work for this concept and 
provides the foundation for all Petri Net (PN) work to date. 

The "low level" nets described by Petri require the developer to model at a very low level of 
abstraction. Research was done to raise the level of abstraction of Petri Nets. Genrich and 
Lautenbach [1979] developed Predicate Transition Nets which extended the range of application 
of the Petri Net construct. Predicate Transition Nets also maintain a close relationship to lower 
level nets. Jensen (1991) described High-level Petri Nets which add the ability to describe 
conditions and actions that cause a transition to fire. This raises the net's level of abstraction by 
allowing the transition to consider the characteristics of input tokens and model the action 
represented by the transition. 

Jensen [1991] once again extended the state-of-the-art of Petri Nets by adding the concept of 
color to the tokens, analogous to data types in functional programming. This addition allows the 
tokens to hold specific characteristics that are passed from place to place through the logic 
contained in the transitions that represent the actions performed. This allows the modeler to use 
complex logic at the transition to more completely model the system's behavior. Jensen also 
offers 12 advantages of CPNs: 

1. CPNs have a graphical representation. 
2. CPNs integrate the description of control and synchronization with the description of data 

manipulation. 
3. CPNs offer hierarchical descriptions. 
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4. CPNs offer interactive simulations. 
5. CPNs have a number of formal analysis methods by which properties of CP-nets can be 

proved. 
6. CPNs have computer tools supporting their drawing, simulation and formal analysis. 
7. CPNs have a well-defined semantics which unambiguously defines the behavior of each 

CP-net. 
8. CPNs are very general and can be used to describe a large variety of different system. 
9. CPNs have very few, but powerful, primitives. 
10. CPNs have an explicit description of both states and actions. 
11. CPNs have a semantics which build upon true concurrency, instead of interleaving. 
12. CPNs are stable towards minor changes of the modeled system. 

In addition to color, Jensen [1991] also introduced hierarchies in Colored Petri Nets. The 
hierarchy allows analysts to structure a complex model into a series of related "subpages" that 
relate to one another using specific constructs that define the subpage's inputs and outputs and 
the relationship of the subpage to a transition on a higher-level page. The techniques that 
provide the ability to decompose the CPN into a set of hierarchical set of subpages do not extend 
the theoretical underpinnings of the CPN. A hierarchical CPN can be "flattened" to represent a 
non-hierarchical CPN. In fact, Jensen [1991] showed that the hierarchical nets are equivalent to 
the flattened CPNs. This research takes advantage of these hierarchies and transforms 
hierarchical UML Activity Diagrams into hierarchical CPNs. 

The grounding of PN and CPN in graph theory allows the use of formal algorithms for the 
analysis of such graphs. One such analysis is the identification of invariants of the graph. 
Farkas [1902],Genrich and Lautenbach [1979] and Hillion [1986] offer algorithms for 
identifying the invariants of a PN graph. This methodology uses the Farkas algorithm and 
concepts developed by Hillion to analyze the graphs that represent the executable models created 
by this methodology. 

Levis and Wagenhals [2000] offer the basic ingredients of an executable model when using 
the results of a system architecture development as the input into the executable representation. 
The architecture must provide the activity model, data model, and rule model to completely 
address the requirements of the executable. Levis and Wagenhals do not address the semantics 
of the architecture model, nor that there be a requirement for a model driven development 
environment. The semantics define the behavior of each model artifact. A model driven 
environment demands clear description of the effects each model artifact has on the behavior of 
the system. Semantics are particularly important for constructs that represent dynamic behavior, 
like State Machine Diagrams, Activity Diagrams and, Interaction Diagrams. 

Jensen [1992] described how to translate an activity model based on functional 
decomposition to a CPN, when the activity model is expressed in IDEFO (Integration Definition 
for Function Modeling (IDEFO) [National Institute for Standards and Technology, 1993]). Levis 
and Wagenhals [2001] and Wagenhals et al. [2000] built on the concept in their process for both 
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developing a DODAF architecture and analyzing the architecture using a CPN. The CPN 
provides formal semantics to the IDEFO so a dynamic model can be created [Jensen, 1992. 
1997]. 

Breton and Bezivin [2001] and Hansen [2001] address executable models from the 
perspective of the meta-model for PN and CPN respectively. Breton and Bezivin address the PN 
meta-model in an attempt to provide the tools to do a Meta Object Facility (MOF) style 
transformation from the UML. They concentrate on the advantages of meta modeling for the 
purposes of transformation, and use the dynamic aspects, as opposed to the static aspects, to 
address shortcomings in the semantics for UML. They use PNs as an example to support their 
argument that the UML needs a clear set of semantics to deal with the models' executability. 
Hansen [2001] proposes to create a profile for UML so it can represent the semantics of CPN. 
His approach proposes to extend UML to represent a CPN as another diagram available to the 
UML modeler to represent behavior: "CPN have, in contrast to UML state machines, a precise 
semantics and powerful analysis methods. Thus, CP-nets should be separate to state machines 
and could, possibly, replace state machines in the UML." Both approaches address what must be 
included in the meta-model to accurately describe the semantics for UML models especially the 
dynamic portions of those models. The methodology presented uses the attributes that must be 
included in the UML model to properly represent the SOS characteristics and the associated 
executable model attributes. 

Much of this research makes use of methods from the software engineering community. 
Selic [1994] describes a modeling technique for a specific subset of the software domain 
concerning real-time systems. The Real-Time Object Oriented Modeling (ROOM) technique 
uses an executable model to analyze the behavior of the software design. Together with the 
ObjecTime• environment, ROOM provides a construct that allows architects to create 
executable models at all phases of development: from the analysis phase though design and 
implementation [Selic, 1994]. The ObjecTime environment was based on the state machine 
model. While not as general as a CPN, it was very effective for developing real-time systems. 

UML to Colored Petri Net (CPN) Transformation 

Most of the literature concerning transformation of UML to Petri Net (PN) addresses the 
state machine and collaboration diagrams. Merseguer [2002], Bernardi et al. [2002], Pooley and 
King [1999], and Saldhanna and Shatz [2000] all address the transformation of state machines 
and collaboration/communication diagrams for the purposes of system performance analysis. 
They address developing a PN but do not fully address the types of analysis that can be 
conducted with the PN. Eshuis and Wieringa [2001a], Lopez-Grao et al. [2004], Petriu and Shen 
[2002], and Storrle [2005] address the transformation of activity diagrams to Petri Nets. Once 
again, the transformation is the primary goal. The analysis and what can be represented in the 
UML model are left to the reader. This research describes a transformation from UML Activity 
Diagrams to create an executable model of the SOS. 
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Software Metrics 

Coupling and cohesion are important concepts used in this research. In this section their 
traditional definitions will be discussed followed by a short overview of each metric and its 
usefulness in the software engineering community. Both the static and dynamic measurement of 
cohesion and coupling are addressed. There is also research that compares the validity of 
dynamic measures to static measures [Briand et al., 1999; Hassoun et al., 2005]. 

Traditionally, software coupling is defined as "the degree of interdependency between 
modules" [Yourdon and Constantine, 1979]. The software engineering community agrees that it 
is good practice to minimize coupling, as lower coupling promotes reusability and 
maintainability of the class or module [Chidamber and Kemerer, 1994]. Most of the work 
concerns static measures of coupling in which the code is developed then analyzed for inter- 
object coupling [Chidamber and Kemerer, 1994; Yourdon and Constantine, 1979]. More recent 
work has been done addressing dynamic metrics for coupling. These measures involve 
analyzing the application as it is running to understand the dynamic interaction of the 
interoperating objects. The direction of coupling between objects is described as Import 
Coupling and Export Coupling. The concept depends on the object's perspective: When an 
object calls a method in another object, this is import coupling. When an object's method is 
invoked by another object is referred to as export coupling [Arisholm et al., 2004]. The concept 
is that the result of the method call either exports data out of the object or imports data from 
another object. Much of the research is differentiated by when the analysis is accomplished in 
the development process. There is research where coupling is analyzed late in the design 
process, Arisholm et al. [2002] analyzes running code. While other research addresses the 
dynamic coupling metric earlier in the development phase [Yacoub, 1999]. Yacoub's research 
contained two measures Import Object Coupling (IOC) and Export Object Coupling (EOC) and 
was completed in the context of developing a real-time system using the Real-Time Object 
Oriented Modeling (ROOM) paradigm. The ROOM charts that are analogous to a state 
transition diagram are used to create a simulation of the application before final application code 
development. An analysis of the ROOM-derived simulation provided the measures for import 
and export coupling [Yacoub, 1999]. 

Cohesion is the practice of keeping related things together. In large part, this is fundamental 
to object oriented design. Cohesion relates to the idea of "similarity" of methods and attributes 
in a class. In other words, the cohesiveness of a class is the degree to which a given class 
encapsulates a set of consistent, semantically related attributes and methods [Chidamber and 
Kemerer, 1994]. Chidamber and Kemerer [1994] approach the relatedness of attributes and 
methods of a class obliquely with their lack of cohesion measure (LCOM). A class with a high 
LCOM may not have a focused objective and may be trying to achieve unrelated objectives. The 
behavior of such a class may be harder to predict than a class with a lower LCOM. Additionally, 
lack of cohesion also increases the complexity of a class, thus increasing the likelihood of errors 
during the development process. The lack of cohesion could also reveal positive attributes for 
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the purposes of SOS development. A component that lacks cohesion because it lacks a particular 
focus may be more flexible because it can be used in more situations without reconfiguring the 
system. This aspect of cohesion will be explored in Section 6.3. 

Summary 

The methodology describes a method for assessing the ability of a SOS architecture to adapt 
to unpredicted operating environments. To that end, this research uses methods from both the 
systems engineering and software engineering communities to create a dynamic model that 
represents the interacting systems of the SOS. This chapter provided an overview of the 
technology that provided the foundation for the methodology presented. 

The concept of the SOS is described and the weaknesses of the current definitions are 
discussed. The literature addresses the managerial aspects of the SOS but fails to address the 
technical aspects especially as they apply to the requirements of the organization. The 
discussion also point out that without clear boundary it is very difficult to create alternative 
architectures for comparison. 

In order to create the dynamic representation of the architecture, the rule model, data model 
and behavior model must be represented in the architecture. The DODAF was presented as a 
common framework for identifying and presenting the data required for the executable model. 
Additionally, the UML is used to represent the required architecture information. 

The methodology requires the executable model so the UML must be transformed in to the 
executable form. A CPN is the chosen executable form of the methodology. The transformation 
of UML into CPN is well understood; however the analysis of multiple SOS processes is not 
addressed fully. The methodology creates an executable model for analysis of the 
simultaneously executing processes that a SOS must support in order to provide the set of 
capabilities desired by the organization. Finally, neither discipline addresses architecture-wide 
measures that enable the comparison of SOS performance in the initial analysis and design 
phases of development. The following chapters address the transformation of multiple process 
descriptions into an executable form and describe assessment measures that identify 
characteristics important to an agile organization. 

6.3 Assessment Measures 

This section provides a technical definition of a SOS and specific characteristics that relate to 
the SOS's ability to change is structural configuration to adapt to a new operational environment. 
The first section establishes the conceptual relationship between the components of the SOS 
definition. The second section defines a SOS and several properties. The third section describes 
assessment measures and the formulas used to calculate them. The last section is an example 
illustrating how the assessment measures are calculated. 
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System of Systems Definition 

The relationship between SOS components is significant and warrants discussion and 
clarification in the context of this methodology. Thus, in order to properly define the SOS, the 
relationships between its various components must be established. An extended definition of 
SOS specifies the resources available to the enterprise and differentiates the specific 
implementation used for a particular purpose. The resources available to the enterprise compose 
the SOS. The resources are used by the enterprise to realize specific capabilities required by the 
organization. Identifying the specific implementation provides a structure on which to make 
measurements. It also provides a way to identify alternatives for comparison. A specific 
implementation requires a set of resources that are configured to provide a specific set of 
capabilities to the organization. The specific implementation is developed using the 
specification of the structural and behavioral relationships between resources defined in an 
architecture. The specific instances of the architecture can be assessed for their ability to address 
the needs of the organization. 

Figure 6.8 is a concept map of the component relationships of the SOS taxonomy. Concept 
maps "are graphical tools for organizing and representing knowledge" [Novak and Canas. 2006]. 
Concept maps are usually organized with the most abstract component at the top of the diagram 
and the more specific concepts arranged below. This hierarchical structure of the concept map is 
effective for illustrating the taxonomic relationships of the components of the SOS. The concept 
map provides a succinct graphical method for communicating the relationship of SOS concepts. 

We define a particular resource available to the enterprise as an Element. An Element can 
represent any level of abstraction. Examples used here represent the Element as an information 
system. The specific implementation of an architecture for a particular purpose is the SOS 
Instance (SOSI). The SOSI consists of a subset of the Elements available to the enterprise. A 
Node provides structure to the SOSI since each Element is assigned to one and only one Node. 
Nodes possess a communication structure that ensures the internal communication between 
Elements assigned to the Node and an external Link that represents the presence of a 
communication facility between Nodes. The behavior of the SOSI is described by a SOSI 
Capability (SOSIC). A SOSIC represents a process that uses a subset of SOSI Elements to 
realize a capability required by the organization. Elements of a SOSI may be members of more 
than one SOSIC. Messages represent the data passed between Elements in the execution of the 
SOSIC. Finally, the SOSI Architecture is a description of the relationship between the Elements. 
Nodes, SOSICs, Links and Messages; therefore the SOSI is a particular instance of a SOSI 
Architecture that uses a subset of the Elements, allocated to Nodes, to model specific behavior 
represented by a SOSIC. 
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Figure 6.8. SOSI Taxonomy 

The next section discusses the properties that differentiate the SOSI from the SOSI. 

SOS Properties 

1. The SOS defines a predetermined set of capabilities. 

2. The set of Elements that compose the SOS changes over time. 

3. The SOS Elements are heterogeneous. 

4. The SOS Elements are at different program maturity levels. 

SOS Property 1 

Each SOS defines a set of predetermined capabilities—the planned capabilities. The 
predetermined capabilities are the ones that are specifically provided by a set of Elements that 
are members of the SOS. The planned capabilities are described in operational and systems 
architectures available to the SOS engineer. 

SOS Property 2 

The SOS Elements change over time. The individual Elements enter and leave the SOS as 
required. As the organization's focus changes, Elements will be retired and new Elements will 
be introduced to enhance existing capability or realize a newly defined capability. This property 
addresses the nature of organizations as they evolve. The available Elements must change to 
meet the needs of the organization. 
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SOS Property 3 

The various Elements are heterogeneous. From an information technology perspective, they 
execute on different platforms and are developed using various technologies and languages. 
Also, some systems are primarily hardware and others are primarily software. Elements can also 
represent the behavior of humans in the SOS. 

SOS Property 4 

The SOS Elements are at different program maturity levels. The SOS can contain both 
experimental Elements and Elements that have existed for some time. The abstraction level is 
high, so systems and capabilities can be tested at the analysis and early design phases of 
development rather than waiting for lab tests of development software and hardware. 

Definition 6.1 is the formal description of the SOS. The SOS Q is a triple {E, F, M} where E is 
the set of Elements that compose the SOS, F is the set of SOSI defined from elements of E in the 
SOS, and M is the set of messages used by the Elements and SOSI of the SOS. Each member of 
the set F is a disjoint subset of E. 

Definition 6.1:       n = {E,F,M} 

where, 

E = {e,,e2,e3,...,ev};set of Elements that compose SOS 

F = {f,,f2,f,,...,fk};set of SOSI developed from E 

M = {m,,m2,m3,...,mh};set of messages used by SOS 

SOSI Properties 

1. A SOSI is created/instantiated from available Elements of the SOS based on the 
relationships described in the SOSI Architecture. 

2. A SOSI provides a particular subset of the planned capabilities. 

3. Each SOSI is unique. 

SOSI Property I 

A SOSI is instantiated from existing Elements in the SOS following the relationships 
described in the SOSI Architecture. It is very important to understand the relationship of 
Elements, Nodes, and SOSICs, so careful decisions must be made as to how the SOSI will be 
configured. Additionally, as new Elements are developed to add capability to the SOS, we must 
effectively evaluate the effects of the new Elements on the SOSI Architecture and the SOSI. 
New Elements can be added to the set of SOS Elements; they are not necessarily added to the 
SOSI. Finally, Elements leave the SOS as they are retired, damaged, or the mission changes. 
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When an Element leaves, the SOSI Architecture and any SOSI using that Element must be 
reevaluated. Figure 6.9 illustrates the changing nature of the SOS. The cloud represents the 
SOS's dynamic nature while the SOSI objects show that, at least for specific periods of time, the 
SOSI is constant and can be observed. A challenge in previous SOS analysis was the attempt to 
analyze the SOS as whole. Thus, the cloud also represents the difficulty in defining a boundary 
around the SOS. Without a clear boundary, how do you analyze the SOS's characteristics? The 
methodology presented addresses the individual SOSI created from Elements available in the 
SOS. The individual SOSI have boundaries which makes assessment and comparison of SOSI 
alternatives possible. 

SOSL 

SOS^ SOSL 

SOSI. SOSL 

Figure 6.9. System of Systems (SOS) Boundary 

SOSI Property 2 

The SOSI is instantiated to provide a specific set of capabilities that have proven challenging 
to acquire with a single system. It is difficult to decide what Elements will comprise the SOSI 
and test the attributes of their interaction in the SOSI. The decisions on what Elements and how 
they are configured require rigorous analysis that is not provided before the Elements are brought 
together for integration. This can produce tightly coupled configurations that are difficult to 
modify as the situation for their use changes. 

SOSI Property 3 

Each SOSI is unique. The SOSI Architecture describes the relationships between Nodes. 
Elements and SOSICs. A particular operating environment and mission governs the way the 
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SOSI will be instantiated. SOSIs can differ in the number of Elements, how the Elements are 
distributed on the Nodes, and how the Nodes are linked together. They can also differ in the way 
Elements are used to provide the specific SOSIC. This methodology specifically addresses 
structural changes. 

SOSI fk is a 5-tuple {Ek, Nk, Pk, Mk, Ck} formally described by definition 6.2. The 
components of the SOSI fk are the sets Ek, Nk, Pk , Mk , and Ck that represent the Elements, 
Nodes, SOSICs. Messages and Links of fk, respectively. The set of Elements Ek represents the 
subset of E from the SOS that composes the SOSI fk. The set of the Nodes Nk represents the 
Nodes that provide the structure for SOSI fk. The set of SOSIC Pk represents the SOSICs that 
describe the capabilities present in the SOSI fk. The set of Messages Mk represents the 
Messages used by SOSI fk. The set of Links Ck represents the communication facility between 
Nodes. 

Definition 6.2:      fk = {Ek,Nk,Pk,Mk,Ck} 

where, 

Ek = {ekl,ek2,ek3,...,eks};set of Elements in fk 

Nk = {nkl,nk2,nk3,...,nkw};setofNodesinfk 

pk ={Pk.>Pk2>Pk3--> Pkr};setofSOSICinfk 

Mk = {mkl,mk2,mk3,...,mki]};set of Messages in fk 

ck ={ck,.ck2,ck3,...,ckb};setofLinksinfk 

Equations 6.1 and 6.2 describe the relationship of the Node to the SOSI. Equation 6.1 shows 
that an Element of SOSI fk shall be a member of one and only one Node. This is expressed 
formally stating that the Nodes in fk are disjoint. Equation 6.2 shows that the union of all the 
Nodes in the SOSI fk accounts for all the Elements in SOSI fk. The elements of set Nk are a 
partition on the set of Elements Ek. Equation 6.3 shows that Elements may be members of more 
than SOSIC. Equation 6.4 shows that all SOSIC Pk that compose the SOSI fk shall account for 
only elements of Ek. The set Pk is a cover of the Elements of Ek. Figure 6.10 includes a diagram 
showing the relationships described in Equations 6.1, 6.2, 6.3, and 6.4. The box on the left 
shows that the Nodes nl,l, nl,2 and nl,3 contain all the elements of Ek and that each Element is 
a member of one and only one Node. The box on the right shows that the Elements of the SOSI 
fk can be members of more than one SOSIC and that it is possible for an Element to stand alone. 
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SOSI Measures 

The proposed measures that will enable the assessment of SOSI alternatives describe the 
degree of interaction of the Elements within and among the Nodes of the SOSI and the degree of 
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reuse of the Elements among the SOSICs. Five measures are defined: Cohesion, Coupling, 
Degree of Reuse, Adaptability and Agility. 

Cohesion 

Cohesion is a measure of "how tightly bound or related internal elements [of a software 
engineering module] are to one another." [Yourdan and Constantine, 1979] Bieman [1998] 
defines cohesion as a measure of the relatedness of inputs to outputs of a Module. In the SOSI. a 
Node with low cohesion is easier to reconfigure than a Node with high cohesion. In the software 
engineering domain, a class with low cohesion can and should be split into more cohesive 
classes. This aids in the maintenance of the software because cohesive classes do specific tasks 
effectively encapsulating functionality and aiding maintenance. This methodology uses the idea 
to show that adaptable Nodes should show low Cohesion. That means they can be reconfigured 
without significantly effecting the execution of the SOSI. The level of cohesion can be measured 
in various ways to provide insight into how strongly Node inputs are related to Node outputs. 

The computation for cohesion is adapted from Bieman's work [1998] on Design Level 
Cohesion measures. Fundamentally, Bieman's metric is a measure of the relationship between 
inputs and outputs of a module. Most software measures of cohesion analyze the application 
code to compute the cohesion measure. A contribution of this research is the idea that the 
cohesion measure can be computed by analyzing the paths connecting inputs and outputs 
modeled by a graph the represents the interaction of Elements on a Node. The cohesion measure 
is a significant departure from Bieman, but capitalizes on the relationship between inputs and 
outputs. A Node with high cohesion will have a high proportion of inputs related to the outputs. 
A Node with low cohesion will have a low proportion of inputs that are related to the outputs. 

Cohesion is measured by calculating the number of paths that can be traced through the 
Elements from the Node inputs to Node outputs. The more paths that connect inputs to outputs 
the higher the cohesion of the node. Equation 6.5 shows the calculation of Node Cohesion. 
SOSI Cohesion, Equation 6.6, is the average Node Cohesion. The following section is a 
discussion on computing the number of paths. 

z, (6.5) 
Coh(nkl) = ^ 

X,,; 

where, 

zkl = number of paths in Node nki 

xk,=ik,*Qk, 
where, 

Ikl = number of inputs for the Node 

Qkl = number of outputs for the Node 
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» (6.6) 
£coh(nkl) 
i=I Coh(fk) = 

m 

where, 

m = number of Nodes in SOSI 

The paths that connect the inputs to the outputs can be computed formally using algorithms 
that rely on formally defined graphs that represent the Nodes and the Elements that are assigned 
to them. There are many different graphs styles that are formally defined.  For the purposes of 
this methodology, a Colored Petri Net (CPN) is used to represent the Node and the Elements. 
The transitions of the CPN represent the Elements of the SOSI assigned to the Node. The paths 
that connect inputs to outputs are computed by calculating the S-invariants of the Petri-net (PN) 
that represents a Node. For the purposes of this methodology, the S-invariants of the graph 
identify the paths that connect the Node inputs to the Node outputs. The "Farkas Algorithm" 
[Farkas, 1902] is used to compute the S-invariants of the Node. The methodology described here 
creates a CPN for each Node. Figure 6.11 illustrates the modification of the CPN that represents 
the Node and the calculation of the paths. Figure 6.1 la is converted to a PN by removing the 
hierarchical constructs and colors from the net. The remainder is a PN that represents the 
structure of the inter-connections between the inputs and outputs of the Node. Next, the PN must 
be modified to include a common input transition that connects to all input places and an output 
transition that all output places are connected to. This technique was developed by Hillion 
[1986]. The output and input transition are connected with a connecting place. Figure 6.1 lb 
shows the addition of the connecting place and transitions. Then, the resulting S-invariants are 
computed on the modified CPN. All S-invariants that include the common connecting place are 
paths that connect Node inputs to Node outputs. Figures 6.11 c and d show the paths for this net. 

Figure 6.12 shows two CPNs that represent SOSI Nodes. Nodel is an example of low 
cohesion. Node2 is an example of higher cohesion. Both Nodes have three inputs and three 
outputs. In Nodel the inputs are associated with only one output, so the cohesion is lower than 
that of Node2 where all the inputs affect all the outputs. 
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a) 

b) 

c) 

o 

o 
d) IK^ 

Figure 6.11: Simple Information Flow Path 

Figure 6.12 shows a more complicated node with loops in the CPN representation. In the 
case of Figure 6.13, Node3 has nine direct paths that touch the four loops created by places PI, 
P2, P3, and P4. This makes the total number of paths 36 because each of the nine direct paths 
now has four more paths that it could follow through the loops. 
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c* 
1 = 3 
Q=3 

O 

°2 u   -o 
X = 3(3) = 9 
Z = 3 

Coh = z/x = 3/9 

1 = 3 X = 3(3) = 9 
Q=3 Z=9 

Coh = z/x = 9/9 

Figure 6.12. Cohesion Example 

1 = 3 X = 3(3) = 9 
Q = 3 Z = 9(4) = 36 

Coh = z/x = 36/9 = 4 

Figure 6.13. Node with Loops 
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Coupling 

Coupling is a measure of the interdependence between Nodes of the SOSI. Node coupling is 
the degree that one Node is dependent on another Node in the SOSI. Node coupling will be 
measured dynamically in this methodology, which helps the developer understand the extent of 
the relationship between Nodes within the SOSI. As mentioned in Chapter 2, coupling can be 
measured as import coupling or export coupling. This methodology measures export coupling 
among the Nodes of the SOSI. 

Because the coupling measure is dynamic, there is a requirement for a Scenario that sets the 
parameters of the executable model and provides the initial conditions. Definition 6.3 is the 
formal definition of the Scenario for the calculation of the Coupling measure. In order to get 
consistent execution results from multiple architectures, a common scenario must be defined. 
The scenario X is defined by setting the initial conditions IX and the parameters RX for the SOSI 
under consideration. 

Definition 6.3 Scenariox = {Ix, Rx ,fk} 

Ix = the initial condition 

Rx = parameters 

fk = the particular SOSI 

Equation 6.7 shows the formula for Node Coupling.    This indicates the degree of 
dependence of a Node to all the other Nodes. 

XK(nkl,nkj)| (6-7) 
Coupx K,) = ——p  

where, 

x = scenario generated for the analysis 

Mx = messages generated by Scenario x 

C -\    *•       y~   = number of possible connections 

between Nodes in SOSI fk 

m = number of Nodes in SOSI 

Nodes that are highly coupled reduce the ability of the SOSI to change because changes in 
the highly coupled Nodes propagate changes to other Nodes. The propagation of change reduces 
the ability of the organization to adapt because highly coupled systems are difficult change due 
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to the complexity of the interface between Nodes. This is similar to the notion of coupling in 
software engineering. The more interconnected two classes are the more difficult it is to make 
changes in one without reflective changes in the other. The coupling measure reveals the level 
of dependence among the Nodes of the SOSI. 

The SOSI Coupling measure is the average of the Node Coupling measures. This measure is 
shown in equation 6.8. 

- (6-8) 
Z.CouPxK,) 

C°UPx(fk) = 
i=l 

m 

Adaptability Computation 

Adaptability is a function of the product of Cohesion and Coupling. Equation 6.9 is the 
formula for Adaptability. D is the Cobb-Douglas [1928] production function. Cobb-Douglas 
provides an effective method for relating Coupling and Cohesion. Cobb-Douglas is explored 
later in the section. Equation 6.9 is the formula for calculating Node Adaptability. Equation 6.9 
uses Node Coupling and Node Cohesion and the inputs for the calculation. Equation 6.10 is the 
SOSI level measure of Adaptability. It uses the SOSI level measure of Cohesion and Coupling 
from Equations 6.6 and 6.8, respectively. 

1 (6-9) 
Adaptx(nkj) = - 

where, 

D = Coh(nkl)
aCoup(nkl)

|, 

a = elasticity constant for Cohesion 

P = elasticity constant for Coupling 

<x + p = l 

Adaot   -   V (6-10) Adapt^-/coh(fkrcouPx(fk^ 

Two assumptions must be made in relation to Equation 6.9 and 6.10. These are modified 
from Cobb and Douglas [1928] to reflect the context of coupling and cohesion. 
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1. The Adaptability score is proportional to the Adaptability of an actual system when 
measuring only Coupling and Cohesion. 

2. Other factors are accounted for with the scaling factor B. We will make use of the 
scaling factor to calculate Agility. 

The Cobb-Douglas form is inverted to make lower Cobb-Douglas products result in higher 
Adaptability. Figure 6.14 shows Cobb-Douglas in its traditional form with different values for a 
and p. Notice how the value of production changes with the value of the elasticity constants. 
The elasticity constant can be used to adjust the function for the particular characteristics valued 
by the organization. 

Cobb and Douglas made similar assumptions to account for factors not measured by labor 
and capital. The scale factor is used to account for other factors that are not measured by 
Coupling and Cohesion. 

Figure 6.15 illustrates the relationship of Cohesion to Coupling and how that relationship can 
be used to identify a SOSI's level of Adaptability. The figure shows that a SOSI that has low 
Cohesion and low Coupling will have a higher level of adaptability than a SOSI that has high 
Cohesion and low Coupling. Cohesion is the primary driver for the Adaptability measure 
indicated by an associated elasticity value of 0.8. If Coupling remains constant, Adaptability 
will increase as Cohesion increases. However, if Cohesion is constant and Coupling increases, 
the Adaptability score increases but at a much lower rate than when Cohesion increases. The 
elasticity constants, a and P define the relationship between changes in Cohesion and Coupling. 

Figure 6.16 is a contour plot of Fig. 6.15. These diagrams show the relationship of Coupling 
and Cohesion in the computation of the Adaptability. Adaptability will be low when both 
Coupling and Cohesion are low. Figure 6.16 shows an example contour diagram of the 
Adaptability plot in Figure 6.15. Notice how the score decreases with the increase in cohesion as 
opposed to an increase in coupling. 

Figure 6.17 illustrates how the contour plot is calculated. The contour diagram (bottom) has 
a contour line indicating the Adaptability value (z-axis of Figure 6.15) for the values 1 through 
10. The top diagram shows planes intersecting the surface thus illustrating how the contour lines 
are created. The planes are depicted at the odd numbered values of the Adaptability function for 
illustration purposes. 

Figure 6.18 shows three Adaptability plots with different a and (3 values to show how the 
shape changes with changes in the elasticity constants. The middle plot with a and P equal to 0.8 
and 0.2 respectively, is the shape used to make the calculations for all the examples and case 
study in this research. The top left plot shows the shape when a and p are reversed. The top 
right plot shows a and P equal to 0.5. 
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Figure 6.15. Adaptability Plot 
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Figure 6.16. Adaptability Contour 
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Figure 6.17. Contour Calculation 
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Therefore, given a set of Elements assigned to Nodes, an Architecture that describes the 
relationships among Nodes and their Elements, and a set of capabilities enabled by the 
architecture, we distinguish four cases of SOSI Adaptability: 

Low Cohesion and Low Coupling = High Adaptability 

Low Cohesion and High Coupling = Medium Adaptability 

High Cohesion and Low Coupling = Medium Adaptability 

High Cohesion and High Coupling = Low Adaptability 

Figure 6.19 shows the four cases graphically. A SOSI with high adaptability has relatively 
low Cohesion and Coupling. This also applies in the limiting cases - zero Coupling and zero 
Cohesion results in infinite Adaptability while Coupling and Cohesion at extremely high levels 
cause Adaptability to approach zero (very few if any changes are possible). The first extreme 
describes a SOSI that has zero interaction between Elements within a Node and zero interaction 
among Nodes so it can be deployed in any configuration. This is a set of totally uncoupled 
Nodes with each Node containing a single element - this is not a system of systems. The second 
extreme of a highly cohesive and coupled SOSI might only be capable of being deployed in one 
configuration. 

£ 
"5, a 
o 
U Medium 

Adaptability 
Low 

Adaptability 

High 
Adaptability 

Medium 
Adaptability 

-*• Cohesion 
Low •+   High 

Figure 6.19. Relationship of Cohesion and Coupling to Adaptability 

Degree of Reuse and Exclusiveness 

The Degree of Reuse measures the extent of reuse of the Elements among the SOSICs of the 
SOSI. It reflects the ability of the SOSI to execute multiple SOSICs concurrently. It is 
calculated by counting the number of SOSICs that an Element supports. The Degree of Reuse 
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for the SOSI is the average Degree of Reuse computed for each Element. The higher the Degree 
of Reuse the lower the ability of the organization to execute the SOSICs concurrently. In order 
to create an index with values between 0 and 1 where 1 indicates that each Element in the SOSI 
supports one and only one SOSIC, Exclusiveness is calculated as the inverse of the Degree of 
Reuse. The Elements with highest reuse are identified as "highly reused Elements." High reuse 
affects the ability of the SOSI to execute SOSICs concurrently because of the potential 
contentions for resources (use of Element). 

Equation 6.11 is a generic function that returns 1 if x is an element of A. The member 
function is used to calculate the number of SOSICs that use a particular Element. Equation 6.12 
computes the Degree of Reuse (DoR) for a particular SOSIC pki. It is the average Degree of 
Reuse of the Elements in the SOSIC. 

fl.xeA (6.11) 
member, (x) = < 

0,x*A 

where, 

A = a set 

x = a possible element of A 

££memberpi(e) 

DoR(pkl) = ^^  
r 

where, 

r = number of Elements in SOSIC p 

(6.12) 

Equation 6.13 shows the SOSI computation for Degree of Reuse. It measures the overall 
Degree of Reuse for the SOSI. Equation 6.14 identifies the Elements that are members of the 
most SOSICs. This helps identify "highly reused" Elements of the SOSI for the assessment 
methodology. 

]T Y, memberpk (e) (6.13) 

DoR(fk) = eeEk Pkl6Pk  
s 

where, 

s = the number of Elements in SOSI fk 
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E max(fk) = ^ max   ^ memberpk (e) 
eeEk VPk.ePk 

(6.14) 

Finally. Exclusiveness is computed as the inverse of degree of reuse. It is calculated for the 
SOSI as a whole. Equation 6.15 shows the formula to Exclusiveness. 

(6.15) 
Exclusiveness(f,) = 

1 

DoR(fk) 

Agility 

Agility is Adaptability times Exclusiveness. Exclusiveness represents the scale factor 
defined by Cobb-Douglas. Agility is the degree that a SOSI can adapt to different configurations 
and execute SOSIC simultaneously, reflecting the notion that the Agility of the SOSI will be 
reduced if the Exclusiveness measure is low. Equation 6.16 shows the agility computation. 
Agility is a SOSI level computation because the measure is revealing the aggregate ability of the 
SOSI to provide capability concurrently and adapt its configuration to different operating 
environments. Figure 6.20 shows an Adaptability plot from Figure 6.15 that has been scaled by 
Exclusiveness = 0.5. 

Agilityx(fk) = Exclusiveness(fk)Adapt(fk) (6.16) 

Cohesion 0     0 
Coupling 

Figure 6.20. Agility Plot 
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Example Calculations 

The working example for the adaptability calculations extends the concurrence example from 
earlier in the chapter. Adaptability addresses the effects of the SOSI's structure by measuring 
the level of coupling between each node and the SOSI. Adaptability also addresses the cohesion 
of each Node. Figure 6.21 shows the concurrently available SOSICs and the Nodes to which the 
Elements have been allocated. The set of Nodes, Nl = {nl,l, nl,2, nl,3} in Figure 6.21 
graphically illustrates the allocation of elements. Figures 6.22, 6.23, and 6.24 show the Nodes 
represented as CPNs, in which a graph analysis of the CPN will identify the number of paths that 
connect inputs to the outputs. 

Pi I start 

Pi; start 

\   p, , start                      ...» p,, end 
•le,, "n V     •>       '             ^—'  
I, , . "^^Kmiii^H^^^^^B^b.    Pi I end 

•• lei io I 
•      tA Cl 4 I  «^- T • -pZ       • «| Pi 4 end 

e13 | lel lltlel 12f~"1el 13 I .. 

p,, start } -leinrje 

Pi 5 start 
e121 r 

Liilj Jen 
l£mJ 

el 19 1        * -120 

el 26 l '125 

»e 124 

Pi i   *Pi:   ••••Pi]    -- 
P, 4      — IV Pj 5      — »    shared  

SOSI, f. 
p, 5 end 

Figure 6.21. Working Example for Adaptability Calculations with Nodes 

Cohesion 

The cohesion computation begins with computing the number of paths that connect Node 
inputs with Node outputs represented in the CPN. Node nl,l from Figure 6.21 will be the initial 
example. Figure 6.22 includes the common input and output transitions and the common place 
that connects input and output transitions. The ovals marked with an "in" box are the input 
places and the ovals marked with an "out" box are the output places. The common place is 
named PI3. Next, the Farkas algorithm in applied to the modified graph to identify the 
invariants that include the common place PI3. The invariants that include PI 3 identify the paths 
that connect the node inputs to the node outputs. The number of paths in this case is 11. There 
are 4 inputs 1 output therefore cohesion for Node nl,l is 11/4. Figures 6.23 and 6.24 show the 
CPN for Node nl,2 and Node nl,3 from the example. The results of the Cohesion computation 
appear at the bottom of each diagram. Table 6.7 summarizes the Cohesion results of the example. 
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Simple Information Flow Paths 

PI.PI2 P3,P7. P9, P12 
P2, P5, P7, P9, P12 P3, P7, P10, PI 1, P12 
P2, P5, P7. P10, PI 1, P12 P3, P6, P8, P9, P12 
P2, P5, P6, P8, P9, P12 P3, P6, P8, P10. PI 1, P12 
P2, P5, P6, P8. P10, PI I, P12    P4, P8, P9, P12 

P4,P8, P10,P11,P12 

1 = 4. Q = 
x = 4(l) = 

z = 11 

Coh(n, ,)= 11/4 

Figure 6.22. CPNfornl,! 
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l = 3,Q = 3 
x = 3(3) = 9 

z=3 

Coh(n12) = 3/9 

Figure 6.23. Colored Petri Net (CPN) for nl,2 
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I = 2, Q = 4 
x = 2(4) = 8 

z=ll 

Coh(nu)= 11/8 

Figure 6.24. Colored Petri Net (CPN) for nl,3 

Table 6.7. Cohesion Example 

Node I 
(Inputs) 

Q 
(Outputs) 

z 
(poss. paths) 

X 

(total paths) 
Coh 

nl,l 4 1 4 11 11/4 

nl,l 3 3 9 3 3/9 

nl,l 2 4 8 11 11/8 

SOSIfl 3/2 

Coupling 

The second component of Adaptability is Coupling. The coupling measure is a ratio of the 
number of messages sent by a Node to other Nodes in the SOSI and the total number of 
connections possible in the SOSI. In this example, 60 messages were generated by the scenario 
and there are three Nodes so there are three possible connections between Nodes in the SOSI. 
Figure 6.25 shows the results for the coupling calculations for SOSI fl. Node nl,l exported 20 
messages to Node nl,3 and zero to Node nl,2. That resulted in a coupling measure of 20/3 = 
6.67. The coupling measure does not include messages generated internally in the node - the 
only messages that are counted are those that cross from one Node to another. 
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Importer 

nu nu n1.3 Total 

>-c 

l-C 

O 

X 
W 

nu X 0 20 20 

nl,2 10 X 10 20 

n1.3 0 20 X 20 

C°UPx(nki) 

S|Mx(nk,'nK,)| 
'*J 

c 
C = 3(2)/2 = 3 

Coupx(n, ,) = 20/3 = 6.67 

Coupx(n12) = 20/3 = 6.67 

Coupx(n, 3) = 20/3 = 6.67 

Coupx(f,) = 6.67 

Figure 6.25. Coupling Results for SOSI fl 

With the calculation for Coupling and Cohesion completed, adaptability can be calculated. 
The Adaptability results for the example are shown in Figure 6.26.   This example shows how 
the measures are calculated. The numbers are meant for comparison among architecture 
alternatives. The results here show that the Nodes have different values for Adaptability. 

Degree of Reuse 

The set of interest for these calculations is the set of SOSIC PI associated with SOSI fl. 
There are three SOSIC represented. Figure 6.27 shows a Venn diagram that shows the SOSICs 
supported by the Elements. The overlap of the Venn diagram illustrates the Degree of Reuse of 
the Elements. For example, Element el,8 supports all three SOSICs. 
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1 1.00 3.96 0.33 

2 4.67 0.63 1.07 

3 4.00 0.65 1.07 

SOSI 3.22 1.74 0.51 

Figure 6.26. Adaptability Results for SOSI fl 

El       lel,l'el,2'el,4'el,5'el,8'el,10'el,14' 
eU5'eU7'el,19'el,2o} 

Pl = {Pl.hPl.24>l,3} 

Pi =  lel.4'el,5'e1.8'e1.10'e1.14/ 

P2 = {el,l'el,2'el,4'el,8i 

P3 = lel,2' el,8'el ,14»el,15'el,17' e1.19'el,20/ 

Figure 6.27. SOSI fl with Three SOSIC 
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The Degree of Reuse of each Element is calculated in the numerator of Equation 3.6. The 
degree of reuse for each Element is 9, 8, and 11 for SOSIC pl,l, pl,2, and pi,3, respectively. 
This results in degree of reuse values for the SOSIC pi, 1, pl,2, and pi,3 of 9/5. 8/4 and 11/7, 
respectively. The SOSI Degree of reuse is 16/11. The Overlap calculations are summarized in 
Tables 6.8 and 6.9. Each x in Table 6.8 indicates the SOSICs that include a particular Element. 
The total (tot) shows the total number of SOSICs for that Element. Table 6.9 shows the Degree 
of reuse for the SOSIC and SOSI. It also shows the Exclusiveness measures and high reuse 
elements results for the SOSI. Higher Exclusiveness means that the SOSI has more ability to 
execute SOSIC concurrently because there are few Elements that are reused by the SOSICs. An 
Exclusiveness score of 1 means there is no reuse of Elements in the SOSI. Low overlap scores 
mean that reuse of Elements among the SOSIC is high increasing the potential for resource 
conflict. 

Table 6.8. Degree of Reuse Example Data 

el.l el,2 el,4 el,5 el,8 el,10 el,14 el,15 el,17 el,19 el.20 

pl.l X X X X X 

pl,2 X X X X 

pl,3 X X X X X X X 

tot 1 2 2 1 3 1 2 1 1 1 1 

Table 6.9. Degree of Reuse Calculation for SOSI fl 

Num 
Elements 

Total 
Reuse 

Degree of Reuse Summary 

pl.l 5 9 9/5 1.8 High Reuse 

pl,2 4 8 8/4 2.0 el,8 

pl,3 7 11 11/7 1.57 Exclusiveness 0.69 

fl 11 16 16/11 1.45 

The working example shows that SOSIC pi,3 has the highest degree of reuse and SOSIC 
pi.2 has the lowest; therefore, we can conclude, in relative terms, that pi,3 has less potential for 
resource conflict than pi,2. Degree of Reuse also indicates Elements that may be used beyond 
their capacity. In this simple example, Element el,8 is a highly reused Element. It is used by all 
SOSICs indicating that the Element might be an integral component of the SOSI and its 
utilization deserves further analysis. 
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Agility 

Agility is Adaptability scaled by Exclusiveness. Figure 6.28 shows the effect of Exclusiveness 
on the overall Agility of the SOSI. In this example, Agility is less than Adaptability because the 
Degree of Reuse is high among the Elements of the SOSI. The reuse reduces the ability of the 
SOSI to execute SOSICs concurrently and reduces the overall Agility of the SOSI. 

1.00 

fi 

Figure 6.28. Example Results for Adaptability and Agility 

Summary 

This section defined specific SOS properties that are different from the traditional 
definitions. The definitions and the associated properties help structure the SOS so that a 
boundary can be defined and assessments conducted. The measures provide a way to make 
comparisons of alternative architectures very early in the development process. Adaptability 
measures the ability of the SOSI to adapt different structural configurations. Degree of Reuse 
measures the ability of the SOSI to execute multiple capabilities concurrently. The product of 
Exclusiveness and Adaptability provides a measure of the SOSI's Agility. Section 6.4 presents 
the methodology used to gather the information required to generate the executable model and 
conduct the analysis. 
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6.4 Methodology 

This section describes the methodology used to create the SOSI Architectures and SOS I 
alternatives for comparison. The operational architecture views that describe the capability 
required by the organization and their associated system architecture views are the inputs. The 
system views are combined in a SOSI Architecture that merges the rule and data model and 
represents the processes described in the system architectures as SOSICs. The SOSI alternatives 
are created from the SOSI Architecture and transformed it into an executable form for a static 
and dynamic analysis of the interaction between Elements and Nodes of the SOSI. 

Figure 6.29 shows the methodology graphically. The operational architectures and system 
architectures that realize the capability are taken as input. The dotted line connecting the system 
view box and the operational view box shows that they are not independent.  System architecture 
views are developed to meet the needs of the organization described in the operational 
architecture views. The combined SOSI Architecture model (represented in the center box) 
illustrates multiple system architecture views realizing multiple capabilities. The ovals in the 
center box represent the SOSICs. SOSICjk represents the kth capability realized by the jth 
system architecture. The overlapping SOSICs illustrate the reuse of Elements as multiple system 
architecture views are merged to create a combined model of the SOSI Architecture. The 
process of merging of the system architecture views reveals Elements that are used by more than 
one SOSIC. Then the combined model of a SOSI is transformed into an executable form. If the 
behavior of the executable is acceptable, then Adaptability and Agility are calculated using the 
SOSI executable model and architecture view. If its behavior is not acceptable, then the SOSI 
Architecture must be modified to correct inaccurate behavior. The feedback into the SOSI 
Architecture representation ensures the behavior of the executable can be traced to the model 
representation. 

One of the challenges in SOSI analysis is the dynamic nature of the SOS. Recall SOS 
property 2, the set of elements that compose the SOS changes over time, meaning that potentially 
the Elements chosen to compose a SOSI will also change. The process described as part of this 
methodology analyzes the SOSI for those periods where the Elements of the SOSI are constant. 
Figure 6.30 shows the SOSI's piecewise constant nature. The SOSI existed in an initial 
configuration prior to time tl. The changes at times tl, t2, and t3 are meant to illustrate 
significant changes to the SOSI environment —and so the SOSI must change in order to address 
the new operating environment. Many things can happen to change the composition of the 
SOSI. When a change occurs, if the SOSI is not adaptable enough to accommodate the new 
environment and new Elements or SOSIC are required, then the SOSI must change and a new 
SOSI is instantiated. The analysis of each SOSI, therefore, is done piecewise for the time period 
that the SOSI is not expected to change Elements. The next section describes the specific 
comparisons accomplished by the methodology. 
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Figure 6.30. Piecewise Constant SOSI 

There are many ways that a SOSI can change. Some require a change to the SOSI 
Architecture and others only change a particular instance of a SOSI Architecture. Given that the 
methodology describes the SOSI in terms of Nodes, Elements, and SOSICs. If the type of 
Nodes. Elements or SOSIC change then a change in the SOSI Architecture is required, because 
the relationships between the Elements, Nodes and SOSIC must be modified to reflect the 
change. If the number of instances of Elements, Nodes or SOSICs change then the SOSI 
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representation must be modified, but the SOS I Architecture remains the same as long the new 
SOSI does not attempt to associate Elements or Nodes that are unrelated in the SOS1 
Architecture representation. 

Given the types of changes that can occur, the problem is scoped in the following way. SOSI 
groups are SOSI alternatives composed of the same set of Elements and based on the same SOSI 
Architecture. There are two comparisons. Comparison A and Comparison B. Comparison A 
compares SOSI within a SOSI group. That means that the instances of Elements and SOSIC sets 
are held constant and the alternatives are differentiated by the allocation Elements to Nodes. 
Comparison B compares the assessment results between SOSI Architecture alternatives using the 
results from Comparison A. This way the effects of adding and deleting Elements to the SOSI 
can be assessed by comparing SOSI groups. Comparing SOSI groups created from different 
SOSI Architecture assesses the relative Adaptability and Agility of the SOSI Architecture. 

Assumptions 

Because the thrust of the analysis is based on the SOSI characteristics, assumptions 
concerning the performance of individual systems, the Operational Capabilities, and the 
execution scenario need to be made. 

The Elements that interact within the SOSI are assumed to be interoperable. If there is a 
noted data dependency, then it is assumed that the protocol and associated communications 
details are sufficient. 

The behavior model of individual Elements is assumed accurate. The Elements of the SOSI 
are assumed to perform in the modeled manner. Because concurrently executing capabilities are 
modeled, we assume that the Elements used to accomplish the capability do indeed enable the 
capability and that they have been modeled accurately. 

The modeled capability that is represented by the Operational View is accurate. The 
operational activities described in the OV products are accurate and provide the capability 
modeled. The performance of the capability is assumed to meet the stakeholder's requirements. 

The mission of the implementing organization is known. In order to identify required 
capabilities, the organization's mission must be known before analysis can begin. The mission 
provides the purpose for the SOSI Architecture. 

The required set of capabilities does not change. The number of each type of capability may 
change, but the organization does not modify the list of required capabilities. The measures are 
relative, so the set of capabilities cannot change in order to ensure that the performance 
characteristics of the candidate architectures can be compared. 

Behavior models exist for each Element modeled. Because the Elements represent the 
constituent systems and their functions, these models must be available so they can be executed 
to ensure that the capabilities required are provided by the mix of Nodes and Elements in the 
SOSI. 
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Given the methodology and the assumptions described above, the following are the steps 
required develop the structural, operational, and behavior information required to construct the 
combined SOSI architecture. 

SOS Instance Assessment Process 

The process developed realizes the requirements of the methodology and uses concrete 
representations for the types of architecture products required to combine the system architecture 
views and create the executable model. The Department of Defense Architecture Framework 
(DODAF) (DISA, 2007) provides a framework for the representation of the various architecture 
views required by the analysis process. The DODAF prescribes multiple views represent 
pertinent aspects of the architecture from different perspectives. Operational views describe 
aspects of the operational architecture and system views describe aspects of the system 
architecture. While, the DODAF does not stipulate a modeling language, the process described 
here uses the Unified Modeling Language (UML) (OMG, 2007) to represent the relationship 
between components of the models because it uses a high level data model that can be used to 
facilitate the transformation to the executable form. The executable form used for the analysis is 
Colored Petri Nets (CPN) [Jensen, 1991]. Colored Petri Nets possess the formal execution 
semantics and a formal graph theoretic representation. The formal execution semantics of the 
CPN enable an accurate transformation of the UML execution semantics for an accurate 
representation of the modeled behavior of the SOSI which enables the model to simulate the 
interaction of the Elements and Nodes of the SOSI in order to compute Coupling. The formal 
graph theory that underlies the CPN enables the use of tan invariant analysis of the graph 
generated by the transformation for the computation of Cohesion. The process, Figure 6.31, is 
described in seven steps. 

1. Identify/Develop Operational Views of the Architecture for the desired capabilities. 

2. Identify/Develop System Views of the Architecture that realize the capabilities describe 
in Step 1. 

3. Produce SOSI Architectures. Combine the system views of the architectures from Step 3 
to produce a SOSI Architecture that represents an architecture alternative. (Multiple 
alternatives can be developed from the information gathered in steps one and two.) The 
SOSI Architecture uses DODAF system architecture view products to model the 
architecture information. 

4. Transform the SOSI alternatives created from the SOSI Architectures into CPN for each 
alternative. 

5. Develop an execution scenario that complements the organization's operational 
environment. 

6. Conduct the analysis for each alternative using the assessment measures, Cohesion. 
Coupling, Degree of Reuse, Adaptability and Agility. 
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7.   Draw conclusions and complete the comparison analysis. 

2) Identify/Develop 
System View of the 

Architecture 

3) Produce SOSI 
Architectures 

4) Transform SOSI 
Alternatives into 

CPN Model 

1) Identify/Develop 
Operational View of the 

Architecture 

5) Develop 
and Execute 

Scenario 

7) Conclusions 
and 

Comparisons 

6) Conduct 
Analysis 

Figure 6.31. SOSI Analysis Process 

Step 1. Identify/Develop Operational View of the Architecture 

This step identifies the DODAF operational architecture view products (OV) that describe 
the organization's required capabilities. It also identifies the organizational roles that are 
expected to interact to provide the specific capability. Furthermore, it identifies the required 
information exchanges of each role, and identifies the operational activities that must be 
executed by each to role accomplish the capability. Then the capability must have a rule and 
data model defining the data exchanged that rules governing the exchange. Finally, an 
operational activity model shows how the operational activities interact and the data passed 
between them. 

Each product defines a particular aspect of the operational architecture. In order to meet the 
methodology requirements, the following operational view (OV) products are required: 

OV-2 Operational Node Connectivity Description describes the roles that organization 
requires to accomplish the capability, and each role's information needs. Information needs 
are described the form of inputs and outputs for each role that are required to accomplish the 
capability. 

OV-3 Operational Information Exchange Matrix identifies the data exchanged between roles 
and the attributes that compose that data. The OV-2 and OV-3 are related and pivot on the 
information represented by the data transferred between roles. 

139 



OV-5 Operational Activity Model describes the operational activities that must be 
accomplished to provide the capability. The OV-5 can also show the roles that should 
contain those activities. The relationships between activities and the data produced and 
consumed by each activity are also important in this product. 

OV-6a Operational Rules Model describes the rules that govern the behavior of the 
operational activities. 

OV-7 Logical Data Model describes abstract relationships between Elements and Messages 
and the attributes of the Messages. 

This is a simple example used to show the primary data elements provided by the products. 
There are two operational architectures modeled that represent two different capabilities. 
Capability 1 and Capability 2. The products for each operational architecture view will be 
shown together. Capability 1 is represented in OA1. It has two roles Sender and Receiver. 
Capability 2 has two roles, Receiver and Executor. There are messages and simple 
operational activities that implement a rudimentary rule model. The Operational Node 
Connectivity Diagrams, OV2s, shown in Figure 6.32, describe the roles required, their 
interaction, and the data exchanged for the two capabilities. The lines connecting the roles 
identify the information exchanged between roles. In this case, the Receiver receives Msgl 
and sends Msg2 and Msg3. 

The Operational Information Exchange Matrices, OV-3s add more detail about the data 
exchanged. The OV-3s are shown in Table 6.10. In this simple case, the OV-3 shows the 
size and type of the data exchanged between roles. For example, Msgl is sent from role 
Sender to role receiver. Msgl is of type Text and expected to be 10 characters long. 

The Operational Rules Model, OV-6a shows the rules that govern the behavior of the 
activities that are used by the roles described in the OV-2. Table 6.11 represents the rule 
models for the example. The simple rules show that Msgl is received by the Receiver who 
then decides whether to send a Msgl or a Msg2 depending on who sent the message. 

The Operational Data Models, OV-7s in Figure 6.33 show the messages and roles that appear 
in the Operational Architecture Views for each capability. 
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Capability 1 

M<;n? 

tf 
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' 

Capability 2 

Msg1 

Msg3 

Figure 6.32. Operational Node Connectivity Diagrams, OV-2s 

Table 6.10 . Operationa Information Exchange Matrix, OV-3 
Capability 1 

Sender Receiver Type Length 
Msgl Sender Receiver Text 10 
Msg2 Receiver Sender Text 20 
Capability 2 

Sender Receiver Type Length 
Msgl Executor Receiver Text 10 
Msg3 Receiver Executor Text 32 

Tab e 6.11. Operational Rules Model, OV-6a 

Capability 

Sender if msg2 send msgl 

Receiver if msgl = yes send msg2 
Capability 2 

Receiver 

Executor 

if msgl = no send msg3 

if msg3 then send msgl 
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ReceiveMsg:Msg2 
ProcessMsg:Msgl 

JsmdMsgjMsgl 

ReceiveMsgliMsgl 
ProcessMsg:Msgl 
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SendMsg3:Msg3 
SendMsg2:Msg2 

Msg 
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Capability 2 

Msgl Msg3 

ReceiveMsg:Msg3 
ProcessMsg:Msg3 
SendMsg:Msgl 

Receiver 

ReceiveMsgl :Msgl 
ProcessMsg:Msgl 
ProcessMsg:Msgl 
SendMsg3:Msg3 
SendMsg2:Msg2 

Figure 6.33. Operational Data Model, OV-7 

The final diagram, Figure 6.34, is the Operational Activity Model, OV-5. This diagram uses 
the information from the other operational views. The activities implement the rules shown 
in the OV-6a and the data passed from activity to activity is represented by the OV-7. The 
interacting roles and the information exchanged are shown in the OV-2 and OV-3. 

The Operational Architecture products presented above represent the minimum information 
required by the methodology. The system view products for step 2 realize the operational 
capabilities illustrated by the operational views developed for step 1. 
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Figure 6.34. Operational Activity Diagram, OV-5 
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Step 2. Identify/Develop System View of the Architecture 

This step involves identifying the Elements that will be grouped in Nodes to accomplish the 
capability. Step 2 describes how the capabilities will be provided and with what Elements. 
The system architecture must include the following system view products: 

SV-1 Systems Interface Description depicts the Nodes and the Elements resident on those 
Nodes. It also describes the interfaces between Elements and Nodes. The SV-1 is related to 
the OV-2 in that the SV-1 shows which Elements are fulfilling the roles described in the OV- 
2. The interfaces of the SV-1 map to data exchanges between roles in the OV-2. 

SV-6 Systems Data Exchange Matrix describes the data exchanges between systems and the 
attributes that compose those exchanges. The information described in the OV-3 must be 
reflected in the SV-6. 

SV-lOa Systems Rules Model is the rule model that governs the behavior of the system 
functions that realize the operational activities. 

SV-11 Physical Schema is the physical data model used to show the relationships between 
Elements, Nodes and Messages. The schema must reflect data embodied in the OV-7. 

SV-4 Systems Functionality Description depicts system functions and the data flows between 
functions. This product can also provide the individual Element behavior model, which is a 
union of the behaviors of that particular Element type described in all the capabilities where 
the Element type is employed. This view is analogous to the OV-5. 

SV-5 Operational Activity to Systems Function Traceability Matrix provides the mapping 
between the implemented system functions and the required operational activity. This is not 
always a one-to-one mapping. There are many instances where multiple system functions are 
required to accomplish a single operational activity and vice versa. 

The example develops two system architecture views that realize the capabilities described 
by the operational architecture views identified in step 1. SA-1 realizes Capability 1 and SA- 
2 realizes Capability 2. 

The System Interface Descriptions, SV-1, identify the Elements will realize the roles defined 
in the OV-2. Figure 6.35 shows the SV-ls for both capabilities. It shows the Elements, 
Nodes they are member of, and the Messages exchanged between the systems. System 1 
represents the Sender. System2 and System 3 represent the Receiver and Executor, 
respectively. 

Similar to the OV-3, the Systems Data Exchange Matrices, SV-6s, shown in Table 6.12. 
identify the details of the data exchanged between the systems. In this case the SV-6s 
describe the size and type of the Message classes exchanged between systems. The table 
reflects the details of the interface between systems shown in the SV-ls. 
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The Physical Schemas, SV-1 Is, in Figure 6.36 show the physical format of the data that is 
exchanged between the systems. The SV-11 is the physical representation of the logical data 
model represented by the OV-7. 

SA1 SV-1 

LandNode 
«Sender» 

System 1 Inst: 
System 1 

Messagel 

Message2 

SeaNode 
«Receiver» 
System2_Inst: 

System2 

SA2 SV-1 

SeaNode 
«Receiver» 
Svstem2 Inst: 

Svstem2 

Message3 «Executor» 
Svstem3 Inst: 

Svstem3 
-4 

Messagel 

Figure 6.35. System Interface Descriptions, SV-ls 

Table 6.12. Systems Data Exchange Matrix, SV-6 

SA1 

Sender Receiver Type Length 

Vlsgl System 1 System2 Text 10 

Msg2 System2 System 1 Text 20 

SA2 

Sender Receiver Type Length 

Msgl System3 System2 Text 10 

Msg3 System2 System3 Text 32 

The SV-5s, shown in Table 6.13. show the mapping between operational activities the 
Element functions that realize the activity. This methodology defines a type of Element as a 
system. For example, the role Sender has three operational activities, ReceiveMsg, 
ProcessMsg and SendMsg that are all mapped to one Element function Sysl Action that is 
part of the System 1 Element. 
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SA1 SV-11 

System 1 System2 

Sys2Action: Message 1 SyslAction Message2 

Message 
- 

Messagel Message2 
Enum: yes|no i Enum: m2 

SA2 SV-11 

System3 

Sys3Action: Message3 

System2 

Sys2Action: Messagel 

Message 

Messagel 
Enum: yes|no 

Message3 
Enum  m3 

Figure 6.36. Physical Schema, SV- 

Table6.13. Operational Activity to Systems Function Traceability Matrices, SV-5s 

SAl System l System 2 
Role- Op Activity SyslAction Sys2Action 
Sender ReceiveMsg X 

ProcessMsg X 
SendMsg X 

Receiver ReceiveMsg X 
ProcessMsg X 
SendMsg2 X 

SA2 System 2 System 3 
Role Op Activity Sys2Action2 Sys3Action 
Receiver ReceiveMsg X 

ProcessMsg X 
SendMsg3 X 

Executor R.eceiveMsg3 X 
ProcessMsg X 
SendMsg X 

The final representations describe the behavior of the system architecture. The Systems 

Rules Model, SV-lOa, Table 6.14 . defines the rules that govern the behavior of the Elements 

of the system architecture views. The SV-lOa is implemented by the Systems Functionality 

Description, SV-4. For example, if System 1 receives a msg2 then it should send a msgl. 
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Table 6.14. Systems Rules Models. SV-1 Oa's 

SA1 

System 1 

if msg2 send msgl 

System2 

if msgl = no send msg3 

if msgl = yes send msg2 

SA2 

System2 

if msgl = no send msg3 

if msgl = yes send msg2 

System3 

if msg3 send msgl 

The SV-4 is represented as a UML Activity Diagram. The SV-4 provides an integrated 
model of the previously described system architecture view products. The SV-4s, Figure 
6.37, implement the rule models and use the data described in the respective SV-1 Is to 
model the behavior of the interaction between the Elements of the architecture. This SV-4 
shows the interaction of System 1 and System2 in SA1 and the interaction of System3 and 
System2 in SA2. The behavior of Systeml and System2 implement the rules modeled in the 
SV-lOa. Message2 and Message 1 are represented on the ports on the actions. 

Step 3. Produce SOSI Architecture 

Step 3 combines the system architecture views to produce a architecture model that 
represents the combination of the system view products described in step 2. Combining the 
system views ensures a concordant architecture that includes all the system architecture 
behavior models in combined system architecture view. The behaviors for each Element 
type must be combined, and the data models must be correlated to provide the data described 
in the SV-1 and SV-6 of each capability. This single UML model represents each capability 
in at least one SOSIC that is modeled in an Activity Diagram and viewed as a SV-4. This 
provides an opportunity to ensure that the Physical Schema and the Rule Model are 
concordant across the Activity Diagrams. 

The process of merging the systems architecture begins with the SV-ls. The SOSI 
Architecture must represent the types of Nodes that the Elements will occupy. Each SOSI 
alternative generated from the SOSI Architecture will need a unique SV-1 showing the 
Nodes that the Elements occupy for that alternative. Figure 6.38 is an SV-1 for a SOSI 
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alternative. It shows that an instance of System 1 is assigned to a LandNode and the instances 
of System2 and System3 are assigned to a ShipNode. 

SA1 SV-4 

System 1 System2 

[var:msg2] 

Messaged: mp2_1 

System 1_AD 

Message1:mp1_1 

Message2:mp2_2 

System2_AD 

Message1:mp1_2 

[var:msg1] 
Message3:mp3 

SA2 SV-4 

System3 System2 

[var:msg3] 

Message3:mp3_3 

System3_AD 
v 

Message1:mp1_3 

Message3:mp3_2 

System2_AD 

Message1:mp1_2 

[var:msg1] 
Message2:mp2 

Figure 6.37. Systems Functionality Description, SV-4 
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/                                   >                     / 
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Figure 6.38. SOSI Architecture SV-1 

The SV-6, shown in Table 6.15, merges the SV-6s from the two system architecture views 
presented in step 2. System2 appeared in both architecture views. It appears only once in 
this view and will be used in two SOSICs. System2 processes two types of messages. The 
combined behavior model of System2 should contain system functions that address both 
messages. This is an example of the importance of merging the system views. 

Table 6.15. SOSI Architecture SV-6 

SA1 

Sender Receiver Type Length 

Msgl System 1 System2 Text 10 

Msgl System3 System2 Text 10 

Msg2 System2 System 1 Text 20 

Msg3 System2 System3 Text 32 

The SV-lls are merged to ensure that all the data in both system architecture views is 
represented in the SOSI architecture. Figure 6.39 is the merged SV-11. The merged SV-11 
shows that System2 has an association with both System 1 and System3. 

Table 6.16 is the merged rule model, SV-lOa. This table reveals that System2 must respond 
with two types of messages msg2 or msg3 depending on the content of the input message 
msgl. 
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SOSISV-11 

Message 
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Enum: yes|no 
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«Element» 
System 1 

Sysl Action: Message2 
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System2 
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Figure 6.39. SOSI Architecture SV-11 

Table 6.16. SOSI Architecture Rules Mode s, SV-lOa 

SOSI Architecture 

System 1 

if msg2 send msgl 

System 2 

if msgl = no send msg3 

if msgl = yes send msg2 

System 3 

if msg3 send msgl 

With the rule and data represented, the SOSICs are modified versions of the SV-4s taken 
from the identified system architecture views. Figure 6.40 shows the SV-4s that represent 
this SOSI architecture. Notice that the Elements are identified with Element numbers. 
Element2 appears in both SOSICs and represents System2_Inst. The behavior of Element2 is 
represented by the Activity Diagram, System2_AD. The resulting Element behavior models 
reflect a union of the Element functionality represented in the system architecture views that 
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contain the same Element. This product also models the interaction of the Elements to 
realize the operational capabilities. This example has a one to one relationship between 
SOSIC and capabilities modeled. This is not the case in general. Multiple SOSICs can be 
developed that accomplish particular tasks using the same capability. 

SOSICl Example 

Element 1 :Systeml  Inst Element2:System2_Inst 

[var:msg2] 

Message2:mp2 

System 1  AD 

Message l:mpl   1 

Message2:mp2_2 

System2_AD 
V 

Messagelrmpl  2 

[var:msgl] 
Message3:mp3 

SOSIC2 Example 

Element3:System3_Inst Element2:System2_Inst 

Message3:mp3 3 

System3 AD 

iiugjj 

Message3:mp3_2 

) 
System2 AD         \ 

Message l.mpl  3 

\\J'A 11 

• 

Messagel:mpl_2 

Message2:mp2 
r.msg 'J 

Figure 6.40. SOSI Architecture SV-4 

Step 4. Transform the Combined Model into an Executable Form 

Step 4 transforms the SOSI representation developed from the SOSI Architecture into a CPN 
model of the combined behaviors of the SOSI. This ensures that the concurrent use of the 
Element in multiple SOSICs is modeled in the CPN. The transformation of the UML 
Activity Diagrams into a CPN is detailed in Section 6.5. 
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Step 5. Develop an Execution Scenario 

Step 5 develops an execution scenario that complements the organization's operational 
environment. This step also sets the parameters of the executable model and the initial 
conditions for the scenario that is to be executed. Additionally, the executable model is 
instrumented to facilitate the collection of appropriate data for the coupling measurements. 
This step is detailed in section 6.5. 

Step 6. Conduct the Analysis for Each Alternative 

Step 6 conducts the analysis for each alternative using the measures described in section 6.3. 
This step involves computing the measures for each architecture alternative and conducting 
an analysis of the results. This step includes computing Cohesion, Coupling and Degree of 
Reuse for each SOSI alternative. Then, the level of Adaptability and Agility must be 
computed to provide points of comparison among the SOSI alternatives. The Adaptability of 
each Node in the SOSI is computed so that the Nodes that are driving the SOSI assessment 
can be identified. This is a tools SOS architects can use to make decisions about where 
certain Elements should be placed in the architecture. 

The last part of step 6 involves computing the Adaptability and Agility for the SOSI 
alternatives. This data provides the information required to make comparisons of the SOSI 
Architecture based on the results of the various SOSI alternatives. 

Step 7. Draw Conclusions and Complete the Comparison Analysis 

The final step completes the comparison analysis and draws conclusions as to why certain 
SOSIs assess better than others in terms of Coupling, Cohesion and Degree of Reuse. 

Summary 

This chapter described the methods used to evaluate SOSI Architecture alternatives. The 
methodology has seven steps. It begins with identifying the operational capabilities required by 
the organization and ends with an analysis of the performance of the SOSI with regard to its 
Adaptability and Agility. There are many way to structure the comparison of SOSI alternatives. 
This methodology described the two comparisons that were used in the research. Comparison A 
compares SOSI alternatives that are the same except for the way Elements are distributed on 
Nodes. Comparison B uses the results of Comparison A to facilitate comparisons between SOSI 
Architecture alternatives. An example was presented that provides simple examples of the 
DODAF products used by the methodology. The entire methodology is outlined in this chapter 
with particular attention on steps one, two, three and six. These steps identify the capabilities 
required by the organization; develop the system architecture views that meet the operational 
architecture view requirements and produce the combined SOSI Architecture view that 
represents all the capabilities required. Finally step six discusses the way the comparisons are 
carried out. The details of the transformation, step four and five, from the UML Activity 
Diagram to the CPN are detailed in section 6.5. 
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6.5 Transformation 

This chapter describes the transformation from the UML Activity Diagrams that describe the 
various SOSICs that the SOSI will execute into an executable model expressed as a Colored 
Petri Net (CPN). Each SOSI defines multiple SOSICs. This chapter describes the details of step 
4 and step 5 of the assessment methodology described in section 6.4. Levis and Wagenhals 
[2000]. Calderon [2005], and Pettit [2003] all offer processes to produce a CPN from 
architecture information. Levis and Wagenhals' transformation is not automatic, but it does 
offer a process to transform an architecture into an executable form in a traceable manner. Pettit 
and Calderon create automatic transformations to a Petri Net. The methodology provides an 
automated transformation from the UML Activity Diagrams to a CPN.   The first part provides 
an overview of the methodology for transforming the Activity Diagram into a CPN. The second 
part describes the transformation of an Activity Diagram. This transformation into the CPN 
represents Step 4 of the primary methodology. The last part is Step 5 of the primary 
methodology and describes the unique modeling artifacts that are required to complete the 
executable model. 

Transformation Process 

The steps in the transformation process are similar to the MDA process depicted in Figure 
6.41. An idealized MDA process begins with a Platform Independent Model (PIM). The first 
transformation creates a PSM from the PIM. The second transformation creates an executable 
form from the PSM. The process developed for this methodology represents the PIM as the 
static representation of the SOSI in UML. The first transformation creates a PSM that represents 
an instance of a CPN data model. The second transformation creates the xml file that is executed 
by the CPNTools. 

Traditional MDA SOS Analysis MDD 

PIM IIIUII     MnHnl 
:> «SOS Profile» 

first      \ 
:ransformation V 1 

first 
transform; ition 

PSM PSM >- CPN Model > 
— 

t 
second 

ransformatioi 1 

• • 

se 
transf 

cond 
armatior 

> CPNTools 
XML format 

Code Code :> 
-—-. 

PIM = Platform Independent Model 
PSM = Platform Specific Model 
CPN = Colored Petri Net 

Figure 6.41: SOS Model Driven Development Process 
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The transformation process has four steps that follow closely the MDD environment 
described in Figure 6.41. These steps are subtasks of step 4. 

Step 4. Transform SOSI alternatives into CPN Model. 

Step 4.1. Transform automatically the UML to the CPN data model. 

Step 4.2. Transform Automatically the CPN data model to CPN XML format. 

Step 5. Configure and execute the CPN model. 

Figure 6.42 shows the process with some the steps described in section 6.4 grayed out. Step 
3 produces the Platform Independent Model (PIM) it is the static representation of the SOSI. 
Step 4.1 is the first transformation from the Activity Diagrams that represent the SOSICs to a 
PSM representing an instance of the CPN data model. Step 4.2 represents the second 
transformation and is the transformation from the CPN data model to the CPNtools XML 
format. Step 5 instruments the CPN for data gathering based on the way the Elements have 
been arrayed in the Nodes. The next section explains the specific tasks accomplished in each 
step. 

Step 3 builds the UML model and is the fundamental architecture development step. All 
aspects of the architecture must be addressed in order to ensure that executable model can 
execute. These aspects are detailed in Steps 1 through 3 of the methodology. The resulting 
static UML representation of the SOSI alternative is the PIM for the transformation. 

•Step 3 Produce SOSI Architectures 
•SOSI static representation 
•Platform Independent Model 
(PIM) 
•Activity Diagrams of the SOSICs 

Step 2 
Identif) De\ek>p 

System View of the 
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Slep I 
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the Architecture 

First Transformation 

•Step 4.1 Create PSM 
•CPN Data Model instance 
•PSM representing all SOSICs 

Second Transformation 

•Step 4.2 Create Executable 
•CPNTools XML format 
•Creates the executable form 

CPN Preparation 

•Step 5 Develop and Execute Scenario 
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Figure 6.42. Transformation Process 
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The examples used in this chapter extend the example begun in section 6.4. Figure 6.43 shows 
the Activity Diagrams for the Element behavior. The Element Activity Diagrams are connected 
together to create the SOSIC Activity Diagram. Figure 6.44 shows the SOSICs that the 
Elements participate in. Notice that System2 is used in both SOSICs but different inputs are 
required. The unused inputs from each SOSIC are combined in the transformation to create a 
single executable that represents both activities executing simultaneously in one instance of 
System2. The next step addresses the first transformation in the MDD process and produces the 
Platform Specific Model. 
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Figure 6.43. Element Activity Diagrams 

Step 4.1 performs the transformation from the PIM to the PSM. The primary transformation 
is from the Activity Diagram to the CPN data model. Note that the transformation occurs with 
multiple SOSICs represented in multiple Activity Diagrams. The artifacts of the Activity 
Diagram are mapped to CPN constructs. The components described below are the ones that are 
used to model the behavior of the SOSI. 

The transformation process translates the Activity Diagram components into CPN 
components. The basic components of the Activity Diagram used by this methodology are: 
Action ((action)), Object Node (I•*6!), Call Behavior Action (•), Fork/Join Node (^H). Decision 
Node (O), Initial Node (•), Final Node (®),Stop Node (*), and Activity Parameter Node (£«»•). 
The components of the CPN are: Transition (I —» I), Place (o), and Substitution Transition (f^T). 
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Figure 6.44 Element SOSIC Participation 

An Action describes a fundamental unit of executable functionality. It represents some 
processing in the modeled system. [OMG, 2007] Actions are translated into Transitions in the 
CPN. Transitions represent actions that take specific input from places and produce specific 
output to places. In many cases, the Element functions defined in the SV-4 will be represented 
by groups of actions that accomplish a specific task. 

CallBehaviorAction is an action used by the methodology to create a hierarchy of Activity 
Diagrams. (This action can call other behavior representations not used in this methodology like 
a state transition diagram or a sequence diagram). The CallBehaviorAction invokes lower level 
Activity Diagrams described for each Element. This Activity Diagram component translates to a 
Substitution Transition in the CPN which is a transition that is associated with another page in 
the CPN. 

Object Nodes assist in describing the data that passes from Action to Action. [OMG, 2007J 
Four types of Object Nodes are used: Activity Parameter Node, Input/Output Ports, Data Stores, 
and Buffers. All of these Activity Nodes are transformed into CPN Places. 
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Four types of Control Nodes are used: Fork, Join, Decision, and Merge. All the Control 
Nodes translate into CPN transitions. Decision Nodes require accompanying arc inscriptions 
that control the passing of tokens based on the value of variables represented in the token. These 
inscriptions are translated from the associated guards inscribed on the Decision Node output arcs 
represented in the Activity Diagram. 

Finally, the terminal Nodes: Initial and Final, represent the beginning and end of each 
Activity. They are transformed into places in the CPN. 

Figure 6.45 summarizes the above discussion. The Activity diagram components are shown 
in the top row and first column of Figure 6.45. The second row and column show the 
components of the CPN as well as their transformational relationship with the Activity Diagram 
components in the first row/column. The interior cells describe the CPN components that are 
used to connect the Elements described in the outside rows and columns. 

* target (action) — o TYPE | ® call 
[behavior ® ptype 

source | trans |   trans   | 1  trans C) o subst o o 
(action) ^ >X >X X X 

socket 
X X trans 

— X >X ^ X X socket X X trans   j 

O 
^Iguard) «Jguard] 

T3L 
^guard] 

^guard] X ft *\J   * 
ssocket X 

,[guard] 

|   trans   J 

TYPE O X X X forbidden forbidden X lauxi lauxi 

• o X X X lauxi forbidden X forbidden forbidden 

C                                  \ 

call 
[behavior] socket socket socket 

X X 
socket 

forbidden port 
subst 

® O forbidder forbidden forbidden forbidden forbidden forbidden forbidden forbidden 

ptype O X X X lauxi forbidden port ^ forbidden laux i 

Figure 6.45. Activity Diagram Transformation Rules 

The transformation described requires a data model for the CPN so that an Activity Diagram 
can be transformed into the CPN construct. The data model in Figure 6.46 is the template for the 
CPN PSM. All the transformation constructs described above are represented. The concept of a 
page, PNPage, is utilized as well as that of the Substitution Transition that facilitates creating the 
hierarchical representation of an Activity Diagram enabled by the CallBehaviorAction. The 
Place and Transition Nodes are also represented. 
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Figure 6.46. CPN Data Model 

£/ML to CPN transformation 

Figure 6.47 illustrates the concrete syntax transformation using a fragment of an Activity 
Diagram and the transformation rules shown in Figure 6.45. In the upper left is a fragment of an 
Activity Diagram for transformation. Step a) identifies the ends of the connecting arcs as 
actions. Actions are located in the first cell of the outside row and column of Figure 6.45. Step 
b) shows the transformation of the actions into transitions (as is shown in the second row and 
column) and a connecting place between them to hold the tokens generated by the actions. The 
connecting arcs and place are found at the intersection of the source and target in the interior of 
the matrix. Step c) creates the CPN data representation with the actions named in the transitions 
and the places used to hold the tokens generated by the actions. Notice that the type of the place 
is the type of the input and output ports on the actions. Next the transformation is applied to a 
simple example extended from section 6.4. 

The first transformation creates the PSM from the SOSIC represented as an Activity 
Diagram. Figure 6.48 shows an excerpt of the SOSIC Example from Figures 6.43 and 6.44 
transformed into an instance of the CPN data model representation. Figure 6.46. The PSM is an 
intermediate representation before finally creating the executable. The figure is a UML Object 
Diagram and represents an instance of the CPN data model. The boxes represent instances of 
classes. The transitions and places have been transformed using the rules represented in Figure 
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6.45. The diagram shows an instance of PNPage called Example. This represents the top level 
of the CPN. The Elements modeled in the SOSICs are represented as SubstituionTransitions that 
compose the PNPage. The SubstitutionTransition objects are connected by Arc objects to Port 
objects that represent the interfaces into the subpage CPNs represented by the 
SubstitutionTransition objects. The other PNPage objects represent instances of System 1 and 
System 2. These PNPage objects are composed of Transition objects that represent the Actions 
modeled in the Activity Diagrams for System 1 and System2. 
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Figure 6.47. Transformation Process 

Step 4.2 is the transformation of the CPN data model to the CPNtools xml representation. 
Figure 6.49 is the top-level CPN page created from the example Activity Diagrams. The boxes 
represent substitution transitions that represent the instances of the Elements: System 1, System2 
and System. The ovals are places that model the interfaces into the subpages that represent the 
Activity Diagrams of the Elements. Figure 6.50 are the subpages from the example. Using the 
connection between System3 and System2 as an example, the place P31 in Figure 6.49 is 
represented in Figure 6.50 in the CPN pages that represent System2 and System3. Place P31 is 
an input place for System2 and an output place for System3. The toplevel CPN page, Figure 
6.49, shows this relationship between System2 and System3. 
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Step 5 completes the executable model by adding monitors to count the messages passing 
between Nodes, and grouping the Elements into the particular Node configuration required by 
the SOSI alternative. CPNtools produces a report that shows the data collected by the monitors 
instrumenting the CPN. This report is analyzed and used to create the coupling assessments for 
the SOSI. 

Summary 

This section outlined the transformation of the UML Model into a CPN. The transformation 
uses a process similar to the MDA to accomplish the transformation. The example shows the 
ability of the transformation to create the representative CPN model given the UML Activity 
diagrams. The resulting CPN is a combined model of all the Activity diagrams associated with 
the SOSI. The next chapter completes the discussion of the SOSI measures with a case study 
that illustrates the use of the Adaptability and Agility measures 

6.6 Conclusion 

Adaptability and Agility provide a qualitative assessment of the interaction of the Elements 
and Nodes of the SOSI very early in the development process. This allows SOS engineers to 
assess the ability of the architecture to adapt to the deployed environment given that it is highly 
unlikely that the deployed environment will duplicate the scenarios used to test the SOSI. The 
combined executable model enables an analysis of the internal interaction of the Elements on a 
Node (Cohesion) and the degree of dependence of the Node to the rest of the SOSI (Coupling). 
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Degree of Reuse reveals Elements that might be over-utilized and thus inhibit the ability of the 
SOSI to provide the required capabilities concurrently. 

The SOS architecture development methodology produces an executable model with 
behavior that is traceable to the static representation. The methodology ensures the rule, data 
and dynamic behavior models are accurately represented in the executable. Furthermore, the 
executable is a representation of the concurrently executing SOSICs derived from multiple 
system views of the architecture. The Coupling measure reveal the influence of the combined 
rule models on SOSI Adaptability by simulating the behavior of the Elements in concurrently 
executing SOSICs. 

The ambiguity caused by changing adversaries, technological advancements and changing 
organizational structures will cause a significant amount of uncertainty as to what will be the 
deployed structure of the organization. The SOS engineering challenge is to assess the ability of 
alternative architectures to adapt to the operating environment in which it is deployed in order to 
provide a SOS that facilitates the level of Agility required by the organization. 

This research contributes significantly in several areas. First the assessment measures 
Coupling, Cohesion and Degree of Reuse assess two aggregate performance characteristics of 
the SOSI, Adaptability and Agility. Adaptability describes the ability of a SOSI to respond to 
changes in the operating environment. Adaptability is modeled as a product of Cohesion and 
Coupling using the Cobb-Douglas [1920] form. The methodology distinguishes four cases of 
SOSI Adaptability: 

Low Cohesion and Low Coupling = High Adaptability 

Low Cohesion and High Coupling = Medium Adaptability 

High Cohesion and Low Coupling = Medium Adaptability 

High Cohesion and High Coupling = Low Adaptability 

The case study reinforces the findings. The P2P and SOA alternatives have similar 
assessments for Adaptability, but the values of Coupling and Cohesion are different. The 
measures Coupling and Cohesion allow developers to identify traits that can be modified to 
improve the Adaptability of the SOSI. 

Degree of Reuse and Exclusiveness assess the ability of the SOSI to execute the SOSICs 
concurrently. The case study illustrated the importance of the highly reused Elements and how 
reducing the overall reuse of Elements can improve the Exclusiveness and reduce the potential 
for contention for Element resources. 

Adaptability and Exclusiveness combine to assess the overall Agility of a SOSI. This last 
measure provides an aggregate measure for assessing the ability of the SOSI to provide SOSICs 
concurrently and adapt to unpredicted operating environments. 
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Second, the methodology for combining multiple behavior models into a single combined 
executable significantly contributes to SOS engineer's ability to ensure the acceptability of the 
architectures and the ability to analyze the performance of the architectures in various scenarios. 
Structural architects depend on 3D representations in paper or computer generated to obtain 
feedback from the stakeholder about whether the proposed solution meets the needs of the 
organization. SOS engineers must rely on the executable model to provide a representation that 
allows the stakeholder to observe modeled performance and assess the appropriateness of the 
architecture. The model driven development environment adds validity to the process by 
ensuring the executable behavior is directly traceable to model artifacts in the architecture. The 
environment created for this methodology creates such an environment. 

Third, SOS assessment requires that the SOS I be bounded for analysis and the structural and 
behavioral aspects of the architecture are modeled accurately. The SOS taxonomy developed for 
the methodology provides such a description. The SOSI is a bounded subset of the resources 
available to the organization. The Nodes provides structure for the SOSI, while the SOSICs 
model the processes that realize the capabilities for the organization. 

Furthermore, the methodology provides the required architecture data early in the 
development process to improve early decisions concerning technologies and architecture design 
tradeoffs. 

Finally, the Cobb-Douglass production function is used in a unique manner to relate 
Coupling and Cohesion for the computation of Adaptability. 

There are many aspects of adaptability and agility that could be measured from the 
information provided by the methodology. This research concentrated on structural changes 
denoted by changing the configuration of the SOSI Nodes and holding all other aspects of the 
SOSI constant. Further work could be conducted measuring the ability of the SOSI to adapt to 
new SOSIC processes given a fixed set of Elements. The analysis might include performance 
analysis or a gap analysis that reveals shortcomings in the ability of the SOSI to provide a 
particular capability because a particular system function is not available in the current set of 
Elements. Another analysis might include the ability of the SOSI to operate in a degraded mode 
because certain Elements have been compromised in some fashion. Finally, there is a security 
aspect that should be considered to ensure that the SOSI Architecture implements the required 
security capabilities to ensure an uncompromised operating environment. 

Another area of future work is further analysis of the ability of the SOSI to provide the 
operational capability described in the operational architecture view. Developers need the ability 
to ensure the operational concept described in the operational architecture view is actually met 
by the SOSI Architecture for a particular SOSI. The SV-5 assists in this arena, but only 
addresses the obvious modeled functions. Research in this area could reveal contradictions in 
the state space of the SOSI Architecture when compared to the state space of the operational 
architecture views. This could be true for a single capability or true when multiple capabilities 
are being provided. 
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Finally, more work is required to ensure UML semantics defined in the UML specification 
are formally defined. This work revealed semantics for the Activity Diagram that are not 
supported in the SOS environment. Such work might entail modification of current UML 
profiles or a new UML profile that supports the development of SOSI Architectures. Improved 
semantics would also assist in analyzing the UML model directly. In order for the UML to 
support graph analysis like invariant and state space analysis, the semantics of the language must 
be constrained to that reduce the ambiguity currently in the UML specification. 
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SECTION 7 

Case Study: Expeditionary Strike Group 

Stewart W. Liles and Alexander H. Levis 
7.1 Introduction 

The case study is an idealized military example with diverse capabilities that must be 
executed concurrently in an unpredictable operating environment. The case study requires an 
assessment of multiple SOSI architectures in order to decide how to configure the organization 
for its upcoming deployment. 

7.2 Scenario 

The fictional mission in this case is as follows. On a small island in the Pacific called 
Efcratia the US maintains a ground station that receives data down-linked from national security 
assets. It also has had ready access to the port facilities. The population in Efcratia is diverse. 
The majority is Moslem but with a significant minority that is Christian (Catholic). The 
government and the population of Efcratia are generally pro-US, but there exists a small vocal 
opposition to US presence on the island. More recently, in response to world events, a local 
instantiation of a terrorist organization, the Shining Crescent, has established a presence on the 
island and is fomenting anti-US attitudes. 

The recent earthquake and the resulting tsunami caused substantial damage to the 
infrastructure of the island and destroyed many of the government buildings in Efcratia's capital 
- the main port city. It has also caused damage to the airport so transport planes cannot land - 
only small planes. As a result of the tsunami and the destruction, there is anarchy on the island. 
Consequently, in addition to the dire need for humanitarian assistance and disaster relief, there is 
also need for rapid re-establishment of public order and for Efcratia's government to function 
and provide services. 

The US Government, through the Pacific Command (PACOM), has decided to send an ESG 
that was in the area with two primary objectives: (a) provide some protection to the humanitarian 
assistance and disaster relief that is being sent to the island through the port city; and (b) protect 
the ground station from possible politically or financially motivated attack. The ESG X receives 
the orders while at sea on its way to the Southwest Asia area of operations. 

We need to develop SOSI Architecture alternatives and present our assessment of the 
alternatives to the commander. Figure 7.1 shows the operational concept graphic. This graphic 
shows the island of Efcratia and identifies the various Nodes that will be used to structure the 
ESG for its operations. The Tarawa, Austin and Harper's Ferry ships represent command ships 

This section consists of the slightly edited Chapter 6 of the Ph.D. thesis of LCOL Stewart W. Liles, USA. 
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that can act as Nodes for the ESG. The Satellite Node is used to Link geographically separated 
Elements together with common communication facilities. The other Nodes represented are the 
Beach, Ground Station, and Port. 

T   U.   W«^b •LMMJ—fa, 

Tarawa 

Austin 

J&3&. ̂ L 
Harper's Ferry 

Satellite 

Figure 7.1. ESG Operational Concept Graphic (OV-1) 

Given the mission scenario and the provided operational architectures that represent the 
required capabilities, assess the architecture alternatives for their ability to adapt to unplanned 
configurations. The resulting SOSI Architectures are built from the perspective of the lead 
System Engineer. 

7.3 Operational Architectures 

Step 1 of the methodology identifies the Operational Architectures that describe the required 
capabilities. This section illustrates the required capabilities in simplified operational 
architectures using DODAF products to describe the kind of data required. The assessment 
process requires four operational views for each capability: the Operational Node Connectivity 
Diagram, OV-2; the Operational Activity Model, OV-5; Operational Rules Model, OV-6a; and 
the Logical Data Model, OV-7. 

The OV-2 shows the particular roles that are represented in the capability and the data that is 
passed between the roles. Figure 7.2 through 7.4 show the OV-2s for each capability. Figure 7.2 
is the OV2 for the Planning and Coordination Capability. A Requestor initiates the Operational 
activity by sending a Request to a Coordinator. The Coordinator then sends an Order to the 
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Planners and the Planners respond with a revised Order. The Order is then sent to the 
appropriate Executor. The Executor coordinates with the Requestor and sends Status to the 
Coordinator. 

Figure 7.3 is the Blue Force Tracking (BFT) Capability. The capability begins with the 
Reporter sending new BluePLI (Blue Position Location Information) to the Distributor. The 
Distributor then sends BluePLI Messages to all connected Receivers. 

Figure 7.4 is the Process and Disseminate Intelligence Information Capability. This 
capability begins with personnel or equipment being sensed by a Sensor. Then a Sensor sends an 
Input to the Controller. Input types are Blip, Signal, and Sighting. The controller sends a 
SpotReport to the Analyzer. The Analyzer uses multiple SpotReports to synthesize opposing 
force locations. The Analyzer then passes the RedPLI (Red Position Location Information) to a 
Distributor. The Distributor distributes the RedPLI to Receivers. 

\ 5: Order 
7: Status -* 

Planner 

Coordinator 

Figure 7.2. Planning and Coordination OV-2 
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Figure7.3 Blue Force Tracking OV-2 

-I       3: SpotReport ^ 
jv, v-4: Rpli 

Figure 7.4. Process and Disseminate Intelligence Information OV-2 

The Operational Information Exchange Matrix, OV-3, further defines the data exchanges 
identified in the OV-2 by describing the attributes of the messages passed between the 
represented roles. 

Table 7.1 represents the OV-3s for the required capabilities. For example, a Request 
message is sent from the Requester to a Coordinator. A Request message is of type text and is 
32 characters long. 
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Table 7.1. ESG Operational Information Exchange Matrix OV-3 

Planning and Coordination Capability 

Sender Receiver Type Length 

Request Requester Coordinator Text 32 

Order Coordinator Planner Text Variable 

Order Planner Coordinator Text Variable 

Status Executor Coordinator Text 48 

Coordination Executor Requestor Text 32 

Blue Force Tracking Capability 

Sender Receiver Type Length 

BluePLI Reporter Distributor Text 32 

BluePLI Distributor Receiver Text 32 

Process and Disseminate Intelligence Information 

Sender Receiver Type Length 

Input Sensor Controller Text 48 

SpotReport Controller Distributor Text 48 

SpotReport Distributor Analyzer Text 48 

RedPLI Analyzer Distributor Text 48 

RedPLI Distributor Receiver Text 48 

Operational activities describe the actions that each role executes to create the capability. 
The Operational Rules Models, OV-6a, Table 7.2, document the rules governing the behavior of 
operational activities. The rules are modeled in the Operational Activity Model. OV-5. For 
example the Coordinator role has an activity called ProcessRequest 
(CoordinatonProcessRequest). This operational activity implements the rule, If Request = 
req_sec then Order = ord_sec, which means if a request for security is received send an Order for 
security. 
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Table 7.2. ESG Operational Rules Model OV-6a 

Planning and Coordination Capability 

Requester: SendRequest Send all generated Request 

Requester: RecieveCoordination Receive all Coordination messages 

CoordinatonReceiveRequest Send all Request 

Coordinator: ProcessRequest If Request = req_sec then Order = ord_sec 

Coordinator: ProcessRequest If Request = req_sup then Order = ordsup 

Coordinator: SendOrder Send all Order 

Coordinator:DistributeOrder Send all Order to connected Executor 

Coordinator:ReceiveStatus Receive and Store all Status reports 

PlannenReceiveOrder Receive all Order 

Planner:ProcessOrder If Order = ord_pass then stop 

Planner:ProcessOrder If Order = ordsec or ordsup then SendOrder 

Planner:SendOrder Send all Order 

Executor:ReceiveOrder If Order then send Coordination 

Executor:ComputeStatus Send Order then send Status 

Blue Force Tracking Capability 

ReportenComputeBpli Compute location and sendBpli 

Reporter: SendBpli Send all BluePLI 

DistributonReceiveBpli If BluePLI o bpli_pass DistributeBpli 

Distributor:DistributeBpli Send all BluePLI 

Receiver:ReceiveBpli Receive all BluePLI 

Receiver:ReceiveBpli Store all BluePLI 

Process and Disseminate Intelligence Information Capability 

Sensor:Sense If Sense then Sendlnput 

SensonSendlnput Send all Input 

Controller:ProcessInput If Input = input_pers then SpotReport = sr_pers 
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ControllerProcessInput If Input = inputequip then SpotReport = srequip 

Controller:SendSpotReport Send all SpotReport 

Analyzer: ProcessSpotReport If SpotReport = srpers then RedPLI = rpli_pers 

Analyzer: ProcessSpotReport If SpotReport = sr_equip then RedPLI = rpliequip 

AnalyzenSendRedPLI Send all RedPLI 

Distributor:DistributeRedPLI If RedPLI =rpli_pass then empty 

Receiver:RecieveRpli Receive and Store all RedPLI 

The OV-7 describes the messages passed between Elements and the operations expected of 
the roles defined in the OV-2. The OV-7s for each capability are shown in Figs. 7.5. 7.6 and 7.7. 
The body of each Message is represented as a String. The contents of the Message body are 
interpreted based on the type of Message received. Each role type is defined for each capability. 

Message 
Stringbody 

Role 

7T 

Order 

Status 

Coordination 

Request 

Requester 
SendRequest 
ReceiveCoordination 

Planner 
ReceiveOrder 
ProcessOrder 
SendOrder 

Coordinator 
ReceiveRequesI 
ProcessRequest 
SendOrder 
DistributeOrder 
ReceiveStatus 

Executor 
ReceiveOrder 
ComputeStalus 

Figure 7.5. Planning and Coordination Capability OV-7 

Message 

String:body 

BIuePLI 
Reporter 

ComputeBpli 
SendBpli 

Distributor 
ReceiveBpli 
SendBpli 
DistributeBpli 
DistributeRpli 

Figure 7.6. Blue Force Tracking Capability OV-7 
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Message 
Stnng:body 

SpotReport 

Signal 

RedPLI 

Blip Sighting 

Role 

Distributor 
Receiver 

ReceiveBpli 
SendBpli 
DislribuleBpli 
DistribuleRpli 

ReceiveBpli 
ReceiveRpli 

'—i 

Controller Analyzer 
Processlnput 
SendSpolRepon 

ProcessSpotReort 
SendRpli 

Figure 7.7. Process and Disseminate Intelligence Information Capability OV-7 

The OV-6a, OV-2, and OV-7 are integrated in the Operational Activity Model, OV-5. The 
rules are realized in the actions shown in the UML Activity Diagrams representing each 
capability. Figure 7.8 is the Activity Diagram for Planning and Coordination followed by Figure 
7.9 and Figure 7.10 for Blue Force Tracking and Process and Disseminate Intelligence 
Information, respectively. The operational roles from the OV-2s are identified in the swim lanes 
of each Activity Diagram. The activities modeled here are identified in the rule model and the 
data model. The Activity Model shows how the activities are connected and what data is passed 
between them. 

7.4 System Architectures 

Step 2 of the assessment process identifies the applicable system architecture views that 
realize the required capabilities defined in the operational architecture views identified in step 1. 
There is a one-to-many relationship between the operational architecture views and the system 
architecture views for this case study. The system architecture views use different architecture 
approaches to realize the capabilities described in the operational architecture views. There are 
three patterns described in the system architectures, peer-to-peer, centralized-server and service 
oriented architecture. Figure 7.11 shows the relationships between the operational architecture 
views and the system architecture views. The three architecture patterns resulted in three 
different SOSI Architectures that created related groups of SOSI alternatives. The P2P system 
architecture view will be presented in detail, the remaining approaches will only contribute to the 
results presented in step 6 and 7. 
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Figure 7.8. Planning and Coordination OV-5 
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Figure 7.9. Blue Force Tracking OV-5 
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Sensor Controller Analyzer Distributor 

|   Sense   I 

X 
•-6 rocesslnput 

I Input 
Input | rA     . 

I Sendlnput I 

| ProcessSpotReport 

SpotReport 
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] 
SendRedPLI 

> RedPLI v DistributeRedPLI 

RedSA StoreRpli RedPLI ReceiveRpli j 

RedPLI 

ZD— 

Figure 7.10. Process and Disseminate Intelligence Information OV-5 

Operational 
Architectures 

System SOSI SOSI 
Architectures      Architectures Alternatives 

Planning and 
Coordination 

(PC) 

Blue Force 
Tracking 

(BFT) 

Process and Disseminate 
Intelligence Information 

(PDII) 

P2P_PC 
P2P_BFT 
P2P PDII 

P2P 
P2P_1 
P2P_2 
P2P 3 

CS_PC 
CS_BFT 
CS PDII 

SOA_PC 
SOA_BFT 
SOA PDII 

SOA 

SOA1_1 
SOA1_2 
SOA1   3 

SOA3_1 
SOA3_2 
SOA3 3 

SOA2_1 
SOA2_2 
SOA2 3 

Figure 7.11. Relationship Among Architecture Views 

The DODAF system architecture views required by the methodology follow: System 
Interface Description (SV-1), Systems Functionality Description (SV-4), Operational Activity to 
System Function Traceability Matrix (SV-5), System Data Exchange Matrix (SV-6), Systems 
Rules Model (SV-lOa) and the Physical Schema (SV-11). There are three system architecture 
views, one for each capability described by the operational architecture views. The System 
Views will be grouped by DODAF product. 
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The SV-1 represents the system Elements used to realize the capability. It also represents the 
nodes the Elements are assigned and the messages passed between them. The SV-ls are 
represented as modified UML Communications Diagrams by adding the node assignments for 
the Elements. The SV-ls are shown in Figures 7.12, 7.13, and 7.14. The roles from the 
corresponding operational architecture are shown in the angle brackets for each Element 
instance. The node each Element is assigned to is identified by the box. There are four types of 
Elements: Tactical Level Command and Control System (TLC2S), Operational Level Command 
and Control System (OLC2S), Blue Force Tracking (BFT) and Intelligence Control System 
(ICS). These Elements interact in the following system architecture views to realize the 
capabilities described in methodology step 1. 

3. Request 

«Coordinator» 
J3Plans 

ShipNode 

OLC2S 

2. Request 

«Coordinator» 
DROps 
OLC2S 

«Coordinator» 
J30ps 
OLC2S 

4. Order 
11. Statusx 5. Order 

12. Status 

± 
«Planner» 
MEUS30ps 

OLC2S 

«Planner» 
MEUS3Plans 

OLC2S 

1. Request 10. Status 6. Order 

«Requestor» 
NGOHQ 
TLC2S 

LandNode 

, 
7. Order 

8. Coordination 

«Executor» 
BLTTroopOps 

TLC2S 

V 

2L_L . 
«Planner» 
BLTS30ps 

TLC2S 

9. Status 
' 

Figure 7.12. Planning and Coordination SV-1 

The system architecture views are further defined by the SV-6. It provides the attributes of 
the Messages exchanged between the Systems. The SV-6s for are shown in Tables 7.3, 7.4. and 
7.5. Each exchange between a Sender and Receiver shown in the SV-1 is a row in the SV-6. For 
example. Request Messages are sent from the TLC2S Elements to the OLC2S element. The 
message is text and its length is 32 characters. 
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Figure 7.13. Blue Force Tracking SV-1 
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Figure 7.14. Process and Disseminate Intelligence Information SV-1 
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Table 7.3. Planning and Coordination SV-6 

Sender Receiver Type Len 

Request TLC2S OLC2S Text 32 

Request OLC2S OLC2S Text 32 

Order TLC2S TLC2S Text * 

Order OLC2S OLC2S Text * 

Order OLC2S TLC2S Text * 

Coordination TLC2S TLC2S Text 32 

Status TLC2S TLC2S Text 56 

Status OLC2S OLC2S Text 56 

Status OLC2S TLC2S Text 56 

Table 7.4. Blue Force Tracking SV-6 

Sender Receiver Type Len 

BluePLI BFT OLC2S Text 32 

BluePLI BFT TLC2S Text 32 

BluePLI BFT ICS Text 32 

BluePLI BFT BFT Text 32 

Table7.5. Process and Disseminate Intelligence Information SV-6 

Sender Receiver Type Len 

Sighting HumintSensor ICS Text 48 

Sighting SigintSensor ICS Text 48 

Signal SurfaceRadar ICS Text 48 

RedPLI ICS OLC2S Text 48 

RedPLI ICS TLC2S Text 48 

The SV-lOa describes the rules that define the behavior of the system functions. In this case, 
the rules describe the action that the system takes upon receiving a particular type of message. 
Tables 7.6, 7.7, and 7.8 are the rule models for the system architectures. Table 7.6 shows that if 
a Request message is received send a Request message. 

83 



Table 7.6. Planning and Coordination SV-lOa 

TLC2S 

if Request then Request 

if Order o ordwarning then SendOrder 

if Status then SendStatus 

OLC2S 

if Request then Request 

if Order o ordwarning then SendOrder 

if Status then SendStatus 

Table 7.7. Blue force Trackin SV-10a 

TLC2S 

ifBluPLIthen PassBpli 

OLC2S 

ifBluPLIthen PassBpli 

BFT 

ifBluePLIo rpli_pass the rpli 

Table 7.8. Process and Disseminate Intelligence Information SV-lOa 

TLC2S 

ifRedPLIthenSendRpli 

OLC2S 

ifRedPLIthenSendRpli 

ICS 

if SpotReport = sr_pers then rpli_pers 

if SpotReport = srequip then rpliequip 

if RedPLI = rplipass then empty 

if Blip = blip_pers then sr_pers 

if Blip = blipequip then srequip 

if Signal = signal_pers then sr_pers 

if Signal = signal_equip then sr_equip 

if Sighting = sighting_pers then sr_pers 

if Sighting = sightingequip then srequip 

The SV-11, shows the physical schema for each system architecture. Figure 7.15, 7.16, and 
7.17 show the physical schemas for the system architectures. Each one describes the Messages 
and Systems that realize the capability. 
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Order 

Enum:{ord_sec, ordsup, 
ordact, ordwaming} 

Message 

Status 

Enum:{sta_good, 
sta bad} 

Request 

Enum:{req_sec, 
req_sup, req_pass} 

Coordination 

Enum:{coord_bad, 
coordgood, coordinfo} 

System 

OLC2S 
SendReq 
RecReq 
RecOrder 
SendOrder 
CoordOps 
ProcSA 

Figure 7.15. Planning and Coordination SV-1 

TLC2S 
SendReq 
RecReq 
RecOrder 
SendOrder 
CoordOps 
ProcSA 

Message 

BluePLI 

Enum:{bpli_act, 
bplievt, bpliloc} 

System 

\ 

OLC2S TLC2S 

ProcSA ProcSA 

BFT 
SendBpli 

Figure 7.16. Blue Force Tracking SV-11 

The SV-4 is represented in this methodology as an UML Activity Diagram. The activity 
diagram uses the information from all the system views presented to model the dynamic behavior 
of the system architecture view. The data represented in the SV-11 and SV-6 is represented by 
the ports showing the Message types passed between systems. The rules defined in the SV-lOa 
are implemented in the Activity Diagram. The diagrams shown here represent the top level of a 
hierarchy of activity diagrams. The fork icon in means there is a lower level activity diagram the 
further represents the behavior of the system. Figures 7.18, 7.19, and 7.20 represent the SV-4s 
for the system architectures. 
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Message 
System 

Sighting 

Enum:{sight_pers, 
sightequip} 

RedPLI 

Blip 

Enum:{blip_pers, 
blip equip, blipair} 

Signal 

Enum:{signal_air, 
signalgrnd} 

Enum:{rpli_pers, 
rpliequip, rpli_air} 

SignalSensor 
SendSignal 

HumintSensor 

SendSighting 

RadarSensor 

BluePLI 

Enum:{bpli_act, 
bplievt, bpliloc} 

SpotReport 

Enum:{sr_pers, 
srequip} 

SendBlip 

r~ 
OLC2S ICS TLC2S 

ProcSA ProcSR 
ProcSighting 
ProcessSig 
ProcBlip 
Proclntel 
SendRpli 

ProcSA 

Figure 7.17 Process and Disseminate Intelligence information SV-11 

Figure 7.21 is an example of one of the lower activity diagrams that describes the behavior 

of a system.  It represents the behavior of the TLC2S. Notice that the actions defined in the 

diagram map to the functions described in the SV-6, SV-5 and SV-11. 

The SV-5 is a matrix that maps the operational activities shown in the columns on the left 

with the system functions shown in the rows at the top. This matrix provides the traceability 

from the system architecture view back to the operational architecture view. It is used to ensure 

that all the operational activities are realized by a system function. Using Table 7.9as an 

example, the operational role Coordinator has an activity ProcessRequest. The TLC2S and 

OLC2S systems both realize this operational activity. The name of the system function that 

realizes the activity in both systems is Rec Req (ReceiveRequest). The SV-5s for each capability 

are represented in Tables 7.9, 7.10, and 7.11. 
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Figure 7.21. Tactical Level Command and Control System Activity Diagram 

7.5 System of System Instance Architecture 

Step 3 of the methodology merges the system architecture views into SOSI Architectures that 
represent the different approaches used by the system architecture views and requirements 
described by the implementing organization. There are four SOSICs created from the system 
architecture views. They are Conduct Security Operations, Conduct Support Operations, Blue 
Force Tracking and Process and Disseminate Intelligence Information. Conduct Security 
Operations and Conduct Support Operations are both realizations of the Planning and 
Coordination Capability. The ESG requires diverse capabilities. By modeling both SOSICs the 
utilization of Element resources that must be applied to disparate tasks can be assessed. 

The system architecture views identified in step 2 yielded three different architectural 
approaches: P2P, CS and SOA. The P2P SOSI Architecture will be shown in detail while only 
the results of the analysis will be shown for the CS and SOA SOSI Architectures. The P2P SOSI 
Architecture fulfills the requirement of the operational view using a peer to peer architecture 
concept. In P2P there are no central servers. Each Element is connected to its peers in a 
predetermined fashion. Figure 7.22 shows a diagram the represents the P2P SOSI without Nodes 
assigned. The lines represent connections between Elements that facilitate the sending and 
receiving of messages defined in the SOSICs. 

190 



Table 7.9. Planning and Coordination SV-5 

System TLC2S OLC2S 

Role 
Activity/ 
Function 

Send 
Req 

Rec 
Req 

Rec 
Ord 

Send 
Order 

Coord 
Ops 

Send 
Req 

Rec 
Req 

Rec 
Ord 

Send 
Ord 

Coord 
Ops 

Requestor SendRequest X X X X 

Receive 
Coordination 

X X 

Coordinator 
Receive 
Request 

X X 

ProcessRequest X X 

SendOrder X X 

Distribute 
Order 

X X 

RecieveStatus X X 

Planner RecieveOrder X X 

ProcessOrder X X 

SendOrder X X 

Executor ReceiveOrder X 

ProcessOrder X 

Send 
Coordination 

X 

Compute 
Status 

X X 

Table 7.10. Blue Force Tracking SV-5 

System TLC2S OLC2S BFT 

Role Activity/Function 
Proc SA Proc SA Send Bpli 

Reporter ComputeBpli X 

SendBpli X 

Distributor ReceiveBpli X X 

DistributeBpli X X 

Receiver RecieveBpli X X 



Table 7.11. Process and Disseminate Intelligence Information SV-5 

System TLC2S OLC2S ICS Sensor 

Role Activity /Function 
Proc 
SA 

Proc 
SA 

Proc 
SR 

Proc 
Sight 

Proc 

Sig 

Proc 
Blip 

Proc 
Intel 

Send 
Rpli 

SRSS 
HS 

Sensor Sense X 

Sendlnput X 

Controller Processlnput X X X 

SendSpotReport X 

Analyzer ProcessSpotReport X 

SendRedPLI X X 

Distributor DistributeRedPLI X X 

Receiver ReceiveRpli X X X X 

StoreRpli X X X X 

GrndStationOps 
TLC2S 

BLTS30ps 
TLC2S 

J3Plans 
OLC2S mm 

Figure7.22. Peer-to-Peer Architecture 
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The second SOS I Architecture used for comparison in the case study is the centralized-server 
(CS) architecture. As the name implies there are central servers that facilitate the passage of 
information from one Element to another. Where the P2P architecture used direct connection 
between Elements, the CS architecture relies on a server to pass information from one Element to 
another. There are three CS SOSI groups. They differ in the number of servers up to three 
servers in the SOSI. Figure 7.23 shows the architectures for the one server SOSI. 

GrndStationOps 
TLC2S 

BLTHQ 

BLTTroops 
BFT NGOConvoy 

BFT 

Figure 7.23. Client Server SOSI with One Server 

The last SOSI Architecture represents a Service Oriented Architecture. This type of 
architecture is characterized by instances of services that accomplish specific tasks for the 
organization and facilitate communication between the Elements. The SOA SOSI groups are 
differentiated by the number of instances of each service type. There are five services defined: 
Planning, Coordination; Request, ISR and BFT. There are three different SOSI groups that use 
SOA architecture configuration. They are differentiated by the number of instances of each 
service. SOA1 SOSI, Figure 7.24, shows a single instance of each service. 

The P2P SOSI Architecture will be used as the example for the remaining steps of the 
methodology. Figure 7.25 is part of the SV-11 for the P2P SOSI Architecture. It shows the 
relationships between the Nodes and Elements. Another diagram completes the SV-11 by 
showing the Message types. The Expeditionary Strike Group System (ESGS) is the top level 
class and represents the SOSI as a whole. There are two types of Nodes, ShipNode and 
LandNode. There are four types of Elements: Tactical Level Command and Control System 
(TLC2S), Operational Level Command and Control System (OLC2S), Intelligence Control 
System (ICS) and Blue Force Tracker (BFT). Finally there are three Elements that represent 
sensors in the SOSI: SurfaceRadar (SR), SignalSensor (SS) and HumanSensor (HS). 
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BLTTroops        NGOConvov BLTHQ 
BFT BFT BFT 

J3Plans 
0LC2S 

Figure 7.24. Service Oriented Architecture with One Instance of Each Service 

«Node» 
ShipNode 

«Node» 
LandNode 

«Element»     «Element»     «Element»     «Element» 
TLC2S OLC2S ICS BFT 

«Element»        «Element»        «Element» 
SurfaceRadar SignalSensor HumanSensor 

Figure 7.25. P2P SOSI Architecture SV-11, part 1 

The methodology requires the SV-1, SV-4,SV-5,SV-6, SV-lOa and SV-11. The case study 
looks at three SOSI alternatives of the P2P SOSI Architecture differentiated by the Node 
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configuration shown in the SV-ls. The SV-1 changes for each node configuration. Figures 7.26. 
7.27, and 7.28 show the three different Node configurations used for evaluation of the P2P 
SOSI. The measures will reveal that certain configurations are more adaptable to change than 
others. 

The first Node partition, Figure 7.26 partitions the Elements by echelon. There are two 
nodes on the island that represent the supported population, Ground Station and Port. The 
Ground Station represents the communication station described in the scenario. The Port Node 
represents a connection to the government of Efcratia. The Tarawa Node is the ESG command 
ship. The Harper's Ferry Node is the Marine Expeditionary Unit (MEU) Headquarters command 
ship. The Beach Node is the location of the Battalion Landing Troops that are controlled by the 
other echelons. 

The second Node partition. Figure 7.27, is functional. The Tarawa Node has the operations 
Elements and the Harper's Ferry Node has the Planning Elements. The rest of the Elements are 
arrayed over 6 other Nodes. The third partition, Figure 7.28 groups all the elements strictly by 
echelon. This is different from the first partition because the MEU and BLT are all on the same 
Node in this partition. 

BLTHQ 
BFT 

BLTTroops 
BFT 

Satellite 

NGOConvoy 
BFT 

Ground 
Station 

GrndStationOps 
TLC2S 

Beach 
BLTS20ps 

ICS 
BLTTroopOps 

TLC2S 

HS1 
HumanSensor 

BLTS30ps 
TLC2S 

Port 

NGOHQ 
TLC2S 

HS2 
HumanSensor 

MEUS30ps 
OLC2S       Harper's 

MEUS20ps 
ICS 

MEUS3Pians      Ferry 
OLC2S 

DROps 
OLC2S 

J30ps 
OLC2S 

J3Plans 
OLC2S 

Tarawa 

J20ps 
ICS 

SS1                       SR1 
SignalSensor        SurfaceRadar 

Figure 7.26. P2P1 SV-1 Six Nodes 
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Ground Station 
NGOHQ GrndStationOps 
TLC2S TLC2S 

Beach 
BLTHQ 

BFT 
BLTTroopOps 

TLC2S 

Satellite2 

HS1 
HumanSensor 

HS2 
HumanSensor 

Harper's Ferry 
MEUS20ps       MEUS3Plans 

ICS                  OLC2S 

J3Plans           J20ps 
OLC2S              ICS 

Satellite 
BLTTroops        NGOConvoy 

BFT BFT 

Austin 

BLTS20ps 
ICS 

BLTS30ps 
TLC2S 

Oliver Hazard 

SR1 
SurfaceRadar 

SS1 
SignalSensor 

MEUS30ps 
OLC2S 

DROps 
OLC2S 

Tarawa 

J30ps 
OLC2S 

Figure 7.27. P2P_2 SV-1 Eight Nodes 

Tarawa 

DROps           J3Plans                   SS1 

OLC2S           OLC2S            SignalSensor 

J30ps             J20ps                   SR1 
OLC2S              ICS             SurfaceRadar 

Ground Station 
NGOHQ 
TLC2S 

GrndStationOps 
TLC2S 

BLTTroops 
BFT 

BLTHQ 
BFT 

Satellite 

NGOConvoy 
BFT 

HS1 
HumanSensor 

BLTS20ps 
ICS 

MEUS20ps 
ICS 

MEUS3Plans 
OLC2S 

Harper's 
Ferry 

BLTTroopOps 
TLC2S 

BLTS30ps 
TLC2S 

HS2 
HumanSensor 

MEUS30ps 
OLC2S 

Figure 7.28. P2P3 SV-1 Four Nodes 
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The SOSI Architecture SV-6, Table 7.12, is the result of merging the SV-6s from the P2P 
system architecture views. This view is focused on the interfaces between Elements. For 
example, Element TLC2S sends Request messages which are received by Element OLC2S. A 
Request message is text and 32 characters in length. These interfaces will be represented in the 
SOSICs modeled as SV-4s. 

Table 7.12. P2P Systems Data Exchange Matrix, SV-6 

Sender Receiver Type Len 

Request TLC2S OLC2S Text 32 

Request OLC2S OLC2S Text 32 

Order TLC2S TLC2S Text * 

Order OLC2S OLC2S Text * 

Order OLC2S TLC2S Text * 

Coordination TLC2S TLC2S Text 32 

Status TLC2S TLC2S Text 56 

Status OLC2S OLC2S Text 56 

Status OLC2S TLC2S Text 56 

BluePLI BFT OLC2S Text 32 

BluePLI BFT TLC2S Text 32 

BluePLI BFT ICS Text 32 

BluePLI BFT BFT Text 32 

Sighting HumintSensor ICS Text 48 

Sighting SigintSensor ICS Text 48 

Signal SurfaceRadar ICS Text 48 

RedPLI ICS OLC2S Text 48 

RedPLI ICS TLC2S Text 48 

The SV-lOa, Table 7.13, merges the rules implemented by the various Elements of the 
system architecture views. For example the ICS Element has a rule: if Blippers then sr_pers. 
The rule means that when an ICS instance receives a blip_pers message it should send out a 
srpers SpotReport message. 

The SV-11, Figure 7.29, is the merged data model from the system architecture views. It 
completes the SV-11 from Figure 7.25. In this case the various message contents are represented 
by enumerated values. For example, Status can be either good or bad. The enumerated values 
are stagood and stabad. In this view the Elements show the system functions that are modeled 
in each. 
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Table 7.13. P2P Systems Rule Model, SV-lOa 

TLC2S 

if Request then Request 

if Order o ord_warning then SendOrder 

if Status then SendStatus 

if SpotReport then PassSpotReport 

ifBluPLIthenPassBpli 

ifRedPLIthenSendRpli 

OLC2S 

if Request then Request 

if Order o ordwarning then SendOrder 

if Status then SendStatus 

if SpotReport then PassSpotReport 

ifBluPLIthenPassBpli 

ifRedPLIthenSendRpli 

BFT 

if BluePLI <> rpli_pass the rpli 

ICS 

if SpotReport = sr_pers then rpli_pers 

if SpotReport = sr_equip then rpliequip 
ifDaJDI    I   —   ~~i;       „„or,   tkon    Q•„ + ,, if RedPLI = rpli_pass then empty 

if Blip = blip_pers then sr_pers 

if Blip = blipequip then srequip 

if Signal = signal_pers then sr_pers 

if Signal = signalequip then srequip 

if Sighting = sighting_pers then sr_pers 

if Sighting = sightingequip then sr_equip 

The SV-4 describes the SOSICs. The SOSIC remain the same for each P2P SOSI 
alternative. The Elements may occupy various Nodes but the interconnections between 
Elements defined by the SOSIC remains the same. The activity diagrams used to model the SV- 
4 implement the rule model and data model defined above. They also implement the data 
exchanges defined in the SV-6 and the data types represented in the SV-11. 
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Sighting 

Enum {sightjers, 
sight equip 

Blip 

Enum {bhp_pers, 

blipequip, bhpair} 

Signal 

Enuni {signal  air 

SLgnal_grnd| 

Order 

Enum {ord sec, ordsup, 

ord act. ord warning} 

OLC2S ICS TLC2S 
SendReq ProcSR SendReq 

RecReq ProcSighting RecReq 
RecOrder ProcessSig RecOrder 

SendOrder ProcBlip SendOrder 

CoordOps ProcIntel CoordOps 

ProcSA SendRpli ProcSA 

BFT 
ScndBpli 

SignalSensor 

Hum 
SendS 

intSensor 

B"»"g 

SendSignal 

RadarSensor 

SendBlip 

Figure 7.29. P2P SOSI Architecture SV-11 

Figures 7.30, 7.31, 7.32, and 7.33 are the Activity diagrams that represent the SV-4s for each 
SOSIC. Each partition represents a specific Element instance. Each partition contains the 
Activity diagram for the Element type of the instance. Notice that there are many unused 
Element interfaces in each SV-4. There is reuse of Elements among the SOSICs and each 
SOSIC may use different interfaces. The combined CPN captures this reuse of Element 
instances and ensures the CPN models all the interfaces connected in the SOSICs. 

For example, Element6 represents the MEUS30ps instance of an OLC2S Element. 
Element6 appears in every SOSIC, identified by the box.. All the interfaces used by Element6 
will be modeled. Those interfaces in the OLC2S_AD that are not used by Element6 in any 
SOSIC will be stubbed out in the transformed CPN. 

The SV-5 merges the SV5s from the P2P system architectures. Table 7.14 is the merged SV- 
5. There are four Systems that are represented. The Operational Activities are distributed across 
the elements. This system view helps trace system functions modeled in the executable back to 
the operational architecture representing the capability. 
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Step 4 transforms the SOSICs from Step 3 into the executable model. This methodology 
transforms the activity diagrams that represent the SOSICS into a hierarchical CPN that 
represents the Elements and the behavior of the Elements. The Elements are allocated to 
particular Nodes based on the SV-ls. The following diagrams show the CPN created for the 
P2P_1 alternative. Figure 7.34 represents the top level CPN graph. The Nodes have been 
transformed into substitution transitions that represent the subpages shown in the following six 
figures. The ovals are places that represent the inputs and outputs of the Nodes. The Elements 
are represented as substitution transitions and represent the Node configurations from the SV-ls. 

;TLC2S10ut4 7TLP2S_ln3_1 

PORT 

TLC2SAD NGOHQ 

2S_ln4_4 

is 
IOlX2S_ln1_4 

Request 

TARAWA 

"Group 1 

Figure 7.34. P2P1 SOSI Alternative Top Level CPN Representation 
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D_TLC2S(Out4_7TLp2S_lri3_1 • TLC2SAD NGOHQ 

TLC2SAD NGOHQ 

D_TLC2&iOut1_10LP2S_ln1. 

' Request 

D_TLC2WOut2_1 OLp2S_ln4_4 

Out  m 

Figure 7.35. P2P_1 Port Node CPN 

D_BFT_0(it1_101TLQ2SJpfi_9 

3(Out4 /TLVS-1"3 ^ " —B'uePLI 

Coordination 

In quest 

TLC2SAD_GrndStationOps 

TLC2SAD_GrndStationOps 

D_TLC2NOut 1 _90Lg2S_l i 

Out •—rtequest 

Figure 7.36. P2P_1 SOSI Ground Station Node CPN 

0_TLC2SjOut1_1OLpS_ln1_4 

In Request 

D_TLC2SiOut2_10U 
Status 

Figure 7.37. P2P_1 SOSI Tarawa Node Colored Petri Net 
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(Out2_1lTUC2S. 

Out k   -Order 

Figure 7.38. P2P_1 SOSI Harper's Ferry Node CPN 

D OLC2S 

HRSAD HumintSensor2 

HRSAD_HumintSensor2 
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dPLI   D_TLC2S_[Out2 
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D BFT 

TLC2SAD_BLTTroopOps 

TLC2SAD_BLTTroopOps coordination 

Figure 7.39. P2P_1 SOSI Beach Node CPN 
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Figure 7.40. P2P_1 SOSI Satellite Node CPN 

7.6 Assessment Measure Calculations for P2P SOSI 

This section shows the calculation of the SOSI performance measures for the first SOSI 
alternative of the P2P SOSI Architecture. There are three alternative SOSI configurations: 
figures 7.26, 7.27, and 7.28. In this example, the Elements are distributed by echelon over six 
Nodes. Then Adaptability and Agility are calculated for each SOSI alternative. The example 
starts with the calculation of Overlap which is the same for all SOSI alternatives in the group. 

Cohesion 

The CPN for each SOSI reflects the Node configuration. The Cohesion measure was made 
on each resulting Node structure using a graph analysis of the CPN that represents each Node. 
All Nodes are shown in the figures above. The Cohesion measurements for each Node are 
summarized in Table 7.15. The Tarawa Node has 12 inputs and 2 outputs. The number of 
possible connections is 24. The number of paths connecting inputs and outputs is 66 for Node 
Cohesion of 2.75. The SOSI Cohesion is the average Node Cohesion with a value of 1.22. 
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Table 7.15. Cohesion SOSI P2P  1 

Figure Node Name I Q X z Coh 

Fig. 7.35 1.1 Port 5 l 5 3 1.0 

Fig. 7.36 
1,2 

Ground 
Station 

3 1 3 "3 1.0 

Fig. 7.37 1,3 Tarawa 12 2 24 66 2.75 

Fig. 7.38 
1,4 

Harper's 
Ferry 

8 5 40 35 .88 

Fig. 7.39 1,5 Beach 10 4 40 54 1.35 

Fig. 7.40 1,6 Satellite 3 14 42 14 

SOSI 1.22 

Coupling 

Coupling was calculated using the CPN that was created for the P2P SOSI group. The CPN 
model was modified for each SOSI alternative to model the three different Node configurations. 
Then the monitors were added that count the number messages that are exchanged between 
Nodes. After execution of the CPN, the results of the data collected by the monitors is 
summarized into the Coupling results shown in Table 7.16. The sending Nodes are the columns 
and the receiving Nodes are the rows. The Port Nodes sends 15 messages to the Ground Station 
Node. There are 6 Nodes which makes the number of possible Links equal to (6*5)/2 = 15 
Links. The SOSI Coupling is the average of the Node Coupling with a value of 3.21. 

Table 7.16. SOSI P2P1 Coupling Results 

Node Port 
Ground 
Station 

Tarawa 
Harper's 

Ferry 
Beach Satellite Coupling 

Port X 15 15/15 1 

Ground 
Station 

20 X 50 70/15 4.67 

Tarawa 30 X 30 60/15 4 

Harper's 
Ferry 

40 30 50 X 10 10 140/15 9.33 

Beach 2 X 2/15 .13 

Satellite 2 X 2/15 .13 

SOSI 3.21 
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Degree of Reuse and Exclusiveness 

The Degree of Reuse calculations for the P2P SOSI group appear below. Tables 7.17 and 
7.18 show the data and results of the Degree of Reuse and Exclusiveness calculations. The P2P 
SOSI alternative group average Degree of Reuse is 2.08. This results in an Exclusiveness 
measure of 0.48. That means that there reuse among the Elements of the SOSI. There is 
potential for contention of Element resources, the Elements that are members of three or four 
SOSIC warrant scrutiny. The highest degree of reuse is 4. This analysis highlights to developers 
the potential importance of the highly reused Elements. 

Table 7.17. P2P Degree of Reuse Data 

1 2 3 4 5 6 7 8 9 11 14 15 100 101 102 200 300 301 400 

BFT X X X X X X X X X X X X X X X 

1SR X X X X X X X X X X X 

GRN X X X X X X X 

NGO X X X X X X X 

2 4 4 2 4 3 1 3 2 2 3 2 2 1 1 1 1 1 1 1 

Table 7.18. P2P Degree of Reuse and Exclusiveness Results 

Degree of Reuse 

Avg 
Element 2.08 

High 
Reuse 4.00 

Exclusiveness 0.48 

7.7 Case Study Results 

To accomplish the methodology comparisons, three SOSI alternatives (vary Node 
configuration) were developed for each SOSI group. The same SOSI Architecture can describe 
SOSIs that have different Element sets therefore the SOSI groups are SOSI alternatives that 
share the same Element set. SOSI groups share the same SOSIC definitions. Every SOSI 
alternative has the same set of end Elements and Sensor Elements but differ by the infrastructure 
Elements that differentiate the architecture patterns. There are three alternative SOSI 
Architecture concepts that are compared in the case study: peer-to-peer (P2P), centralized-server 
(CS) and service oriented architecture (SOA). The P2P SOSI Architecture generated three SOSI 
alternatives for comparison. The CS and SOS SOSI Architectures have three SOSI groups each 
with three SOSI alternatives for each group for a total of nine SOSI alternatives for CS and SOA 
SOSI Architectures. 
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7.8 P2P Results 

This section describes the results for the P2P SOSI Architecture. Adaptability is computed 
for each Node in each P2P alternative. The Node results reveal Nodes that assess low 
Adaptability relative to the other Nodes. This can show SOS architects the Nodes that 
significantly affecting overall SOSI Adaptability. This can assist in focusing development effort 
to improve the assessed Adaptability. 

Fig. 7.41 shows the Adaptability results for the P2P alternatives by node. The last result in 
each graph is the SOSI Adaptability. In P2P_1 the Adaptability of the Satellite Node is 
dramatically higher than the other nodes. The cohesion and coupling of that Node is much lower 
than the other Nodes. The Satellite Node is shown in Fig. 7.40. The Satellite Node has high 
Adaptability because it has low Coupling and low Cohesion. Changes to this Node will result in 
less impact on the SOSI than changes to the Tarawa Node that has lower Adaptability. 

The SOSI results also show the impact of the highly reused Elements on Adaptability. The 
P2P SOSI group has three Elements that are used by all four SOSIC. The Nodes with lowest 
Adaptability in P2P_1 and P2P_2, Tarawa and Harper's Ferry Node, respectively, contain one or 
more of the Elements that are highly reused. The highly reused Elements are spread over more 
Nodes in P2P_2 so the Adaptability scores on each Node are relatively higher that the Nodes of 
the other P2P alternatives. This reinforces the claim that Degree of Reuse affects the overall 
Agility of the SOSI. 

Figure 7.42 shows the Adaptability results for the P2P SOSI Architecture. P2P_1 and P2P3 
were partitioned by echelon. The Adaptability scores show that the grouping by echelon is not 
as Adaptable as the grouping by function, P2P_2. This is illustrated by the higher overall 
Adaptability of P2P2 when compared to P2P1 and P2P3. 
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7.9 CS Results 

This section discusses the results for the CS SOSI Architecture. The CS SOSI Architecture 
groups use server Elements to facilitate communication. CS1 adds a single Server Element, 
while CS2 and CS3 and two and three Server Elements, respectively. 

Figures 7.43, 7.44, and 7.45 show a sample of the for each SOSI group: CS1. CS2 and CS3, 
respectively. The SOSI groups show the effects of high cohesion and excessive coupling. The 
Nodes with very low Adaptability in the diagrams are the Nodes that contain Server Elements. 
The Server Elements have a high Degree of Reuse and are very interconnected with the other 
Elements in the Node which increases Cohesion. The Nodes with servers are highly coupled 
because all the Elements in the SOSI are connected to the server Elements which increases the 
number of Messages sent between the Node with the server and the other Nodes in the SOSI. 
Nodes with higher Adaptability have fairly low cohesion thus the increased Adaptability. This 
shows that the changes to any other Node than the one with the Server will result in low impact 
of change on the SOSI as a whole. But, if the Server Element is moved to another Node or 
otherwise incapacitated then the impact of the change on the SOSI would be significant. The 
aggregate measure of Adaptability is low for each CS SOSI Group alternative. The results for 
CS2 and CS3 also show the impact of the Server Elements. 

For illustrative purposes. Figures 7.46 and 7.47 show the CPN for Tarawa and Harpers Ferry 
Nodes. The Tarawa Node is an example of a high cohesion node and the Harper's Ferry Node is 
an example of a low cohesion Node. The Tarawa Node is an example of the cohesion that is 
present when a Server Element is a member of a Node. The Harper's Ferry Node is an example 
of Nodes with server Elements in the CS alternatives. Notice there is little communication 
directly between Elements on the Harper's Ferry Node because all the communication between 
Elements is brokered by the server Element. The Elements on the Harper's Ferry Node could be 
easily moved to other Nodes with much impact on the SOSI. Changing the Node with the Server 
would cause significant impact on the SOSI which is illustrated by the very low Adaptability of 
the Tarawa Node. 

Figure 7.48 Shows the Adaptability results for all CS alternatives. Adaptability assessment is 
better for the alternatives with the most server Elements. This shows the effects of reduces reuse 
and reduced coupling because the SOSIs with more server Elements have lower Node Coupling 
than the SOSIs with only one server. However, the Cohesion on the Nodes with servers is still 
very high and reduces the overall Adaptability of the alternatives. 
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7.10 SOA Results 

The SOA SOSI Architecture uses services to facilitate the communication between Elements 
and accomplish each SOSIC. Each SOA SOSI group has different number instances of each of 
five services: BFTService, ISRService, PlanningSerivce, RequestService and 
CoordinationService. 

The Adaptability results in Figures 7.49, 7.50, and 7.51 are all examples from each SOA 
SOSI group. The Adaptability is lowest on the Nodes that contain the Service Elements. 
Adaptability increases as the number of service Elements increases. This is because the 
Cohesion of the Nodes is going down as the number of Service Elements increase because the 
number of connections to each service decreases as the number of Service elements increases. 
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7.11  Overall Results 

This section compares the assessed Adaptability and Agility of the SOSI groups. Figure 7.54 
shows Adaptability for all the SOSI alternatives. The results for CS are clearly lower than the 
P2P and SOA alternatives. 

Figure 7.55 shows the Exclusiveness results for each SOSI group. The Degree of reuse is 
higher among the CS alternatives because the servers are used by every SOSIC. Degree of 
Reuse is lower for the SOA alternatives because the services are members of at most two 
SOSICs which is less than the Degree of Reuse for the server Elements which is four. 
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Exclusiveness for the P2P alternatives is driven by the end Elements that are members of 
each SOSIC. There are three Elements that are members of all four SOSIC. This reduces the 
Exclusiveness of the SOSI and reduces the Agility of the SOSI. 

Agility is the final assessment measure and the results show that the P2P and SOA 
alternatives assess higher for Agility than the CS alternatives. The results show that low 
Exclusiveness. especially in the CS alternatives, reduces the overall Agility of the SOSI 
alternatives. 

Figure 7.53 has the high reuse Elements circled. Notice how these Elements connect four of 
the Service Elements. The highly reused Elements participate in all the SOSICs, therefore they 
are directly connected to all but one of the Service Elements and indirectly connected to the 
other. This situation causes the relationship of the inputs and outputs to increase thus increasing 
cohesion and reducing the Adaptability of the Node. While low compared to the other Nodes, 
the level of Adaptability on the nodes with Services is still significantly higher than their CS 
alternative counterparts. This is a result of the ability of the Services to be distributed across 
more Nodes where a Server can occupy only one Node but may accomplish many of the tasks in 
a single Element that may be accomplished by multiple Service Elements. This reduces the level 
of the Cohesion between Elements on the Node and the level of Coupling between the Nodes: 
the end result being higher Adaptability. 

7.12 Conclusions 

Step 7 presents the case study results. The ESG operates with a high level of uncertainty 
based on the multiple missions that it must be able to accomplish and the diverse operating 
environments that it expected to operate in. The assessment is used to illustrate the effects of 
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architecture decisions on the Adaptability and Agility of the ESG to increase the confidence of 
the ESG commander that the SOSI that supports his organization can adapt to unpredicted 
operating environments. 

The assessment reveals to developers that the P2P and SOA alternatives are more adaptable 
than the CS alternatives. The CS alternatives have low Adaptability because they contain Nodes 
that have extremely high coupling and cohesion compared to the other Nodes in the SOSI 
alternatives. The primary reason for the low Adaptability is the server Elements increase the 
number of highly reused Elements. The server Elements and the highly reused Elements cause 
extremely high coupling and cohesion on the Nodes they are assigned to dramatically reducing 
the Adaptability of the SOSI alternative. Fig. 7.57 summarizes the results of the case study. 
Based on the assessment, SOA and P2P have similar Adaptability measures but for different 
reasons. The SOA alternatives showed higher coupling than the P2P alternatives. This result is 
surprising because the conventional wisdom is that SOA implementations will have lower 
coupling. The Coupling measure identifies data dependence; therefore the SOA paradigm may 
reduce the dependence of an Element on a particular instance of a service but not the dependence 
on the data generated by the service. 
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Figure 7.57. Summary Graphic of Case Study Results 

Additionally, the P2P alternatives had higher Cohesion than the SOA alternatives. This is 
because the services in the SOA alternatives diffused the interaction between the highly reused 
Elements and the other Elements in SOSI. In the P2P alternatives, the highly reused elements 
cause an increase in the number of paths through the Node because the highly reused Elements 
are connected to more Elements than in the SOA alternatives. Furthermore, both SOA and P2P 
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offer higher Adaptability than the CS alternatives because the CS alternatives displayed much 
higher Coupling and Cohesion than the P2P or SOS alternatives because the server Elements 
were highly reused and connected to every other Element on the Node. This made every 
Element in the SOSI dependent on a Server Element for it data. Finally, all the SOSI alternatives 
possessed highly reused Elements that reduced the Exclusiveness measure and had a 
corresponding effect on Agility for all the alternatives. The SOA alternatives had the best 
Exclusiveness measure because the total number of Elements is increased by the number of 
service Elements. 
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