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Multiple-User Quantum Information Theory for Optical
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by

Saikat Guha

Submitted to the Department of Electrical Engineering and Computer Science
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requirements for the degree of
Doctor of Philosophy in Electrical Engineering and Computer Science

Abstract

Research in the past decade has established capacity theorems for point-to-point
bosonic channels with additive thermal noise, under the presumption of a conjec-
ture on the minimum output von Neumann entropy. In the first part of this thesis,
we evaluate the optimum capacity for free-space line-of-sight optical communication
using Gaussian-attenuation apertures. Optimal power allocation across all the spatio-
temporal modes is studied, in both the far-field and near-field propagation regimes.
We establish the gap between ultimate capacity and data rates achievable using clas-
sical encoding states and structured receivers. The remainder of the thesis addresses
the ultimate capacity of bosonic broadcast channels, i.e., when one transmitter is used
to send information to more than one receiver. We show that when coherent-state
encoding is employed in conjunction with coherent detection, the bosonic broadcast
channel is equivalent to the classical degraded Gaussian broadcast channel whose ca-
pacity region is known. We draw upon recent work on the capacity region of the
two-user degraded quantum broadcast channel to establish the ultimate capacity re-
gion for the bosonic broadcast channel, under the presumption of another conjecture
on the minimum output entropy. We also generalize the degraded broadcast channel
capacity theorem to more than two receivers, and prove that if the above conjecture
is true, then the rate region achievable using a coherent-state encoding with optimal
joint-detection measurement at the receivers would be the ultimate capacity region
of the bosonic broadcast channel with loss and additive thermal noise. We show that
the minimum output entropy conjectures restated for Wehrl entropy, are immediate
consequences of the entropy power inequality (EPI). We then show that an EPI-like
inequality for von Neumann entropy would imply all the minimum output entropy
conjectures needed for our channel capacity results. We call this new conjectured
result the Entropy Photon-Number Inequality (EPnI).

Thesis Supervisor: Jeffrey H. Shapiro
Title: Julius A. Stratton Professor of Electrical Engineering
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(POVMs) for each receiver;
{

Λ0
m0...mM−1

}
,
{

Λ1
m1...mM−1

}
, . . .,

{
ΛM−1
mM−1

}
on Y0

n, Y1
n, . . ., YM−1

n respectively. Because of the degraded nature

of the channel, if the transmission rates are within the capacity region

and proper encoding and decoding are employed at the transmitter

and at the receivers respectively, Y0 can decode the entire message M -

tuple to obtain estimates (m̂0
0, . . . , m̂

0
M−1), Y1 can decode the reduced

message (M − 1)-tuple to obtain its own estimates (m̂1
1, . . . , m̂

1
M−1),

and so on, until the noisiest receiver YM−1 can only decode the single

message-index mM−1 to obtain an estimate m̂M−1
M−1. Even though the

less noisy receivers can decode the messages of the noisier receivers,

the message mk is intended to be sent to receiver Yk, ∀k. Hence, when

we say that a broadcast channel is operating at a rate (R0, . . . , RM−1),

we mean that the message mk is reliably decoded by receiver Yk at the

rate Rk bits per channel use. . . . . . . . . . . . . . . . . . . . . . . . 75

3-7 A single-mode noiseless bosonic broadcast channel with two receivers

NA−BC , can be envisioned as a beam splitter with transmissivity η.

With η > 1/2, the bosonic broadcast channel reduces to a degraded

quantum broadcast channel, where Bob (B) is the less-noisy receiver

and Charlie (C) is the more noisy (degraded) receiver. . . . . . . . . 82

3-8 The stochastically degraded version of the single-mode bosonic broad-

cast channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
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3-9 Comparison of bosonic broadcast channel capacity regions, in bits per

channel use, achieved by coherent-state encoding using homodyne de-

tection (the capacity region lies inside the boundary marked by cir-

cles), heterodyne detection (the capacity region lies inside the bound-

ary marked by dashes), and optimum reception (the capacity region

lies inside the boundary marked by the solid curve), for η = 0.8, and

N̄ = 1, 5, and 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3-10 A single-mode noiseless bosonic broadcast channel with two receivers

NA−BC , with additive thermal noise. The transmitter Alice (A) is

constrained to use N̄ photons per use of the channel, and the noise

(environment) mode is in a zero-mean thermal state ρ̂T,N , with mean

photon number N . With η > 1/2, the bosonic broadcast channel

reduces to a degraded quantum broadcast channel, where Bob (B) is

the less-noisy receiver and Charlie (C) is the more noisy (degraded)

receiver. See the degraded version of the channel in Fig. 3-11. . . . . 91

3-11 The stochastically degraded version of the single-mode bosonic broad-

cast channel with additive thermal noise. . . . . . . . . . . . . . . . . 92
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3-12 An M -receiver noiseless bosonic broadcast channel. Transmitter Al-

ice (A) sends independent messages to M receivers, Y0, . . . , YM−1. We

have labeled Alice’s modal annihilation operator as â, and those of

the receivers Yl as ŷl, ∀l ∈ {0, . . . ,M − 1}. In order to character-

ize the bosonic broadcast channel as a quantum-mechanically correct

representation of the evolution of a closed system, we must incorpo-

rate M − 1 environment inputs {E1, . . . , EM−1} along with the trans-

mitter A (whose modal annihilation operators have been labeled as

{ê1, . . . , êM−1}), such that the M output annihilation operators are re-

lated to the M input annihilation operators through a unitary matrix,

as given in Eq. (3.93). For the noiseless bosonic broadcast channel, all

the M−1 environment modes êk are in their vacuum states. The trans-

mitter is constrained to at most N̄ photons on an average per channel

use, for encoding the data. The fractional power coupling from the

transmitter to the receiver Yk is taken to be ηk. We have labeled the

receivers in such a way, that 1 ≥ η0 ≥ η1 ≥ . . . ≥ ηM−1 ≥ 0. This

ordering of the transmissivities renders this channel a degraded quan-

tum broadcast channel A → Y0 → . . . → YM−1 (See Fig. 3-13). The

fractional power coupling from Ek to Yl has been taken to be ηkl. For

M = 2, the above channel model reduces to the familiar two-receiver

beam splitter channel model as given in Fig. 3-7. . . . . . . . . . . . . 97
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3-13 An equivalent stochastically degraded model for the M -receiver noise-

less bosonic broadcast channel depicted in Fig. 3-12. If the receivers

are ordered in a way such that the fractional power couplings ηk from

the transmitter to the receiver Yk are in decreasing order, the quantum

states at each receiver Yk, for k ∈ {1, . . . ,M − 1}, can be obtained from

the state received at receiver Yk−1 by mixing it with a vacuum state,

through a beam splitter of transmissivity ηk/ηk−1. This equivalent rep-

resentation of the M -receiver bosonic broadcast channel confirms that

the bosonic broadcast channel is indeed a degraded broadcast channel,

whose capacity region is given by the infinite-dimensional (continuous-

variable) extension of Yard et. al.’s theorem in Eqs. (3.38). . . . . . . 99
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3-14 In order to evaluate the capacity region of the M -receiver noiseless

bosonic degraded broadcast channel depicted in Fig. 3-13 using a coherent-

state input alphabet {|α〉}, α ∈ C and 〈â†â〉 = 〈|α|2〉 ≤ N̄ , we choose

the M −1 auxiliary classical Markov random variables (in Eqs. (3.35))

as complex-valued random variables Tk, k ∈ {1, . . . ,M − 1}, taking

values τk ∈ C. In order to visualize the postulated optimal Gaussian

distributions for the random variables Tk, let us associate with Tk, a

quantum system, i.e., a coherent-set alphabet {|τk〉} and modal anni-

hilation operator t̂k, ∀k. In accordance with the Markov property of

the random variables Tk, let t̂M−1 be in an isotropic zero-mean Gaus-

sian mixture of coherent-states with a variance N̄ (see Eq. (3.104)),

and for k ∈ {1, . . . ,M − 2}, let t̂k be obtained from t̂k+1 by mixing

it with another mode ûk+1 excited in a zero-mean thermal state with

mean photon number N̄ , through a beam splitter with transmissivity

1 − γk+1, as shown in the figure above, for some γk+1 ∈ (0, 1). We

complete the Markov chain TM−1 → . . . → T1 → A, by obtaining the

transmitter mode â by mixing t̂1 with a mode û1 excited in a zero-mean

thermal state with mean photon number N̄ , through a beam splitter

with transmissivity 1 − γ1, for γ1 ∈ (0, 1). The above setup of the

auxiliary modes gives rise to the distributions given in Eqs. (3.104),

which we use to evaluate the achievable rate region of the M -receiver

bosonic broadcast channel using coherent-state encoding. . . . . . . . 101
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3-15 Comparison of bosonic broadcast and multiple-access channel capacity

regions for η = 0.8, and N̄ = 15. The rates are in the units of bits

per channel use. The red line is the conjectured ultimate broadcast

capacity region, which lies below the green line - the envelope of the

MAC capacity regions. Assuming that the optimum modulation, cod-

ing, and receivers are available, on a fixed beam splitter with the same

power budget, more collective classical information can be sent when

this beam splitter is used as a multiple-access channel, as opposed to

when it is used as a broadcast channel. This is unlike the case of

the classical MIMO Gaussian multiple-access and broadcast channels

(BC), where a duality holds between the MAC and BC capacity regions.111

3-16 Schematic diagram of the single-mode bosonic wiretap channel. The

transmitter Alice (A) encodes her messages to Bob (B) in a classical

index j, and over n successive uses of the channel, thus preparing a

bipartite state ρ̂B
nEn

j where En represents n channel uses of an eaves-

dropper Eve (E). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4-1 This figure presents empirical evidence in support of weak conjecture

2. The input ρ̂A = |0〉〈0| is in its vacuum state. For a fixed value of

S(ρ̂B), we choose three different inputs ρ̂B, each one diagonal in the

Fock-state basis, i.e. ρ̂B =
∑∞

n=0 pn|n〉〈n| with
∑∞

n=0 pn = 1. The

three different inputs ρ̂B correspond to choosing the distribution {pn}

to be a Binomial distribution (blue curve), a Poisson distribution (red

curve) and a Bose-Einstein distribution (green curve). As expected,

we see that the output state ρ̂C has the lowest entropy when ρ̂B is a

thermal state, i.e. when {pn} is a Bose-Einstein distribution. . . . . . 127
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A-1 Balanced homodyne detection. Homodyne detection is used to measure

one quadrature of the field. The signal field â is mixed on a 50-50 beam

splitter with a local oscillator excited in a strong coherent state with

phase θ, that has the same frequency as the signal. The outputs beams

are incident on a pair of photodiodes whose photocurrent outputs are

passed through a differential amplifier and a matched filter to produce

the classical output αθ. If the input â is in a coherent state |α〉, then

the output of homodyne detection is predicted correctly by both the

semiclassical and the quantum theories, i.e., a Gaussian-distributed

real number αθ with mean αcos θ and variance 1/4. If the input state

is not a classical (coherent) state, then the quantum theory must be

used to correctly account for the statistics of the outcome, which is

given by the measurement of the quadrature operator <(âe−jθ). . . . 181

A-2 Balanced heterodyne detection. Heterodyne detection is used to mea-

sure both quadratures of the field simultaneously. The signal field â

is mixed on a 50-50 beam splitter with a local oscillator excited in a

strong coherent state with phase θ = 0, whose frequency is offset by an

intermediate (radio) frequency, ωIF, from that of the signal. The out-

puts beams are incident on a pair of photodiodes whose photocurrent

outputs are passed through a differential amplifier. The output cur-

rent of the differential amplifier is split into two paths and the two are

multiplied by a pair of strong orthogonal intermediate-frequency oscil-

lators followed by detection by a pair of matched filters, to yield two

classical outcomes α1 and α2. If the input is a coherent state |α〉, then

both semiclassical and quantum theories predict the outputs (α1, α2)

to be a pair of real variance-1/2 Gaussian random variables with means

(<(α),=(α)). For a general input state ρ̂, the outcome of heterodyne

measurement (α1, α2) has a distribution given by the Husimi function

of ρ̂ given by Qρ̂(α) = 〈α|ρ̂|α〉/π. . . . . . . . . . . . . . . . . . . . . 182
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B-1 This figure summarizes the setup of the transmitter and the channel

model for the M -receiver quantum degraded broadcast channel. In

each successive n uses of the channel, the transmitter A sends a ran-

domly generated classical message (m0, . . . ,mM−1) ∈ (W0, . . . ,WM−1)

to the M receivers Y0, . . ., YM−1, where the message-sets Wk are sets

of classical indices of sizes 2nRk , for k ∈ {0, . . . ,M − 1}. The dashed

arrows indicate the direction of degradation, i.e. Y0 is the least noisy

receiver, and YM−1 is the noisiest receiver. In this degraded channel

model, the quantum state received at the receiver Yk, ρ̂
Yk can always

be reconstructed from the quantum state received at the receiver Yk′ ,

ρ̂Yk′ , for k′ < k, by passing ρ̂Yk′ through a trace-preserving completely

positive map (a quantum channel). For sending the classical mes-

sage (m0, . . . ,mM−1) , j, Alice chooses a n-use state (codeword) ρ̂A
n

j

using a prior distribution pj|i1 , where ik denotes the complex values

taken by an auxiliary random variable Tk. It can be shown that,

in order to compute the capacity region of the quantum degraded

broadcast channel, we need to choose M − 1 complex valued auxil-

iary random variables with a Markov structure as shown above, i.e.

TM−1 → TM−2 → . . .→ Tk → . . .→ T1 → An is a Markov chain. . . . 193
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B-2 This figure illustrates the decoding end of the M -receiver quantum

degraded broadcast channel. The decoder consists of a set of mea-

surement operators, described by positive operator-valued measures

(POVMs) for each receiver;
{

Λ0
m0...mM−1

}
,
{

Λ1
m1...mM−1

}
, . . .,

{
ΛM−1
mM−1

}
on Y0

n, Y1
n, . . ., YM−1

n respectively. Because of the degraded nature

of the channel, if the transmission rates are within the capacity region

and proper encoding and decoding are employed at the transmitter

and at the receivers respectively, Y0 can decode the entire message M -

tuple to obtain estimates (m̂0
0, . . . , m̂

0
M−1), Y1 can decode the reduced

message (M − 1)-tuple to obtain its own estimates (m̂1
1, . . . , m̂

1
M−1),

and so on, until the noisiest receiver YM−1 can only decode the single

message-index mM−1 to obtain an estimate m̂M−1
M−1. Even though the

less noisy receivers can decode the messages of the noisier receivers,

the message mk is intended to be sent to receiver Yk, ∀k. Hence, when

we say that a broadcast channel is operating at a rate (R0, . . . , RM−1),

we mean that the message mk is reliably decoded by receiver Yk at the

rate Rk bits per channel use. . . . . . . . . . . . . . . . . . . . . . . . 194
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Chapter 1

Introduction

The objective of any communication system is to transfer information from one point

to another efficiently, given the constraints on the available physical resources. In

most communication systems, the transfer of information is done by superimposing

the information onto an electromagnetic (EM) wave. The EM wave is known as the

carrier and the process of superimposing information onto the carrier wave is known

as modulation. The modulated carrier is then transmitted to the destination through

a noisy medium, called the communication channel. At the receiver, the noisy wave

is received and demodulated to retrieve the information as accurately as possible.

Such systems are often characterized by the location of the carrier wave’s frequency

within the electromagnetic spectrum. In radio systems for example, the carrier wave

is selected from the radio frequency (RF) portion of the spectrum.

In an optical communication system, the carrier wave is selected from the optical

range of frequencies, which includes the infrared, visible light, and ultraviolet frequen-

cies. The main advantage of communicating with optical frequencies is the potential

increase in information that can be transmitted because of the possibility of har-

nessing an immense amount of bandwidth. The amount of information transmitted

in any communication system depends directly on the bandwidth of the modulated

carrier, which is usually a fraction of the carrier wave’s frequency. Thus increasing

the carrier frequency increases the available transmission bandwidth. For example,

the frequencies in the optical range would typically have a usable transmission band-
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width about three to four orders of magnitude greater than that of a carrier wave

in the RF region. Another important advantage of optical communications relative

to RF systems comes from their narrower transmitted beams — µRad beam diver-

gences are possible with optical systems. These narrower beamwidths deliver power

more efficiently to the receiver aperture. Narrow beams also enhance communication

security by making it hard for an eavesdropper to intercept an appreciable amount of

the transmitted power. Communicating with optical frequencies has some challenges

associated with it as well. As optical frequencies are accompanied by extremely small

wavelengths, the design of optical components require completely different techniques

than conventional microwave or RF communication systems. Also, the advantage

that optical communication derives from its comparatively narrow beam introduces

the need for high-accuracy beam pointing. RF beams require much less pointing

accuracy. Progress in the theoretical study of optical communication, the advent of

laser - a high-power optical carrier source, the developments in the field of optical

fiber-based communication, and the development of novel wideband optical modu-

lators and efficient detectors, have made optical communication emerge as a field of

immense technological importance [1].

The field of information theory, which was born from Claude Shannon’s revolution-

ary 1948 paper [2], addresses ultimate limits on data compression and communication

rates over noisy communication channels. It tells us how to compute the maximum

rate at which reliable data communication can be achieved over a noisy communica-

tion channel by appropriately encoding and decoding the data. This ultimate data

rate is known as the channel capacity [2, 3, 4]. Information theory also tells us how

to compute the maximum extent a given set of data can be compressed so that the

original data can be recovered within a specified amount of tolerable distortion level.

Unfortunately, information theory does not give us the exact algorithm (or the op-

timal code) that would achieve capacity on a given channel, nor does it tell us how

to optimally compress a given set of data. Nevertheless, it sets ultimate limits on

communication and data compression that are essential to meaningfully determine

how well a real system is actually performing.
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The performance of communication systems that rely on electromagnetic wave

propagation are ultimately limited by noise of quantum-mechanical origin. More-

over, high-sensitivity photodetection systems have long been close to this noise limit.

Hence determining the ultimate capacities of lasercom channels is of immediate rel-

evance. Much work has already been done on quantum information theory [5, 6],

which sets ultimate limits on the rates of reliable communication of classical informa-

tion and quantum information over quantum communication channels. As in classical

information theory, quantum information theory does not tell us the transmitter and

receiver structures that would achieve the best communication rates for specific forms

of quantum noise. Nevertheless, the limits set by quantum information theory are ex-

tremely useful in determining the degree to which available technology can approach

the ultimate performance bounds.

The most famous classical channel capacity formula is Shannon’s result for the

classical additive white Gaussian noise channel. For a complex-valued channel model

in which we transmit a and receive c =
√
η a +

√
1− η b, where 0 < η < 1 is the

channel’s transmissivity and b is a zero-mean, isotropic, complex-valued Gaussian

random variable that is independent of a, Shannon’s capacity is

Cclassical = ln[1 + ηN̄/(1− η)N ] nats/use, (1.1)

when E(|a|2) ≤ N̄ and E(|b|2) = N .

The lossy bosonic channel provides a quantum model for optical communication

systems that rely on fiber or free-space propagation. In this quantum channel model,

we control the state of an electromagnetic mode with photon annihilation operator

â at the transmitter, and receive another mode with photon annihilation operator

ĉ =
√
η â +

√
1− η b̂, where b̂ is the annihilation operator of a noise mode that is

in a zero-mean, isotropic, complex-valued Gaussian state. For lasercom, if quantum

measurements corresponding to ideal optical homodyne or heterodyne detection are

employed at the receiver, this quantum channel reduces to a real-valued (homodyne)

or complex-valued (heterodyne) additive Gaussian noise channel, from which the
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following capacity formulas (in nats/use) follow:

Chomodyne =
1

2
ln[1 + 4ηN̄/(2(1− η)N + 1)] (1.2)

Cheterodyne = ln[1 + ηN̄/((1− η)N + 1)], (1.3)

where 〈â†â〉 ≤ N̄ and 〈b̂†b̂〉 = N , with angle brackets used to denote quantum aver-

aging. The +1 terms in the noise denominators are quantum contributions, so that

even when the noise mode b̂ is unexcited these capacities remain finite, unlike the

situation in Eq. (1.1).

The classical capacity of the pure-loss bosonic channel—in which the b̂ mode is

unexcited (N = 0)—was shown in [7] to be Cpure−loss = g(ηN̄) nats/use, where g(x) ≡

(x + 1) ln(x + 1) − x ln(x) is the Shannon entropy of the Bose-Einstein probability

distribution with mean x. This capacity exceeds the N = 0 versions of Eqs. (1.2)

and (1.3), as well as the best known bound on the capacity of ideal optical direct

detection [8]. For this pure-loss case, capacity has been shown to be achievable using

single-use coherent-state encoding with a Gaussian prior density [7]. The ultimate

capacity of the thermal-noise (N > 0) version of this channel is bounded below by

Cthermal ≥ g(ηN̄ + (1 − η)N) − g((1 − η)N), and this bound was shown to be the

capacity if the thermal channel obeyed a certain minimum output entropy conjecture

[9]. This conjecture states that the von Neumann entropy at the output of the thermal

channel is minimized when the â mode is in its vacuum state. Considerable evidence

in support of this conjecture has been accumulated [10], but it has yet to be proven.

Nevertheless, the preceding lower bound already exceeds Eqs. (1.2) and (1.3) as well

as the best known bounds on the capacity of direct detection [8].

Less is known about the classical-information capacity of multi-user bosonic chan-

nels. For multiple-access bosonic communications—in which two or more senders

communicate to a common receiver over a shared propagation medium—single-use

coherent-state encoding with a Gaussian prior and optimum measurement achieves

the sum-rate capacity, but it falls short of achieving the ultimate capacity in the

“corner regions” [11]. Moreover, the capacity region that is lost when coherent de-
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tection is employed instead of the optimum measurement has been quantified for this

multiple-access channel. In this thesis we will report our capacity analysis for the

bosonic broadcast channel. As we described in [12], this work led to an inner bound

on the capacity region, which we showed to be the capacity region under the pre-

sumption of a second minimum output entropy conjecture. Both of these minimum

output entropy conjectures have been proven if the input states are restricted to be

Gaussian, and, as we will describe later in this thesis, we have shown them to be

equivalent under this input-state restriction. We will also show that the second con-

jecture will establish the privacy capacity of the lossy bosonic channel, as well as its

ultimate quantum information carrying capacity [13].

The Entropy Power Inequality (EPI) from classical information theory is widely

used in coding theorem converse proofs for Gaussian channels. By analogy with the

EPI, we conjecture its quantum version, viz., the Entropy Photon-number Inequality

(EPnI). We will show that the two minimum output entropy conjectures cited above

are simple corollaries of the EPnI. Hence, proving the EPnI would immediately estab-

lish some key capacity results for the capacities of bosonic communication channels

[13].

We will assume that the reader has had some prior acquaintance with quantum

mechanics, quantum optics and information theory. We will use standard notation

widely in use in the quantum optics and information theory literature. For a quick

summary of the background material and notation, see Appendix A. Chapter 2

of this thesis reviews some of our early work on the single-mode bosonic channel

capacity, and describes capacity calculations for the free-space optical channel using

Gaussian-attenuation transmitter and receiver apertures. Chapter 3 starts with a

brief introduction to the capacity of classical discrete memoryless broadcast channels

and then walks the reader through the classical-information capacity analysis for the

bosonic broadcast channel in which a single sender communicates to two or more

receivers through a lossless optical beam splitter with no extra noise or with additive

thermal noise. We prove the ultimate classical information capacities of the bosonic

broadcast channel subject to the minimum output entropy conjectures elucidated in
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Chapter 4. In that chapter we describe three conjectures on the minimum output

entropy of bosonic channels, none of which have yet been proven. Proving these

conjectures would, respectively, complete the proofs of the ultimate channel capacity

of the lossy bosonic channel with additive thermal noise, the ultimate capacity region

of the the multiple-user bosonic broadcast channel with no extra noise, and that

of the bosonic broadcast channel with additive thermal noise. Chapter 5 begins

with motivating the thought process that led us to conjecture the quantum version

of the Entropy Power Inequality (EPI), which we call the Entropy Photon-number

Inequality (EPnI). There we show that the EPnI subsumes all the minimum output

entropy conjectures described in Chapter 4. We also discuss some recent progress

made towards a proof of the EPnI. The rest of Chapter 5 delves briefly into some

interesting problems in the area of quantum optical information theory, including

the additivity properties of quantum information theoretic quantities, a quantum

version of the central limit theorem, and a conjecture on the monotonicity of quantum

entropy. Chapter 6 concludes the thesis with remarks on the major open problems

ahead of us in the theory of bosonic communications and comments on lines of future

work in this area.
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Chapter 2

Point-to-point Bosonic

Communication Channel

2.1 Background

Reliable, high data rate communication—carried by electromagnetic waves at mi-

crowave to optical frequencies—is an essential ingredient of our technological age.

Information theory seeks to delineate the ultimate limits on reliable communication

that arise from the presence of noise and other disturbances, and to establish means by

which these limits can be approached in practical systems. The mathematical foun-

dation for this assessment of limits is Shannon’s Noisy Channel Coding Theorem [2],

which introduced the notion of channel capacity—the maximum mutual information

between a channel’s input and output—as the highest rate at which error-free commu-

nication could be maintained. Textbook treatments of channel capacity [4],[3] study

channel models—ranging from the binary symmetric channel’s digital abstraction

to the additive white-Gaussian-noise channel’s idealization of thermal-noise-limited

waveform transmission—for which classical physics is the underlying paradigm. Fun-

damentally, however, electromagnetic waves are quantum mechanical, i.e., they are

boson fields [14],[15]. Moreover, high-sensitivity photodetection systems have long

been limited by noise of quantum mechanical origin [16]. Thus it would seem that

determining the ultimate limits on optical communication would necessarily involve
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an explicitly quantum analysis, but such has not been the case. Nearly all work

on the communication theory of optical channels—viz., that done for systems with

laser transmitters and either coherent-detection or direct-detection receivers—uses

semiclassical (shot-noise) models (see, e.g., [1],[17]). Here, electromagnetic waves are

taken to be classical entities, and the fundamental noise is due to the random re-

lease of discrete charge carriers in the process of photodetection. Inasmuch as the

quantitative results obtained from shot-noise analyses of such systems are known to

coincide with those derived in rigorous quantum-mechanical treatments [18], it might

be hoped that the semiclassical approach would suffice. But, Helstrom’s derivation

[19] of the optimum quantum receiver for binary coherent-state (laser light) signaling

demonstrated that the lowest error probability, at constant average photon number,

required a receiver that was neither coherent detection nor direct detection. That

Dolinar [20] was able to show how Helstrom’s optimum receiver could be realized

with a photodetection feedback system which admits to a semiclassical analysis did

not alleviate the need for a fully quantum-mechanical theory of optical communi-

cation, as Shapiro et al. [21] soon proved that even better binary-communication

performance could be obtained by use of two-photon coherent state (now known as

squeezed state) light, for which semiclassical photodetection theory did not apply.

In quantum mechanics, the state of a physical system together with the measure-

ment that is made on that system determine the statistics of the outcome of that

measurement, see, e.g., [14]. Thus in seeking the classical information capacity of a

bosonic channel, we must allow for optimization over both the transmitted quantum

states and the receiver’s quantum measurement. In particular, it is not appropriate

to immediately restrict consideration to coherent-state transmitters and coherent-

detection or direct-detection receivers. Imposing these structural constraints leads to

Gaussian-noise (Shannon-type) capacity formulas for coherent (homodyne and hetero-

dyne) detection [22] and a variety of Poisson-noise capacity results (depending on the

power and/or bandwidth constraints that are enforced) for shot-noise-limited direct

detection [8, 23, 24, 25, 26]. None of these results, however, can be regarded as spec-

ifying the ultimate limit on reliable communication at optical frequencies. What is
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needed for deducing the fundamental limits on optical communication is the analog of

Shannon’s Noisy Channel Coding Theorem—free of unjustified structural constraints

on the transmitter and receiver—that applies to transmission of classical information

over a noisy quantum channel, viz., the Holevo-Schumacher-Westmoreland (HSW)

Theorem [27, 28, 29].

Until recently, little had been done to address the classical information capacity of

bosonic quantum channels. As will be seen below, the HSW Theorem renders quan-

tum measurement optimization an implicit—rather than explicit—part of capacity

determination, and confronts a superadditivity property that is absent from classical

Shannon theory. Prior to this theorem—and well after its proof—about the only

bosonic channel whose classical information capacity had been determined was the

lossless channel [30, 31], in which the field modes (with annihilation operators {âj})

controlled by the transmitter are available for measurement (without loss, hence with-

out additional quantum noise) at the receiver. This situation changed dramatically

when we obtained the capacity of the pure-loss channel [7], i.e., one in which pho-

tons may be lost en route from the transmitter to the receiver while incurring the

minimal additional quantum noise required to preserve the Heisenberg uncertainty

relation. We then considered active channel models—in which noise photons are

injected from an external environment or the signal is amplified with unavoidable

quantum noise—obtaining upper and lower bounds on the resulting channel capaci-

ties, which are asymptotically tight at low and high noise levels [9]. [We conjectured

that our lower bounds are in fact the capacities, but we have yet to prove that

assertion.] Collectively, the preceding channel models can represent line-of-sight free-

space optical communications (see [7],[9]) and loss-limited fiber-optic communications

with or without pre-detection optical amplification. Furthermore, the classical-noise

channel—in which optical amplification is used to balance the attenuation due to free-

space diffraction or fiber propagation—is the quantum analog of Shannon’s additive

white-Gaussian-noise channel, thus its capacity is especially interesting in comparison

to Shannon’s well-known formula.

For the pure-loss case, it turns out that capacity is achievable with coherent-state
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(laser light) encoding, but a multi-symbol quantum measurement (a joint measure-

ment over entire codewords) is required. Heterodyne detection is asymptotically

optimum in the limit of large average photon number for single-mode operation [7].

The same is true in the limit of high average power level for wideband operation over

the far-field free space channel [7],[9]. However, all coherent reception techniques

fall short of the HSW Theorem capacity for the pure-loss channel in photon/power

starved scenarios such as deep space communication. We show later in this chap-

ter that at very low photon numbers per mode, the direct detection receiver along

with a coherent-state on-off-keying modulation can achieve data rates very close to

the ultimate capacity. For these applications it becomes especially important to find

practical ways to reap the capacity advantage that multi-symbol quantum measure-

ment affords. In the remainder of this chapter we review the results we have obtained

so far, towards developing these approaches, and applying them, to the thermal-noise

and classical-noise channels, and as well as to broadcast channels.

Section 2.2 provides a quick summary of bosonic channel models and the HSW

theorem. Section 2.3 presents our capacity results for the point-to-point single-mode

channels. Section 2.4 then addresses multiple spatio-temporal modes of the free-

space optical channel using Gaussian apertures, something that is easily analyzed

by tensoring up a collection of single-mode models. Finally, section 2.5 presents

our capacity results for modulation schemes using coherent-state codewords that are

geared towards achieving high data rates at very low input power regimes.

2.2 Bosonic communication channels

We are interested in the classical communication capacities of point-to-point bosonic

channels with additive quantum Gaussian noise and practical means for communicat-

ing at rates approaching these capacities. The three main categories of point-to-point

bosonic channels that we describe below are, the lossy channel, the amplifying chan-

nel, and the classical-noise channel. For each single-mode channel, the transmitter

Alice (A) sends out an electromagnetic-field mode with annihilation operator â and

36



the output is received by the receiver Bob (B), which is another field mode with an-

nihilation operator b̂. The channels of interest are not unitary evolutions, so they are

all governed by TPCP maps that relate their output density operators, ρ̂A, to their

input density operators, ρ̂B.

2.2.1 The lossy channel

The TPCP map ENη (·) for the single-mode lossy channel can be derived from the

commutator preserving beam splitter relation

b̂ =
√
η â+

√
1− η ê, (2.1)

in which the annihilation operator ê is associated with an environmental (noise) quan-

tum system E, and 0 ≤ η ≤ 1 is the channel transmissivity. [See [32] for how this

single-mode map leads to the quantum version of the Huygens-Fresnel diffraction in-

tegral, and for a quantum characteristic function specification of its associated TPCP

map.] For the pure-loss channel, the ê mode is in its vacuum state; for the thermal-

noise channel this mode is in a thermal state, viz., an isotropic-Gaussian mixture of

coherent states with average photon number N > 0,

ρ̂E =

∫
exp(−|µ|2/N)

πN
|µ〉〈µ|d2µ. (2.2)

2.2.2 The amplifying channel

The TPCP map AMκ (·) for the single-mode amplifying channel can be derived from

the commutator-preserving phase-insensitive amplifier relation [33]

b̂ =
√
κ â+

√
κ− 1 ê†, (2.3)

where ê is now the modal annihilation operator for the noise introduced by the am-

plifier and κ ≥ 1 is the amplifier gain. This amplifier injects the minimum possible

noise when the ê-mode is in its vacuum state; in the excess-noise case this mode’s
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density operator is the isotropic-Gaussian coherent-state mixture (2.2).

2.2.3 The classical-noise channel

The classical-noise channel can be viewed as the cascade of a pure-loss channel E0
η

followed by a minimum-noise amplifying channel A0
κ whose gain exactly compensates

for the loss, κ = 1/η. Then, with η = 1/(M + 1), we obtain the following TPCP map

for the classical-noise channel,

ρ̂B = NM(ρ̂A) ≡
∫

exp(−|µ|2/M)

πM
D̂(µ)ρ̂AD̂†(µ)d2µ, (2.4)

where D̂(µ) is the displacement operator, i.e., b̂ = â + m where m is a zero-mean,

isotropic Gaussian noise with variance given by 〈|m|2〉 = M , so that this channel is

the quantum version of the additive white-Gaussian-noise channel.

2.3 Point-to-point, Single-Mode Channels

Let us begin with a brief survey of recent work on the capacity of the point-to-point

single-mode bosonic communication channel, done by various members of our research

group at MIT, led by Prof. J. H. Shapiro. The details appeared in several published

articles (viz. [10], [7],[9], [11], and [34]). The capacity of the single-mode, pure-loss

channel (2.1), whose transmitter is constrained to use no more than N̄ photons on

average in a single use of the channel, is given by

C = g(ηN̄) nats/use, (2.5)

where

g(x) ≡ (x+ 1) ln(x+ 1)− x ln(x) (2.6)

is the Shannon entropy of the Bose-Einstein probability distribution with mean x.

This capacity is achieved by single-use random coding over coherent states using an

isotropic Gaussian distribution which meets the bound on the average number of
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transmitted photons per use of the channel. [Note that the optimality of single-use

encoding means that the capacity of the single-mode pure-loss channel is not super-

additive.] This capacity exceeds what is achievable with homodyne and heterodyne

detection,

Chom =
1

2
ln(1 + 4ηN̄) and Chet = ln(1 + ηN̄), (2.7)

although heterodyne detection is asymptotically optimal as N̄ → ∞. The direct-

detection capacity Cdir obtained by using a coherent-state encoding and photon-

counting measurement is not known. Cdir has been shown to satisfy [35],

Cdir ≤
1

2
ln(ηN̄) + o(1) and lim

N̄→∞
(Cdir) =

1

2
ln(ηN̄), (2.8)

and so is dominated by (2.5) for ln(ηN̄) > 1. The best known bounds to the direct-

detection capacity have recently been evaluated by Martinez [8], who has shown that

tight lower bounds (achievable rates) to the direct-detection capacity can be obtained

by constraining the input distribution to be a gamma density with parameter ν. For

instance, a lower bound that is obtained with a gamma density input distribution

with ν = 1 is given by

Cdir ≥ (1 + ηN̄) ln(1 + ηN̄) +

∫ 1

0

η2N̄2(1− u)

1 + ηN̄(1− u)

u

lnu
− ηN̄γe, (2.9)

where γe = 0.5772. . . is the Euler’s constant. The best known upper bound to the

direct-detection capacity is given by [8]:

Cdir ≤
(

1

2
+ ηN̄

)
ln

(
1

2
+ ηN̄

)
− ηN̄ ln(ηN̄)− 1

2
+ ln

(
1 +

√
2e− 1√

1 + 2ηN̄

)
. (2.10)

Employing the pure-loss channel’s optimal random code ensemble over the thermal-

noise, amplifying, and classical-noise channels leads to the following lower bounds on
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their channel capacities:

C ≥


g(ηN̄ + (1− η)N)− g((1− η)N) thermal-noise channel

g(κN̄ + (κ− 1)(N + 1))− g((κ− 1)(N + 1)) amplifying channel

g(N̄ +M)− g(M) classical-noise channel

(2.11)

which was conjectured to be their capacities [9]. The proof of that conjecture is inti-

mately related to the problem of determining the minimum von Neumann entropies

that can be realized at the output of these channels by choice of their input states.

In particular, showing that coherent-state inputs are the entropy-minimizing input

states would complete the proof of the capacity conjecture stated above, and lower

bounds on the minimum output entropies immediately imply upper bounds on the

corresponding channel capacities. So far, among many other things, it is known that

coherent-state inputs lead to local minima in the output entropies, and we have a

suite of output-entropy lower bounds for single-use encoding over the thermal-noise

and classical-noise channels. We also know that coherent-state inputs minimize the

integer-order Rényi output entropies [34],[36], from which a proof of our capacity

conjecture would follow were a rigorous foundation available for the replica method

of statistical mechanics, see, e.g., [37, 38] for recent classical-communication appli-

cations of the replica method. As additional evidence towards the conjecture, we

collected numerical evidence supporting a stronger version of the conjecture, that the

output-state of the bosonic channels for a vacuum-state input majorizes all other out-

put states. Our further quest into the theory of bosonic multiple-user communication

has led us to propose two new conjectures on the minimum von Neumann entropy

at the output of bosonic channels. Our three minimum output-entropy conjectures

are elaborated in Chapter 4. Proving conjecture 1 would prove the capacity of

the single-user bosonic channel with additive thermal noise. Proving conjecture 2

would prove the ultimate capacity region of the M -user bosonic broadcast channel

with vacuum-state noise. Proving conjecture 3 would prove the ultimate capac-

ity region of the M -user bosonic broadcast channel with additive thermal noise. As
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evidence supporting our conjectures, we prove the Wehrl entropy versions of the con-

jectures. Also, in the thesis, we will prove that if we restrict our optimization only to

Gaussian states, then the minimum output entropy conjectures 2 and 3 are both true.

The proof of the Gaussian-state version of conjecture 1 appeared in [10]. In Chapter

5 we will report the quantum version of the Entropy Power Inequality, viz., the En-

tropy Photon-number Inequality (EPnI), and we will show that the minimum output

entropy conjectures cited above can be derived as simple special cases of the EPnI.

Hence, proving the EPnI would immediately establish some key capacity results for

the capacities of bosonic communication channels [13].

2.4 Multiple-Spatial-Mode, Pure-Loss, Free-Space

Channel

As an explicit example of the mean-energy constrained, pure-loss channel, we now

treat the case of free-space optical communication. My SM thesis [39] treated the

wideband pure-loss channel with frequency-independent loss. Despite its providing

insight into multi-mode capacity, this analysis does not necessarily pertain to a real-

istic scenario. In [39] we also studied the far-field, scalar free-space channel in which

line-of-sight propagation of a single polarization occurs over an L-m-long path from

a circular transmitter pupil (area At) to a circular receiver pupil (area Ar) with the

transmitter restricted to use frequencies {ω : 0 ≤ ω ≤ ωc � ω0 ≡ 2πcL/
√
AtAr }.

This frequency range is the far-field power transfer regime, wherein there is only

a single spatial mode that couples appreciable power from the transmitter pupil to

the receiver pupil, and its transmissivity at frequency ω is η(ω) = (ω/ω0)2 � 1.

Figure 2-1 shows the geometry, the power allocations versus frequency for hetero-

dyne, homodyne, and optimal reception, and their corresponding capacities versus

transmitted power normalized by P0 ≡ 2π~c2L2/AtAr, when only this dominant spa-

tial mode is employed [7]. Far-field, free-space transmissivity increases as ω2, thus

high frequencies are used preferentially for this channel because the transmissivity
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Figure 2-1: Capacity results for the far-field, free-space, pure-loss channel: (a) prop-
agation geometry; (b) capacity-achieving power allocations ~ωN̄(ω) versus frequency
ω for heterodyne (dashed curve), homodyne (dotted curve), and optimal reception
(solid curve), with ωc and ~ωc/η(ωc) being used to normalize the frequency and the
power-spectra axes, respectively; and (c) wideband capacities of optimal, homodyne,
and heterodyne reception versus transmitter power P , with P0 ≡ 2π~c2L2/AtAr used
for the reference power.

advantage of high-frequency photons more than compensates for their higher energy

consumption.

We also explored the near-field behavior of the pure-loss free-space channel [40],

by employing the full prolate-spheroidal wave function normal-mode decomposition

associated with the propagation geometry shown in Fig. 2-1(a) [41, 42]. Near-field

propagation at frequency ω = 2πc/λ prevails when Df = AtAr/(λL)2, the product

of the transmitter and receiver Fresnel numbers, is much greater than unity. In this

case there are approximately Df spatial modes with near-unity transmissivities, with

all other modes affording insignificant power transfer from the transmitter pupil to

the receiver pupil.

We also sketched out a general wideband capacity analysis for the free-space chan-

nel in [39], which applies when neither the far-field nor the near-field assumptions may

be made for the entire channel spectrum. At very low frequencies the channel looks

like the far-field channel we analyzed earlier, in which the channel transmissivity

η(ω) ∝ ω2. So in that region, we expect that the optimal power allocation uses high

frequency photons preferentially, and that the power goes to zero at low frequencies.

At higher frequencies, the channel is closer to a lossless wideband channel we con-
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sidered earlier, for which we know that the optimal power allocation goes to zero at

very high frequencies [39]. So, in the ultra wideband case, we would expect the power

allocation to vanish both for very low and very high frequencies. This intuition is

validated later in this section.

The actual capacity calculation for the general wideband free-space channel for the

hard circular-apertures case is difficult owing to the complicated nonlinear dependence

of modal transmissivity on center frequency of transmission, for which closed-form

expressions are not available. In [43], we took another approach to the wideband ca-

pacity of the pure-loss free-space channel, by employing either the Hermite-Gaussian

(HG) or Laguerre-Gaussian (LG) mode sets that are associated with the soft-aperture

(Gaussian-attenuation pupil) version of the Fig. 2-1(a) propagation geometry. Two

benefits are derived from this approach. First, closed-form expressions become avail-

able for the modal transmissivities, as opposed to the hard-aperture case [Fig. 2-1(a)],

for which numerical evaluations or analytical approximations must be employed. Sec-

ond, the LG modes have been the subject of a great deal of interest, in the quantum

optics and quantum information communities [44], owing to their carrying orbital an-

gular momentum. Thus it was germane to explore whether they conferred any special

advantage in regards to classical information transmission. As we shall describe, in

the next subsection, the modal transmissivities of the LG modes are isomorphic to

those of the HG modes. Inasmuch as the latter do not convey orbital angular momen-

tum, it is clear that such conveyance is not essential to capacity-achieving classical

communication over the pure-loss free-space channel. After this, we will compute the

classical capacity of the general wideband free-space channel with soft apertures, and

will describe the scheme for doing optimal power-allocation across spatio-temporal

modes of the quantized optical field to achieve the ultimate rate limits afforded by

coherent-state encoding with both conventional coherent detectors and that with the

optimum joint-detection quantum measurement.

43



2.4.1 Propagation Model: Hermite-Gaussian and Laguerre-

Gaussian Mode Sets

In lieu of the hard-aperture propagation geometry from Fig. 2-1(a), wherein the

transmitter and receiver pupils are perfectly transmitting apertures within other-

wise opaque planar screens, we now introduce the soft-aperture propagation geome-

try of Fig. 2-2. From the quantum version of scalar Fresnel diffraction theory [32],

we know that it is sufficient, insofar as this propagation geometry is concerned, to

identify a complete set of monochromatic spatial modes, for a single electromagnetic

polarization of frequency ω = 2πc/λ = ck, that maintain their orthogonality when

transmitted through this channel. The resulting input and output mode sets consti-

tute a singular-value decomposition (SVD) of the linear propagation kernel (spatial

impulse response) associated with this geometry, which we will now develop.

Let ui(~x ), for ~x a 2D vector in the transmitter’s exit-pupil plane, denote a

frequency-ω field entering the transmitter pupil that is normalized to satisfy

∫
d2~x |ui(~x )|2 = 1. (2.12)

After masking of the field by Gaussian intensity transmitter and receiver apertures,

and undergoing free-space Fresnel diffraction over an L-m-long path, the field imme-

diately after the receiver pupil is given by

uo(~x
′) =

∫
d2~x ui(~x )h(~x ′, ~x ), (2.13)

where

h(~x ′, ~x ) ≡ exp(−|~x ′|2/r2
R)

exp(ikL+ ik|~x− ~x ′|2/2L)

iλL
exp(−|~x |2/r2

T ), (2.14)

is the channel’s spatial impulse response.
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Figure 2-2: Propagation geometry with soft apertures.

The singular-value (normal-mode) decomposition of h(~x ′, ~x ) is

h(~x ′, ~x ) =
∞∑
m=1

√
ηm φm(~x ′)Φ∗m(~x ), (2.15)

where

1 ≥ η1 ≥ η2 ≥ η3 ≥ · · · ≥ 0, (2.16)

are the modal transmissivities, {Φm(~x )} is a complete orthonormal (CON) set of

functions (input modes) on the transmitter’s exit-pupil plane, and {φm(~x ′)} is a CON

set of functions (output modes) on the receiver’s entrance-pupil plane. Physically, this

decomposition implies that h(~x ′, ~x ) can be separated into a countably-infinite set of

parallel channels in which transmission of ui(~x ) = Φm(~x ) results in reception of

uo(~x
′) =

√
ηm φm(~x ′). Singular-value decompositions are unique if their {ηm} are

distinct. When degeneracies exist, the SVD is not unique. In particular, a linear

combination of input modes with the same ηm value produces
√
ηm times that same

linear combination of the associated output modes after propagation through h(~x ′, ~x ).

The spatial impulse response h(~x ′, ~x ) has both rectangular and cylindrical sym-

metries. The Hermite-Gaussian (HG) modes Φn,m(x, y) provide an SVD of this chan-

nel that has rectangular symmetry, whereas Laguerre-Gaussian (LG) modes Φp,l(r, θ)

provide an alternative SVD for this channel with cylindrical symmetry. Even though
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the spatial forms of the two sets of CON spatial modes are completely different, the

associated modal transmissivities for the HG and the LG modes are respectively given

by

ηq =

(
1 + 2Df −

√
1 + 4Df

2Df

)q

, (2.17)

for q = 1, 2, . . . . Df = (kr2
T/4L)(kr2

R/4L) is the product of the transmitter-pupil and

receiver-pupil Fresnel numbers for this soft-aperture configuration. Also, there are q

spatial modes with transmissivity ηq. The doubly-indexed HG modes Φn,m(x, y) with

n+m+1 = q span the same eigenspace as the doubly-indexed LG modes Φp,l(r, θ) with

2p+ |`|+1 = q, and hence are related by a unitary transformation. Channel capacity,

when either the HG or LG modes are employed for information transmission depends

only on their modal transmissivities. Hence owing to singular-value degeneracies,

the HG and LG modes of the soft-aperture free-space channel are equivalent mode

sets as far as channel capacity is concerned. A single frequency-ω photon in the LG

mode Φp,l(r, θ) carries orbital angular momentum ~` directed along the propagation

(z) axis, whereas that same photon in the HG mode Φn,m(x, y) carries no z-directed

orbital angular momentum. The equivalence of the {ηp,l} and the {ηn,m} then implies

that angular momentum does not play a role in determining the channel capacity for

classical information transmission over the free-space channel shown in Fig. 2-2.

2.4.2 Wideband Capacities with Multiple Spatial Modes

In this section, we shall address the wideband capacities that can be achieved over

the pure-loss, scalar free-space channel shown in Fig. 2-2 using either heterodyne

detection, homodyne detection, or the optimum joint-detection receiver. We will

allow the transmitter to use multiple spatial modes, from either the HG or LG mode

sets, and all frequencies ω ∈ [0,∞) subject to a constraint, P , on the average power

in the field entering the transmitter’s exit pupil. It follows from our prior work [7, 40]
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that the capacities we are seeking satisfy,

C(P ) = max
N̄q(ω)

∞∑
q=1

q

∫ ∞
0

dω

2π
CSM(η(ω)q, N̄q(ω)), (2.18)

where the maximization is subject to the average power constraint,

P =
∞∑
q=1

q

∫ ∞
0

dω

2π
~ωN̄q(ω), (2.19)

and

η(ω)q ≡

(
1 + 2(ω/ω0)2 −

√
1 + 4(ω/ω0)2

2(ω/ω0)2

)q

(2.20)

is the modal transmissivity at frequency ω with q-fold degeneracy, with ω0 = 4cL/rtrR

being the frequency at which Df = 1. In (2.18),

CSM(η, N̄) ≡


g(ηN̄), for optimum reception

ln(1 + ηN̄), for heterodyne detection

1
2

ln(1 + 4ηN̄), for homodyne detection

(2.21)

are the relevant single-mode capacities as functions of the modal transmissivity, η,

and the average photon number, N̄ , for that mode. Regardless of the frequency de-

pendence of η(ω) the single-mode capacity formulas for heterodyne and homodyne

detection imply that their wideband multiple-spatial-mode capacities bear the follow-

ing relationship,

Chom(P ) =
1

2
Chet(4P ). (2.22)

Thus, only two maximizations need to be performed, both of which can be done

via Lagrange multipliers, to obtain the wideband multiple-spatial-mode capacities for

optimum reception, heterodyne detection, and homodyne detection.

The results we have obtained by performing the preceding maximizations are as

follows. The optimum-reception capacity (in nats/sec) and its associated optimum
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modal-power spectra are given by

C(P ) =
P

~ω0σ
−
∞∑
q=1

q

∫ ∞
0

dω

2π
ln[1− exp(−ω/ω0η(ω)qσ)], (2.23)

and

~ωN̄q(ω) =
~ω/η(ω)q

exp(ω/ω0η(ω)qσ)− 1
, (2.24)

respectively, where σ is a Lagrange multiplier chosen to enforce the average power

constraint. The corresponding capacity and optimum modal-power spectra for het-

erodyne detection are

Chet(P ) =
∞∑
q=1

q

∫
dω

2π
ln

(
βω0η(ω)q

ω

)
, (2.25)

and

~ωN̄q(ω) = max

[
~ω0

(
β − ω

ω0η(ω)q

)
, 0

]
, (2.26)

where β is another Lagrange multiplier, again chosen to enforce the average power

constraint. Finally, the capacity and optimum power allocation for homodyne detec-

tion are given by

Chom(P ) =
∞∑
q=1

q

∫
dω

2π

[
1

2
ln

(
2βω0η(ω)q

ω

)]
, (2.27)

and

~ωN̄q(ω) = max

[
~ω0

(
β

2
− ω

4ω0η(ω)q

)
, 0

]
, (2.28)

where β is a Lagrange multiplier, chosen to enforce the average power constraint.

2.4.3 Optimum power allocation: water-filling

The capacity-achieving power spectrum for optimal reception employs all spatial

modes and all frequencies. On the other hand, the capacity-achieving power spec-

tra for heterodyne and homodyne detection are “water-filling” allocations, i.e., they
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fill spatial-mode/frequency volumes above their appropriate noise-to-transmissivity-

ratio contours until the average power constraint is met (Fig. 2-3). That water-filling

power allocation should be capacity achieving for these coherent detection cases is

hardly a surprise, as water-filling power allocation has long been known to be opti-

mal for additive Gaussian noise channels [4]. A consequence of water-filling power

allocation is that heterodyne and homodyne detection only employ a finite number of

spatial modes to achieve their respective capacities, whereas optimal-reception capac-

ity needs all spatial modes. This behavior is illustrated in Fig. 2-4(a)-(c), where we

have plotted the capacity-achieving power spectra for optimum reception, homodyne

detection, and heterodyne detection when P = 8.12~ω2
0. In this case, heterodyne

detection uses 1 ≤ q ≤ 3 (a total of 6 spatial modes) with non-zero power, and ho-

modyne detection uses 1 ≤ q ≤ 4 (a total of 10 spatial modes) with non-zero power.

Optimum reception uses all spatial modes, but we have only plotted the spectra for

1 ≤ q ≤ 6.

In Fig. 2-4(d) we have plotted the heterodyne detection, homodyne detection,

and optimum reception capacities in bits/sec, normalized by ω0, versus the normal-

ized power, P/~ω2
0. Unlike the case seen in Fig. 2-1(c) for the wideband capacities

of the single-spatial-mode, far-field pure-loss channel, in which heterodyne detection

outperforms homodyne detection at high power levels, Fig. 2-4(d) shows that ho-

modyne detection is consistently better than heterodyne detection for the multiple-

spatial-mode scenario. This behavior has a simple physical explanation. Consider

first the single-spatial mode wideband capacities. At low power levels, when capac-

ity is power limited, homodyne detection outperforms heterodyne detection because

at every frequency it suffers less noise. On the other hand, at high enough power

levels single-spatial mode communication becomes bandwidth limited. In this case

heterodyne detection’s factor-of-two bandwidth advantage over homodyne detection

carries the day. Things are different when multiple spatial modes are available. In this

case, increasing power never reaches bandwidth-limited operation; additional, lower

transmissivity, spatial modes get employed as the power is increased so that the noise

advantage of homodyne detection continues to give a higher channel capacity than
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Figure 2-3: Visualization of the capacity-achieving power allocation for the wideband,
multiple-spatial-mode, free-space channel, with coherent-state encoding and hetero-
dyne detection as ‘water-filling’ into bowl-shaped steps of a terrace. The horizontal
axis ω/ω0, is a normalized frequency; n is the total number of spatial modes used.
The vertical axis is (ω/ω0)/η(ω)q. Power starts ‘filling’ into this terrace starting from
the q = 1 step. It keeps spilling over to the higher steps as input power increases.
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Figure 2-4: Capacity-achieving power spectra for wideband, multiple-spatial-mode
communication over the scalar, pure-loss, free-space channel when P = 8.12~ω2

0: (a)
optimum reception uses all spatial modes although spectra are only shown (from top
to bottom) for 1 ≤ q ≤ 6; (b) homodyne detection uses 10 spatial modes with (from
top to bottom) 1 ≤ q ≤ 4; (c) heterodyne detection uses 6 spatial modes with (from
top to bottom) 1 ≤ q ≤ 3. (d) Wideband, multiple-spatial-mode capacities (in bits
per second) for the scalar, pure-loss, free-space channel that are realized with optimum
reception (top curve), homodyne detection (middle curve), and heterodyne detection
(bottom curve). The capacities, in bits/sec, are normalized by ω0 = 4cL/rT rR,
the frequency at which Df = 1, and plotted versus the average transmitter power
normalized by ~ω2

0.
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does heterodyne detection.

Figure 2-4 shows that the wideband capacity realized with optimum reception, on

the multiple-spatial-mode pure-loss channel, increasingly outstrips that of homodyne

detection with increasing transmitter power. This advantage indicates that joint

measurements over entire codewords afford performance that is unapproachable with

homodyne detection, which is a single-use quantum measurement.

2.5 Low-power Coherent-State Modulation

We computed the classical information capacities of the single-mode and wideband

lossy bosonic communication channels, using various structured transmitter encod-

ings and receiver measurements, in [39]. Out of the various modulation states, of

particular importance are the coherent-state encoding techniques, as coherent-states

are classical states of light which can be generated readily using lasers. Moreover,

we have shown [7] that coherent-state encoding with an isotropic complex-Gaussian

prior density over all coherent states, along with an optimum receiver measurement,

achieves capacity for the pure-loss bosonic channel. Coherent-state encodings would

be provably optimum for encoding classical messages for thermal-noise bosonic chan-

nels and bosonic broadcast channels, if certain conjectures on the minimum output

entropy of bosonic channel were proven to be true [9, 12]. When the transmitter

is starved for photons, instead of using the full-blown Gaussian distribution over all

coherent states, several simplified encoding techniques using a few coherent states

do remarkably well. These low-power coherent-state based encoding schemes are the

subject of study for this section.

2.5.1 On-Off Keying (OOK)

A common scheme for optical modulation, which has been in use for many years,

is On-Off Keying (OOK) using coherent states with direct detection measurement.

With direct detection (or photon counting) receivers, the bosonic channel, from the

coherent-state transmitter to the measurement outcome, becomes a classical Pois-
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Figure 2-5: The “Z”-channel model. The single-mode bosonic channel, when used
with OOK-modulated coherent-states and photon number measurement, reduces to
a “Z”-channel when the mean photon number constraint at the input satisfies N̄ �
1. The transition probability from logical 1 (input coherent state |α〉) to logical 0
(vacuum state) is given by ε = e−η|α|

2
.

son channel, because of the Poisson statistics of the photon-number measurement

on coherent states. This encoding-decoding scheme is widely employed in real sys-

tems because of easy availability of coherent-state modulators, and direct-detection

receivers1.

OOK entails either sending a coherent-state |α〉 or the vacuum state |0〉 in each

use of the channel. Consider a single-mode lossy bosonic channel with transmissivity

η and a mean photon number constraint N̄ at the input of the channel. In the limit

of N̄ � 1, the bosonic channel for these encoding states reduces to a “Z”-channel

(Figure 2-5), wherein, the transition probability from logical 1 (input coherent state

|α〉) to logical 0 (vacuum state) is given by ε = e−η|α|
2
. The capacity of the channel

in bits per use is given by

COOK(η, N̄) = max
p

[
H
(
p(1− e−ηN̄/p)

)
− pH

(
e−ηN̄/p

)]
, (2.29)

where H(p) = −p log p− (1−p) log 1− p is the binary Shannon entropy. The channel

capacity of OOK with direct-detection gets closer and closer to optimal capacity as

N̄ → 0, as we see in Figure 2-6. The approach of the OOK capacity to the optimal

capacity is exponentially slow as N̄ → 0. At n̄ = 10−7, COOK is about 77.5% of

the ultimate capacity g(ηN̄) and the ratio COOK/g(ηN̄) increases at about 0.03 per

1Although, typical direct-detection receivers are not signal-shot-noise limited photon counters.
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Figure 2-6: This figure shows that capacity achieved using OOK modulation and
direct-detection gets closer and closer to optimal capacity as N̄ → 0. The ordinate
is the ratio of the OOK and the ultimate capacities in bits per channel use. The
approach of the OOK capacity to the optimal capacity gets exponentially slow as
N̄ → 0, as is evident from the log-scale used for the ηN̄ -axis of the graph. At
N̄ = 10−7, COOK is about 77.5% of the ultimate capacity g(ηN̄).
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decade of decrease of N̄ , at very low values of N̄ .

2.5.2 Binary Phase-Shift Keying (BPSK)

Another common modulation scheme using coherent-state inputs is Binary Phase-

Shift Keying (BPSK), in which the input alphabet comprises two coherent states of

equal magnitude that are 180 degrees out of phase: {|α〉,−|α〉}. With a two-element

quantum POVM measurement that result in symmetric outcomes for the two symbol

states, the BPSK channel becomes a binary symmetric channel (BSC). With a mean

photon number constraint of N̄ at the input, it is easy to show that the achievable

capacity using the best symbol-by-symbol measurement at the output (realized by a

sequence of Dolinar receivers [20]) is given by the BSC capacity formula:

CBPSK(ηN̄) = 1−H

(
1−

√
1− e−4ηN̄

2

)
. (2.30)

Comparing performance of BPSK to that of OOK

Figure 2-7 compares classical communication rates achievable by OOK (with direct

detection) and BPSK (with Dolinar reception) modulation schemes, with the rates

achieved by doing homodyne or heterodyne detection with an input alphabet over

all coherent states, chosen from an isotropic Gaussian distribution of coherent states.

The ultimate capacity is given by g(ηN̄) bits per channel use. Figure 2-7(a) is for low

N̄ , whereas Figure 2-7(b) compares the achievable rates at higher N̄ . At very low

mean photon number, OOK performs the best of the conventional schemes. In the low

N̄ regime, both the binary modulation schemes, viz., OOK and BPSK perform better

than the unrestricted coherent-state modulation with coherent detection. In the high

N̄ regime, coherent-detection capacities outperform the binary schemes, because the

maximum rate achievable using any binary modulation system is 1 bit per channel

use.
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Figure 2-7: Comparison of capacities (in bits per channel use) of the single-mode lossy
bosonic channel achieved by: OOK modulation with direct detection; {|α〉,−|α〉}-
BPSK modulation using coherent-states; and homodyne and heterodyne detection
with isotropic-Gaussian random coding over coherent states. For very low values of
N̄ , the average transmitter photon number, shown in (a), OOK outperforms all but
the ultimate capacity. At somewhat higher values of N̄ , both OOK and BPSK are
better than isotropic-Gaussian random coding with coherent detection. In the high
N̄ regime, coherent-detection capacities outperform the binary schemes, because, the
maximum rate achievable by the latter approaches cannot exceed 1 bit per channel
use.
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Figure 2-8: This figure illustrates the gap between the ultimate BPSK coherent-
state capacity (Equation (2.31)) and the achievable rate using a BPSK coherent-state
alphabet and symbol-by-symbol “Dolinar receiver” measurement (Equation (2.30)).
In order to bridge the gap between these two capacities, optimal multi-symbol joint
measurement schemes must be used at the receiver. All capacities are plotted in units
of bits per channel use.
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Ultimate capacity using the BPSK alphabet

The ultimate capacity that can be achieved using a binary coherent-state alphabet

{|α〉, | − α〉}, with an average input-photon-number constraint N̄ can be computed

by maximizing the Holevo information for the binary alphabet over all binary prior

probability densities {p, 1− p}. The ultimate capacity using the binary coherent-state

alphabet is given by

Cult
BPSK = H

(
1 + e−2ηN̄

2

)
. (2.31)

Figure 2-8 shows the gap between the ultimate BPSK capacity and the achievable

rate using a BPSK coherent-state alphabet and symbol-by-symbol Dolinar-receiver

measurement. In order to bridge the gap between these two capacities, optimal multi-

symbol joint measurement schemes must be used at the receiver. Some examples of

such improvement over single-symbol measurement schemes (and implementations

thereof) were worked out by Sasaki et. al., in [45, 46]. Recently, Ishida et. al. worked

out best achievable rate regions for the lossy bosonic channel using various coherent-

state modulation schemes [47], such as Quadrature Phase Shift Keying (QPSK), and

Quadrature Amplitude Modulation (QAM).
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Chapter 3

Broadcast and Wiretap Channels

3.1 Background

A broadcast channel is the congregation of communication media connecting a sin-

gle transmitter to two or more receivers. The transmitter encodes and sends out

information to each receiver in a way that each receiver can reliably decode its re-

spective information. The information sent out to the receivers may be independent

or nested. The capacity region of a broadcast channel is the set of all rate M -tuples

{R0, . . . , RM−1}, at which independent information can be sent perfectly reliably to

the respective M receivers by using suitable encoding and decoding schemes. The

classical discrete-memoryless broadcast channel was first studied by Cover [48], whose

capacity region still remains an open problem. The capacity region of a special case

of the broadcast channel, known as the degraded broadcast channel – in which the

channel symbols received by one of the receivers is a stochastically degraded version of

the symbols received by the other receiver – was conjectured by Cover [48], and later

proved to be achievable by Bergmans [49]. The converse to the degraded broadcast

channel capacity theorem was established later by Bergmans [50] and Gallager [51].

A quantum broadcast channel is a quantum-mechanical communication link con-

necting one transmitter to two or more receivers. Quantum broadcast channels, like

point-to-point quantum communication channels, may be used to send classical infor-

mation, quantum information, or a combination thereof. We will restrict our attention
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only to the case of classical information transmission over quantum broadcast chan-

nels. The transmitter encodes information intended to be sent to various receivers

into quantum states of the transmission medium, and the receivers extract classical

information from received quantum states by performing suitable quantum measure-

ments. Even though the capacity region of the general quantum broadcast channel is

still an open problem, like its classical counterpart, the capacity region of the two-user

degraded quantum broadcast channel for finite-dimensional Hilbert spaces was found

by Yard, et. al.[52]. bosonic broadcast channels constitute a special class of quantum

broadcast channels in which the information is encoded into quantum states of an

optical-frequency quantized electromagnetic field.

In this chapter, we will show that when coherent-state encoding is employed in

conjunction with coherent detection, the bosonic broadcast channel is equivalent to

a classical degraded Gaussian broadcast channel whose capacity region is known,

and known to be dual to that of the classical Gaussian multiple-access channel [53].

Thus, under these coding and detection assumptions, the capacity region for the

bosonic broadcast channel is dual to that for the bosonic multiple-access channel

(MAC) with coherent-state encoding and coherent detection. To treat more general

transmitter and receiver conditions, we use a limiting argument to apply the degraded

quantum broadcast-channel coding theorem for finite-dimensional state spaces [52] to

the infinite-dimensional bosonic channel with an average photon-number constraint.

We first consider the lossless two-receiver case in which Alice (A) simultaneously

transmits to Bob (B), via the transmissivity η > 1/2 port of a lossless beam splitter,

and to Charlie (C), via that beam splitter’s reflectivity 1− η < 1/2 port. Alice uses

arbitrary encoding with an average photon number N̄ , while Bob and Charlie employ

optimum measurements. Given a conjecture about the minimum output entropy of

a lossy bosonic channel is true (see chapter 4), we show that the ultimate capacity

region is achieved by a coherent-state encoding, and is given by

RB ≤ g(ηβN̄), RC ≤ g((1− η)N̄)− g((1− η)βN̄), (3.1)
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where g(x) ≡ (x + 1) log(x + 1) − x log(x) is the entropy of the Bose Einstein dis-

tribution with mean x, and β ∈ [0, 1]. Interestingly, this capacity region is not dual

to that of the bosonic multiple-access channel with coherent-state encoding and op-

timum measurement that was found in [11].

We begin this chapter by reviewing the capacity region of the degraded classical

broadcast channel, and we evaluate the capacity region of the Gaussian broadcast

channel as an example. We then present a brief review of Yard et. al.’s capacity

theorem for the degraded quantum broadcast channel with two receivers, following

which we present our generalization of their result for an arbitrary number of re-

ceivers. Thereafter we present our results on the classical information capacity of

the bosonic broadcast channel. We first analyze the two-receiver lossless case with

no additional noise and that with additive thermal noise. We then generalize our

results to the lossy broadcast channel with multiple receivers. We compare the rate

regions obtained by using coherent-state encoding for the bosonic broadcast chan-

nel with that of the bosonic multiple access channel and we find that a duality that

is observed between capacity regions of the classical Gaussian-noise broadcast and

multiple-access channels is not seen in the quantum case. The chapter concludes

with a section on the privacy capacity of the bosonic wiretap channel, which is a

special kind of a two-receiver broadcast channel in which one of the receivers is an

eavesdropper, while the other is the intended receiver.

3.2 Classical Broadcast Channel

In classical information theory, a two-user discrete-memoryless broadcast channel is

modeled by a classical probability transition matrix pB,C|A(β, γ|α), where α, β, and

γ belong to Alice’s (input) alphabet A, and Bob and Charlie’s (output) alphabets, B

and C respectively. A broadcast channel is said to be memoryless if successive uses

of the channel are independent, i.e., pBn,Cn|An(βn, γn|αn) = Πn
i=1pB,C|A(βi, γi|αi). M -

user broadcast channels, for M > 2, are defined similarly. A ((2nRB , 2nRC ), n) code

for a two-receiver broadcast channel consists on an encoder
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αn : 2nRB × 2nRC → An, (3.2)

and two decoders

ŴB : Bn → 2nRB (3.3)

ŴC : Cn → 2nRC . (3.4)

The probability of error P
(n)
e is the probability that the overall decoded message

doesn’t match with the transmitted message, i.e.,

P (n)
e = P (ŴB(Bn) 6= WB OR ŴC(Cn) 6= WC),

where the message (WB,WC) is assumed to be uniformly distributed over 2nRB×2nRC .

A rate pair (RB, RC) is said to be achievable for the broadcast channel if there exists

a sequence of ((2nRB , 2nRC ), n) codes with P
(n)
e → 0 as n → ∞. The capacity region

of the broadcast channel is the closure of the set of all achievable rates.

Although the capacity region for general broadcast channels is still an open prob-

lem, the capacity region is known for a special class of broadcast channels known

as degraded broadcast channels. It is often the case that one receiver (say C) is

further downstream from the first receiver (say B), so that C always receives a de-

graded version of B’s message. When A → B → C forms a Markov chain, i.e.,

when pB,C|A(β, γ|α) = pB|A(β|α)pC|B(γ|β) we say that the receiver C is a physically

degraded version of B, and that A→ B → C is a physically degraded broadcast chan-

nel. The probabilities of error P (ŴB(Bn) 6= WB) and P (ŴC(Cn) 6= WC) depend only

on the marginal distributions pB|A(β|α) and pC|B(γ|β) and not on the joint distribu-

tion pB,C|A(β, γ|α). Thus we define a weaker notion of degraded broadcast channel —

a broadcast channel pB,C|A(β, γ|α) is said to be degraded (also known as stochastically

degraded to distinguish from the stronger notion of degraded in the Markov sense),

if there exists a distribution p̃(γ|β), such that
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pC|A(γ|α) =
∑
β

pB|A(β|α)p̃(γ|β). (3.5)

Such channels were first studied by Cover [48], who conjectured that the capacity

region for Alice to send independent information to Bob and Charlie at rates RB and

RC respectively over a degraded broadcast channel1 A → B → C is the convex hull

of the closure of all (RB, RC) satisfying

RB ≤ I(A;B|T ) (3.6)

RC ≤ I(T ;C) (3.7)

for some joint distribution pT (τ)pA|T (α|τ)pB,C|A(β, γ|α), where T is an auxiliary ran-

dom variable with cardinality |T | ≤ min {|X |, |Y|, |Z|}. The achievability of the

above capacity result was proved by Bergmans [49], whereas Gallager came up with

a particularly novel proof of the converse [51].

3.2.1 Degraded broadcast channel with M receivers

A formal proof of the capacity region for a degraded discrete memoryless broadcast

channel with an arbitrary number of receivers, was done recently by Borade et. al.

[54], in which they also proved bounds for capacity regions for general multiple-level

broadcast networks. Consider a discrete memoryless broadcast channel with transmit-

ter Alice (A) sending information to M receivers, Y0, Y1, . . ., YM−1. Such a channel is

completely specified by the transition probabilities pY0,...,YM−1|A(y0, . . . , yM−1|α). Let

us also assume that the channel map is stochastically degraded (in the same sense as

described in Eq. (3.5)), as A→ Y0 → Y1 → . . .→ YM−1; i.e., Y0 being the least noisy

receiver and YM−1 the noisiest receiver. The optimal capacity region is given by the

1In all that follows, a degraded broadcast channel A → B → C will be understood to mean a
stochastically degraded channel (3.5) with transmitter A, and receivers B and C.
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convex hull of all rate M -tuples (R0, R1, . . . , RM−1) satisfying

R0 ≤ I(A;Y0|T1),

Rk ≤ I(Tk;Yk|Tk+1), for k ∈ {1, . . . ,M − 2},

RM−1 ≤ I(TM−1;YM−1), (3.8)

where Tk, k ∈ {1, . . . ,M − 1} are auxiliary random variables such that TM−1 →

TM−2 → . . .→ T1 → A forms a Markov chain, i.e.,

pTM−1,...,T1,A(τM−1, . . . , τ1, α) = pTM−1
(τM−1)

(
2∏

k=M−1

pTk−1|Tk(τk−1|τk)

)
pA|T1(α|τ1).

(3.9)

The above Markov chain structure of the auxiliary random variables Tk, k ∈ {1, . . . ,M − 1}

has been shown to be optimal [54]. In a degraded broadcast channel, messages in-

tended for noisier receivers can always be decoded by less noisy receivers2. Hence the

kth receiver actually receives M − k messages at a rate Rk + . . .+RM−1.

3.2.2 The Gaussian broadcast channel

A Gaussian broadcast channel is one in which each receiver receives the transmitted

symbols corrupted by zero-mean additive Gaussian noise of a fixed noise variance. The

Gaussian broadcast channel is an example of a degraded broadcast channel because

the channel can be recharacterized as a stochastically degraded channel in which the

noisier receiver’s received symbols can be thought of as being obtained from the less

noisy receiver’s received symbols by passing them through a hypothetical additive

Gaussian noise channel with a noise variance equaling the difference of the Gaussian

noise variances seen by the two receivers (see Fig. 3-1).

2For a more detailed description of how messages are encoded and decoded in a degraded broad-
cast channel using superposition coding, please see [3].
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Figure 3-1: Classical additive Gaussian noise broadcast channel

The two-user Gaussian broadcast channel

The simplest case of the Gaussian broadcast channel is the scalar two-receiver case.

There are two receivers, Bob and Charlie, whose received symbols YB and YC are

given in terms of Alice’s transmitted symbol XA by

YB = XA + ZB and (3.10)

YC = XA + ZC , (3.11)

where ZA ∼ N (0, NB) and ZB ∼ N (0, NC) are zero-mean Gaussian distributed ran-

dom variables with variances NB and NC respectively. This channel can be charac-

terized by an equivalent degraded channel as shown in Fig. 3-1.

Let us use CG(γ) to denote the capacity of a memoryless scalar additive white

Gaussian channel (AWGN) with signal to noise ratio (SNR) γ. It is well known that,

CG(γ) =
1

2
ln(1 + γ) nats per use. (3.12)

It is easily shown [3], that an achievable capacity region for the Gaussian broadcast

channel, with signal power constraint E[|XA|2] ≤ N̄ , can be obtained by choosing

both pT (τ) and pA|T (α|τ) to be Gaussian. The resulting achievable region is given by,

RB ≤ CG

(
βN̄

NB

)
, (3.13)

RC ≤ CG

(
(1− β)N̄

βN̄ +NC

)
, (3.14)
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for 0 ≤ β ≤ 1. Bergmans proved the converse statement for the Gaussian broadcast

channel [50], thereby showing that the capacity region given above is the ultimate

capacity region for the Gaussian broadcast channel. Using Bergmans’s notation3,

gC(S) ≡ 1

2
ln (2πeS) (3.15)

to denote the Shannon entropy (in nats) of a Gaussian random variable with variance

S, the above two-receiver Gaussian broadcast capacity region can alternatively be

expressed as,

RB ≤ gC(βN̄ +NB)− gC(NB), (3.16)

RC ≤ gC(N̄ +NC)− gC(βN̄ +NC) (3.17)

for 0 ≤ β ≤ 1. An example plot of the capacity region of a two-user Gaussian

broadcast channel is given in Fig. 3-2.

An example from optical communications

Let us consider a special case of the two-user Gaussian broadcast channel, in which

Bob and Charlie receive attenuated versions of Alice’s message corrupted by Gaussian

noise, i.e.,

YB =
√
ηXA +

√
1− ηZB and

YC =
√

1− ηXA +
√
ηZC , (3.18)

3We use a subscript (C) for Bergman’s g(·) function to distinguish it from the function g(x) =
(1 + x) ln(1 + x) − x lnx — which is the Shannon entropy of the Bose-Einstein probability mass
function with mean x (and also the von Neumann entropy of the bosonic thermal state with mean
photon-number x) — that will be used throughout this thesis. We will see later in this chapter, that
the functions gC(·) and g(·) play analogous roles in defining classical capacity regions for the classical
Gaussian broadcast channel and that of the quantum (bosonic) broadcast channel, respectively. As
we will see in Chapter 5, the functions gC(·) and g(·) also play analogous roles in defining the
(classical) Entropy Power Inequality (EPI) and the (quantum) Entropy Photon-Number Inequality
(EPnI).
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Figure 3-2: Capacity region of the classical additive Gaussian noise broadcast channel,
with an input power constraint E[|XA|2] ≤ 10, and noise powers given by, NB = 2
and NC = 6. The rates RB and RC are in nats per channel use.

where 1/2 < η < 1, and ZB and ZC are independent, identically distributed (i.i.d.)

N (0, N) random variables. Such a channel model arises when the transmitter Alice

encodes classical information into the magnitude of the complex electromagnetic field

of a classical laser beam and the beam splits into two through a lossless beam splitter

of transmissivity η, in presence of an ambient thermal environment that is sufficiently

strong that its noise contribution dominates over the quantum noise. Bob and Charlie,

the two receivers receive their respective classical signals at the two output ports of

the beam splitter by performing optical homodyne detection (see Fig. 3-3). Using

Bergman’s results, it is not hard to see that the capacity region of this channel will

be given by,

RB ≤ gC(ηβN̄ + (1− η)N)− gC((1− η)N), (3.19)

RC ≤ gC((1− η)N̄ + ηN)− gC((1− η)βN̄ + ηN), (3.20)

where 0 ≤ β ≤ 1.
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Figure 3-3: A broadcast channel in which the transmitter Alice encodes information
into a real-valued α for a classical electromagnetic field (coherent state |α〉) and the
beam splits into two, through a lossless beam splitter with transmissivity η, in pres-
ence of an ambient thermal environment with an average of NT photons per mode.
Bob and Charlie, the two receivers, receive their respective classical signals YB and YC
at the two output ports of the beam splitter by performing optical homodyne detec-
tion. In the limit of high noise (NT � 1), and with the substitutions XA = α;α ∈ R,
and NT = 2N , this channel reduces to the broadcast channel model described by
(3.18).
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The M-receiver Gaussian broadcast channel

As an example of the capacity region of a degraded broadcast channel with M re-

ceivers, let us consider an M -receiver version of the lossy thermal noise optical channel

model from Eq. (3.18). Each of the M receivers receive an attenuated version of Al-

ice’s transmitted message with an additive zero-mean Gaussian noise, given by

Yk =
√
ηkA+

√
1− ηkZk, k ∈ {0, . . . ,M − 1}, (3.21)

where the transmitter has a mean power constraint given by E[|A|2] ≤ N̄ , and Zk

are i.i.d. Gaussian N (0, N) random variables. The optimal capacity region of the

Gaussian broadcast channel for M receivers was first found by Bergmans [50], and is

given by

Rk ≤ gC(ηkβk+1N̄+(1−ηk)N)−gC(ηkβkN̄+(1−ηk)N), k ∈ {0, . . . ,M − 1}, (3.22)

where,

0 = β0 < β1 < . . . < βM−1 < βM = 1. (3.23)

3.3 Quantum Broadcast Channel

In this section, we study the classical information capacity of quantum broadcast

channels, which are quantum channels from one transmitter to two or more receivers.

The transmitter encodes information intended to be sent to various receivers into the

quantum states of the transmission medium, and the receivers extract classical infor-

mation from received quantum states by performing suitable quantum measurements.

Even though the capacity region of the general quantum broadcast channel is still

an open problem, like its classical counterpart, the capacity region of the two-user

degraded quantum broadcast channel for finite-dimensional Hilbert spaces was found

by Yard, et. al.[52]. We begin this section by stating Yard et. al.’s capacity theorem,

and then we prove its straightforward extension to the case of an arbitrary number
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of receivers.

3.3.1 Quantum degraded broadcast channel with two receivers

A quantum channel NA−B from Alice to Bob is a trace-preserving completely posi-

tive map that maps Alice’s single-use density operators ρ̂A to Bob’s, ρ̂B = NA−B(ρ̂A).

The two-user quantum broadcast channel NA−BC is a quantum channel from sender

Alice (A) to two independent receivers Bob (B) and Charlie (C). The quantum

channel from Alice to Bob is obtained by tracing out C from the channel map, i.e.,

NA−B ≡ TrC (NA−BC), with a similar definition for NA−C . We say that a broadcast

channel NA−BC is degraded if there exists a degrading channel N deg
B−C from B to C sat-

isfying NA−C = N deg
B−C ◦ NA−B. The degraded broadcast channel describes a physical

scenario in which for each successive n uses of NA−BC Alice communicates a ran-

domly generated classical message (m, k) ∈ (WB,WC) to Bob and Charlie, where the

message-sets WB and WC are sets of classical indices of sizes 2nRB and 2nRC respec-

tively. The messages (m, k) are assumed to be uniformly distributed over (WB,WC).

Because of the degraded nature of the channel, Bob receives the entire message (m, k)

whereas Charlie only receives the index k. To convey these messages (m, k), Alice

prepares n-channel use states that, after transmission through the channel, result in

bipartite conditional density matrices
{
ρ̂B

nCn

m,k

}
, ∀(m, k) ∈ (WB,WC). The quantum

states received by Bob and Charlie,
{
ρ̂B

n

m,k

}
and

{
ρ̂C

n

m,k

}
respectively, can be found

by tracing out the other receiver, viz., ρ̂B
n

m,k ≡ TrCn
(
ρ̂B

nCn

m,k

)
, etc. A (2nRB , 2nRC , n, ε)

code for this channel consists of an encoder

xn : (WB,WC)→ An, (3.24)

a positive operator-valued measure (POVM) {Λmk} on Bn and a POVM {Λ′k} on Cn

which satisfy4

Tr
(
ρ̂B

nCn

m,k (Λmk ⊗ Λ′k)
)
≥ 1− ε (3.25)

4An, Bn, and Cn are the n channel use alphabets of Alice, Bob, and Charlie, with respective sizes
|An|, |Bn|, and |Cn|.
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Figure 3-4: Schematic diagram of the degraded single-mode bosonic broadcast chan-
nel. The transmitter Alice (A) encodes her messages to Bob (B) and Charlie (C) in a
classical index j, and, over n successive uses of the channel, creates a bipartite state
ρ̂B

nCn

j at the receivers.

for every (m, k) ∈ (WB,WC). A rate-pair (RB, RC) is achievable if there exists a

sequence of (2nRB , 2nRC , n, εn) codes with εn → 0. The classical capacity region of

the broadcast channel is defined as the convex hull of the closure of all achievable

rate pairs (RB, RC). The classical capacity region of the two-user degraded quantum

broadcast channel NA−BC was recently derived by Yard et. al. [52], and can be

expressed in terms of the Holevo information [27, 28, 29],

χ(pj, σ̂j) ≡ S

(∑
j

pjσ̂j

)
−
∑
j

pjS(σ̂j), (3.26)

where {pj} is a probability distribution associated with the density operators σ̂j, and

S(ρ̂) ≡ −Tr(ρ̂ log ρ̂) is the von Neumann entropy of the quantum state ρ̂. Because

χ may not be additive, the rate region (RB, RC) of the degraded broadcast channel
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must be computed by maximizing over successive uses of the channel, i.e., for n uses

RB ≤
∑
i

piχ
(
pj|i,N⊗nA−B(ρ̂A

n

j )
)
/n

=
1

n

∑
i

pi

[
S

(∑
j

pj|iρ̂
Bn

j

)
−
∑
i,j

pj|iS
(
ρ̂B

n

j

)]
, and (3.27)

RC ≤ χ

(
pi,
∑
j

pj|iN⊗nA−C(ρ̂A
n

j )

)
/n

=
1

n

[
S

(∑
i,j

pipj|iρ̂
Cn

j

)
−
∑
i

piS

(∑
j

pj|iρ̂
Cn

j

)]
, (3.28)

where j ≡ (m, k) is a collective index and the states
{
ρ̂A

n

j

}
live in the Hilbert space

H⊗n of n successive uses of the broadcast channel5. The probabilities {pi} form

a distribution over an auxiliary classical alphabet T , of size |T |, satisfying |T | ≤

min {|A|n, |B|2n + |C|2n − 1}. The ultimate rate-region is computed by maximizing

the region specified by Eqs. (3.27) and (3.28)6, over {pi},
{
pj|i
}

,
{
ρ̂A

n

j

}
, and n,

subject to the cardinality constraint on |T |. Fig. 3-4 illustrates the setup of the

two-user degraded quantum channel.

5Note that, as the actual n-channel-use quantum states sent out by Alice ρ̂A
n

j do not appear in
the expressions for RB or RC in Eqs. (3.27) and (3.28), the quantum broadcast channel (set up
to transmit classical information to multiple receivers) may be seen without any ambiguity, as a
cq-broadcast channel, in which Alice’s n-use alphabet An is a classical random variable, that takes
values on a classical index set {j} over n successive uses of the channel.

6 An alternative notation used in the literature — An alternative notation, widely used
in published literature on quantum information theory, employs I(A;B)ρ ≡ H(A)ρ − H(A|B)ρ to
denote the Holevo information between (classical or quantum) systems A and B in a joint state ρ.
The classical capacity region of the quantum degraded broadcast channel expressed in this notation
closely resembles that of the classical degraded broadcast channel. Consider a degraded broadcast
channel NA→BC with n-use conditional density matrices

{
ρB

nCn

j

}
. The capacity region for Alice

(A) to send information to Bob (B) and Charlie (C) at rates RB and RC respectively is the convex
hull of the closure of all (RB , RC) satisfying

RB ≤ I(An;Bn|T )σ/n (3.29)
RC ≤ I(T ;Cn)σ/n (3.30)

for some n ≥ 1 and some pT,An(i, j) giving rise to the state σTA
nBnCn

=
⊕

i,j pT (i)pAn|T (j|i)ρBnCn

j .
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3.3.2 Quantum degraded broadcast channel with M receivers

In this section, we generalize the capacity region of the two-receiver quantum de-

graded broadcast channel in the previous section, to an arbitrary number of re-

ceivers. Using this result, later in this chapter, we evaluate the capacity region

of the bosonic broadcast channel with an arbitrary number of receivers. The M -

receiver quantum broadcast channel NA−Y0...YM−1
is a quantum channel from a sender

Alice (A) to M independent receivers Y0, . . . , YM−1. The quantum channel from

A to Y0 is obtained by tracing out all the other receivers from the channel map,

i.e., NA−Y0 ≡ TrY1,...,YM−1

(
NA−Y0...YM−1

)
, with a similar definition for NA−Yk for

k ∈ {1, . . . ,M − 1}. We say that a broadcast channel NA−Y0...YM−1
is degraded if there

exists a series of degrading channels N deg
Yk−Yk+1

from Yk to Yk+1, for k ∈ {0, . . . ,M − 2},

satisfying

NA−YM−1
= N deg

YM−2−YM−1
◦ N deg

YM−3−YM−2
◦ . . . ◦ N deg

Y0−Y1
◦ NA−Y0 . (3.31)

The M -receiver degraded broadcast channel (see Fig. 3-5) describes a physical sce-

nario in which for each successive n uses of the channel NA−Y0...YM−1
Alice communi-

cates a randomly generated classical message (m0, . . . ,mM−1) ∈ (W0, . . . ,WM−1) to

the receivers Y0, . . ., YM−1, where the message-sets Wk are sets of classical indices of

sizes 2nRk , for k ∈ {0, . . . ,M − 1}. The messages (m0, . . . ,mM−1) are assumed to be

independent and uniformly distributed over (W0, . . . ,WM−1), i.e.,

pW0,...,WM−1
(m0, . . . ,mM−1) =

M−1∏
k=0

pWk
(mk) =

M−1∏
k=0

1

2nRk
(3.32)

Because of the degraded nature of the channel, given that the transmission rates

are within the capacity region and proper encoding and decoding is employed at

the transmitter and at the receivers, Y0 can decode the entire message M -tuple

(m0, . . . ,mM−1), Y1 can decode the reduced message (M − 1)-tuple (m1, . . . ,mM−1),

and so on, until the noisiest receiver YM−1 can only decode the single message-
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Figure 3-5: This figure summarizes the setup of the transmitter and the channel
model for the M -receiver quantum degraded broadcast channel. In each successive
n uses of the channel, the transmitter A sends a randomly generated classical mes-
sage (m0, . . . ,mM−1) ∈ (W0, . . . ,WM−1) to the M receivers Y0, . . ., YM−1, where the
message-sets Wk are sets of classical indices of sizes 2nRk , for k ∈ {0, . . . ,M − 1}.
The dashed arrows indicate the direction of degradation, i.e., Y0 is the least noisy
receiver, and YM−1 is the noisiest receiver. In this degraded channel model, the
quantum state received at the receiver Yk, ρ̂

Yk can always be reconstructed from the
quantum state received at the receiver Yk′ , ρ̂

Yk′ , for k′ < k, by passing ρ̂Yk′ through
a trace-preserving completely positive map (a quantum channel). For sending the
classical message (m0, . . . ,mM−1) , j, Alice chooses a n-use state (codeword) ρ̂A

n

j

using a prior distribution pj|i1 , where ik denotes the complex values taken by an aux-
iliary random variable Tk. It can be shown that, in order to compute the capacity
region of the quantum degraded broadcast channel, we need to choose M − 1 com-
plex valued auxiliary random variables with a Markov structure as shown above, i.e.,
TM−1 → TM−2 → . . .→ Tk → . . .→ T1 → An is a Markov chain.
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Figure 3-6: This figure illustrates the decoding end of the M -receiver quantum de-
graded broadcast channel. The decoder consists of a set of measurement opera-
tors, described by positive operator-valued measures (POVMs) for each receiver;{

Λ0
m0...mM−1

}
,
{

Λ1
m1...mM−1

}
, . . .,

{
ΛM−1
mM−1

}
on Y0

n, Y1
n, . . ., YM−1

n respectively.

Because of the degraded nature of the channel, if the transmission rates are within
the capacity region and proper encoding and decoding are employed at the transmit-
ter and at the receivers respectively, Y0 can decode the entire message M -tuple to
obtain estimates (m̂0

0, . . . , m̂
0
M−1), Y1 can decode the reduced message (M − 1)-tuple

to obtain its own estimates (m̂1
1, . . . , m̂

1
M−1), and so on, until the noisiest receiver

YM−1 can only decode the single message-index mM−1 to obtain an estimate m̂M−1
M−1.

Even though the less noisy receivers can decode the messages of the noisier receivers,
the message mk is intended to be sent to receiver Yk, ∀k. Hence, when we say that a
broadcast channel is operating at a rate (R0, . . . , RM−1), we mean that the message
mk is reliably decoded by receiver Yk at the rate Rk bits per channel use.
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index mM−1. To convey the message-set7 mM−1
0 , Alice prepares n-channel use states

that, after transmission through the channel, result in M -partite conditional den-

sity matrices
{
ρ̂
Y n0 ...Y

n
M−1

mM−1
0

}
, ∀mM−1

0 ∈ WM−1
0 . The quantum states received by a

particular receiver, say Y0, can be found by tracing out the other receivers, viz.

ρ̂
Y n0
mM−1

0

≡ TrY n1 ,...,Y nM−1

(
ρ̂
Y n0 ...Y

n
M−1

mM−1
0

)
, etc. Fig. 3-6 illustrates this decoding process.

A (2nR0 , . . . , 2nRM−1 , n, ε) code for this channel consists of an encoder

xn : (WM−1
0 )→ An, (3.33)

a set of positive operator-valued measures (POVMs) —
{

Λ0
m0...mM−1

}
,
{

Λ1
m1...mM−1

}
,

. . .,
{

ΛM−1
mM−1

}
on Y0

n, Y1
n, . . ., YM−1

n respectively, such that the mean probability

of a collective correct decision satisfies8

Tr

(
ρ̂
Y n0 ...Y

n
M−1

mM−1
0

(
M−1⊗
k=0

Λk
mk...mM−1

))
≥ 1− ε, (3.34)

for ∀mM−1
0 ∈ WM−1

0 . A rate M -tuple (R0, . . . , RM−1) is achievable if there exists a

sequence of (2nR0 , . . . , 2nRM−1 , n, ε) codes with εn → 0. The classical capacity region

of the broadcast channel is defined as the convex hull of the closure of all achievable

rate M -tuples (R0, . . . , RM−1). The classical capacity region of the two-user degraded

quantum broadcast channel with discrete alphabet was derived by Yard et. al. [52],

and we used the infinite-dimensional extension of Yard et. al.’s capacity theorem to

prove the capacity region of the bosonic broadcast channel, subject to the minimum

output entropy conjecture 2. The capacity region of the degraded quantum broadcast

channel can easily be extended to the case of an arbitrary number M , of receivers.

For notational similarity to the capacity region of the classical degraded broadcast

channel, we state the capacity theorem first, using the shorthand notation for Holevo

7From here on, we use the shorthand notation mM−1
0 to denote the message M -tuple

(m0, . . . ,mM−1). Similarly, the notation WM−1
k will be used to denote the set (Wk, . . . ,WM−1).

We will also use the shorthand notation for probability distributions, such as pWM−1
1

(mM−1
1 ) ,

pW1,...,WM−1(m1, . . .,mM−1).
8An and Ykn are the n channel use alphabets of Alice, and the kth receiver Yk respectively, with

respective sizes |An| and |Ykn|, for k ∈ [0, . . . ,M − 1].
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information we introduced in footnote 6 earlier in this chapter.

Theorem 3.1 — The capacity region of the M -receiver degraded broadcast channel

NA−Y0...YM−1
, as defined in Eq. (3.31), is given by

R0 ≤
1

n
I (An;Y n

0 |T1) ,

Rk ≤
1

n
I (Tk;Y

n
k |Tk+1) ∀k ∈ {1, . . . ,M − 2},

RM−1 ≤
1

n
I
(
TM−1;Y n

M−1

)
, (3.35)

where Tk, k ∈ {1, . . . ,M − 1} form a set of auxiliary complex valued random variables

such that TM−1 → TM−2 → . . .→ Tk → . . .→ T1 → An is a Markov chain9, i.e.,

pTM−1,...,T1,An(iM−1, . . . , i1, j) = pTM−1
(iM−1)

(
2∏

k=M−1

pTk−1|Tk(ik−1|ik)

)
pAn|T1(j|i1).

(3.36)

In order to find the optimum capacity region, the above rate region must be optimized

over the joint distribution pTM−1,...,T1,An(iM−1, . . . , i1, j). As Holevo information is not

necessarily additive (unlike Shannon mutual information), the rate region must also

be optimized over the codeword block-length n. The above Markov chain structure of

the auxiliary random variables Tk, k ∈ {1, . . . ,M − 1} is shown to be optimal in the

converse proof which proves the optimality of the above capacity region without as-

suming any special structure of the auxiliary random variables. Also, note the striking

similarity of the expressions for the capacity region given above, with the capacity

region of the classical M -receiver degraded broadcast channel, given in Eqs. (3.8).

Holevo information takes place of Shannon mutual information in the quantum case,

and because of superadditivity of Holevo information, an additional regularization

over number of channel uses n, is required.

Proof — The proof of the achievability and converse to the above capacity region is

a straightforward extension of Yard et. al.’s two-receiver degraded broadcast channel

capacity region. The proof, though simple, involves notational complexity. In order

9Here, we have used An to denote a classical random variable with a slight abuse of notation.
See footnote 5.
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to preserve the flow of this chapter, we have omitted the formal proof of the M -

receiver quantum degraded broadcast capacity region from this section, but for the

sake of completeness and for the more interested readers, we have included the proof

(achievability for M = 3 with a brief sketch of the general case, and converse for the

general M -receiver case) in Appendix B.

M-receiver degraded broadcast capacity region in the Holevo information

(χ(pi, ρ̂i)) notation

The capacity region above can be re-cast in the Holevo-information notation that we

used earlier in this chapter for the two-receiver quantum broadcast channel. For the

channel model of the multiple-user quantum degraded broadcast channel we described

in the section above (pictorially depicted in Fig. 3-5), our proposed capacity region
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(in Eqs. (3.35)) can alternatively be expressed as10

R0 ≤
1

n

∑
i1

pT1(i1)χ
(
pAn|T1(j|i1), ρ̂

Y n0
j

)
=

1

n

∑
i1

pT1(i1)

[
S

(∑
j

pAn|T1(j|i1)ρ̂
Y n0
j

)
−
∑
j

pAn|T1(j|i1)S
(
ρ̂
Y n0
j

)]
,

Rk ≤
1

n

∑
ik+1

pTk+1
(ik+1)χ

(
pTk|Tk+1

(ik|ik+1), ρ̂
Y nk
ik

)
, ∀k ∈ {1, . . . ,M − 2},

=
1

n

∑
ik+1

pTk+1
(ik+1)

[
S

(∑
ik

pTk|Tk+1
(ik|ik+1)ρ̂

Y nk
ik

)
−
∑
ik

pTk|Tk+1
(ik|ik+1)S

(
ρ̂
Y nk
ik

)]
,

RM−1 ≤
1

n
χ
(
pTM−1

(iM−1), ρ̂
Y nM−1

iM−1

)
=

1

n
S

∑
iM−1

pTM−1
(iM−1)ρ̂

Y nM−1

iM−1

−∑
iM−1

pTM−1
(iM−1)S

(
ρ̂
Y nM−1

iM−1

)
. (3.38)

Even though the capacity-region expressions above have been written for a discrete

alphabet, in Section 3.4.6, we will generalize it to a continuous alphabet of quantum

states over an infinite-dimensional Hilbert space, in which case the summations in

Eqs. (3.38) will be replaced by integrals. We will use the infinite-dimensional extension

of this capacity theorem in the following section to evaluate the capacity region of

the M -receiver bosonic broadcast channel.

10In Fig. 3-5, we define j , {m0, . . . ,mM−1} to be a collective index for the M messages that
Alice encodes into her n-use transmitted codeword state ρA

n

j , and ρ
Y n

k
j is defined to be the state

received by Yk over n successive channel uses. We introduce more notation here for conditional
received states:

ρ̂
Y n
1
i1

,
∑
j

pAn|T1(j|i1)ρ̂Y
n
1
j ,

ρ̂
Y n

l
ik

,
∑

j,i1,...,ik−1

pAn|T1(j|i1)pT1|T2(i1|i2). . .pTk−1|Tk
(ik−1|ik)ρ̂Y

n
l
j (3.37)
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3.4 Bosonic Broadcast Channel

3.4.1 Channel model

The two-user noiseless bosonic broadcast channel NA−BC consists of a collection of

spatial and temporal bosonic modes at the transmitter (Alice), that interact with a

minimal-quantum-noise environment and split into two sets of spatio-temporal modes

en route to two independent receivers (Bob and Charlie). The multi-mode two-user

bosonic broadcast channel NA−BC is given by
⊗

sNAs−BsCs , where NAs−BsCs is the

broadcast-channel map for the sth mode, which can be obtained from the Heisenberg

evolutions

b̂s =
√
ηs âs +

√
1− ηs ês, and (3.39)

ĉs =
√

1− ηs âs −
√
ηs ês, (3.40)

where {âs} are Alice’s modal annihilation operators, and {b̂s}, {ĉs} are the corre-

sponding modal annihilation operators for Bob and Charlie, respectively. The modal

transmissivities {ηs} satisfy 0 ≤ ηs ≤ 1, ∀s, and the environment modes {ês} are

in their vacuum states. We will limit our treatment here to the single-mode bosonic

broadcast channel, as the capacity of the multi-mode channel can in principle be ob-

tained by summing up capacities of all spatio-temporal modes and maximizing the

sum capacity region subject to an overall input-power budget using Lagrange mul-

tipliers, cf. [55], where this was done for the capacity of the multi-mode single-user

lossy bosonic channel.

We are interested in finding the capacity region (RB, RC) of achievable rate-pairs

at which Alice can send information to Bob and Charlie, with vanishingly low prob-

abilities of error. Alice is constrained by a mean photon-number (power) constraint

〈â†â〉 ≤ N̄ . The principal result we have for the single-mode bosonic broadcast chan-

nel stems from the fact that the bosonic broadcast channel is a degraded broadcast

channel, and hence the capacity theorem we stated in the previous section can be

adapted to this case by extending the result to infinite-dimensional Hilbert spaces.
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Our capacity result depends on a minimum output entropy conjecture (dealt with in

detail in chapter 4). Assuming this conjecture to be true, we prove in this section,

that the ultimate capacity region of the single-mode noiseless bosonic broadcast chan-

nel (see Fig. 3-7) with a mean input photon-number constraint 〈â†â〉 ≤ N̄ is given

by

RB ≤ g(ηβN̄), and (3.41)

RC ≤ g((1− η)N̄)− g((1− η)βN̄), (3.42)

for 0 ≤ β ≤ 1, where g(x) = (1+x) ln(1+x)−x ln(x). We further prove, assuming the

validity of the minimum output entropy conjecture, that this rate region is additive

and is achievable with single channel use coherent-state encoding with the following

Gaussian prior and conditional distributions:

pT (τ) =
1

πN̄
exp

(
−|τ |

2

N̄

)
, and (3.43)

pA|T (α|τ) =
1

πN̄β
exp

(
−|
√

1− β τ − α|2

N̄β

)
, (3.44)

where T is a complex-valued auxiliary classical random variable taking values τ ∈ C,

and A is a complex-valued classical random variable taking value α ∈ C when Alice

sends out the single-mode coherent state |α〉.

3.4.2 Degraded broadcast condition

Lemma 3.2 — The pure-loss bosonic broadcast channel NA−BC , with transmissity

η > 1/2, is stochastically equivalent to a degraded cq-broadcast channel A→ B → C,

in which the degrading channel from Bob to Charlie N deg
B−C is another beam splitter

with transmissivity η′ = (1− η)/η (Fig. 3-8).

Proof — Refer to Figure 3-8. The annihilation operator ĝ corresponds to the

output of the degrading channel, which is excited in a state ρ̂g. In order to prove that

the bosonic broadcast channel NA−BC is indeed equivalent to a degraded broadcast

channel, we need to show that the states ρ̂g and ρ̂c are identical quantum states,
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Figure 3-7: A single-mode noiseless bosonic broadcast channel with two receivers
NA−BC , can be envisioned as a beam splitter with transmissivity η. With η > 1/2,
the bosonic broadcast channel reduces to a degraded quantum broadcast channel,
where Bob (B) is the less-noisy receiver and Charlie (C) is the more noisy (degraded)
receiver.

Figure 3-8: The stochastically degraded version of the single-mode bosonic broadcast
channel
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i.e., the classical statistics of the results of measuring the states ρ̂g and ρ̂c using any

POVM, will be exactly the same, provided η > 1/2.

Let us compute the antinormally ordered characteristic functions of the states ρ̂c

and ρ̂g. We have

χρ̂cA (ζ) = 〈e−ζ∗ĉeζĉ†〉

= 〈e−ζ∗
√

1−ηâeζ
√

1−ηâ†〉〈eζ∗
√
ηêe−ζ

√
ηê†〉

= χρ̂aA (
√

1− ηζ)χρ̂eA (−√ηζ)

= χρ̂aA (
√

1− ηζ)e−η|ζ|
2

, (3.45)

and

χ
ρ̂g
A (ζ) = χρ̂bA (

√
η′ζ)χ

ρ̂f
A (
√

1− η′ζ)

= χρ̂aA (
√
ηη′ζ)χρ̂eA (

√
η′(1− η)ζ)

× χ
ρ̂f
A (
√

1− η′ζ)

= χρ̂aA (
√
ηη′ζ)e−η

′(1−η)|ζ|2e−(1−η′)|ζ|2

= χρ̂aA (
√

1− ηζ)e−η|ζ|
2

, (3.46)

so that χρ̂cA (ζ) = χ
ρ̂g
A (ζ), ∀ρ̂a. Inverse Fourier transforming these characteristic

functions thus yields the same expressions for ρ̂c and ρ̂g. Hence ρ̂g and ρ̂c are identical

states, and the pure-loss bosonic broadcast channel NA−BC is a degraded broadcast

channel for η > 1/2.

3.4.3 Noiseless bosonic broadcast channel with two receivers

It is known [10, 7, 39] that coherent-state modulation using isotropic Gaussian prior

distribution achieves the ultimate classical capacity (maximizes the Holevo informa-

tion) for a single-mode pure-loss bosonic channel. It is also known however, that

for quantum multiple-access channels, coherent-state encodings are not optimal [11].
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So it is not clear, at the outset, whether coherent-state encoding will be capacity

achieving for the bosonic broadcast channel. Nevertheless, it is worth assessing the

capacity region realized by coherent-state encoding.

Consider the two-user bosonic broadcast channel NA−BC and assume that Alice

has access to all coherent states |α〉 to encode her information, with a mean photon-

number constraint 〈â†â〉 ≤ N̄ . Bob and Charlie thus receive attenuated versions of

the coherent states that Alice transmits at each channel use. Let us introduce an

auxiliary classical complex-valued random variable T , and an associated coherent-

state alphabet |τ〉 and prior probability distribution pT (τ). Alice transmits coherent

states |α〉 with conditional probability pA|T (α|τ). The first step towards proving

that the ultimate capacity region of the two-user bosonic broadcast channel is given

by Eqs. (3.41) and (3.42), is to show that the probability distributions pT (τ) and

pA|T (α|τ), as given by Eqs. (3.43) and (3.44), achieve these rates.

Yard et al.’s capacity region in Equations (3.27) and (3.28) require finite-dimensional

Hilbert spaces. Nevertheless, we will use their result for the bosonic broadcast chan-

nel which has an infinite-dimensional state space, as their result can be extended to

infinite-dimensional state spaces by means of a limiting argument.11

Theorem 3.3 — Assuming the truth of strong conjecture 2 (see Section 4.1), the

ultimate capacity region of the single-mode noiseless bosonic broadcast channel (see

Fig. 3-7) with a mean input photon-number constraint 〈â†â〉 ≤ N̄ is given by

RB ≤ g(ηβN̄), and (3.47)

RC ≤ g((1− η)N̄)− g((1− η)βN̄), (3.48)

11When |T | and |A| are finite, and we are using coherent states, we land up with a finite number
of possible transmitted states, which leads to a finite number of possible states received by Bob and
Charlie. To be more explicit, let us limit the auxiliary-input alphabet (T ) – and hence the input
(A) and the output alphabets (B, and C) – to coherent states in the finite-dimensional subspace
spanned by the Fock states {|0〉, |1〉, . . . , |K〉}, where K � N̄ . Applying Yard et al.’s thereom to the
Hilbert space spanned by these states then gives us a broadcast channel capacity region that must
be strictly an inner bound of the rate region given by Eqs. (3.49) and (3.50). In the limit that we
choose K sufficiently large, (maintaining the cardinality condition |T | ≤ |A| that is required by the
theorem), clearly the rate-region expressions given by Yard et. al.’s theorem can be brought to as
close as we wish, to those given by Eqs. (3.49) and (3.50).
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for 0 ≤ β ≤ 1, where g(x) = (1 + x) ln(1 + x) − x ln(x). This rate region is additive

and is achievable with single channel use coherent-state encoding with the Gaussian

prior and conditional distributions given in Eqs. (3.43) and (3.44).

Proof [Achievability] — Using the infinite-dimensional (continuous-variable) exten-

sion of Eqs. (3.27) and (3.28), the n = 1 rate-region for the bosonic broadcast channel

using coherent-state encoding is given by:

RB ≤
∫
pT (τ)S

(∫
pA|T (α|τ)|√η α〉〈√η α| d2α

)
d2τ (3.49)

RC ≤ S

(∫
pT (τ)pA|T (α|τ)|

√
1− η α〉〈

√
1− η α| d2α d2τ

)
−

∫
pT (τ)S

(∫
pA|T (α|τ) ×

|
√

1− η α〉〈
√

1− η α| d2α
)

d2τ, (3.50)

where we need to maximize the bounds for RB and RC over all joint distributions

pT (τ)pA|T (α|τ) subject to 〈|α|2〉 ≤ N̄ . Note that A and T are complex-valued random

variables, and the second term in the RB bound (3.27) vanishes, because the von

Neumann entropy of a pure state is zero. Substituting Eqs. (3.43) and (3.44) into

Eqs. (3.49) and (3.50), shows that the rate-region Eqs. (3.41) and (3.42) is achievable

using single-use coherent state encoding.

Proof [Converse] — Assume that the rate pair (RB, RC) is achievable. Let {xn(m, k)},

and POVMs {Λmk} and {Λ′k} comprise any (2nRB , 2nRC , n, ε) code in the achieving

sequence. Suppose that Bob and Charlie store their decoded messages in the classi-

cal registers ŴB and ŴC respectively. Let us use pWB ,WC
(m, k) = pWB

(m)pWC
(k) to

denote the joint probability mass function of the independent message registers WB

and WC . As (RB, RC) is an achievable rate-pair, there must exist ε′n → 0, such that

nRC = H(WC)

≤ I(WC ; ŴC) + nε′n

≤ χ(pWC
(k), ρ̂C

n

k ) + nε′n, (3.51)
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where I(WC ; ŴC) ≡ H(ŴC) −H(ŴC |WC) is the Shannon mutual information, and

ρ̂C
n

k =
∑

m pWB
(m)ρ̂C

n

m,k. The second line follows from Fano’s inequality and the third

line follows from Holevo’s bound12. Similarly, for an ε′′n → 0, we can bound nRB as

nRB = H(WB)

≤ I(WB; ŴB) + nε′′n

≤ χ(pWB
(m), ρ̂B

n

m ) + nε′′n

≤
∑
k

pWC
(k)χ(pWB

(m), ρ̂B
n

m,k) + nε′′n, (3.52)

where the three lines above follow from Fano’s inequality, Holevo’s bound and the

concavity of Holevo information. In order to prove the converse, we now need to show

that there exists a number β ∈ [0, 1], such that

∑
k

pWC
(k)χ(pWB

(m), ρ̂B
n

m,k) ≤ ng(ηβN̄),

and χ(pWC
(k), ρ̂C

n

k ) ≤ ng((1− η)N̄)− ng((1− η)βN̄).

From the non-negativity of the von Neumann entropy S
(
ρ̂B

n

m,k

)
, it follows that

∑
k

pWC
(k)χ(pWB

(m), ρ̂B
n

m,k) ≤
∑
k

pWC
(k)S

(∑
m

pWB
(m)ρ̂B

n

m,k

)
,

as the second term of the Holevo information above is non-negative. Because the

maximum von Neumann entropy of a single-mode bosonic state with 〈â†â〉 ≤ N̄ is

given by g(N̄), we have that

0 ≤ S
(
ρ̂B

n

k

)
≤

n∑
j=1

g
(
ηN̄kj

)
≤ ng

(
ηN̄k

)
, (3.53)

where N̄k ≡
∑n

j=1
1
n
N̄kj , and N̄kj is the mean photon number of the jth symbol ρ̂

Bnj
k

12Holevo’s bound [27, 28, 29]: Let X be the input alphabet for a channel, {pi, ρ̂i} the priors and
modulating states, {Πj} be a POVM, and Y the resulting output (classical) alphabet. The Shannon
mutual information I(X;Y ) is upper bounded by the Holevo information χ(pi, ρ̂i)
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of the n-symbol codeword ρ̂B
n

k , for j ∈ {1, . . . , n}. The last inequality above follows

because g(x) is concave. Therefore, ∃βk ∈ [0, 1], ∀k ∈ WC , such that

S
(
ρ̂B

n

k

)
= ng

(
ηβkN̄k

)
, (3.54)

because g(x) is a monotonically increasing function of x ≥ 0. Because of the degraded

nature of the channel, Charlie’s state can be obtained as the output of a beam splitter

whose input states are Bob’s state (coupling coefficient η′ = (1−η)/η to Charlie) and

a vacuum state (coupling coefficient 1− η′ to Charlie). It follows, from assuming the

truth of strong conjecture 2 (see chapter 4), that

S
(
ρ̂C

n

k

)
≥ ng

(
(1− η)βkN̄k

)
. (3.55)

N̄ is the average number of photons per-use at the transmitter (Alice) averaged over

the entire codebook. Thus, the mean photon-number of the n-use average codeword

at Bob, ρ̂B
n ≡

∑
k pWC

(k)ρ̂B
n

k , is ηN̄ . Hence,

0 ≤
∑
k

pWC
(k)S

(
ρ̂B

n

k

)
≤ S(ρ̂B

n

) ≤ ng
(
ηN̄
)
, (3.56)

where the second inequality follows from the concavity of von Neumann entropy, and

the third inequality arises from maximizing the entropy subject to the average photon

number constraint. The monotonicity of g(x) then implies that there is a β ∈ [0, 1],

such that
∑

k pWC
(k)S

(
ρ̂B

n

k

)
= ng(ηβN̄). Hence we have,

∑
k

pWC
(k)χ(pWB

(m), ρ̂B
n

m,k) ≤ ng(ηβN̄). (3.57)

for some β ∈ [0, 1]. Equation (3.54), and the uniform distribution pWC
(k) = 1/2nRC

imply that ∑
k

1

2nRC
g
(
ηβkN̄k

)
= g

(
ηβN̄

)
. (3.58)

Using (3.58), the concavity of g(x), and η > 1/2, we have shown (proof in Appendix C)
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that ∑
k

1

2nRC
g
(
(1− η)βkN̄k

)
≥ g

(
(1− η)βN̄

)
. (3.59)

From Eq. (3.59), and Eq. (3.55) summed over k, we then obtain

∑
k

pWC
(k)S

(
ρ̂C

n

k

)
≥ ng((1− η)βN̄). (3.60)

Finally, writing Charlie’s Holevo information as

χ(pWC
(k), ρ̂C

n

k ) = S

(∑
k

pWC
(k)ρ̂C

n

k

)
−
∑
k

pWC
(k)S

(
ρ̂C

n

k

)
≤ ng((1− η)N̄)−

∑
k

pWC
(k)S

(
ρ̂C

n

k

)
, (3.61)

we can use Eq. (3.60) to get

χ(pWC
(k), ρ̂C

n

k ) ≤ ng((1− η)N̄)− ng((1− η)βN̄), (3.62)

which completes the proof. The capacity region is additive, because the achievability

part of the proof above shows that a product distribution over single-use coherent-

state alphabet achieves the rate region.

3.4.4 Achievable rate region using coherent detection receivers

Unless we have a proof of strong conjecture 2, we cannot assert that Eqs. (3.41)

and (3.42) define the capacity region of the two-user bosonic broadcast channel. How-

ever, because the rate region specified by these equations is achievable with single-use

coherent-state encoding, we know that they comprise an inner bound on the ultimate

capacity region. In this regard, it is instructive to examine how the rate region de-

fined by Eqs. (3.41) and (3.42) compares with what can be realized by conventional,

coherent detection schemes used in optical communications.

Suppose Alice sends a coherent state |α〉, into the channel in Fig. 3-7. Bob and

Charlie will then receive coherent states |√ηα〉 and |
√

1− ηα〉, respectively. More-
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over, if Bob and Charlie employ homodyne-detection receivers, with local oscilla-

tor phases set to observe the real quadrature, their results of measurement will be
√
η<(α) + νB for Bob and

√
1− η<(α) + νC for Charlie, where νB and νC are inde-

pendent, identically distributed, real-valued Gaussian random variables with variance

1/4 [18]. Similarly, if Bob and Charlie employ heterodyne-detection receivers, their

results of measurement will be
√
ηα+ zB and

√
1− ηα+ zC , where zB and zC are in-

dependent, identically distributed complex-valued zero-mean Gaussian random vari-

ables with variance 1/2 [18]. These results imply that the η > 1/2 bosonic broadcast

channel with coherent-state encoding and homodyne detection is a classical degraded

scalar-Gaussian broadcast channel, whose capacity region is known to be [3]

RB ≤ 1

2
ln
(
1 + 4ηβN̄

)
(3.63)

RC ≤ 1

2
ln

(
1 +

4(1− η)(1− β)N̄

1 + 4(1− η)βN̄

)
, (3.64)

for 0 ≤ β ≤ 1. Similarly, the η > 1/2 bosonic broadcast channel with coherent-state

encoding and heterodyne detection is a classical degraded vector-Gaussian broadcast

channel, whose capacity region is known to be

RB ≤ ln
(
1 + ηβN̄

)
(3.65)

RC ≤ ln

(
1 +

(1− η)(1− β)N̄

1 + (1− η)βN̄

)
, (3.66)

for 0 ≤ β ≤ 1. In Fig. 3-9 we compare the capacity regions attained by a coherent-

state input alphabet using homodyne, heterodyne, and optimum reception. As is

known for single-user bosonic communication, homodyne detection performs better

than heterodyne detection when the transmitters are starved for photons, because

it has lower noise. Conversely, heterodyne detection outperforms homodyne detec-

tion when the transmitters are photon rich, because it has a factor-of-two bandwidth

advantage over homodyne detection. In order to bridge the gap between the coherent-

detection capacity regions and the ultimate capacity region, one must use joint detec-

tion over long codewords. Future investigation will be needed to develop receivers that
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Figure 3-9: Comparison of bosonic broadcast channel capacity regions, in bits per
channel use, achieved by coherent-state encoding using homodyne detection (the ca-
pacity region lies inside the boundary marked by circles), heterodyne detection (the
capacity region lies inside the boundary marked by dashes), and optimum reception
(the capacity region lies inside the boundary marked by the solid curve), for η = 0.8,
and N̄ = 1, 5, and 15.

can approach the ultimate communication rates over the bosonic broadcast channel.

3.4.5 Thermal-noise bosonic broadcast channel with two re-

ceivers

Now assume that the environment mode ê in the bosonic broadcast channel in Fig. 3-

7) is in a zero-mean thermal state with mean photon number N (see Fig. 3-10), i.e.,

ρ̂e ≡ ρ̂T,N ,
1

πN

∫
e−|µ|

2/N |µ〉〈µ|dµ. (3.67)

Theorem 3.4 — Provided the minimum output entropy conjectures strong conjec-

ture 1 and strong conjecture 3 (see Section 4.1) are true, the capacity region for the

bosonic broadcast channel with additive thermal noise, with mean photon number

constraint N̄ at the input and an additive zero-mean thermal noise with N photons

per mode, on average, is given by,

RB ≤ g(ηβN̄ + (1− η)N)− g((1− η)N) (3.68)

RC ≤ g((1− η)N̄ + ηN)− g((1− η)βN̄ + ηN), (3.69)
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Figure 3-10: A single-mode noiseless bosonic broadcast channel with two receivers
NA−BC , with additive thermal noise. The transmitter Alice (A) is constrained to use
N̄ photons per use of the channel, and the noise (environment) mode is in a zero-
mean thermal state ρ̂T,N , with mean photon number N . With η > 1/2, the bosonic
broadcast channel reduces to a degraded quantum broadcast channel, where Bob (B)
is the less-noisy receiver and Charlie (C) is the more noisy (degraded) receiver. See
the degraded version of the channel in Fig. 3-11.

and capacity is achieved using product-coherent-state encoding with a Gaussian prior

density as in the case of the noiseless bosonic broadcast channel13.

Proof [Achievability] — It can be readily verified that the degraded broadcast con-

dition still holds for the case of the bosonic broadcast channel with additive thermal

noise (See Fig. 3-11). We generalize Yard et. al.’s rate regions for degraded quantum

broadcast channels, from Eqs. (3.27) and (3.28), to the case of the bosonic broadcast

channel with coherent-state encoding and additive thermal noise in a similar way to

13Note the striking similarity between the expressions for the rate region for the classical Gaussian-
noise broadcast channel as given in Eqs. (3.19) and (3.20) and that for the rate region of the bosonic
thermal-noise broadcast channel as we propose above in Eqs. (3.68) and (3.69). The expressions for
these two rate regions are exactly identical except for the fact that the logarithmic function gC(·) is
replaced by the bosonic thermal-state entropy function g(·) in the quantum case. We will repeatedly
encounter in this thesis instances of this analogous role that g(·) plays in the bosonic case, which the
logarithmic function gC(·) does in the classical Gaussian case. The observation of this analogy was
one of the key initial hints that led us to conjecture the Entropy Photon-number Inequality (EPnI)
[13] in analogy with the Entropy Power Inequality (EPI) of classical information theory. The EPnI
subsumes all the three minimum output entropy conjectures that we describe in chapter 4. We will
talk about the EPnI in detail in Chapter 5 of this thesis, where we will see why the existence of a
simple inverse of gC(·) (i.e., the exp(·)-function) makes it a great deal easier to prove the EPI as
opposed to the EPnI (whose general proof is still an open problem), because the inverse function of
g(·) doesn’t admit a nice analytic form.
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Figure 3-11: The stochastically degraded version of the single-mode bosonic broadcast
channel with additive thermal noise.

what we did for the noiseless Broadcast channel14:

RB ≤
∫
pT (τ)S

(∫
pA|T (α|τ)

(
1

π(1− η)N

∫
e−
|γ−√ηα|2
(1−η)N |γ〉〈γ|d2γ

)
d2α

)
d2τ

−
∫ ∫

pT (τ)pA|T (α|τ)S

(
1

π(1− η)N

∫
e−
|γ−√ηα|2
(1−η)N |γ〉〈γ|d2γ

)
d2αd2τ (3.70)

RC ≤ S

(∫
pT (τ)pA|T (α|τ)

(
1

πηN

∫
e−
|γ−
√

1−ηα|2
ηN |γ〉〈γ|d2γ

)
d2αd2τ

)
−

∫
pT (τ)S

(∫
pA|T (α|τ)

(
1

πηN

∫
e−
|γ−
√

1−ηα|2
ηN |γ〉〈γ|d2γ

)
d2α

)
d2τ (3.71)

where, in order to get the n = 1 capacity region, we need to maximize the bounds

for RB and RC over all complex-valued joint distributions pT (τ)pA|T (α|τ) subject

to 〈|α|2〉 ≤ N̄ . Note that A and T are two complex-valued random variables, and

the second term in the bound for RB (see Equation (3.27)) is non-zero, because

the conditional output states at the two receivers are now mixed states in general.

Substituting the distributions from Eqs. (3.43), and (3.44) into the expressions for

14Let us limit the auxiliary-input alphabet (T ) to coherent states in the finite-dimensional subspace
spanned by the Fock states {|0〉, |1〉, . . . , |K1〉}, and limit the thermal-noise state ρ̂e to the span of
{|0〉, |1〉, . . . , |K2〉}, such that K1 + K2 � N̄ + N . Applying Yard et al.’s thereom to the Hilbert
space spanned by these states then gives us a broadcast channel capacity region that must be strictly
an inner bound of the rate region given by Eqs. (3.70) and (3.71). In the limit in which we choose
K1 and K2 sufficiently large, (maintaining the cardinality condition |T | ≤ |A| that is required by
the theorem), the rate-region expressions given by Yard et. al.’s theorem can be brought to as close
as we wish to that given by Eqs. (3.70) and (3.71).

92



the rate-bounds in Eqs. (3.70) and (3.71), and using the fact that the von Neumann

entropy of a thermal state with mean photon-number N is equal to g(N), we obtain

the rate-bounds in the capacity theorem above. It follows that the rate region (3.68),

(3.69) is achievable.

Proof [Converse] — Assume that the rate pair (RB, RC) is achievable. Let us begin

with the same initial steps as in the proof of the converse of the capacity theorem for

the noiseless bosonic broadcast channel. Equations (3.51) and (3.52) still hold. Thus,

in order to prove the converse for the thermal noise broadcast channel, we now need

to show that there exists a number β ∈ [0, 1], such that

∑
k

pWC
(k)χ(pWB

(m), ρ̂B
n

m,k) ≤ ng(ηβN̄ + (1− η)N)− ng((1− η)N), (3.72)

χ(pWC
(k), ρ̂C

n

k ) ≤ ng((1− η)N̄ + ηN)− ng((1− η)βN̄ + ηN). (3.73)

Assuming the truth of strong conjecture 1 (see chapter 4), the minimum entropy of

Bob’s n-mode state is achieved when Alice sends a product of vacuum states (or a

product of arbitrary coherent states). Thus using strong conjecture 1 we have for all

(m, k) ∈ (WB,WC),

S(ρ̂B
n

m,k) ≥ ng((1− η)N). (3.74)

From the non-negativity of Holevo information χ(pWB
(m), ρ̂B

n

m,k), it follows that15

S(ρ̂B
n

k ) ≥
∑
m

pWB
(m)S(ρ̂B

n

m,k) (3.75)

≥ ng((1− η)N). (3.76)

Let N̄A
k =

∑n
j=1

1
n
N̄A
kj

, where N̄A
kj

is the mean photon number of the jth symbol ρ̂
Anj
k of

15From the definition of Holevo information, we have

χ(pWB
(m), ρ̂B

n

m,k) ≡ S(
∑
m

pWB
(m)ρ̂B

n

m,k)−
∑
m

pWB
(m)S(ρ̂B

n

m,k)

= S(ρ̂B
n

k )−
∑
m

pWB
(m)S(ρ̂B

n

m,k)

≥ 0.

93



the n-symbol codeword ρ̂A
n

k , for j ∈ {1, . . . , n}. Similarly, let N̄B
k =

∑n
j=1

1
n
N̄B
kj

, where

N̄B
kj

is the mean photon number of the jth symbol ρ̂
Bnj
k of the n-symbol codeword ρ̂B

n

k ,

for j ∈ {1, . . . , n}. The overall mean photon numbers per channel use for Alice and

Bob are thus given by an average over the codebook WC , i.e., N̄ = 2−nRC
∑2nRC

k=1 N̄A
k ,

and N̄B = 2−nRC
∑2nRC

k=1 N̄B
k . From the input-output relation of the channel, the

following must hold:

N̄B
kj

= ηN̄A
kj

+ (1− η)N, ∀k, j (3.77)

N̄B
k = ηN̄A

k + (1− η)N, ∀k, and (3.78)

N̄B = ηN̄ + (1− η)N. (3.79)

Using Eq. (3.76), the fact that the maximum von Neumann entropy of a single-mode

bosonic state with mean photon number N̄ is given by g(N̄), and the concavity of

g(x), we have

ng((1− η)N) ≤ S
(
ρ̂B

n

k

)
≤

n∑
j=1

g
(
N̄B
kj

)
≤ ng(N̄B

k ) = ng
(
ηN̄A

k + (1− η)N
)
. (3.80)

Therefore given the monotonicity of the g(x)-function, ∃βk ∈ [0, 1], ∀k ∈ WC , such

that

S
(
ρ̂B

n

k

)
= ng

(
ηβkN̄

A
k + (1− η)N

)
. (3.81)

The average number of photons per use at the transmitter (Alice) averaged over the

entire codebook (WB,WC), is N̄ . Thus, the mean photon-number of the n-use average

codeword for Bob, ρ̂B
n ≡

∑
k pWC

(k)ρ̂B
n

k , is ηN̄ + (1− η)N . Hence,

ng((1− η)N) ≤
∑
k

pWC
(k)S

(
ρ̂B

n

k

)
≤ S(ρ̂B

n

) ≤ ng
(
ηN̄ + (1− η)N

)
, (3.82)

where the first inequality assumes strong conjecture 1 and the second inequality fol-

lows from the concavity of von Neumann entropy. The monotonicity of g(x) then
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implies that there is a β ∈ [0, 1], such that

∑
k

pWC
(k)S

(
ρ̂B

n

k

)
= ng(ηβN̄ + (1− η)N). (3.83)

We thus have,

∑
k

pWC
(k)χ(pWB

(m), ρ̂B
n

m,k)

=
∑
k

pWC
(k)S

(∑
m

pWB
(m)ρ̂B

n

m,k

)
−
∑
k

∑
m

pWC
(k)pWB

(m)S(ρ̂B
n

m,k) (3.84)

=
∑
k

pWC
(k)S

(
ρ̂B

n

k

)
−
∑
k

∑
m

pWC
(k)pWB

(m)S(ρ̂B
n

m,k) (3.85)

≤ ng(ηβN̄ + (1− η)N)− ng((1− η)N). (3.86)

where the last inequality follows from Eqs. (3.83) and (3.74). This completes the first

part of the converse proof, i.e., inequality (3.72).

Because of the degraded nature of the channel, Charlie’s state can be obtained as the

output of a beam splitter of transmissivity η′ = (1 − η)/η, whose input states are

Bob’s state and a thermal state of mean photon number N (See Fig. 3-11). It follows,

from assuming the truth of strong conjecture 3 (see chapter 4), that

S
(
ρ̂C

n

k

)
≥ ng

(
η′(ηβkN̄

A
k + (1− η)N) + (1− η′)N

)
(3.87)

= ng((1− η)βkN̄
A
k + ηN). (3.88)

Equations (3.81), (3.83), and the uniform distribution pWC
(k) = 1/2nRC imply that

∑
k

1

2nRC
g
(
ηβkN̄

A
k + (1− η)N

)
= g

(
ηβN̄ + (1− η)N

)
. (3.89)

Using (3.89), the concavity of g(x)-function, and η > 1/2, we have shown (proof in

Appendix C) that

∑
k

1

2nRC
g
(
(1− η)βkN̄

A
k + ηN

)
≥ g

(
(1− η)βN̄ + ηN

)
. (3.90)
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From Eq. (3.90), and (3.88) summed over k, we then obtain

∑
k

pWC
(k)S

(
ρ̂C

n

k

)
≥ ng((1− η)βN̄ + ηN). (3.91)

Finally, we bound Charlie’s Holevo information using the standard maximum entropy

bound with a mean photon number constraint and Eq. (3.91), which yields:

χ(pWC
(k), ρ̂C

n

k ) = S

(∑
k

pWC
(k)ρ̂C

n

k

)
−
∑
k

pWC
(k)S

(
ρ̂C

n

k

)
≤ ng((1− η)N̄ + ηN)− ng((1− η)βN̄ + ηN), (3.92)

completing the proof of the second piece of the converse, i.e., that of inequality (3.73).

The capacity region is additive, because the achievability part of the proof above

shows that a product distribution over single-use coherent-state alphabet achieves

the rate region.

3.4.6 Noiseless bosonic broadcast channel with M receivers

Let us now consider a bosonic broadcast channel in which the transmitter Alice (A)

sends independent messages to M receivers, Y0, . . . , YM−1. Let us label Alice’s modal

annihilation operator as â, and the annihilation operators for the receivers Yl as ŷl,

∀l ∈ {0, . . . ,M − 1}. In order to characterize the bosonic broadcast channel as a

quantum-mechanically correct representation of the evolution of a closed system, we

must incorporate M − 1 environment inputs {E1, . . . , EM−1} along with the trans-

mitter A, such that the M output annihilation operators are related to the M input

annihilation operators through a unitary matrix, i.e.,
ŷ0

ŷ1

...

ŷM−1

 = U


â

ê1

...

êM−1

 , (3.93)
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Figure 3-12: An M -receiver noiseless bosonic broadcast channel. Transmitter Al-
ice (A) sends independent messages to M receivers, Y0, . . . , YM−1. We have la-
beled Alice’s modal annihilation operator as â, and those of the receivers Yl as ŷl,
∀l ∈ {0, . . . ,M − 1}. In order to characterize the bosonic broadcast channel as a
quantum-mechanically correct representation of the evolution of a closed system, we
must incorporate M − 1 environment inputs {E1, . . . , EM−1} along with the trans-
mitter A (whose modal annihilation operators have been labeled as {ê1, . . . , êM−1}),
such that the M output annihilation operators are related to the M input annihi-
lation operators through a unitary matrix, as given in Eq. (3.93). For the noiseless
bosonic broadcast channel, all the M − 1 environment modes êk are in their vacuum
states. The transmitter is constrained to at most N̄ photons on an average per chan-
nel use, for encoding the data. The fractional power coupling from the transmitter
to the receiver Yk is taken to be ηk. We have labeled the receivers in such a way,
that 1 ≥ η0 ≥ η1 ≥ . . . ≥ ηM−1 ≥ 0. This ordering of the transmissivities renders
this channel a degraded quantum broadcast channel A → Y0 → . . . → YM−1 (See
Fig. 3-13). The fractional power coupling from Ek to Yl has been taken to be ηkl. For
M = 2, the above channel model reduces to the familiar two-receiver beam splitter
channel model as given in Fig. 3-7.
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where {ê1, . . . , êM−1} are the modal annihilation operators of the M − 1 environment

modes (see Fig. 3-12). The unitary matrix describing the channel can be expressed

in the most general form as:

U =



√
η0

√
η10e

iφ10 . . .
√
ηM−1,0e

iφM−1,0

√
η1

√
η11e

iφ11 . . .
√
ηM−1,1e

iφM−1,1

...
...

. . .
...

√
ηM−1

√
η1,M−1e

iφ1,M−1 . . .
√
ηM−1,M−1e

iφM−1,M−1

 , (3.94)

where {η0, . . . , ηM−1} are the transmissivities (fractional power couplings) from the

transmitter A to the M − 1 receivers Y0, . . . , YM−1. Without loss of generality, we

have numbered the receivers, so that the transmissivities are in decreasing order, i.e.,

1 ≥ η0 ≥ η1 ≥ . . . ≥ ηM−1 ≥ 0. (3.95)

The power coupling from the environment mode êk to the output mode ŷl is ηkl.

Without loss of generality, the phases for the entries of the first column of U have

been taken to be 0, as an overall phase is inconsequential in each of the M − 1

input-output relations,

ŷk =
√
ηkâ+

M−1∑
l=1

√
ηlke

iφlk êl. (3.96)

The fractional power-couplings must satisfy the following normalization constraints,

M−1∑
k=0

ηk = 1, (3.97)

M−1∑
k=0

ηlk = 1, ∀l ∈ {1, . . . ,M − 1} , (3.98)

ηk +
M−1∑
l=1

ηlk = 1, ∀k ∈ {0, . . . ,M − 1} . (3.99)

Theorem 3.5 — For the noiseless bosonic broadcast channel, i.e., when the environ-

ment modes {êk : 1 ≤ k ≤M − 1} are in a product of M−1 vacuum states, |0〉⊗(M−1),
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Figure 3-13: An equivalent stochastically degraded model for the M -receiver noiseless
bosonic broadcast channel depicted in Fig. 3-12. If the receivers are ordered in a way
such that the fractional power couplings ηk from the transmitter to the receiver Yk are
in decreasing order, the quantum states at each receiver Yk, for k ∈ {1, . . . ,M − 1},
can be obtained from the state received at receiver Yk−1 by mixing it with a vacuum
state, through a beam splitter of transmissivity ηk/ηk−1. This equivalent representa-
tion of the M -receiver bosonic broadcast channel confirms that the bosonic broadcast
channel is indeed a degraded broadcast channel, whose capacity region is given by
the infinite-dimensional (continuous-variable) extension of Yard et. al.’s theorem in
Eqs. (3.38).

and with an input mean photon-number constraint 〈â†â〉 ≤ N̄ , the ultimate capacity

region16 is given by

Rk ≤ g(ηkβk+1N̄)− g(ηkβkN̄), k ∈ {0, . . . ,M − 1}, (3.100)

where,

0 = β0 < β1 < . . . < βM−1 < βM = 1. (3.101)

Proof [Achievability] — Using the infinite-dimensional (continuous-variable) exten-

sion of Eqs. (3.38), the n = 1 rate-region for the bosonic broadcast channel using

16Note the similarity with the capacity region for the classical Gaussian broadcast channel, as
given in Eq. (3.22), with N = 0. Also note that Eq. (3.100) reduces to the two-user noiseless bosonic
broadcast capacity region, as given in Eqs. (3.41) and (3.42), with the substitutions η0 = η, and
η1 = 1− η.
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coherent-state encoding is given by17 (see Fig. 3-13 and Fig. 3-14 for notation):

R0 ≤
∫
pT1(τ1)S

(∫
pA|T1(α|τ1)|√η0α〉〈

√
η0α|d

2α

)
d2τ1

Rk ≤
∫
pTk+1

(τk+1)χ
(
pTk|Tk+1

(τk|τk+1), ρ̂Ykτk
)

d2τk+1

=

∫
pTk+1

(τk+1)

(
S

(∫
pTk|Tk+1

(τk|τk+1)ρ̂Ykτk d2τk

)
−
∫
pTk|Tk+1

(τk|τk+1)S
(
ρ̂Ykτk
)

d2τk

)
d2τk+1, for k ∈ {1, . . . ,M − 2} ,

RM−1 ≤ χ
(
pTM−1

(τM−1), ρ̂YM−1
τM−1

)
= S

(∫
pTM−1

(τM−1), ρ̂YM−1
τM−1

)
−
∫
pTM−1

(τM−1)S
(
ρ̂YM−1
τM−1

)
d2τM−1 (3.103)

where we need to maximize the above rate region {R0, . . . , RM−1} over all joint distri-

butions pTM−1
(τM−1)pTM−2|M−1

(τM−2|τM−1). . .pT1|T2(τ1|τ2)pA|T1(α|τ1) subject to 〈|α|2〉 ≤

N̄ . Note that A, and the auxiliary random variables T1, . . . , TM−1 are complex-valued,

and the second term in the R0 bound (see (3.38)) vanishes, because the von Neumann

entropy of a pure state is zero.

Let us associate with each random variable Tk, a quantum system, i.e. a coherent-

state alphabet {|τk〉} and a modal annihilation operator t̂k, ∀k ∈ {1, . . . ,M − 1}. In

17Here, we use a continuous-variable version of the notation we used in Eqs. (3.38). When the
cardinalities |A| and |Tk|, 1 ≤ k ≤ M − 1 are finite, and we are using coherent states, we end up
with a finite number of possible transmitted states, which leads to a finite number of possible states
received by Bob and Charlie. To be more explicit, let us limit the auxiliary-input alphabets (Tk,
1 ≤ k ≤ M − 1) – and hence the input (A) and the output alphabets (Yk, 0 ≤ k ≤ M − 1) –
to coherent states in the finite-dimensional subspace spanned by the Fock states {|0〉, |1〉, . . . , |K〉},
where K � N̄ . Applying the extension of Yard et al.’s theorem to M receivers (3.38), the Hilbert
space spanned by these states then gives us a broadcast channel capacity region that must be strictly
an inner bound of the rate region given by Eqs. (3.103). In the limit that we choose K sufficiently
large, clearly the rate-region expressions given by Eqs. (3.38) can be brought to as close as we wish,
to those given by Eqs. (3.103). The summations in Eqs. (3.38) get replaced by integrals. The
collective message index j is now replaced by the complex number α, the indices ik are replaced by
τk, and the density matrices of the conditional received states are given by: ,

ρ̂Yk
τk

=
∫
. . .

∫
pA|T1(α|τ1)pT1|T2(τ1|τ2). . .pTk−1|Tk

(τk−1|τk)ρ̂Yk
α d2τk−1 . . . d2τ1d2α, (3.102)

where, ρ̂Yk
α = |√ηkα〉〈

√
ηkα| is the state received by the receiver Yk, when the transmitter sends a

coherent state ρ̂Aα = |α〉〈α|.
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Figure 3-14: In order to evaluate the capacity region of the M -receiver noiseless
bosonic degraded broadcast channel depicted in Fig. 3-13 using a coherent-state input
alphabet {|α〉}, α ∈ C and 〈â†â〉 = 〈|α|2〉 ≤ N̄ , we choose the M−1 auxiliary classical
Markov random variables (in Eqs. (3.35)) as complex-valued random variables Tk,
k ∈ {1, . . . ,M − 1}, taking values τk ∈ C. In order to visualize the postulated
optimal Gaussian distributions for the random variables Tk, let us associate with
Tk, a quantum system, i.e., a coherent-set alphabet {|τk〉} and modal annihilation
operator t̂k, ∀k. In accordance with the Markov property of the random variables
Tk, let t̂M−1 be in an isotropic zero-mean Gaussian mixture of coherent-states with
a variance N̄ (see Eq. (3.104)), and for k ∈ {1, . . . ,M − 2}, let t̂k be obtained from
t̂k+1 by mixing it with another mode ûk+1 excited in a zero-mean thermal state with
mean photon number N̄ , through a beam splitter with transmissivity 1 − γk+1, as
shown in the figure above, for some γk+1 ∈ (0, 1). We complete the Markov chain
TM−1 → . . . → T1 → A, by obtaining the transmitter mode â by mixing t̂1 with a
mode û1 excited in a zero-mean thermal state with mean photon number N̄ , through
a beam splitter with transmissivity 1 − γ1, for γ1 ∈ (0, 1). The above setup of the
auxiliary modes gives rise to the distributions given in Eqs. (3.104), which we use to
evaluate the achievable rate region of the M -receiver bosonic broadcast channel using
coherent-state encoding.
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accordance with the Markov property of the random variables Tk, let t̂M−1 be in

an isotropic zero-mean Gaussian mixture of coherent-states with a variance N̄ (see

Eq. (3.104)), and for k ∈ {1, . . . ,M − 2}, let t̂k be obtained from t̂k+1 by mixing

it with another mode ûk+1 excited in a zero-mean thermal state with mean photon

number N̄ , through a beam splitter with transmissivity 1−γk+1, as shown in Fig. 3-14,

for real numbers γk+1 ∈ (0, 1). We complete the Markov chain TM−1 → . . .→ T1 → A,

by obtaining the transmitter mode â by mixing t̂1 with a mode û1 in a vacuum state,

through a beam splitter with transmissivity 1− γ1, for γ1 ∈ (0, 1). This setup of the

auxiliary modes gives rise to the distributions given below, which we use to evaluate

the achievable rate region using coherent-state encoding:

pA|T1(α|τ1) =
1

πγ1N̄
exp

(
−|
√

1− γ1τ1 − α|2

γ1N̄

)
pTk|Tk+1

(τk|τk+1) =
1

πγk+1N̄
exp

(
−|
√

1− γk+1τk+1 − τk|2

γk+1N̄

)
, for k ∈ {1, . . . ,M − 2} ,

pTM−1
(τM−1) =

1

N̄
exp

(
−|τM−1|2

N̄

)
. (3.104)

Substituting Eqs. (3.104) into Eqs. (3.103), we get

R0 ≤ g(η0β1N̄),

Rk ≤ g(ηkβk+1N̄)− g(ηkβkN̄), for k ∈ {1, . . . ,M − 2} ,

RM−1 ≤ g(ηM−1N̄)− g(ηM−1βM−1N̄), (3.105)

where we define

βk , 1−
k∏
i=1

(1− γi), for k ∈ {1, . . . ,M − 1} . (3.106)

By further defining β0 , 0, and βM , 1, we have by construction, 0 = β0 < β1 <

. . . < βM−1 < βM = 1. With these definitions, Eqs. (3.105) reduce to the rate-region

expression given in Eq. (3.100). Hence the postulated rate region is achievable using
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single-use coherent state encoding.

Proof [Converse] — Our goal in proving the converse is to show that any achievable

rate M -tuple (R0, . . . , RM−1) must be inside the ultimate rate-region proposed by

Eqs. (3.105). Let us assume that (R0, . . . , RM−1) is achievable. Using the notation

in Eq. (3.33), let {xn(m0, . . . ,mM−1)}, and POVMs
{

Λ0
m0...mM−1

}
,
{

Λ1
m1...mM−1

}
, . . .,{

ΛM−1
mM−1

}
comprise a (2nR0 , . . . , 2nRM−1 , n, ε) code in the achieving sequence. Let us

suppose that the receivers Y0, . . . , YM−1 store their respective decoded messages in

registers Ŵ0, . . . , ŴM−1. By assuming a good source encoder prior to the broadcast

channel-encoder, it is fair to assume a uniform distribution over the messages, i.e.,

pWM−1
0

(mM−1
0 ) =

M−1∏
k=0

pWk
(mk)

=
M−1∏
k=0

1

2nRk

=
1

2n
PM−1
k=0 Rk

. (3.107)
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Lemma 3.6 — For every k ∈ {1, . . . ,M − 1}, ∃βk ∈ [0, 1], s.t.18

∑
mM−1
k

pWM−1
k

(mM−1
k )S

(
ρ̂
Y nk−1

mM−1
k

)
= ng

(
ηk−1βkN̄

)
. (3.111)

Proof — We have

0 ≤
∑

mM−1
k

pWM−1
k

(mM−1
k )S

(
ρ̂
Y nk−1

mM−1
k

)
≤ S

(
ρ̂Y

n
k−1

)
≤ ng(ηk−1N̄), (3.112)

where the first inequality follows from the non-negativity of von-Neumann entropy.

The second inequality follows from concavity of von-Neumann entropy or equivalently

from the non-negativity of Holevo information (see footnote 15), because

ρ̂Y
n
k−1 =

∑
mM−1
k

pWM−1
k

(mM−1
k )ρ̂

Y nk−1

mM−1
k

.

The third inequality above is due to the fact that the maximum entropy of a n-

mode state with a mean photon number n̄ per mode, is given by ng(n̄). From the

monotonicity of the function g(·), there must therefore exist a real number βk ∈ [0, 1],

18We defined earlier in this chapter {m0, . . . ,mM−1} , mM−1
0 to be a collective index for the

M messages that Alice encodes into her n-use transmitted codeword state ρA
n

mM−1
0

, and ρ
Y n

k

mM−1
0

was
defined to be the state received by Yk over n successive channel uses. We also used the compact
notation WM−1

k for the vectors of random variables (Wk, . . . ,WM−1). Y nk represents the n-use
quantum system of the kth receiver. By averaging a conditional received state that is indexed by a
set of messages mM−1

k , over the probability mass function of a subset of the message-sets WM−1
k , we

get a new conditional received state now indexed only by the remaining (smaller set of) messages.
The received state that has been averaged over all messages is not indexed by any message. Also, by
taking the trace of a joint conditional received state over a set of receiver Hilbert spaces, we obtain
the conditional received state for the remaining (smaller set of) receivers. Thus, the following (and
other similar) identities hold:

ρ̂
Y n

k
mk =

∑
mM−1

k+1

pWM−1
k+1

(mM−1
k+1 )ρ̂Y

n
k

mM−1
k

(3.108)

ρ̂Y
n

M−1 =
∑
mM−1

pWM−1(mM−1)ρ̂
Y n

M−1
mM−1 (3.109)

ρ̂
Y n

k

mM−1
k

= TrY n
k+1,...,Y

n
M−1

(
ρ̂
Y n

k ...Y
n

M−1

mM−1
k

)
(3.110)
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such that ∑
mM−1
k

pWM−1
k

(mM−1
k )S

(
ρ̂
Y nk−1

mM−1
k

)
= ng

(
ηk−1βkN̄

)
, (3.113)

which completes the proof of Lemma 3.6.

Now, as (R0, . . . , RM−1) is an achievable rate M -tuple, there exist εk,n → 0 as

n→∞, for k ∈ {0, . . . ,M − 1}, such that,

0 ≤ nRk = H(Wk)

≤ I(Wk; Ŵk) + nεk,n (3.114)

≤ χ
(
pWk

(mk), ρ̂
Y nk
mk

)
+ nεk,n (3.115)

≤
∑

mM−1
k+1

pWM−1
k+1

(mM−1
k+1 )χ

(
pWk

(mk), ρ̂
Y nk
mM−1
k

)
+ nεk,n, (3.116)

where I(Wk; Ŵk) = H(Wk) − H(Wk|Ŵk) is the Shannon mutual information. In-

equality (3.114) follows from Fano’s inequality, (3.115) follows from the Holevo’s

bound [27, 28, 29], and (3.116) follows from the concavity of Holevo information,

as ρ̂
Y nk
mk =

∑
mM−1
k+1

pWM−1
k+1

(mM−1
k+1 )ρ̂

Y nk
mM−1
k

. Specializing inequality (3.116) to k = 0 we

obtain,

nR0 ≤
∑

mM−1
1

pWM−1
1

(mM−1
1 )χ

(
pW0(m0), ρ̂

Y n0
mM−1

0

)
+ nε0,n (3.117)

≤
∑

mM−1
1

pWM−1
1

(mM−1
1 )S

(∑
m0

pW0(m0)ρ̂
Y n0
mM−1

0

)
+ nε0,n (3.118)

=
∑

mM−1
1

pWM−1
1

(mM−1
1 )S

(
ρ̂
Y n0
mM−1

1

)
+ nε0,n (3.119)

= ng(η0β1N̄) + nε0,n, (3.120)

where inequality (3.118) follows from dropping out the second term of Holevo in-

formation in (3.117). Inequality (3.120) follows from Lemma 3.2, for k = 1. For

k ∈ {1, . . . ,M − 2}, continuing from (3.116) we have,
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nRk ≤
∑

mM−1
k+1

pWM−1
k+1

(mM−1
k+1 )

[
S

(∑
mk

pWk
(mk)ρ̂

Y nk
mM−1
k

)
−
∑
mk

pWk
(mk)S

(
ρ̂
Y nk
mM−1
k

)]
+ nεk,n

=
∑

mM−1
k+1

pWM−1
k+1

(mM−1
k+1 )S

(
ρ̂
Y nk
mM−1
k+1

)
−
∑

mM−1
k

pWM−1
k

(mM−1
k )S

(
ρ̂
Y nk
mM−1
k

)
+ nεk,n (3.121)

= ng
(
ηkβk+1N̄

)
−
∑

mM−1
k

pWM−1
k

(mM−1
k )S

(
ρ̂
Y nk
mM−1
k

)
+ nεk,n, (3.122)

where (3.121) and (3.122) follow from the definition of Holevo information and Lemma

3.2 respectively. Next, we shall bound the second term in (3.122). Let us define

N̄A
mM−1
k , j

to be the mean photon number of the jth symbol ρ̂
Anj

mM−1
k

of the n-symbol

codeword ρ̂A
n

mM−1
k

, whose mean photon number is given by N̄A
mM−1
k

= 1
n

∑n
j=1 N̄

A
mM−1
k , j

.

Hence, ηk−1N̄
A
mM−1
k , j

is the mean photon number of the jth symbol ρ̂
Y nk−1, j

mM−1
k

of the n-

symbol codeword ρ̂
Y nk−1

mM−1
k

, whose mean photon number is given by ηk−1N̄
A
mM−1
k

. The

overall mean photon number of the transmitter codeword per channel use N̄ , is thus

given by averaging N̄A
mM−1
k

over the codebooks WM−1
k , i.e.,

N̄ = 2−n
PM−1
j=k Rj

∑
mM−1
k

N̄A
mM−1
k

.

From the non-negativity of von-Neumann entropy, the fact that the maximum von

Neumann entropy of a single-mode bosonic state with mean photon number N̄ is

given by g(N̄), and the concavity of g(x), we have the following inequalities:

0 ≤ S
(
ρ̂
Y nk−1

mM−1
k

)
≤

n∑
j=1

g
(
ηk−1N̄

A
mM−1
k , j

)
≤ ng

(
ηk−1N̄

A
mM−1
k

)
. (3.123)

Therefore, there must exist real numbers βmM−1
k
∈ [0, 1], ∀mM−1

k ∈WM−1
k , such that

S
(
ρ̂
Y nk−1

mM−1
k

)
= ng

(
ηk−1βmM−1

k
N̄A

mM−1
k

)
. (3.124)

Because of the degraded nature of the channel, ŷk =
√
ηk/ηk−1ŷk−1+

√
1− (ηk/ηk−1)f̂k,
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with f̂k in a vacuum state (see Fig. 3-12). Hence, using Eq. (3.124) and strong con-

jecture 2 (see chapter 4), we have

S
(
ρ̂
Y nk
mM−1
k

)
≥ ng

(
ηkβmM−1

k
N̄A

mM−1
k

)
. (3.125)

Taking an average of both sides of Eq. (3.124) over the codebooks WM−1
k , and using

Lemma 3.2, we have

∑
mM−1
k

pWM−1
k

(mM−1
k )S

(
ρ̂
Y nk−1

mM−1
k

)
=

n

2n
PM−1
j=k Rj

∑
mM−1
k

g
(
ηk−1βmM−1

k
N̄A

mM−1
k

)
= ng

(
ηk−1βkN̄

)
. (3.126)

Equation (3.126) and a theorem on a property of the g(·) function (see Appendix C),

then gives us

n

2n
PM−1
j=k Rj

∑
mM−1
k

g
(
ηkβmM−1

k
N̄A

mM−1
k

)
≥ ng

(
ηkβkN̄

)
. (3.127)

Taking an average of both sides of Eq. (3.125) over the codebooks WM−1
k , and using

Eq. (3.127), we get

∑
mM−1
k

pWM−1
k

(mM−1
k )S

(
ρ̂
Y nk
mM−1
k

)
≥ n

2n
PM−1
j=k Rj

∑
mM−1
k

g
(
ηkβmM−1

k
N̄A

mM−1
k

)
≥ ng

(
ηkβkN̄

)
. (3.128)

Combining Eqs. (3.122) and (3.128), we finally get the desired bound for Rk, for

k ∈ {1, . . . ,M − 2}, i.e.,

nRk ≤ ng
(
ηkβk+1N̄

)
− ng

(
ηkβkN̄

)
+ nεk,n. (3.129)

Since nRk ≥ 0, the monotonicity of g(·) implies that

βk+1 ≥ βk, ∀k ∈ {1, . . . ,M − 2} . (3.130)
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To prove the final piece of the converse proof, i.e., to prove that the proposed rate

bound for RM−1 holds, we proceed as follows:

nRM−1 = H(WM−1)

≤ I(WM−1; ŴM−1) + nεM−1,n (3.131)

≤ χ
(
pWM−1

(mM−1), ρ̂
Y nM−1
mM−1

)
+ nεM−1,n (3.132)

= S

∑
mM−1

pWM−1
(mM−1)ρ̂

Y nM−1
mM−1

− ∑
mM−1

pWM−1
(mM−1)S

(
ρ̂
Y nM−1
mM−1

)
+ nεM−1,n

= S
(
ρ̂Y

n
M−1
)
−
∑
mM−1

pWM−1
(mM−1)S

(
ρ̂
Y nM−1
mM−1

)
+ nεM−1,n (3.133)

≤ ng
(
ηM−1N̄

)
−
∑
mM−1

pWM−1
(mM−1)S

(
ρ̂
Y nM−1
mM−1

)
+ nεM−1,n (3.134)

≤ ng
(
ηM−1N̄

)
− ng

(
ηM−1βM−1N̄

)
+ nεM−1,n, (3.135)

where inequality (3.131) follows from Fano’s inequality, (3.132) results from the

Holevo bound, (3.134) follows from the fact that the maximum von Neumann en-

tropy of a single-mode bosonic state with mean photon number N̄ is given by g(N̄).

The last inequality (3.135) follows from19 Eq. (3.128) with k = M −1. As εk,n → 0 as

n→ ∞, going to the limit of large block length codes, Eqs. (3.120), (3.129), (3.130)

and (3.135), along with the definitions β0 = 0, and βM = 1, we have shown that if

(R0, . . . , RM−1) is an achievable rate M -tuple, then they must satisfy,

Rk ≤ g(ηkβk+1N̄)− g(ηkβkN̄), k ∈ {0, . . . ,M − 1}, (3.136)

for real numbers βk satisfying

0 = β0 < β1 < . . . < βM−1 < βM = 1, (3.137)

which is what we set out to prove.

19Note that the same method we used to bound the second term in Eq. (3.122) for k ∈
{1, . . . ,M − 2} can also be used for k = M − 1. All the steps from Eq. (3.122) to Eq. (3.128)
follow through exactly in the same way if we substitute k = M − 1 everywhere.
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3.4.7 Thermal-noise bosonic broadcast channel with M re-

ceivers

Consider an extension of the noiseless M -receiver bosonic broadcast channel as de-

picted in Fig. 3-12, in which each environment mode êk, for k ∈ {1, . . . ,M − 1}, is in

a zero-mean thermal state with mean photon number N (see Eq. (3.67)). This chan-

nel can also be equivalently represented by a degraded model as depicted in Fig. 3-13,

in which each of the modes fk, for k ∈ {1, . . . ,M − 1}, is now in a zero-mean thermal

state with mean photon number N .

Theorem 3.7 — With a mean photon number constraint of N̄ photons per channel

use at the transmitter, the ultimate capacity region of the thermal-noise bosonic

broadcast channel, with uniform noise coupling of N photons on an average in each

mode, can be achieved by coherent-state encoding with an isotropic Gaussian prior

distribution. Given the truth of strong conjectures 1 and 3, the ultimate capacity

region is given by20

Rk ≤ g(ηkβk+1N̄+(1−ηk)N)−g(ηkβkN̄+(1−ηk)N), k ∈ {0, . . . ,M − 1}, (3.138)

for real numbers βk satisfying

0 = β0 < β1 < . . . < βM−1 < βM = 1. (3.139)

Proof — The proof of this theorem follows exactly as in the proof of the ultimate

capacity region of the noiseless bosonic broadcast channel with M receivers, using

ideas from the capacity-region proof for the thermal-noise bosonic broadcast channel

with two receivers. We omit the proof from the thesis due to its notational complexity.

20Note that the expression for this capacity region resembles the expression for the capacity region
of the M -receiver classical Gaussian broadcast channel, as given in Eq. (3.22). The only difference
between these two capacity-region expressions is that the Bergman’s gC(·) function in the classical
Gaussian case is replaced by the g(·) function in the quantum bosonic case.
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3.4.8 Comparison of bosonic broadcast and multiple-access

channel capacity regions

In classical information theory, Vishwanath et. al. [53] established a duality between

what is termed the dirty paper achievable region (but recently proved to be the ulti-

mate capacity region [56]) for the classical Multiple-Input-Multiple-Output (MIMO)

Gaussian broadcast channel (BC) and the capacity region of the MIMO Gaussian

multiple-access channel (MAC), which is easy to compute. Using this duality, the

computational complexity required for obtaining the capacity region for the MIMO

broadcast channel was greatly reduced. The duality result states that if we were

to trace out the capacity regions of the MIMO Gaussian MAC with a certain fixed

value of the total received power P and channel-gain values, and for all the various

possible power-allocations between the users, the corners of all those capacity regions

would trace out the capacity region of the MIMO Gaussian broadcast channel with

transmitter power P and the exact same channel-gain values. Unlike this classical

result, it turns out that the capacity region of the bosonic broadcast channel using

coherent-state inputs is not the exact dual of the envelope of the capacity regions

of a multiple-access channel (MAC) using coherent-state inputs. In Figure 3-15, for

η = 0.8, and N̄ = 15, we show that the capacity region of the bosonic broadcast chan-

nel lies below the envelope of the multiple-access capacity regions of the dual MAC.

The capacity region of the bosonic MAC using coherent-state inputs was first com-

puted by Yen [11]. So, assuming that the optimum modulation, coding, and receivers

are available, on a fixed beam splitter with the same power budget, more collective

classical information can be sent when this beam splitter is used as a multiple-access

channel, as opposed to when it is used as a broadcast channel. We believe that the

duality between the classical MIMO MAC and BC capacity regions arises solely due

to the special structure of the log(·)-function in the capacity region expressions of the

classical Gaussian-noise channels, rather than for any physical reason. The capacity

expressions for the quantum bosonic channels have the g(·)-function instead which

does not exhibit the same duality properties.
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Figure 3-15: Comparison of bosonic broadcast and multiple-access channel capacity
regions for η = 0.8, and N̄ = 15. The rates are in the units of bits per channel
use. The red line is the conjectured ultimate broadcast capacity region, which lies
below the green line - the envelope of the MAC capacity regions. Assuming that the
optimum modulation, coding, and receivers are available, on a fixed beam splitter
with the same power budget, more collective classical information can be sent when
this beam splitter is used as a multiple-access channel, as opposed to when it is used as
a broadcast channel. This is unlike the case of the classical MIMO Gaussian multiple-
access and broadcast channels (BC), where a duality holds between the MAC and
BC capacity regions.
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3.5 The Wiretap Channel and Privacy Capacity

The term “wiretap channel” was coined by Wyner [57] to describe a communica-

tion system, in which Alice wishes to communicate classical information to Bob over

a point-to-point discrete memoryless channel that is subjected to a wiretap by an

eavesdropper Eve. Alice’s goal is to reliably and securely communicate classical data

to Bob, in such a way that Eve gets no information whatsoever about the message.

Wyner used the conditional entropy rate of the signal received by Eve, given Alice’s

transmitted message, to measure the secrecy level guaranteed by the system. He gave

a single-letter characterization of the rate-equivocation region under the limiting as-

sumption that the signal received by Eve is a degraded version of the one received by

Bob. Csiszár and Körner later generalized Wyner’s results to the case in which the

signal received by Eve is not a degraded version of the one received by Bob [58]. These

classical-channel results were later extended by Devetak [59] to encompass classical

transmission over a quantum wiretap channel.

3.5.1 Quantum wiretap channel

In earlier sections in this chapter, we have defined a quantum channel NA-B from

Alice to Bob to be a trace-preserving completely positive map that transforms Alice’s

single-use density operator ρ̂A to Bob’s, ρ̂B = NA-B(ρ̂A). The quantum wiretap

channel NA-BE is a quantum channel from Alice to an intended receiver Bob and an

eavesdropper Eve . The quantum channel from Alice to Bob is obtained by tracing

out E from the channel map, i.e., NA-B ≡ TrE (NA-BE), and similarly for NA-E. A

quantum wiretap channel is degraded if there exists a degrading channel N deg
B-E such

that NA-E = N deg
B-E ◦ NA-B.

The wiretap channel describes a physical scenario in which for each successive n

uses of NA-BE Alice communicates a randomly generated classical message m ∈ W

to Bob, where m is a classical index that is uniformly distributed over the set, W ,

of 2nR possibilities. To encode and transmit m, Alice generates an instantiation

k ∈ K of a discrete random variable, and then prepares n-channel-use states that after
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transmission through the channel, result in bipartite conditional density operators

{ρ̂BnEnm,k }. A (2nR, n, ε) code for this channel consists of an encoder, xn : (W,K)→ An,

and a positive operator-valued measure (POVM) {ΛBn

m } on Bn such that the following

conditions are satisfied for every m ∈ W .21

1. Bob’s probability of decoding error is at most ε, i.e.,

Tr
(
ρ̂B

n

m,kΛ
Bn

m

)
> 1− ε, ∀k, and (3.140)

2. For any POVM {ΛEn

m } on En, no more than ε bits of information is revealed

about the secret message m. Using j ≡ (m, k), this condition can be expressed,

in terms of the Holevo information [27, 28, 29], as follows,

χ
(
pj,N⊗nA−E(ρA

n

j )
)
≤ ε. (3.141)

Because Holevo information may not be additive, the classical privacy capacity

Cp of the quantum wiretap channel must be computed by maximizing over successive

uses of the channel, i.e., for n being the number of uses of the channel [59],

Cp(NA-BE)

= sup
n

max
pT (i)pA|T (j|i)

1

n

[
χ(pT (i),

∑
j

pA|T (j|i)ρ̂Bnj )

−χ(pT (i),
∑
j

pA|T (j|i)ρ̂Enj )

]
(3.142)

where the {ρ̂Anj } are density operators on the Hilbert space H⊗n of n successive

channel uses. The probabilities {pi} form a distribution over an auxiliary classical

alphabet T , of size |T |. The ultimate privacy capacity is computed by maximizing the

expression specified in (3.142) over {pT (i)}, {pA|T (j|i)}, {ρ̂Anj }, and n. For a degraded

wiretap channel, the auxiliary random variable is unnecessary, and Eq. (3.142) reduces

21An, Bn, and En are the n-channel-use alphabets of Alice, Bob, and Eve, with respective sizes
|An|, |Bn|, and |En|.
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to

Cp(NA-BE) = sup
n

max
pA(j)

1

n
[χ(pA(j), ρ̂B

n

j )− χ(pA(j), ρ̂E
n

j )]. (3.143)

3.5.2 Noiseless bosonic wiretap channel

The noiseless bosonic wiretap channel consists of a collection of spatial and temporal

bosonic modes at the transmitter that interact with a minimal-quantum-noise envi-

ronment and split into two sets of spatio-temporal modes en route to two independent

receivers, one being the intended receiver and the other being the eavesdropper. The

multi-mode bosonic wiretap channel is given by
⊗

sNAs-BsEs , where NAs-BsEs is the

wiretap-channel map for the sth mode, which can be obtained from the Heisenberg

evolutions

b̂s =
√
ηs âs +

√
1− ηs f̂s, (3.144)

ês =
√

1− ηs âs −
√
ηs f̂s, (3.145)

where the {âs} are Alice’s modal annihilation operators, and {b̂s}, {ês} are the cor-

responding modal annihilation operators for Bob and Eve, respectively. The modal

transmissivities {ηs} satisfy 0 ≤ ηs ≤ 1, and the environment modes {f̂s} are in their

vacuum states. We will limit our treatment here to the single-mode bosonic wiretap

channel, as the privacy capacity of the multi-mode channel can in principle be ob-

tained by summing up capacities of all spatio-temporal modes and maximizing the

sum capacity subject to an overall input-power budget using Lagrange multipliers,

cf. [9], where this was done for the multi-mode single-user lossy bosonic channel.

Theorem 3.8 — Assuming the truth of minimum output entropy conjecture 2 (see

chapter 4), the ultimate privacy capacity of the single-mode noiseless bosonic wiretap

channel (see Fig. 3-16) with mean input photon-number constraint 〈â†â〉 ≤ N̄ is

Cp(NA-BE) = g(ηN̄)− g((1− η)N̄) nats/use, (3.146)

for η > 1/2 and Cp = 0 for η ≤ 1/2. This capacity is additive and achievable with

114



Figure 3-16: Schematic diagram of the single-mode bosonic wiretap channel. The
transmitter Alice (A) encodes her messages to Bob (B) in a classical index j, and
over n successive uses of the channel, thus preparing a bipartite state ρ̂B

nEn

j where
En represents n channel uses of an eavesdropper Eve (E).

single-channel-use coherent-state encoding with a zero-mean isotropic Gaussian prior

distribution pA(α) = exp(−|α|2/N̄)/πN̄ .

Proof — Devetak’s result for the privacy capacity of the degraded quantum wiretap

channel in Eq. (3.143) requires finite-dimensional Hilbert spaces. Nevertheless, we

will use this result for the bosonic wiretap channel, which has an infinite-dimensional

state space, by extending it to infinite-dimensional state spaces through a limiting

argument22. Furthermore, it was recently shown that the privacy capacity of a de-

graded wiretap channel is additive, and equal to the single-letter quantum capacity

22When |T | and |A| are finite and we are using coherent states in Eq. (3.143), there will be a
finite number of possible transmitted states, leading to a finite number of possible states received
by Bob and Eve. Suppose we limit the auxiliary-input alphabet (T )—and hence the input (A) and
the output alphabets (B and E)—to truncated coherent states within the finite-dimensional Hilbert
space spanned by the Fock states { |m〉 : 0 ≤ m ≤M }, where M � N̄ . Applying Devetak’s theorem
to the Hilbert space spanned by these truncated coherent states then gives us a lower bound on the
privacy capacity of the bosonic wiretap channel when the entire, infinite-dimensional Hilbert space
is employed. By taking M sufficiently large, while maintaining the cardinality condition for T , the
rate-region expressions given by Devetak’s theorem will converge to Eq. (3.146).
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of the channel from Alice to Bob [60], i.e.,

Cp(NA-BE) = C(1)
p (NA-BE) = Q(1)(NA-B), (3.147)

where the superscript (1) denotes single-letter capacity. It is straightforward to show

that if η > 1/2, the bosonic wiretap channel is a degraded channel, in which Bob’s

is the less-noisy receiver and Eve’s is the more-noisy receiver. The degraded nature

of the bosonic wiretap channel has been depicted in Fig. 3-16, where the quantum

states ρ̂E
′

of the constructed system E ′ are identical to the quantum states ρ̂E for a

given input quantum state ρ̂A. Using Eq. (3.147) for the bosonic wiretap channel, we

have

Cp(NA-BE) = max
〈â†â〉≤N̄

[
S
(
ρ̂B
)
− S

(
ρ̂E
)]

= max
〈b̂†b̂〉≤ηN̄

[S(ρ̂B)− S(ρ̂E
′
)]

= max
0≤K≤g(ηN̄)

{max〈b̂†b̂〉≤ηN̄,S(ρ̂B)=K [S(ρ̂B)− S(ρ̂E
′
)]}

= max
0≤K≤g(ηN̄)

{K −min〈b̂†b̂〉≤ηN̄,S(ρ̂B)=K [S(ρ̂E
′
)]}

= max
0≤K≤g(ηN̄)

{K − g[(1− η)g−1(K)/η]}

= g(ηN̄)− g((1− η)N̄) nats/use

= Q(1)(NA-B). (3.148)

The first equality above follows from Lemma 3 of [60]. The second equality follows

from NA-BE being a degraded channel. The restriction to 0 ≤ K ≤ g(ηN̄) in the

third equality is permissible because max〈b̂†b̂〉≤ηN̄ S(ρ̂B) = g(ηN̄). The fifth equal-

ity follows23 from minimum output entropy conjecture 2 (see chapter 4), which also

implies that the optimum ρ̂B is a thermal state with 〈b̂†b̂〉 = ηN̄ . Hence, capacity is at-

tained when Alice encodes using coherent-state inputs |α〉 with a zero-mean isotropic

23Here, g−1(S) is the inverse of the function g(N). Because g(N) for N ≥ 0 is a non-negative,
monotonically increasing, concave function of N , it has an inverse, g−1(S) for S ≥ 0, that is non-
negative, monotonically increasing, and convex.
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Gaussian prior distribution pA(α) = (1/πN̄) exp
(
−|α|2/N̄

)
. The sixth equality fol-

lows from the monotonicity of the function g(x)− g(ηx) for 0 ≤ η ≤ 1, and equality

to the single-letter quantum capacity follows from Eq. (3.147). Note that the privacy

capacity of this channel is zero when η ≤ 1/2. It is straightforward to show that in

the limit of high input photon number N̄ ,

Cp(NA-BE) = Q(1)(NA-B) = max {0, ln(η)− ln(1− η)} ,

a result that Wolf et. al. [61] independently derived by a different approach without

use of an unproven output entropy conjecture.
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Chapter 4

Minimum Output Entropy

Conjectures for Bosonic Channels

In general, the evolution of a quantum state resulting from the state’s propagation

through a quantum communication channel is not unitary, so that a pure state loses

some coherence in its transit through that channel. Various measures of a channel’s

ability to preserve the coherence of its input state have been introduced. One of the

most useful of these is the channel’s capacity. In this chapter, we will focus on a dif-

ferent, but somewhat related measure, namely the minimum von Neumann entropy

S(E(ρ̂)) at the output of a quantum channel E optimized over the input state ρ̂. This

quantity is related to the minimum amount of noise implicit in the channel. The out-

put entropy associated with a pure-state input measures the entanglement that such

a state establishes with the environment during the communication process. Because

the state of the environment is not accessible, this entanglement is responsible for

the loss of quantum coherence, and hence for the injection of noise into the channel

output. Low values of entanglement established with the environment correspond

to low-noise communication channels. Furthermore, the study of S yields important

information about channel capacities. In particular, we have shown that an upper

bound on the classical capacity derives from a lower bound on the output entropy of

multiple channel uses, see, e.g., [55]. Finally, the additivity of the minimum entropy

has been shown to imply the additivity of the classical capacity and of the entan-
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glement of formation [62, 63], which is a problem of huge interest to the quantum

information research community.

Our study of minimum output entropy will be restricted to bosonic channels in

which the optical-frequency electromagnetic field, used as the information carrier,

interacts with a source of additive thermal noise. For these channels, we proposed

a conjecture for the minimum output entropy [10] that, if shown to be true, would

prove the ultimate rate limits to point-to-point bosonic communications, as we men-

tioned in Chapter 2. Even though a rigorous proof of the conjecture is yet to be seen,

several attempts have been made in order to prove the conjecture, and partial results,

bounds, and other supporting evidence have been found, see, e.g., [10, 55, 9, 39]. We

call this conjecture, the conjecture 1. As we described in the previous chapter, a ca-

pacity analysis of the bosonic broadcast channel with two receivers and no additional

noise led us to an inner bound on the capacity region, which we showed to be the

ultimate capacity region under the presumption of a second minimum output entropy

conjecture [12], the conjecture 2. We further saw in Chapter 3 that capacity analysis

of the two-receiver and the general M -receiver bosonic broadcast channel with addi-

tive thermal noise leads to an inner bound on the capacity region achievable using

coherent-state encoding. We proved that this inner bound is the ultimate capacity

region under the presumption of a slightly generalized version of conjecture 2, which

we call conjecture 3. We also showed in Chapter 3 that proving the single-mode ver-

sion of conjecture 2 will establish the privacy capacity of the lossy bosonic channel

[13]. In what follows, all these conjectures will be termed ‘weak’ when they are ap-

plied to single-mode states, and they will be termed ‘strong’ when they are applied

to general n-mode bosonic states. The strong version of each conjecture subsumes

the respective weak version as a special case. Neither the weak nor the strong version

of these conjectures have been proven yet, but a variety of supporting evidence has

been obtained, especially for conjecture 1 [10].

We will spend the next two sections of this chapter describing each minimum

output entropy conjecture and its significance, along with the work that has been done

so far in attempting to prove these conjectures and to obtain evidence in support of
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their validity. The final section of this chapter discusses proofs of the strong versions of

each minimum output conjecture for Wehrl entropy, which is an alternative measure

of entropy that provides a measurement of a quantum state in phase space. The

Wehrl-entropy proofs elucidate the thought process that led us recently to conjecture

the Entropy Photon-Number Inequality (EPnI) [13], in analogy with the Entropy

Power Inequality (EPI) from classical information theory. The EPnI subsumes all

the minimum output entropy conjectures presented in this chapter, and will be the

subject matter of the next chapter.

4.1 Minimum Output Entropy Conjectures

4.1.1 Conjecture 1

Weak Conjecture 1 — Let a lossless beam splitter have input â in state ρ̂A, input

b̂ in a zero-mean thermal state with mean photon number N , and output ĉ from

its transmissivity-η port, i.e., ĉ =
√
ηâ +

√
1− ηb̂. Then S(ρ̂C), the von Neumann

entropy of output ĉ, is minimized when the input state ρ̂A is in the vacuum state

(or any non-zero-mean coherent-state), and the minimum output entropy is given by

S(ρ̂C) = g((1− η)N).

Strong Conjecture 1 — Consider n uses of a lossless beam splitter in which the

output modes of the n uses, ĉi : 1 ≤ i ≤ n, are related to the input modes by

ĉi =
√
ηâi +

√
1− ηb̂i, ∀1 ≤ i ≤ n. (4.1)

Let the input modes b̂i : 1 ≤ i ≤ n be in a product state of mean-photon-number N

thermal states. Then putting all the âi : 1 ≤ i ≤ n in their vacuum states (or equiva-

lently in coherent states of arbitrary mean values) minimizes the output von Neumann

entropy of the joint state of the ĉi : 1 ≤ i ≤ n. The resulting minimum output entropy

is S(ρ̂C
n
) = ng((1− η)N).

In [55], we showed that proving strong conjecture 1 would complete the classical-

capacity proof of the point-to-point bosonic channel with additive thermal noise, and
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will also prove that the capacity is achieved using a coherent-state encoding and

an optimum detection scheme that employs joint measurements over long codeword

blocks.

4.1.2 Conjecture 2

Weak Conjecture 2 — Let a lossless beam splitter have input â in its vacuum

state, input b̂ in a zero-mean state with von Neumann entropy S(ρ̂B) = g(K), and

output ĉ from its transmissivity-η port. Then the von Neumann entropy of output ĉ

is minimized when input b̂ is in a thermal state with average photon number K, and

the minimum output entropy is given by S(ρ̂C) = g((1− η)K).

Strong Conjecture 2 — Consider n uses of the beam splitter in which the output

modes of the n uses, ĉi : 1 ≤ i ≤ n, are related to the input modes by Eq. 4.1. Let the

input modes âi : 1 ≤ i ≤ n be in a product state of n vacuum states. Also, the von

Neumann entropy of the joint state of the inputs b̂i : 1 ≤ i ≤ n is constrained to be

ng(K). Then, putting all the b̂i : 1 ≤ i ≤ n in a product state of mean-photon-number

K thermal states minimizes the output von Neumann entropy of the joint state of the

ĉi : 1 ≤ i ≤ n. The resulting minimum output entropy is S(ρ̂C
n
) = ng((1− η)K).

In Chapter 3, we showed that proving strong conjecture 2 would complete the

converse proof to the capacity region theorem for the general M -receiver noiseless

bosonic broadcast channel. Proving the conjecture would also establish the fact that

a product coherent-state encoder and optimum joint measurement detectors at each

receiver achieves the ultimate capacity region for the noiseless bosonic broadcast

channel.

4.1.3 Conjecture 3: An extension of Conjecture 2

Weak Conjecture 3 — Let a lossless beam splitter have input â in a zero-mean

thermal state with mean photon number N , input b̂ in a zero-mean state with von

Neumann entropy S(ρ̂B) = g(K), and output ĉ from its transmissivity-η port. Then

the von Neumann entropy of output ĉ is minimized when input b̂ is in a thermal
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state with average photon number K, and the minimum output entropy is given by

S(ρ̂C) = g(ηN + (1− η)K).

Strong Conjecture 3 — Consider n uses of the beam splitter in which the output

modes of the n uses, ĉi : 1 ≤ i ≤ n are related to the input modes by Equation 4.1.

Let the input modes âi : 1 ≤ i ≤ n be in a product state of n mean-photon-number

N thermal states. Also, the von Neumann entropy of the joint state of the inputs

b̂i : 1 ≤ i ≤ n is constrained to be ng(K). Then, putting all the b̂i : 1 ≤ i ≤ n in a

product state of mean-photon-number K thermal states minimizes the output von

Neumann entropy of the joint state of the ĉi : 1 ≤ i ≤ n. The resulting minimum

output entropy is S(ρ̂C
n
) = ng(ηN + (1− η)K).

In Chapter 3, we showed that proving strong conjecture 3 would complete the con-

verse proof to the capacity region theorem for the general M -receiver bosonic broad-

cast channel with additive thermal noise. Proving the conjecture would also establish

the fact that a product coherent-state encoder and optimum joint measurement de-

tectors at each receiver achieves the ultimate capacity region for the thermal-noise

bosonic broadcast channel.

4.2 Evidence in Support of the Conjectures

In this section, we list all the supporting evidence that has been collected, so far,

in favor of the above minimum output entropy conjectures. Most of the supporting

evidence we have, is for conjecture 1, although there is some for the others.

1. Proofs for entropy measures other than von Neumann entropy — It

turns out to be easier to work analytically with certain entropy measures that

are alternatives to the von Neumann entropy, e.g., the quantum-state Wehrl

entropy, Rényi entropy, and the Rényi-Wehrl entropy. Proofs for identical state-

ments in conjectures 1, 2 and 3 have been attempted for the above alternative

measures of entropy. Following are the results that were obtained.
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(i) Wehrl entropy is the Shannon differential entropy (with an offset of ln π)

of the Husimi probability function Qρ̂(µ) for the state ρ̂ [64],

W (ρ̂) ≡ −
∫
Qρ̂(µ) ln [πQρ̂(µ)]d2µ, (4.2)

= h(Qρ̂(µ))− lnπ, (4.3)

where Qρ̂(µ) ≡ 〈µ|ρ̂|µ〉/π with |µ〉 a coherent state. The Wehrl entropy

provides a measurement of the state ρ̂ in phase space and its minimum

value is achieved for coherent states [64]. Conjecture 1 (both the strong

and weak forms) was proved for the Wehrl entropy measure by Giovan-

netti, et. al. [34]. We have proven weak conjectures 2 and 3 for Wehrl

entropy using a technique similar to that was used in the Wehrl-entropy

proof of conjecture 1 (see Appendix D). Later, we proved both the strong

and the weak conjectures 1, 2 and 3 by using the Entropy Power Inequality

(EPI) of classical information theory.

(ii) Rényi entropy of order z, Sz(ρ̂), of a quantum state ρ̂ is defined in an

analogous way to the definition of Rényi entropy of order z for a classical

random variable X with probability mass function {pi}, i.e., Hz(X) =

(−1/(z − 1)) ln(
∑

i p
z
i ):

Sz (ρ̂) = − 1

z − 1
ln Tr(ρ̂z), for 0 < z <∞, z 6= 1. (4.4)

It is a monotonic function of the z-purity of a density operator, and reduces

to the definition of the von Neumann entropy in the limit z → 1. Weak

and strong versions of conjecture 1 have been proven for integer-ordered

Rényi entropies for z ∈ {2, 3, . . .} [34].

(iii) Rényi-Wehrl entropy of order z is defined by

Wz(ρ̂) = − 1

z − 1
ln

(
1

π

∫
(πQρ̂(µ))zd2µ

)
, for z ≥ 1. (4.5)
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Thus the Wehrl entropy is the limit of Wz(ρ̂) as z → 1. Weak conjecture

1 has been proved for the Rényi-Wehrl entropy measure [34].

2. Proof for Gaussian states — Strong conjectures 1 and 2 have been proven

for the special case in which the input states are restricted to be Gaussian,

and we have shown them to be equivalent to each other under the Gaussian-

input-state restriction [12]. The proofs result from the fact that Gaussian states

are completely characterized by their means and covariance matrices, and if the

two inputs to a beam splitter are independent Gaussian states, then the outputs

of the beam splitter are a jointly-Gaussian state whose means and covariance

matrix are linear functions of the means and covariance matrices of the input

Gaussian states. The Gaussian-state proof for conjecture 1 appeared in [10].

Weak conjecture 3 can be proved for Gaussian-state inputs, but the strong

form of conjecture 3 hasn’t been proved yet under the Gaussian input-state

restriction.

3. Majorization conjecture and simulated annealing — In [10], we proposed

the majorization conjecture (which is stronger than weak conjecture 1), whose

truth would imply the truth of weak conjecture 1: The output states produced

by coherent state inputs majorize all other output states. By definition, a state

ρ̂ majorizes a state σ̂ (which we denote by ρ̂ � σ̂), if all ordered partial sums

of the eigenvalues of ρ̂ equal or exceed the corresponding sums for σ̂, i.e.,

ρ̂ � σ̂ ⇒
k∑
i=0

λi ≥
k∑
i=0

µi, ∀k ≥ 0, (4.6)

where λi and µi are the eigenvalues of ρ̂ and σ̂, respectively, arranged in de-

creasing order (i.e. λ0 ≥ λ1 ≥ . . .). If ρ̂ � σ̂, then S(ρ̂) ≤ S(σ̂). Thus, if

the majorization conjecture holds, it would imply weak conjecture 1. As a test

of this conjecture, we used simulated annealing – a well-known algorithm to

search for the global minimum of multivariate functions – to minimize the out-

put entropy of the lossy thermal-noise channel. We used a variety of randomly-
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generated input states to initiate the minimization, and for each case the final

input state after a few hundred iterations of the algorithm was extremely close

to a coherent-state, as proposed by conjecture 1. In fact, we found for all the

cases we studied, that not only did the output-state at every successive itera-

tion of the algorithm have a lower entropy than the output-state of the previous

iteration, the eigenvalues of the output-state at every iteration majorized those

for the preceding iteration.

4. Lower and upper bounds — A suite of lower and upper bounds were found

for the output entropy of the lossy thermal-noise channel that support the weak

conjecture 1. The details and plots appeared in [10].

5. Local minimum condition — In support of the strong conjecture 1, it was

also shown in [10], that the product n-mode vacuum state is a local minimum

of output entropy for n uses of the lossy thermal noise channel.

6. Thermal state best of all Fock-state diagonal states — A weaker version

of conjecture 2 would be to propose that the thermal state input yields the

lowest output entropy among all other input states (with the same entropy as

required by conjecture 2) that are diagonal in the number-state (Fock-state)

basis. We verified that this is indeed the case for several input states diagonal

in the number-state basis (see Fig. 4-1).

4.3 Proof of all Strong Conjectures for Wehrl En-

tropy

Inasmuch as we were unable to prove the strong conjectures for von Neumann entropy,

once we had the Wehrl-entropy proofs of weak conjectures 2 and 3 (see Appendix D)

and the Wehrl-entropy proof of the strong conjecture 1 [65], we wanted to generalize

the Wehrl-entropy proofs of conjectures 2 and 3 to their respective strong forms as

well. We found that the proofs of all the strong Wehrl-entropy conjectures followed
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Figure 4-1: This figure presents empirical evidence in support of weak conjecture
2. The input ρ̂A = |0〉〈0| is in its vacuum state. For a fixed value of S(ρ̂B),
we choose three different inputs ρ̂B, each one diagonal in the Fock-state basis, i.e.
ρ̂B =

∑∞
n=0 pn|n〉〈n| with

∑∞
n=0 pn = 1. The three different inputs ρ̂B correspond to

choosing the distribution {pn} to be a Binomial distribution (blue curve), a Poisson
distribution (red curve) and a Bose-Einstein distribution (green curve). As expected,
we see that the output state ρ̂C has the lowest entropy when ρ̂B is a thermal state,
i.e. when {pn} is a Bose-Einstein distribution.

from a simple observation that Wehrl entropy is the Shannon entropy of the Husimi

function (with a fixed offset term), and that the Entropy Power Inequality (EPI) [66]

for Shannon entropy encompasses the Wehrl entropy conjectures as special cases.

The Wehrl entropy is defined for an n-mode density operator ρ̂ in a way analogous

to that for a single-mode state (4.2),

W (ρ̂) , −
∫
Qρ̂(µ) ln (πnQρ̂(µ)) d2nµ (4.7)

= h(Qρ̂(µ))− n ln π, (4.8)

where the Husimi function Qρ̂(µ) ≡ 〈µ|ρ̂|µ〉/πn is a 2n-dimensional probability den-

sity function, with |µ〉 , |µ1〉 ⊗ |µ2〉 ⊗ . . . ⊗ |µn〉 being an n-mode coherent state,

µ ∈ Cn. Before we embark on the proofs, let us first state the strong versions of the

minimum output entropy conjectures for Wehrl entropy.

Strong Conjecture 1 (Wehrl) — Consider n uses of the beam splitter in which

the output modes of the n uses, ĉi : 1 ≤ i ≤ n, are related to the input modes by
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Eq. 4.1. Let the input modes b̂i : 1 ≤ i ≤ n be in a product state of n mean-photon-

number K thermal states. Then, putting all the modes âi : 1 ≤ i ≤ n in a product

of n vacuum states minimizes the output Wehrl entropy of the joint state of the

modes ĉi : 1 ≤ i ≤ n, and the minimum output entropy is given by W(ρ̂C
n
) = n(1 +

ln (1 + (1− η)K)).

Strong Conjecture 2 (Wehrl) — Consider n uses of the beam splitter in which the

output modes of the n uses, ĉi : 1 ≤ i ≤ n, are related to the input modes by Eq. 4.1.

Let the input modes âi : 1 ≤ i ≤ n be in a product state of n vacuum states. Also,

the Wehrl entropy of the joint state of the inputs b̂i : 1 ≤ i ≤ n is constrained to be

ρ̂B
n

= n(1 + ln (1 +K)). Then, putting all the modes b̂i : 1 ≤ i ≤ n in a product state

of mean-photon-number K thermal states minimizes the output Wehrl entropy of the

joint state of the modes ĉi : 1 ≤ i ≤ n, and the minimum output entropy is given by

W(ρ̂C
n
) = n(1 + ln (1 + (1− η)K)).

Strong Conjecture 3 (Wehrl) — Consider n uses of the beam splitter in which the

output modes of the n uses, ĉi : 1 ≤ i ≤ n, are related to the input modes by Eq. 4.1.

Let the input modes âi : 1 ≤ i ≤ n be in a product state of n mean-photon-number N

thermal states. Also, the Wehrl entropy of the joint state of the inputs b̂i : 1 ≤ i ≤ n is

constrained to be ρ̂B
n

= n(1 + ln (1 +K)). Then, putting all the modes b̂i : 1 ≤ i ≤ n

in a product state of mean-photon-number K thermal states minimizes the output

Wehrl entropy of the joint state of the modes ĉi : 1 ≤ i ≤ n, and the minimum output

entropy is given by W(ρ̂C
n
) = n(1 + ln (1 + ηN + (1− η)K)).

Theorem 4.1 (Entropy Power Inequality (EPI)) [66] — Let X and Y be

independent random m-vectors taking values in Rm, and let Z =
√
ηX +

√
1− ηY .

Then,

e2h(Z)/m ≥ ηe2h(X)/m + (1− η)e2h(Y )/m, (4.9)

where h(X) = −
∫
pX(x)ln [pX(x)] dmx is the Shannon differential entropy of X.

Equality in (4.9) holds if and only if X and Y are both Gaussian random vectors

with proportional covariance matrices.

Corollary 4.2 [Shapiro, 2007] — Consider n uses of the beam splitter in which the
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output modes of the n uses, ĉ ≡ {ĉi : 1 ≤ i ≤ n}, are related to the input modes

â ≡ {âi : 1 ≤ i ≤ n} and b̂ ≡
{
b̂i : 1 ≤ i ≤ n

}
by Eq. 4.1. Let ρ̂A

n
, ρ̂B

n
and ρ̂C

n
be

the joint density operators of the n uses of the inputs and the output respectively.

Then,

eW (ρ̂C
n

)/n ≥ ηeW (ρ̂A
n

)/n + (1− η)eW (ρ̂B
n

)/n, (4.10)

where W (ρ̂) is the Wehrl entropy of the n-mode state ρ̂.

Proof — Let us first recall a few definitions. The antinormally ordered characteristic

function χρ̂A(ζ) of an n-mode density operator ρ̂ is given by:

χρ̂A(ζ) = tr
(
ρ̂e−ζ

†âeζâ
†
)
, (4.11)

where ζ = (ζ1, . . . , ζn)T is a column vector of n complex numbers. Also, the anti-

normally ordered characteristic function χρ̂A(ζ) and the Husimi function Qρ̂(µ) ≡

〈µ|ρ̂|µ〉/πn of a state ρ̂ form a 2-D Fourier-Transform Inverse-Transform pair:

χρ̂A(ζ) =

∫
Qρ̂(µ)eµ

†ζ−ζ†µd2nµ, (4.12)

Qρ̂(µ) =
1

π2n

∫
χρ̂A(ζ)e−µ

†ζ+ζ†µd2nζ, (4.13)

with µ, ζ ∈ Cn. As the two n-use input states ρ̂A
n

and ρ̂B
n

are statistically indepen-

dent, Eq. 4.11 implies that the output state characteristic function is a product of

the input state characteristic functions with scaled arguments:

χρ̂
Cn

A (ζ) = χρ̂
An

A (
√
ηζ)χρ̂

Bn

A (
√

1− ηζ) (4.14)

From Eq. 4.14, using the multiplication-convolution property of Fourier transforms

(FT), we get

Qρ̂Cn (µ) =
1

ηn
Qρ̂A

n

(
µ
√
η

)
?

1

(1− η)n
Qρ̂B

n

(
µ√

1− η

)
(4.15)

where, we used the scaling-property of FT: χρ̂A(
√
ηζ)←→ (1/ηn)Qρ̂(µ/

√
η).
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Now, as the Husimi function Qρ̂(·) is a proper probability density function, we can

define two 2n-dimensional statistically-independent real random vectors X and Y ,

with distributions pX(µ) , Qρ̂A
n (µ), and pY (µ) , Qρ̂B

n (µ), and define the linear

combination Z =
√
ηX +

√
1− ηY . Thus, the p.d.f. of Z is given by pZ(µ) =

Qρ̂Cn (µ) as found from Eq. (4.15). Using Eq. (4.8), we have that the differential

entropies of X, Y , and Z can be expressed in terms of the Wehrl entropies of the

n-mode quantum systems An, Bn and Cn respectively, by h(X) = W (ρ̂A
n
) + n lnπ,

h(Y ) = W (ρ̂B
n
)+n ln π, and h(Z) = W (ρ̂C

n
)+n lnπ. Using these relations, Corollary

4.2 is immediately equivalent to the Entropy Power Inequality (Theorem 4.1) with

m ≡ 2n.

Proof: Strong Conjecture 1 (Wehrl) — The input â is given to be in a pure

state. Thus the Wehrl entropy of the input â is given by [67]

W (ρ̂A
n

) = n. (4.16)

The state of the input b̂ is in a product of K-photon thermal states. Therefore,

ρ̂B
n

=

(
1

πK

∫
e−|α|

2/K |α〉〈α|d2α

)⊗n
, (4.17)

Qρ̂Bn (µ) =
1

(π(1 +K))n
e−|µ|

2/(1+K), and

W (ρ̂B
n

) = n(1 + ln(1 +K)), (4.18)

Therefore, Corollary 4.2 implies the following bound:

eW (ρ̂C
n

)/n ≥ ηe+ (1− η)e1+ln(1+K), (4.19)

which on taking the natural logarithm of both sides translates into a lower bound for

the Wehrl entropy of the output ĉ,

W (ρ̂C
n

) ≥ n ln
(
e(η + (1− η)eln(1+K))

)
(4.20)

= n(1 + ln(1 + (1− η)K)). (4.21)
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It is readily verified that a product of n vacuum states at the input â, i.e. ρ̂A
n

=

(|0〉〈0|)⊗n achieves the lower bound (4.21), for in this case Qρ̂An (µ) = (1/πn)e−|µ|
2
,

and the convolution (4.15) yields Qρ̂C
n (µ) = 1/(π(1 + (1− η)K))ne−|µ|

2/(1+(1−η)K),

which gives W (ρ̂C
n
) = n(1 + ln(1 + (1 − η)K)). Hence, a product vacuum state for

the input â achieves minimum output entropy W(ρ̂C
n
), and the minimum output

entropy is given by

W(ρ̂C
n

) = n(1 + ln(1 + (1− η)K)). (4.22)

Proof: Strong Conjecture 2 (Wehrl) — The input â is given to be in a an n-

mode vacuum state. Thus the Husimi function and the Wehrl entropy of the input â

are given by

Qρ̂An (µ) =
1

πn
e−|µ|

2

, (4.23)

W (ρ̂A
n

) = n. (4.24)

The state of the input b̂ is mixed with fixed Wehrl entropy W (ρ̂B
n
) = n(1+ln(1+K)).

Therefore, Corollary 4.2 implies the following bound:

eW (ρ̂C
n

)/n ≥ ηe+ (1− η)e1+ln(1+K), (4.25)

which on taking the natural logarithm of both sides translates into a lower bound for

the Wehrl entropy of the output ĉ,

W (ρ̂C
n

) ≥ n ln
(
e(η + (1− η)eln(1+K))

)
(4.26)

= n(1 + ln(1 + (1− η)K)). (4.27)

It is readily verified that a product of n K-photon thermal states at the input

b̂, i.e. ρ̂B
n

=
(

(1/πK)
∫
e−|α|

2/K |α〉〈α|d2α
)⊗n

achieves the lower bound (4.27),

for in this case Qρ̂Bn (µ) = (1/(π(1 +K))n)e−|µ|
2/(1+K), and the convolution (4.15)

yields Qρ̂Cn (µ) = (1/(π(1 + (1− η)K))n)e−|µ|
2/(1+(1−η)K), which gives W (ρ̂C

n
) =

n(1 + ln(1 + (1 − η)K)). Hence, a product vacuum state for the input â achieves
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minimum output entropy W(ρ̂C
n
), and the minimum output entropy is given by

W(ρ̂C
n

) = n(1 + ln(1 + (1− η)K)). (4.28)

Proof: Strong Conjecture 3 (Wehrl) — The input â is given to be in a an n-

mode product thermal state with N photons on an average in each mode. Thus the

Husimi function and the Wehrl entropy of the input â are given by

Qρ̂An (µ) =
1

(π(1 +N))n
e−|µ|

2/(1+N), and (4.29)

W (ρ̂A
n

) = n(1 + ln(1 +N)). (4.30)

The state of the input b̂ is mixed with fixed Wehrl entropy W (ρ̂B
n
) = n(1+ln(1+K)).

Therefore, Corollary 4.2 implies the following bound:

eW (ρ̂C
n

)/n ≥ ηe1+ln(1+N) + (1− η)e1+ln(1+K), (4.31)

which on taking the natural logarithm of both sides translates into a lower bound for

the Wehrl entropy of the output ĉ,

W (ρ̂C
n

) ≥ n ln (e(η(1 +N) + (1− η)(1 +K))) (4.32)

= n(1 + ln(1 + ηN + (1− η)K)). (4.33)

It is readily verified that a product of n K-photon thermal states at the input b̂,

i.e. ρ̂B
n

=
(

(1/πK)
∫
e−|α|

2/K |α〉〈α|d2α
)⊗n

achieves the lower bound (4.33), for in

this case Qρ̂Bn (µ) = (1/(π(1 +K))n)e−|µ|
2/(1+K), and the convolution (4.15) yields

Qρ̂Cn (µ) = (1/(π(1 + ηN + (1− η)K))n)e−|µ|
2/(1+ηN+(1−η)K), which gives W (ρ̂C

n
) =

n(1+ln(1+ηN+(1−η)K)). Hence, a product vacuum state for the input â achieves

minimum output entropy W(ρ̂C
n
), and the minimum output entropy is given by

W(ρ̂C
n

) = n(1 + ln(1 + ηN + (1− η)K)). (4.34)
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Chapter 5

The Entropy Photon-Number

Inequality and its Consequences

In the previous chapter we saw that the Entropy Power Inequality (EPI) can be used

to prove all the Wehrl-entropy versions of the minimum output entropy conjectures

as special cases. The reason Wehrl entropies of the input and output states of a

beam splitter admit an EPI-like inequality (corollary 4.2), is that Wehrl entropy is

essentially the Shannon entropy of the Husimi function, and the Husimi function of the

output state of a beam splitter is the convolution (with properly scaled arguments)

of the Husimi functions of the two input states — much like how the probability

distribution function (p.d.f.) of the weighted sum of two random variables is the

convolution (with properly scaled arguments) of the p.d.f.’s of the two individual

random variables. In order to prove the minimum output entropy conjectures for

the von Neumann entropy measure, therefore, it is natural to conjecture an EPI-like

inequality similar to that in corollary 4.2, that would supersede all the minimum

output entropy conjectures.

In section 5.1 below, we restate the EPI in three equivalent forms, in terms of the

“entropy powers” of the random variables. In section 5.2 we first restate corollary

4.2 in terms of what we define as “Wehrl-entropy photon-numbers” of the quantum

states, in analogy to the notion of entropy power of a random variable introduced

in section 5.1. After that we state two equivalent forms of our conjectured Entropy
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Photon-number Inequality (EPnI). Section 5.3 describes how the EPnI, if true, would

immediately imply all the minimum output entropy conjectures from Chapter 4. In

section 5.4, we describe some recent progress that we have made towards a proof of

the EPnI.

5.1 The Entropy Power Inequality (EPI)

Because a real-valued, zero-mean Gaussian random variable U has differential (Shan-

non) entropy given by h(U) = 1
2

ln(2πe〈U2〉), where the mean-squared value 〈U2〉 is

considered to be the power of U , we can define the entropy power of a random

variable X, P (X) to be the mean-squared value 〈X̃2〉 of the zero-mean Gaussian

random variable X̃ having an entropy equal to the entropy of X, i.e. h(X̃) = h(X)

and P (X) = (1/2πe)e2h(X). Further, let X and Y be statistically independent, n-

dimensional, real-valued random vectors that possess differential entropies h(X) and

h(Y) respectively. The entropy powers of X and Y are defined analogously:

P (X) ≡ e2h(X)/n

2πe
and P (Y) ≡ e2h(Y)/n

2πe
. (5.1)

In this way, an n-dimensional, real-valued, random vector X̃ comprised of indepen-

dent, identically distributed (i.i.d.), real-valued, zero-mean, variance-P (X), Gaussian

random variables has differential entropy h(X̃) = h(X). We can similarly define an

i.i.d. Gaussian random vector Ỹ with differential entropy h(Ỹ) = h(Y). We define

a new random vector by the convex combination

Z ≡ √ηX +
√

1− ηY, (5.2)

where 0 ≤ η ≤ 1. This random vector has differential entropy h(Z) and entropy

power P (Z). Furthermore, let Z̃ ≡ √η X̃ +
√

1− η Ỹ. Three equivalent forms of the
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Entropy Power Inequality (EPI), see, e.g., [68], are given by

P (Z) ≥ ηP (X) + (1− η)P (Y), (5.3)

h(Z) ≥ h(Z̃), (5.4)

h(Z) ≥ ηh(X) + (1− η)h(Y). (5.5)

5.2 The Entropy Photon-Number Inequality (EPnI)

Let â = [ â1 â2 · · · ân ] and b̂ = [ b̂1 b̂2 · · · b̂n ] be vectors of photon annihila-

tion operators for a collection of 2n different electromagnetic field modes of frequency

ω [15]. Let the joint states of the modes associated with â and b̂ be statistically

independent of each other, and thus be given by the product-state density operator

ρ̂ab = ρ̂a ⊗ ρ̂b, where ρ̂a and ρ̂b are the density operators associated with the â

and b̂ modes, respectively. The von Neumann entropies of the â and b̂ modes are

S(ρ̂a) = −tr[ρ̂a ln(ρ̂a)] and S(ρ̂b) = −tr[ρ̂b ln(ρ̂b)]. We define a new vector of photon

annihilation operators, ĉ = [ ĉ1 ĉ2 · · · ĉn ], by the convex combination

ĉ ≡ √η â+
√

1− η b̂, for 0 ≤ η ≤ 1, (5.6)

and use ρ̂c to denote its density operator. This is equivalent to saying that ĉi is the

output of a lossless beam splitter whose inputs, âi and b̂i, couple to that output with

transmissivity η and reflectivity 1− η, respectively.

5.2.1 EPnI for Wehrl entropy: Corollary 4.2

In analogy to the notion of entropy power of a random variable, let us define the

Wehrl-entropy photon numbers of the n-mode density operators ρ̂a and ρ̂b as
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follows:

NW (ρ̂a) ≡ g−1
W

(
S(ρ̂a)

n

)
, (5.7)

NW (ρ̂b) ≡ g−1
W

(
S(ρ̂b)

n

)
, (5.8)

where gW (N) , 1+ln(1+N) is the Wehrl entropy of the thermal state ρ̂T with mean

photon number N and g−1
W (x) = ex−1− 1 is the well-defined inverse function of gW (·)

for x ≥ 0. Thus, if ρ̂ã ≡
⊗n

i=1 ρ̂Tai and ρ̂b̃ ≡
⊗n

i=1 ρ̂Tbi , where ρ̂Tai is the thermal

state of average photon number NW (ρ̂a) for the âi mode and ρ̂Tbi is the thermal state

of average photon number NW (ρ̂b) for the b̂i mode, we have that W (ρ̂ã) = W (ρ̂a)

and W (ρ̂b̃) = W (ρ̂b).

For the vector of photon annihilation operators ĉ = [ ĉ1 ĉ2 · · · ĉn ] that is given

by the convex combination (5.6) it is straightforward to see that Eqs. (5.3)-(5.5) can

be recast into the following three equivalent forms, that we call the Wehrl-Entropy

Photon-number Inequality (WEPnI):

NW (ρ̂c) ≥ ηNW (ρ̂a) + (1− η)NW (ρ̂b), (5.9)

W (ρ̂c) ≥ W (ρ̂c̃), and (5.10)

W (ρ̂c) ≥ ηW (ρ̂a) + (1− η)W (ρ̂b), (5.11)

where ρ̂c̃ ≡
⊗n

i=1 ρ̂Tci with ρ̂Tci being the thermal state of average photon number

ηNW (ρ̂a) + (1− η)NW (ρ̂b) for ĉi. Equation (5.9) is the same as Corollary 4.2.

5.2.2 EPnI for von Neumann entropy: Conjectured

Let us define the entropy photon numbers of the n-mode density operators ρ̂a

and ρ̂b as follows:

N(ρ̂a) ≡ g−1

(
S(ρ̂a)

n

)
and (5.12)

N(ρ̂b) ≡ g−1

(
S(ρ̂b)

n

)
, (5.13)
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where g−1(y) is the well-defined inverse function of y = g(x) = (1 + x) ln(1 + x) −

x ln(x), for x ≥ 0. Thus, if ρ̂ã ≡
⊗n

i=1 ρ̂Tai and ρ̂b̃ ≡
⊗n

i=1 ρ̂Tbi , where ρ̂Tai is the

thermal state of average photon number N(ρ̂a) for the âi mode and ρ̂Tbi is the thermal

state of average photon number N(ρ̂b) for the b̂i mode, we have S(ρ̂ã) = S(ρ̂a) and

S(ρ̂b̃) = S(ρ̂b).

For the vector of photon annihilation operators ĉ = [ ĉ1 ĉ2 · · · ĉn ] that is

given by the convex combination (5.6), we conjecture the following two equivalent

forms of the Entropy Photon-number Inequality (EPnI):

N(ρ̂c) ≥ ηN(ρ̂a) + (1− η)N(ρ̂b) (5.14)

S(ρ̂c) ≥ S(ρ̂c̃), (5.15)

where ρ̂c̃ ≡
⊗n

i=1 ρ̂Tci with ρ̂Tci being the thermal state of average photon number

ηN(ρ̂a) + (1 − η)N(ρ̂b) for ĉi. By analogy with the classical EPI and the quantum

WEPnI, we might expect there to be a third equivalent form of the quantum EPnI,

viz.,

S(ρ̂c) ≥ ηS(ρ̂a) + (1− η)S(ρ̂b). (5.16)

It is easily shown (see below) that (5.14) implies (5.16), but we have not been able

to prove the converse. Indeed, we suspect that the converse might be false.

Proof of equivalence between different forms of the EPnI

Below, we prove the equivalence of the two forms of the EPnI in Eqs. (5.14) and

(5.15), and we also prove that (5.14) implies (5.16). If we can also prove that (5.16)

implies (5.14), all the three forms of the conjectured EPnI would be equivalent.

1. To show that (5.14) implies (5.15), assume (5.14) is true:

N(ρ̂c) ≥ ηN(ρ̂a) + (1− η)N(ρ̂b) (5.17)

= ηN(ρ̂ã) + (1− η)N(ρ̂b̃) (5.18)
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Now, if ρ̂ãb̃ = ρ̂ã⊗ ρ̂b̃ is the joint density operator of the â and b̂ modes, we find

that the state of the ĉ modes is ρ̂c̃ ≡
⊗n

i=1 ρ̂Tci , where ρ̂Tci is a thermal state

with average photon number given by N(ρ̂c̃) = ηN(ρ̂ã) + (1− η)N(ρ̂b̃), so that

S(ρ̂c̃) = ng[N(ρ̂c̃)]. Thus, from (5.18) we get N(ρ̂c) ≥ N(ρ̂c̃) = g−1(S(ρ̂c̃)/n).

Taking g(·) of both sides of this inequality completes the proof.

2. To show that (5.15) implies (5.14), assume (5.15) is true:

N(ρ̂c) = g−1(S(ρ̂c)/n)

≥ g−1(S(ρ̂c̃)/n) = g−1[g(ηN(ρ̂ã) + (1− η)N(ρ̂b̃))]

= ηN(ρ̂ã) + (1− η)N(ρ̂b̃)

= ηN(ρ̂a) + (1− η)N(ρ̂b), (5.19)

where the inequality is due to g−1(S) being a monotonically increasing function

of S, and the proof is complete.

3. To show that (5.14) implies (5.16), assume that (5.14) is true. We then have

that N(ρ̂c) ≥ ηN(ρ̂a) + (1− η)N(ρ̂b), so that

S(ρ̂c) = ng[N(ρ̂c)] ≥ ng[ηN(ρ̂a) + (1− η)N(ρ̂b)] (5.20)

≥ ηng[N(ρ̂a)] + (1− η)ng[N(ρ̂b)] (5.21)

= ηS(ρ̂a) + (1− η)S(ρ̂b), (5.22)

where the second inequality follows from g(N) being concave, and the proof is

complete.
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5.3 Relationship of the EPnI with the Minimum

Output Entropy Conjectures

More important than whether or not (5.16) is equivalent to (5.14) and (5.15) is the

role of the EPnI in proving classical information capacity results for Bosonic chan-

nels. In particular, the EPnI (5.14) provides simple proofs of the strong versions of

the three minimum output entropy conjectures we stated in Section 4.1. These con-

jectures are important because proving minimum output entropy conjecture 1 also

proves the conjectured capacity of the thermal-noise channel [9], proving minimum

output entropy conjecture 2 also proves the conjectured capacity region of the Bosonic

broadcast channel [12], and proving minimum output entropy conjecture 3 also proves

the conjectured capacity region of the Bosonic broadcast channel with additive ther-

mal noise (see Chapter 3). Furthermore, as we have shown in Chapter 3, proving

minimum output entropy conjecture 2 also establishes the privacy capacity of the

Bosonic wiretap channel and the single-letter quantum capacity of the lossy Bosonic

channel. Before we prove that the EPnI subsumes all the minimum output entropy

conjectures, we restate the conjectures below for ease of reference.

Minimum Output Entropy Conjecture 1 — Let a and b be n-dimensional

vectors of annihilation operators, with joint density operator ρ̂ab = (|ψ〉aa〈ψ|) ⊗

ρ̂b, where |ψ〉a is an arbitrary zero-mean-field pure state of the a modes and ρ̂b =⊗n
i=1 ρ̂Tbi with ρ̂Tbi being the b̂i mode’s thermal state of average photon number N .

Define a new vector of photon annihilation operators, ĉ = [ ĉ1 ĉ2 · · · ĉn ], by

the convex combination (5.6) and use ρ̂c to denote its density operator and S(ρ̂c) to

denote its von Neumann entropy. Then choosing |ψ〉a to be the n-mode vacuum state

minimizes S(ρ̂c). The resulting minimum output entropy is S(ρ̂c) = ng((1− η)N).

Minimum Output Entropy Conjecture 2 — Let a and b be n-dimensional

vectors of annihilation operators with joint density operator ρ̂ab = (|ψ〉aa〈ψ|) ⊗ ρ̂b,

where |ψ〉a =
⊗n

i=1 |0〉ai is the n-mode vacuum state and ρ̂b has von Neumann entropy

S(ρ̂b) = ng(K) for some K ≥ 0. Define a new vector of photon annihilation operators,

ĉ = [ ĉ1 ĉ2 · · · ĉn ], by the convex combination (5.6) and use ρ̂c to denote its
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density operator and S(ρ̂c) to denote its von Neumann entropy. Then choosing ρ̂b =⊗n
i=1 ρ̂Tbi with ρ̂Tbi being the b̂i mode’s thermal state of average photon number K

minimizes S(ρ̂c). The resulting minimum output entropy is S(ρ̂c) = ng((1− η)K).

Minimum Output Entropy Conjecture 3 — Let a and b be n-dimensional

vectors of annihilation operators with joint density operator ρ̂ab = ρ̂a ⊗ ρ̂b, where

ρ̂a =
⊗n

i=1 ρ̂Tai with ρ̂Tai being the âi mode’s thermal state of average photon number

N , and ρ̂b has von Neumann entropy S(ρ̂b) = ng(K) for some K ≥ 0. Define a

new vector of photon annihilation operators, ĉ = [ ĉ1 ĉ2 · · · ĉn ], by the convex

combination (5.6) and use ρ̂c to denote its density operator and S(ρ̂c) to denote its

von Neumann entropy. Then choosing ρ̂b =
⊗n

i=1 ρ̂Tbi with ρ̂Tbi being the b̂i mode’s

thermal state of average photon number K minimizes S(ρ̂c). The resulting minimum

output entropy is S(ρ̂c) = ng(ηN + (1− η)K).

To see that the EPnI encompasses all three of the preceding minimum output

entropy conjectures, we begin by using the premise of conjecture 1 in (5.14). Because

the â modes are in a pure state, we get S(ρ̂a) = 0 and hence the EPnI tells us that

N(ρ̂c) ≥ (1− η)N(ρ̂b) = (1− η)N. (5.23)

Taking g(·) on both sides of this inequality, we get S(ρ̂c)/n ≥ g[(1 − η)N ]. But, if

|ψ〉a is the n-mode vacuum state, we can easily show that ρ̂c =
⊗n

i=1 ρ̂Tci , with ρ̂Tci

being the ĉi mode’s thermal state of average photon number (1 − η)N . Thus, when

|ψ〉a is the n-mode vacuum state we get S(ρ̂c) = ng[(1− η)N ], which completes the

proof.

Next, we apply the premise of conjecture 2 in (5.14). Once again, the â modes

are in a pure state, so we get

N(ρ̂c) ≥ (1− η)N(ρ̂b) = (1− η)K, (5.24)

and hence S(ρ̂c)/n ≥ g[(1− η)K]. But, taking ρ̂b =
⊗n

i=1 ρ̂Tbi , with ρ̂Tbi being the b̂i

mode’s thermal state of average photon number K, satisfies the premise of minimum

output entropy conjecture 2 and implies that ρ̂c =
⊗n

i=1 ρ̂Tci , with ρ̂Tci being the
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ĉi mode’s thermal state of average photon number (1 − η)K. In this case we have

S(ρ̂c) = ng[(1− η)K], which completes the proof.

Finally, we apply the premise of conjecture 3 in (5.14). The input state ρ̂a =⊗n
i=1 ρ̂Tai with ρ̂Tai being the âi mode’s thermal state of average photon number N .

So we get

N(ρ̂c) ≥ ηN(ρ̂a) + (1− η)N(ρ̂b) = ηN + (1− η)K, (5.25)

and hence S(ρ̂c)/n ≥ g[ηN + (1− η)K]. But, taking ρ̂b =
⊗n

i=1 ρ̂Tbi , with ρ̂Tbi being

the b̂i mode’s thermal state of average photon number K, satisfies the premise of

minimum output entropy conjecture 3 and implies that ρ̂c =
⊗n

i=1 ρ̂Tci , with ρ̂Tci

being the ĉi mode’s thermal state of average photon number ηN + (1− η)K. In this

case we have S(ρ̂c) = ng[ηN + (1− η)K], which completes the proof.

5.4 Evidence in Support of the EPnI

As opposed to the extensive body of evidence we have that supports the validity of

conjectures 1 and 2, we do not yet have nearly as much evidence for the conjectured

EPnI. The EPnI might turn out to be harder to prove than our earlier conjectures,

because it is a more powerful result. However, there is a huge existing literature on

various ways to prove the classical EPI [68]. By drawing upon those approaches we

may be able to prove the quantum EPnI. Below, we summarize the evidence we have

collected so far supporting the validity of the EPnI.

5.4.1 Proof of EPnI for product Gaussian state inputs

A natural starting point in trying to prove the EPnI in its most general form would

be to prove it when the input states ρ̂a and ρ̂b (and thus the output state ρ̂c) are

restricted to be Gaussian states1. Even though we can prove strong conjectures 1 and

2 when restricted to Gaussian input states [12], we haven’t been able to prove the

EPnI with this input restriction. Nevertheless, we have been able to prove the EPnI

1Gaussian states are states that are completely described by all the first and the second order
moments of their field operators. For a quick overview of Gaussian states, see [69].
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for single-mode states (n = 1) with the Gaussian-input restriction. In other words,

we have proved the EPnI, when both the inputs ρ̂a and ρ̂b are tensor products of

single-mode Gaussian states.

Theorem 5.1: [EPnI for product Gaussian state inputs: Guha, Erkmen, 2008] —

Single-mode fields â and b̂ excited in statistically independent Gaussian states ρ̂a and

ρ̂b are inputs to a beam splitter of transmissivity η, resulting in the output mode,

ĉ =
√
ηâ+

√
1− ηb̂, in a Gaussian state ρ̂c. Then the following inequality holds:

g−1 (S(ρ̂c)) ≥ ηg−1 (S(ρ̂a)) + (1− η)g−1 (S(ρ̂b)) , (5.26)

with equality when â and b̂ are in thermal states.

Proof — The von Neumann entropy S(ρ̂a) is independent of the mean-field 〈â〉.

Hence without loss of generality, let us suppress the mean-field values of all the states

and assume that 〈â〉 = 〈b̂〉 = 〈ĉ〉 = 0. For a single mode Gaussian state ρ̂a, with

mean-field 〈â〉 = 0, and covariance matrix2,

Ka ,

 〈∆â∆â†〉 〈∆â2〉

〈∆â†2〉 〈∆â†∆â〉

 =

 〈ââ†〉 〈â2〉

〈â†2〉 〈â†â〉

 =

 1 + N̄a Pa

P ∗a N̄a

 , (5.27)

where ∆â ≡ â − 〈â〉, the Wigner characteristic function χρ̂aW (ζ) ≡ Tr
(
ρ̂ae
−ζ∗â+ζâ†

)
can be shown to be given by (see Appendix A)

χρ̂aW (ζ) = exp

(
(α∗ζ − αζ∗) + <(P ∗a ζ

2)− (N̄a +
1

2
)|ζ|2

)
. (5.28)

Let the input state ρ̂b be a Gaussian state with mean-field 〈b̂〉 = 0, and covariance

matrix,

Kb ,

 〈∆b̂∆b̂†〉 〈∆b̂2〉

〈∆b̂†2〉 〈∆b̂†∆b̂〉

 =

 〈b̂b̂†〉 〈b̂2〉

〈b̂†2〉 〈b̂†b̂〉

 =

 1 + N̄b Pb

P ∗b N̄b

 . (5.29)

2The commutation relation [â, â†] = 1 implies that 〈∆â∆â†〉 = 1 + 〈∆â†∆â〉. Also, for a zero
mean field (〈â〉 = 0) state, 〈∆â†∆â〉 = 〈â†â〉 is the mean photon number in the state, hence justifying
the notation N̄a, as we can always choose 〈â〉 = 0 because von Neumann entropy is invariant to
shifts in the mean field.
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Using the beam splitter transformation ĉ =
√
ηâ+

√
1− ηb̂, and the fact that â and b̂

are independent modes, we can compute the Wigner characteristic function of ρ̂c via

χρ̂cW (ζ) = χρ̂aW (
√
ηζ)χρ̂bW (

√
1− ηζ). Thus it is easy to see that ρ̂c is a Gaussian state

with mean field 〈ĉ〉 =
√
ηα+

√
1− ηβ, and covariance matrix Kc = ηKa + (1− η)Kb,

i.e.,

Kc =

 1 + N̄c Pc

P ∗c N̄c

 , (5.30)

with N̄c = ηN̄a + (1− η)N̄b, and Pc = ηPc + (1− η)Pb.

When the phase-sensitive (off-diagonal) term in the covariance matrix Ka, Pa = 0,

the Gaussian state ρ̂a is a thermal state, whose Wigner characteristic function is cir-

cularly symmetric Gaussian about its mean. Using the symplectic diagonalization3

ρ̂a = Uρ̂T,NaU
† where ρ̂T,Na is a zero-mean thermal state with mean photon number

Na =
√

(N̄a + 1/2)2 − |Pa|2−1/2, we have S(ρ̂a) = g(Na). Using symplectic diagonal-

izations of ρ̂b and ρ̂c, we similarly have S(ρ̂b) = g(Nb) = g(
√

(N̄b + 1/2)2 − |Pb|2−1/2)

and S(ρ̂c) = g(Nc) = g(
√

(N̄c + 1/2)2 − |Pc|2−1/2). Hence, the statement of theorem

5.1 is equivalent to the following:

For complex numbers Pa, Pb ∈ C, and non-negative real numbers Na, Nb ∈ R+, it

follows that

√
(N̄c + 1/2)2 − |Pc|2 −

1

2
≥ η

(√
(N̄a + 1/2)2 − |Pa|2 −

1

2

)
+(1− η)

(√
(N̄b + 1/2)2 − |Pb|2 −

1

2

)
, (5.32)

where Pc = ηPa + (1− η)Pb and N̄c = ηN̄a + (1− η)N̄b.

3Any n-mode Gaussian state ρ̂a can be shown to be unitarily equivalent to a tensor-product of
n independent thermal states with mean photon numbers λi, for 1 ≤ i ≤ n, i.e.

ρ̂a = U

(
n⊗
i=1

ρ̂Ti

)
U†, (5.31)

with ρ̂Ti
being a thermal state of average photon number λi. The λi are known as the symplectic

eigenvalues of the Gaussian state ρ̂a. Because a unitary operation leaves the von Neumann entropy
of a state unchanged, S(ρ̂a) =

∑n
i=1 g(λi). See [70] for details of a systematic algorithm to compute

the symplectic eigenvalues λi for an arbitrary n-mode Gaussian state, given its covariance matrix
Ka.
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Lemma 5.2 — For non-negative real numbers m1, m2, r1, r2 and α ∈ R, satisfying

mi ≥ ri for i = 1, 2,

m1m2 + r1r2 cosα ≥
√

(m2
1 − r2

1)(m2
2 − r2

2). (5.33)

Proof — Since −1 ≤ cosα ≤ 1, m1m2 + r1r2 cosα ≥ m1m2 − r1r2. Now,

(m1r2 −m2r1)2 ≥ 0, or (5.34)

m2
1r

2
2 +m2

2r
2
1 ≥ 2m1m2r1r2, or (5.35)

m2
1m

2
2 + r2

1r
2
2 − 2m1m2r1r2 ≥ m2

1m
2
2 + r2

1r
2
2 −m2

1r
2
2 −m2

2r
2
1, or (5.36)

m1m1 − r1r2 ≥
√

(m2
1 − r2

1)(m2
2 − r2

2). (5.37)

∴ m1m2 + r1r2 cosα ≥
√

(m2
1 − r2

1)(m2
2 − r2

2). (5.38)

Using Lemma 5.2 with the substitutions m1 = N̄a + 1/2, m2 = N̄b + 1/2, Pa =

r1e
iθ1 , Pb = r2e

iθ2 and α = θ1 − θ2, we get4,

(N̄a +
1

2
)(N̄b +

1

2
) +<(PaP

∗
b ) ≥

√(
(N̄a +

1

2
)2 − |Pa|2

)(
(N̄b +

1

2
)2 − |Pb|2

)
, (5.39)

which can be seen to be equivalent to Eq. (5.32) with a few steps of simplification.

It is readily verified from Eq. (5.32), that the inequality (5.26) is met with equality

when Pa = Pb = Pc = 0, i.e. all the input and output states are thermal states.

5.4.2 Proof of the third form of EPnI for η = 1/2

We showed in section 5.2.2 that the conjectured EPnI (5.14) is equivalent to a second

form (5.15), both of which imply a third form (5.16). We have not been able to show

whether or not the third form of the EPnI is equivalent to the first two forms. In this

section, we will prove (5.16) for η = 1/2.

Theorem 5.3 [Giovannetti, 2008] — Suppose that n-mode fields, â = [ â1 â2 · · · ân ]

4Note that with these substitutions, the condition mi ≥ ri in Lemma 5.2 is automatically
satisfied, because the symplectic eigenvalue of a Gaussian state must be non-negative. Hence,√

(N̄a + 1/2)2 − |Pa|2 − 1
2 ≥ 0⇒

√
(N̄a + 1/2)2 − |Pa|2 ≥ 1

2 > 0.
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and b̂ = [ b̂1 b̂2 · · · b̂n ] in statistically independent states ρ̂a and ρ̂b, are the in-

puts to a beam splitter of transmissivity η = 1/2, resulting in the n-mode output

ĉ = [ ĉ1 ĉ2 · · · ĉn ] such that ĉ =
√
ηâ+

√
1− ηb̂. Then,

S(ρ̂c) ≥
1

2
S(ρ̂a) +

1

2
S(ρ̂b). (5.40)

Proof — Consider a beam splitter of transmissivity η with two sets of statistically

independent n-mode fields â and b̂ as inputs, producing outputs ĉ =
√
ηâ+

√
1− ηb̂

and d̂ =
√

1− ηâ−√ηb̂. As the evolution from the joint input state ρ̂ab to the joint

output state ρ̂cd is unitary, the total entropy remains unchanged, i.e.

S(ρ̂cd) = S(ρ̂ab) (5.41)

= S(ρ̂a ⊗ ρ̂b) = S(ρ̂a) + S(ρ̂b), (5.42)

where the second equality follows from the independence of â and b̂.

Lemma 5.4 — Either one of the following must be true:

S(ρ̂c) ≥ ηS(ρ̂a) + (1− η)S(ρ̂b), OR (5.43)

S(ρ̂d) ≥ (1− η)S(ρ̂a) + ηS(ρ̂b). (5.44)

Proof — Assume that both (5.43) and (5.44) are false. From subadditivity of von

Neumann entropy (see [6]),

S(ρ̂cd) ≤ S(ρ̂c) + S(ρ̂d) (5.45)

< S(ρ̂a) + S(ρ̂b), (5.46)

where the second inequality follows from our assumption that both (5.43) and (5.44)

are false. Equations (5.42) and (5.46) then imply S(ρ̂cd) < S(ρ̂ab), which is a contra-

diction.
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Now, let η = 1/2. Using Lemma 5.4, either one of the following must be true:

S(ρ̂c) ≥
1

2
S(ρ̂a) +

1

2
S(ρ̂b), OR (5.47)

S(ρ̂d) ≥
1

2
S(ρ̂a) +

1

2
S(ρ̂b). (5.48)

But, for η = 1/2, the Wigner characteristic functions of the two output states ρ̂c and

ρ̂d are identical, i.e., χρ̂c

W (ζ) = χρ̂d

W (ζ) = χρ̂a

W (ζ/
√

2)χρ̂b

W (ζ/
√

2), and hence the states

ρ̂c and ρ̂d are identical. Therefore, S(ρ̂c) = S(ρ̂d). It follows that, Eqs. (5.47) and

(5.48) imply,

S(ρ̂c) ≥
1

2
S(ρ̂a) +

1

2
S(ρ̂b). (5.49)

5.5 Monotonicity of Quantum Information

The following result is a straightforward corollary of Theorem 5.3:

Corollary 5.5 — Let â1 and â2 be single-mode inputs to a 50-50 beam splitter,

producing output mode b̂2 = (â1 + â2)/
√

2 in state ρ̂b2 . If â1 and â2 are in identical

states ρ̂a, then S(ρ̂b2) ≥ S(ρ̂a).

The classical version of corollary 5.5 was proved by Shannon [2], who showed that

if Y2 = (X1 + X2)/
√

2 is a linear combination of two i.i.d. random variables with

the same distribution as a random variable X, then H(Y2) ≥ H(X). Shannon also

proposed a general conjecture on the monotonicity of entropy, which was first proved

only very recently [71].

Corollary 5.5 led us to propose a yet another conjecture, on the monotonicity of

von Neumann entropy, in analogy with Shannon’s conjecture on the monotonicity of

classical entropy. The proof of our monotonicity conjecture is yet to be seen for the

general case, even though we have been able to prove it for some special cases. In

addition to the ABBN proof from [71], Shannon’s monotonicity conjecture has also

been proven by Tulino and Verdú [72] and by Madiman and Barron [72], each one

using a different technique. In proving Shannon’s monotonicity conjecture, Tulino

and Verdú used the same result on the relationship between minimum mean-squared
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error (MMSE) and mutual information that Verdú and Guo used to proved the EPI

[66]. Hence, this suggests there might be complementary proofs for the EPnI and the

quantum version of Shannon’s monotonicity conjecture (see Section 5.5.2 below).

5.5.1 Shannon’s conjecture on the monotonicity of entropy

The following theorem is the original form of Shannon’s monotonicity conjecture:

Theorem 5.6 [Entropy increases at every step: [71, 72, 72]] — Let {X1, X2, . . .} be

i.i.d. random variables, and let Yn be the normalized running-sum defined by

Yn =
X1 +X2 + . . .+Xn√

n
. (5.50)

Then, H(Yn+1) ≥ H(Yn), ∀n ∈ {1, 2, . . .}.

Theorem 5.6 was proved first by Artstein, Ball, Barthe, and Naor in 2004 [71]

using relationships between Shannon entropy and Fisher information. Two other

proofs ([72, 73]) followed a few years later.

5.5.2 A conjecture on the monotonicity of quantum entropy

In analogy to theorem 5.6, it is natural to conjecture the following generalization of

corollary 5.5:

Conjecture 5.7 [von Neumann entropy increases at every step: Guha, 2008] — Let

{â1, â2, . . .} be independent modes in identical states ρ̂ai ≡ ρ̂a. Let us define

b̂n =
â1 + â2 + . . .+ ân√

n
. (5.51)

Then, S(ρ̂bn+1) ≥ (ρ̂bn), ∀n ∈ {1, 2, . . .}.

Even though we don’t have a proof of the above conjecture, we have the following

two pieces of evidence that support its validity.
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Proof of the monotonicity conjecture for steps of powers of 2

The following theorem proves a slightly less general version of the conjecture. We will

show that S(ρ̂b
2k+1

) ≥ S(ρ̂b
2k

). Thus, von Neumann entropy does increase monotoni-

cally (at steps n = 2k, ∀k) as we mix in more and more modes in identical independent

states, but whether or not the entropy increases at every step n is not yet known.

Theorem 5.8 [von Neumann entropy increases at powers-of-2 steps: Guha, 2008] —

Let {â1, â2, . . .} be independent modes in identical states ρ̂ai ≡ ρ̂a. Let us define

b̂n =
â1 + â2 + . . .+ ân√

n
. (5.52)

Then, S(ρ̂b
2k+1

) ≥ S(ρ̂b
2k

), ∀k ∈ {0, 1, . . .}.

Proof — Consider

b̂2k+1 =
â1 + . . .+ â2k+1√

2k+1
(5.53)

=
1√
2

(
â1 + . . .+ â2k√

2k
+
â2k+1 + . . .+ â2k+1√

2k

)
(5.54)

=
1√
2

(
b̂2k + b̂′2k

)
,∀k ∈ {0, 1, . . .} , (5.55)

where we define b̂′
2k

,
â
2k+1

+...+â
2k+1√

2k
. As the âi’s are mutually independent and are in

identical states ρ̂a, therefore b̂2k and b̂′
2k

must be in independent identical states, ρ̂b
2k

.

The proof now follows from applying corollary 5.5 to the modes b̂2k and b̂′
2k

mixing

on a 50-50 beam splitter to produce b̂2k+1 .

The quantum central limit theorem

An important conequence of Shannon’s monotonicity result (Theorem 5.6 above) is

that the convergence in the central limit theorem is monotonic. The Central Limit

Theorem (CLT) states that:

Theorem 5.9 [Central Limit Theorem (CLT)] — Let {X1, X2, . . .} be independent

identically distributed copies of a zero-mean random variable X with variance σ2
X ,

148



and let Yn be the normalized running-sum defined by

Yn =
X1 +X2 + . . .+Xn√

n
. (5.56)

Then, Yn converges in distribution to a zero-mean Gaussian random variable XG with

variance Var(XG) , σ2
X , as n→∞. Hence, limn→∞H(Yn) = H(XG) = 1

2
ln(2πeσ2

X).

The monotonicity result (Theorem 5.6) proves that H(Yn) increases monotonically

as n increases, but the CLT (Theorem 5.7) says that H(Yn) converges as n increases

without bound, and converges to the Gaussian random variable with the same vari-

ance as X.

In the quantum case, we have yet to prove our conjectured monotonicity result

(Conjecture 5.7). However we can prove that von Neumann entropy is monotonic

in n, for n ∈
{

1, 2, 4, . . . , 2k, . . .
}

(Theorem 5.8). We will show below that the von

Neumann entropy S(ρ̂b
2k

) in Theorem 5.8 also converges as n = 2k increases without

bound – like the Shannon entropy in the classical case – and converges to the von

Neumann entropy of a single-mode zero-mean Gaussian state with the same second

order moments as the zero-mean single-mode state ρ̂a. To state it more precisely:

Theorem 5.10 [Quantum Central Limit Theorem (QCLT): Shapiro, 2008] — Let

{â1, â2, . . .} be independent modes in identical zero-mean states ρ̂ai ≡ ρ̂a. Let us

define

b̂n =
â1 + â2 + . . .+ ân√

n
. (5.57)

Then, the state ρ̂bn converges to the single-mode zero-mean Gaussian state ρ̂G with co-

variance matrix Kρ̂G = Ka as n→∞. Hence, limn→∞ S(ρ̂bn) = S(ρ̂G) = g(
√
|Kρ̂G|−

1/2).

Proof — From the independence of the modes âi, 1 ≤ i ≤ n, we have

χ
ρ̂bn
W (ζ) =

[
χρ̂aW

(
ζ√
n

)]n
. (5.58)

Expressing the Wigner characteristic functions in terms of the real and imaginary
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parts of ζ = ζ1 + jζ2, we have

ln
[
χ
ρ̂bn
W (ζ)

]
= n ln

[
χρ̂aW

(
ζ√
n

)]
(5.59)

= n ln

[
〈exp

(
−2jζ1â2√

n
+

2jζ2â1√
n

)
〉ρ̂a
]
. (5.60)

Note that χρ̂aW (0, 0) = 1 and that we are given 〈â〉 = 0. For a function f(x, y), such

that f(0, 0) = 1, we have the following Taylor series expansion for ln(f(x, y)) around

(x, y) ≡ (0, 0):

ln(f(x, y)) = xfx(0, 0) + yfy(0, 0) +
1

2!

[
x2(fxx(0, 0)− fx(0, 0)2)

+xy(fxy(0, 0)− fx(0, 0)fy(0, 0) + fyx(0, 0)) + y2(fyy(0, 0)− fy(0, 0)2)
]

+h.o.t., (5.61)

where using which we expand ln
[
χ
ρ̂bn
W (ζ)

]
= n ln

[
χρ̂aW

(
ζ√
n

)]
around (ζ1, ζ2) = (0, 0)

by evaluating all the first and second order partial derivatives of χρ̂aW (ζ1, ζ2). We

obtain the following:

ln
[
χ
ρ̂bn
W (ζ)

]
= n

[
−2

(
ζ2

1V2 + ζ2
2V1 − 2ζ1ζ2V12

n

)
+ o

(
1

n3/2

)]
, (5.62)

which implies that

χ
ρ̂bn
W (ζ) = exp

[
−2
(
ζ2

1V2 + ζ2
2V1 − 2ζ1ζ2V12

)
+ o

(
1

n1/2

)]
. (5.63)

Hence in the limit n→∞, χ
ρ̂bn
W (ζ) is identical to the Wigner characteristic function of

a Gaussian state whose covariance matrix equals that of the state ρ̂a (see Appendix A).

It can be shown that for a state ρ̂a with covariance matrix Ka, the von Neumann

entropy S(ρ̂a) is maximum when ρ̂a is Gaussian. Thus, the proof of the Monotonic-

ity Conjecture for n = 2k (Theorem 5.8) along with the Quantum Central Limit

Theorem (Theorem 5.10) suggest that the entropy S (ρ̂bn) increases monotonically as

n increases, and converges to the entropy of the Gaussian state ρ̂G with covariance
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matrix that is the same as that of ρ̂a, i.e. limn→∞ S (ρ̂bn) = g
(√
|Ka| − 1

2

)
.
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Chapter 6

Conclusions and Future Work

In this chapter, we summarize the accomplishments of the thesis, and make sugges-

tions for future work.

6.1 Summary

Classical information theory was born with Claude Shannon’s seminal 1948 paper [2],

in which he derived the ultimate limits to data rates at which reliable communications

can be achieved over a channel. It took almost half a century of painstaking research

to come up with error-correcting codes that actually approach operating near the

Shannon bound [74]. The past 40 years have also witnessed tremendous growth in

the complexity and power of digital computing, and with the advent of nanoscale

technologies modern-day digital computing chips are coming close to reaching their

physical limits imposed by quantum mechanics. The advent of Shor’s factoring al-

gorithm [75] and some other quantum algorithms that were discovered in the past

decade, has shown us that the interesting though somewhat counter-intuitive impli-

cations of the quantum nature of matter can be potentially used to our advantage

in performing computing and communications tasks, and can solve some problems

efficiently that have no known efficient classical solutions.

The primary motivation behind this thesis derives from the overwhelming interest

in today’s communications and information theory communities in pursuing the quan-
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tum parallel of the half a century of work on information theory, error-control coding

and the theory of digital communications that began with Shannon’s work. Quan-

tum information science has seen several advances in the past decade, and we already

understand fairly well the information theory behind sending classical data reliably

over point-to-point quantum communication channels, i.e., encoding classical data by

modulating the quantum states of carrier particles of the medium. What is less well

understood is the information theory behind sending classical data in multiple-user

settings, over point-to-point quantum channels with feedback, over fading channels,

over channels in which the transmitter and receiver have multiple antennas, sending

quantum data reliably over quantum channels, etc. Peter Shor and Seth Lloyd have

shown that the maximum of a quantity called coherent information of a channel is the

maximum achievable data rate, in qubits per channel use, at which quantum informa-

tion can be transmitted reliably over a quantum channel by appropriately encoding

and decoding the quantum information [76, 77].

The performance of communication systems that use electromagnetic waves to

carry the information are ultimately limited by noise of quantum-mechanical ori-

gin. At optical frequencies the quantum-mechanical effects are fairly pronounced and

perceivable, and shot-noise-limited semiclassical photo-detection theory falls short of

explaining the measurement statistics obtained by standard optical receivers detect-

ing non-classical states of light. Thus, determining the ultimate classical information

carrying capacity of optical communication channels requires quantum-mechanical

analysis to properly account for the bosonic nature of optical waves. Recent research

by several theorists in our group and by several others, has established capacity

theorems for point-to-point bosonic channels with additive thermal noise, under the

presumption of a minimum output entropy conjecture for such channels [55]. Towards

the beginning of this thesis, we drew upon our work on the capacity of the point-

to-point lossy bosonic channel to evaluate the optimum capacity of the free-space

line-of-sight optical communication channel with Gaussian-attenuation transmit and

receive apertures. Optimal power allocation across all the spatio-temporal modes was

studied, in the far and near-field propagation regimes. We also compared and estab-

154



lished the gap between the ultimate capacity and date rates that can be achieved by

using classical encoding states and structured receiver measurements.

The latter part of this the was an attempt to further the pursuit of the ultimate

classical information capacity of bosonic channels, albeit in the multiple-user setting;

particularly for the case in which one transmitter sends independent streams of bits

to more than one receiver, viz., the broadcast channel. We drew upon recent work

on the capacity region of two-user degraded quantum broadcast channels to establish

ultimate capacity-region theorems for the bosonic broadcast channel, under the pre-

sumption of another conjecture on the minimum output entropy of bosonic channels.

We also generalized the degraded broadcast channel capacity theorem to the case of

more than two receivers, and we proved that if the above conjecture is true, the rate

region achievable using a coherent-state encoding with optimal joint-detection mea-

surement at the receivers would in fact be the ultimate capacity region of the bosonic

broadcast channel with additive thermal noise and loss, and with an arbitrary number

of receivers. In an attempt to the prove the minimum output entropy conjectures, we

realized that these conjectures, restated for the Wehrl-entropy measure instead of von

Neumann entropy, could all be shown to be immediate consequences of the entropy

power inequality (EPI) – a very well known inequality in classical information the-

ory, primarily used in proving coding-theorem converses for Gaussian channels. The

upshot of the equivalence established between the EPI and the Wehrl-entropy con-

jectures, was our realization that an EPI-like inequality, restated in terms of the von

Neumann entropy measure, would imply all the minimum output entropy conjectures

that lie at the heart of several capacity results for bosonic communication channels.

We therefore conjectured the entropy photon-number inequality (EPnI) in analogy

with the EPI, that connects von Neumann entropies and mean photon-numbers of

states of bosonic modes that linearly interact with one another. We showed that the

minimum output entropy conjectures can be derived as special cases of the EPnI. We

conjectured two forms of the EPnI that we proved to be equivalent to each other.

We also conjectured a third form of the EPnI in analogy with the EPI, which the

former two forms can be readily shown to imply, but we have not been able to show
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the converse. We proved the EPnI under a product-Gaussian-state restriction, and

proved the third form of the EPnI for the special case in which the input states mix

in equal proportions (i.e. η = 1/2). This proof of the third form of EPnI for η = 1/2

instigated investigation into the monotonicity properties of information, which is – in

its classical form – very closely tied with the EPI. In analogy with an old conjecture

by Shannon, on the monotonicity of Shannon entropy of the sum of i.i.d. random vari-

ables, we proposed a quantum version of the monotonicity conjecture. We proved the

conjecture but only for the special case in which the number of independent modes

in the mixture increment as powers of 2, i.e. n = 2k. We also proved a quantum

version of the central limit theorem which along with the proof of the monotonicity

conjecture for n = 2k provides strong evidence in favor of the quantum version of the

monotonicity conjecture.

6.2 Future work

In what follows, we describe some of the primary open problems in line with the

research done in this thesis.

6.2.1 Bosonic fading channels

In realistic unguided-propagation scenarios, transmission loss in the propagation

medium is frequency-dependent, time-varying and is of probabilistic nature. Our

work on the capacity of wideband free-space optical channels in Chapter 2 takes into

consideration only diffraction-limited propagation and additive ambient noise from

a thermal environment. Atmospheric optical transmission suffers from a variety of

other propagation problems, many of which are time-varying and random, e.g., the

fading that arises from the refractive-index fluctuations known as atmospheric tur-

bulence. Drawing on our work on the lossy bosonic channel with fixed transmission

loss, an outage-capacity model can be set up for the slow-fading bosonic channel, i.e.,

in the case in which the transmissivity changes slowly over time in comparison to the

data rate. Contrary to the case of fixed transmission loss, there is no transmission
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rate R, for the fading channel for which the probability of error can be driven down

arbitrarily close to zero. So, in the strict sense, the capacity of the slow-fading chan-

nel is zero. An ε-outage capacity is the maximum rate at which one can transmit

data reliably over the channel successfully, on at least a 1 − ε fraction of the total

number of large blocks of channel uses in which transmission is attempted. For the

fast-fading case, similar to the classical scenario, it is not unreasonable to suspect

that it will be meaningful to assign a positive capacity to the channel in the usual

sense, in the limit that codewords have a block-length that is much longer than the

coherence time of the fade. The way one would find the fast-fading capacity, say, for

the lossy bosonic channel using coherent-state inputs under a mean photon number

constraint of N̄ photons per mode at the input, would be by maximizing the Holevo

quantity

Cfast−fade−coh = max
p(α):〈|α|2〉≤N̄

χ

(
p(α),

∫
C

∫ 1

0

pη(x)|
√
xα〉〈
√
xα|dxd2α

)
, (6.1)

where χ(p(α), ρ̂α) = S(
∑

α p(α)ρ̂α)−
∑

α p(α)S(ρ̂α) is the Holevo information for the

ensemble {p(α), ρ̂α}, S(ρ̂) = −Tr(ρ̂ log ρ̂) is the von Neumann entropy of the quantum

state ρ̂, and pη(x) is the probability distribution of the fast-fading transmissivity

parameter η of the channel. Even though the above is an achievable rate using

coherent (classical) states, for a realistic fading model such as Rayleigh or Rician

fading, whether or not there would be any capacity advantage by using non-classical

states for encoding, is yet to be answered.

6.2.2 The bosonic multiple-acess channel (MAC)

It was shown by Yen and Shapiro in [11] that coherent states achieve the sum-rate

capacity for the bosonic MAC with two transmitters and one receiver. It was also

shown that at the two corners of the capacity region of the two-user MAC (i.e., when

the transmission rate for one of the two transmitters is zero), using non-classical

(squeezed) states yields substantial rate-benefit over using classical (coherent) states

for encoding. Finding the best achievable rate region for the bosonic MAC for two or
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more users, and the best encoding states and measurement that would achieve that

capacity, is still an open problem.

6.2.3 Multiple-input multiple-output (MIMO) or multiple-

antenna channels

Under the presumption of a minimum output entropy conjecture, we found in this

thesis the ultimate capacity region for the bosonic broadcast channel with additive

thermal noise, and an arbitrary number of receivers. The degraded nature of the

bosonic broadcast channel is instrumental in finding the capacity region, using ex-

tensions of known results on degraded quantum broadcast channels [52] to infinite

dimensional Hilbert spaces. Multiple Input Multiple Output (MIMO) channels are

those in which each transmitter and receiver may have more than one antenna. A

MIMO channel can be a point-to-point, multiple-access, or a broadcast channel based

on how many physical transmitters and receivers it has. The famous classical exam-

ple of a degraded broadcast channel is the Gaussian-noise broadcast channel, whose

capacity region was found by Bergmans [49]. The capacity region of the MIMO Gaus-

sian broadcast channel, however,, was a long-standing open problem because of the

non-degraded nature of the MIMO Gaussian channel. Very recently, the capacity of

the MIMO additive-Gaussian-noise broadcast channel was found by Weingarten et.

al. [78]. Finding the classical capacity region for the general bosonic MIMO broadcast

channel remains an open problem.

6.2.4 The Entropy photon-number inequality (EPnI) and its

consequences

The Entropy Power Inequality (EPI) from classical information theory is widely used

in coding theorem converse proofs for Gaussian channels. By analogy with the EPI,

we conjectured in this thesis a quantum version of the EPI, which we call the En-

tropy Photon-number Inequality (EPnI). We showed that the three minimum output

entropy conjectures cited in Chapter 4 are simple corollaries of the EPnI. Hence, prov-
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ing the EPnI would immediately establish key results for the capacities of bosonic

communication channels, including (i) the classical capacity of the single-user lossy

bosonic channel with additive thermal noise, (ii) the classical capacity region of the

general multiple-receiver bosonic broadcast channel, – and thanks to recent work by

Graeme Smith on privacy capacity of degradable channels [60] – (iii) the privacy ca-

pacity of the bosonic wiretap channel, and (iv) the ultimate quantum capacity of the

lossy bosonic channel1.

Even though the EPnI’s being a stronger conjecture might make it harder to prove

than the less powerful minimum output entropy conjectures, the huge literature on

various wave to prove the EPI may potentially help in trying to prove the EPnI. For

example, proving the EPnI for integer-ordered Renyi entropy might be a good first

step as the Renyi entropy is simpler to deal with analytically than the von Neumann

entropy.

6.3 Outlook for the Future

The ultimate aim of research on information theory for bosonic channels is to char-

acterize completely the ultimate rate-limits of communications over the most general

quantum network. In particular, this goal entails developing a complete theory of

continuous-variable communications, error-correction and cryptography (for instance,

CV quantum key distribution) for transmission of information over quantum optical

channels, at rates approaching the ultimate information theoretic limits. Toward that

end we need to develop a theoretical framework with which we might be able to port

known robust block and convolutional qubit error-correcting codes (and design new

codes) for bosonic channels where the quantum state of every field mode lives in an

infinite dimensional Hilbert space, as opposed to qubit spaces for which the theory

of quantum error-correcting codes (QECC) has been built. In classical communica-

tions, by sampling and quantizing band-limited signals, it is possible to use bit-error

1The ultimate quantum capacity of the lossy bosonic channel has been found by Wolf. et. al. by
a technique that doesn’t make use of any unproven conjecture. Wolf’s capacity result agrees with
ours and hence lends more evidence to the truth of the second minimum output entropy conjecture.
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correcting block and convolutional codes on analog continuous-time channels, such as

the band-limited additive white Gaussian noise (AWGN) channel. Plots of symbol-

error probability versus channel signal-to-noise ratio (SNR) quantify the performance

of specific codes over a given channel, in terms of the distance from the theoretical

bound imposed by Shannon. For instance, state-of-the-art turbo codes [74] with soft-

input soft-output (SISO) iterative decoding are known to perform within 0.1 dB of

the Shannon bound at a probability of symbol error of 10−5. It would be nice to

be able to make a similar statement about the performance of, say, a quantum con-

volutional code (QCC) over a lossy bosonic channel with additive thermal noise for

transmission of quantum information, e.g.,“The fidelity of decoding a certain QCC

over a lossy thermal noise channel increases as a function of the channel SNR, and

is within 0.1 dB of the theoretical bound set by the quantum coherent information”.

Continuous-variable quantum key distribution is a topic on which a great deal of work

has been done recently [79], but more work is still needed to find the best secret key

rates, and the optimal protocols to achieve those rates over bosonic channels. Some

work has been done by Gottesman, Kitaev, and Preskill [80] on encoding qubit states

into continuous variable field modes.

Quantum information processing has seen a huge surge of interest in the past

decade, largely in academia but increasingly in industry. Whereas making a quan-

tum computer crack a 128-bit RSA encryption code using Shor’s algorithm is still

a distant dream, obtaining better data rates over lasercom channels for terrestrial

and deep-space applications using quantum modulation and detection schemes, or

obtaining progressively more secure communications using reliable quantum key dis-

tribution (QKD) systems over existing optical channels with novel encoding schemes

and quantum measurement, seem a lot more realizable in a relatively short time

frame.
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Appendix A

Preliminaries

This appendix will provide a brief background on quantum mechanics, quantum op-

tics, and quantum information theory that will be useful in reading this thesis.

A.1 Quantum mechanics: states, evolution, and

measurement

It was found in the early 1900s by Max Planck that the energy of electromagnetic

waves must be described as consisting of small packets of energy or ‘quanta’ in order

to explain the spectrum of black-body radiation. He postulated that a radiating body

consisted of an enormous number of elementary electronic oscillators, some vibrating

at one frequency and some at another, with all frequencies from zero to infinity being

represented. The energy E of any one oscillator was not permitted to take on any

arbitrary value, but was proportional to some integral multiple of the frequency f of

the oscillator, i.e., E = hf , where h = 6.626 × 10−34 Joule seconds is the Planck’s

constant. In 1905, Albert Einstein used Planck’s constant to explain the photoelectric

effect by postulating that the energy in a beam of light occurs in concentrations that

he called light quanta, that later on came to be known as photons. This led to a

theory that established a duality between subatomic particles and electromagnetic

waves in which particles and waves were neither one nor the other, but had certain
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properties of both.

The foundations of quantum mechanics date from the early 1800s, but the real

beginnings of modern quantum mechanics date from the work of Max Planck in

the 1900s. The term “quantum mechanics” was first coined by Max Born in 1924.

The acceptance of quantum mechanics by the general physics community is due to

its accurate prediction of the physical behavior of systems, particularly of systems

showing previously unexplained phenomena in which Newtonian mechanics fails, such

as the black body radiation, photoelectric effect, and stable electron orbits. Most

of classical physics is now recognized to be composed of special cases of quantum

mechanics and/or relativity theory. Paul Dirac brought relativity theory to bear on

quantum physics, so that it could properly deal with events that occur at a substantial

fraction of the speed of light. Classical physics, however, also deals with gravitational

forces, and no one has yet been able to bring gravity into a unified theory with the

relativized quantum theory.

We will provide below a very brief account on the mathematical formulation of

quantum mechanics, that will be a useful foundation for the material covered in this

thesis. For detailed study of quantum mechanics, the reader is referred to one of the

many popular texts on the subject, such as [81] and [82].

A.1.1 Pure and mixed states

A pure state in quantum mechanics is the entirety of information that may be known

about a physical system. Mathematically, a pure state is a unit length vector, |ψ〉

(known as a ‘ket’ in Dirac notation) that lives in a complex Hilbert space H of

possible states for that system. Expressed in terms of a set of complete basis vectors

{|φn〉} ∈ H, |ψ〉 =
∑

n cn|φn〉 becomes a column vector of (a possibly infinite) set

of complex numbers cn, where
∑

n |cn|2 = 1. With each pure state |ψ〉 we associate

its Hermitian conjugate vector (known as a ‘bra’) 〈ψ|, which is a row vector when

expressed in a basis of H. The simplest example of a pure state is the state of a

two-level system also known as a ‘qubit’, which is the fundamental unit of quantum

information, in analogy with a ‘bit’ of classical information. A qubit lives in the two-
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dimensional complex vector space C2 spanned by two orthonormal vectors |0〉 and

|1〉, and can be expressed as |ψ〉 = α|0〉+ β|1〉, where α, β ∈ C, and |α|2 + |β|2 = 1.

A mixed state in quantum mechanics represents classical (statistical) uncertainty

about a physical system. Mathematically, a mixed state is represented by a ‘density

matrix’ (or a density operator) ρ̂, which is a positive definite, unit-trace operator in

H. The canonical form of a density matrix is

ρ̂ =
∑
k

pk|ψk〉〈ψk|, (A.1)

for any collection of pure states {|ψk〉}, and
∑

k pk = 1. The mixed state ρ̂ can be

thought of as a statistical mixture of pure states |ψk〉, where the projection |ψk〉〈ψk|

is the density operator for the pure state |ψk〉, though it is worth pointing out that

the decomposition of a mixed state ρ̂ as a mixture of pure states (A.1) is by no means

unique. As we know, a positive definite operator ρ̂ must have a spectral decomposition

ρ̂ =
∑

i λi|λi〉〈λi|, in terms of the eigenkets |λi〉, with the unit-trace condition on ρ̂

requiring that the eigenvalues λi must form a probability distribution.

A.1.2 Composite quantum systems

We shall henceforth use symbols such as A,B,C to refer to quantum systems, withHA

referring to the Hilbert space whose unit vectors are the pure states of the quantum

system A. Given two systems A and B, the pure states of the composite system

AB correspond to unit vectors in HAB ≡ HA ⊗ HB. We use superscripts on pure

state vectors and density matrices to identify the quantum system with which they

are associated. For a multipartite density matrix ρ̂ABC , we use the notation ρ̂AB =

TrC ρ̂
ABC to denote the partial trace over one of the constituent quantum systems.

Let
{
|φm〉A

}
and

{
|φn〉B

}
represent sets of basis vectors for the state spaces HA

andHB of quantum systems A and B respectively. Pure states |ψ〉AB and mixed states

ρ̂AB of the composite system AB are defined similarly as above with an underlying
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set of basis vectors |φmn〉AB , |φm〉A ⊗ |φn〉B ∈ HAB, viz.,

|ψ〉AB =
∑
mn

cmn|φmn〉AB, with
∑
mn

|cmn|2 = 1, and (A.2)

ρ̂AB =
∑
k

pk|ψk〉ABAB〈ψk|, with pk ≥ 0,
∑
k

pk = 1, (A.3)

for pure states |ψk〉AB ∈ HAB.

A Pure state |ψ〉AB ∈ HAB of a composite system AB can be classified into:

1. A product state — when |ψ〉AB can be decomposed into a tensor product of two

pure states in A and B, i.e. |ψ〉AB = |ψ〉A ⊗ |ψ〉B.

2. An entangled state — when |ψ〉AB cannot be expressed as a tensor product of

two pure states in A and B (for instance, the state (|0〉|0〉+ |1〉|1〉)/
√

2 is a pure

entangled state of a two-qubit system).1

A mixed state ρ̂AB ∈ B(HAB) of a composite system2 AB can be classified into:

1. A product state — when ρ̂AB can be decomposed into a tensor product of two

states in A and B, i.e. ρ̂AB = ρ̂A ⊗ ρ̂B, with at least one of ρ̂A or ρ̂B being a

mixed state.

2. A classically-correlated state — when ρ̂AB is not a product state, but can be

expressed nevertheless as a statistical mixture of product pure states of the

systems A and B, i.e. ρ̂AB =
∑

k pk(|αk〉A ⊗ |βk〉B)(A〈αk| ⊗ B〈βk|), for any set

of pure states |αk〉 ∈ HA and |βk〉 ∈ HB, with pk ≥ 0 and
∑

k pk = 1.

3. An entangled state — when ρ̂AB is a mixed state of the composite system AB

which is neither a product state nor a classically-correlated state, i.e. the joint

state of the composite system has a correlation between the systems A and B

1Entanglement is inherently a quantum-mechanical property of composite physical systems and
is stronger than any probabilistic correlation between the constituent systems that classical physics
might permit. The individual states of the systems A and B, when their joint state is pure and
entangled, are mixed states, which are obtained by taking a partial trace over the other system, i.e.
ρ̂A = TrB(ρ̂AB) = TrB(|ψ〉ABAB〈ψ|) ≡

∑
n
B〈φn|ρ̂AB |φn〉B , and vice versa.

2B(H) is the set of all bounded operators in H.
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which is stronger than any (classical) probabilistic correlation. For instance,

consider equal mixtures of the Bell states |α〉 = (|0〉|0〉+ |1〉|1〉)/
√

2 and |β〉 =

(|1〉|0〉 + |0〉|1〉)/
√

2. This is a mixed entangled state, (|α〉〈α| + |β〉〈β|)/2, of a

two-qubit system.3

A.1.3 Evolution

The time evolution of a closed system is defined in terms of the unitary time-

evolution operator Û(t, t0) = exp(−iĤ(t − t0)/~), where Ĥ is the time-independent

Hamiltonian of the closed system. The evolution of the system when it is in a pure

state |ψ(t0)〉 at time t0, and when it is in a mixed state ρ̂(t0) at time t0 are respectively

given by:

|ψ(t)〉 = Û(t, t0)|ψ(t0)〉, and (A.4)

ρ̂(t) = Û(t, t0)ρ̂(t0)Û †(t, t0). (A.5)

The time evolution of a general open system, i.e. a system that interacts with

an environment is not a unitary evolution in general. The joint state of the system

and the environment is a closed system and hence must follow a unitary evolution as

stated above. But when we look at the evolution of the state of the system alone, it is

non-unitary and is represented by what we call a trace-preserving, completely-positive

(TPCP) map. All quantum channels that we study in this thesis are TPCP maps

in general. A TPCP map E takes density operator ρ̂in ∈ B(Hin) to density operator

ρ̂out ∈ B(Hout), and must satisfy the following properties:

(i) E preserves the trace, i.e., Tr(E(ρ̂)) = 1 for any ρ̂in ∈ B(Hin).

3We reiterate that if a mixed state ρ̂AB is not decomposable into a tensor product of mixed
states, i.e. ρ̂AB 6= ρ̂A ⊗ ρ̂B , the joint state ρ̂AB is NOT necessarily entangled, and it could just
have classical correlations between the two constituent systems. There has been a long ongoing
debate about whether the experimentally demonstrated enhancement in imaging characteristics of
optical coherence tomography (OCT) systems using the entangled bi-photon state generated by
spontaneous parametric downconversion (SPDC), should really be attributed to the entanglement
property of the photon pairs. It has been shown that almost all performance enhancements obtained
by using Gaussian entangled bi-photon imagers over thermal-light sources are also obtainable by
using classically-correlated Gaussian states with phase-sensitive correlations. See [69] for details.
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(ii) E is a convex linear map on the set of density operators ρ̂in ∈ B(Hin), i.e.

E(
∑

k pkρ̂k) =
∑

k pkE(ρ̂k), for any probability distribution {pk}.

(iii) E is a completely positive map. This means that E maps positive operators in

B(Hin) to positive operators on B(Hout), and, for any reference system R and

for any positive operator ρ̂ ∈ B(Hin⊗R), we have that (E ⊗ IR)ρ̂ ≥ 0 where ÎR

is the identity operator on R.

It can be shown that any TPCP map can be expressed in an operator sum representa-

tion [6], E(ρ̂) =
∑

k Âkρ̂Â
†
k, where the Kraus operators Ak must satisfy

∑
k Â
†
kÂk = Î

in order to preserve the trace of E(ρ̂).

A.1.4 Observables and measurement

In quantum mechanics, each dynamical observable (for instance position, momentum,

energy, angular momentum, etc.) is represented by a Hermitian operator M̂ . Being a

Hermitian operator, M must have a complete orthonormal set of eigenvectors {|φm〉}

with associated real eigenvalues φm that satisfy M̂ |φm〉 = φm|φm〉. The outcome of

a measurement of M̂ on a quantum state ρ̂ always leads to an eigenvalue φn with

probability, p(n) = 〈φn|ρ̂|φn〉. Given that the measurement result obtained is φn,

the post-measurement state of the system is the eigenstate |φn〉 corresponding to the

eigenvalue φn. This phenomenon is known as the “collapse” of the wave function.

Thus, if the system is in an eigenstate of a measurement operator M̂ to begin with,

the measurement result is known with certainty and the measurement of M̂ doesn’t

alter the state of the system. The Hermitian operator Ĥ corresponding to measuring

the total energy of a closed quantum system is known as the Hamiltonian for the

system. The measurement of an observable as described above is also known as a

projective measurement, as the measurement projects the state onto an eigenspace of

the measurement operator.

In analogy to the evolution of an open system described above, a more general

measurement on a system entails a projective measurement performed on the joint

state of the system in question along with an auxiliary environment prepared in some
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initial state. This general measurement scheme can be described by a set of positive

semi-definite operators
{

Π̂m

}
that satisfy

∑
m Π̂m = Î. If a measurement is per-

formed on a quantum state ρ̂, the outcome of the measurement is n with probability

p(n) = Tr(ρ̂Π̂n). The above description of a quantum measurement is known as the

positive operator-valued measure (POVM) formalism and the operators
{

Π̂m

}
are

known as POVM operators. The POVM operators by themselves do not determine

a post-measurement state. We use the POVM formalism throughout the thesis.

A.2 Quantum entropy and information measures

Amongst various measures of how mixed a quantum state ρ̂ is, the information-

theoretically most relevant one is the von Neumann entropy S(ρ̂), which is defined

as

S(ρ̂) = −Tr(ρ̂ ln ρ̂) (A.6)

= H({λn}), (A.7)

where H({λn}) ≡ −
∑

n λn lnλn is the Shannon entropy of the eigenvalues λn of

ρ̂. Hence, it is obvious that the von Neumann entropy of a pure state is zero, i.e.

S(|ψ〉〈ψ|) = 0. Most of quantum information theory is built around the von Neumann

entropy measure of a quantum state. Below, we list a few important properties of

von Neumann entropy:

A.2.1 Data Compression

In analogy with the role that Shannon entropy plays in classical information theory,

it can be shown that S(ρ̂A) is the optimal compression rate on the quantum system

A in the state ρ̂A ∈ B(HA). In other words, for large n, the density matrix ρ̂A⊗n

has nearly all of its support on a subspace of H⊗nA (called the typical subspace) of

dimension 2nS(ρ̂A). We will henceforth use the notation S(A) interchangeably with

S(ρ̂A) to mean von Neumann entropy of the system A (or the von Neumann entropy
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of the state ρ̂A). If A is a classical random variable, we use the function H(A) to

denote the Shannon entropy of A.

A.2.2 Subadditivity

The joint entropy S(A,B) of a bipartite system AB is always upper bounded by the

sum of the entropies of the individual systems A and B, i.e.

S(A,B) ≤ S(A) + S(B), (A.8)

with equality when the joint state of AB is a product state, i.e. ρ̂AB = ρ̂A ⊗ ρ̂B.

Another well-known inequality, known as the strong subadditivity of von Neumann

entropy is given by

S(A,B,C) + S(B) ≤ S(A,B) + S(B,C), (A.9)

with equality when the tripartite system ABC is in a product state, i.e. ρ̂ABC =

ρ̂A ⊗ ρ̂B ⊗ ρ̂C .

A.2.3 Joint and conditional entropy

The entropy of a bipartite system AB in a joint state ρ̂AB is defined as S(A,B) =

−Tr(ρ̂AB ln ρ̂AB). Even though there is no direct definition of quantum conditional

entropy as in classical information theory, one may define a conditional entropy (in

analogy to its classical counterpart) as S(A|B) = S(A,B)−S(B). The quantum con-

ditional entropy can be negative, contrary to its classical counterpart4. Furthermore,

conditioning can only reduce entropy, i.e., S(A|B,C) ≤ S(A|B), and discarding a

quantum system can never increase quantum mutual information (see Section A.2.5),

i.e. I(A;B) ≤ I(A;B,C).

4For the bipartite two-qubit Bell state |ψ〉AB = (|00〉 + |11〉)/
√

2, S(A|B) = S(A,B) − S(B) =
0− 1 = −1. The joint state of the system AB is a pure state, hence S(A,B) = 0, whereas the state
of system B, ρ̂B = TrA(ρ̂AB) = (|0〉〈0|+ |1〉〈1|)/2 is a mixed state with entropy S(B) = 1.

168



A.2.4 Classical-quantum states

We define here the notion of classical-quantum states and classical-quantum channels.

To any classical set X , we associate a Hilbert space HX with orthonormal basis{
|x〉X

}
x∈X , so that for any classical random variable X which takes the values x ∈ X

with probability p(x), we may write a density matrix

ρ̂X =
∑
x

p(x)|x〉〈x|X ≡
⊕
x

p(x)

which is diagonal in that basis. An ensemble of quantum states
{
ρ̂Bx , p(x)

}
can be

associated, in a similar way, to a block diagonal classical-quantum (cq) state for the

system XB:

ρ̂XB =
∑
x

p(x)|x〉〈x|X ⊗ ρ̂Bx ≡
⊕
x

p(x)ρ̂Bx , (A.10)

where X is a classical random variable and B is a quantum system, with conditional

density matrices ρ̂Bx . Then the conditional entropy S(B|X) is then,

S(B|X) =
∑
x

p(x)S(ρ̂Bx ). (A.11)

A.2.5 Quantum mutual information

The quantum mutual information I(A;B) of a bipartite system AB is defined in

analogy to Shannon mutual information as:

I(A;B) = S(A) + S(B)− S(A,B) (A.12)

= S(A)− S(A|B) (A.13)

= S(B)− S(B|A). (A.14)
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A bipartite product mixed state ρ̂A⊗ ρ̂B has zero quantum mutual information. The

quantum mutual information of a cq-state (A.10) is given by

I(X;B) = S(B)− S(B|X) (A.15)

= S

(∑
x

p(x)ρ̂Bx

)
−
∑
x

p(x)S(ρ̂Bx ) (A.16)

, χ
(
p(x), ρ̂Bx

)
, (A.17)

where χ
(
p(x), ρ̂Bx

)
is defined as the Holevo information of the ensemble of states{

p(x), ρ̂Bx
}

. This equivalence between the input-output quantum mutual informa-

tion I(X;B) of a cq-system and the Holevo information χ
(
p(x), ρ̂Bx

)
will be used

extensively in the thesis.

A.2.6 The Holevo bound

Suppose Alice chooses a classical message index x ∈ X with probability p(x) and

encodes x by preparing a quantum state ρ̂Ax . She sends her state to Bob through a

channel E which then produces a state ρ̂Bx = E(ρ̂Ax ) at Bob’s end, conditioned on the

classical index x. In order to obtain information about x, Bob measures his state ρ̂Bx

using a POVM
{

Π̂y

}
. The probability that the outcome of his POVM measurement

is y given Alice sent x is given by p(y|x) = Tr(ρ̂Bx Π̂y). Using X and Y to denote the

random variables of which x and y are instances, we know from Shannon information

theory that, when Bob uses the POVM
{

Π̂y

}
, the maximum rate at which Alice can

transmit information to Bob by a suitable encoding and decoding scheme is given by

the maximum of the mutual information I(X;Y ) over all input distributions p(x).

Holevo, Schumacher and Westmoreland showed [27, 28, 29] that for a given prior p(x)

and POVM
{

Π̂y

}
, the single-use Holevo information is an upper bound on Shannon

mutual information,

I(X;Y ) ≤ χ
(
p(x), ρ̂Bx

)
, (A.18)
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which is known as the Holevo bound. Maximizing over p(x) on both sides, one gets

max
p(x)

I(X;Y ) ≤ max
p(x)

χ
(
p(x), E(ρ̂Ax )

)
. (A.19)

As the right-hand side does not depend on the choice of the POVM elements
{

Π̂y

}
,

the inequality is preserved by a further maximization of the left hand side over the

measurements,

max
p(x),{Π̂y}

I(X;Y ) ≤ max
p(x)

χ
(
p(x), E(ρ̂Ax )

)
, or (A.20)

C1,1(E) ≤ C1,∞(E), (A.21)

where C1,1(E) is the maximum value of the Shannon Information I(X;Y ) optimized

over all possible symbol-by-symbol POVM measurements
{

Π̂y

}
. C1,∞(E) on the other

hand, is the maximum value of the Shannon Information I(X;Y ) optimized not only

over all possible symbol-by-symbol POVM measurements, but also over arbitrary

multiple-channel-use POVM measurements. As we will see below, C1,∞(E) is the

capacity of the channel E for transmission of classical information if Alice is limited

to send single-channel-use symbols ρ̂Ax and Bob may choose any joint measurement

at the receiver.

A.2.7 Ultimate classical communication capacity: The HSW

theorem

The classical capacity of a quantum channel is established by random coding argu-

ments akin to those employed in classical information theory. A set of symbols {j}

is represented by a collection of input states {ρ̂j} that are selected according to some

prior distribution {pj}. The output states {ρ̂′j} are obtained by applying the chan-

nel’s TPCP map E(·) to these input symbols. According to the HSW Theorem, the
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capacity of this channel, in nats per use, is

C = sup
n

(Cn,∞/n) = sup
n
{max
{pj ,ρ̂j}

[χ(pj, E⊗n(ρ̂j))/n]}, (A.22)

where Cn,∞ is the capacity achieved when coding is performed over n-channel-use

symbols and arbitrary joint-detection measurement is used at the receiver. The supre-

mum over n is necessitated by the fact that channel capacity may be superadditive,

viz., Cn,∞ > nC1,∞ is possible for quantum channels, whereas such is not the case for

classical channels. The HSW Theorem tells us that Holevo information plays the role

for classical information transmission over a quantum channel that Shannon’s mutual

information does for a classical channel.

Neither Eq. (A.17) nor Eq. (A.22) have any explicit dependence on the quan-

tum measurement used at the receiver, so that measurement optimization is implicit

within the HSW Theorem. To obtain the same capacity C by maximizing a Shannon

mutual information we can introduce a positive-operator-valued measure (POVM)

[6], representing the multi-symbol quantum measurement (a joint measurement over

an entire codeword) performed at the receiver. For example, if single-use encoding

is performed with priors {pj}, the probability of receiving a particular m-symbol

codeword, k ≡ (k1, k1, . . . , km), given that j ≡ (j1, j2, . . . , jm) was sent is

Pr( k | j ) ≡ Tr

{
Π̂k

[
m⊗
l=1

E(ρ̂jl)

]}
, (A.23)

where the POVM, {Π̂k}, is a set of Hermitian operators on the Hilbert space of

output states for m channel uses that resolve the identity. From { pj,Pr( k | j )} we

can then write down a Shannon mutual information for single-use encoding and m-

symbol codewords that must be maximized. Ultimately, by allowing for n-channel-

use symbols and optimizing over the priors, the signal states, and the POVM, we

would arrive at the capacity predicted by the HSW Theorem. Evidently, determining

capacity is easier via the HSW Theorem than it is via Shannon mutual information,

because one less optimization is required. However, finding a practical system that

172



can approach capacity will require that we pay attention to the receiver measurement.

A.3 Quantum optics

Classical electromagnetic (EM) waves in free space in the absence of free electrostatic

charge and current densities are governed by the following Maxwell’s equations5:

∇×E(r, t) = −µ0
∂H(r, t)

∂t
(A.24)

∇ · ε0E(r, t) = 0 (A.25)

∇×H(r, t) = ε0
∂E(r, t)

∂t
(A.26)

∇ ·µ0H(r, t) = 0, (A.27)

where E(r, t) and H(r, t) are the electric and magnetic field intensity vectors in free

space as a function of the 3D spatial coordinates r and time t. The permittivity (ε0)

and permeability (µ0) of free space are constants satisfying µ0ε0 = c−2, where c is the

speed of light in vacuum. General solutions to these equations can be obtained by

introducing a vector potentialA(r, t) defined by E = −∂A/∂t andH = (∇×A)/µ0.

By working in the Coulomb gauge (∇·A = 0), it is straightforward to show that

A(r, t) must satisfy the vector wave equation

∇2A(r, t)− 1

c2

∂2A(r, t)

∂t2
= 0. (A.28)

By using the method of separation of variables to solve for the complex vector poten-

tial, we may express A(r, t) = ql,σ(t)ul,σ(r) so that Eq. (A.28) is now expressed as

the decoupled mode equations

∇2ul,σ(r) +
ω2
l

c2
ul,σ(r) = 0, and (A.29)

d2ql,σ(t)

dt2
+ ω2

l ql,σ(t) = 0, (A.30)

5The development of field quantization in this section has been taken from the lecture notes of
MIT class 6.972, Fall 2002, taught by Prof. Jeffrey H. Shapiro.
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where Eq. (A.29) is the vector Helmholtz equation, Eq. (A.30) represents the dynamics

of a simple harmonic oscillator (SHO), and−ω2
l /c

2 is the separation constant for doing

the separation of variables. The spatial mode index l ≡ (lx, ly, lz) is a triplet of non-

negative integers (not all zero) and σ ∈ (0, 1) is a polarization mode index. Upon

solving with the simplest boundary conditions in 3D cartesian coordinates, i.e., the

V ≡ L× L× L cubical cavity, we obtain the following solutions,

ul,σ(r) =
1

L3/2
ej(kl·r)el,σ and (A.31)

ql,σ(t) = ql,σe
−jωlt, for t ≥ 0, (A.32)

where kl = (2πlx/L, 2πly/L, 2πlz/L) is the wave vector for the spatial mode l, satisfy-

ing kl·kl = (2π/L)2l·l = ω2
l /c

2. Let us renormalize the harmonic oscillator temporal

mode function ql,σ(t) as follows,

al,σ(t) =

√
ωl
2~
ql,σ(t) (A.33)

= al,σe
−jωlt, (A.34)

where al,σ(t) is a dimensionless complex-valued mode function. By taking the appro-

priate derivatives of the vector potential, we can compute the complex electric and

magnetic fields:

E(r, t) =
∑
l,σ

j

√
~ωl

2ε0L3

(
al,σe

−j(ωlt−kl·r) − a∗l,σej(ωlt−kl·r)
)
el,σ (A.35)

H(r, t) =
∑
l,σ

jc

√
~

2ωlµ0L3

(
al,σe

−j(ωlt−kl·r)

−a∗l,σej(ωlt−kl·r)
)
kl × el,σ. (A.36)
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The stored energy in the EM field in the cavity is given by

H =

∫
V

(
1

2
ε0E·E +

1

2
µ0H·H

)
dv, which simplifies to (A.37)

=
∑
l,σ

~ωl(a∗l,σal,σ). (A.38)

Note that the total energy is time independent as a∗l,σ(t)al,σ(t) is phase-insensitive.

The radiation field in Eqs. (A.35) and (A.36) is quantized by associating operators

âl,σ(t) with normalized SHO mode function al,σ(t), whose real and imaginary parts

are the normalized canonical position and momentum operators, i.e.,

âl,σ(t) = â1l,σ(t) + jâ2l,σ(t), (A.39)

where the quadrature operators of the same spatial mode must satisfy the canonical

commutation relation [â1l,σ, â2l,σ] = j/2. The field operator and its complex conjugate

for a pair of spatial modes must thus satisfy the commutation relation

[
âl,σ(t), â†

l′,σ′
(t)
]

= δl,l′δσ,σ′ . (A.40)

The quantized field operators and the Hamiltonian (the total energy operator) are

thus given by

Ê(r, t) =
∑
l,σ

j

√
~ωl

2ε0L3

(
âl,σe

−j(ωlt−kl·r) − â†l,σe
j(ωlt−kl·r)

)
el,σ (A.41)

Ĥ(r, t) =
∑
l,σ

jc

√
~

2ωlµ0L3

(
âl,σe

−j(ωlt−kl·r)

−â†l,σe
j(ωlt−kl·r)

)
kl × el,σ, (A.42)

Ĥ =
∑
l,σ

~ωl
2

[
âl,σâ

†
l,σ + â†l,σâl,σ

]
(A.43)

=
∑
l,σ

~ωl
[
â†l,σâl,σ +

1

2

]
(A.44)

=
∑
l,σ

~ωl
[
N̂l,σ +

1

2

]
, (A.45)
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where N̂l,σ , â†l,σâl,σ is the photon number operator for the mode indexed by (l, σ).

It is evident that from Eqs. (A.41) and (A.42) that the electric and magnetic field

operators can be written as the sum of a positive-frequency component and a complex-

conjugate negative-frequency component, i.e.,

Ê(r, t) = Ê
(+)

(r, t) + Ê
(−)

(r, t), (A.46)

Ĥ(r, t) = Ĥ
(+)

(r, t) + Ĥ
(−)

(r, t), (A.47)

where Ê
(−)

(r, t) = Ê
(+)†

(r, t) and Ĥ
(−)

(r, t) = Ĥ
(+)†

(r, t).

A.3.1 Semiclassical vs. quantum theory of photodetection:

coherent states

Let us assume that only one polarization is excited, the only excited modes are

+z going plane waves with wave-number ωl/c = kl = (2πl)/L; l ∈ {1, 2, . . .}, i.e.

lx = ly = 0, lz = l, impinging on an ideal photodetector. Also assume that the only

modes excited lie within a frequency band ω0±∆ω, with ∆ω � ω. Further assuming

that we only look at the electric field in the time window t0 ≤ t ≤ t0 + T where

T = L/c, and normalizing the field operator to
√

photons/sec units by integrating

the field over the photosensitive surface of the photodetector, we have for the positive-

frequency field operator

Ê(+)(t) =
1√
T

∞∑
l=−∞

âle
−j2πlt/T , for t0 ≤ t ≤ t0 + T, (A.48)

where [ân, â
†
m] = δnm. Semiclassical theory predicts the photocurrent i(t) to be an

inhomogeneous Poisson impulse train with rate function q|E(t)|2, given that the de-

tector is illuminated by a deterministic classical field E(t). The noise inherent to this

Poisson process is what defines the shot-noise limit of semiclassical photodetection.

Quantum theory of photodetection, on the other hand, predicts the photocurrent

produced by the ideal photodetector to be a stochastic process whose statistics are

those of the Hermitian photocurrent operator î(t) = qÊ(+)†(t)Ê(+)(t). Just like the
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measurement of any other dynamical observable in the framework of quantum me-

chanics, the photocurrent statistics are governed by the quantum state of the field.

Non-classical states of the field such as photon number states, quadrature squeezed

states, etc., do not obey the photocurrent statistics predicted by the semiclassical

theory. We define classical states of the field to be those whose photocurrent mea-

surement statistics predicted by the quantum theory comply with what is predicted

by the semiclassical theory. Such states are known to be coherent states, and are

eigenstates of the positive-field operator Ê(+)(t) indexed by the complex amplitude

of the field E(+)(t). The general multi-mode coherent state of the field Ê
(+)

(r, t) is

given by

|α〉 =
⊗
l,σ

|αl,σ〉l,σ, (A.49)

, |E(+)(r, t)〉. (A.50)

where âl,σ|αl,σ〉l,σ = αl,σ|αl,σ〉l,σ is satisfied for each mode (l, σ). It is easily verified

that the multi-mode coherent state is an eigenstate of

Ê
(+)

(r, t) =
∑
l,σ

j

√
~ωl

2ε0L3

(
âl,σe

−j(ωlt−kl·r)
)
el,σ,

i.e.,

Ê
(+)

(r, t)|E(+)(r, t)〉 = E(+)(r, t)|E(+)(r, t)〉, (A.51)

with eigenfunction E(+)(r, t) =
∑
l,σ j
√

~ωl

2ε0L3

(
αl,σe

−j(ωlt−kl·r)
)
el,σ.

A.3.2 Photon-number (Fock) states

Photon-number states (or Fock states) are states of the quantized field that have a

fixed number of photons in each mode, i.e. the measurement statistics of an ideal

photodetector on a Fock state is deterministic. A multi-mode Fock state is given by

the tensor product

|n〉 =
⊗
l,σ

|nl,σ〉l,σ, (A.52)
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in which each single-mode Fock state |nl,σ〉l,σ is the eigenstate of the corresponding

mode’s photon number operator N̂l,σ = â†l,σâl,σ, i.e.,

N̂l,σ|nl,σ〉l,σ = nl,σ|nl,σ〉l,σ, (A.53)

for nl,σ ∈ {0, 1, 2, . . .}.

A.3.3 Single-mode states and characteristic functions

In all that follows, we shall drop the mode-index subscripts (l, σ) and will refer only to

a single mode of the bosonic field, unless noted otherwise. A single mode, as we have

seen, is characterized by the non-Hermitian operator â, whose eigenstates |α〉, α ∈ C

are classical states, i.e., they yield Poisson statistics for an ideal photon-counting

measurement. The photon number operator N̂ = â†â is a Hermitian operator whose

measurement counts the number of photons in the mode. Its eigenstates |n〉, n ∈

{0, 1, . . .} are called Fock states or photon-number states, and they are non-classical

states. It can be easily verified that the field operator â takes a Fock state |n〉 to a

Fock state with one less number of photons, |n − 1〉, and the conjugate operator â†

takes a Fock state |n〉 to another Fock state with one additional number of photons

|n+ 1〉, i.e.

â|n〉 =
√
n|n− 1〉 (A.54)

â†|n〉 =
√
n+ 1|n+ 1〉. (A.55)

Because of the above property, we shall call the operator â the annihilation operator

and â† the creation operator of the mode. They are sometimes also known as ladder

operators. The Fock states form a complete orthonormal (CON) basis for all states

of a single-mode bosonic field, viz., 〈m|n〉 = δmn and Î =
∑

n |n〉〈n|, for Î the

identity operator. Therefore, coherent states can be expanded in the Fock basis. Not

surprisingly, we obtain

|α〉 =
∞∑
n=0

e−|α|
2/2αn√
n!

|n〉, (A.56)
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confirming the fact that the probability of counting m photons when a single-mode

coherent state is subject to ideal photon counting measurement is given by the Poisson

formula p(m) = e−|α|
2|α|2m/m!. The displacement operator is defined as

D̂(α) ≡ exp(αâ† − α∗â). (A.57)

It displaces the vacuum state to a coherent state, D̂(α)|0〉 = |α〉. Coherent states

do not form an orthonormal set, unlike number states. The inner product of two

coherent states is given by

〈α|β〉 = exp

[
α∗β − 1

2
(|α|2 + |β|2)

]
, (A.58)

and the squared magnitude of the inner product is given by |〈α|β〉|2 = e−|α−β|
2
, so

that |α〉 and |β〉 are nearly orthogonal when |α − β| � 1. The coherent states form

an overcomplete basis of the single-mode state space, i.e., they resolve the identity

via

Î =

∫
|α〉〈α|d

2α

π
=
∞∑
n=0

|n〉〈n|. (A.59)

The thermal state of a mode with annihilation operator â is an isotropic Gaussian

mixture of coherent states, i.e.,

ρ̂T =

∫
e−|α|

2/N

πN
|α〉〈α|d2α, (A.60)

where N = 〈N̂〉 is the average photon number in the state ρ̂T . The thermal state

can also be equivalently expressed as a statistical mixture of Fock states with a Bose-

Einstein distribution, i.e.,

ρ̂T =
∞∑
n=0

Nn

(N + 1)n+1
|n〉〈n|. (A.61)

From Eq. (A.61) we immediately have that the von Neumann entropy of the thermal

state S(ρ̂T ) = g(N) , (1 +N) ln(1 +N)−N lnN , because the photon-number states
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are orthonormal.

We define three kinds of characteristic functions for a single-mode state ρ̂:

1. Normally ordered: χρ̂N(ζ) = Tr(ρ̂eζâ
†
e−ζ

∗â) = e|ζ|
2/2〈D̂(ζ)〉,

2. Anti-normally ordered: χρ̂A(ζ) = Tr(ρ̂e−ζ
∗âeζâ

†
) = e−|ζ|

2/2〈D̂(ζ)〉,

3. Wigner: χρ̂W (ζ) = Tr(ρ̂e−ζ
∗â+ζâ†) = 〈D̂(ζ)〉.

As is evident from the definitions above, if one of the characteristic functions is

known, the others can be computed easily. As examples, the antinormally-ordered

characteristic function for a coherent state |α〉 is eζα
∗−ζ∗α−|ζ|2 , for the thermal state

with mean photon number N it is, e−(1+N)|ζ|2 and for the vacuum state it is e−|ζ|
2
.

The Husimi function Qρ̂(α) = 〈α|ρ̂|α〉/π is a proper probability distribution over the

complex plane α ∈ C and is the 2D Fourier transform of the antinormally ordered

characteristic function χρ̂A(ζ), i.e.,

χρ̂A(ζ) =

∫
Qρ̂(α)eζα

∗−ζ∗αd2α (A.62)

Qρ̂(α) =
1

π2

∫
χρ̂A(ζ)e−ζα

∗+ζ∗αd2ζ. (A.63)

The state ρ̂ can be retrieved from χρ̂A(ζ) as follows

ρ̂ =

∫
χρ̂A(ζ)e−ζâ

†
eζ
∗âd2ζ

π
. (A.64)

A.3.4 Coherent detection

Besides the photon counting measurement of an optical field that we described above,

the most commonly used optical detection schemes are the coherent-detection tech-

niques, known as homodyne and heterodyne detection.

1. Homodyne detection — Homodyne detection is used to measure a single quadra-

ture of the field. The measurement corresponds to measuring the Hermitian

quadrature operator <(âe−jθ). The actual realization of a homodyne detector
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Figure A-1: Balanced homodyne detection. Homodyne detection is used to measure
one quadrature of the field. The signal field â is mixed on a 50-50 beam splitter with
a local oscillator excited in a strong coherent state with phase θ, that has the same
frequency as the signal. The outputs beams are incident on a pair of photodiodes
whose photocurrent outputs are passed through a differential amplifier and a matched
filter to produce the classical output αθ. If the input â is in a coherent state |α〉, then
the output of homodyne detection is predicted correctly by both the semiclassical
and the quantum theories, i.e., a Gaussian-distributed real number αθ with mean
αcos θ and variance 1/4. If the input state is not a classical (coherent) state, then the
quantum theory must be used to correctly account for the statistics of the outcome,
which is given by the measurement of the quadrature operator <(âe−jθ).

is depicted in Fig. A-1. If the input â is in a coherent state |α〉, then the out-

put of homodyne detection is a Gaussian distributed real number αθ with mean

αcos θ and variance 1/4. If the local oscillator phase θ = 0, homodyne detection

measures â1, the real quadrature of the field. If the detected state is a Gaussian

state (see next section), then the outcome of homodyne measurement is a real

Gaussian random variable with mean 〈â1〉 and variance 〈∆â2
1〉 = 〈(â1− 〈â1〉)2〉.

2. Heterodyne detection — Heterodyne detection is used to measure both quadra-

tures of the bosonic field simultaneously. For a general input state ρ̂, the out-

come of heterodyne measurement (α1, α2) has a probability distribution given

by the Husimi function of ρ̂ given by Qρ̂(α) = 〈α|ρ̂|α〉/π. If the input is a co-

herent state |α〉, then the outcome of measurement is a pair of real variance-1/2

Gaussian random variables with means (<(α),=(α)).

181



Figure A-2: Balanced heterodyne detection. Heterodyne detection is used to measure
both quadratures of the field simultaneously. The signal field â is mixed on a 50-50
beam splitter with a local oscillator excited in a strong coherent state with phase
θ = 0, whose frequency is offset by an intermediate (radio) frequency, ωIF, from
that of the signal. The outputs beams are incident on a pair of photodiodes whose
photocurrent outputs are passed through a differential amplifier. The output current
of the differential amplifier is split into two paths and the two are multiplied by a pair
of strong orthogonal intermediate-frequency oscillators followed by detection by a pair
of matched filters, to yield two classical outcomes α1 and α2. If the input is a coherent
state |α〉, then both semiclassical and quantum theories predict the outputs (α1, α2)
to be a pair of real variance-1/2 Gaussian random variables with means (<(α),=(α)).
For a general input state ρ̂, the outcome of heterodyne measurement (α1, α2) has a
distribution given by the Husimi function of ρ̂ given by Qρ̂(α) = 〈α|ρ̂|α〉/π.
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A.3.5 Gaussian states

For a single-mode state ρ̂, let us define the mean field 〈â〉 = Tr(ρ̂â) and the covariance

matrix,

K ,

 〈∆â∆â†〉 〈∆â2〉

〈∆â†2〉 〈∆â†∆â〉

 (A.65)

where ∆â ≡ â − 〈â〉. The commutation relation [â, â†] = 1 implies that 〈∆â∆â†〉 =

1 + 〈∆â†∆â〉. Also, the off-diagonal terms are complex conjugates of each other, i.e.,

〈∆â†2〉 = 〈∆â2〉∗. Thus, the covariance matrix takes a form,

K =

 1 +N P

P ∗ N

 . (A.66)

For a zero mean field (〈â〉 = 0) state, 〈∆â†∆â〉 = 〈â†â〉 is the mean photon number

in the state. Also, for states with 〈â〉 = 0, the correlation matrix

R ,

 〈ââ†〉 〈â2〉

〈â†2〉 〈â†â〉

 (A.67)

is identical to the covariance matrix K defined in Eq. (A.65). The symmetrized

covariance matrix is defined as KS = K −Q/2, where

Q =

 1 0

0 −1

 . (A.68)

The Wigner covariance matrix (or the quadrature covariance matrix) is another equiv-

alent form of the covariance matrix of ρ̂ and is given by

KQ ,

 〈∆â2
1〉 1

2
〈∆â1∆â2 + ∆â2∆â1〉

1
2
〈∆â1∆â2 + ∆â2∆â1〉 〈∆â2

2〉

 =

 V1 V12

V12 V2

 ,

(A.69)
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where â = â1 + jâ2, ∆â1 ≡ â1 − 〈â1〉 and ∆â2 ≡ â2 − 〈â2〉. The relationship between

these different forms of the covariance matrix is given by

UKQU
† = KS, (A.70)

where

U =

 1 j

1 −j

 , (A.71)

satisfies U †U = 2I, so that it is a scaled unitary matrix. The relationship between the

elements of KQ and K work out to be N +1/2 = V1 +V2 and P = (V1−V2)+2jV1V2.

One definition of a bosonic Gaussian state is a state ρ̂ whose Wigner characteristic

function χρ̂W (ζ) ≡ Tr
(
ρ̂e−ζ

∗â+ζâ†
)

is quadratic in (ζ, ζ∗). An equivalent definition of

a Gaussian state is a state that is completely described by only the first and second

moments of the field.

Theorem 1.1 — The Wigner characteristic function χρ̂W (ζ) of a single-mode Gaussian

state ρ̂ with complex mean 〈â〉 = α and covariance matrix (A.66), is given by

χρ̂W (ζ) = exp

[
(α∗ζ − αζ∗) + <(P ∗ζ2)− (N +

1

2
)|ζ|2

]
. (A.72)

Proof — Expressing the Wigner characteristic function χρ̂W (ζ) ≡ Tr
(
ρ̂e−ζ

∗â+ζâ†
)

in

terms of the real and imaginary parts of ζ = ζ1 + jζ2, we have

ln
[
χρ̂W (ζ1, ζ2)

]
= ln [〈exp (−2jζ1â2 + 2jζ2â1)〉ρ̂] . (A.73)

Note that χρ̂aW (0, 0) = 1. For a function f(ζ1, ζ2), such that f(0, 0) = 1, we have the
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following Taylor series expansion for ln(f(ζ1, ζ2)) around (ζ1, ζ2) ≡ (0, 0):

ln(f(ζ1, ζ2)) = ζ1fζ1(0, 0) + ζ2fζ2(0, 0) +
1

2!

[
ζ1

2(fζ1ζ1(0, 0)− fζ1(0, 0)2)

+ζ1ζ2(fζ1ζ2(0, 0)− 2fζ1(0, 0)fζ2(0, 0) + fζ2ζ1(0, 0))

+ζ2
2(fζ2ζ2(0, 0)− fζ2(0, 0)2)

]
+h.o.t. (A.74)

Let us assign f(ζ1, ζ2) = χρ̂W (ζ1, ζ2) = 〈exp (−2jζ1â2 + 2jζ2â1)〉, where the expecta-

tion is taken in the state ρ̂. As ρ̂ is a Gaussian state, the Wigner characteristic function

must be a quadratic in (ζ1, ζ2) by definition. Hence, the expansion in Eq. (A.74) is

exact without the h.o.t. (higher order terms). The partial derivatives of f(ζ1, ζ2) are

given by:

fζ1(ζ1, ζ2) = 〈−2jâ2e
−2jζ1â2+2jζ2â1〉 (A.75)

fζ2(ζ1, ζ2) = 〈2jâ1e
−2jζ1â2+2jζ2â1〉 (A.76)

fζ1ζ1(ζ1, ζ2) = 〈−4â2
2e
−2jζ1â2+2jζ2â1〉 (A.77)

fζ2ζ2(ζ1, ζ2) = 〈−4â2
1e
−2jζ1â2+2jζ2â1〉 (A.78)

fζ1ζ2(ζ1, ζ2) = 〈(−2jâ2)(2jâ1)e−2jζ1â2+2jζ2â1〉 (A.79)

fζ2ζ1(ζ1, ζ2) = 〈(2jâ1)(−2jâ2)e−2jζ1â2+2jζ2â1〉 (A.80)

Evaluating each partial derivative at (0, 0) and substituting in Eq. (A.74) we get

ln(f(ζ1, ζ2)) = −2jζ1〈â2〉+ 2jζ2〈â1〉+
1

2

[
ζ2

1

(
−4〈â2

2〉+ 4〈â2〉2
)

+ζ1ζ2 (4〈â2â1〉 − 8〈â2â1〉+ 4〈â1â2〉)

+ζ2
2

(
−4〈â2

1〉+ 4〈â1〉2
)]

(A.81)

= (−2jζ1α2 + 2jζ2α1) + 2
(
−ζ2

1 〈∆â2
2〉 − ζ2

2 〈∆â2
1〉

+ζ1ζ2(〈â2â1〉 − 2〈â2〉〈â1〉+ 〈â1â2〉) , (A.82)

where we used (α1, α2) to denote the real and the imaginary parts of α. We can express
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χρ̂W (ζ1, ζ2) in terms of the entries of the Wigner covariance matrix KQ, by observing

that V12 = 1
2
〈∆â1∆â2 + ∆â2∆â1〉 = (〈â2â1〉 − 2〈â2〉〈â1〉+ 〈â1â2〉)/2. Therefore,

ln
[
χρ̂W (ζ1, ζ2)

]
=
[
(−2jζ1α2 + 2jζ2α1)− 2

(
ζ2

1V2 + ζ2
2V1 − 2ζ1ζ2V12

)]
, (A.83)

which implies,

χρ̂W (ζ1, ζ2) = exp
[
(−2jζ1α2 + 2jζ2α1)− 2

(
ζ2

1V2 + ζ2
2V1 − 2ζ1ζ2V12

)]
, (A.84)

Substituting ζ1 = (ζ + ζ∗)/2, ζ2 = (ζ − ζ∗)/2j, N + 1/2 = V1 + V2 and P = (V1 −

V2) + 2jV1V2, we can express χρ̂W (ζ) in terms of entries of the covariance matrix K as

follows,

χρ̂W (ζ) = exp

[
(α∗ζ − αζ∗) + <(P ∗ζ2)− (N +

1

2
)|ζ|2

]
. (A.85)

Multi-mode Gaussian states and the symplectic diagonalization6 — Let us

introduce vector-valued annihilation operators by stacking the annihilation operators

of N independent modes as follows,

â = [â1 . . . âN ]T (A.86)

is an N × 1 column vector of annihilation operators. Similarly, the column vector of

creation operators is denoted

â† = [â†1 . . . â
†
N ]T . (A.87)

With no loss of generality let us initially restrict our attention to zero-mean Gaussian

states of N modes, such that the state is completely characterized by the 2N × 2N

correlation matrix

R =

〈 â
â†

[(â†)T âT
]〉

=

〈â†âT 〉+ IN 〈ââT 〉

〈ââT 〉∗ 〈â†âT 〉

 , (A.88)

6The author thanks his colleague Baris I. Erkmen for this section, which has been partly adapted
from [12]
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where IN is an N ×N identity matrix and ∗ refers to element-wise complex conjuga-

tion.

Theorem 1.2 — Let â = [â1 . . . âN ]T be N modes of a field that are in a zero-mean

Gaussian state with 2N × 2N correlation matrix R, as given in (A.88). Then, there

exists S ∈ C2N×2N and Λ ∈ C2N×2N , such that

R = SΛS† , (A.89)

where S†QS = SQS† = Q and Λ = diag{λ1 + 1, . . . , λN + 1, λ1, . . . , λN}, with

Q =

IN 0

0 −IN

 (A.90)

and λ1, . . . , λN ≥ 0.

Proof — We use Williamson’s symplectic decomposition theorem on the symmetrized

(real-valued) correlation matrix for the quadratures, â1 ≡ [â + â†]/2 and â2 ≡

[â − â†]/2i, of the annihilation operators [83]. Then the expressions in the theorem

are obtained by transforming this quadrature correlation matrix decomposition into

the annihilation operator correlation matrix via the transformation

U =

IN iIN

IN −iIN

 . (A.91)

The strength of a symplectic decomposition is the expansion of â into a new set

of unsqueezed modes with average photon number λn, n = 1, . . . , N per mode.

Corollary 1.3 — Let â = [â1 . . . âN ]T be in an arbitrary N -mode Gaussian state

with mean 〈a〉 and covariance matrix R. Then â can be obtained via a symplectic

transformation on an N -mode field d̂ that is in a tensor product of N uncorrelated

thermal (Gaussian) states.
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Proof — Consider the following linear transformation on â: d̂
d̂†

 = S−1

 â
â†

 , (A.92)

where S−1 = QS†Q is the inverse of the symplectic matrix that diagonalizes R.

Utilizing the symplectic diagonalization of R, we find that

Rd = Λ . (A.93)

Consequently, d̂n has average photon number 〈d̂†nd̂n〉 = λn, for n = 1, . . . , N , where

λn ≥ 0 are the symplectic eigenvalues of R found in Theorem 1.2. Furthermore, all

modes {dn} are uncorrelated. Therefore, each mode can be represented as an isotropic

mixture of coherent states displaced by the corresponding mean, and the joint state

is the tensor product of N such states.

Corollary 1.4 — Let d̂ = [d̂1 . . . d̂N ]T be N modes in an arbitrary state. A symplectic

transformation on the N -modes, mapping d̂ into â as â
â†

 = S

 d̂
d̂†

 , (A.94)

does not alter the von-Neumann entropy of the state; i.e. if ρ̂d and ρ̂a denote input

and output the density operators respectively, then S(ρ̂d) = S(ρ̂a).

Proof — The symplectic transformation given in (A.94) is a canonical transforma-

tion, i.e., it preserves the commutation relations. Thus it can be implemented with

a unitary operator Û , satisfying Û Û † = Û †Û = Î [84]. The theorem and corollaries

collectively show that an arbitrary N -mode Gaussian state can always be linearly

transformed into a tensor product of N thermal states with no change in the entropy

of the joint state.

As a simple example, using the symplectic diagonalization of a single-mode zero-

mean Gaussian state ρ̂ whose covariance matrix is given by Eq. (A.66), a unitary

squeezing transformation exists that transforms ρ̂ to a zero-mean thermal state ρ̂T,N ,
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i.e., ρ̂ = Uρ̂T,NU
† where ρ̂T,N is a zero-mean thermal state with mean photon number

N̄ =
√

(N + 1/2)2 − |P |2− 1/2. Thus the von Neumann entropy of a Gaussian state

whose covariance matrix is given by Eq. A.66, is given by S(ρ̂) = g(N̄).
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Appendix B

Capacity region of a degraded

quantum broadcast channel with

M receivers

In this appendix, we generalize the capacity region of the two-receiver quantum de-

graded broadcast channel proved by Yard et. al.[52], to an arbitrary number of re-

ceivers. In chapter 3, we postponed the general proof of the capacity region to this

appendix, but we used this result to evaluate the capacity region of the Bosonic broad-

cast channel with an arbitrary number of receivers. For the sake of completeness, and

ease of reading, we restate the set-up of the problem and go through the notation

before we do the proof.

B.1 The Channel Model

The M -receiver quantum broadcast channel NA−Y0...YM−1
is a quantum channel from

a sender Alice (A) to M independent receivers Y0, . . . , YM−1. The quantum channel

from A to Y0 is obtained by tracing out all the other receivers from the channel

map, i.e., NA−Y0 ≡ TrY1,...,YM−1

(
NA−Y0...YM−1

)
, with a similar definition for NA−Yk for

k ∈ {1, . . . ,M − 1}. We say that a broadcast channel NA−Y0...YM−1
is degraded if there

exists a series of degrading channels N deg
Yk−Yk+1

from Yk to Yk+1, for k ∈ {0, . . . ,M − 2},
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satisfying

NA−YM−1
= N deg

YM−2−YM−1
◦ N deg

YM−3−YM−2
◦ . . . ◦ N deg

Y0−Y1
◦ NA−Y0 . (B.1)

The M -receiver degraded broadcast channel (see Fig. B-1) describes a physical sce-

nario in which for each successive n uses of the channel NA−Y0...YM−1
Alice communi-

cates a randomly generated classical message (m0, . . . ,mM−1) ∈ (W0, . . . ,WM−1) to

the receivers Y0, . . ., YM−1, where the message-sets Wk are sets of classical indices of

sizes 2nRk , for k ∈ {0, . . . ,M − 1}. The messages (m0, . . . ,mM−1) are assumed to be

independent and uniformly distributed over (W0, . . . ,WM−1), i.e.

pW0,...,WM−1
(m0, . . . ,mM−1) =

M−1∏
k=0

pWk
(mk) =

M−1∏
k=0

1

2nRk
(B.2)

Because of the degraded nature of the channel, given that the transmission rates

are within the capacity region and proper encoding and decoding is employed at

the transmitter and at the receivers, Y0 can decode the entire message M -tuple

(m0, . . . ,mM−1), Y1 can decode the reduced message (M − 1)-tuple (m1, . . . ,mM−1),

and so on, until the noisiest receiver YM−1 can only decode the single message-index

mM−1. To convey the message-set mM−1
0 , Alice prepares n-channel use states that, af-

ter transmission through the channel, result in M -partite conditional density matrices{
ρ̂
Y n0 ...Y

n
M−1

mM−1
0

}
, ∀mM−1

0 ∈WM−1
0 . The quantum states received by a receiver, say Y0 can

be found by tracing out the other receivers, viz. ρ̂
Y n0
mM−1

0

≡ TrY n1 ,...,Y nM−1

(
ρ̂
Y n0 ...Y

n
M−1

mM−1
0

)
,

etc. Fig. B-2 illustrates this decoding process.

B.2 Capacity Region: Theorem

A (2nR0 , . . . , 2nRM−1 , n, ε) code for this channel consists of an encoder

xn : (WM−1
0 )→ An, (B.3)
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Figure B-1: This figure summarizes the setup of the transmitter and the channel
model for the M -receiver quantum degraded broadcast channel. In each successive
n uses of the channel, the transmitter A sends a randomly generated classical mes-
sage (m0, . . . ,mM−1) ∈ (W0, . . . ,WM−1) to the M receivers Y0, . . ., YM−1, where the
message-sets Wk are sets of classical indices of sizes 2nRk , for k ∈ {0, . . . ,M − 1}.
The dashed arrows indicate the direction of degradation, i.e. Y0 is the least noisy
receiver, and YM−1 is the noisiest receiver. In this degraded channel model, the
quantum state received at the receiver Yk, ρ̂

Yk can always be reconstructed from the
quantum state received at the receiver Yk′ , ρ̂

Yk′ , for k′ < k, by passing ρ̂Yk′ through
a trace-preserving completely positive map (a quantum channel). For sending the
classical message (m0, . . . ,mM−1) , j, Alice chooses a n-use state (codeword) ρ̂A

n

j

using a prior distribution pj|i1 , where ik denotes the complex values taken by an aux-
iliary random variable Tk. It can be shown that, in order to compute the capacity
region of the quantum degraded broadcast channel, we need to choose M − 1 com-
plex valued auxiliary random variables with a Markov structure as shown above, i.e.
TM−1 → TM−2 → . . .→ Tk → . . .→ T1 → An is a Markov chain.
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Figure B-2: This figure illustrates the decoding end of the M -receiver quantum
degraded broadcast channel. The decoder consists of a set of measurement oper-
ators, described by positive operator-valued measures (POVMs) for each receiver;{

Λ0
m0...mM−1

}
,
{

Λ1
m1...mM−1

}
, . . .,

{
ΛM−1
mM−1

}
on Y0

n, Y1
n, . . ., YM−1

n respectively. Be-

cause of the degraded nature of the channel, if the transmission rates are within the
capacity region and proper encoding and decoding are employed at the transmitter
and at the receivers respectively, Y0 can decode the entire message M -tuple to ob-
tain estimates (m̂0

0, . . . , m̂
0
M−1), Y1 can decode the reduced message (M − 1)-tuple to

obtain its own estimates (m̂1
1, . . . , m̂

1
M−1), and so on, until the noisiest receiver YM−1

can only decode the single message-index mM−1 to obtain an estimate m̂M−1
M−1. Even

though the less noisy receivers can decode the messages of the noisier receivers, the
message mk is intended to be sent to receiver Yk, ∀k. Hence, when we say that a
broadcast channel is operating at a rate (R0, . . . , RM−1), we mean that the message
mk is reliably decoded by receiver Yk at the rate Rk bits per channel use.
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a set of positive operator-valued measures (POVMs) —
{

Λ0
m0...mM−1

}
,
{

Λ1
m1...mM−1

}
,

. . .,
{

ΛM−1
mM−1

}
on Y0

n, Y1
n, . . ., YM−1

n respectively, such that the mean probability

of a collective correct decision satisfies

Tr

(
ρ̂
Y n0 ...Y

n
M−1

mM−1
0

(
M−1⊗
k=0

Λk
mk...mM−1

))
≥ 1− ε, (B.4)

for ∀mM−1
0 ∈ WM−1

0 . A rate M -tuple (R0, . . . , RM−1) is achievable if there exists a

sequence of (2nR0 , . . . , 2nRM−1 , n, ε) codes with εn → 0. The classical capacity region

of the broadcast channel is defined as the convex hull of the closure of all achievable

rate M -tuples (R0, . . . , RM−1). The classical capacity region of the two-user degraded

quantum broadcast channel with discrete alphabet was derived by Yard et. al. [52],

and we used the infinite-dimensional extension of Yard et. al.’s capacity theorem to

prove the capacity region of the Bosonic broadcast channel, subject to the minimum

output entropy conjecture 2. The capacity region of the degraded quantum broadcast

channel can easily be extended to the case of an arbitrary number M , of receivers.

For notational similarity to the capacity region of the classical degraded broadcast

channel, we state the capacity theorem first, using the shorthand notation for Holevo

information we introduced in footnote 6 in chapter 3.

Theorem B.1 — The capacity region of the M -receiver degraded broadcast channel

NA−Y0...YM−1
as defined in Eq. (B.1), is given by

R0 ≤
1

n
I (An;Y n

0 |T1) ,

Rk ≤
1

n
I (Tk;Y

n
k |Tk+1) ∀k ∈ {1, . . . ,M − 2},

RM−1 ≤
1

n
I
(
TM−1;Y n

M−1

)
, (B.5)

where Tk, k ∈ {1, . . . ,M − 1} form a set of auxiliary complex valued random variables
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such that TM−1 → TM−2 → . . .→ Tk → . . .→ T1 → An forms a Markov chain, i.e.

pTM−1,...,T1,An(iM−1, . . . , i1, j) = pTM−1
(iM−1)

(
2∏

k=M−1

pTk−1|Tk(ik−1|ik)

)
pAn|T1(j|i1),

(B.6)

where with a slight abuse of notation, we have used the symbols T1, . . . , TM−1 to

denote complex-valued classical random variables taking values ik ∈ Tk where Tk
denotes a complex alphabet, as well as to denote quantum systems, by associating

a complete orthonormal set of pure quantum states with the complex probability

densities pTk(ik) of these auxiliary random variables. With further abuse of notation,

we have used An to denote a classical random variable. See footnote 5 in chapter 3.

In order to find the optimum capacity region, the above rate region must be opti-

mized over the joint distribution pTM−1,...,T1,An(iM−1, . . . , i1, j). As Holevo information

is not necessarily additive (unlike Shannon mutual information), the rate region must

also be optimized over the codeword block-length n. The above Markov chain struc-

ture of the auxiliary random variables Tk, k ∈ {1, . . . ,M − 1} is shown to be optimal

in the converse proof which proves the optimality of the above capacity region with-

out assuming any special structure of the auxiliary random variables. Also, note

the striking similarity of the expressions for the capacity region given above, with

the capacity region of the classical M -receiver degraded broadcast channel, given in

Eqs. (3.8). Holevo information takes place of Shannon mutual information in the

quantum case, and because of superadditivity of Holevo information, an additional

regularization over number of channel uses n, is required.

The capacity region above can be re-cast in the Holevo-information notation that

we used earlier in this chapter for the two-receiver quantum broadcast channel. For

the channel model of the multiple-user quantum degraded broadcast channel we de-

scribed in the section above (pictorially depicted in Fig. B-1), our proposed capacity
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region (in Eqs. (B.5)) can alternatively be expressed as

R0 ≤
1

n

∑
i1

pT1(i1)χ
(
pAn|T1(j|i1), ρ̂

Y n0
j

)
=

1

n

∑
i1

pT1(i1)

[
S

(∑
j

pAn|T1(j|i1)ρ̂
Y n0
j

)
−
∑
j

pAn|T1(j|i1)S
(
ρ̂
Y n0
j

)]
,

Rk ≤
1

n

∑
ik+1

pTk+1
(ik+1)χ

(
pTk|Tk+1

(ik|ik+1), ρ̂
Y nk
ik

)
, ∀k ∈ {1, . . . ,M − 2},

=
1

n

∑
ik+1

pTk+1
(ik+1)

[
S

(∑
ik

pTk|Tk+1
(ik|ik+1)ρ̂

Y nk
ik

)
−
∑
ik

pTk|Tk+1
(ik|ik+1)S

(
ρ̂
Y nk
ik

)]
,

RM−1 ≤
1

n
χ
(
pTM−1

(iM−1), ρ̂
Y nM−1

iM−1

)
=

1

n
S

∑
iM−1

pTM−1
(iM−1)ρ̂

Y nM−1

iM−1

−∑
iM−1

pTM−1
(iM−1)S

(
ρ̂
Y nM−1

iM−1

)
. (B.7)

Even though the capacity-region expressions above have been written for a discrete

alphabet, it can be generalized to a continuous alphabet of quantum states over an

infinite-dimensional Hilbert space, in which case the summations in Eqs. (B.7) are

replaced by integrals (see footnote 17 in Chapter 3).

B.3 Capacity Region: Proof (Achievability)

Proof [Achievability (M = 3, single channel use)] — It is more instructive to do the

“achievability” part of the proof first, for M = 3 receivers. The general proof for the

M -receiver case is a logical extension of this proof. We need to prove achievability

only for the single-channel-use rate region (i.e., for n = 1 in Eqs. (B.5)), because the

same proof can be applied to multiple-use (larger) quantum systems of the transmitter

and the receiver alphabets to obtain the general capacity region. For any ε, δ > 0, we
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will show that for rate 3-tuples (R0, R1, R2) satisfying1

I(A;Y0|T1)− δ(1 + 2d0) ≤ R0 ≤ I(A;Y0|T1) + 2δI0, (B.8)

I(T1;Y1|T2)− δ(1 + d1) ≤ R1 ≤ I(T1;Y1|T2) + δI1, and (B.9)

0 ≤ R2 = I(T2;Y2)− δ, (B.10)

for finite positive real numbers d0, d1, I0, I1, there exists an (2nR0 , 2nR1 , 2nR2 , n, O(ε))

code for the degraded broadcast channel NA−Y0Y1Y2 . Below is a brief heuristic of the

proof, followed by the actual proof.

We will construct the required triply-indexed set of codewords
{
ρ̂A

n

m0,m1,m2

}
mk∈2nRk

as follows. First, we will select a rate R2 code for the channel NT2−Y0Y1Y2 with code-

words selected in an independent, identically distributed (i.i.d.) manner from the

distribution pT2(i2), which conveys the message index m2 ∈ 2nR2 to all the three re-

ceivers Y0, Y1 and Y2. We call these codewords the “primary cloud-centers”2. There-

after for each i2 ∈ T2, we pick a code of rate R1,i2 and blocklength approximately

pT2(i2)n for the conditional channel N i2
T1−Y0Y1

with codewords selected i.i.d. according

to pT1|T2(i1|i2). These codewords are called the “secondary cloud-centers”. If the re-

ceiver Y1 knows i2, it can decode at rates approaching R1,i2 ≈ I(T1;Y1|T2 = i2), such

that the average rate R1 ≈
∑

i2
pT2(i2)R1,i2 is close to the desired rate at which Y1 can

decode the message index m1. Y0 can similarly learn m1 reliably at rates approach-

ing R1. Then finally, for each i2 ∈ T2, and i1 ∈ T1, we pick a random HSW code

of blocklength approximately npT2(i2)pT1|T2(i1|i2) for the conditional channel N i2,i1
A−Y0

,

with codewords selected i.i.d. according to pA|T1,T2(j|i1, i2). If the receiver Y0 knows

both i2 and i1 (for our case as T2 → T1 → A is a Markov chain, Y0 just needs to

know i1), it can decode at rates approaching R0,i2,i1 ≈ I(A;Y0|T1 = i1), such that the

average rate R0 ≈
∑

i2,i1
pT2(i2)pT1|T2(i1|i2)R0,i2,i1 is close to the desired rate at which

Y0 can decode the private message index m0.

1From now on, we will freely use both the I(X;Y ), and the more explicit χ(pX(x), ρ̂Yx ) notations
interchangeably, for Holevo quantities.

2To read more about layered-encoding techniques for the classical degraded broadcast channel,
using “cloud-centers” and “clouds”, see [3].
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B.3.1 Constructing codebooks with the desired rate-bounds

Let us choose arbitrary δ, ε > 0. Pick

R2 = I(T2;Y2)− δ (B.11)

= χ
(
pT2(i2), ρ̂Y2

i2

)
− δ (B.12)

≤ χ
(
pT2(i2), ρ̂Y0Y1Y2

i2

)
− δ. (B.13)

Because of the degraded nature of the channel,

I(T2;Y2) ≤ I(T2;Y1) ≤ I(T2;Y0) ≤ I(T2;Y0, Y1, Y2), (B.14)

where the last inequality follows from the fact that the point-to-point channelNT2−Y0Y1Y2

between T2 and the joint receiver (Y0, Y1, Y2) can transmit information reliably at a

rate as least as high as the capacity of the channel NT2−Yk between T2 and one of

the receivers Yk alone. Hence by using HSW theorem for the channel NT2−Y0Y1Y2 , we

obtain an (R2, n, ε) code
{
ρ̂
Tn2
m2 ,Λ

0
m2
,Λ1

m2
,Λ2

m2

}
with all codewords chosen i.i.d. from

pT2(i2) and of type P2(i2), satisfying |P2(·)− pT2(·)|1 ≤ δ, and for all m2 ∈ W2,

Tr
(
Λ0
m2
⊗ Λ1

m2
⊗ Λ2

m2

)
ρ̂Y

n
0 Y

n
1 Y

n
2

m2
≥ 1− ε, (B.15)

where

ρ̂Y
n
0 Y

n
1 Y

n
2

m2
=

n⊗
l=1

ρ̂
Y n0,lY

n
1,lY

n
2,l

m2

are product-state codewords, with ρ̂
Y n0,lY

n
1,lY

n
2,l

m2 = (NT2−Y0Y1Y2)
⊗n
(
ρ̂
Tn2,l
m2

)
, for l ∈ {1, . . . , n},

being the lth symbol of the received n-symbol codeword3.

Let us define the cardinalities of the alphabets of T2, T1, and the transmitter A,

3Note that throughout this discussion, each codeword symbol is transmitted in a single use of
the channel.
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as |T2| = d2, |T1| = d1 and |A| = d0. For each i2, define

R1,i2 , I(T1;Y1|T2 = i2)− δi2 ≤ d1 (B.16)

≤ I(T1;Y0, Y1|T2 = i2)− δi2 ≤ d1 (B.17)

= χ
(
pT1|T2(i1|i2), ρ̂Y0Y1

i1

)
− δi2 , (B.18)

where

δi2 , δP2(i2), (B.19)

for i2 ∈ {1, . . . , d2}. Define

εi2 , εP2(i2), and (B.20)

ni2 , nP2(i2), (B.21)

for i2 ∈ {1, . . . , d2}. For each i2 ∈ T2, there exists an (R1,i2 , ni2 , εi2) random HSW

code

{
ρ̂
T
ni2
1
m1,i2

,Λ
0(i2)
m1,i2

,Λ
1(i2)
m1,i2

}
, ∀m1,i2 ∈

{
1, . . . , 2nR1,i2

}
, for the conditional channel

N i2
T1−Y0Y1

, which satisfies

E

2−ni2R1,i2

2
nR1,i2∑

m1,i2
=1

Tr
(

(Λ0(i2)
m1,i2
⊗ Λ1(i2)

m1,i2
)ρ̂Y

ni2
0 Y

ni2
1

m1,i2

) ≥ 1− εi2 , (B.22)

where each codeword ρ̂
T
ni2
1
m1,i2

is chosen i.i.d. from pT1|T2(i1|i2) and each codeword is of

the type P1|2(i1|i2), such that |P1|2(·|i2) − pT1|T2(·|i2)|1 ≤ δi2 , and the expectation is

over the randomness in the HSW codes. Note that owing to the symmetry of the

random code construction, (B.22) may be equivalently expressed as

E

[
Tr

(
(Λ

0(i2)
1 ⊗ Λ

1(i2)
1 )ρ̂

Y
ni2
0 Y

ni2
1

1

)]
≥ 1− εi2 . (B.23)

Also note that the personal rate to Y1 (to decode message m1), is given by

R1 =
∑
i2

P2(i2)R1,i2 . (B.24)
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We also have,

|P2(·)− pT2(·)|1 =

d2∑
i2=1

|P2(i2)− pT2(i2)| ≤ δ. (B.25)

Using Eqs. (B.24) and (B.25), we now derive lower and upper bounds for R1 as follows.

R1 =
∑
i2

P2(i2)R1,i2 =
∑
i2

pT2(i2)R1,i2 −
∑
i2

(pT2(i2)− P2(i2))R1,i2

≥
∑
i2

pT2(i2)R1,i2 − |P2(·)− pT2(·)|1d1 (B.26)

=
∑
i2

pT2 [I(T1;Y1|T2 = i2)− δi2 ]− |P2(·)− pT2(·)|1d1

= I(T1;Y1|T2)−
∑
i2

pT2(i2)δi2 − |P2(·)− pT2(·)|1d1

= I(T1;Y1|T2)− δ
∑
i2

pT2(i2)P2(i2)− |P2(·)− pT2(·)|1d1

≥ I(T1;Y1|T2)− δ − δd1

≥ I(T1;Y1|T2)− δ(1 + d1), (B.27)

where inequality (B.26) follows from (B.16). The upper bound is derived as follows:

R1 =
∑
i2

P2(i2)R1,i2 ≤
∑
i2

P2(i2)I(T1;Y1|T2 = i2)

=
∑
i2

pT2(i2)I(T1;Y1|T2 = i2) +
∑
i2

(P2(i2)− pT2(i2)) I(T1;Y1|T2 = i2)

≤ I(T1;Y1|T2) + |P2(·)− pT2(·)|1 max
i2

I(T1;Y1|T2 = i2)

≤ I(T1;Y1|T2) + δI1, (B.28)

where I1 , maxi2 I(T1;Y1|T2 = i2) is a finite non-negative real number. Combining

Eqs. (B.27) and (B.28), we have

I(T1;Y1|T2)− δ(1 + d1) ≤ R1 ≤ I(T1;Y1|T2) + δI1. (B.29)
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Now, given each i2 ∈ T2, we define for each i1 ∈ T1,

R0,i2,i1 , I(A;Y0|T1 = i1)− δi2,i1 ≤ d0 (B.30)

= χ
(
pA|T1(j|i1), ρ̂Y0

j

)
− δi2,i1 , (B.31)

where

δi2,i1 , δi2P1|2(i1|i2) = δP2(i2)P1|2(i1|i2). (B.32)

Let us also define

εi2,i1 , εi2P1|2(i1|i2) = εP2(i2)P1|2(i1|i2), and (B.33)

ni2,i1 , ni2P1|2(i1|i2) = nP2(i2)P1|2(i1|i2). (B.34)

Given a fixed i2, for each i1, there exists an (R0,i2,i1 , ni2,i1 , εi2,i1) random HSW code{
ρ̂A

ni2,i1

m0,i2,i1
,Λ

0(i2,i1)
m0,i2,i1

}
; m0,i2,i1 ∈

{
1, . . . , 2nR0,i2,i1

}
, for the conditional channel N i2,i1

A−Y0
,

with each codeword chosen i.i.d. from pA|T1,T2(j|i1, i2) ≡ pA|T1(j|i1), and each code-

word satisfying

E

2−ni2,i1R0,i2,i1

2
nR0,i2,i1∑
m0,i2,i1

Tr
(

Λ0(i2,i1)
m0,i2,i1

ρ̂Y
ni2,i1
0
m0,i2,i1

) ≥ 1− εi2,i1 . (B.35)

Note that owing to the symmetry of random code construction, (B.35) can alterna-

tively be expressed as

E

[
Tr

(
Λ

0(i2,i1)
1 ρ̂

Y
ni2,i1
0

1

)]
≥ 1− εi2,i1 . (B.36)

The personal rate to Y0 (to decode its personal message m0), is given by

R0 =
∑
i2,i1

P2(i2)P1|2(i1|i2)R0,i2,i1 . (B.37)

Lemma B.2 — Given two probability density functions p(x) and q(x) defined on the
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same alphabet X that satisfy

∑
x∈X

|p(x)− q(x)| ≤ δ, (B.38)

and given that the conditional distributions p(y|x) and q(y|x) defined on the alphabets

X and Y , (x ∈ X , y ∈ Y) satisfy

∑
y∈Y

|p(y|x)− q(y|x)| ≤ δx, ∀x, (B.39)

Then the joint distributions p(y, x) = p(y|x)p(x) and q(y, x) = q(y|x)q(x) must satisfy

∑
(x,y)∈(X ,Y)

|p(y, x)− q(y, x)| ≤ δ +
∑
x∈X

δxq(x). (B.40)

Proof —

∑
(x,y)∈(X ,Y)

|p(y, x)− q(y, x)| (B.41)

=
∑

(x,y)∈(X ,Y)

| (p(x)− q(x)) p(y|x) + (p(y|x)− q(y|x))q(x)| (B.42)

≤
∑

(x,y)∈(X ,Y)

|p(x)− q(x)| p(y|x) +
∑

(x,y)∈(X ,Y)

|p(y|x)− q(y|x)| q(x) (B.43)

=
∑
x∈X

|p(x)− q(x)|+
∑
x∈X

(∑
y∈Y

|p(y|x)− q(y|x)|

)
q(x) (B.44)

≤ δ +
∑
x∈X

δxq(x). (B.45)

Now, we use Eq. (B.37) and Lemma B.2 to derive lower and upper bounds on R0.
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The derivation of the lower bound proceeds as follows.

R0 =
∑
i2,i1

P2(i2)P1|2(i1|i2)R0,i2,i1 (B.46)

=
∑
i2,i1

pT1|T2(i1|i2)pT2(i2)R0,i2,i1 −
∑
i2,i1

(
pT1|T2(i1|i2)pT2(i2)− P2(i2)P1|2(i1|i2)

)
R0,i2,i1

≥
∑
i2,i1

pT1,T2(i1, i2)R0,i2,i1 − d0

∑
i2,i1

∣∣pT1|T2(i1|i2)pT2(i2)− P2(i2)P1|2(i1|i2)
∣∣ (B.47)

≥
∑
i2,i1

pT1,T2(i1, i2) (I(A;Y0|T1 = i1)− δi2,i1)− d0

(
δ +

∑
i2

P2(i2)δi2

)
(B.48)

= I(A;Y0|T1)− δ
∑
i2,i1

pT1,T2(i1, i2)P2(i2)P1|2(i1|i2)− d0

(
δ + δ

∑
i2

P2(i2)2

)
(B.49)

≥ I(A;Y0|T1)− δ − d0(δ + δ) (B.50)

= I(A;Y0|T1)− δ(1 + 2d0), (B.51)

where (B.47) follows from Eq. (B.30), (B.48) follows from Eq. (B.30) and Lemma

B.2, and (B.50) follows from the fact that
∑

x p1(x)p2(x) ≤ 1 for two probability

distribution functions p1(x) and p2(x) defined on a common alphabet. The derivation

of the upper bound proceeds as follows.

R0 =
∑
i2,i1

P2(i2)P1|2(i1|i2)R0,i2,i1 (B.52)

≤
∑
i2,i1

P2(i2)P1|2(i1|i2)I(A;Y0|T1 = i1) (B.53)

=
∑
i2,i1

pT2(i2)PT1|T2(i1|i2)I(A;Y0|T1 = i1)

+
∑
i2,i1

(
P2(i2)P1|2(i1|i2)− pT2(i2)PT1|T2(i1|i2)

)
I(A;Y0|T1 = i1) (B.54)

≤ I(A;Y0|T1)

+ max
i1

I(A;Y0|T1 = i1)
∑
i2,i1

∣∣P2(i2)P1|2(i1|i2)− pT2(i2)PT1|T2(i1|i2)
∣∣(B.55)

≤ I(A;Y0|T1) + 2δI0, (B.56)

where I0 , maxi1 I(A;Y0|T1 = i1) is a finite non-negative real number. Combining
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Eqs. (B.51) and (B.56), we have

I(A;Y0|T1)− δ(1 + 2d0) ≤ R0 ≤ I(A;Y0|T1) + 2δI0. (B.57)

Combining inequalities (B.11), (B.29) and (B.57), we have constructed codebooks for

the degraded broadcast channel NA−Y0Y1Y2 transmitting the messages (m0,m1,m2) at

a rate 3-tuple (R0, R1, R2), that can be brought arbitrarily close to the postulated

ultimate capacity region (B.5) with M = 3 and n = 1, by choosing δ small enough.

What remains to be shown, in order to complete the proof of achievability of the

postulated capacity-region, is to

(i) instantiate the codewords of the codes we constructed above, and

(ii) to construct measurement operators for the receivers to decode the messages,

and show that those measurement operators lead to an average overall error-

probability that goes as O(ε) for sufficiently large blocklength n.

The above tasks are dealt with in the following two sections.

B.3.2 Instantiating the codewords

Let us denote the quantum states associated with the auxiliary random variables T1

and T2 as follows — Tk ≡ {σ̂k,1, σ̂k,2, . . . , σ̂k,dk}, for k ∈ {1, 2}. Recall that all the

codewords ρ̂
Tn2
m2 are of the same type P2(·), for m2 ∈ W2. Without loss of generality,

let us assume that the primary-cloud-center codewords are4

ρ̂
Tn2
1 , σ̂n1

2,1 ⊗ σ̂n2
2,2 ⊗ . . .⊗ σ̂

nd2
2,d2

(B.58)

=

d2⊗
i2=1

σ̂
ni2
2,i2
, (B.59)

4Note that σ̂nk

2,k , σ̂⊗nk

2,k = σ̂2,k⊗ . . .⊗ σ̂2,k (nk-fold tensor product). Also, recall from Eq. (B.21),
that n = n1 + n2 + . . .+ nd2 .
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and π2(m2) is a collection of permutations on n elements, such that

ρ̂T
n
2
m2

= π2(m2)
(
ρ̂
Tn2
1

)
, ∀m2 ∈ W2. (B.60)

For each primary-cloud-center codeword ρ̂
Tn2
m2 , 2nR1 secondary-cloud-center codewords

ρ̂
Tn1
m1,m2 are chosen for every m1 ∈ W1. Each symbol of the secondary-cloud-center

codewords ρ̂
Tn1
m1,m2 is chosen from i.i.d. from T1 according to the distribution pT1|T2(i1|i2).

As 2nR1 =
∏d2

i2=1 2ni2R1,i2 (using Eqs. (B.24) and (B.21)), we may uniquely identify

each message m1 ∈ W1 with a collection of messages m1,i2 for i2 ∈ {1, . . . , d2}, and

m1,i2 ∈ W1,i2 ,
{

1, . . . , 2nR1,i2

}
. Hence, we have

ρ̂T
n
1
m1,m2

= π2(m2)
(
ρ̂
Tn1
m1,1

)
(B.61)

= π2(m2)
(
ρ̂T

n1
1
m1,1
⊗ ρ̂T

n2
1
m1,2
⊗ . . .⊗ ρ̂T

nd2
1
m1,d2

)
(B.62)

= π2(m2)

(
d2⊗
i2=1

ρ̂T
ni2
1
m1,i2

)
. (B.63)

Now, each one of the codewords ρ̂
T
ni2
1
m1,i2

is of the same type P1|2(·|i2). Hence, without

loss of generality, we can assume that5

ρ̂
T
ni2
1

1 , σ̂
ni2,1
1,1 ⊗ σ̂

ni2,2
1,2 ⊗ . . .⊗ σ̂

ni2,d1
1,d1

(B.64)

=

d1⊗
i1=1

σ̂
ni2,i1
1,i1

, (B.65)

and π1,i2(m1,i2) is a collection of permutations on ni2 elements, such that for each

i2 ∈ T2,

ρ̂T
ni2
1
m1,i2

= π1,i2(m1,i2)

(
ρ̂
T
ni2
1

1

)
, ∀m1,i2 ∈ W1,i2 . (B.66)

Without loss of generality, m1 = 1 can be mapped to (m1,1,m1,2, . . . ,m1,d2) ≡

(1, 1, . . . , 1), i.e.

ρ̂
Tn1
1,1 = ρ̂

T
n1
1

1 ⊗ ρ̂T
n2
1

1 ⊗ . . .⊗ ρ̂T
nd2
1

1 . (B.67)

5Note that ni2,i1 = ni2P1|2(i1|i2), and thus, ni2 = ni2,1 + ni2,2 + . . .+ ni2,d1 .
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Now we can define a permutation by cascading the permutations π1,i2(m1,i2),

π1(m1) ,
d2⊗
i2=1

π1,i2(m1,i2), (B.68)

such that ρ̂
Tn1
m1,1

= π1(m1)
(
ρ̂
Tn1
1,1

)
. Combining this with Eq. (B.61) we have,

ρ̂T
n
1
m1,m2

= π2(m2) ◦ π1(m1)
(
ρ̂
Tn1
1,1

)
(B.69)

= π2(m2) ◦ π1(m1)

(
d2⊗
i2=1

d1⊗
i1=1

σ̂
ni2,i1
1,i1

)
. (B.70)

However, neither the primary nor the secondary cloud-center codewords are the ac-

tual codewords sent out by the transmitter, as they are after all drawn from hy-

pothetical auxiliary alphabets. With σ̂
ni2,i1
1,i1

∈ T1 given, the final transmitted code-

words are drawn from Alice’s alphabet around each secondary-cloud-center code-

word, and are chosen i.i.d. symbol-by-symbol from the conditional distribution

pA|T1,T2(j|i1, i2) ≡ pA|T1(j|i1),∀i2 (because T2 → T1 → A is a Markov chain). As

2nR0 =
∏

i2,i1
2ni2,i1R0,i2,i1 (using Eqs. (B.37) and (B.34)), we may uniquely identify

each message m0 ∈ W0 with a collection of messages m0,i2,i1 for (i1, i2) ∈ (T1, T2), and

m0,i2,i1 ∈ W0,i2,i1 ,
{

1, . . . , 2nR0,i2,i1

}
, ∀i1, i2. Hence, the transmitted codewords are

given by

ρ̂A
n

m0,m1,m2
= π2(m2) ◦ π1(m1)

(
ρ̂A

n

m0,1,1

)
(B.71)

= π2(m2) ◦ π1(m1)
((
ρ̂A

n1,1

m0,1,1
⊗ ρ̂A

n1,2

m0,1,2
⊗ . . . ρ̂A

n1,d1

m0,1,d1

)
⊗(

ρ̂A
n2,1

m0,2,1
⊗ ρ̂A

n2,2

m0,2,2
⊗ . . . ρ̂A

n2,d1

m0,2,d1

)
⊗ . . .⊗

(
ρ̂A

nd2,1

m0,d2,1
⊗ ρ̂A

nd2,2

m0,d2,2
⊗ . . . ρ̂A

nd2,d1

m0,d2,d1

))
= π2(m2) ◦ π1(m1)

(
d2⊗
i2=1

d1⊗
i1=1

ρ̂A
ni2,i1

m0,i2,i1

)
. (B.72)

In summary, given a message triplet (m0,m1,m2), Alice first represents the message

m0 as a collection of messages from smaller index-sets m0,i2,i1 ∈ W0,i2,i1 , and generates

the codeword ρ̂A
n

m0,1,1
for (m0,m1 = 1,m2 = 1) as shown above. Thereafter, she applies

the permutations π1(m1) and π2(m2) respectively in that order, to obtain the final
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codeword ρ̂A
n

m0,m1,m2
to be broadcast on the channel6.

B.3.3 Receiver measurement and decoding error probability

The decoding process proceeds in three stages (M stages in general), which unravel the

information from the layered cloud-center and cloud encoding technique we employed

earlier. We start this section with a brief description of the decoding process and how

it works. We then follow it up with constructing the actual measurement operators

for the three receivers, and provide a rigorous error analysis in order to bound the

overall average probability of decoding error.

Steps of the decoding process

The following are the steps of the decoding process:

1. Y0, Y1, and Y2 measure
{

Λ0
m2

}
,
{

Λ1
m2

}
, and

{
Λ2
m2

}
respectively on their re-

spective received states ρ̂
Y nk
m0,m1,m2 , and they declare their respective results of

measurement,
{
m̂

(0)
2 , m̂

(1)
2 , m̂

(2)
2

}
to be the common message W2.

2. Y0 and Y1 permute their respective codewords according to π−1
2 (m̂

(k)
2 ), for k ∈

{0, 1} respectively. If Y0 and Y1 correctly decoded m2 in step 1 above, af-

ter applying the permutations, they should jointly see a state that is close

to ρ̂
Y n0 Y

n
1

m0,m1,1
. They measure each block of ni2 symbols, i2 ∈ {1, . . . , d2}, using

6

(i) The joint received codewords are given by

ρ̂
Y n
0 Y

n
1 Y

n
2

m0,m1,m2 = N⊗nA−Y0Y1Y2

(
ρ̂A

n

m0,m1,m2

)
. (B.73)

(ii) On averaging out the received codeword ρ̂
Y n
0 Y

n
1 Y

n
2

m0,m1,m2 over messages m0 and m1, we obtain

Em0,m1

[
ρ̂
Y n
0 Y

n
1 Y

n
2

m0,m1,m2

]
=

∑
(m0,m1)∈(W0,W1)

pW0,W1(m0,m1)ρ̂Y
n
0 Y

n
1 Y

n
2

m0,m1,m2

= ρ̂
Y n
0 Y

n
1 Y

n
2

m2 = N⊗nT2−Y0Y1Y2

(
ρ̂
Tn

2
m2

)
. (B.74)

(iii) To find the state received by Y0, we must trace out the other receivers:

ρ̂
Y n
0
m0,m1,m2 = TrY n

1 Y
n
2

(
ρ̂
Y n
0 Y

n
1 Y

n
2

m0,m1,m2

)
. (B.75)
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{
Λ

0(i2)
m1,i2

}
and

{
Λ

1(i2)
m1,i2

}
respectively, and concatenate their measurement results{

m̂
(k)
1,1, m̂

(k)
1,2, . . . , m̂

(k)
1,d2

}
, m̂

(k)
1 , k ∈ {0, 1}, which they declare to be their de-

coded message W1.

3. Finally Y0 applies the permutation π−1
1 (m̂

(0)
1 ) and obtains a state close to ρ̂

Y n0
m0,1,1 .

It measures using the measurement operators
⊗d2

i2=1

(⊗d1
i1=1 Λ

0(i2,i1)
m0,i2,i1

)
and con-

catenates its results {m0,i2,i1}
d2,d1
i2=1,i1=1 to obtain the estimate m̂

(0)
0 which it de-

clares as its decoded message W0.

Construction of the measurement operators

The above procedure can be summarized by the action of the following POVM ele-

ments (measurement operators) for the three receivers, which (adhering to the nota-

tion set forth in the beginning of section B.2 above) are given by:

1. Y2 —
{

Λ2
m2

}
.

2. Y1 —
{

Λ1
m1m2

}
, where

Λ1
m1m2

,
√

Λ1
m2

Λ1
m1|m2

√
Λ1
m2
, and (B.76)

Λ1
m1|m2

, π2(m2)

(
d2⊗
i2=1

Λ1(i2)
m1,i2

)
. (B.77)

3. Y0 —
{

Λ0
m0m1m2

}
, where

{
Λ0
m0m1m2

}
,

√
Λ0
m2

√
Λ0
m1|m2

Λ0
m0|m1m2

√
Λ0
m1|m2

√
Λ0
m2
, (B.78)

Λ0
m1|m2

, π2(m2)

(
d2⊗
i2=1

Λ0(i2)
m1,i2

)
, and (B.79)

Λ0
m0|m1m2

,
d2⊗
i2=1

(
π1,i2(m1,i2)

(
d1⊗
i1=1

Λ0(i2,i1)
m0,i2,i1

))

= π1(m1)

(
d2⊗
i2=1

d1⊗
i1=1

Λ0(i2,i1)
m0,i2,i1

)
. (B.80)
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Error analysis

Our goal is to prove that with the codewords and the measurement operators we

have constructed above, the overall average probability of correct decision Pm0m1m2 =

1−O(ε), where

Pm0m1m2 = Tr
(
Λ0
m0m1m2

⊗ Λ1
m1m2

⊗ Λ2
m2

)
ρ̂Y

n
0 Y

n
1 Y

n
2

m0,m1,m2
. (B.81)

We will use the following two lemmas, whose proofs can be found in [52]:

Lemma B.3 — If 0 ≤ Λ ≤ 1, then

Tr(Λσ) ≥ Tr(Λρ)− |ρ− σ|1. (B.82)

Lemma B.4 — If 0 ≤ Λ ≤ 1, and E[Tr(Λρ)] ≥ 1− ε then

E
[
|
√

Λρ
√

Λ− ρ|1
]
≤
√

8ε. (B.83)

Let us begin by defining two intermediate states in the decoding process:

ρ̂′Y
n
0 Y

n
1 Y

n
2

m0,m1,m2
,

(√
Λ0
m2
⊗
√

Λ1
m2
⊗
√

Λ2
m2

)
ρ̂Y

n
0 Y

n
1 Y

n
2

m0,m1,m2

(√
Λ0
m2
⊗
√

Λ1
m2
⊗
√

Λ2
m2

)
,

ρ̂′′Y
n
0 Y

n
1 Y

n
2

m0,m1,m2
,

(√
Λ0
m1|m2

⊗
√

Λ1
m1|m2

)
ρ̂′Y

n
0 Y

n
1 Y

n
2

m0,m1,m2

(√
Λ0
m1|m2

⊗
√

Λ1
m1|m2

)
.

The average probability of correct decision Pm0m1m2 can be expressed as

E[Pm0m1m2 ] = E
[
Tr
(
Λ0
m0|m1m2

ρ̂′′Y
n
0 Y

n
1 Y

n
2

m0,m1,m2

)]
(B.84)

≥ E
[
Tr
(
Λ0
m0|m1m2

ρ̂′Y
n
0 Y

n
1 Y

n
2

m0,m1,m2

)]
−E

[
|ρ̂′Y n0 Y n1 Y n2m0,m1,m2

− ρ̂′′Y n0 Y n1 Y n2m0,m1,m2
|1
]

(B.85)

≥ E
[
Tr
(
Λ0
m0|m1m2

ρ̂Y
n
0 Y

n
1 Y

n
2

m0,m1,m2

)]
−E

[
|ρ̂Y n0 Y n1 Y n2m0,m1,m2

− ρ̂′Y n0 Y n1 Y n2m0,m1,m2
|1
]

−E
[
|ρ̂′Y n0 Y n1 Y n2m0,m1,m2

− ρ̂′′Y n0 Y n1 Y n2m0,m1,m2
|1
]
, (B.86)
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where (B.85) and (B.86) follow from Lemma B.3. In order to bound the last term in

(B.86), let us consider the following:

E
[
Tr
(
Λ0
m1|m2

⊗ Λ1
m1|m2

)
ρ̂′Y

n
0 Y

n
1 Y

n
2

m0,m1,m2

]
= E

[
Tr

(
(π2(m2)

(
d2⊗
i2=1

Λ0(i2)
m1,i2
⊗

d2⊗
i2=1

Λ1(i2)
m1,i2

)
)ρ̂′Y

n
0 Y

n
1 Y

n
2

m1,m2

)]
(B.87)

= E

[
Tr

((
d2⊗
i2=1

Λ0(i2)
m1,i2
⊗

d2⊗
i2=1

Λ1(i2)
m1,i2

)(
π−1

2 (m2)ρ̂′Y
n
0 Y

n
1 Y

n
2

m1,m2

))]
(B.88)

= E

[
Tr

((
d2⊗
i2=1

Λ0(i2)
m1,i2
⊗

d2⊗
i2=1

Λ1(i2)
m1,i2

)
ρ̂
′Y n0 Y n1 Y n2
m1,1

)]
(B.89)

≥ E

[
Tr

((
d2⊗
i2=1

Λ0(i2)
m1,i2
⊗

d2⊗
i2=1

Λ1(i2)
m1,i2

)
ρ̂
Y n0 Y

n
1 Y

n
2

m1,1

)]
−E

[
|ρ̂Y

n
0 Y

n
1 Y

n
2

m1,1
− ρ̂′Y

n
0 Y

n
1 Y

n
2

m1,1
|1
]

(B.90)

≥ E

[
Tr

((
d2⊗
i2=1

Λ0(i2)
m1,i2
⊗

d2⊗
i2=1

Λ1(i2)
m1,i2

)(
d2⊗
i2=1

ρ̂Y
ni2
0 Y

ni2
1

m1,i2

))]
−
√

8ε (B.91)

=

d2∏
i2=1

E

[
Tr
(

Λ
0(i2)
1 ⊗ Λ

1(i2)
1

)
ρ̂
Y
ni2
0 Y

ni2
1

1

]
−
√

8ε (B.92)

≥ 1−
d2∑
i2=1

εi2 −
√

8ε (B.93)

= 1−
d2∑
i2=1

εP2(i2)−
√

8ε (B.94)

= 1− (ε+
√

8ε) (B.95)

, 1− ε1, (B.96)

where we define ε1 , ε+
√

8ε. Eq. (B.87) follows from Eqs. (B.77) and (B.79). Also

note that we drop the message index m0 in (B.87), because the expectation averages

out m0, as the measurement operator (Λ0
m1|m2

⊗Λ1
m1|m2

) has no m0 dependence. Equa-

tion (B.88) simply results from the fact that permuting the measurement operators is

equivalent to inverse-permuting the codeword instead. Equation (B.89) follows from

the definition of the permutation π2(m2), and (B.90) follows from Lemma B.3. In
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obtaining the first term in inequality (B.91), we drop the superscript Y n
2 from the

received-state density operator (because it doesn’t change the value of the expecta-

tion, as the measurement (Λ0
m1|m2

⊗ Λ1
m1|m2

) acts only on the joint Hilbert space of

Y n
0 and Y n

1 ), and we use Eqs. (B.61) and (B.63) to express ρ̂
′Y n0 Y n1
m1,1

≡
⊗d2

i2=1 ρ̂
Y
ni2
0 Y

ni2
1

m1,i2
.

To obtain the second term of the inequality (B.91), first note that (B.15) specialized

to m2 = 1, implies that Tr
(

(Λ0
1 ⊗ Λ1

1 ⊗ Λ2
1)ρ̂

Y n0 Y
n
1 Y

n
2

m1,1

)
≥ 1− ε, ∀m1. Also note that by

definition, ρ̂
′Y n0 Y n1 Y n2
m1,1

=
(√

Λ0
1 ⊗

√
Λ1

1 ⊗
√

Λ2
1

)
ρ̂
Y n0 Y

n
1 Y

n
2

m1,1

(√
Λ0

1 ⊗
√

Λ1
1 ⊗

√
Λ2

1

)
. Hence,

Lemma B.4 implies E
[
|ρ̂Y

n
0 Y

n
1 Y

n
2

m1,1
− ρ̂′Y

n
0 Y

n
1 Y

n
2

m1,1
|1
]
≤
√

8ε. Equation (B.92) follows from

the symmetry of random code construction, that we earlier observed in going from

(B.22) to (B.23). Inequality (B.93) follows from (B.23) and Eq. (B.94) follows from

the definition (B.20).

Continuing from (B.86), we have

E[Pm0m1m2 ] ≥ E
[
Tr
(
Λ0
m0|m1m2

ρ̂Y
n
0 Y

n
1 Y

n
2

m0,m1,m2

)]
−
√

8ε−
√

8ε1 (B.97)

= E

[
Tr

(
π1(m1)

d2⊗
i2=1

d1⊗
i1=1

Λ0(i2,i1)
m0,i2,i1

)(
π2(m2) ◦ π1(m1)

d2⊗
i2=1

d1⊗
i1=1

ρ̂Y
ni2,i1
0
m0,i2,i1

)]
−
√

8ε−
√

8ε1 (B.98)

= E

[
Tr

(
π2(m2) ◦ π1(m1)

d2⊗
i2=1

d1⊗
i1=1

Λ0(i2,i1)
m0,i2,i1

)(
π2(m2) ◦ π1(m1)

d2⊗
i2=1

d1⊗
i1=1

ρ̂Y
ni2,i1
0
m0,i2,i1

)]
−
√

8ε−
√

8ε1 (B.99)

= E

[
Tr

(
d2⊗
i2=1

d1⊗
i1=1

Λ0(i2,i1)
m0,i2,i1

)(
d2⊗
i2=1

d1⊗
i1=1

ρ̂Y
ni2,i1
0
m0,i2,i1

)]
−
√

8ε−
√

8ε1 (B.100)

=

d2∏
i2=1

d1∏
i1=1

E

[
Tr

(
Λ

0(i2,i1)
1 ρ̂

Y
ni2,i1
0

1

)]
−
√

8ε−
√

8ε1 (B.101)

≥ 1−
d2∑
i2=1

d1∑
i1=1

εi2,i1 −
√

8ε−
√

8ε1 (B.102)

= 1−
d2∑
i2=1

d1∑
i1=1

εP1|2(ii|i2)P2(i2)−
√

8ε−
√

8ε1 (B.103)

= 1−
(
ε+
√

8ε+

√
8(ε+

√
8ε)

)
(B.104)

= 1−O(ε), (B.105)
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where (B.97) follows from (B.86), (B.96), and two applications of Lemma B.4. Equa-

tion (B.98) follows from (B.80) and (B.72). Note that dropping the superscripts Y n
1

and Y n
2 on the received joint quantum state in Eq. (B.97) doesn’t make a difference,

as the measurement operators
{

Λ0
m0|m1m2

}
act only on the Hilbert space of Y n

0 . Equa-

tion (B.99) follows from the fact that the measurement operators
{

Λ0
m0|m1m2

}
do not

depend on m2, and hence can be chosen arbitrarily up to a permutation π2(m2). Next,

we remove the permutations π2(m2) ◦ π1(m1) from both the parentheses in (B.99),

so that the trace remains unchanged in Eq. (B.100). Equation (B.101) follows from

the symmetry of the HSW code construction, (B.102) follows from (B.36), (B.103)

follows from the definition (B.33), and (B.105) completes the proof.

B.3.4 Proof of achievability with M receivers

The proof of the achievability of the capacity region of the M -receiver degraded

quantum broadcast channel (B.5) is a straightforward generalization of the M = 3

case we proved above. We will not go through every single detail of the M -receiver

achievability proof here, but we will rather sketch the proof. Similar to the M = 3

case, we need to prove achievability only for n = 1, because the same proof can be

applied to n-use (larger) quantum systems of the transmitter and the receivers to

obtain the general n > 1 capacity region (B.5).

For any ε, δ > 0, we aim to show here that for rate M -tuples (R0, . . . , RM−1)

satisfying

I(A;Y0|T1)− δ(1 + (M − 1)d0) ≤ R0 ≤ I(A;Y0|T1) + (M − 1)δI0,

I(Tk;Yk|Tk+1)− δ(1 + (M − k − 1)dk) ≤ Rk ≤ I(Tk;Yk|Tk+1) + (M − k − 1)δIk,

0 ≤ RM−1 = I(TM−1;BM−1)− δ, (B.106)

there exists an (2nR0 , . . . , 2nRM−1 , n, O(ε)) code for the degraded broadcast channel

NA−Y0...YM−1
, where dk , |Tk| is the cardinality of the alphabet associated with the

auxiliary random variable Tk and the cardinality of the transmitter’s alphabet, |A| ,

d0. Ik , maxik+1
I(Tk;Yk|Tk+1 = ik+1) are finite non-negative real numbers.
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Using HSW theorem [27, 28, 29] for the channel NTM−1−Y0...YM−1
, let us obtain a

(RM−1, n, ε) code
{
ρ̂
TnM−1
mM−1 ,Λ

0
mM−1

,Λ1
mM−1

, . . . ,ΛM−1
mM−1

}
with all codewords chosen i.i.d.

from the distribution pTM−1
(iM−1) of type PM−1, satisfying |PM−1 − pTM−1

(·)|1 ≤ δ,

and for all mM−1 ∈ WM−1,

Tr

(
M−1⊗
k=0

Λk
mM−1

)
ρ̂
Y n0 ...Y

n
M−1

mM−1 ≥ 1− ε, (B.107)

where ρ̂
Y n0 ...Y

n
M−1

mM−1 =
⊗n

l=1 ρ̂
Y n0,l...Y

n
M−1,l

mM−1 are product-state codewords. Treating these

codewords as the primary cloud-centers, for each iM−1 ∈ TM−1, we choose another

layer of codewords ρ̂
T
niM−1
M−2
mM−2,iM−1

for the conditional channel N iM−1

TM−2−Y0...YM−2
, picked i.i.d.

from the distribution pTM−2|TM−1
(iM−2|iM−1), which form a random HSW code of rate

RM−2,iM−1
. Taking the average of these rates over the entire codebook, the desired rate

bound I(TM−2;YM−2|TM−1) − δ(1 + dM−1) ≤ RM−2 ≤ I(TM−2;YM−2|TM−1) + δIM−2

can be established for RM−2. Continuing in this manner, we keep selecting HSW

codewords from the alphabets of the auxiliary random variables with the appropriate

conditional distributions, viz. by applying HSW theorem to the channelN iM−1,...,il
Tl−1−Y0...Yl−1

,

to select a code of overall rate Rl−1 close to the desired bound (B.106). Proving the

rate bounds involve applications of Lemma B.2 and simple manipulations similar to

those leading to the rate bounds for R1 and R0 in the M = 3 proof we did earlier.

Codewords and measurement operators are selected in a layered way, exactly as

we did earlier for the M = 3 case. For the chosen measurement and codewords, the

bound for the average probability of correct decision works out to be

E
[
Pm0...mM−1

]
≥ 1−

(
ε+
√

8ε+
√

8ε1 +
√

8ε2 + . . .+
√

8εM−2

)
, (B.108)

where εi+1 = εi +
√

8εi, for i ∈ {0, . . . ,M − 3}, and ε0 , ε. Hence, E
[
Pm0...mM−1

]
≥

1−O(ε), as desired. The proof parallels the layered codebook construction technique

used for classical degraded broadcast channels, and works out pretty much in the

same manner as the M = 3 proof.
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B.4 Capacity Region: Proof (Converse)

Our goal in proving the converse to the capacity-region proof is to show that any

achievable rate M -tuple (R0, . . . , RM−1) must be inside the ultimate rate-region pro-

posed by Eqs. (B.5). Let us assume that (R0, . . . , RM−1) is achievable. Let {xn(m0, . . . ,mM−1)},

and POVMs
{

Λ0
m0...mM−1

}
,
{

Λ1
m1...mM−1

}
, . . .,

{
ΛM−1
mM−1

}
comprise a (2nR0 , . . . , 2nRM−1 , n, ε)

code in the achieving sequence. Let us suppose that the receivers Y0, . . . , YM−1 store

their respective decoded messages in registers Ŵ0, . . . , ŴM−1. Then, for real numbers

εn,k → 0, we have for k ∈ {0, 1, . . . ,M − 2}

nRk = H(Wk) (B.109)

≤ I(Wk; Ŵk) + nεn,k (B.110)

≤ χ
(
pWk

(mk), ρ̂
Y nk
mk

)
+ nεn,k (B.111)

<
∑
mk+1

pWk+1
(mk+1)χ

(
pWk

(mk), ρ̂
Y nk
mk+1
k

)
nεn,k (B.112)

= I(Wk;Y
n
k |Wk+1) + nεn,k, (B.113)

where (B.110) and (B.111) follow from Fano’s inequality and the Holevo bound

respectively. Equation (B.112) follows from concavity of Holevo information (as

ρ̂
Y nk
mk =

∑
mk+1

pWk+1
(mk+1)ρ̂

Y nk
mk+1
k

). For k = 0, we further have

nR0 ≤ I(W0;Y n
0 |W1) + εn,0 (B.114)

≤ I(An;Y n
0 |W1) + εn,0, (B.115)

where (B.115) follows from the Markov nature of (W0, . . . ,WM−1) → An → Y n
0 →

. . .→ Y n
M−1. We also have similarly, for εn,M−1 → 0,

nRM−1 = nH(WM−1) (B.116)

≤ I(WM−1; ŴM−1) + nεn,M−1 (B.117)

≤ χ
(
pWM−1

(mM−1), ρ̂
Y nM−1
mM−1

)
+ nεn,M−1 (B.118)

= I(WM−1;Y n
M−1) + nεn,M−1. (B.119)
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Choosing Tk = Wk for k ∈ {1, 2, . . . ,M − 1} completes the proof.
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Appendix C

Theorem on property of g(x)

The converse proofs of the capacity region for the Bosonic broadcast channel with and

without thermal noise, in chapter 3, use a theorem on a property of the Bose-Einstein

entropy function, g(x) = (1+x) ln(1+x)−x lnx, in order to conclude Eqs. (3.59) and

(3.90). In this appendix, we prove two lemmas which lead to the proof of a theorem.

After that, we show how the theorem implies Eqs. (3.59) and (3.90), as two simple

special cases.

Lemma A.1 — For all real numbers x ≥ 0, C ≥ 0, and 0 ≤ κ ≤ 1, the following

inequality holds:

ln
(
1 + 1

κx+C

)
ln
(
1 + 1

x

) ≥ κx(1 + x)

(κx+ C)(1 + κx+ C)
. (C.1)

Proof — Define a function f(x) , x(1 + x) ln(1 + 1/x). We claim that f(x) has the

following properties1:

1Proofs —

1. We can express f(x) as, f(x) = x(g(x) − lnx). Therefore, limx→0f(x) = limx→0(xg(x)) −
limx→0(x lnx). It is readily verified by applying the L’ Hopital’s rule, that limx→0(xg(x)) =
limx→0(x lnx) = 0.

2. By straightforward differentiation, f ′′(x) = 2 ln(1 + 1/x) − (2x + 1)/(x(1 + x)). Claim:
ln(1 + y) ≤ y(y + 2)/2(y + 1), ∀y ≥ 0. Proof: It is easy to see the following:

• Both the left and right hand sides of the proposed inequality go to zero at y = 0.

• Both ln(1 + y) and y(y + 2)/2(y + 1) are positive for y > 0.
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1. limx→0f(x) = 0.

2. f(x) is a concave function, i.e., the second derivative f ′′(x) ≤ 0, for x ≥ 0.

3. f(x) is monotonically increasing for x ≥ 0.

Given properties 1 and 2 above, we have f(κx) ≥ κf(x), for x ≥ 0 and 0 ≤ κ ≤ 1.

We further have from property 3 above, that for any non-negative real number C ≥ 0,

f(κx + C) ≥ f(κx), for x ≥ 0 and 0 ≤ κ ≤ 1. Combining the two above, we obtain

f(κx + C) ≥ κf(x). Substituting the explicit form of f(x), we have Eq. (C.1), that

we set out to prove.

Lemma A.2 — The following holds:

d2

dy2
g
(
κg−1(y) + C

)
≥ 0, (C.2)

for y ≥ 0, where C is a non-negative real number.

Proof — Let us define p(y) , g (κg−1(y) + C). Differentiating twice with respect to

y, we get

d2p(y)

dy2
= κ ln

(
1 +

1

κg−1(y) + C

)(
d2

dy2
g−1(y)

)
−κ2 1

(κg−1(y) + C)(1 + κg−1(y) + C)

(
d

dy
g−1(y)

)2

. (C.3)

Now consider the identity g(g−1(y)) = y, and substitute g−1(y) = x. Differentiating

• d
dy ln(1 + y) ≤ d

dy

[
y(y+2)
2(y+1)

]
, for y ≥ 0.

Hence, ln(1 + y) ≤ y(y + 2)/2(y + 1), ∀y ≥ 0. Substituting y = 1/x, we get f ′′(x) ≤ 0, for
x ≥ 0.

3. By straightforward differentiation, f ′(x) = (2x+1) ln(1+1/x)−1. Claim: ln(1+y) ≥ y/(y+2),
∀y ≥ 0. Proof: It is easy to see the following:

• Both the left and right hand sides of the proposed inequality go to zero at y = 0.

• Both ln(1 + y) and y/(y + 2) are positive for y > 0.

• d
dy ln(1 + y) ≥ d

dy

[
y
y+2

]
, for y ≥ 0.

Hence, ln(1 + y) ≥ y/(y + 2), ∀y ≥ 0. Substituting y = 1/x, we get f ′(x) ≥ 0, for x ≥ 0.
Since limx→0f(x) = 0, f(x) must be monotonically increasing for x ≥ 0.
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both sides of the identity with respect to y, we get (dg(x)/dx)(dx/dy) = 1, which

implies dx/dy = 1/(dg(x)/dx). Therefore, we get

d

dy
g−1(y) =

1

ln
(

1 + 1
g−1(y)

) , (C.4)

and thus,
d2

dy2
g−1(y) =

1

g−1(y)(1 + g−1(y))

1[
ln
(

1 + 1
g−1(y)

)]3 . (C.5)

Substituting Eqs. (C.4) and (C.5) into Eq. (C.3) we finally obtain,

d2p(y)

dy2
=

κ

g−1(y)(1 + g−1(y))
[
ln
(

1 + 1
g−1(y)

)]2

 ln
(

1 + 1
κg−1(y)+C

)
ln
(

1 + 1
κg−1(y)

)
− κg−1(y)(1 + g−1(y))

(κg−1(y) + C)(1 + κg−1(y) + C)

]
(C.6)

≥ 0, (C.7)

where the last inequality follows from using Lemma A.1, along with the fact that

g−1(y) ≥ 0, ∀y ≥ 0.

Theorem A.3 — Given non-negative real numbers xk ∈ R+, for k ∈ {1, . . . , n}, and

0 ≤ κ ≤ 1, if x0 is defined by

n∑
k=1

1

n
g(xk) = g(x0), (C.8)

then the following inequality holds:

n∑
k=1

1

n
g(κxk + C) ≥ g(κx0 + C), (C.9)

where g(x) ≡ (1 + x) log(1 + x)− x log(x), and C ≥ 0.

Proof — Because g(x) is a 1− 1 function, we can define unambiguously the inverse

function h(y) ≡ g−1(y), such that y = g(x) ≡ x = h(y) for x, y ≥ 0. Define yk ,

g(xk), y
′
k , g (κg−1(yk) + C) and l(yk) , yk − y′k, for k ∈ {0, 1, . . . , n}. Rephrasing
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the theorem in terms of h(y), we have the following theorem. Given

y0 =
1

n

n∑
k=1

yk, yk ≥ 0,∀k, (C.10)

the following is true:
1

n

n∑
k=1

y′k ≥ y′0. (C.11)

Using Lemma A.2, it follows that l(y) = y − y′ = y − g (κg−1(y) + C) is a convex

function in y, i.e. l′′(y) ≤ 0. Thus, Eqn. (C.10) implies

l(y0) ≥ 1

n

n∑
k=1

l(yk), (C.12)

which implies

y0 − y′0 ≥
1

n

n∑
k=1

(yk − y′k) (C.13)

≥ 1

n

n∑
k=1

yk −
1

n

n∑
k=1

y′k. (C.14)

Using Eq. (C.10), we thus have

1

n

n∑
k=1

y′k ≥ y′0, (C.15)

which completes the proof. Eqs. (3.59) and (3.90) follow as straightforward conse-

quences of Theorem A.3, as shown below.

Corollary A.4 — Given

∑
k

1

2nRC
g
(
ηβkN̄k

)
= g

(
ηβN̄

)
, (C.16)

and η > 1/2, we have that

∑
k

1

2nRC
g
(
(1− η)βkN̄k

)
≥ g

(
(1− η)βN̄

)
. (C.17)
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Proof — Substitute xk , ηβkN̄k, x0 , ηβN̄ , n , 1/2nRC and κ , (1 − η)/η. As

η > 1/2, it follows that 0 ≤ κ ≤ 1. Using these substitutions, Eq. (C.17) follows from

Theorem A.3, with C = 0.

Corollary A.5 — Given

∑
k

1

2nRC
g
(
ηβkN̄

A
k + (1− η)N

)
= g

(
ηβN̄ + (1− η)N

)
. (C.18)

and η > 1/2, we have that

∑
k

1

2nRC
g
(
(1− η)βkN̄

A
k + ηN

)
≥ g

(
(1− η)βN̄ + ηN

)
. (C.19)

Proof — Substitute xk , ηβkN̄
A
k + (1− η)N , x0 , ηβN̄ + (1− η)N , n , 1/2nRC and

κ , (1− η)/η. As η > 1/2, we have 0 ≤ κ ≤ 1. Using these substitutions, Eq. (C.19)

follows from Theorem A.3, with C = (2η − 1)N/η > 0.
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Appendix D

Proofs of Weak Minimum Output

Entropy Conjectures 2 and 3 for

the Wehrl Entropy Measure

This appendix contains the proofs of the Wehrl-entropy versions of the weak conjec-

tures 2 and 3 that do not draw upon the Entropy Power Inequality (EPI). As we

pointed out in chapter 4, the EPI quickly leads to the Wehrl-entropy proofs for the

strong forms of all the minimum output entropy conjectures. We still include the

following proofs in the thesis for the sake of completeness, and because these proofs

could be of mathematical interest in their own right.

Wehrl entropy is the Shannon differential entropy of the Husimi probability func-

tion Q(µ) for the state ρ̂ [64], i.e., for a single mode we have

W (ρ̂) ≡ −
∫
Q(µ) ln [πQ(µ)]d2µ, (D.1)

where Q(µ) ≡ 〈µ|ρ̂|µ〉/π with |µ〉 a coherent state. The Wehrl entropy provides a

measurement of the state ρ̂ in phase space and its minimum value is achieved on

coherent states [64].
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D.1 Weak conjecture 2

The following single-mode version of conjecture 2 was stated in chapter 4:

Weak Conjecture 2 — Let a lossless beam splitter have input â in its vacuum

state, input b̂ in a zero-mean state with von Neumann entropy S(ρ̂B) = g(K), and

output ĉ from its transmissivity-η port. Then the von Neumann entropy of output ĉ

is minimized when input b̂ is in a thermal state with average photon number K, and

the minimum output entropy is given by S(ρ̂C) = g((1− η)K).

The following is an analogous statement of the conjecture for the Wehrl entropy:

Weak Conjecture 2: Wehrl — Let a lossless beam splitter have input â in its vac-

uum state, input b̂ in a zero-mean state with Wehrl entropy W (ρ̂B) = 1 + ln (K + 1),

and output ĉ from its transmissivity-η port. Then the Wehrl entropy of output ĉ is

minimized when input b̂ is in a thermal state with average photon number K, and the

minimum output entropy is given by W(ρ̂C) = 1 + ln (K(1− η) + 1).

Proof — Before we begin the proof of the Wehrl-entropy conjecture, let us recall a

few definitions. The antinormally ordered characteristic function χρ̂A(ζ) of a state ρ̂

is given by:

χρ̂A(ζ) = tr
(
ρ̂e−ζ

∗âeζâ
†
)
. (D.2)

Also, the antinormally ordered characteristic function χρ̂A(ζ) and the Husimi function

Qρ̂(µ) ≡ 〈µ|ρ̂|µ〉/π of a state ρ̂ form a 2-D Fourier-Transform Inverse-Transform pair:

χρ̂A(ζ) =

∫
Qρ̂(µ)eζµ

∗−ζ∗µd2µ, (D.3)

Qρ̂(µ) =
1

π2

∫
χρ̂A(ζ)e−ζµ

∗+ζ∗µd2ζ (D.4)

As the two input states to the beamsplitter are in a product state, Eq. D.2 im-

plies that the output state characteristic function is a product of the input state

characteristic functions with scaled arguments:
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χρ̂CA (ζ) = χρ̂AA (
√
ηζ)χρ̂BA (

√
1− ηζ) (D.5)

The input â is given to be in the vacuum state. Thus, the Husimi function and the

Wehrl entropy of the input â are given by:

Qρ̂A(µ) =
1

π
e−|µ|

2

, (D.6)

W (ρ̂A) = 1. (D.7)

Equation D.5, and the multiplication-convolution property of Fourier transforms (FT)

give us

Qρ̂C (µ) =
1

η
Qρ̂A

(
µ
√
η

)
?

1

(1− η)
Qρ̂B

(
µ√

1− η

)
(D.8)

=
1

πη
e−|µ|

2/η ?
1

(1− η)
Qρ̂B

(
µ√

1− η

)

where, we used the scaling-property of FT: χρ̂A(
√
ηζ)←→ (1/η)Qρ̂(µ/

√
η).

If the state of the input b̂ is a thermal state with mean photon number K, i.e.,

ρ̂B =
1

πK

∫
e−|α|

2/K |α〉〈α|d2α,

we find that

W (ρ̂B) = 1 + ln(K + 1), (D.9)

which satisfies the hypothesis of our Wehrl-entropy conjecture. Using Eq. D.9, we

can then write out the Husimi function of the output state ĉ:

Qρ̂C (µ) =
1

π(1 + (1− η)K)
e−|µ|

2/(1+(1−η)K), (D.10)

obtaining

W (ρ̂C) = 1 + ln(K(1− η) + 1), (D.11)
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for the resulting Wehrl entropy, which provides us with an upper bound to the mini-

mum output Wehrl entropy:

W(ρ̂C) ≤ 1 + ln(K(1− η) + 1). (D.12)

To show that the expression in Eq. D.12 is also a lower bound for W(ρ̂C), we use

Theorem 6 of [67], which states that for two probability distributions, f(µ) and h(µ)

on C, we have

W ((f ? h)(µ)) ≥ λW (f(µ)) + (1− λ)W (h(µ))− λ lnλ− (1− λ) ln(1− λ) (D.13)

for all λ ∈ [0, 1], where f ? h is the convolution of f and h and where the Wehrl

entropy of a probability distribution is found from Eq. 4.2 by replacing Q(µ) with the

given probability distribution. Choosing

f(µ) ≡ 1

η
Qρ̂A

(
µ
√
η

)
, and (D.14)

h(µ) ≡ 1

1− η
Qρ̂B

(
µ√

1− η

)
,

we get

W (ρ̂C) ≥ λ(1 + ln η) + (1−λ)W

(
1

1− η
Qρ̂B

(
µ√

1− η

))
−λ lnλ− (1−λ) ln(1−λ).

(D.15)

It is straightforward to show that the Wehrl entropy of a scaled distribution

(1/x)Q(µ/
√
x) is given by

W

(
1

x
Q

(
µ√
x

))
= W (Q(µ)) + ln x, (D.16)

for any x ∈ R. From Equations D.16 and D.15, we obtain
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W (ρ̂C) ≥ λ(1 + ln η) + (1− λ) (W (ρ̂B) + ln(1− η)) (D.17)

−λ lnλ− (1− λ) ln(1− λ)

= λ(1 + ln η) + (1− λ) (1 + ln(K + 1) + ln(1− η))

−λ lnλ− (1− λ) ln(1− λ)

= 1 + λ ln
(η
λ

)
+ (1− λ) ln

(
(K + 1)(1− η)

(1− λ)

)
= 1 + ln(K(1− η) + 1)

where the last equality uses λ = η/(η+ (K + 1)(1− η)) ∈ [0, 1],∀η,K. Therefore the

minimum output Wehrl entropy of ĉ must satisfy the lower bound

W(ρ̂C) ≥ 1 + ln(K(1− η) + 1). (D.18)

The upper-bound (Eq. D.12) and the lower-bound (Eq. D.18) on the minimum

output Wehrl entropy coincide, and thus we have the equality:

W(ρ̂C) = 1 + ln(K(1− η) + 1), (D.19)

which is achieved by a thermal-state ρ̂B with mean photon number K (Eq. D.24),

thus proving the conjecture for the minimum output Wehrl entropy.

D.2 Weak conjecture 3

The following single-mode version of conjecture 3 was stated in chapter 4:

Weak Conjecture 3 — Let a lossless beam splitter have input â in a zero-mean

thermal state with mean photon number N , input b̂ in a zero-mean state with von

Neumann entropy S(ρ̂B) = g(K), and output ĉ from its transmissivity-η port. Then

the von Neumann entropy of output ĉ is minimized when input b̂ is in a thermal

state with average photon number K, and the minimum output entropy is given by

S(ρ̂C) = g(ηN + (1− η)K).
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The following is an analogous statement of the conjecture for the Wehrl entropy:

Conjecture 3: Wehrl — Let a lossless beam splitter have input â in a zero-mean

thermal state with mean photon number N , input b̂ in a zero-mean state with Wehrl

entropy W (ρ̂B) = 1 + ln(K + 1), and output ĉ from its transmissivity-η port. Then

the Wehrl entropy of output ĉ is minimized when input b̂ is in a thermal state with

average photon number K, and the minimum output entropy is given by W(ρ̂C) =

1 + ln(ηN + (1− η)K + 1).

Proof — Our proof of the Wehrl-entropy conjecture for the thermal-noise ρ̂A parallels

what we did for the vacuum-state ρ̂A. As before, we have that

χρ̂CA (ζ) = χρ̂AA (
√
ηζ)χρ̂BA (

√
1− ηζ) (D.20)

Now, however, the input â is in a zero-mean thermal state with mean photon number

N . Thus, its Husimi function and Wehrl entropy are given by:

Qρ̂A(µ) =
1

π(N + 1)
e−|µ|

2/(N+1), (D.21)

W (ρ̂A) = 1 + ln(N + 1). (D.22)

From Eq. D.20, and the multiplication-convolution property of Fourier transforms

(FT) we get

Qρ̂C (µ) =
1

η
Qρ̂A

(
µ
√
η

)
?

1

(1− η)
Qρ̂B

(
µ√

1− η

)
(D.23)

=
1

πη(N + 1)
e−|µ|

2/(η(N+1)) ?
1

(1− η)
Qρ̂B

(
µ√

1− η

)
.

If the state of the input b̂ is a thermal state with mean photon number K, i.e.,

ρ̂B =
1

πK

∫
e−|α|

2/K |α〉〈α|d2α,
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we have

W (ρ̂B) = 1 + ln(K + 1), (D.24)

which satisfies the hypothesis of our thermal-noise Wehrl-entropy conjecture. Using

Eq. D.9, we can write out the Husimi function and the Wehrl entropy of the output

ĉ:

Qρ̂C (µ) =
1

π(1 + (1− η)K + ηN)
e−|µ|

2/(1+(1−η)K+ηN), (D.25)

W (ρ̂C) = 1 + ln(ηN +K(1− η) + 1), (D.26)

which gives us the upper bound

W(ρ̂C) ≤ 1 + ln(ηN +K(1− η) + 1). (D.27)

To show that the expression in Eq. D.12 is also a lower bound for W(ρ̂C), we use

Eq. D.13, and definitions in Eq. D.15 to obtain:

W (ρ̂C) ≥ λ(1+ln(η(N+1)))+(1−λ)W

(
1

1− η
Qρ̂B

(
µ√

1− η

))
−λ lnλ−(1−λ) ln(1−λ).

(D.28)

From equations D.16 and D.28, we find

W (ρ̂C) ≥ λ(1 + ln(η(N + 1))) + (1− λ) (W (ρ̂B) + ln(1− η)) (D.29)

−λ lnλ− (1− λ) ln(1− λ)

= λ(1 + ln(η(N + 1))) + (1− λ) (1 + ln(K + 1) + ln(1− η))

−λ lnλ− (1− λ) ln(1− λ)

= 1 + λ ln

(
η(N + 1)

λ

)
+ (1− λ) ln

(
(K + 1)(1− η)

(1− λ)

)
= 1 + ln(ηN +K(1− η) + 1)
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where the last equality used λ = η(N+1)/(η(N+1)+(K+1)(1−η)) ∈ [0, 1],∀η,K,N .

Therefore the minimum output Wehrl entropy of ĉ must satisfy the lower bound

W(ρ̂C) ≥ 1 + ln(ηN +K(1− η) + 1). (D.30)

The upper bound (Eq. D.27) and the lower bound (Eq. D.30) on the minimum

output Wehrl entropy coincide, and thus we have the equality:

W(ρ̂C) = 1 + ln(ηN +K(1− η) + 1). (D.31)

which is achieved by a thermal-state ρ̂B with mean photon numberK (Equation D.24),

thereby proving the thermal-noise Wehrl-entropy conjecture.
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