
OPERATIONS RESEARCH CENTER

Working Paper

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

by

Equivalence of Convex Problem Geometry and Computational
Complexity in the Separation Oracle Model

OR 383-09

Robert M. Freund
Jorge Veraz

January 2009

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JAN 2009 2. REPORT TYPE

3. DATES COVERED
 00-00-2009 to 00-00-2009

4. TITLE AND SUBTITLE
Equivalence of Convex Problem Geometry and Computational
Complexity in the Separation Oracle Model

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Massachusetts Institute of Technology,Sloan School of
Management,Cambridge,MA,02142

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
U.S. Government or Federal Rights License

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

21

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Equivalence of Convex Problem Geometry and Computational Complexity in
the Separation Oracle Model∗

Robert M. Freund†and Jorge Vera‡

January 2009

Abstract

Consider the following supposedly-simple problem:

compute x satisfying x ∈ S ,

where S is a convex set conveyed by a separation oracle, with no further information (e.g.,
no bounding ball containing or intersecting S, etc.). Our interest in this problem stems from
fundamental issues involving the interplay of (i) the computational complexity of computing a
point x ∈ S, (ii) the geometry of S, and (iii) the stability or conditioning of S under perturbation.
Under suitable definitions of these terms, we show herein that problem instances with favorable
geometry have favorable computational complexity, validating conventional wisdom. We also
show a converse of this implication, by showing that there exist problem instances in certain
families characterized by unfavorable geometry, that require more computational effort to solve.
This in turn leads, under certain assumptions, to a form of equivalence among computational
complexity, the geometry of S, and the conditioning of S. Our measures of the geometry of
S, relative to a given (reference) point x̄, are the aspect ratio A = R/r, as well as R and 1/r,
where B(x̄, R) ∩ S contains a ball of radius r. The aspect ratio arises in the analyses of many
algorithms for convex problems, and its importance in convex algorithm analysis has been well-
known for several decades. However, the terms R and 1/r in our complexity results are a bit
counter-intuitive; nevertheless, we show that the computational complexity must involve these
terms in addition to the aspect ratio even when the aspect ratio itself is small. This lower-bound
complexity analysis relies on simple features of the separation oracle model of conveying S; if
we instead assume that S is conveyed by a self-concordant barrier function, then it is an open
challenge to prove such complexity lower-bound.

∗This research has been partially supported through the Singapore-MIT Alliance and AFOSR Grant FA9550-08-
1-0350
†MIT Sloan School of Management, 50 Memorial Drive, Cambridge, MA 02142, USA, email: rfreund@mit.edu
‡Dept. de Ingenieŕıa Industrial y Sistemas, Facultad de Ingenieŕıa, Pontificia Universidad Católica de Chile,

Campus San Joaqúın, Vicuña Mackenna 4860 Santiago, CHILE, email: jvera@ing.puc.cl

1

1 Introduction, Motivation, and Discussion

Consider the following supposedly-simple problem:

compute x satisfying x ∈ S , (1)

where S ⊂ X is a convex set (bounded or not, open or not) conveyed by a separation oracle with no
further information (e.g., no bounding ball containing or intersecting S, etc.), and X is a (finite) n-
dimensional vector space. Our interest in (1) stems from fundamental issues involving the interplay
of three notions: (i) the computational complexity of computing a point x ∈ S, (ii) the geometry
of S, and (iii) the stability or conditioning of S. In this paper we focus on the equivalence of
computational complexity and a suitable measure of the geometry of S, which leads under certain
assumptions to an equivalence of all three notions.

There are two standard information models for convex sets, the separation oracle model and
the (self-concordant) barrier model. A separation oracle for S, see [12], is a subroutine that, given
a point x̂ as input, returns the statement “x̂ ∈ S” if indeed this is the case, or if x̂ /∈ S, returns a
hyperplane H with the property that x̂ ∈ H− and S ⊂ H++. Here H ⊂ <n denotes a hyperplane,
and H− and H+ (H−− and H++) denote the two closed (open) halfspaces of <n bounded by
H. From a computational viewpoint, the information about H+ is described by a nonzero vector
h ∈ <n and scalar α for which H+ = {x ∈ <n : hTx ≥ α}. For any separation oracle based
algorithm, we define the number of iterations of the algorithm to be the number of oracle calls, i.e.,
we use oracle calls and iterations interchangeably.

The separation oracle model applies readily to the case when S is the feasible region of a conic
linear system:

S := {x ∈ <n : b−Ax ∈ K} , (2)

where A is a linear operator from X to a (finite) m-dimensional vector space Y , b ∈ Y , K ⊂ Y is
a closed convex cone, and d = (A, b) is the data for the system. In this case a separation oracle for
the cone K can be used to easily construct a separation oracle for S.

1.1 Discussion of Main Results

A representative separation oracle algorithm for solving (1) is the ellipsoid algorithm [12], see also
[6]. The ellipsoid algorithm is easy to implement and has very good theoretical complexity. We
assume the reader is familiar with the concepts underlying this algorithm. In consideration of this,
suppose that we know a priori a vector x̄ and a positive scalar R with the property that B(x̄, R)∩S
has positive volume (where B(c, ρ) denotes the ball of radius ρ centered at c). This last assumption

2

can also be stated as saying that there exist values R and r > 0 for which it holds that:

B(x̄, R) ∩ S contains a ball of radius r . (3)

Then the ellipsoid algorithm for solving (1) can be initiated with the ball B(x̄, R), and the number
of oracle calls (equivalently, the number of iterations) of the algorithm required to solve problem
(1) is known (see [12]) to be at most ⌈

2n2 ln
(
R

r

)⌉
.

We will in general refer to a ratio of the form A := R/r where R, r satisfy (3) as an aspect ratio of
S relative to the reference point x̄. The aspect ratio arises in the analysis of many algorithms for
convex problems, and its importance in convex algorithm analysis dates back at least four decades,
see e.g., Rosenblatt’s 1962 book [18].

The ellipsoid algorithm requires prior specification of x̄ and R to determine the starting ball
(ellipsoid) with which to start the method; the condition that (3) holds for some r > 0 is also
needed in order to guarantee convergence. However, at least in theory as well as in the case of
typical instances of (1) when S is in the conic format (2), a priori values of x̄ and R satisfying
(3) are either not known or involve excessively conservative (large) values of R >> 0 for special
structure and data representation of S. For example, suppose S = {x ∈ <n : Ax ≤ b} for known
rational data d = (A, b) whose bit-encoding is of length L. Then one can pre-determine values
of x̄ := 0 (∈ <n), R := 2nL, and r := 2−nL for which B(x̄, R) ∩ S contains a ball of radius r if
and only if (1) has an interior solution. This observation underlies Khachiyan’s proof that linear
optimization is polynomial-time in the bit-model in [7] (see also [2] and [6]); however in most
instances there are significantly better values of R and r than those above. As another example,
suppose S = {x ∈ <n : Q1x1 + . . .+Qnxn � Q0} where Qi ∈ Sm are integral symmetric matrices of
order m, for i = 0, . . . , n. Porkolab and Khachiyan [9] show that if S is bounded then S ⊂ B(0, R)

for R = e(LmO(min{n,m2})), where L is the maximum bit-length of the coefficients of the matrices
Q0, . . . , Qn. While this bound on R is pre-determined, it is doubly exponential in at least one of
the dimensions of the problem. In Section 2 we present an extension of the ellipsoid algorithm that
eliminates the need for any a priori information about R and/or r, and we prove an upper bound
on the number of iterations required to solve (1) using this extension of the ellipsoid algorithm,
given by: ⌈

2(n+ 1)
(

1
2

ln(n) + 1.16 + n ln
(

1
r

+
R

r

)
+ ln(1 +R)

)⌉
,

where R, r are any existential values satisfying (3) but are not required to be known to run the
algorithm (see Theorem 2.2). Notice that this iteration bound involves not just the aspect ratio
R/r but also involves both 1/r and R itself. The complexity bound essentially states that sets S
with favorable geometry relative to x̄, in the sense that none of the quantities R/r, R, or 1/r are
very large, will not require too much computation to solve.

3

The presence of the aspect ratio term A = R/r in the above complexity bound is to be expected,
especially in light of its presence in the case when R is known and given to the algorithm a priori.
This still begs the question of whether the terms R and 1/r must be present or whether they can be
removed from the complexity upper bound using a different algorithm and/or a different analysis.
Notice that even if R/r is small, say at most an absolute constant, the values of R and/or 1/r might
still be very large, yielding perhaps an overly conservative iteration complexity upper bound, as
shown in the following two examples.

Example 1.1 Let n = 1, x̄ = 0, and S = [10−6, 3 × 10−6]. Then r = 10−6, R = 3 × 10−6 yields
R/r = 3 but 1/r = 106.

Example 1.2 Let n = 1, x̄ = 0, and S = [106, 3× 106]. Then r = 106, R = 3× 106 yields R/r = 3
but R = 3× 106.

Queried a different way, are all three geometric measures R/r, R, and 1/r necessary components
of the computational complexity of solving (1)? We resolve this question in Section 3, where we show
that the dependence of the complexity bound on R and 1/r (as well as on R/r) cannot be removed.
In Theorems 3.1, 3.2, and 3.3, we show under suitable assumptions for some specific families of
problem instances, that any separation oracle algorithm for solving (1) must, for some instance
in the requisite family, require at least blog2(R/r)− 1c, or blog2 log2(R + 1)c, or blog2 log2(1/4r)c
iterations, respectively. While these lower bounds are not of the same order as the upper bound
presented above, they do involve the same three geometric quantities R/r, R, and 1/r.

Taken together, these results demonstrate a certain equivalence between computational com-
plexity and problem instance geometry of S as measured by R/r, R, and 1/r. Indeed, while
problems with favorable geometry do not require too much computational effort to solve, there
exist problem instances in certain families with unfavorable geometry, that require more computa-
tional effort to solve. This equivalence ties in nicely with results regarding the interplay of stability
and conditioning, problem geometry, and computational complexity for problems in conic format
(2). Considering S defined by (2) for data d = (A, b) and keeping the cone K fixed, we measure
the condition number of (2) using the “distance to infeasibility” which we now briefly review. Let
L(X,Y) denote the space of linear operators from X to Y and letM⊂ L(X,Y)× Y denote those
data pairs d = (A, b) for which S given by (2) is nonempty. For d = (A, b) ∈ M, let ρ(d) denote
the “distance to infeasibility” for (2), namely:

ρ(d) := min
∆d=(∆A,∆b)

{‖∆d‖ : d+ ∆d /∈M} ,

under suitably defined norms on spaces and operators, see [14]. Then ρ(d) denotes the smallest
perturbation of our given data d which would render the resulting system in (2) infeasible. Next

4

let C(d) denote the condition measure of (2), namely C(d) = ‖d‖/ρ(d), which is a scale-invariant
reciprocal of the distance to infeasibility. There are strong connections between C(d) and bounds on
the stability of S under data perturbation, see Renegar [14]. It is shown in Renegar [15] and in [3]
that problems with favorable condition numbers C(d) do not require too much computational effort
to solve using interior-point methods and the ellipsoid method, respectively. Also, using x̄ = 0, it is
shown in [4] that a favorable value of C(d) implies favorable geometry of S, namely favorable values
of R/r, R, and 1/r, and that a converse of this statement holds under an assumption of “conic
curvature” defined and shown in [1]. Taken together, these cited results in combination with the
results developed in this paper demonstrate an equivalence between favorable geometry, favorable
complexity, and favorable conditioning under suitable assumptions.

Last of all, we remark that we have only shown an equivalence between the geometry of S and
computational complexity in the separation oracle model, and not in the (self-concordant) barrier
model. It is shown in [5] that favorable geometry implies favorable computational complexity of
an interior-point method. However, it is an open challenge to prove an assertion that unfavorable
geometry implies (say, in the worst case) a large number of iterations of an interior-point method.

The rest of the paper is organized as follows. In Sections 2 and 3 we present our lower and
upper bounds on the complexity of solving (1), respectively. Section 4 discusses possible extensions
and/or strengthening of the complexity bounds.

Notation. We assume that X is equipped with an inner-product norm ‖v‖ :=
√
〈v, v〉. For

convenience we identify X with <n and the inner product 〈·, ·〉 with the standard scalar prod-
uct 〈v, w〉 = vTw =

∑n
j=1 vjwj . Let Sk, Sk

+, and Sk
++ denote the set of symmetric matrices,

symmetric positive semidefinite matrices, and symmetric positive definite matrices of order k,
respectively. Let “�” denote the Löwner partial ordering on symmetric matrices: A � B if
and only if A − B is positive semidefinite. Let Qk denote the k-dimensional second-order cone
{x ∈ <k : ‖(x2, . . . , xk)‖2 ≤ x1} for k ≥ 2.

2 Upper Bounds on Complexity of (1) via an Extension of the
Ellipsoid Algorithm

We first review some basic results about the ellipsoid algorithm, see Nemirovsky and Yudin [12],
also Grötschel et al. [6], and then present an extension of the ellipsoid algorithm that solves (1) in
the absence of any bounding information about S. The ellipsoid method applied to solve (1) for a
given convex set S ⊂ <n is completely specified by the separation oracle for S and the center x0

and shape matrix Q0 � 0 of the starting ellipsoid E0 := {x ∈ <n : (x − x0)TQ0(x − x0) ≤ 1}. By
a simple change of variables, there is no loss of generality in assuming that Q0 = (ρ0)−2I for some

5

ρ0 > 0, whereby E0 = B(x0, ρ0) and the information content of the starting ellipsoid is simply the
center x0 and radius ρ0 of the starting ball.

Suppose that we know a priori a vector x̄ and a positive scalar R with the property that
B(x̄, R)∩S has positive volume. Then the ellipsoid algorithm for solving (1) can be initiated with
the ball B(x̄, R). The following is a generic result about the performance of the ellipsoid algorithm,
where in the statement of the theorem “vol(T)” denotes the volume of a set T :

Theorem 2.1 Ellipsoid Algorithm Theorem with known R, from [12], also [6]. Suppose
that a vector x̄ and a positive scalar R are known with the property that the set B(x̄, R) ∩ S has
positive volume. Then if the ellipsoid algorithm is initiated with the Euclidean ball B(x̄, R), the
algorithm will compute a solution of (1) in at most⌈

2n ln
(

vol(B(x̄, R))
vol(B(x̄, R) ∩ S)

)⌉
iterations, where each iteration makes one call of the separation oracle for S.

It is often convenient to restate this result using radii of certain balls rather than volumes of
certain sets. The supposition of positive volume in this theorem is equivalent to the condition that
there exist values R and r > 0 that satisfy (3). Then one then obtains, for example:

Corollary 2.1 (see [12]) Suppose that S is given via a separation oracle, and that the ellipsoid
algorithm is applied to solve (1) starting with E0 := B(x̄, R) for some given x̄ and R. If S, R, and
r satisfy (3) for some r > 0, then the ellipsoid method will solve (1) in at most⌈

2n2 ln
(
R

r

)⌉
iterations, where each iteration makes one call of the separation oracle.

Proof: Let v(n) denote the volume of the n-dimensional unit ball, namely:

v(n) =
πn/2

Γ(n/2 + 1)
, (4)

see [6]. Letting B(y, r) denote the ball of radius r contained in B(x̄, R) ∩ S, we have

vol(B(x̄, R))
vol(B(x̄, R) ∩ S)

≤ vol(B(x̄, R))
vol(B(ȳ, r))

=
(
v(n)Rn

v(n)rn

)
= (R/r)n ,

6

and the result follows using Theorem 2.1.

Note that the ellipsoid algorithm requires prior specification of x̄ and R just to implement
the method; the condition that (3) holds for some r > 0 is also needed in order to guarantee
convergence. Of course, a priori values of x̄ and R for which (3) is true (for some r > 0) are
typically either not known or involve excessively conservative (large) values of R >> 0 for special
structure and data representation of S (see the discussion in Section 1.1). Except for instances such
as these where prior information about special structure and data for S is given, such bounds on R
are not known. Despite this lack of prior information in general, one can still utilize the ellipsoid
algorithm for solving (1) by using a standard “lift and conify” transformation, see [3], that we now
review and extend.

For any given value of x̄ (think x̄ = 0 for convenience), define:

W x̄ := {(w, θ) ∈ <n+1 : w − x̄ ∈ θ(S − x̄), θ > 0} . (5)

Notice that W x̄ ∩{(w, θ) : θ = 1} = S×{1}, i.e., the restriction of W x̄ to the slice of (x, θ) ∈ <n+1

defined by θ = 1 is simply S. Also, W x̄ is a (translated) convex cone in <n+1 with base (x̄, 0).
Therefore W x̄ is constructed by first lifting S to S × {1} ⊂ <n+1, and then conically extending
S × {1} using the base point (x̄, 0), hence the term “lift and conify.” One can solve (1) by instead
working with the following equivalent problem in one higher dimension:

compute (w, θ) satisfying (w, θ) ∈W x̄ . (6)

The equivalence of (1) and (6) follows since solutions of one system can be converted to solutions
of the other system as follows:

(w, θ) ∈W x̄ ⇒ x := x̄+ (w − x̄)/θ ∈ S
x ∈ S ⇒ (w, θ) := (α(x− x̄) + x̄, α) ∈W x̄ for all α > 0 .

(7)

Furthermore, a separation oracle for S can be readily converted to a separation oracle for W x̄, as
follows. If (ŵ, θ̂) is a given point, first check if θ̂ > 0; if not, then H+ := {(w, θ) : θ ≥ 0} is the
requisite separating halfspace. If θ̂ > 0, next check if x̂ := x̄ + (ŵ − x̄)/θ̂ is in S. If so, then
(ŵ, θ̂) ∈ W x̄ and we are done. Otherwise, the separation oracle for S outputs h 6= 0 for which
hTx ≥ hT x̂ for all x ∈ S, which then implies that hT (x̄+ (w − x̄)/θ) ≥ hT

(
x̄+ (ŵ − x̄)/θ̂

)
for all

(w, θ) ∈ W x̄. Simplifying yields H+ := {(w, θ) : θ̂hTw − θ̂hT x̄ ≥ θ(hT ŵ − hT x̄)} as the requisite
separating halfspace for (ŵ, θ̂) in this case.

Because W x̄ is a (translated) convex cone in <n+1 with base (x̄, 0), W x̄ contains points in the
(n+ 1)-dimensional unit ball centered at (x̄, 0), which we denote by Bx̄

n+1:

Bx̄
n+1 := Bn+1((x̄, 0), 1) :=

{
(w, θ) ∈ <n+1 |

√
(w − x̄)T (w − x̄) + θ2 ≤ 1

}
.

7

Therefore, given only x̄, one can apply the ellipsoid algorithm to solve (6) (and hence solve (1))
using the initial ball Bx̄

n+1, yielding the following “extended” version of the basic ellipsoid algorithm:

Extended Ellipsoid Method for Solving (1) with Unknown R
(a) Input: separation oracle for S, and initiating point x̄ ∈ <n.
(b) If x̄ ∈ S, output x̄ and Stop. Otherwise construct W x̄ using (5) and run the ellipsoid

algorithm in <n+1 starting with Bx̄
n+1 to compute a point in W x̄. Output (ŵ, θ̂) ∈W x̄.

(c) Set x̂← x̄+ (ŵ − x̄)/θ̂ and Stop.

In order to prove a complexity bound using the above extension of the ellipsoid method, we
must bound the ratio of the volume of Bx̄

n+1 to the volume of Bx̄
n+1 ∩W x̄. This is accomplished in

the following lemma, a variant of which was first presented in [3]:

Lemma 2.1 Suppose that S ∩B(x̄, R) contains a ball of radius r > 0. Then

ln

(
vol
(
Bx̄

n+1

)
vol
(
Bx̄

n+1 ∩W x̄
)) ≤ 1

2
ln(n) + 1.16 + n ln

(
1
r

+
R

r

)
+ ln(1 +R) .

Proof: We prove a slightly more general result which will imply the conclusion of Lemma 2.1 as a
special case. Consider the slightly more general definition of W x̄ parameterized by a scalar c > 0:

W x̄
c := {(w, θ) ∈ <n+1 : c · (w − x̄) ∈ θ(S − x̄), θ > 0} , (8)

and note that we recover W x̄ by setting c = 1. Notice that W x̄
c ∩ {(w, θ) : θ = c} = S × {c}, i.e.,

the restriction of W x̄
c to the slice of (x, θ) ∈ <n+1 defined by θ = c is simply S. We will prove:

ln

(
vol
(
Bx̄

n+1

)
vol
(
Bx̄

n+1 ∩W x̄
c

)) ≤ 1
2

ln(n) + 1.16 + n ln

(√
R2 + c2

r

)
+ ln

(√
R2 + c2

c

)
. (9)

Notice that Lemma 2.1 follows immediately from (9) by setting c = 1 and using the inequality√
R2 + 1 ≤ R+ 1.

We now prove (9). By hypothesis there exists y for which B(y, r) ⊂ S∩B(x̄, R). By performing
a translation if necessary, we can assume that x̄ = 0, which simplifies the arithmetic manipulations
below. Define H := W x̄

c ∩ Bx̄
n+1 = {(w, θ) : c · w/θ ∈ S, θ > 0, ‖(w, θ)‖2 ≤ 1} and T := {(w, θ) :

c · w/θ ∈ B(y, r), 0 < θ ≤ c}. Defining δ :=
√
R2 + c2, we first prove that T ⊂ B((0, 0), δ). To see

8

why this is true, let (w, θ) ∈ T , then

‖(w, θ)‖2 = ‖(w − (θ/c)y + (θ/c)y, θ)‖2

=
√
‖(w − (θ/c)y + (θ/c)y‖22 + θ2

≤
√

(‖(w − (θ/c)y‖2 + ‖(θ/c)y‖2)2 + θ2

≤
√

((θ/c)r + (θ/c)‖y‖2)2 + θ2

≤ (θ/c)
√
R2 + c2

≤ δ .

Here the second inequality follows since ‖(c/θ)w−y‖ ≤ r for (w, θ) ∈ T , the third inequality follows
since B(y, r) ⊂ B(0, R), and the last inequality follows since θ ≤ c for (w, θ) ∈ T . This shows that
T ⊂ B((0, 0), δ). Therefore δ−1T ⊂ B((0, 0), 1) and hence δ−1T ⊂ H. It then follows that

Vol(H) ≥ Vol(δ−1T) =
(

1
δ

)n+1 ∫ c

0
v(n)

(
θr

c

)n

dθ =
(
v(n)rn

δn+1cn

) (
θn+1

n+ 1

)∣∣∣∣∣
c

0

=
v(n)rnc

δn+1(n+ 1)
,

where v(n) is the volume of the n-dimensional unit ball, see (4). Therefore

vol
(
Bx̄

n+1

)
vol
(
Bx̄

n+1 ∩W x̄
c

) =
vol
(
Bx̄

n+1

)
vol (H)

≤ v(n+ 1)δn+1(n+ 1)
v(n)rnc

=
Γ(n/2 + 1)π(n+1)/2δn+1(n+ 1)

Γ((n+ 1)/2 + 1)πn/2rnc
.

We bound the right-most term involving the ratio of two gamma function values using the following
inequality for the gamma function, see [16]:

Γ(x+ 1/2)
Γ(x+ 1)

<
1√

x+ 1/4
.

Using x = (n+ 1)/2 in the above yields

vol
(
Bx̄

n+1

)
vol
(
Bx̄

n+1 ∩W x̄
c

) ≤

 1√
n+1

2 + 1
4

 π(n+1)/2δn+1(n+ 1)
πn/2rnc

=
2(n+ 1)

√
π√

2n+ 3

(√
R2 + c2

r

)n(√
R2 + c2

c

)

≤ 3.18 ·
√
n

(√
R2 + c2

r

)n(√
R2 + c2

c

)
,

9

where the last inequality follows from the observation that 2(n+1)√
n(2n+3)

≤ 4/
√

5 for n ≥ 1 since the

left expression is decreasing in n for n ≥ 1. Lastly, taking logarithms yields (9).

We acknowledge C. Roos [17] for several constructions used in the above proof. Lemma 2.1 yields
the following complexity bound for solving (1) using the extended ellipsoid method:

Theorem 2.2 Suppose that S is given via a separation oracle, that x̄ ∈ <n is given, and that
the extended ellipsoid algorithm is applied to solve (1). If R and r are positive scalars such that
B(x̄, R)∩S contains a ball of radius r, then the algorithm will solve (6), and hence solve (1), in at
most ⌈

2(n+ 1)
(

1
2

ln(n) + 1.16 + n ln
(

1
r

+
R

r

)
+ ln(1 +R)

)⌉
iterations, where each iteration makes one call of the separation oracle for S.

Proof: The iteration bound follows immediately from Lemma 2.1 and Theorem 2.1, noting that
the dimension of the space containing W x̄ is n+ 1 .

Notice that this complexity bound requires only the specification of an initializing point x̄,
which one can think of as the “reference point.” The condition “there exists R and r for which
B(x̄, R) ∩ S contains a ball of radius r” is only existential; prior knowledge of any R, r, or bounds
thereon are unnecessary. The complexity bound is monotone in three quantities, namely R/r, R,
and 1/r. While it is tempting to think that R/r will be the largest of these quantities, Examples
1.1 and 1.2 of Section 1 show that R or 1/r might be the dominant quantity. It is also curious
that among these three quantities, the complexity bound depends more weakly on R than on the
other two quantities, roughly by a factor of n. We show in Section 3 that the dependence of the
complexity bound on R and 1/r (as well as on R/r) cannot be removed. Therein we also show a
weaker dependence on R than on R/r, but by a different factor than given above.

For a given point x̄, we can say that S has favorable geometry relative to x̄ to the extent that
there exist values R and r satisfying (3) for which R/r, R, and 1/r are not too large. Put slightly
differently, S has favorable geometry relative to x̄ if S contains a ball whose radius r is not too small
and whose distance R from x̄ is not too large. Then Theorem 2.2 states that if S has favorable
geometry relative to x̄, then the extended ellipsoid algorithm will solve (1) relatively quickly. In
Section 3 we study the converse of this statement.

Last of all, notice that the complexity bound in Theorem 2.2 is not scale-invariant, which seems
unnatural at first glance. That is, one would expect if the units were changed so that both R
and r were doubled, say, then the complexity bound would remain unchanged, but this is not
the case. The reason for this has to do with the implicit choice of using c = 1 in the “lift and
conify” construction used to transform S to W x̄

c = W x̄
1 = W x̄ in the extended ellipsoid algorithm.

10

Indeed, for a given value of c > 0 we can implement the extended ellipsoid method described in
Section 1, substituting W x̄

c for W x̄
1 = W x̄. The specific choice of c = 1 used in the description

of the extended ellipsoid algorithm is somewhat arbitrary, but the choice of c must be given, i.e.,
“known” to the algorithm, so that the separation oracle for S can be converted to one for W x̄

c .
If we change units so that R and r are doubled, then if we double the value of c from c = 1 to
c = 2 it follows from (9) that the volume ratio bound and hence the complexity bound will remain
unchanged; hence the extended ellipsoid method is scale-invariant if c is re-scaled together with R
and r. Furthermore, it follows from (9) that if a value of R is known in advance for which (3) is
true for some r > 0, then setting c = R in (9) yields a volume ratio bound of O(ln(n) + n ln(R/r))
and hence an iteration complexity bound of O(n ln(n) + n2 ln(R/r)), whose sole dependence on
R/r (and whose independence of R and 1/r separately) is consistent with the complexity bound
in Corollary 2.1. However, it is precisely because R is not known that the dependence on R arises
(even when R/r is O(1)) in Lemma 2.1 and hence in the complexity bound of Theorem 2.2.

The ellipsoid algorithm belongs to a larger class of efficient volume-reducing separation-oracle
based algorithms that includes the method of centers of gravity [8], the method of inscribed ellipsoids
[7], and the method of volumetric centers [19], among others. Results analogous to Theorem 2.1
can be derived for these methods, for example for the method of centers of gravity the iteration
complexity analogous to Theorem 2.1 is O(ln(n)+n ln(1/r+R/r)+ln(1+R)). For a more thorough
discussion of the complexity of volume-reducing cutting-plane methods, see [10].

3 Lower Bounds on Complexity of (1) for Separation Oracle Al-
gorithms

Theorem 2.2 showed that favorable geometry implies favorable complexity: if R/r, R, and 1/r are
all small, then the ellipsoid algorithm (and many other algorithms) will compute a solution of (1)
in a small number of iterations. In this subsection we study the converse question: does favorable
complexity imply favorable geometry? A naive approach to this question is as follows: supposing
that a separation-oracle based algorithm solves (1) in a low number of iterations, then prove that
R/r, R, and 1/r all must be small. This approach is obviously doomed to failure, as the algorithm
could simply get lucky and compute a solution of (1) by accident at an early iteration, regardless of
the values of R/r, R, and 1/r. We therefore consider our algorithm applied not to a single instance
of (1) but rather applied to all instances in certain collections of convex sets. For fixed values of
x̄, R, and r, let S x̄,r,R denote the collection of convex sets S ⊂ <n whose intersection with B(x̄, R)
contains a ball of radius r, namely:

S x̄,r,R = {S ⊂ <n : S is convex and satisfies (3) } .

11

Now consider a (separation-oracle based) algorithm M for solving instances of (1). (For a precise
definition of a separation-oracle based algorithm see [12]; an intuitive notion of this type of algorithm
is sufficient for our purposes.) An instance is a given convex set S, or more precisely, a separation
oracle for the convex set S. Now suppose we fix x̄, R, and r, and restrict our instances to (separation
oracles for) sets S in the collection S x̄,r,R. Let N x̄,r,R(M) denote the computational complexity of
algorithm M over all instances S ∈ S x̄,r,R. That is, N x̄,r,R(M) is the maximum number of oracle
calls it takes the algorithm M to solve (1) over all (separation oracles for) sets S in the collection
S x̄,r,R. Our first lower bound result is as follows:

Theorem 3.1 For any fixed x̄, R, and r satisfying R ≥ r > 0, let M be any separation-oracle
based algorithm applied over the collection of sets S x̄,r,R. Then

N x̄,r,R(M) ≥
⌊
log2

(
R

r

)
− 1

⌋
.

Proof: We use a type of argument used extensively in [12] that works by constructing output
of a separation oracle for a particular set S̄ ∈ S x̄,r,R for which the algorithm makes at least⌊
log2

(
R
r

)
− 1

⌋
oracle calls. Without loss of generality we presume that x̄ = 0, which will lead

to simpler arithmetic in the proof. Let x1 be the first point used to query the separation oracle.
(This point is generated by the algorithm independent of any information from the separation
oracle or, equivalently, the set in question.) Let L0 = −R and U0 = R. If (x1)1 ≤ L0+U0

2 , the
oracle will return “x1 /∈ S̄” together with the separating halfspace H++ := {x ∈ <n : x1 >

L0+U0
2 }

for which S̄ ⊂ H++. Henceforth in this proof and other proofs we simply denote this as “S̄ ⊂
{x ∈ <n : x1 >

L0+U0
2 }.” If instead (x1)1 >

L0+U0
2 , the oracle will return “x1 /∈ S̄” together with

“S̄ ⊂ {x ∈ <n : x1 <
L0+U0

2 }.” In the first case we will define L1 := L0+U0
2 and U1 := U0, whereas

in the second case we define L1 := L0 and U1 := L0+U0
2 . We will construct the output of the

separation oracle in subsequent iterations in a manner that generalizes the above logic. After k
oracle calls we will have two scalar values Lk and Uk satisfying Lk < Uk, and the algorithm will
have generated x1, . . . , xk for which the oracle has responded “xi /∈ S̄” together with separating
halfspaces of the form “S̄ ⊂ {x ∈ <n : x1 > (or <) Li−1+Ui−1

2 }” (depending on the position
of (xi)1) for i = 1, . . . , k. The algorithm will next generate xk+1 and query the oracle with this
point. If (xk+1)1 ≤ Lk+Uk

2 , the oracle will return “xk+1 /∈ S̄” together with the separating halfspace
“S̄ ⊂ {x ∈ <n : xk+1 >

Lk+Uk
2 }.” If instead (xk+1)1 >

Lk+Uk
2 , the oracle will return “xk+1 /∈ S̄”

together with the separating halfspace “S̄ ⊂ {x ∈ <n : x1 <
Lk+Uk

2 }.” In the first case we will
define Lk+1 := Lk+Uk

2 and Uk+1 := Uk, whereas in the second case we define Lk+1 := Lk and
Uk+1 := Lk+Uk

2 . We proceed inductively until the algorithm has made K = blog2(R/r)− 1c oracle
calls (iterations) and we have generated a (monotone increasing) sequence {Li}Ki=0 and a (monotone
decreasing) sequence {Ui}Ki=0 according to the above rules.

12

Now define
S̄ = {x ∈ <n : ‖x‖ ≤ R, LK + δ ≤ x1 ≤ UK − δ}

where δ := R · 2−(K+1). Then it follows that the separating hyperplanes generated from the oracle
calls are consistent with the instance S̄. We first argue that the points x1, . . . , xK /∈ S̄. To see this
define Ci := {x ∈ <n : ‖x‖ ≤ R and Li + δ ≤ x1 ≤ Ui − δ} for i = 1, . . . ,K. Then it follows that
xi /∈ Ci and S̄ ⊂ CK ⊂ · · · ⊂ C2 ⊂ C1, therefore xi /∈ S̄ for i = 1, . . . ,K. We claim that S̄ ∈ S x̄,r,R.
Notice trivially that S̄ ⊂ B(x̄, R) (recall that x̄ = 0), so it remains to prove that S̄ contains a ball
of radius r. To see this, notice that Ui − Li = 2R2−i for all i = 0, . . . ,K, and observe that the
upper/lower bounds on the first coordinate of points in S̄ satisfy:

UK − δ − (LK + δ)
2

=
UK − LK

2
−R · 2−(K+1) = R · 2−(K) −R · 2−(K+1) = R · 2−(K+1) ≥ r ,

from which it easily follows that B(y, r) ⊂ S̄ for y = UK+LK
2 (1, 0, . . . , 0). Hence S̄ ∈ S x̄,r,R and by

construction, xi /∈ S̄, i = 1, . . . ,K. Therefore the algorithm makes at least K oracle calls, proving
the result.

The general technique used in the above proof (and which will also be used to prove the other two
lower bound theorems in this section) was borrowed from [12]. Notice that it involves inductively
using the output of the given algorithmM to create a “resisting (separation) oracle” for a particular
(algorithm dependent) set S̄ ∈ S x̄,r,R, in such a way that the algorithm must make at least a certain
number of oracle calls. (The appelation “resisting oracle” was aptly introduced by Nesterov in [13].)
In the above proof, which is essentially unidimensional, the resisting oracle is constructed in such a
way that for at least K oracle calls, the algorithm M generates points xi which are not contained
in the instance S̄. This approach will be modified in the proofs of the two additional lower bounds
of Theorems 3.2 and 3.3.

The method of centers of gravity [8] can be shown to achieve the lower bound in Theorem 3.1;
the proof of this result can be gleaned from similar arguments in [12].

We next show that the lower bound complexity also depends monotonically on R even when
R/r is bounded above by a constant. Analogous to the family of sets S x̄,r,R, we will need a suitable
family of (separation oracles for) convex sets that will serve as instances for applying any algorithm
M to solve (1). For fixed values of x̄, R, and aspect ratio bound A, let T x̄,R,A denote the collection
of convex sets S ⊂ <n that satisfy:

(i) there exists R̄ and r̄ for which B(x̄, R̄) ∩ S contains a ball of radius r̄,
(ii) R̄ ≤ R, and
(iii) R̄/r̄ ≤ A.

For a given separation-oracle based algorithm M, let N x̄,R,A(M) denote the computational
complexity of algorithm M over all instances S ∈ T x̄,R,A. That is, N x̄,R,A(M) is the maximum

13

number of oracle calls it takes the algorithm M to solve (1) over all (separation oracles for) sets S
in the collection T x̄,R,A. We have:

Theorem 3.2 For any fixed x̄, R, and A satisfying R ≥ 1 and A ≥ 4, let M be any separation-
oracle based algorithm applied over the collection of sets T x̄,R,A. Then

N x̄,R,A(M) ≥ blog2 log2(R+ 1)c .

We offer the following interpretation of this theorem before proving it. For any given algorithm
M, there exists a (separation oracle for a) convex set S̄ ∈ T x̄,R,A for which the iteration complexity
of the algorithm grows at least as log2 log2(R), independent of 1/r or the aspect ratio A of S̄,
provided that R ≥ 1 and A ≥ 4.

Proof: The proof uses ideas communicated privately from Nemirovsky [11], and constructs a
resisting oracle for a particular set S̄ ∈ T x̄,R,A. However, unlike the “binary evasion” strategy used
to prove Theorem 3.1, in this proof the evasion takes place on an exponential scale, using intervals
of the form [2Li , 2Ui] as opposed to [Li, Ui]. Without loss of generality we presume that x̄ = e1 :=
(1, 0, . . . , 0), which will lead to simpler arithmetic in the proof. Let x1 be the first point used to query
the separation oracle. (This point is generated by the algorithm independent of any information
from the separation oracle or, equivalently, the set in question.) Let K = blog2 log2(1 + R)c, and
define L0 = 0 and U0 = 2K . We will construct the separation oracle inductively as follows. If
(x1)1 ≤ 2

L0+U0
2 , the oracle will return “x1 /∈ S̄” together with the separating halfspace “S̄ ⊂ {x ∈

<n : x1 > 2
L0+U0

2 }.” If instead (x1)1 > 2
L0+U0

2 , the oracle will return “x1 /∈ S̄” together with the
separating halfspace “S̄ ⊂ {x ∈ <n : x1 < 2

L0+U0
2 }.” In the first case we will define L1 := L0+U0

2

and U1 := U0, whereas in the second case we define L1 := L0 and U1 := L0+U0
2 . On subsequent

iterations we will construct the output of the separation oracle in a manner that generalizes the
above logic. After k oracle calls we will have two scalar values Lk and Uk satisfying Lk ≤ Uk, and
the algorithm will have generated x1, . . . , xk for which the oracle has responded “xi /∈ S̄” together

with separating halfspaces of the form “S̄ ⊂ {x ∈ <n : x1 > (or <) 2
Li−1+Ui−1

2 }” (depending on the
position of (xi)1) for i = 1, . . . , k. The algorithm will next generate xk+1 and query the oracle with

this point. If (xk+1)1 ≤ 2
Lk+Uk

2 , the oracle will return “xk+1 /∈ S̄” together with the separating

halfspace “S̄ ⊂ {x ∈ <n : xk+1 > 2
Lk+Uk

2 }.” If instead (xk+1)1 > 2
Lk+Uk

2 , the oracle will return

“xk+1 /∈ S̄” together with the separating halfspace “S̄ ⊂ {x ∈ <n : x1 < 2
Lk+Uk

2 }.” In the first case
we will define Lk+1 := Lk+Uk

2 and Uk+1 := Uk, whereas in the second case we define Lk+1 := Lk and
Uk+1 := Lk+Uk

2 . We proceed iteratively until the algorithm has made K oracle calls (iterations)
and we have generated a (monotone increasing) sequence {Li}Ki=0 and a (monotone decreasing)
sequence {Ui}Ki=0 according to the above rules.

14

Now define the following objects:

δ := 1/4 r̄ := 2UK−2LK

2 − δ R̄ := 2UK − 1

ȳ := 2LK +2UK

2 e1 S̄ := {x ∈ <n : ‖x− ȳ‖ ≤ r̄} .

Then it follows that the separating hyperplanes that were the output after each oracle are consistent
with the instance S̄. We first argue that the points x1, . . . , xK /∈ S̄. To see this define Ci := {x ∈
<n : 2Li + δ ≤ x1 ≤ 2Ui − δ} for i = 1, . . . ,K. Then it follows that xi /∈ Ci and S̄ ⊂ CK ⊂ · · · ⊂
C2 ⊂ C1, therefore xi /∈ S̄ for i = 1, . . . ,K.

We claim that S̄ ∈ T x̄,R,A. We first prove that S̄ ⊂ B(x̄, R̄) ⊂ B(x̄, R). Indeed, let x ∈ S̄, then
noticing that Ui − Li = 2K−i for all i = 0, . . . ,K whereby UK − LK = 1, and we have:

‖x−x̄‖ ≤ ‖x−ȳ‖+‖ȳ−x̄‖ ≤ r̄+2LK + 2UK

2
−1 = 2UK−δ−1 < R̄ ≤ 2U0−1 = 22K−1 ≤ R+1−1 = R ,

thus showing that x ∈ B(x̄, R̄) ⊂ B(x̄, R) and proving this first part of the claim.

We complete the proof by showing that R̄/r̄ ≤ A. First observe:

r̄ =
2UK − 2LK

2
− δ =

2LK+1 − 2LK

2
− δ =

2LK

2
− 1/4 ≥ 2L0

2
− 1/4 =

1
2
− δ = 1/4 ,

from which it follows that:

R̄

r̄
=

2UK − 1
2UK−2LK

2 − δ
=

2LK+1 − 1
2LK−1 − δ

=
2LK+1 − 1

2LK−1 − 1/4
= 4 ≤ A .

Hence S̄ ∈ T x̄,R,A and by construction, xi /∈ S̄, i = 1, . . . ,K. Therefore the algorithm makes at
least K oracle calls, proving the result.

Remark 3.1 Note in the proof of Theorem 3.2 that the instance S̄ constructed in the proof has
an aspect ratio bounded above by 4, and also satisfies r̄ ≥ 1/4. Therefore we could equivalently
re-phrase Theorem 3.2 to state that A = 4 rather than A ≥ 4.

Last of all, we show that the lower bound complexity also depends monotonically on 1/r even
when R/r is small. Analogous to the family of sets T x̄,R,A, we will need a suitable family of
(separation oracles for) convex sets that will serve as instances for applying any algorithm M to
solve (1). For fixed values of x̄, r, and aspect ratio bound A, let U x̄,r,A denote the collection of

15

convex sets S ⊂ <n that satisfy:
(i) there exists R̄ and r̄ for which B(x̄, R̄) ∩ S contains a ball of radius r̄,
(ii) r̄ ≥ r, and
(iii) R̄/r̄ ≤ A.

For a given separation-oracle based algorithm M, let N x̄,r,A(M) denote the computational
complexity of algorithm M over all instances S ∈ U x̄,r,A. That is, N x̄,r,A(M) is the maximum
number of oracle calls it takes the algorithm M to solve (1) over all (separation oracles for) sets S
in the collection U x̄,r,A. We have:

Theorem 3.3 For any fixed x̄, r, and A satisfying 0 < r < 1/4, and A ≥ 4, let M be any
separation-oracle based algorithm applied over the collection of sets U x̄,r,A. Then

N x̄,r,A(M) ≥
⌊
log2 log2

(
1
4r

)⌋
.

We offer the following interpretation of this theorem before proving it. For any given algorithm
M, there exists a (separation oracle for a) convex set S̄ ∈ U x̄,r,A for which the iteration complexity
of the algorithm grows at least as log2 log2(1/r), independent of R or the aspect ratio A of S̄,
provided that r < 1/4 and A ≥ 4.

Proof: The proof is similar in structure to that of Theorem 3.2, except that instead of exponentially
scaled intervals [2Li , 2Ui] we use inverse exponentially scaled intervals [2−Li , 2−Ui], and some other
arithmetic is different as well. Let K = blog2 log2(1/(4r))c, L0 := 2K , U0 := 0, and without loss of
generality we presume that x̄ = (1/2)L0e1, which will lead to simpler arithmetic in the proof.

Let x1 be the first point used to query the separation oracle. (This point is generated by the
algorithm independent of any information from the separation oracle or, equivalently, the set in
question.) We will construct the separation oracle inductively as follows. If (x1)1 ≤ (1/2)

L0+U0
2 ,

the oracle will return “x1 /∈ S̄” together with the separating halfspace “S̄ ⊂ {x ∈ <n : x1 >

(1/2)
L0+U0

2 }.” If instead (x1)1 > (1/2)
L0+U0

2 , the oracle will return “x1 /∈ S̄” together with the
separating halfspace “S̄ ⊂ {x ∈ <n : x1 < (1/2)

L0+U0
2 }.” In the first case we will define L1 := L0+U0

2

and U1 := U0, whereas in the second case we define L1 := L0 and U1 := L0+U0
2 . On subsequent

iterations we will construct the output of the separation oracle in a manner that generalizes the
above logic. After k oracle calls we will have two scalar values Lk and Uk satisfying Lk > Uk, and
the algorithm will have generated x1, . . . , xk for which the oracle has responded “xi /∈ S̄” together

with separating halfspaces of the form “S̄ ⊂ {x ∈ <n : x1 > (or <) 2
Li−1+Ui−1

2 }” (depending on the
position of (xi)1) for i = 1, . . . , k. The algorithm will next generate xk+1 and query the oracle with

this point. If (xk+1)1 ≤ (1/2)
Lk+Uk

2 , the oracle will return “xk+1 /∈ S̄” together with the separating

16

halfspace “S̄ ⊂ {x ∈ <n : xk+1 > (1/2)
Lk+Uk

2 }.” If instead (xk+1)1 > (1/2)
Lk+Uk

2 , the oracle will

return “xk+1 /∈ S̄” together with the separating halfspace “S̄ ⊂ {x ∈ <n : x1 < (1/2)
Lk+Uk

2 }.”
In the first case we will define Lk+1 := Lk+Uk

2 and Uk+1 := Uk, whereas in the second case we
define Lk+1 := Lk and Uk+1 := Lk+Uk

2 . We proceed iteratively until the algorithm has made K
oracle calls (iterations) and we have generated a (monotone decreasing) sequence {Li}Ki=0 and a
(monotone increasing) sequence {Ui}Ki=0 according to the above rules.

Now define the following objects:

δ := min
{

1
4

(
1
2

)L0
, r

}
r̄ := (1/2)UK−(1/2)LK

2 − δ R̄ := (1/2)UK − (1/2)L0

ȳ := (1/2)LK +(1/2)UK

2 e1 S̄ := {x ∈ <n : ‖x− ȳ‖ ≤ r̄} .

Then it follows that the separating hyperplanes that were the output after each oracle are
consistent with the instance S̄. Note that R̄ > 0; to see this observe that Li − Ui = 2K−i for all
i = 0, . . . ,K, whereby LK − UK = 1 and:

R̄ =
(

1
2

)LK−1

−
(

1
2

)L0

=
(

1
2

)LK
(

2−
(

1
2

)L0−LK
)
> 0 .

We first argue that the points x1, . . . , xK /∈ S̄. To see this define Ci := {x ∈ <n : (1/2)Li + δ ≤
x1 ≤ (1/2)Ui − δ} for i = 1, . . . ,K. Then it follows that xi /∈ Ci and S̄ ⊂ CK ⊂ · · · ⊂ C2 ⊂ C1,
therefore xi /∈ S̄ for i = 1, . . . ,K.

We claim that S̄ ∈ U x̄,r,A. We first prove that S̄ ⊂ B(x̄, R̄). Indeed, let x ∈ S̄, then we have:

‖x− x̄‖ ≤ ‖x− ȳ‖+ ‖ȳ − x̄‖ ≤ r̄ +
(1/2)LK + (1/2)UK

2
− (1/2)L0 = (1/2)UK − (1/2)L0 − δ < R̄ ,

thus showing that x ∈ B(x̄, R̄) and proving this first part of the claim.

We next show that r̄ ≥ r. We have:

r̄ =
(1/2)LK−1 − (1/2)LK

2
−δ =

1
2

(
1
2

)LK

−δ ≥ 1
2

(
1
2

)L0

−δ =
1
2

(
1

22K

)
−δ ≥ 4r

2
−δ = 2r−δ ≥ r .

Last of all, we show that R̄/r̄ ≤ A, which will complete the proof. We have:

R̄

r̄
=

(1/2)UK − (1/2)L0

1
2

(
1
2

)LK − δ
≤ 2(1/2)LK − (1/2)L0

1
2

(
1
2

)LK − 1
4

(
1
2

)L0
= 4 ≤ A .

17

Hence S̄ ∈ U x̄,r,A and by construction, xi /∈ S̄, i = 1, . . . ,K. Therefore the algorithm makes at
least K oracle calls, proving the result.

Remark 3.2 Note, just as in the case of Theorem 3.2, that in the proof of Theorem 3.3 that the
instance S̄ constructed in the proof has an aspect ratio bounded above by 4. (Also notice in the
proof that R̄ ≤ 1.) Therefore we could equivalently re-phrase the theorem to state that A = 4 rather
than A ≥ 4.

4 Discussion and Further Questions

4.1 On Stronger Lower Bounds

There is a significant gap between the lower bound results in Theorems 3.1, 3.2, and 3.3 and
the upper bound result in Theorem 2.2. One reason for the gap has to do with the absence of
any dimensional factor n in the lower bound results. This is partially an artifact of the proof
constructions in the lower bound theorems, which are all essentially unidimensional in nature.
It might be of interest to strengthen the lower bound theorems by taking explicit advantage of
the dimension n in constructing suitable resisting oracles with stronger lower bounds. But even
when n = 1 there is a gap between the lower bound and the upper bound results concerning the
dependence on R and 1/r in Theorems 3.2 and 3.3, by a logarithmic factor. It would also be
interesting to strengthen these lower bound results by removing the extra logarithmic factor in the
lower bound results.

4.2 Lower Bounds on Complexity for the (self-concordant) Barrier Model

Taken together, Theorems 3.1, 3.2, and 3.3 show that there exist problem instances in certain fam-
ilies characterized by unfavorable geometry, that require more computational effort to solve by any
separation oracle algorithm. This naturally begs the question whether such an implication might
extend to the case where the set is described instead by a self-concordant barrier. In particular,
consider the case when S is presented in conic format (2) and the cone K has a computable self-
concordant barrier. It is shown in [5] that in this case favorable geometry of S implies favorable
computational complexity of a suitably defined barrier method for solving (1). However, it is an
open challenge to prove an assertion that unfavorable geometry implies (say, in the worst case) a
large number of iterations of any (self-concordant) barrier method.

Acknowledgement. We are grateful to two anonymous referees for their suggestions on ways to
improve the paper. The second author would also like to acknowledge the support of the MIT

18

Sloan School of Management as this research was carried out while being a visiting professor there.

References

[1] A. Belloni and R. Freund. A geometric analysis of Renegar’s condition number, and its inter-
play with conic curvature. Mathematical Programming, to appear, 2008.

[2] R. Bland, D. Goldfarb, and Michael J. Todd. The ellipsoid method: a survey. Operations
Research, 29(6):1039–1091, 1981.

[3] R. M. Freund and J. R. Vera. Condition-based complexity of convex optimization in conic
linear form via the ellipsoid algorithm. SIAM Journal on Optimization, 10(1):155–176, 1999.

[4] R. M. Freund and J. R. Vera. Some characterizations and properties of the “distance to ill-
posedness” and the condition measure of a conic linear system. Mathematical Programming,
86(2):225–260, 1999.

[5] Robert M. Freund. Complexity of convex optimization using geometry-based measures and a
reference point. Mathematical Programming, 99:197–221, 2004.

[6] M. Grötschel, L. Lovasz, and A. Schrijver. Geometric Algorithms and Combinatorial Opti-
mization. Springer-Verlag, Berlin, 1998.

[7] L.G. Khachiyan. A polynomial algorithm in linear programming. Soviet Math. Dokl.,
20(1):191–194, 1979.

[8] A.L. Levin. On an algorithm for the minimization of convex functions. Soviet Mathematics
Doklady, 6:286–290, 1965.

[9] L.Porkolab and L.Khachiyan. On the complexity of semidefinite programs. Journal of Global
Optimization, 10:351–365, 1997.

[10] T.L. Magnanti and G. Perakis. A unifying geometric solution framework and complexity
analysis for variational inequalities. Mathematical Programming, 71:327–351, 1995.

[11] A. Nemirovsky. private communication. 1998.

[12] A.S. Nemirovsky and D.B. Yudin. Informational complexity and efficient methods for solving
complex extremal problems. Ekonomika i Matem. Metody, 12:357–369, 1976.

[13] Yuri Nesterov. Introductory Lectures on Convex Optimization. Kluwer Academic Publishers,
Norwell, MA, 2004.

19

[14] J. Renegar. Some perturbation theory for linear programming. Mathematical Programming,
65(1):73–91, 1994.

[15] J. Renegar. Linear programming, complexity theory, and elementary functional analysis. Math-
ematical Programming, 70(3):279–351, 1995.

[16] Wolfram Research. Gamma function: Inequalities. http://functions.wolfram.com/GammaBetaErf/Gamma/29/,
June 2008.

[17] C. Roos. private communication. 1999.

[18] F. Rosenblatt. Principles of Neurodynamics. Spartan Books, Washington, DC, 1962.

[19] P. Vaidya. A new algorithm for minimizing convex functions over convex sets. In Proceedings of
the 30th IEEE Symposium on Foundations of Computer Science, pages 338–343, Los Alamitos,
CA, 1989. IEEE Computer Soc. Press.

20

	OR 383-09.pdf
	FreundVeraGeometryComplexityrevised2009.pdf

