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Abstract 

The range covered by the time error of a clock affected by a white frequency 
noise is studied by means of the theory of the Wiener process and its probability 
distribution is inferred. The application to atomic clocks and the MTIE 
characterization used in the telecommunication standards is also examined. 

1. INTRODUCTION 
In these last years, mostly due to the input of the telecommunication community, it 
became of interest to know of the possible range spanned by the time error of a 
clock, since it helps in correctly designing the memory buffers. The problem may be 
illustrated as follows: suppose we have an  atomic clock used as  a synchronization 
unit in a telecommunication network and we know that the clock signal is mostly 
affected by a certain random noise. Which is the "time error," i.e. the phase 
deviation, that such a clock may accumulate in a certain time interval? Apart from 
deterministic trends, the answer regarding the random component may only be a 
probabilistic one in view of the stochastic the nature of the process. So the problem 
can be better expressed as: knowing the spectral density of phase fluctuations, 
which is the probability law of the range spanned by such phase fluctuations? 
The case of white phase noise was recently examined and it was possible to infer the 
probability law of the spanned range [l, 2, 31. Also the relationship between the 
amount of white PM noise stated by the Allan deviation or the' spectral density and 
the Maximum Time Interval Error MTIE, largely used in the telecom community 
and recently defined as  a percentile quantity [4], was evinced. In this paper, the 
case of Gaussian white frequency modulation, which results in a phase random 
walk is considered and the range probability law is inferred, by the study of Wiener 
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processes and their characteristics. This study yields to the estimation of the 
''maximum'' range that can be spanned by the clock error by the identification of a 
certain percentile in  the range distribution, i.e. a range value which is not exceeded 
more than a certain small percentage of times. The relationship of the percentile 
range and the MTIE is again investigated and some examples of atomic clock w h t e  
frequency noise and possible percentile MTIE are given. 

2 MATHEMATICAL BACKGROUND 
In  the following the theoretical definition and characterization of the Wiener 
process are introduced [5]. Symbols used hereafter are typical in the description of 
stochastic processes and are different from the common symbols used in PTTI 
descriptions. The application to the time error of a clock and to the 
telecommunication standards will be addressed in the next section. 
Let (Xk) be a sequence of mutually independent random variables with a common 
chstribution, zero mean and variance 0 2 .  The discrete variable S n  

S, = XI +. . .+Xn, (SO =O), 

denoting the position a t  time n (integer) of a moving particle, describes a random 
walk. The range Rn spanned by the discrete process S n  is defined as the difference 
between the maximum and the minimum value, therefore: 

Rn = max [0, SI , . . , Sn] - min [O, Si , . . Sn]. 

The discrete sums Sn are asymptotically normally distributed and can be considered 
as the value a t  time t=n of a continuous Wiener process. For the evaluation of the 
spanned range, the continuous approximation is more convenient, therefore, the 
sum S n  is replaced by the Wiener process S(t) where S(0) =O. Moreover, the 
introduction of the Wiener process is not only useful for the following analytical 
development, but also because the Wiener process itself can be a convenient 
description of reality, for example when describing the error of an atomic clock. 
Therefore, in the following only the continuous Wiener process will be examined. At 
any instant t, S(t) is a normal variable with zero mean and variance o2 t , therefore 
probability that the process S(t) is in the position s can be described by the 
probability law: 

1 p(s;t) = Prob {S(t)=s] = - 



A Wiener process with drift p: can also be introduced as  Y(t) = S(t)+pt, but for sake 
of simplicity the case with p=O is here examined. Nevertheless, the range 
distribution can be found also in case of p * 0 .  In the new notation, the range of S(t) 
is defined as: 

assuming that S(0) =O. S tuhes  on the peculiarities of the Wiener processes are 
reported in many papers and reference texts [5,6,7]. Particular attention is devoted 
to the study of the survival probability of a restricted process, i.e. the probability 
that the Wiener process evolves till the instant t without having touched upper and 
lower boundaries a and b (a>O, b<O). The survival probability benefits from many 
analytical results and it can be seen that there is an  intimate relationship between 
the probability distribution of the range and the survival probability 18, 9, 10, 111. 
We will investigate such a relationship. The study of the range probability 
distribution requires evaluating the joint probability distribution F m , ~ ( t )  of the 
maximum and the minimum value of the process, indicated respectively with M and 
m, F,,~(t,b,a) represents the probability that the minimum value m doesn't exceed 
the value b and the maximum M doesn't exceed the value a: 

This probability can be expressed as: 

where the survival probability P{M(t)-%, m(t)>b) of the process restricted by the 
barriers a and b is introduced. Let's consider the joint density function f,,&,a) of 
the maximum and the minimum, i.e. the probability that the larger value falls 
between a and a+da and that the smaller value falls between b and b-tdb, obtained, by 
definition, as: 

Since we consider the Wiener process S(t) with S(O)=O, the existence field of the joint 
density function f,,&,a) is given by the region in which a is positive and b negative. 
Moreover, in such a region, a certain sub-regon Dr can be identified where the 
following relationship concerning the range holds: 



The region Dr can be identified by the following relationships: 

b<O, a 1 0  , that is i - r l b l O ,  

a - b l r .  O<a,<r+b.  

The range probability dxtribution, i.e. the probability that the range R(0,t) doesn't 
exceed a certain value r,  is given by the integral extended to the region Dr of the 
joint density function of the maximum and the minimum, i.e.: 

From this writing it is intuitive that the range probability distribution depends on 
the survival probability, which is known in case of a Wiener process. By several 
laborious calculations, the range probability distribution can be obtained as: 

2 
where ~rfb] = - je-lZ uk stands for the error function. 

h o  
An analogous but more complicated expression holds for the range distribution in 
case of a Wiener process with drift p [lo]. In Fig. 1 the range probability 

distribution (2) is represented for a Wiener process with variance 02=1.. We can 
note that, for fixed t, the probability distribution increases when the value r is 
rising. It means that, for a fixed t ,  it becomes more and more probable to observe a 
range below the threshold level r, if r is high. For fixed r, instead, it can be seen that 
the probability that the covered range is below the threshold value r, is initially 
high, but then it decreases with time. If we consider an horizontal section of the 
Fig. 1, we can identify the curves relating t and r that guarantee a certain percentile 
in the range distribution, i.e., for each t ,  a range threshold r which is not exceeded 



I more than a certain percentage of times. By fixing the probability level a t  the 
values 95%, 90%, and 80%, the Fig. 2 is obtained, where the range thresholds r are 
on the vertical axis and the time instants t on the horizontal one. It can be observed 
that the curve referred to the largest percentile increases more rapidly, that makes 
sense because, for fixed t ,  the threshold range r that guarantees to be larger than 
the observable ranges in 95 out of 100 cases, should be larger than the threshold 
ranges corresponding to smaller percentages. 

3 RELATIONSHIP WITH THE MAXIMUM TIME INTERVAL ERROR (MTIE) 
The study of the probability of the range spanned by a Wiener process can find 
immediate application in the characterization of clocks. This is of particular interest 
in case of digital telecommunication networks. Digital switching equipment in fact 
require synchronization in order to avoid slips in the input elastic stores [12,13,14]. 
To specify the clock stability requirements in telecommunication standards, the 
International Telecommunication Union (ITU-T) defined the quantity MTIE 
(Maximum Time Interval Error) [4]. It measures the range covered by the error of a 
clock with respect to a known reference. Let x(t) be the time error of a clock and z 
the observation time, the range of the clock error is defmed as  (Fig. 3): 

Recently ITU-T defined MTIE(z, P) as a specified P--percentile of the random 
variable MTIE(z) , that is to say as the range value which is not exceeded more than 
a certain small percentage (1-P) of times, for any to. 
The clock phase error x(t )  is usually due to deterministic variations and to 
stochastic noises of different nature. In most of the commercially available clocks 
and reference oscillators one of the dominant noises, over certain observation 
intervals, is due to a white frequency modulation, whch  results in a phase random 
walk. Therefore, the previous study of the range covered by a Wiener process is of 
immediate utilization to study the range covered by the phase error of a clock 
affected by w h t e  FM. Let's consider a white FM with zero average that 
corresponds, in the stochastic process language, to a phase error described by a 
Wiener process S(t) without drift (p=O ) and with variance u2. The range spanned by 
the phase error x(t) is thus the range spanned by the process S(t) as studied in the 
previous section, where we replace the elapsed time t with the observation interval 
T. For sake of convenience, let's consider the new variable RN = R/q i.e. the range 
normalized over the square root of the variance for unit of time of the Wiener 
process, RN is dimensionless. According to the results obtained in the previous 
section, the probability dstribution (2) of RN can be written as : 



Such distribution probability allows the interpretation of the percentile range as 
contained in the percentile definition of MTIE(.c,P), in fact, by fixing the percentile 
level FR (rN ) = = 0.80, 0.90, and 0.95 respectively, a s  done before, the percentile 

curves of Fig. 2 are obtained and they describe the range threshold values that are 
not exceed in the p percentage of observations. The same percentile curves are also 
represented in Fig. 4 in logarithmic co-ordinates and with the normalized range 
values. From Fig. 4 some numerical estimations of the MTIE(2,P) are possible, when 
the level of random walk noise is known; for example, for ~ 1 0 5  units of time, the 
normalized range threshold level corresponding to the 90th  percentile is about equal 
to the value 750. From the expressions (3) of the probability distribution FR ( r N ) ,  i t  

N 

is difficult to analytically solve for the expression relating z and r for a fixed 
probability. The percentile curve represented in Fig, 2 and 4 are thus found by 
numerical evaluations, but it can be seen that  such percentile curves are nicely 
approximated by the curves 

where k p  is a real number depending on the probability levels and that  in the 
represented cases amounts to: kso =: 1.39, K g 0  = 1.59, and k95= 1.77 
This approximated relationship allows to find a direct, through approximated, 
connection between the percentile range, thus the MTIE(z,P) and the noise 
variances. Let's evaluate that. 
In  the language of stochastic processes, the Wiener process is described by a drift p 
and a variance 02 .  In  clock stability characterization, we are more familiar to Allan 
variances or spectral densities. The relationship between the Allan variance AVAR 
and the 02 of the Wiener process is given by [15] o2 =AVAR(T).T , where the 
dimension of a are ~ps/&], when the phase error x(t)  is measures in ps and r in  s. 
The square root of the variance for unit of time of the Wiener process, used for 
normalizing the range, is therefore cr . & . By using the approximated relationship 
above, the known [16] time domainlfrequency domain relationships, by choosing the 



range and z units in ps and s respectively, the percentile range MTIE(r,P) as a 
function of z can be written as: 

where ho is the constant that determines the amount of white frequency noise in the 
polynomial model for the frequency spectral density S,( f ) .  I t  remains to evaluate 

what can be the numerical values of MTIE(T,P) for some typical clocks. This is 
discussed in  the next section. 

4 NUMERICAL EXAMPLE 
Let's evaluate the percentile range, thus MTIE(r,P), for example of a typical 
commercial hgh stability cesium clock. Let's assume that the noise of the clock is 
due to a wlvte FM with zero average, that means that the cesium clock is 

considered on observation intervals of about 15 T 2 lo6 s ,  and that its frequency 

deviation is equal to zero (correspondmg to p=O). Let's suppose that the WFM noise of 
such a Cs clock amounts to a typical value given by 

By using the relationshp between the Allan variance AVAR and the 0 2  of the 
Wiener process, it is found: 

The square root of the variance for unit of time of the Wiener process, used for 
normalizing the range, is therefore a. & = 10 ps . Now the values of the threshold 
percentile range reported in Fig. 4 can be interpreted as a percentile range, thus 
MTIE(T,P), provided that T is measured in seconds and the normalized range values 
(dimensionless) reported in Fig. 4 are multiplied by the normalization factor that is, 
in t h s  case, c .&=lOps.  Therefore, the MTIE(r,P) that could be observed on the 
phase error x(t) of the considered Cs clock are reported in Fig. 5 and, for example, 
for ~=105s, it amounts to about 7.5 ns, whch  makes sense considering the stability 
of the considered clock. By using the approximate relationship discussed in the 
previous section it can also be written that, for the particular clock: MTIE(z'j3) = 
k s J Z  10 ps . 



I t  can be worth comparing there results with the MTIE(2,P) prescribed by ITU 
standards. For example, the case of a Cs clock is considered in the standard [17] 
concerning primary reference clocks(PRC), which reports the limits for MTIE(T,P) 
values, giving: 

MTIE 0.275.1 o - ~  T + 0.025 ps for 

for 

Some numerical values are for example: 
r=1 s MTIE z 25 ns 
r=10 s MTIE = 27.8 ns 
~ = 1 0 0  s MTIE = 52.5 ns 
~=1000  s MTIE = 300 ns 
t=10 000 s MTIE z 390 ns 

which are represented by a dotted line in Fig. 5 and that are largely aclueved by the 
stability of the considered Cs standard. 

CONCLUSION 
By the analytical study of the properties of random walks and Wiener processes, i t  
was possible to infer the probability distribution of the  range covered by the process. 
This helps in understanding the percentile MTIE(t,P) used in telecommunication for 
describing the range covered by a clock time error, when the noise of the clock is due 
to a white FM and thus random walk of phase. An example concerning a high 
stability commercial Cs clock gives estimates of the expected MTIE(.r,P) which 
largely comply with the requests of telecommunication standards. 
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Fig. 1 : range probability distribution F R ( ,  for a Wiener process with zero average and o2 = I  

Fig. 2: Horizontal section of the surface in Fig. 1 representing, for each t ,  the 
threshold percentile value of the range r in the case of the SO", 90*, and 9 5 t h  

percentile. 



Fig. 3 : graphical representation of the quantity MTIE 141 

Fig. 4: normalized range threshold values, versus observation time for different percentile levels. 

Fig. 5 :  MTIE(z,P) as exlpccted from an high stability Cs standard and ITU requests (dotted h e ,  top left) 



Questions and Answers 

JLTDAH L E W  (NIST): The anti-specification usually has a requirement on the frequency accuracy as 
well, but you do not have that in your method. 

PATRIZIA TAVELLA @EN): No, the frequency accuracy for such a finite standard is that the frequency 

deviation should not exceed lo-" over the long tefin, In the case of cesium, I think it is very well done. 

JUDAH LEVINE : But, it might not be true for rubidium. 

PATRTZIA TAVELLA: Yes, you are right. 




