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1    Introduction 

Our research program was concerned with the synergy between the variational partial differential 
equation and the statistical approaches to problems in visual control. Moreover, we have given a 
completely stochastic interpretation of curvature driven flows for tracking. 

Vision is a key sensor modality in both the natural and man-made domains. The prevalence of 
biological vision in even very simple organisms, indicates its utility in man-made machines. More 
practically, cameras are in general rather simple, reliable passive sensing devices which are quite 
inexpensive per bit of data. Furthermore, vision can offer information at a high rate with high reso- 
lution with a wide field of view and accuracy capturing multi-spectral information. Finally cameras 
can be used in a more active manner. Namely, one can include motorized lenses mounted on mobile 
platforms which can actively explore the surroundings and suitably adapt their sensing capabilities. 

For some time now, the role of control theory in vision has been recognized. In particular, the 
branches of control that deal with system uncertainty, namely adaptive and robust, have been proposed 
as essential tools in coming to grips with the problems of both biological and machine vision. These 
problems all become manifest when one attempts to use a visual sensor in an uncertain environment, 
and to feed back in some manner the information. These issues were a key thrust in our proposed 
research program. 

Specifically, we have considered the following problems: 

(i) Dynamic Geodesic Active Contours for Tracking: Visual tracking using active contours is usu- 
ally accomplished in a static framework. The active contour tracks the object of interest in a 
given frame of an image sequence, and then a subsequent prediction step ensures good initial 
placement for the next frame. This approach is unnatural; the curve evolution gets decoupled 
from the actual dynamics of the objects to be tracked. True dynamic approaches exist, all being 
marker particle based, and thus prone to the shortcomings of such particle-based implementa- 
tions. In particular, topological changes are not handled naturally in this framework. The now 
"classical" level set approach is tailored for codimension one evolutions. However, dynamic 
curve evolution is at least of codimension two. We have proposed a natural, efficient approach 
for dynamic curve evolution which removes the artificial separation of segmentation and pre- 
diction, while retaining all the desirable properties of level set formulations. This is based on 
a new energy minimization functional which for the first time puts dynamics into the geodesic 
active contour framework. 

(ii) Knowledge-Based Tracking: One of the key themes of our work has been the combination 
of geometric partial differential equation methods with global statistics for tracking and con- 
trolled active vision. We have developed a way of combining statistical and anisotropic dif- 
fusion methods is via a process we call knowledge-based segmentation which seems to give 



some reasonable results for several key applications. Since noise is in general non-additive, 
anisotropic diffusion and related techniques directly applied to the image do not produce satis- 
factory results. Moreover, these techniques do not introduce prior information about the number 
of objects present in the scene when directly applied in the image space. In our approach, we 
combine Bayes' rule with either anisotropic or isotropic diffusion, introducing a priori knowl- 
edge into the segmentation process and solving the non-additivity problem of the noise. We also 
extend this approach to the segmentation of video data, incorporating basic learning capabilities 
to the knowledge. 

(iii) Stochastic Methods for Curvature Driven Flows: Many PDE's in image processing and com- 
puter vision are based on curvature driven flows from interfacial physics. Such curvature flows 
have been extensively considered from a deterministic point of view. They have been shown 
to be useful for a number of applications including crystal growth, flame propagation, and 
computer vision. In recent work, we have described a random particle system, evolving on 
the discretized unit circle, whose profile converges toward the Gauss-Minkowsky transforma- 
tion of solutions of curvature driven flows. Our computational research program employs this 
methodology as a new way of evolving curves and surfaces for a powerful alternative to level 
set methods. It is a cornerstone in our computational program of combining PDE's and statistics 
in imaging. 

2    Summary of Work 

In this section, we outline some key concepts from dynamic contour tracking, and knowledge-based 
segmentation methods upon which our new research program is based. 

2.1    Dynamic Contour Tracking 

Typical level set tracking techniques only make use of static models of active contours. In this section 
based upon our previous work in [18], we review how dynamics may be put quite naturally into this 
geometric framework giving us a novel model of dynamic active contours. 

2.1.1    Parametrized Dynamic Curves 

We consider the evolution of closed curves of the form C : S1 x [0, r) i—• R2 in the plane, where 
C = C(p, t) and C(0, t) = C(l, t) [6], with t being the time, and p e [0,1] the parametrization of the 
curve. The classical formulation for dynamic curve evolution is derived by means of minimization of 
the action integral 

C = I'  L(t,C,Ct)dt, (1) 
Jt=t0 

where the subscripts denote partial derivatives. The Lagrangian L = T - U is the difference between 
the kinetic and the potential energy. The potential energy of the curve is given by 

•l 

U   = Uel + Urig + Upf dp 
Jo 

I 
1 1 1 
-•1||Cp||

2 + -w2||Cpp||2 + .9(C)^, 



where g is some potential function (with the desired location of the curve forming a potential well); 
Uei, Urig, and Upf are the elasticity, rigidity and potential field contributions, with their (possibly 
position-dependent) scalar weights w\, and w^. A common choice for the potential function is 

9{X) = l + ||G*V/(a:)ir (2) 

where x = [x, y]T are the image coordinates, / is the image, r is a positive integer, and G is a 
Gaussian of variance a'2. The kinetic energy is 

~l* T=  /    -vWCtW'dp, (3) 

where fj, corresponds to mass per unit length. The Lagrangian used is then 

7o 2' 
:  /    ^WCtW - ^KW   - 2^llCwll   " .9(C) dp. (4) 

Computing the first variation 5£ of the action integral (1) and setting it to zero yields the Euler- 
Lagrange equations for the candidate minimizer in force balance form: 

9 ,     „ ,      d2 

dp(WlCp) ~ d? 
l£tt =-^{w\Cp) --^(w2Cvp)-Vg. (5) 

This formulation is not intrinsic with respect to the geometry of the curve, since it is dependent upon 
its parametrization, p. 

2.1.2    Geometric Dynamic Curves 

Minimizing equation (1) using the Lagrangian 

-l 

L G»iic 2 ff) ||4,|| dp, (6) 

instead results in 

fxCtt = -n(T • Cts)Ct - fi(Ct • Cts)T - {^\\Ctf - 9)KN - (Vg • Af)Af, (7) 

which is intrinsic and a natural extension of the geodesic (conformal) active contour approach [10]. 
Here N is the unit inward normal, and T — ^ the unit tangent vector to the curve, K = CSfi • N 
denotes curvature and s is arclength. 

Equation (7) describes a curve evolution that is only influenced by inertia terms and information 
on the curve itself. To increase robustness, region-based terms could be included in the formulation. 



Normal Geometric Dynamic Curve Evolution 

To be able to interpret the behavior of the curve evolution equation (7) it is instructive to derive the 
corresponding evolution equations for the tangential and normal velocity components of the curve. 

We can write 
Ct = a{p,t)T + (i{p,t)M, (8) 

where the parametrization p is independent of time and travels with its particle, and a and ft corre- 
spond to the tangential and the normal speed functions respectively. By substituting equation (8) into 
equation (7), we obtain the two coupled partial differential equations: 

at    =    -(a2)s+2Kaft, (9) 

ftt    =    -(a/?),+ /1„2      3   9x       1 
K V# -A/". 

M 

Clearly, — (o2),s and — (aft)s are the transport terms for the tangential and the normal velocity along 
the contour, and gn — \7g • Af is the well known geodesic active contour image influence term [10]. 
Note, that in contrast to the static geodesic active contour, this term does not directly influence the 
curve's position, but the curve's normal velocity. It resembles a force. Finally, the terms 2Kaft and 
(^ft2 - |Q2

)K incorporate the dynamic elasticity effects of the curve. If we envision a rotating circle 
we can interpret the term (\ft2 - \C?)K as a rubberband (i.e., if we rotate the circle faster it will 
try to expand, but at the same time it will try to contract due to its then increasing normal velocity; 
oscillations can occur). If we restrict the movement of the curve to its normal direction (i.e., if we set 
a = 0) we obtain 

ftt = \ft2K+-gK--Vg-N. (10) 
2 M M 

This is a much simpler evolution equation. In our case it is identical to the full evolution equation (9) if 
the initial tangential velocity is zero. The image term g only influences the normal velocity evolution 
ft. It does not create any additional tangential velocity. 

If there is an initial tangential velocity, and/or if the image influence g contributes to the nor- 
mal velocity ft and to the tangential velocity a, the normal evolution equation will not necessarily 
be equivalent to the full evolution equation (9). We can always parameterize a curve such that the 
tangential velocity term vanishes. Specifically, if we consider a reparametrization 

Z{q,t) = C{<t>{q,t),t), (11) 

where <f> : R x [0, T) i-» R,p = 4>(q, t),<f>q > 0, then 

dC     dC     dC d4> 
— — 1  (12) 
dt      dt     dpdt ' 

The time evolution for C can then be decomposed into 

Cl = aT + l3Af=(a{(!>{q,t)1t) + \\Cp(<l>(q,t),t)\\<l>t)T + 0M, (13) 

where 

a    =    a(d>{q,t),t) + \\Cp(<j>(q,t),t)\\<l>t, 

ft    =    (j{<l>(q,t),t). 



If we choose 6 as 

^•')'-"ii^9,t),t)ir 
(14) 

we obtain 
Ct = (5N, (15) 

which is a curve evolution equation without a tangential component. For all times, t, the curve C 
will move along its normal direction. However, the tangential velocity is still present in the update 
equation for (3. After some algebraic manipulations, we arrive at 

ti{pP4>t + &)= QM/?
2
 + g) « - (V.9 -jsf)tf, (16) 

which depends on the time derivative of the reparametrization function tp, which in turn depends on 
the tangential component a. The left hand side of Equation (16) represents a transport term along the 
curve, the speed of which depends on the time derivative of the reparametrization function (p. 

2.1.3    Level Set Formulation 

There are different ways to implement the derived curve evolution equations; see for example [15]. 
We distinguish full and partial level set implementations. In the full case, curves evolve in a space 
consistent with the dimensionality of the problem. Geometric dynamic curve evolution would thus be 
performed in R'1 in the simplest case. Normal geometric dynamic curve evolution would be at least a 
problem in R3. If n is the dimensionality of the problem the curve will be implicitly described by the 
intersection of n - 1 hypersurfaces or the zero level set of an n-dimensional vector distance function. 
Full level set approaches of this form are computationally expensive, since it is not obvious how to 
devise a methodology comparable to a narrow band scheme. 

A partial level set approach uses a level set formulation for the propagation of an implicit descrip- 
tion of the curve itself (thus allowing for topological changes), but explicitly propagates the velocity 
information associated with every point on the contour by means of possibly multiple transport equa- 
tions. It trades-off computational efficiency (a narrow band implementation is possible in this case) 
for object separation: tracked objects that collide will be merged. 

In what follows we will restrict ourselves to a partial level set implementation of the normal 
geometric dynamic curve evolution. See [17] for a detailed discussion of the full level set method in 
this context. 

Partial Level Set Approach for the Normal Geometric Curve Evolution 

The curve C is represented as the zero level set of the function 

*(I((),():I
2
XI

+
H1, (17) 

where x(t) — {x(t), y(t))T is a point in the image plane. We assume ^ > 0 outside the curve C and 
* < 0 inside the curve C. Since the evolution of the curve's shape is independent of the tangential 
velocity we can write the level set evolution equation for an arbitrary velocity xt as 

*t + ||V¥||.A/'-xt = 0. (18) 



In our case xt = /W, where 
V* 

Equation (18) then becomes 
*t-/3||V*||=0, (20) 

where (3 is given by equation (10). Using the relation 

we obtain 

We need to propagate the normal velocity j3 along with the zero level set of \P. This could be accom- 
plished by the transport equation 

A = pwn •v/"' (23) 

which is not natural, since equations (22) and (23) are both first order evolution equations for f3. 
Instead of using equation (23) we can: 

(a) Neglect equation (23), but compute extension velocities at every time step. Since the extensions 
are normal to the contours, normal propagation of the level set function will guarantee a constant 
velocity value along the propagation direction (up to numerical errors). Specifically V/3-LV'I' 
in this case and thus 

V* • V/3 = 0. (24) 

(b) Incorporate equation (23) into equation (22). 

To accomplish the latter we change our Lagrangian, and extend it over a range of level sets. For each 
time t, and 0 < r < 1 let 

&\t) := {(x,y) 6 K2 : 9{x,y,t) = r}. (25) 

Using the Lagrangian 

L = J J QM/3
2
 - g) ds dr, (26) 

we obtain the action integral 

C = j J  J (\(i02 - g) ds dr dt, (27) 

which is 

/    /    /\\v02 - 9) ds dt dr 
Jo  Jo   Jc l 

=   So    {So  Jc
{l2^2~9)dnX[cdr)dt 

=     /    i il^-gWndxdydt, (28) 
Jo   Jn l 



where H1 is the one-dimensional Hausdorff measure and we applied the coarea formula. This casts 
the minimization problem into minimization over an interval of level sets in a fixed coordinate frame 
(a; and y are time independent coordinates in the image plane). Using equation (20) we can express p 
as 

p"m- (29) 
Substituting (29) into equation (28) yields 

C=L ly^^\\-^v^dxdydt:=s^ (30) 

which is the new ^-dependent action integral to be minimized. Then, 6S = 0 if and only if 

dt V||V*||/ VVM      l|V*||2/ ||V* 

The curve evolution is thus governed by the system: 

* = *-{wn{i + 2p))> (32) 

*t    =   /3||V*||. 

Expanding equation (32) yields 

1  o     1 1 V* V* 
A = (2* V)KV9w+,w'iiv*i' (331 

which, as desired, combines the velocity update equation (22) with the velocity propagation equa- 
tion (23). Naturally, this equation reduces to the result obtained from our original minimization 
problem (see equation (22)) if extension velocities are used to tie the evolution of all level sets to 
the evolution of the zero level set. Note, that the system of equations (32) constitutes a hyperbolic 
conservation law for the velocity v. The propagation of the level set function ^ is described (as usual) 
by an equation of Hamilton-Jacobi type. 

2.2    Statistics and Curvature Driven Flows: Knowledge-Based Segmentation 

We summarize here some of our results on the synergy of geometric partial differential equation and 
statistical methods based on knowledge-based segmentation. We combine Bayes' rule with either 
anisotropic or isotropic diffusion, introducing a priori knowledge into the segmentation process and 
solving the non-additivity problem of the noise. We also extend this approach to the segmentation of 
video data, incorporating basic learning capabilities to the knowledge. 

This has a number of applications including SAR imagery [7] and missile tracking [9, 23]. In 
particular, in the case of tracking missiles for the airborne laser (ABL) program, we are interested in 
tracking the location of the nose of the missile. Thus we only need to separate the relevant portion of 
the missile from the background. Because of the noisy nature of the images due to atmospheric effects 
simpler thresholding techniques (e.g., histogramming the pixel distributions and trying to separate 
the peaks) do not work very well for the missile videos. On the other hand, we have found that 
the knowledge-based approach of [9, 23] gave excellent results in comparison to weighted centroid 
techniques especially when combined with geometric active contours. 



2.2.1    Basic Set-up 

Our set-up begins with the assumption that the image is composed of n classes of objects. For se- 
quences of images, this value n is assumed constant. For the missile problem [23] , we assume two 
classes, corresponding to the missile and the background. Thus in this setting we will see that we 
have a form of adaptive thresholding. This is the case we will describe here. The technique however 
is general and can be applied to any number of classes. (In [7] for SAR data, the number of classes 
was three.) The goal of our segmentation is to determine to which class each pixel in each image 
belongs. Our basic model assumes that the value of each pixel in a given class can be thought of as 
a random variable with a known distribution, and that these variables are independent across pixels 
(this just simplifies the exposition, but any distribution can be used). Thus, for example for the case 
of normal distributions the likelihood of a particular pixel i having a certain value v given that it is in 
class c € {missile, background} is: 

Pr(K = v\Q = c) = ^-cxp (-i<IZ£>T) , (34) 

where i is an index ranging over all pixels in the image, V% is the value of the pixel, and C% is its class. 
As usual, //c and ac denote the mean and standard deviation of class c. In practice, these parameters 
are estimated from a set of sample images or learned from past frames for video data. 

Next, we assume that there is some known prior probability that a particular pixel will belong to 
a certain class. For single-image data sets, we assume a homogeneous prior, i.e., that Pr(Ci = c) is 
the same over all spatial indices i. It is, however, possible to incorporate a priori knowledge about the 
image here, for example if it were known that the missile is more likely to be near the center of the 
image than near the edge. For sequences of images, we have used a learned prior, as described below. 

Given a set of intensity distributions Pr(Vi — v\d — c) and priors Pr(Ci = c), we can apply 
Bayes' Rule from elementary probability theory to calculate the posterior probability that a given 
pixel belongs to a particular class, given its intensity: 

Pr(Ci .4V,..).     •- «*» ~ •> %%- C> . . 
2J7 Pr(K = v\d = 7) Pr(Ci = 7) 

Our approach is to calculate the posteriors Pf := Pr(Cj = c\V% — v) using the given distributions 
and (35) above, and then to apply either isotropic or anisotropic smoothing to each Pc (note that the 
denominator is just a normalization constant that can be "ignored"). Specifically, we have chosen to 
smooth by evolving Pc according to a discretized version of the partial differential equation 

ape 
—   =   {{PC

y)
2PC

xx   -   ZP^PZy  +   (i*)2^)1'3- ^ 

This equation defines the affine geometric heat flow, under which the level sets of P' undergo affine 
curve shortening. This particular diffusion equation was chosen because of its affine invariance, be- 
cause it preserves edges well, and because of its numerical stability and ease of computation. The 
goal of this process is to diffuse information from one pixel to the other, making then a region-based 
(adaptive) decision and not just a local pixel-wise one. 

The segmentation is then obtained using the maximum a posteriori probability estimate after 
anisotropic smoothing. That is, 

C*i =   . - f18,11!^    A Pr*(Ci = c\Vi = v) (37) 
C  tl   1 missile, backgrounds 

where Pr*(Ct = c\Vt = v) is the smoothed posterior probability. 

8 



2.2.2    Application to Visual Tracking 

When segmenting sequences of images, we have extended the model so that information from one 
frame is used in the segmentation of the next, and in this way have introduced a kind of learning 
into the method. There are a number of ways in which this can be done. By far the most effective 
way we have found is to modify our assumption of homogeneous priors. In particular, we have 
used the smoothed posteriors Pc from one frame as priors Pr(C, — c) in the segmentation of the 
next frame. Thus this scheme fits into a Bayesian tracking framework. We have also tested relaxing 
our assumption that the pixel intensities are distributed according to fixed normal distributions. We 
estimated the distribution parameters of the normal distributions from frame to frame by calculating 
new sample means and variances based on the segmentation of earlier images. Finally, we completely 
removed the assumption that the intensities are normally distributed. This was done by calculating 
the sample distribution of intensities within each class as images were segmented, and then using this 
distribution as Pr(V^ = v\C{ — c) in (34) when segmenting succeeding frames. 

This type of approach combined with active contours was found to be extremely effective for ABL 
missile tracking [23]. For other scenarios, it is possible to introduce multi-scale texture models for the 
likelihood of the background. Another possible extension would be to consider that n, the number of 
classes in the image, is not given and needs to be estimated as well. This can be done for example via 
expectation maximization (EM) type algorithms. Note though that since the scheme here described is 
extremely fast, especially for video data where the number of smoothing steps is dramatically reduced, 
a brute-force search for n in a given range might be good enough for a number of applications. 

This knowledge-based approach has a very strong connection to Markov random field (MRF) 
techniques. Indeed, the prior smoothing of the posterior probabilities gives the MAP solution to a 
discrete MRF with a non-interacting, analog discontinuity field. The combination of a discontinuity 
field with a discrete MRF can have some important consequences since it allows the disabling of 
clique potentials across discontinuities. This is in contrast to the isotropic (linear) smoothing of the 
posterior probabilities, which corresponds to computing the MAP solution of a single discrete MRF 
using continuous relaxation labeling. Thus we see that the random field, anisotropic diffusion, and 
curvature driven flow approaches to segmentation and tracking are intimately related. 

2.3    Interacting Particle Systems and Approximate Flows 

In typical methods such as those described above for knowledge-based segmentation for combining 
statistics with PDE's, the underlying PDE model remains deterministic and is implemented as such, 
for example using level sets. We have developed a very different class of algorithms in which the 
PDE is eliminated and the evolution takes place using a random process. We should note that this 
methodology first proposed for curvature driven flows in [2, 3] is mathematically well founded, and 
may be justified using the theory of hydrodynamical limits. 

The new class of algorithms is very much connected to scale in physical systems. The typical way 
of modelling a physical system is on a macroscopic scale, that is via a continuous partial differential 
equation. Level set computational methods fall into this category of algorithms. Here we are looking 
at a microscopic approach: collections of discrete particles undergoing random walks. What we are 
doing then is replacing the PDE by an underlying microscopic interacting particle system. 

The theory of interacting particle systems goes back at least to [22] who studied new types of 
random walk models with interactions among the particles. There are many examples including ex- 
clusions processes, branch processes, and contact processes. There are several advantages to this type 
of methodology including: 



1. PDE's and continuous analysis become unnecessary. 

2. No discretizations are necessary.  The interacting particle system is already constructed on a 
discrete fixed lattice. 

3. Increased robustness to noise, and ability to include processes into the given system. 

In summary, this framework gives a completely stochastic way of modelling the key flows used in 
controlled active vision will all the possible benefits just described. 

2.3.1 Basic Definitions of a Particle System 

In the theory of interactive particle systems, particles are distributed on a d-dimensional discrete 
integer lattice . The nodes of the lattice represent sites where particles reside. The state of the lattice 
is the distribution of particles over the sites. This state can evolve over time due to events such as 
births and deaths of particles, as well as jumps of particles to neighboring sites. The probability of an 
event happening at a particular site can be influenced by the number of particles at neighboring sites, 
therefore adding interaction between particles. If the rate of events at a site is only influenced by the 
number of particles at that site, then the process is called a zero range process. For our purposes, we 
are interested in zero range processes where particles only interact with particles sitting on the same 
site. 

2.3.2 Geometric Interpretation of a Particle System 

In our AFOSR sponsored research, we were able to construct an interacting particle system that 
evolves microscopically on a ID lattice according to the macroscopic behavior of the mean curva- 
ture flow PDE. This is a fundamental result that links the microscopic scale (particles evolving inde- 
pendently of particles at neighboring sites) to the macroscopic scale (curve evolving according to a 
macroscopic PDE). 

Before we detail our particle system, we explain its geometric interpretation. This interpretation is 
fundamental for the use of particle systems as a tool for stochastic curve evolution. What we want to 
do is to be able to represent the particle system graphically as a curve. As the particle system evolves, 
the corresponding curve is updated, resulting in a stochastic curve evolution. 

Our particle system is a ID line of sites with connected ends, that we call a discrete torus where 
each site is a point space evenly on the unit circle. Therefore each site is parameterized by an angle. 
Each site contains a certain positive number of particles, denoted with the positive function m(6) 
where 9 parameterizes each site. In order to map our particle system to a curve, we can connect 
segments oriented according to the angle of each site and scaled by the number of particles at that site. 

2.3.3 Birth and Death Zero Range Particle Systems 

We first set-up some notation.Let 

C{p,t):Sl x [0,T] ^R2 

be a family of embedded curves where p parametrizes the curve and t the family. Then we consider 
curvature-driven flows of the form 

dC 
— = V(K(p,t))M, (38) 
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where K denotes the curvature and Af the inward unit normal. Using the standard angle parametriza- 
tion 8, we interpret m(0, t) := 1/K(6, t) as a density, and compute it evolution to be: 

^ = .«_nm(,,()), m 

V(x) : = V(l/x). 

Note that V(x) — l/x corresponds to the Euclidean curve shortening flow. In Equation (39), the 
first term on the right hand side is called the diffusion term and the second term the reaction term. 

Our interest is in constructing stochastic approximations to the solutions of the Equation (38) or 
equivalently Equation (39). Approximations corresponding to polygonal curves have been discussed 
in the literature under the name "crystalline motion." Our approach is different and can be thought of 
as a stochastic crystalline algorithm: we construct a stochastic particle system whose profile defines an 
atomic measure on 51 , such that the corresponding curve is a polygon. Applying standard tools from 
hydrodynamic limits, it is proven in [2] that the (random) evolution of this polygonal curve converges, 
in the limit of a large number of particles, to curve evolution under the curve shortening flow. 

The approximations we use are based on so-called birth and death zero range particle systems. 
To get a flavor of the simplicity of the algorithm, we write down this system down in some detail. Let 
TN = Z/NZ denote the discrete torus. Let g : N —• E+ (the jump rate, with g(0) — 0), b : N —> R+ 
(the birth rate), d : N —» K+ (the death rate, with d(0) = 0) be given, and define the Markov 
generator on the particle configuration EN = NTA

' by 

(CNf)(V) = N2(C0f)(v) + (A/)fa) >   / € Cb(EN), 

where 

(4>/)fa) = \ £ 9(ri(i)) [fW'l+1) + KV1'1-1) - 2f(v)} 
ieTN 

(Cif)(v) = 

£ [Hv(i)) [f(rih+) ~ f(v)} + d(ri(i)) [/(T^) - /fa)]] , 

and 

r)(j), else 

= { vU) + i 
\ »7(j').els< 

3 = h 
else 

Note that the zero-range part £0 approximates diffusion term of equation (39) while the birth-death 
part C\ approximates the reaction term of (39). 
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2.3.4 Example: Approximate Euclidean curvature flows 

As an example, in this section we give the stochastic approximation of the Euclidean curvature flow. 
For the general curve shortening case; see [2, 3] for the details. We now present candidates for 
the functions b, d, g defining the particle systems. Indeed, for curve shortening (V(x) = 1/x in 
Equation (39) above) one may show that the rates are 

.9(1) = (-\       g(k) = e-1k/(k-l),k>2, 

b(2) = 2e~2,       b(k)=0,k^2, 

d(l) = e"2,       d(k) = 0, k # 1. (40) 

This means that as the number of cites A^ goes to infinity and as e goes to zero, the stochastic 
particle system converges to the solution of curve shortening. 

2.3.5 Stochastic Snakes 

We have formulated a geometric active contour model stochastically, and derived a complete stochas- 
tic snake formulation. In this research program, we plan to derive fully stochastic versions of all 
the segmentation results described above. For the geometric active contour model case which we 
considered in this preliminary study, the density function evolves according to 

mt = -(m~l)gecp - 2(m_1)e0e - m
_1(0e6, + <p), (41) 

where <fi is the (conformal) stopping term, and subscripts indicate partial derivatives. The correspond- 
ing birth-death zero range process is defined exactly as above with the addition of the following for 
the first-order drift term on the right hand side of (41): 

N ^ 9(v(i))(f(viti+l) ~ f(ri)). 
ieTN 
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