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SUMMARY 
 

This paper is concerned with change detection in 
averaged multi-look SAR imagery. Averaged multi-look SAR 
images are preferable to full aperture SAR reconstructions 
when the imaging algorithm is approximation based (e.g., 
polar format processing), or motion data are not accurate over 
a long full aperture. We study the application of a SAR change 
detection method, known as Signal Subspace Processing, that 
is based on the principles of 2D adaptive filtering [13], [14]; 
and we use it to recognize the addition of surface landmines to 
a particular area under surveillance. We identify the change 
detection problem as a trinary hypotheses testing problem, and 
identify a change signal and its normalized version to 
determine whether there is i) no change in the imaged scene; 
ii) a target has entered the imaged scene; or iii) a target has 
exited the imaged scene. A statistical analysis of the error 
signal is provided to show its properties and merits. Results 
are provided with a realistic X band SAR platform using 
averaged noncoherent multi-look and coherent single-look 
SAR imagery. 

 
1. INTRODUCTION 

 
Modern Synthetic Aperture Radar (SAR) signal 

processing algorithms could retrieve accurate and subtle 
information regarding a scene that is being interrogated by an 
airborne radar system. An important reconnaissance problem 
that is being studied via the use of the SAR systems and their 
sophisticated signal processing methods involves detecting 
changes in an imaged scene. In these problems, the user 
interrogates a scene with a SAR system at two different time 
points [9] (e.g., different days); the resultant two SAR 
databases, that we refer to as reference and test data, are used 
to determine where targets have entered or left the imaging 
scene between the two data acquisitions. For instance, FOPEN 
(FOliage PENetrating) VHF/UHF SAR systems are being 
studied to detect movements of concealed military vehicles in 
foliage [15]. Furthermore, X band SAR systems have the 

potential to become a potent tool to determine whether mines 
have been recently deployed in an area [6]. 

 
The basic idea in these reconnaissance problems is to 

compare the reference and test SAR images to identify/detect 
changes [9]. However, the practical implementation of such a 
comparison requires understanding and incorporating the 
sensor and platform variations. The sensor variations are 
caused by various subtle changes (imperfections) in the radar 
system circuitry (e.g., waveform generator, cables, etc.), and 
undesirable amplitude/phase fluctuations in the radiation 
pattern of the physical radar between the reference and test 
data collections; these are unknown and result in different 2D 
Image Point Response (IPR) or Point Spread Function (PSF) 
in the reference and test SAR images [14, ch. 8]. The platform 
(flight path) variations yield two sets of Doppler information 
that are not the same in the reference and test acquisitions. 
Thus, a dual-pass SAR change detection signal processor 
performs the following operations prior to pairing the 
reference and test SAR images [15]: 

 
i. Spatial registration (also called geo-registration) of 

the reference SAR image with respect to the test SAR 
image using the available platform motion data (e.g., 
GPS, IMU, etc.); 

ii. Spectral registration of both the test SAR image and 
the reference SAR image to extract the common 
Doppler data in the two images using the available 
platform motion data; 

iii. Blind calibration of variations of the IPRs of the 
resultant (spatially and spectrally registered) 
reference and test SAR images using 2D adaptive 
filtering methods. This calibration also compensates 
for variations in the IPRs that are due to imperfect 
(errors in) motion data and require 2D auto-focusing 
to compensate for them (among other SAR system 
phase errors such as range-gate slip). These errors  
result in  an image that is not the theoretical (ideal) 
SAR image. 
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The success of the above-mentioned steps to detect 
changes in SAR images hinges upon another signal processing 
factor: the accuracy and consistency of the reconstruction 
algorithm that is used to form the SAR images. Error-free 
imaging algorithms such as wavefront or backprojection 
possess such properties (provided that they are correctly 
implemented). On the other hand, an approximation-based 
imaging method such as polar format processing (PFP) 
introduces spatially-varying errors (amplitude, phase, 
smearing, and shifting) that depend on the platform trajectory. 
Thus, unless the reference and test data acquisitions are 
obtained with identical platform trajectories (and 
reconstruction scene center point), the user faces a formidable 
task to register and calibrate the two reference and test SAR 
images at all spatial points in the interrogated scene. (Identical 
platform trajectories for reference and test acquisitions cannot 
be achieved in practice.) 

 
The Army Research Laboratory has been developing 

algorithms to combine spotlight  mode SAR imagery from 
multiple looks at a scene. The different sub-apertures (from a 
flight past the scene) used to form the different looks help to 
ensure a certain degree of independence between the various 
images. Due to image pixel phase differences from one look to 
the next, however, we cannot coherently combine the different 
looks. Hence, we have opted for a non-coherent look-
averaging scheme that heightens image contrast and reduces 
image speckle (i.e. pixel value variability) at the expense of a 
probable reduction in image resolution. This scheme still 
requires a tedious task of geo-registering spatially-warped 
images; yet, our multi-look SAR processor has been 
successful in improving the multi-look image contrast relative 
to that found in the single-look images. Using this procedure, 
we have been able to generate reference and test SAR images 
that are sufficiently well-registered for change detection 
purposes [6]. 

 
Furthermore, in certain wide-beamwidth stripmap SAR 

systems, the user may be faced with motion data that are not 
accurate enough for coherent integration of the acquired SAR 
data over a full aperture. In addition, auto-focusing of the 
resultant full aperture images would not be successful in most 
cases since the auto-focusing algorithm has to deal with 
relatively large radial motion errors. In these scenarios, non-
coherent averaging of subaperture (multi-look) SAR imagery 
is considered to be a practical alternative since the dynamic 
range of the motion errors within each processed subaperture 
is not particularly large.  

 
This paper addresses the problem of change detection in 

non-coherently averaged multi-look SAR imagery that is 
generated from relatively low-resolution images of a PFP or a 
SAR system with inaccurate platform motion data. Our 
approach is based on a 2D adaptive filtering method that has 
been used in [13]-[17] for change or moving target detection 
in SAR images that are formed using an error-free wavefront 
reconstruction algorithm. We call this method Signal 
Subspace Processing (SSP) and we refer to the resultant 
statistic that is used for change detection as the Signal 

Subspace Difference (SSD); these are briefly outlined in 
Section 2. 

 
However, since the multi-look reference and test SAR 

imagery still contains some of the artifacts and errors of the 
PFP, we make modifications in the adaptive filtering method 
to make the change detection algorithm perform better—
particularly in the imaging areas that are dominated by foliage 
or highly variable clutter phenomena. For this, we pose the 
change detection problem as a trinary hypothesis testing 
problem with individual hypotheses of: no change; incoming 
change; and outgoing change. An SSP-based approach is 
utilized to construct what we refer to backward and forward 
SSD signals (Section 3). The backward and forward SSD 
signals go through a normalization and a differencing 
operation; the resultant is a new statistic for the trinary 
hypothesis testing problem. At this juncture we note that the 
normalized backward and forward SSD signals can themselves 
be used in a binary hypothesis test to determine whether a 
target has either entered or exited the scene from one data 
collection time to the next. Ref. [18] provides a statistical 
analysis of the properties of the statistic used for just such a 
binary hypothesis test—designed to detect the addition of 
targets to the scene.  

 
2.  CHANGE DETECTION VIA SIGNAL SUBSPACE 

PROCESSING 
 

Almost all sensory systems suffer from variations in IPR 
when they are used to interrogate the same scene or target. 
This is particularly true in SAR systems considering various 
electronic components that make up the hardware structure. 
There are also variations in IPR due to auto-focusing since no 
auto-focusing algorithm could be perfect. The simplest way to 
model these phenomena is via a spatially-invariant IPR. To 
show this, we let ),(1 yxf  represent the reference SAR 

image of a target scene, and ),(2 yxf  be the test SAR image 
of the same scene collected at another time point for change 
detection purposes.   

 
First, we pose the problem as a binary hypothesis testing 

problem. Provided that the variations of the SAR sensor IPR 
are shift-invariant, under the null hypothesis 0H , that is, there 
is no change in the imaged scene, the test image can be related 
to the reference image via the following 2D convolution 
model [14, ch. 8]: 

dudvvyuxfvuhyxf
u v∫ ∫ −−= ),(),(),( 12 , (1) 

where the 2D filter ),( vuh is spatially invariant across the 
entire image and represents the unknown miscalibrations in the 
radar system between the two data acquisitions. The above 2D 
continuous model can be converted into discrete form for the 
available reconstructed SAR imagery via 
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where ),( yx ∆∆  represent the SAR image sample spacing in 

the ),( yx  domain, and mnh is an unknown impulse response 
(differential IPR) which depends on the variations of the SAR 
sensor in time. This model also accounts for subtle/small 
rotation and scaling of the test image relative to the reference 
image [13]. Notice that the unknown IPR is invariant in pixel 
location, that is, ),( ji yx .  

 
In imaging wide areas with a SAR system and/or a wide-

beamwidth radar, the miscalibration filter is spatially-varying, 
implying that the filter coefficients, hmn, are no longer spatially 
invariant across the entire image. In this case, a more general 
model that incorporates variations in both IPR and is a 2D 
spatially-varying system as shown in the following: 

dudvvufyxvuhyxf
u v∫ ∫= ),(),;,(),( 12 , (3) 

where ),;,( vuyxh , a function of both ),( yx  and ),( vu , 
and it represents the spatially-varying differential IPR that 
incorporates any spatial warping, variations in the SAR 
sensor, etc.. Here, ),( yx  denote the test image (output) 
spatial coordinates and ),( vu  denote the reference image 
(input) spatial coordinates. To develop a numerically-
manageable solution for calibrating the test and reference 
images, we note that in practice the IPR can be approximated 
to be spatially-invariant in a small sub-region around a given 
pixel. Within the k-th sub-region, the discrete filter model for 
the above is 
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∆−∆−= ∑ ∑
−= −=

. (4) 

This model states that each point in the test image is a linear 
combination of the reference image and its spatially shifted 
versions around that pixel point; the coefficients of the linear 
model, which identify the IPR for that pixel, are spatially 
varying. That is, we obtain a different set of coefficients for 
each of the k sub-regions. A numerical procedure to estimate 
the filter coefficients )(k

mnh  from the reference and test SAR 
images, called Signal Subspace Processing (SSP), is outlined 
in [13], [14]. Briefly, the SSP is based on first identifying a 
linear signal subspace of the reference image and its shifted 
versions in the k-th sub-region: 
 

][ ,,,,,);,()(
1

)(
1 yyxxyjxi

kk nnnnnmnymxf "" −=−=∆−∆−=Φ
. 

Then with the help of , e.g., Gram-Schmidt orthogonalization 
procedure a set of orthonormal basis functions, Θ1

(k) that span 
the signal subspace )(

1
kΦ  is constructed, namely:   

 

]
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       .                         
 
Finally, the test image in the k-th sub-region, that is, 

),()(
2 ji

k yxf , is projected into these orthonormal basis 

functions to estimate the filter coefficients )(k
mnh . 

 
Under the second hypothesis 1H , that is, there is a change 

in the imaging scene, the test image cannot be related to the 
reference image via the model in (4). In this case, the SSP 
would result in a signal in the k-th sub-region denoted by  

),(),(ˆ )(
1

)()(
2 yjxi

k
n

nm

n

nn

k
mnji

k nymxhyxf
x

x

y

y

∆−∆−= ∑ ∑
−= −=

θ ,   (5) 

that is not equal to the test image in the k-th sub-region, that is, 

),()(
2 ji

k yxf . Here,  ),(2̂ ii yxf denotes the estimate 

of ),(2 ii yxf  produced by the signal subspace processor (i.e. 

the projection of ),()(
2 ji

k yxf onto the signal subspace , 

Θ(k)).  
    

For change detection, we define the Signal Subspace 
Difference (SSD) signal via 
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),(),(),(

)(
2

)(
2

)(
1

)()(
2

)(
12

ji
k

ji
k

yjxi
k

n

nm

n

nn

k
mnji

k
ji

k
d

yxfyxf

nymxhyxfyxf
x

x

y

y

−=

∆−∆−−= ∑ ∑
−= −=

θ    (6) 

Under the null hypothesis 0H , the SSD signal is (in theory) 

zero; however, under the hypothesis 1H , the SSD signal is 
not zero. Thus, the SSD can be used to detect change in the 
imaging scene. As we mentioned earlier, this method has been 
used on the SAR images that are formed via error-free 
wavefront reconstruction for coherent change detection [15] 
and moving target detection [16], [17].  
 
3.  CHANGE DETECTION VIA NORMALIZED FORWARD-

BACKWARD SIGNAL SUBSPACE PROCESSING 

As we mentioned earlier, the SSP method assumes a SAR 
signal processing and imaging that is error-free, and attempts 
to compensate for radar sensor variations. The driving force 
behind the work in this paper is to develop a SSP-based 
change detection statistic that is robust in dealing with not 
only radar sensor miscalibrations but also errors that are 
introduced in the image formation by the SAR system DSP. In 
what follows, the reference and test SAR images are averaged, 
multi-look PFP reconstructions. 

 
3.1  Forward-Backward SSP 
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We pose the change detection in the averaged multi-look 
reference and test images as a trinary hypothesis testing 
problem. Under the null hypothesis 0H , we identify the 
forward SSP in the k-th sub-region to be the estimate of the 
test image via its projection into the signal subspace of the 
reference image [see Section II, eq. (5)]; that is,  
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The forward SSD is denoted as 
 

      (7) 
 

Next, we identify the backward filter analogous to the forward 
filter in (3). That is, the spatially varying IPR that produces the 
reference image from the test image in the continuous spatial 
domain. We write the corresponding equation:  

dudvvufvuyxgyxf
u v∫ ∫= ),(),;,(),( 21

 (8) 
where ),;,( vuyxg  is the differential spatially-varying IPR. 
Within the k-th sub-region, the backward SSP is defined to be 
the estimate of the reference image via its projection into the 
signal subspace of the test image; that is,  

),(),(ˆ )(
2

)()(
1 yjxi

k
n

nm

n

nn

k
mnji

k nymxfgyxf
x

x

y

y

∆−∆−= ∑ ∑
−= −=
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where the linear signal subspace for the test image and its 
shifted versions in the k-th sub-region is identified via: 
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and also (after orthonormalization) by:  
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The backward SSD is then constructed via 
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     (10) 
The error (change detection) signal at ),( ji yx  is defined 

to be the difference of the magnitudes of the forward and 
backward SSD signals; that is, 

|||| ),(),(),( )(
21

)(
12

)(
ji

k
dji

k
dji

k yxfyxfyxe −=
 (11) 

 
We now examine this error signal under three hypotheses. 

From this point forward, we will concentrate on detecting the 
addition (or subtraction) of landmines to (or from) the region 
of interest, and we will use the terms “landmine” and “target” 
interchangeably.  

 
i) Null Hypothesis 0H : Under the null hypothesis 0H , 

the error signal, in theory, is zero. To understand why this is 
so, we note that the manner the error signal is defined in (11) 
has a desirable utility in suppressing the miscalibration errors 
that are primarily due to the polar format processing. As we 

pointed out earlier, due to the PFP errors, a proper adaptation 
(projection) of  ),()(

2 ji
k yxf  into the signal subspace )(

1
kΦ  

via SSP cannot be achieved under the null hypothesis 0H ; 

that is, the forward SSD ),()(
12 ji
k

d yxf  is not zero, and 
contains an undesirable residual. For the same reason, the 
backward SSP ),()(

21 ji
k

d yxf  also contains some undesirable 
residuals. Our study indicates that the residuals in the forward 
and backward SSD signals have approximately the same shape 
and magnitude. Thus, the operation in eq. (11), that subtracts 
the magnitudes of the backward SSD from the magnitude of 
the forward SSD, suppresses (reduces) the effect of the 
undesirable residual errors in the SSD signals. 

 
ii) Hypothesis 1H , Incoming Target (landmine): We 

identify the hypothesis 1H  as the scenario when there is no 
mine in the k-th sub-region of the reference image and 

),()(
1 ji

k yxf  is the SAR signature of ground clutter; 
meanwhile, there is a mine in the k-th sub-region of the test 
image ),()(

2 ji
k yxf . Since ),()(

1 ji
k yxf  is ground clutter, 

the signal subspace )(
1
kΦ  is composed of random noise-like 

orthonormal basis functions. Thus, the projection of 
),()(

2 ji
k yxf  into )(

1
kΦ  results in a forward SSP estimate 

),(ˆ )(
2 ji

k yxf  that is noise-like. In this case, the forward SSD 

),()(
12 ji
k

d yxf  exhibits the presence of the mine. 
 
Meanwhile, ),()(

2 ji
k yxf  contains a mine (a signal with 

structure); thus, the signal subspace )(
2
kΦ  is dominated by the 

properties of a mine SAR signature. ),()(
1 ji

k yxf , that is a 
noise-looking signal, is likely to be orthogonal to the 
structured orthonormal basis functions of the signal subspace  

)(
2
kΦ . Thus, the projection of ),()(

1 ji
k yxf  into )(

2
kΦ  for 

the backward SSP, the outcome, ),(ˆ )(
1 ji

k yxf , is 
approximately a weak noise-looking signal. Hence, the 
backward SSP ),()(

21 ji
k
d yxf  is also a weak noise-looking 

signal. Finally, the resultant error signal that is the difference 
of the forward and backward SSD [see eq. (11)] exhibits a 
positive component that indicates the incoming (addition) of a 
new target (mine) in the k-th sub-region. 

 
iii) Hypothesis 2H , Outgoing Target (landmine): We 

identify the hypothesis 2H  as the scenario when there is a 
mine in the k-th sub-region of the reference 
image ),()(

1 ji
k yxf clutter; however, the mine is removed in 

the k-th sub-region of the test image and ),()(
2 ji

k yxf . Using 
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a similar analysis that we performed for the hypothesis 1H , 
one can show that the error signal of eq. (11) exhibits a 
negative component that indicates the outgoing target (mine) 
in the k-th sub-region. 

 
 

3.2  Normalized Forward-Backward SSP 
 

1. The Physical Problem and Motivation for Including 
Normalization: Researchers examining the change detection 
problem have also realized for some time that pixel value 
variability within a scene can wreak havoc on difference-
based change detection algorithms [9], [10]. This implies that 
more false alarms should be expected from high-RCS areas of 
a radar image, since the variance of a clutter pixel value tends 
to increase with its intensity [2]. Hence, a higher mean clutter 
RCS level implies a larger clutter RCS variance, as we have 
observed in X-band SAR imagery collected at a depression 
angle of approximately 15o. Based on these observations we 
could reasonably expect to encounter most change detection 
false alarms in a higher-RCS area, since the backscatter 
variance from this region is higher than that of the lower-RCS 
region. In such a case, the naturally occurring variations in 
RCS from image to image could approach the differences due 
to actual changes in the scene, especially if the change is due 
to the addition of a small target. We expect the lower RCS 
region we considered (a bare dirt background) to be benign at 
X-Band in the sense that targets placed on the bare dirt should 
have a better chance of being seen than targets placed, for 
example, in a high vegetation background [2]. Still, in spite of 
our optimism, we have noted that some sort of additional 
strategy is necessary to counteract the effects of variability 
within the high-RCS clutter regions.    

 
The radar community has long recognized the need to 

normalize test statistics designed to detect the presence or 
absence of targets in a region under surveillance, e.g., [7]. 
Such a normalization step alleviates potential problems due to 
radar calibration differences from one data collection to the 
next, and it is commonly found in Constant False Alarm Rate 
(CFAR) detection algorithms [7], [8]. Statistical tests, such as 
size-α  invariant tests [4], are another example of the same 
philosophy applied to the detection problem. In this section, 
we mimic a CFAR detection statistic and normalize our 
detection statistic (i.e. the error signal in eq. (11)) by the 
square root of the total power in the reference sub-region.  
This normalization produces a more robust statistic—reducing 
the number of false alarms due to highly variable clutter 
backgrounds. After describing the normalized statistic, we 
analyze its merits and, finally, we demonstrate these merits on 
a real change detection problem. 

 
2. Definition of the Normalization Procedure: We denote 

the total energy of the reference image in the k-th sub-region 
via 

∑
−∈

=
thkyx

ji
k

ji

yxfE
),(

2)(
11 )],([

 (12) 

Consider the forward SSD signal that is normalized by 
this energy (its square root for proper units is used); that is, 

1
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E
yxf ji

k
d

                            (13) 
Similarly, we define the total energy of the test image in 

the k-th sub-region via 
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           (14) 
and the corresponding normalized backward SSD signal 

by 

                 2
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21 ),(

E
yxf ji

k
d

                    (15) 
The normalized error signal is identified via the 

following:  
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)(
21
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)(
12)( |||| ),(),(
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yxf
yxe ji

k
dji

k
d

ji
k

norm −=
(16) 

Next, we examine this normalized error signal under the 
three hypotheses. 

 
i) Null Hypothesis 0H : Under the null hypothesis 0H , 

the normalization of the strength of the SSD signal by the 
strength of the k-th sub-region should reduce the strength of 
the undesirable residual errors. For instance, suppose there 
exists a strong reflector (e.g., a trihedral) in the k-th sub-region 
in both the reference and test images. The undesirable residual 
errors of this target in both the backward and forward SSD 
signals is comparable or, at times, larger than the signature of 
a mine, e.g., 20 dB below the SAR signature of a trihedral. 
However, the relative strength of the trihedral residual errors 
in the SSD signals would be reduced with the normalization 
operation.  

 
ii) Hypothesis 1H , Incoming Target: As we mentioned 

earlier, in this hypothesis, there is no mine in the k-th sub-
region of the reference image ),()(

1 ji
k yxf , but there is a 

mine in the k-th sub-region of the test image ),()(
2 ji

k yxf ; in 

this case, we showed that, the forward SSD ),()(
12 ji
k

d yxf  
exhibits the presence of the mine. Since the reference image 

),()(
1 ji

k yxf  corresponds to ground clutter, its energy 1E  is 
relatively low. Thus, the normalization of  forward SSD 

),()(
12 ji
k

d yxf  with 1E  results in increase in the relative 
strength of the mine signature. 

 
We also noted that the backward SSP ),()(

21 ji
k

d yxf  is a 

weak noise-like signal under 1H . Since the test 

image ),()(
2 ji

k yxf  contains a mine, its energy 2E  is 
relatively high. Thus, the normalized backward SSP 
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),()(
21 ji
k

d yxf  is further weakened after normalization with 

2E . 
 
Based on these observations regarding the normalized 

SSD signals under 1H , one can conclude that the resultant 
normalized error signal in (16) should be more robust in 
exhibiting a positive signature that is indicative of an  
incoming target in the k-th sub-region than the error signal in 
(11). 

 
iii) Hypothesis 2H , Outgoing Target: Using an analysis 

similar to the one for the hypothesis 1H , we can conclude that 
the error signal of eq. (16) exhibits a more prominent negative 
component that indicates the outgoing target in the k-th sub-
region than the error signal in (11). 
 

5.  CONCLUSION 
 

This paper outlined a method for change detection in non-
coherently averaged multi-look SAR imagery. The application 
of a 2D adaptive filtering method, also known as signal 
subspace processing, using a normalized signal subspace 
difference signal was demonstrated to yield an effective 
approach to not only compensate for calibration errors 
between reference and test SAR imagery but also 
reconstruction errors that are due to using an approximation-
based imaging algorithm (e.g., PFP) or significant unknown 
motion errors along a long synthetic aperture.  
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