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Report 

We have constructed our cold atom imaging spectrometer, realizing less than 2.5cm/s velocity resolution [1]. 
This result is an order of magnitude higher resolution than obtained anywhere prior to our work. The high 
resolution enables the study of ultracold collisions using Rydberg atom imaging. We have used our machine to 
study elastic and inelastic collisions in cold Rydberg gases [2]. These measurements were compared to 
calculations of Rydberg atom pair interactions that included a background electric field. We were the first group 
to calculate non-perturbative interaction potentials between Rydberg atoms with high principle quantum number 
in a background electric field [3]. An understanding of cold Rydberg atom interactions is important for using 
these samples for quantum computation. In the course of this work, we discovered that long range (-5-10 pm 
intemuclear separation) Rydberg atom molecules could be formed by applying a background electric field to 
shift the Rydberg atom energy levels [4]. This important finding was verified using a variation of Coulomb 
explosion imaging with the apparatus [5]. Without a differential technique it is experimentally difficult to 
distinguish a collision resonance from a molecular resonance in cold Rydberg atom spectra because the 
vibrational energy spacing of the molecules is very small. Our apparatus was the first to achieve this objective. 

We are currently extending our work on Rydberg atom imaging to the study ultracold three-body 
recombination. Rydberg atom collisions are a good test of our methods because they exhibit extremely low 
energy collisions. Three-body recombination in cold alkali gases is among the most important loss mechanisms 
in a BEC. These processes are consequently important for using Bose-Einstein condensates as sensors and for 
fundamental experiments that require large numbers of atoms. There are currently no measurements of state-to- 
state differential cross-sections for 3-body recombination in an alkali gas at ultracold temperatures. In this grant 
cycle, we calculated potentials for triatomic alkali systems [6,7] and investigated ways to coherently control the 
formation of molecules in the cold gas [8,9]. As the calculations carried out in the course of this work are 
described in [3,4,6,7,8,9] and the papers resulting from this work are listed in the report, the remaining 
document will focus on the description of the spectrometer that was constructed. 

In our experiments, we are able to observe energy conversion in state changing collisions by measuring the 
velocity distributions of the collision fragments. Figure 1 is an example of a crossing between two interatomic 
potentials that could give rise to a state changing collision. For a specific system, this could be an avoided 
crossing or a real crossing of two potential energy curves. By exciting the collision complex at the curve 
crossing, a pair of atoms will gain kinetic energy (KE) equal to the difference between the electronic energy at 
the curve crossing and the asymptotic electronic energy of the exit channel. By measuring the velocity 
determined by KE, the exit channel can be identified. 

To measure the KE distributions resulting from ultracold collisions, we constructed a Rydberg tagging, 
photofragment time-of-flight spectrometer. By exciting the collision products to high principal quantum number 
Rydberg states, the products are allowed to expand at the collision exit velocity as neutrals. Since the products 
expand as neutrals, they are less sensitive to stray electric fields that can destroy the fidelity of a measurement. 
Rydberg tagging is also a way to distinguish collision products from background gas atoms. 
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Intemuclear Distance 
Figure 1: A pair of atoms excited at the curve crossing will gain velocity by 
the conversion of electronic energy to kinetic energy (KE). The collision 
pair will expand at a velocity determined by the gain in K.E. The energy of 
the fragments can be used to determine the exit channels of the collision 
process. 

Measurements performed in our spectrometer begin in a magneto-optical trap (MOT). By intersecting the MOT 
with tightly focused probe beams (< 100 u.m diameter), the excitation volume can be localized. It is important 
for the greatest energy resolution to start with the smallest excitation volume possible but maintain high product 
yield. Higher density can be achieved in a smaller volume using an optical dipole trap. Our apparatus has a 
dipole trap integrated into the setup, Figure 2. 

The Rydberg tagged products are detected by pulsed-field ionization (PFI). By designing the spectrometer to 
apply a momentum kick to the products rather than using an acceleration region, the product distribution can be 
approximately linearly mapped onto a detector. Also, by appropriately shaping the PFI field, the need for grids 
can be eliminated. Grid transmission loss can substantially decrease the overall detection probability of the 
system, which can be a problem with low yield collision studies. 

The spectrometer is contained in a 22.9 cm radius stainless steel vacuum chamber (see Figure 2). It is 
evacuated to a pressure of 2xl0"10 Torr by a turbo-molecular pump. The turbo-molecular pump is backed by a 
diffusion pump which is backed by a mechanical roughing pump. The backing of the turbo pump with a 
diffusion pump provides for a high compression ratio that makes it easier for the turbo pump to reach its base 
pressure. 

A Cs MOT is formed in the center of the chamber. The experiments to date have relied on loading the MOT 
from a background vapor. The last modification that was done was to add a Zeeman slower to load the MOT so 
that larger atom numbers can be achieved. This will make our dipole trap easier to use for experiments. The 
MOT is formed using two home built diode lasers and a set of anti-Helmholtz coils. The anti-Helmholz coils for 
the MOT are located inside the chamber. The coils are square with a length of 14.7 cm on a side. The coils 
contain 24 windings each of Kapton coated, copper tubing. Water is circulated through the coils to dissipate 
heat. The coils are operated at 34 A for a magnetic field gradient of 12.5 G cm"1 at the MOT. 



Figure 2: To scale rendering of the spectrometer located in the vacuum 
chamber. The spectrometer is sectioned for viewing. The bright spot in the 
center represents the MOT. The spectrometer is formed around the MOT 
with the flight tube extending downward towards the MCP detector. The 
anti-Helmholz coils are also depicted. The lens systems are used to focus a 
CO; laser to form an optical dipole trap. 

The spectrometer is centered on the MOT. Three stainless steel, circular field shaping plates are distributed 
above and below the MOT. 33 mm above the MOT is a plate with holes for two of the MOT trapping beams. 
The holes are filled with glass and covered with an electro formed Ni wire mesh 4.6 lines mm"1 on the side of 
the glass closest to the MOT. 19 mm below this plate is a field shaping ring. 28 mm below the shaping ring is a 
grounded plate with a 74 mm diameter hole. The MOT is located halfway between the bottom plate and the 
shaping ring. All three plates are separated by ceramic spacers. Connected to the bottom plate is a 25.4 cm 
grounded flight tube. The spectrometer is coated with Aerodag to minimize reflections and smooth out field 
imperfections. At the end of the flight tube is a 40 mm Z-stack cross delay-line (XDL) microchannel plate 
(MCP) detector with a 19 u.m spatial resolution determined from spot size measurements of a pinhole mask 
illuminated with ultraviolet light. 

The Rydberg atoms are projected onto the detector by applying a high voltage pulse to the top plate. The pulse 
ionizes the Rydberg atoms and transfers a momentum kick, p=/ # E(t)dt, to the ions in the MOT region, q is 
the charge and E(t) the electric field pulse as a function of time. The pulse is applied using a HV pulser (DEI 
PVX-4140) powered by a high voltage supply (Glassman EK3R200). Resistors are symmetrically spaced 
around the edges of the plates. The resistance between the top plate and shaping ring is 1 kD (4 resistors), and 
2.1 kQ between the shaping ring and bottom plate (4 resistors) for a combined resistance of 3.1 kQ. With an 
applied voltage of 320 V, there is an electric field of 53 V cm"' at the position of the MOT. The rise time of the 
pulse is 80 ns limited by the HV pulser. The fastest rise time achievable is 10 ns, determined using a digital 
delay generator (SRS DG535). After the pulse, ions travel through the field free flight tube and are detected on 
the MCP. 



Figure 3 shows the calculated electric equipotential lines in the region around the MOT, for an applied voltage 
of 320 V. The potential is calculated by numerically solving the Laplace-equation in a cylindrically symmetric 
3D space using the program SIMION. The symmetry axis coincides with the center of the flight tube. The cross 
section of the electrode configuration is specified on a 2D grid of 400 horizontal points by 200 vertical points 
with a grid spacing of 1mm. The modeled electrodes match the spectrometer plate geometry. The top plate, the 
shaping ring, and the bottom plate and flight tube are modeled as ideal conductors at fixed potentials of 320 V, 
218 V, and 0 V, respectively. No other parts of the experimental setup are included in the simulation. Under 
these conditions, the longitudinal electric field at the MOT is calculated to be E| =52.2 V cm* . The field 
gradient along the TOF axis of 8.87 V cm" at the MOT center implies that the field changes by 92 mV cm"1 

over a 100 \im excitation volume in the time-of-flight direction. The radial electric field gradient at the MOT is 
4.23 V cm"2. We assume no stray electric field for the simulation. From the calculated field at the MOT, we 
obtain a geometric factor a = E/V =0.163 cm" relating the applied voltage and the field at the MOT position. 
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Figure 2: Plot of the equipotential surfaces with an applied voltage of 320V 
on the top plate. The lensing of the field is due to the absence of a grid on 
the opening of the bottom plate. The MOT is displayed as a Gaussian 
distribution at its location on the surface. 

Time-of-flight velocity distributions can be reconstructed using high speed electronics. The current monitor of 
the HV pulser is processed using a constant fraction discriminator (CFD) and serves as the start input for a 2 
GHz multichannel analyzer (MCA) (Fast ComTec P7886). Fast timing signals (FWHM 2 ns) from the MCP 
anode are amplified using a preamplifier (SR240). The amplified signals are processed using a second CFD and 
serve as stop inputs for the MCA. The XDL grid beneath the MCP is designed for 2D imaging of product 
spatial distributions. The signals from the XDL grid are integrated by preamplifiers for 3 JUS to provide a charge 
signal proportional to the number of ions incident on the detector. The stop signals can be filtered using the 
charge signals. The charge signals may be used to gate the fast timing signals by using a single channel analyzer 
to threshold the velocity distributions based on the height of the charge pulse. The charge pulse height 
distribution (PHD) is also read by an analog to digital converter. The charge PHD is determined by the binomial 
distribution and is a measure of the overall detection probability of the system if the number of products in a 
collision is known. 



Our studies of the cold Rydberg gas have sought to untangle the complicated interactions between Rydberg 
atoms. We have recently begun to develop 3-dimensional velocity imaging, as our ultimate objective is to study 
three-body recombination at ultralow temperatures. These experiments will utilize the full three dimensional 
imaging capabilities of our apparatus. Three-body recombination is important in cold atom physics because it 
leads to loss from Bose-Einstein condensates. The problem of three-body recombination is intimately related to 
the coherent control of a bimolecular reaction, because three-body break-up is a possible exit channel in any 
experiment attempting to coherently control a bimolecular reaction. Our studies of 3-body recombination 
promise to be the first multiply differential studies of a chemical process where a bond is formed and broken. 
The apparatus described here is then important for the development of the field of chemistry at ultracold 
temperatures. 
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Abstract 
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