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Evaluation of the haltere as a biologically inspired
inertial rate measurement sensor

R. A. Thompson, M. F. Wehling, J. Evers
Air Force Research Laboratory (AFRL/RWG), Eglin AFB, FL 32542

W. E. Dixon
Dept. of Mechanical and Aerospace Engineering, Univ. of Florida, Gainesville, FL 32611

Since as early as the 1940’s, specialized structures on dipteran insects have been recog-
nized as necessary for inertial measurement associated with basic flight stability. These
structures, called halteres, have been suggested to act as vibrating structure gyroscopes,
measuring strains proportional to Coriolis accelerations. As a miniature, robust means
for stabilizing flight, this biological inertial measurement system is not only of interest to
biologists, but also to designers of biomimetic robotic systems. However, the accuracy
with which a pair of halteres can reconstruct the full body rate vector had not been clearly
ascertained in previous studies. In addition, only one potential mechanism to decouple
the rate components, using frequency decomposition of the haltere mechanical response,
has been generally adopted. The purpose of this paper is to present an evaluation of the
halteres as a rate measurement sensor through dynamic simulation of the halteres across a
full range of body angular rates. Based on this analysis, a simple alternative mechanism is
proposed for decoupling the body rate components, and, assuming the use of this proposed
mechanism, an error analysis is presented for the halteres as a three dimensional linear
rate measurement system.

Introduction

Collaboration between engineers and biologists continues to increase due to the continual pressure on
engineers to build smaller, more robust, and intelligent systems. Such systems are plentiful in the realm of
biology, with seemingly unlimited variations resulting from genetic propagation of specific forms that offer
some advantage in a continuously changing environment. Engineers have developed a particular interest
in insects due to the great diversity of sensors that could be emulated to allow enabling capabilities for
missions such as autonomous surveillance and tracking. The optical sensors on some insects can change
sensitivity by three orders of magnitude within minutes of changing light conditions. Insects are also known
to distinguish up to four regions of the electromagnetic spectrum and to take advantage of polarization
characteristics of light for navigation1.2 Insects have sensors that measure gravitational direction,3 inertial
state, and chemical signatures. To enable locomotion and propulsion, mechanoreceptive and proprioceptive
sensors are embedded throughout the exoskeleton to measure position, locations, and rates of motion of
the various appendages, as well as the motion of the overall body with respect to the environment. These
sensors, along with the associated power generation and control functions, tantalize the engineer by being
packaged in body sizes as small as a fraction of a millimeter in the case of some parasitic wasp and fly species.
A contribution of this paper is an analysis of the dynamics of the haltere, a sensor which was first observed

to play a role in flight stabilization by Derham in the early 18th century. It was not until the late 1930’s
that researchers such as Pringle4 began to characterize the dynamic forces acting on the haltere and thereby
firmly establishing the role of the haltere as a gyroscopic mechanism, sensing Coriolis forces proportional to
body rates. Pringle demonstrated the feasibility of the haltere (see Fig. 1) as an angular rate sensor used
to stabilize the body of dipteran (two winged) insects during flight. Proof of this function is apparent when
the halteres, which are small genetically inhibited5 adaptations of the rear wings, are removed, rendering the
fly unable to maintain stable flight.4 The halteres are much too small to generate significant aerodynamic
forces, and therefore it was deduced that they have adapted to provide body motion state feedback to the
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Figure 1. Characteristic locations of the halteres and their strain sensors.

fly’s control system. Due to their common lineage, the fully developed wings have a similar configuration of
muscles and the same type of strain sensors as the halteres, and therefore may also measure and feedback
signals that are in part representative of the state of inertial motion. However, the wings have relatively
large aerodynamic and inertial forces that might contaminate measurement of the induced Coriolis force, so
they would likely be much less predominant for that function if halteres are present.
Halteres and the associated control functions have been studied by a number of authors. Some of the most

recent work by Dickinson67 has focused on the interaction between the halteres and both the flight control
functions of the wings and the visual sensors on the head. The haltere has also been investigated by some
researchers as a biomimetic inertial measurement instrument. For example, Wu and Wood8 have patented
a mechanical haltere, claiming that halteres offer advantages that other methods of inertial sensing do not.
Some conject that the original works by Fraenkel and Pringle94 were the inspiration for the modern micro-
electro-mechanical (MEMS) vibrating mass gyroscopes that are now available with a unit cost of less than
$100. These MEMS gyros can be seen in a variety of applications, including commercial automobile braking
systems, modern avionics, and skegways. The halteres, unlike the technologies they may have inspired, are
large amplitude systems, oscillating back and forth through a range of up to +/- 90 degrees. Therefore, a
single haltere offers the potential to measure rates of change of angular orientation in at least two orthogonal
directions, similar to a vibrating disk gyroscope or a conventional spinning mass gyroscope.
The physical mechanism that allows halteres to measure angular rate is associated with the motion of

the mass at the end of the haltere as it oscillates in a plane that is roughly fixed relative to the body of
the insect. If the insect, and therefore the attached plane, is allowed to rotate in inertial space, then the
moving mass is generally required to accelerate to stay in the plane. This acceleration is due to the change
in direction of the velocity vector caused by the rotation of the plane and the change in the radial location of
the mass relative to the axis of rotation. The combination of these effects (i.e., 2(e−→ω b×b−→v m)) is referred to
as the Coriolis acceleration, and the magnitude is proportional to the component of velocity in the rotating
reference frame that is perpendicular to the bodies angular velocity vector.
If two angular velocity vector components are in the plane of the haltere, see Figure 2, the velocity of the

haltere mass perpendicular to the transverse component Ωy will change sign once during a complete cycle
of the haltere motion. However, the component of the velocity perpendicular to the medial component Ωx
will change sign twice. The end result is that the signal (force, displacement, strain, etc.) coming from the
haltere due to the medial component will have twice the frequency of the signal resulting from the transverse
component of the angular velocity. The implication of the early analysis was that insects using halteres could
possibly do a frequency decomposition of the mechanoreceptive nerve signals in order to resolve the two rate
components. This is the basis for the patent of Wu and Wood.8 The remainder of this paper will show that
it is also possible, if the mechanoreceptive sensors could measure the appropriate quantities, to measure the
same two components by taking advantage of the natural decoupling of the rate components at the center
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Figure 2. As the haltere beats back and forth the velocity component perpendicular to Ωx changes sign at twice
the frequency as the component perpendicular to Ωy. This results in a Coriolis force with two distinct frequency
components.

of the haltere stroke and the approximately linear nature of the governing equation of motion. In addition,
results of an error analysis will be given from which the relative errors inherent in the measurement of all
three body rate components can be inferred due to the nonlinearities in the “true” equations of motion.

I. Model Description

Dickinson’s work on haltere mediated reflexes describes the physical geometry of the fruit fly, Drosophila
melanogaster.10 This description of the geometry, see Fig. 3, is used as a starting point for the haltere analysis
in this paper. The predominant characteristics of the biological system used in the current development are
the amplitude of the haltere stroke and the configuration of the halteres with respect to the mid-sagittal and
transverse planes of the fly body. The halteres on Drosophila oscillate in a plane that is tilted back roughly
thirty degrees toward the mid-sagittal plane. The line that defines the intersection of the haltere stroke
plane with the sagittal plane is rotated toward the head by roughly twenty degrees so that at the top of its
stroke the tip of the haltere is in a more anterior position than at the bottom of the stroke as shown in Fig.
3. However, since the line of intersection of the haltere planes is, for convenience, used to define the body
yaw axis (x̂3), the value of this angle is arbitrary. The beat frequency was rounded up to 200 Hz from the
described range of 150 to 180 Hz for the sake of analytical convenience in simulations where general trends
of out-of-plane stiffness and damping impact on the trajectory were simulated.
The equations of motion are non-dimensional and describe the system in terms of its natural frequency

and damping coefficient, as opposed to using dimensional quantities to describe mass, length, damping and
stiffness characteristics. The component of the haltere motion in the primary plane of oscillation is assumed
to be deterministic and purely harmonic as observed in the body reference frame, oscillating back and forth
through a range of +/-ninety degrees. Damping of out-of-plane motion is assumed to be proportional to
the angular rate of the out-of-plane motion and the stiffness proportional to out-of-plane displacement. The
source of stiffness is not specified, whether it is due to the resiliency of the haltere stalk or the joint and its
associated musculature. The haltere model for out-of-plane motion can be considered as an equivalent mass
at the radius of gyration of the haltere on a rigid massless structure with a torsional spring and damper
at the base. The actual dynamics and control of the haltere may be much more complex and is an area of
ongoing research. Hengstenberg11 describes eleven control muscles at the base of the haltere similar to the
muscles at the base of the wing. These muscles could possibly fine tune the kinematics of the haltere.
The equations of motion are generated without any small angle assumptions for the purpose of simulating

the haltere trajectory under the influence of constant inertial body rates. Transients are not considered in
this phase of the research and only the haltere response under the ideal conditions of constant angular rate
were examined to draw preliminary conclusions about the fundamental limitations of the haltere or haltere
pair. This steady-state assumption is equivalent to assuming that the body rates have a significantly longer
period than the period of haltere oscillation and any associated transients.
Finally, the component of angular rotation of the haltere in its primary plane is assumed to be sinusoidal.
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2ĉ

2x̂

1x̂

3b̂

α
2b̂

3ĉ
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Figure 3. Reference frame definitions for the halteres, b and c, and frame x which defines the roll (x1), pitch (x2) and
yaw (x3) axis. The angle beta is arbitrary with this definition of reference frames.

That is, the angular position γ of the haltere in its primary plane of motion is assumed to be

γ =
π

2
sin(ωt),

where ω is the constant beat frequency of the haltere. The sinusoidal assumption is not valid for insects that
have a flatter angular velocity profile for the majority of the stroke and a quicker turn around at the ends.
Yet, this assumption can be used to develop valid conclusions as long as the haltere maintains its symmetry
of motion with respect to the center of the stroke.

II. Kinematic Assessment

Insight regarding the forces acting in the out-of-plane direction can be examined by first assuming no out-
of-plane haltere deflection. The right half of Fig. 3 shows the right haltere and reference frame directions
associated with the haltere and inertial space. In the following sections, hatted variables represent unit
vectors that describe orthogonal directions for the required reference frames. Left superscripts describe which
reference frame the vector quantity is observed within. Right superscripts identify the point or reference
frame the quantity characterizes. The body angular rate vector relative to the inertial frame, e�ωb = e�ωx, is
represented in the right haltere reference frame as

e�ωb = Ω1b̂1 +Ω2b̂2 +Ω3b̂3. (1)

In this expression, Ωi are the angular velocity components and b̂i are the body fixed unit vectors as shown
in Fig. 3. The position, velocity and acceleration of a point mass at the radius of gyration of the haltere are
found through successive differentiation to be:

�P02 = �P01 + �P12 (2)
e�v2 = e�v1 +b �v2 +e �ωb × �P12 (3)
e�a2 = e�a1 +b �a2 + 2(e−→ω b ×b �v2) +e −→ω b × (e−→ω b × �P12) +

e −→α b × �P12. (4)
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In these expressions, 0,1 and 2 refer to an arbitrary point fixed in inertial space, a point at the base of the
haltere, and a point at the radius of gyration of the haltere, respectively. The first acceleration term, e�a1,
which is the acceleration of the base of the haltere with respect to the inertial frame is assumed to be small.
The second term, b�a2, which represents acceleration of the haltere mass as observed from the body, is entirely
in the plane of the haltere. Nalbach12 showed that these primary accelerations in the plane-of-motion are
much higher than contributions associated with the body angular rates, and therefore, useful information
pertaining to the body rates is unlikely to be ascertained from in-plane force measurements. The last term,
e−→α b× �P12, which involves the angular acceleration of the body, was also shown by Nalbach to be a factor of
5 or more less than the third (Coriolis) term for sinusoidal body oscillations under fifty Hz. The remaining
two terms after taking the appropriate vector products are

2(e−→ω b ×b −→v 2) = 2rγ̇[−Ω2 sin(γ)b̂1 + (Ω1 sin(γ) +Ω3 cos(γ))b̂2 − Ω2 cos(γ)b̂3] (5)
e−→ω b × (e−→ω b × �P12) = r[(−Ω22 sin(γ)− Ω23 sin(γ) +Ω1Ω2 cos(γ))b̂1 + (6)

(Ω1Ω2 sin(γ) +Ω2Ω3 cos(γ))b̂2 +

(Ω1Ω3 sin(γ)− Ω21 cos(γ)− Ω22 cos(γ))b̂2].

The expression in (5) is the Coriolis term which generates out-of-plane (b̂2) force components associated
with the in-plane body rates. These components are proportional to 2γ̇Ω1 and 2γ̇Ω3. The other components
represent an in-plane acceleration directed along the stalk of the haltere proportional to Ω2. The expression
in (6) describing the centripetal accelerations, also generates out-of-plane forces on the haltere proportional
to Ω1Ω2 and Ω2Ω3.The relative magnitudes of γ̇ and Ω2 will determine the significance of these centripetal
terms. Errors introduced by these terms will be quantified later in the paper. If the centripetal terms are
small, we would expect the out-of-plane force on the haltere should predominantly be due to the Coriolis
term and therefore is associated with the body rate components that are in the primary plane of the haltere
motion. Equations (5) and (6) are based on the assumption that the haltere is infinitely rigid and does
not deflect out-of-plane. This assumption is the basis for the previous kinematic analysis of the haltere by
Pringle and Nalbach and is useful for developing an intuition regarding the predominant forces that impact
the problem. In the following section, this assumption is eliminated to simulate the out-of-plane motion, or
equivalently the strains resulting from that motion.
If the halteres are assumed to measure forces associated with the Coriolis accelerations, the measured

signals should be proportional to the in-plane body rate components, Ω1and Ω3, as shown in (5). If two
halteres that are initially in a common plane are rotated out of the plane by an angle α as shown in Fig.
3, then all three components of the body inertial rate vector can be reconstructed. The body rate vector
represented in the body fixed roll, pitch, yaw frame is

e�ωx =W1x̂1 +W2x̂2 +W3x̂3, (7)

where W1, W2 and W3 are the body roll, pitch, and yaw rates, respectivelya.
The relationships between the components of the body rate vector represented in the body roll, pitch,

yaw frame and the components represented in the right haltere frame (b̂) and the left haltere frame (ĉ) are

e�ωx = Ωb1b̂1 +Ωb2b̂2 +Ωb3b̂3 (8)

= Ωc1ĉ1 +Ωc2ĉ2 +Ωc3ĉ3

W1 = −Ωb3 +Ωc3
2 sin(α)

(9)

W2 =
Ωb3 − Ωc3
2 cos(α)

(10)

W3 = −Ωb1 +Ωc1
2

= −Ωb1 = −Ωc1 (11)

The importance of these simple transformations is that they allow a direct calculation of rate components
along the body roll, pitch, and yaw axes,W1,W2 andW3, given the two rate components that are measurable

aThe terms roll, pitch and yaw are used in this paper to indicate the body rate components, commonly referred to as p,q
and r, as opposed to sequence dependent Euler angle rates. These are equivalent if the body and inertial frame are co-aligned
at the instant at which the rates are described.
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in each of the haltere reference frames. The research on halteres by Pringle4 in 1948 did not recognize the
ability of the insect physiology to combine the output of two halteres and thereby distinguish between pitch
and roll components of the body rate vector. Pringle initially assumed that the halteres represented a
redundant means of measuring yaw rate. Later experimental results by Faust13 demonstrated the ability of
flies to react independently to each of the body rates. Therefore, within the neurology of dipteran insects
there is likely a basic representation of (9)-(11), although this does not rule out measurements from other
sensors that support inertial stabilization.

III. Dynamics Equation Allowing for Out-of-Plane Motion

For the purpose of simulating the dynamics of the haltere, out-of-plane motion is considered. With the
out-of-plane deflection angle defined as θ, summing moments associated with damping, stiffness, and inertial
forces around the base of the haltere results in the following expression:

θ̈ + 2ζωnθ̇ + ω2nθ = Ω̇3 sin(γ)− Ω̇1 cos(γ)− γ̇2 cos(θ) sin(θ) (12)

+2γ̇[(Ω3 cos(γ) +Ω1 sin(γ)) cos
2(θ)− Ω2 cos(θ) sin(θ)]

+(Ω23 cos
2(γ) +Ω21 sin

2(γ)− Ω22) cos(θ) sin(θ)
+(Ω2Ω3 cos(γ) +Ω1Ω2 sin(γ)) cos(2θ)

+2Ω1Ω3 cos(θ) sin(θ) cos(γ) sin(γ).

In (12), ζ is the damping ratio, and ωn is the natural frequency that characterizes the out-of-plane
stiffness and mass characteristics of the haltere. In this form, the haltere can be easily simulated by varying
the out-of-plane natural frequency relative to the haltere beat frequency as well as varying the haltere
damping characteristics. Again, the haltere stroke angle is assumed to vary with a simple characteristic
motion γ = π

2 sin(wht) , with the angular frequency of the haltere, wh = 200Hz. The derivation of (12) is
described in the appendix. This relationship is closely related to the governing equation for the vibrating
structure MEMS gyroscope.b

IV. Haltere Trajectories

Simulations of the developed equation of motion were executed for a variety of cases with variations
in the damping ratio and out-of-plane stiffness. The intent was to determine the characteristics of the
displacement trajectories and the impact of non-linear coupling of out-of-plane rate components into the in-
plane component measurements. All simulations were executed with constant body rates. For the purpose of
generating the plots, the haltere motion was initiated with no out-of-plane displacement and the haltere was
allowed to transiently respond to the forces resulting from input body rates. The simulation was executed
for 40 oscillations, with the last 20 used for making the plots. Because the haltere has reached a steady state
trajectory, the 20 oscillations overlap, appearing as one closed loop. Only for cases where the out-of-plane
natural frequency was significantly less than the haltere oscillation frequency, or for cases where the damping
was very low did the haltere not reach steady state. These plots are not shown since they represent very
large out-of-plane motion for the assumed model, which would not be representative of the evolved system.

IV.A. Out-of-Plane Stiffness Variations

Figures 4 and 5 show the trajectories associated with a haltere out-of-plane natural frequency equal to and
double the beat frequency of 200 Hz. The plot shows out-of-plane displacement in radians as the ordinate,
plotted against the stroke angle of the haltere as the abscissa. A haltere stroke angle of 0 has the haltere
at the center of the stroke. The Ω1 input generates the expected frequency doubled signal as the haltere
sweeps through a semi-circular arc causing the velocity component perpendicular to Ω1 to change sign twice,
therefore the Coriolis force changes sign twice. In the other direction the haltere velocity perpendicular
to Ω3 only changes sign once, giving no frequency doubling effect. The angular displacements peak at

bFor the case where both θ and γ are much less than 1, damping is small, ω2n À Amp2ω2h, and ω2n À ω2h, equation 12

reduces to θ̈ + ω2nθ = 2Ω3γ̇ = 2Ω3Aωh cos(ωht). The forced solution to this equation, (θ =
2Ω3Aωh

ω2n
cos(ωht) ), is the solution

for the out-of-plane displacement of the MEMS gyro mechanism.
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Figure 4. Haltere tra jectories for ωn = 200Hz (left) and ωn = 400Hz (right). Input conditions Ω1 = 10 rad/s, Ω2 = Ω3 = 0
and ζ = 0.1.
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Figure 5. Haltere tra jectories for ωn = 200Hz (left) and ωn = 400Hz (right). Input conditions Ω3 = 10 rad/s, Ω1 = Ω2 = 0
and ζ = 0.1.

approximately half of a degree for the conditions shown. When the natural frequency is significantly below
200 Hz, the out-of-plane motion is driven to very large angles and never reaches a steady state pattern.

IV.B. Damping Variations

Examples of damping variations are shown in Figure 6 for the case of ωn = 200Hz and input body rates
of Ω1 = Ω3 = 10 rad/s. These plots demonstrate the significant impact that damping variations, whether
passively or actively induced, can have on the haltere trajectory. At low damping levels, ζ ≈ 0.01, the
trajectory never reached steady state within the forty oscillation (0.2 second) simulation time.

IV.C. Average Haltere Position

The haltere displacement averaged with respect to haltere stroke angle is also shown in Figure 6. However,
when the average displacement is plotted seperately for the two rate components as in Figure 7, an interesting
characteristic emerges that may provide insight into a possible mechanism by which the body rates are
decoupled by the insect.
Figure 7 demonstrates a natural decoupling of the body rate components at the center of the haltere
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Figure 6. Haltere tra jectories with damping ratios at 10% of critical (left) and 100% critical (right) for body rate
inputs of Ω1 = Ω3 = 10 rad/s.
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Figure 7. Haltere tra jectories for Ω1 = 10 rad/s (top) and Ω3 = 10 rad/s (bottom) with the average displacement
plotted as a function of stroke angle.
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stroke. At γ = 0, the averaged magnitude of the response driven by Ω3 is zero and the averaged slope
of the response driven by Ω1is zero. If the governing differential equation (i.e., (12)), that describes the
motion of the haltere is approximately linear, then the final trajectory of the haltere would simply be the
superposition of the response of the two plots shown. Also, each of these plots would scale in proportion to
the magnitude of the associated body rate since the Coriolis forces driving the motion are proportional to
the respective body rates. Therefore, by measuring the slope and the magnitude of the response near the
peak of the haltere trajectory, and having tuned in the appropriate proportionality constants, the body rate
components in the plane of the haltere motion could be directly obtained. These observations suggest the
following hypotheses.

1) A system with halteres uses the magnitude of the averaged strain at the peak of the haltere stroke
and takes advantage of the approximate linearity of the haltere dynamics to estimate Ω1 (i.e. Ω1 is
proportional to the averaged magnitude of the strain at the middle of the stroke).

2) A system with halteres uses the magnitude of the averaged strain rate at the peak of the haltere
stroke and takes advantage of the approximate linearity of the haltere dynamics to estimate Ω3 (i.e.
Ω3 is proportional to the averaged magnitude of the strain rate at the middle of the stroke).

Pringle4 demonstrated that the nerve afferents at the end of the stroke are dominated by signals associated
with haltere motion reversal. This supports the supposition that the sensory response of the haltere toward
the middle of the stroke is of primary use by insects. The proposed method of determining the body rates
is more direct than that patented by Wu and Wood.8 In their patent, the fundamental frequency doubling
is taken advantage of through a demodulation scheme to separate the two signals and determine the driving
forces. The method proposed here may be directly realizable using the fields of strain sensors (campaniform
sensilla) existing at the base of the haltere in insects.
The described mechanism for measuring the body rates requires three characteristics of (12).

1. Linearity

2. No dependence on the out-of-plane body rate Ω2

3. Two independent forcing functions proportional to the in-plane body rate components Ω1 and Ω3

If these characteristics are met, the response to the two in-plane body rate components are uncoupled
and the two independent responses are linearly proportional to the magnitudes of the respective body rates.
By making various approximations associated with small displacement angles and the magnitudes of the
various coupling terms, (12) can be reduced to two possible forms that express the desired characteristics,

θ̈ + 2ζωnθ̇ + (ω
2
n + γ̇2)θ = 2γ̇Ω3 cos(γ) + 2γ̇Ω1 sin(γ) (13)

θ̈ + 2ζωnθ̇ + ω2nθ = 2γ̇Ω3 cos(γ) + 2γ̇Ω1 sin(γ). (14)

The difference between these two equations is simply a centripetal (γ̇2) term associated with the out-of-plane
motion.
An open question is whether either (13) or (14) are a valid approximation of the full non-linear equation.

Comparative simulations were performed between (12), (13) and (14). The closeness of the two darker
curves in Figure 8 demonstrate that the first form of the linear approximations in (13) is a fairly accurate
representation of the haltere response, unlike the results from (14) which are plotted in the lighter color.
Since (13) is a good approximation, the natural decoupling of the trajectories is assumed a generally valid
assumption.

V. Error Analysis

An error analysis was performed to demonstrate the limitations the non-linear and out-of-plane cross-
coupling terms imposed on the linear approximation of (13). Simulations were executed over a full range of
pitch and yaw body rates (i.e., −20 ≤ W2 ≤ 20 and −20 ≤ W3 ≤ 20 rad/s). These rates were transformed
into the coordinate systems for each of the halteres and then the dynamics for the haltere were simulated using
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Figure 8. Comparison of the linear simplifications represented by Eq.13 (red) and Eq.14 (green) with the non-linear
Eq.12 (blue).

the full non-linear model in (12). Using best estimates of the strain rate and strain magnitude proportionality
constants (i.e., constants found to give near zero error for an idealized linear model) the body rates in the
haltere frames were estimated. The estimates from the two halteres were then combined using (9), (10), and
(11) to reconstruct an estimate for the roll, pitch and yaw rates in the body frame. Each plot represents
errors associated with 1681 combinations of yaw and pitch rate for a fixed roll rate. The error is the difference
between the exact input body rates and the estimated body rates as demonstrated in Figure 9.
Figure 10 depicts the absolute errors for the pitch, yaw, and roll components of the body rates for the

case of critical damping (ζ = 1) and 400 Hz out-of-plane natural frequency. Figure 11 shows the errors for
the case where the body roll rate is 5 rad/s.
The change in characteristics shown in Figure 11 can be explained by examining the governing equations

of motion in (12). The terms involving Ω2, which is the out-of-plane rate component and the component
most closely aligned with the body roll axis, are summarized below after assuming a small out-of-plane
displacement angle, θ.

−2γ̇Ω2θ +Ω22θ +Ω2Ω3 cos(γ) +Ω1Ω2 sin(γ). (15)

Since θ is small, the last two terms in (15) will dominate. Note that cos(γ) will always be positive for
all stroke angles γ and will be symmetric around γ = 0. Therefore, the term involving cos(γ) will influence
the magnitude of the out-of-plane displacement at γ = 0 (i.e., the term will influence the yaw error). The
term is also proportional to Ω3, which is closely aligned with the body pitch axis. Therefore, roll coupling
will introduce error in the yaw rate estimate that is proportional to the pitch rate. This linear relationship
between yaw rate estimation error and pitch rate is exactly what is depicted in the left hand plot in Figure
11. Similar arguments, accounting for the influence of the sin(γ) function on the slope of the haltere out-of-
plane motion at γ = 0 and the proportionality of pitch rate estimation error to the body yaw rate Ω2, can
be made to readily explain the second plot in Fig. 11. The similarity of the third plots in Figures 10 and 11
indicate that the errors from the two halteres cancel, leaving the roll estimate error unaffected by roll rate.

VI. Conclusions

This paper demonstrates the mathematical relationships by which a haltere pair can be used to determine
the rotation rate components around the pitch, yaw and roll body axes. The general equation of motion
for the haltere that allows out-of-plane response, and therefore accounts for the strains at the base of the
haltere, was demonstrated to be approximately linear. By extension of this linearity, the haltere response
was shown to be approximately the superposition of the responses to the Coriolis forces caused by the two
orthogonal rate components, Ω1 and Ω3. Since the Coriolis forces are proportional to Ω1 and Ω3, the haltere
total response is the superposition of responses that are proportional to Ω1 and Ω3. Another implication
of the linearity is that Ω1 is proportional to the magnitude of the haltere displacement at the peak of the
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Figure 9. The Error Analysis compared the true rate components along the roll, pitch, and yaw body axis with those
reconstructed using the proportional assumptions described in the text. Results are reported as absolute error in
radians/sec.
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Figure 10. Error in estimates of rate components along the body Yaw, Pitch, and Roll axes for case Roll Rate =0.
Conditions vary over a range of -20 to 20 rad/s for the true yaw and pitch rates.
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Figure 11. Error in estimates of rate components along the body Yaw, Pitch, and Roll axes for case Roll Rate =5
rad/s. Conditions vary over a range of -20 to 20 rad/s for the true yaw and pitch rates.

haltere stroke and that Ω3 is proportional to the slope or rate of change of the haltere displacement near the
top of the stroke.
An error analysis was performed to demonstrate how accurate the assumed proportionality was when

compared to the true values while simulating the full non-linear equation of motion. The idealized haltere
model with well tuned proportionality constants had errors for pitch and yaw rate of less than a thousandth
of a radian per second over a pitch and yaw rate range of -20 to +20 radians per second. These errors are
bounding values since they include no noise or other errors in measurement of the haltere displacement/strain.
The results are purely a measurement of the impact of the non-linear coupling in the true equation of motion.
The measurement of roll rate had significantly higher errors as shown by Figure 10, which had zero true roll
rate. When the roll rate was increased to 5 rad/s the errors in pitch and yaw estimates increased significantly,
demonstrating the importance of roll coupling into the dynamics of the haltere. However, it is still possible
that the errors are low enough that a stabilization loop based on the derived estimation of pitch, yaw and
roll rate would still be useful depending on the specific flight characteristics of the object being controlled
and the specific design characteristics of the haltere.

A. Appendix

The expression in (12) can be determined by defining two reference frames in addition to the body fixed
frame. These frames are related by the stroke angle γ and the out-of-plane displacement angle θ, as shown
in Figure 12. When these angles are zero, the three frames are co-aligned. The associated angular velocities
are

e�ωb = Ω1b̂1 +Ω2b̂2 +Ω3b̂3 (16)
b�ωh = γ̇b̂2 (17)
h�ωf = θ̇ĥ1. (18)

The position and velocities, as observed in the various reference frames, of the mass at the end of the haltere
(Point 2) are

�P12 = rf̂3 (19)
h�v2 = h�ωf × �P12 (20)
b�v2 = h�v2 +

b �ωh × �P12 (21)
e�v2 = b�v2 +

e �ωb × �P12. (22)

The expressions leading to the acceleration of the haltere relative to the inertial frame are

h�a2 = h�αf × �P12 +
h �ωf ×h �ωf × �P12 (23)

b�a2 = h�a2 + 2(b�ωh ×h �v2) +
b �αh × �P12 +

b �ωh ×b �ωh × �P12 (24)
e�a2 = b�a2 + 2(e�ωb ×b �v2) +

e �αa × �P12 +
e �ωb ×e �ωb × �P12. (25)
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Figure 12. The relative orientation of the reference frames associated with the equation of motion derivation are shown
above. The "h" frame is rotated by angle γ with respect the "b" frame. The "f" frame is rotated by angle θ with
respect to the "h" frame.

The expression in (25) assumes that the acceleration of the body (Point 1) is small relative to the relevant
haltere acceleration terms. This results in the acceleration of point 2 with respect to the earth (inertial)
frame in the f̂2 direction as

f̂2 ·e �a2 = r[Ω̇3 sin(γ)− Ω̇1 cos(γ)− γ̇2 cos(θ) sin(θ) (26)

+2γ̇[(Ω3 cos(γ) +Ω1 sin(γ)) cos
2(θ)− Ω2 cos(θ) sin(θ)]

+(Ω23 cos
2(γ) + Ω21 sin

2(γ)− Ω22) cos(θ) sin(θ)
+(Ω2Ω3 cos(γ) +Ω1Ω2 sin(γ)) cos(2θ)

+2Ω1Ω3 cos(θ) sin(θ) cos(γ) sin(γ)− θ̈].

The final expression in (12) is obtained by taking the dot product of the inertial force, −me�a2, in the direction
of the out-of-plane deflection ( f̂2) and then adding the forces associated with stiffness and damping to create
a zero sum as

f̂2 · (�Finertial + �Fdamping + �Fstiffness) = 0. (27)

Since rθ increases in the negative f̂2 direction, the stiffness and damping forces were defined as

f̂2 · �Fdamping = rm2ζωnθ̇ (28)

f̂2 · �Fdamping = rmω2nθ. (29)

The resulting expression was divided by the product of the radius of gyration and mass to put it in the final
non-dimensional form as

−f̂2 ·e �a2
r

+ 2ζωnθ̇ + ω2nθ = 0. (30)
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