AFRL-SR-AR-TR-09-0089

REPORT DOCUMENTATION PAGE

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing the burden, to the Department of Defense, Executive Service Directorate (0704-0188). Respondents should be aware that notwithstanding any other provision of law, no
person shall be subject to any penaity for failing to comply with a collection of information if it does not display a currently valld OMB controt number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
Progress Report 5/15/2008-11/30/2008
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

A E tcforDosianinaRolisblosof lntensive.S.

5b. GRANT NUMBER
FA9550-08-1-0158
5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

Dr. Irem Y. Tumer
Associate Professor
Oregon State University

S5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
School of Mechanical, Industrial, and Manufacturing Engineering REPORT NUMBER

204 Rogers Hall
Oregon State University

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(3)

G
“15 9] l)aj’d[‘], ()h (D't 11.zmgzggr)wonnon's REPORT
ANlingh VA 22105

12. DISTRIBUVION/AVAILABILITY STATEMENT
@téﬁ boheon A

20090325287

14. ABSTRACT

Software-driven hardware configurations account for the majority of modem complex systems. The often costly failures of such systems can be
attributed to softwarc specific, hardware specific, or software/hardware interaction failures. The understanding of the propagation of failures in a
complex system is critical because, while a software component may not fail in terms of loss of function, a software operational state can causc an
associated hardware failure. This research is to develop high-level system modeling approaches to model failure propagation in combincd
software/ hardware system (FFIP). The end goal is to identify the most likely and highest cost paths for fault propagation in a complex systcm as
an effective way to enhance the reliability of a system. Through the defining of functional failure propagation modes and path evaluation, a
complex system designer can evaluate the effectiveness of system monitors and comparing design configurations. With the main principlcs
underlying the FFIP approach already established, this research will enable the definition, development, formalization, implementation, and
demonstration of the fundamental rules and propagation mechanisms for the FFIP framework for software driven systems.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER [19a. NAME OF RESPONSIBLE PERSON
a. REPORT | b, ABSTRACT | c. THIS PAGE | ABSTRACT gfxces

19b. TELEPHONE NUMBER (Include area code)

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18
Adobe Professional 7.0

TA4550- OF-1-0I'S &

Proceedings of IMECE2008

2008 ASME International Mechanical Engineering Congress and Exposition

November 2-6, 2008, Boston, Massachusetts, USA

IMECE2008-68861

Modeling the Propagation of Failures in Software Driven Hardware Systems to

Enable Risk-Informed Design

David C. Jensen
Graduate Research Assistant
Complex Engineered Systems Design Laboratory
Oregon State University, Corvallis, Oregon, USA
jensend@engr.oregonstate.edu

Irem Y. Tumer
Associate Professor

Complex Engineered Systems Design Laboratory
Oregon State University, Corvallis, Oregon, USA

irem.tumer@oregonstate.edu

Tolga Kurtoglu
Research Scientist
Mission Critical Technologies
NASA Ames Research Center
Moffett Field, California, USA
tolga.kurtoglu@nasa.gov

ABSTRACT

Software-driven hardware econfigurations account for the
majority of modern complex systems. The oficn costly failures
of such systems can be attributed to software specifie, hardware
specific. or software/hardware interaction failures. The
understanding of the propagation of failures in a complex
system is critical because, while a software component may not
fail in terms of loss of function, a software operational state can
cause an associated hardwarc failure. The least cxpensive phase
of the product life cycle to address failures is during the design
stage. This results in a need to evaluate how a combined
software/hardware system behaves and how failures propagate
from a design stage analysis framework.

Historiecal approaches to modeling the reliability of these
systems have analyzed the software and hardware eomponents
separately. As a result significant work has been done to model
and analyze the reliability of either component individually.
Research into interfacing failures between hardware and
software has been largely on the software side in modeling the
behavior of sofiware operating on failed hardware.

This paper proposes the use of high-level system modeling
approaches to model failure propagation in combined software/

Contact Author: 541-737-6627

hardware system. Specifically, this paper presents the use of the
Funetion-Failure Identification and Propagation (FFIP)
framework for system level analysis. This tramework is applied
to evaluate nonlinear failure propagation within the Reaction
Control System Jet Selection of the NASA space shuttle,
specifically, for the redundancy management system. The
redundancy management sofiware is a subset of the larger data
proeessing software and is involved in jet selection. warning
systems, and pilot control. The softwarc component that
monitors for leaks does so by evaluating temperature data from
the fuel and oxidizer injectors and flags a jet as having a failure
by leak if the temperature data is out of bounds for three or
more cyeles.

The end goal is to identify the most likely and highest cost paths
for fault propagation in a complex system as an effective way to
enhance the reliability of a system. Through the defining of
functional failure propagation modes and path evaluation, a
complex system designer can evaluate the effectiveness of
system monitors and comparing design contigurations.

1 Copyright © 2008 by ASME

INTRODUCTION

Numerous produets eurrently being designed or manufactured
incorporate hardware and software ecomponents. For safety
eritical systems simple reliability analysis approaches that
ignore the eomplex interactions of these eomponents are
insuffieient. What is needed instead is a single model that ean
ineorporate software and hardware as well as their interactions.
The basie building bloeks are elearly different for software and
hardware, indicating that a eombination of lines of eode and
nuts and bolts will not produece a viable model. The
fundamental differences between hardware and software and
their assoeiated failures often lead to the use of different
reliability methods and metries for these two eomponents of
complex systems. An integrated approach to reliability would
thus have to ineorporate software and hardware in a similar way
in order to aeeurately represent the reliability of the total
system. One such paradigm useful for system design is the
funetional approach. Funectional representations ean be found in
both the fields of software and hardware rcliability. This paper
demonstrates how the functional failure identification and
propagation framework (FFIP), developed by Kurtoglu and
Tumer in [I, 2] ean be used for analyzing the software and
hardware eomponents of a complex system in a single model
that eaptures important information on failure propagation and
system design. As an addition to the established framework, a
failure propagation analysis method is demonstrated with a
software-driven hardware system that allows for linear failure
representation.

BACKGROUND

Difference in software and hardware reliability

The area of complex software driven system reliability can be
seen as the eonvergence of the two well established fields of
software and hardware reliability. This generally leads to
analyzing the reliability of software and hardware eomponents
separately then eombining and modeling the interaetions
between the two different systems. The fundamental
ditterences between these two domains of engineered systems
and their associated expertise provide reason for this separate
analysis. Such differences include the type and occurrence of
failures experienced by each system and ean be easily illustrated
in a stochastic approach. Where hardware eomponents may
experience independent failures, software failures are not
independent [3]. Seeondly, the probabilities of failure are
markedly different. As a hardware system ages, physieal
degradation leads to predietable and repeatable failures in
contrast to software, which tends to become more reliable as the
random failures are removed through testing and updating while
in operation. In combined software/hardware systeims there are
additional sources of failure from the interaction of these two
systems. Hardware ean operate outside of software design

leading to failure and alternatively soltware ean operate outside
the feasible physical reality of hardware components [4].

Combined approaches

One execption to the approach to dealing with hardware
systems and software systems separately is found in the
literature ol eomputer and eommunications engineering[5, 6].
Computer hardware components tend to be operated at their
technological maximum operating capaeities increasing the
awareness of hardware faults on software systems and their
subsequent inelusion into reliability analysis. For this latter
reasoning there is a rich breadth of published studies on
reliability of software/hardware intcractions analyzing computer
systems [5-8]). However, this area is limited to failure ol
hardware that the software is operating over and does not
adequately reflect the failures of mechanical hardware found
outside of the eomputer. This paper uses the funetional failure
identification and propagation (FFIP) method to analyze the
rcliability of hardware and software components ol a system
simultancously [1]. However, to adequately cover the previous
work. the two fields ol software and hardware reliability are
addressed separately next.

Software reliability

The predietion of failures in a software system is generally
approached with three different analysis methods: error seeding
and tagging, data/input domain analysis. and time domain
analysis. Error sceding is a testing stage approach where
software faults and data crrors are injected into a system. The
resulting system performance is measured and crrors are
tracked. This data ean be used to quantify the expected
reliability of the system in operation to a reasonable degree of
eertainty. However, error seeding is a time intensive process
and requires a fully written eode to be applieable [9]. The more
common approach is a time domain reliability model. Using
this method, many different software reliability growth models
(SRGMs) have been developed and have been shown to be
useful for different applications. These arc in essence
probabilistic models used to prediet failure over the useful life
of the software. Examples such as Wiebull and Gamma failure
time class models, infinite failure category models and several
others can be found in [10]. The previous reliability methods
require some form of actual software eode to evaluate. A design
stage approach is eonsidered in [11] which deseribes a method
of analyzing reliability based on software failure modes and the
probability of those failures.

Hardware reliability

In practice, the three main hardware reliability methods are
FMEA, FTA and PRA. Failure modes and effects analysis
(FMEA) is a tool for analysis of risk of a system down to a
desired component level fidelity. By linking the likely failure
modes and resulting system effeet for caeh component FMEA
offers a designer a means to evaluate overall reliability of the
system [12]. Fault tree analysis (FTA) is an ineident foeused

2 Copyright © 2008 by ASME

method that starts with an undcsirable system cvent and then
works backwards to define the contributing events that would
lead to a higher level cvent. FTA uses Boolean logic
deseriptors to combine all the possible events that may lead to a
failed state and is represented in a tree structure [13].
Probabilistic risk assessment (PRA) combines event sequencing
diagrams and fault trees to develop a stochastic model of the
overall system reliability [14]. PRA is similar to software’s use
of SRGMs, however, different assumptions on independency of
faults are considered for software and hardware making it
difficult to apply this to an integrated system. Variations of
PRA include simulation of system elements [15]. Methods for
including software into these techniques have been presented in
[11.16).

Functional approach

To make risk-informed design stage decisions it is necessary to
represent a system, in a way that provides useful information
about the system while broad enough for multiple design
comparisons. In the design stage, the component level
reliability is generally unknown because the actual components
have not been finalized. Instead, system components can be
represented as sub-functions of the overall system function.
The risk for different functions can be assessed individually and
in a general way allowing for dcsign comparison. The
functional modeling method dissects a system and represents it
as the combinations of multiple sub-functions linked by one or
more representative “flows”. For software, functional
represcntations can be found within objcct-oriented design and
in systems enginecring [17, 18]. In object modeling the
functional model can be graphically represented as operating
functions linked by the flow of information in data flow
diagrams [18]. In hardware systems the functional basis (FB) is
onc example of system level functional representation, where a
system is dissccted into functional components linked by flows
of energy, material, and information[19, 20]. The FB serves as
rule set for the syntax of functions as verb-noun pairs that
operate on thc incoming flows. This type of functional
description is the basis for various extensions such as the
function design framework and the function failure design
mcthod [21, 22}. The previous methods have shown the
practical use of functional modeling for hardware systems. This
rescarch presents the simultaneous analysis of complex
software-hardware systems within the functional failure
identification and propagation framework (FFIP).

FFIP

The functional failure identification and propagation framework
is a graphical cvaluation tool that incorporates a functional
system model, a configuration model, a behavior model, a
system behavior simulator, and a function failure logic reasoner.
A thorough discussion of the application process and the
advantages of FFIP over other reliability methods are presented
in [1,2]. While the focus of this current paper is on the
formulation of the behavior model, a brief description of the

other components is useful for clarity. The functional model
follows the guidelines of the I'B and expresses the system as
intcrconnected functions. The actual structure of the system is
represented with a configuration flow graph (CFG). The CFG
contains the structure of the system with real (though
generalized) components and the standard FB flows. The direct
mapping of the functional model and conliguration model
provides a way for designers to see how the particular
functional requirements of a system are mect with each system
component. The component behavioral model is built with the
compilation of the possible finite states of cach functional
component. Transitions between these states occur at events or
through component failures. Bchavior modeling has been
shown to be effective in model-based diagnosis (MBD) for
management systems and artificial intelligence [23. 24]. MBD
is an opcrational method that demonstrates the usefulness of
predictive state monitoring. In the functional design paradigm,
behavioral simulation offers the ability to cvaluate failure and
failure propagation. The behavioral simulator is a finite time
sequence of events that modify component behavior. The
purpose of this modilication is to demonstrate overall system
behavior through possible component failures. The simulator
allows for simultaneous and sequential failures guided by the
function failure logic (FFL). This last reasoner is a sct of
component specific rules that describe a component’s state
based on input and output flows from the functional component.
The rules of the FFL deseribe how failures propagate through a
system by mapping the rclationship between the functional
model and the configuration flow graph.

CONTRIBUTIONS

This research focuses on extending the FFIP framework to
analyze failure propagation in a software-driven hardware
system. Incorporation of software into FFIP is an advancement
in the field of complex system reliability analysis and this work
demonstrates how failure propagation identilication can be used
to evaluate the effectiveness of software control of a system.
The example system presented in this paper has been used as a
model based approach to evaluate a system in operation in [25].
The use of the FFIP framework allows for a design stage
analysis and design comparison. The specific results identify
how analyzing failure propagation behavior provides
information on the cffectiveness of system monitors and key
components that act as a nexus for the propagation of failures.

METHOD

Before presenting the results, the assumptions in this paper must
be clarified. This paper uses the Functional Basis [19] for
defining material, energy and information flows as well as the
functional bechavior of system components. In practice it may
be most effective for an application specific repository of
functional bchavior in place of the Functional Basis. Secondly,
these functional representations of components have distinet
failed states dependent on the flow of material, energy, or

3 Copyright © 2008 by ASME

information through them. Identification of thesc distinct failed
states will become important as the path of the propagation of
failure through the system is dependent on component behavior.
Finally, it is necessary to define how failure flows through a
system. In this methodology, failure is shown to propagatc
linearly along the paths of material, energy and information
flows and aftects each component differently.

Approach

The proposed methodology is applied by: 1) Creating the
componcnt and functional model for the system to be analyzed:
2) Identifying the distinct failed states for each component
based on specificd input flow and output flows; 3) ldentifying
system monitors and componcnts that actively affect the
propagation of failures; 4) Establishing scenarios of one or
more initiating failures; 5) Finally, comparing multiple
scenarios to identity effective design changes that mitigate
failure. Steps f and 2 are the FFIP framework while steps 3-5
reflect the propagation analysis being advanced in current
research.

Step 1. Creating the configuration and functional models
The configuration model represents the actual design being
considered and is developed from the functional model. The
functional model wiil be the combination of all thc functions
that the system must contain. Functional modeling for the
hardware components of the system is straight forward and well
established [1]. The software components of the system can be
functionally modeled and modularized with an object oricntated
programming or a general systems engineering approach [17,
18]. At this point the flows of energy, material, signal and data
arc identified and mapped through the system.

Step 2. Identifying component operating states (component
behavioral model)

Because this design paradigm uses abstract functional
representations, identifying exact operating states can be
challenging. For some mechanical applications the distinet
failed states are apparent, for a simple valve, the states would
be: failed open, failed closed, or nominal operating. Identifying
failed states for functional software components is limited to the
knowledge of how that component is structured [17]. For this
rcason therc are two levels of identifying failed states.
Componcnts that have unknown failed states can bc analyzed as
nominal or failed based on thcir ability to operate on the
incoming flow. A nominal state is one where a component is
operating on a flow with the exact functionality intended by the
designer. A failed state is when a component acts on the flow in
a way that it was not designed to, including not acting on the
flow at all or only limited action. The distinction between
nominal and failed states provides a way for analyzing how the
failure affects the component it is propagating through. This

allows for linear analysis of failurc propagation even with non-
linear failures.

Step 3. Identifying system monitors

A system monitor is any subcomponent that, by way of a signal,
can alter the range of functionality of the parent component. A
software cxample is an “exception handler”. which acts as a
functional subcomponent that rcceives a signal and alters the
functional range of a parent computational component. In the
hardware world an example can be scen in pressure relict valves
which change the functional range of the storage tanks to which
they are physically attached. Without the monitor the parent
component would lose functionality based on certain input
flows. For thc software cxample, that means the parent
mathematical opcration could not have operated on the
incoming data or signal flow. In the mechanical example the
storage tank could not store the incoming material flow based
on capacity. However, with the action of the monitor the parent
functional componcent can opcrate on the flow without loss of
functionality. This step is ecritical for detcrmining how the
system can alter the propagation failure.

Step 4. Establishing scenarios

Once the model is established, a scenario can be analyzed using
the knowledge of the system component behavior. A scenario is
evaluated according to the rules of the FFL rcasoner over
diserete time steps. A fault or error is induced at any functional
component and allowed to naturally propagate through the
system. Using FFIP it is possible to have multiple fault
injections points. This can be used to analyze system reliability
in scenarios of multiple simultaneous and independent
component failures.

Step 5. Comparing multiple scenarios
Finally, by a comparison of multiple component failures, a
pattern of fault propagation paths can be mapped. This
mapping will reveal key components that require monitors for
early fault detection. Additionally, thc mapping can be used to
compare differcnt system contigurations.

CASE STUDY: RCS JET-FAILED LEAK MONITOR

For an examplc systcm this method is applied to the redundancy
management system of the reaction control system (RCS) jet.
This example has been explained and developed in [23. 26].
These RCS jets are responsible for thc maneuvering of the
space shuttle as well as other space vehicles. These jets
maneuver the vehicle through a controlled combustion of fucl
and an oxidizer. The redundancy management software is a
subset of the larger data processing software and is involved in
jet selection (therc are 44 on the shuttle), warning systems, and
pilot control. There are several parts of the redundancy
management software that deal with monitoring RCS jet

4 Copyright © 2008 by ASME

sBunuem
opne .
AENSIA OSUO T

wagis

januoa Jyby 4

ZJ)
jeufig

jeubis Azpdsio e

eubs poduw|

Jun BEew

‘ydeas moy uoyeandyuod 13f $HY :7 4n31y

LYTEETET]
puncue)
saxa|diymuag
aaxadningy II&IIJIIIII'EIIIIIMIIIIJ
_ i
i : b |
_ Nuej jang () _ m
i ubig : :
] DO _ . Het? €1
rubig] 1@Bhd L i fleuis jeubig
- 1 | te0) | &
8 4 || snea [(zD)] 1osues _
s (zn jang [jand| dway ’
-ib... : eubis i)
; {zp s Josuas GO}
Kanuoa (Bisqy) reubig dway sen)
A= uogdajes (sa) eopuoin Iy jeubis i
= =eq e} jer i 4
| anen (20} sosues
[luswabeuepy H [Is) o | dway "0 waek
101l ainy jeyBiq BAS puo) uwipesy
iid fouepunpay SOv w|: s1aALg]
{Bispr) | 19r uonoeay - -
psin oy 90! |B2po
[y
I JUBL JanpeQ
r aa
jeubis .
sieube sieubis ‘apow [euonduny Jaf §HY :1 2ansty
prosay [paavony [
I
Tl sjeubls e i e -
suquod e gy rern e
| i
| | | By a0l | ! | w
_ | |
i i _ | _ _ :
_ _ L A l v
: s 4 _ | e ; _
M _ speinbor I
“ m I aunssaxd _
v v sanseap) duwa)
IATP i : |sneyxa >
i v Uaauon
1]
¢ ! $ L _ _| »ezopo
190 10IU0D) eep o1 5 m aeinbay woRAS [0IU0D UsIHESY
eubis paaw0) v == SOAJEA SJENIOY L4
. |
2

L

JBTPIXO OIS

V)

Copyright © 2008 by ASMI

RCS Redundancy Management 5 o 1u
fohabt comrand
frem Thght contral
3 Jat-Failed Leak Monitor =
Tcn‘l;t'nl\xr rRsIure ..o Compae datate | » Evaare
vaire poson, and fre —- T i presets Spapeisch -
command signals
L5) 4
Court Indicate et »
promill PR el 0TS o Lol Compay wamy

Figure 3: Functional model of RCS Jet-Failed Leak monitor

opcration. The software component that monitors for leaks
does so by evaluating temperature data from the fuel and
oxidizer injectors and flags a jet as having a failure by leak if
the temperature data is out of bounds for three or more eyeles.
This software component is called the *“Jet-Failed Leak
monitor.” There are other monitors for detecting jet failures
based on firing commands and reaction chamber pressure.

Step 1.

Figure 1 demonstrates a possible carly stage design model for
the RCS system. In this model, blocks represent system
components and lines connecting the blocks represent the
material, energy, or information between components. (For
clarity. solid lines represent material and dashed lines represent
signals). It is important to note that most of the component
blocks could be further broken down into smaller
subecomponents and flows. There is no minimum level of model
depth or complexity for FFIP, making it a useful tool in the
design stage when there is limited system knowledge. However,
as with all models greater fidelity provides more system
information.

Under designed operation, a Icak in ecither the fuel or the
oxidizer lines is monitored with the use of temperature sensors
on the injectors and in the jet exhaust. The temperature signals,
along with chamber pressure and valve manifold position, are
bundled in the multiplexer and sent to the shuttle computers and
to ground eomputers. The redundancy management software
reeeives the signals from the RCS of temperature, pressure, and
valve position for all 44 jets and also receives a signal from
their reaction jet drivers (RJDs) indicating the command that
was sent to the fuel and oxidizer valves. The failed leak
monitor will flag a leak after three clock cycles. The flag
becomes a warning that is sent to the opcrator console. The
flight control system can send a command to the RCS
redundancy management software that inhibits the software and
allows the digital autopilot (DAP) to ignore the warnings from
the redundancy monitors. Under manual flight control the DAP
colleets the jet functionality information from all of the
monitors in the redundancy management and selects the jets to
be fired based on jet availability and the maneuvering
information from the operator. The DAP sends fire commands
to the individual RJDs which in turn open or close valves as
mentioned previously. Due to the complexity of this system,

only the components involved with the jet failed leak monitor
are developed in the later failure scenarios.

Applying the FFIP framework to this system requires the
development of a functional model and a behavior model. The
functional model for this system can be scen in Figures 2 and 3.
Figure 3 is simply an expansion of the failed leak monitor to
illustrate that the software and hardware components of the
system can be evaluated at similar fidelity levels. In this model
blocks represent functional components of the system that are
directly linked to the configuration model. Some functions are
not representcd such as transport for the signals and material
flows. The O-ring failure from the Challenger shuttle tragedy
clearly illustrates that these lesser implicd functions should
certainly be considered in a more thorough analysis. For
simplieity, however, this example lumps these functions into
other components that are represented in the model. For
example a leak in the fuel transport lines can be seen as a leak
in the fuel tank, either would have the same effect on the
functionality of the RCS control while exaect leak location
would have greater importance for other failures. The flow of
material and signal in this model is represented by the lines
connecting the funetional blocks. For clarity the material flow
of fuel and oxidizer are represented with solid lines while the
signals are separatcd between dashed and dotted lines. The
dashed lines are generally assumed to bc analog signals or
voltages and the lighter colored lines represent command
signals. The dotted lines represent data and are the primary
flow within the software components of this system. Again,
there are flows not explicitly represented in this example that
are instead represented by broader functional blocks.

Step 2.

The eomponent behavior models are the known states of cach
component, both operating and in failure. Secveral different
repositories could be used to determine the possible failed states
for the functional representations of hardware components. The
behavior models of valves and sensor are fairly generic across
systems but the system specific components indicate the benefit
of system specific repositories for thorough model analysis.
Because the software components are represented in a
functional modcl and not in architecctural form, component
behavior is generally limited to *“functioning”™ and not
*functioning.”

Step 3.

The system monitors arc easily identitied by name. The failed
leak monitor, through the digital auto pilot, alters the
functionality of the RCS so that functionality of the RCS is not
lost. The other rcdundancy management monitors behave
likewise. An additional system monitor is found in the pilot
controls and the RCS redundancy management inhibit
command. Flight control can alter the functionality of the
redundaney software with the inhibit command., preserving the
functionality of the system as a whole.

6 Copyright © 2008 by ASME

Functional
Model

'

Conﬂgufation
Flow Graph

Function
Failure
Logic

Fuel
‘,_,__

Jet Dnver signal
[—==

Guide Fue!

Q2

1f (JDs:g = = open)
1f{Q2 = = z¢10)
quide fuel == Jost
Qfit = = true

Qfault==1m
eie

if tJDsig = = closed)
Q2 ==1za10)
Zwde fuel = = ponunal
else
gude Fuel = = Jost
Qfault = = true
If (JDstg == no wgnaly
guide fuel == last
Q2fault == tyue

1f (Q1fault = = true)
if {amde fuel == lost
tempsfate = = mahignant
else
tempstate = = benugs
1f (IDsagfault = = 1rue)
of {puade fuel == lost:
tempstate = = mahgnant
else
tequpstate = = bemgzn

Comparison Evaluate | Evaluati
"(ﬁtf‘ Compatison Dala'qa

-
=02 3! Evaator |~ B

1£{D2 == o data)
Evaluate = = fost
Difanlt = = que

1£ (D2 = = emor)
Evaluater = = Jost
Difault = = true

1f (Dfault = = rue)
of (Evaluate = = Jost)
Evalstare = =nualignant
eise
Evalstate = = bemga

Figure 4: Functional fail logic for guide liquid and evaluate
comparison

be?

RCS Redundancy Management

Control et

bkt conmang
fom Aght contl |
o Faled| j 4
e | Jet-Falled Leak Monitor :_"
AR i i
s | —— [!
Teroerature, presers, | o) ComEomT | Enacate |
vahe 20ston anc e B bty oo + —i ?
command s5rae N ‘ .
7 s : </}
N i Y : l
Cout Inceaie ot oo '
ot > ,m;/ cevenodedd| —p Disgdywamng

Figure 6: Scenario 1: Temperature sensor failure.

r——— g

Impor signal

B
&
-
_.‘i:
3
o

dovais

Convert signal

i 2 .
) o i’
i *_.,. _ég .<,;..
@
1
|
- i
|
!
£
o |
R - e
=
5
A
! |
SR (RS,
| |
| : |
- -l
z L | |
3 [T ® g
g JEX A EERM i
ke P 5G| -Tm 25 ¢ »
g ga e g |1
‘l_‘) q G
149 |
1 N |
Zic '
®ag
815 y
. —-»
|
I
|
§ e
5 !
fi}
(2] #
z A !
:
: [N
-] 3 RSN | P
3 5§58
@ = o
(4
A 4

Scenario 1, Temperature sensor failure.

Figure 5

Copyright © 2008 by ASME

[

s RCS Redundancy Management Comalen
it conmare
_____________ from gt control i

ke 7" Jet-Failed Leak Monitor r
I
|
L

Imgon signal

i M bl

Teporature pressure. | ..., © oradaty 10 : Evauste i
valvz sosiion anc fre —T—-——sf .* ;‘ﬁi V| comaanecn »—
command sgras 4 - — 4 i

.

L

Count : Indicate Jet
anvzon

bl (51 Rionl ERIE0SE i > Ciecoy wemeg

h 4

i - AT RS SRR

B

Figure 8: Scenario 2: Software fault.

nals

Step 4.

The failures within a scenario are reasoned through the FFL
rules. Two example FFL rule sets can be seen in Figure 4.
Using FFL logic rules two failure scenarios and the propagation
of failurc through the system are reprcsented in Figures 5
through 8. In the first failure sccnario, illustrated in Figure 5
and Figure 6, the initiating failure is the tempcraturc scnsor
sending an inaccuratc tcmperaturc signal. Thc signal sent from
2 this sensor is not indicative of the actual temperature of the
incoming fuel making this the propagation path of failure in the
system. This failure propagates nominally through the system
without affecting the functionality of any system components.
The failed-leak monitor operates on the incoming signal and
flags that jet as failed. The DAP automatically deselects that
jet, finally leading to the loss of functionality of the jet. At this
point the flight controller, bascd on other sensor data, inhibits
the RCS redundancy management software allowing the DAP to
return functionality to the previously desclected RCS jct.

The second scenario, shown in Figure 7 and Figure 8, presents
both a software and a hardware failure. The two initiating
failures are a leak in the fuel containment system and a fault in
the comparison function of the failed-leak monitor. The leak in
the fuel storage decrcases the flow that the fuel valve operates
on causing failure to propagatc through that component in such
a way as to lose the designed functionality. Failure then
propagatcs through the temperature sensor and to the jet wherc
the functionality is again lost due to insufficient flow. The
branch of failure that went through the temperature sensor
propagates through nominally. The fault in the softwarc
comparison function causes thc loss of functionality of the
evaluator component. Thc functional failure of the cvaluator
component means that a failed lcak flag is not triggered and no
fault information is delivercd to the DAP. If these two faults are
simultaneous or the software function fails first the operator
may invoke the inhibit command to bypass thc RCS redundancy
softwarc. This is shown with thc upper propagation path. The
faulty command from the flight controller propagates through
the system nominally and ends in the loss of function of the
RCS jet.

Record
S0

o dats

Conver! signal

—

e;
N

7
e%

da@a ™

Y
nven

signais

e e e e e e e

,
}
|
|
v _
Actuale valves F—-—

Midized
guiate e | [
xidizer

ofé ¢
Y
Reg
e
&

e N o X

Sto

i

Figure 7: Scenario 2, Tank leak and software failure.

'|
I
I
I

e

emp
[
|
|
|
|

Reaction Control System

Measure

8 Copyright © 2008 by ASME

Step 5.

The result of comparing these two scenarios reveals important
design safety information. The failed-leak monitor and the
flight controller both act as monitors for this system. In the first
scenario if only the failed-leak monitor acted on the system then
the RCS jet function would be lost due to inaccurate
temperature data. However, the presence of a second monitor
can restore the functionality of the jet. In the second scenario
the failed-leak monitor is disabled and the flight control monitor
fails to identify the leak failure. These two scenarios illustrate a
possible insufficiency in system monitoring by the failed-leak
monitor and the flight controller monitor. Both monitors must
be in operation for safe control of the RCS jets. Depending on
the criticality and probabilities of these failure modes a designer
might consider redundant monitoring through pressure or flow
sensors would be one way to improve monitor reliability.
Alternatively a different system configuration that provides
more pertinent information to all the monitors would improve
the effectiveness of cach monitor. For example if the flight
controller also received thc injector temperature information
then the leak in the second scenario could have becn identified.
If the failed-leak monitor also evaluated pressure or flow
information then a failed temperature sensor would not
propagate through thc system as in the first scenario.

DISCUSSION

Evaluating the above two example failure scenarios provides
insight into how the FFIP framework can be extended to
analyze software-driven hardware systems. Where previous
work focused on highlighting component failures, the proposed
methodology highlights the propagation path of failure in a
system. This additional information for the above example
highlighted the strong dependency of the two system monitors
and the path of that dependency. Although it is possible that the
dependency of the monitors could be inferred through previous
FFIP evaluation, the key components of that dependency would
not be readily apparent. Secondly, this paper illustrates how the
FFIP framework can be expanded to integrate software and
hardware components and evaluate simultaneous, independent
failures.

In addition to the above analysis, the way that propagation of
failure affects system components could be used for design
decision making. In the first example scenario, the failure
initiated by the temperature sensor propagates through the
system without affecting the functionality of any other
component until it reaches thc actual jet. Failures that
propagate through a component can be defined as benign when
they do not change the functionality of that component and
malignant when they do change the functionality. This analysis
shows that the first scenario has a predominantly benign failure
path, which as a result, goes unnoticed by the system monitors.
In contrast, in the second scenario multiple components change
functional states as a result of failure propagating through them.
This latter propagation path would be malignant through these

components. The biological analogy applies to the component
level and ends at the system level. Because of multiple
component failures, system monitors are provided with more
accurate information regarding system statc. In the second
scenario, valve failure information would also indicate a fuel
leak to the redundancy software. In practice, this type of failure
propagation analysis could be used to design systems to have
key component failures to provide early warning information to
system monitors. By designing systems with low cost or casily
repaired/replaced components that consistently fail and can be
monitored, more important components can be saved by
informed system monitors. This is already done in simple
safety critical hardware such as automotive hydraulic jacks.
The functionality of the lever handle is usually designed to be
lost before the functionality of the hydraulic piston. effectively
mitigating the propagation of failure from the initiating fault of
too high a force on the jack.

For complex systems it is necessary to cstablish what type of
components, both hardware and software can act as key failure
points. Hardware components can be somewhat straight
forward and may be of assistance in ecstablishing the kinds of
software components being sought. Key hardwarc failure
points are simple and inexpensive, such as pipe-valve
combinations that automatically limit flow, redundant sensors or
signal evaluators. All of thesc hardware components are only
key points of failure propagation based on specific system
configuration. It is reasonable then, that software specifie key
components for failure propagation would be depcndent on
software architecture. Therefore, it is clear that a form of
software architecture must be included in the FFIP
configuration model. Although the proposed mcthodology,
within the FFIP framework, modeled both the software and
hardware components in one integrated model. the software
side still represents an area that requires further research.

As well as research into the identification of what could act as
key componcnts for failure propagation in software,
mechanisms for handling the functional flows for software
should also be developed. In the example scenarios it was
shown how failure flowed from physical components along the
material, energy and signal flows. However, in a sottware fault,
as described in the second scenario, the failure meant that there
was no fault information passed between components yet
successive components did fail for lack of that fault
information. It is yet to be established if this is consistently the
case for software faults or if there are alternative fault
behaviors.

Future work for this research includes expanding the
characterization of failure propagation with the probability of
the way a component would propagate failure. These
probabilities would be added into the component behavioral
model so that the function-failure reasoner would also evaluate
likely propagation paths. Also, an informed system designer
could be able to apply an FMEA style of criticality cvaluation to
determine the risk associated with any fault path.

9 Copyright © 2008 by ASME

Although evaluation of a system in the manner presented in this
paper ean provide useful information about system reliability, it
is tedious because of the multiple software tools needed for
evaluation. A single software tool that a designer eould use for
evaluating a eomplex system design within the FFIP framework
would inerease the usability of this methodology.

CONCLUSION

This paper presents the extension of the FFIP framework,
developed by Kurtoglu and Tumer in [I, 2] to inelude software
by evaluating a software-driven hardware system. In addition,
the FFIP framework is expanded to inelude failure path
identifieation and eharacterization. The results of this latter
addition allow for the evaluation of system monitors and the
comparison of system monitor designs. Through evaluating two
failure seenarios with the proposed methodology, the
dependeney and inadequaey of the two software monitors was
found and design changes became readily apparent from the
resufts of the analysis. With further research into the
incorporation of software in the established FFIP framework a
useful software tool ecould be developed to assist design
engineers in the evaluation and eomparison of eomplex systems
in the design stage.

ACKNOWLEDGMENTS

This research is supported by the Air Forece Office of Scientific
Researeh under Grant Number AFOSR FA9550-08-1-0158.
Any opinions or findings of this work are the responsibility of
the authors, and do not neeessarily refleet the views of the
sponsors or eollaborators.

REFERENCES

1. Kurtoglu, T., Tumer, 1. Y.. A Graph-Based Fanlt
Identification and Propagation Framework for
Functional Design of Complex Systems. Journal of
Mechanieal Design, 2008. Vol. 130(No. 5).

2, Kurtoglu, T., Tumer, 1. Y., A Risk-Informed Decision
Making Methodology for Evalvating Failure Impact of
Early System Designs. in Procedings of the ASME
2008 International Design Engineering Technical
Confrence & Computer and Information in
Engineering Confrence. 2008: Brooklyn, New York,
USA.

3. Lyu, M.R., Software Reliability Engineering: A
Roadmap. Future of Software Engineering (FOSE'07),
2007. fose: p. 153-170.

4. Teng, X., Pham, H., Reliability Modeling of Hardware

and Software Interactions, and its Applications. IEEE

Transactions on Reliability, 2006. Vol. 55(No. 4): p.

571-577.

Huang. B., Li, X., Bernstein, J., Smidts, C. , Study of

the Impact of Hardware Fault on Software Reliability,

in Proceedings of the [6th IEEE International

W

Symposium on Software Reliability Engineering. 2003,
ISSRE.

6. Martin, R.J., Marthur, A. P. . Sofnware and Hardware
QOnality Assurance: Towards a Common Platform for
High Reliability. in [EEE Conference on
Communication. 1990: Supercomm 1CC *90.

73 lyer, R.K., Hardware-Related Software Frrors:
Measwrement and

Analysis. 1EEE Transactions on Software Engineering. 1985.
Vol. SE-11(no. 2): p. 223-230.

8. Kanoun, K., Ortalo-Borrel, M. | Fault-Tolerant
Systems Dependability-Explicit Modeling of lHardware
and Software Component-Interactions. IEEE
Transactions on Reliability, 2000. Vol. 49(No. 4).

9, Chrsitmansson. J., Hiller., M.Rimen. M. .n
Experimental Comparison of Fault and Error
Injection. in The Ninth International Symposium on
Sofnware Reliability Engineering 1998: ISSRE.

10. Lyu, M.R., landbook of Software Reliability
Engineering. 1996: IEEE Computer Soeiety Press and
MeGraw-Hill.

I1. Li, B., Li. M., Ghose,S., Smidts, C. . Integrating

Software into PRA. in 14th International Symposium
on Software Reliability Engineering. 2003.

1.2 Defense, D.o., Procedures for Performing Failure
Mode, Effects, and Criticality Analysis. MIL-STD-
1629A, Editor.

13. Vesely, W.E., Goldberg, .F., Roberts. N.H., flaasi. D.,

The Fault Tree Handbook. Vol. NUREG 0492. 1981:
US Nuelear Regulatory Commission.

14. Greenfield, M.A., NASA's Use of Qnalitative Risk
Assessment for Safety Upgrades, in [4AA Symposinm.
2000: Rio De Janeiro, Brazil.

I5. Nejad, H.S., Zhu, D., Mosleh. A. . Hierarchical
Planning and Mulii-Level Scheduling for Simulation-
Based Probabilistic Risk Assessment. in Proceedings
of the 39th conference on Winter simniation. 2007.
Washington D.C., USA.

16. Zhu, D., Integrating Software Behavior into Dynamic
Probablistic Risk Assessment, in Reliability
Engineering. 2005, University of Maryland

17. Caughfin. D. [Integration of Object-Oriented and
Functional Modeling and Design Methods. in
Proceedings of SPIE - The International Society for
Optical Engineering. 1997.

18. Wang, E.Y., Cheng, Beuwy H.C., Formalizing the
Sanctional mnodel within object-oriented design.
International Journal of Software Engincering and
Knowledge Engineering, 2000. Vol. 10(No. 1): p. 5-
30.

19. Hirtz, J., Stone. R. B., et all. 4 Functional Basis for
Engineering Design: Reconciling and Evolving
Previous Efforts. Research in Engineering Design,
2002. 13(2): p. 65-82.

10 Copyright © 2008 by ASME

20.

25

22

24.

25

26.

Stone, R.B., Wood, Kristin L., Development of a
Functional Basis for Design. Journal of Mcchanical
Design, 2000. Vol. 122(No. 4): p. 359-370

Nagel, R.L., Stone R. B., Hutcheson, R. S., McAdams
D. A., Donndelinger, J. . Function Design Framework
(FDF): Integrated Process and Function Modeling for
Complex System Design. in Proceedings of the ASME
2008 International Design FEngineering Technical
Confrence and Computers and Information in
Engineering Conference. 2008. Brooklyn, New York,
USA: IDETC/CIE 2008.

Stone, R.B., Tumer, Irem Y., The Function-Failure
Design Method. Journal of Mechanical Dcsign. 2005.
Vol. 127(No. 3): p. 397-407

Dvorak, D.K., B. J., Model Based Monitoring of
Dynamic Systems. 1JCAI, 1989.

Wiliams. B.C., Nayak, P. P. 4 Model-based Approach
to Reacting Self-Configuring Systems. in Proceedings
of AAA1-96. 1996.

Gruber, T.R., Vemuri, S., Rice, J. , Model-based
Virtual Document Generation. International Journal of
Human-Computers Studics, 1997. Veol. 46(No. 6): p.
687 - 706.

Patty, J., Dismukes, K. . RCS Jet Selection. NASA
human spacc flight reference article 2008. Available
from: http://spaceflight.nasa.gov/shuttle/referencc/
shutref/orbiter/res/select.hitml.

Copyright © 2008 by ASME

