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ABSTRACT 
Software-driven hardware configurations account for the 
majority of modern complex systems. The often costly failures 
of such systems can be attributed to software specific, hardware 
specific, or software/hardware interaction failures. The 
understanding of the propagation of failures in a complex 
system is critical because, while a software component may not 
fail in terms of loss of function, a software operational state can 
cause an associated hardware failure. The least expensive phase 
of the product life cycle to address failures is during the design 
stage. This results in a need to evaluate how a combined 
software/hardware system behaves and how failures propagate 
from a design stage analysis framework. 

Historical approaches to modeling the reliability of these 
systems have analyzed the software and hardware components 
separately. As a result significant work has been done to model 
and analyze the reliability of either component individually. 
Research into interfacing failures between hardware and 
software has been largely on the software side in modeling the 
behavior of software operating on failed hardware. 

This paper proposes the use of high-level system modeling 
approaches to model failure propagation in combined software/ 

hardware system. Specifically, this paper presents the use of the 
Function-Failure Identification and Propagation (FFIP) 
framework for system level analysis. This framework is applied 
to evaluate nonlinear failure propagation within the Reaction 
Control System Jet Selection of the NASA space shuttle, 
specifically, for the redundancy management system. The 
redundancy management software is a subset of the larger data 
processing software and is involved in jet selection, warning 
systems, and pilot control. The software component that 
monitors for leaks does so by evaluating temperature data from 
the fuel and oxidizer injectors and flags a jet as having a failure 
by leak if the temperature data is out of bounds for three or 
more cycles. 

The end goal is to identify the most likely and highest cost paths 
for fault propagation in a complex system as an effective way to 
enhance the reliability of a system. Through the defining of 
functional failure propagation modes and path evaluation, a 
complex system designer can evaluate the effectiveness of 
system monitors and comparing design configurations. 
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INTRODUCTION 
Numerous products currently being designed or manufactured 
incorporate hardware and software components. For safety 
critical systems simple reliability analysis approaches that 
ignore the complex interactions of these components are 
insufficient. What is needed instead is a single model that can 
incorporate software and hardware as well as their interactions. 
The basic building blocks are clearly different for software and 
hardware, indicating that a combination of lines of code and 
nuts and bolts will not produce a viable model. The 
fundamental differences between hardware and software and 
their associated failures often lead to the use of different 
reliability methods and metrics for these two components of 
complex systems. An integrated approach to reliability would 
thus have to incorporate software and hardware in a similar way 
in order to accurately represent the reliability of the total 
system. One such paradigm useful for system design is the 
functional approach. Functional representations can be found in 
both the fields of software and hardware reliability. This paper 
demonstrates how the functional failure identification and 
propagation framework (FFIP), developed by Kurtoglu and 
Turner in [1, 2] can be used for analyzing the software and 
hardware components of a complex system in a single model 
that captures important information on failure propagation and 
system design. As an addition to the established framework, a 
failure propagation analysis method is demonstrated with a 
software-driven hardware system that allows for linear failure 
representation. 

BACKGROUND 

Difference in software and hardware reliability 
The area of complex software driven system reliability can be 
seen as the convergence of the two well established fields of 
software and hardware reliability. This generally leads to 
analyzing the reliability of software and hardware components 
separately then combining and modeling the interactions 
between the two different systems. The fundamental 
differences between these two domains of engineered systems 
and their associated expertise provide reason for this separate 
analysis. Such differences include the type and occurrence of 
failures experienced by each system and can be easily illustrated 
in a stochastic approach. Where hardware components may 
experience independent failures, software failures are not 
independent [3]. Secondly, the probabilities of failure are 
markedly different. As a hardware system ages, physical 
degradation leads to predictable and repeatable failures in 
contrast to software, which tends to become more reliable as the 
random failures are removed through testing and updating while 
in operation. In combined software/hardware systems there are 
additional sources of failure from the interaction of these two 
systems.    Hardware can operate outside of software design 

leading to failure and alternatively software can operate outside 
the feasible physical reality of hardware components [4], 

Combined approaches 
One exception to the approach to dealing with hardware 
systems and software systems separately is found in the 
literature of computer and communications engineering^, 6]. 
Computer hardware components tend to be operated at their 
technological maximum operating capacities increasing the 
awareness of hardware faults on software systems and their 
subsequent inclusion into reliability analysis. For this latter 
reasoning there is a rich breadth of published studies on 
reliability of software/hardware interactions analyzing computer 
systems [5-8]. However, this area is limited to failure of 
hardware that the software is operating over and does not 
adequately reflect the failures of mechanical hardware found 
outside of the computer. This paper uses the functional failure 
identification and propagation (FFIP) method to analyze the 
reliability of hardware and software components of a system 
simultaneously [1]. However, to adequately cover the previous 
work, the two fields of software and hardware reliability are 
addressed separately next. 

Software reliability 
The prediction of failures in a software system is generally 
approached with three different analysis methods: error seeding 
and tagging, data/input domain analysis, and time domain 
analysis. Error seeding is a testing stage approach where 
software faults and data errors are injected into a system. The 
resulting system performance is measured and errors are 
tracked. This data can be used to quantify the expected 
reliability of the system in operation to a reasonable degree of 
certainty. However, error seeding is a time intensive process 
and requires a fully written code to be applicable [9|. The more 
common approach is a time domain reliability model. Using 
this method, many different software reliability growth models 
(SRGMs) have been developed and have been shown to be 
useful for different applications. These are in essence 
probabilistic models used to predict failure over the useful life 
of the software. Examples such as Wiebull and Gamma failure 
time class models, infinite failure category models and several 
others can be found in [10]. The previous reliability methods 
require some form of actual software code to evaluate. A design 
stage approach is considered in [II] which describes a method 
of analyzing reliability based on software failure modes and the 
probability of those failures. 

Hardware reliability 
In practice, the three main hardware reliability methods are 
FMEA, FTA and PRA. Failure modes and effects analysis 
(FMEA) is a tool for analysis of risk of a system down to a 
desired component level fidelity. By linking the likely failure 
modes and resulting system effect for each component FMEA 
offers a designer a means to evaluate overall reliability of the 
system [12].   Fault tree analysis (FTA) is an incident focused 
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method that starts with an undesirable system event and then 
works baekwards to define the contributing events that would 
lead to a higher level event. FTA uses Boolean logic 
descriptors to combine all the possible events that may lead to a 
failed state and is represented in a tree structure [13]. 
Probabilistic risk assessment (PRA) combines event sequencing 
diagrams and fault trees to develop a stochastic model of the 
overall system reliability [14]. PRA is similar to software's use 
of SRGMs, however, different assumptions on independency of 
faults are considered for software and hardware making it 
difficult to apply this to an integrated system. Variations of 
PRA include simulation of system elements [15]. Methods for 
including software into these techniques have been presented in 
[11,16], 

Functional approach 
To make risk-informed design stage decisions it is necessary to 
represent a system, in a way that provides useful information 
about the system while broad enough for multiple design 
comparisons. In the design stage, the component level 
reliability is generally unknown because the actual components 
have not been finalized. Instead, system components can be 
represented as sub-functions of the overall system function. 
The risk for different functions can be assessed individually and 
in a general way allowing for design comparison. The 
functional modeling method dissects a system and represents it 
as the combinations of multiple sub-functions linked by one or 
more representative "flows". For software, functional 
representations can be found within object-oriented design and 
in systems engineering [17, 18]. In object modeling the 
functional model can be graphically represented as operating 
functions linked by the flow of information in data flow 
diagrams [18]. In hardware systems the functional basis (FB) is 
one example of system level functional representation, where a 
system is dissected into functional components linked by flows 
of energy, material, and information[19, 20]. The FB serves as 
rule set for the syntax of functions as verb-noun pairs that 
operate on the incoming flows. This type of functional 
description is the basis for various extensions such as the 
function design framework and the function failure design 
method [21, 22], The previous methods have shown the 
practical use of functional modeling for hardware systems. This 
research presents the simultaneous analysis of complex 
software-hardware systems within the functional failure 
identification and propagation framework (FFIP). 

other components is useful for clarity. The functional model 
follows the guidelines of the FB and expresses the system as 
interconnected functions. The actual structure of the system is 
represented with a configuration flow graph (CFG). The CFG 
contains the structure of the system with real (though 
generalized) components and the standard FB flows. The direct 
mapping of the functional model and configuration model 
provides a way for designers to see how the particular 
functional requirements of a system are met with each system 
component. The component behavioral model is built with the 
compilation of the possible finite states of each functional 
component. Transitions between these states occur at events or 
through component failures. Behavior modeling has been 
shown to be effective in model-based diagnosis (MBD) for 
management systems and artificial intelligence [23. 24]. MBD 
is an operational method that demonstrates the usefulness of 
predictive state monitoring. In the functional design paradigm, 
behavioral simulation offers the ability to evaluate failure and 
failure propagation. The behavioral simulator is a finite time 
sequence of events that modify component behavior. The 
purpose of this modification is to demonstrate overall system 
behavior through possible component failures. The simulator 
allows for simultaneous and sequential failures guided by the 
function failure logic (FFL). This last reasoner is a set of 
component specific rules that describe a component's state 
based on input and output flows from the functional component. 
The rules of the FFL describe how failures propagate through a 
system by mapping the relationship between the functional 
model and the configuration flow graph. 

CONTRIBUTIONS 
This research focuses on extending the FFIP framework to 
analyze failure propagation in a software-driven hardware 
system. Incorporation of software into FFIP is an advancement 
in the field of complex system reliability analysis and this work 
demonstrates how failure propagation identification can be used 
to evaluate the effectiveness of software control of a system. 
The example system presented in this paper has been used as a 
model based approach to evaluate a system in operation in [25]. 
The use of the FFIP framework allows for a design stage 
analysis and design comparison. The specific results identify 
how analyzing failure propagation behavior provides 
information on the effectiveness of system monitors and key 
components that act as a nexus for the propagation of failures. 

FFIP 
The functional failure identification and propagation framework 
is a graphical evaluation tool that incorporates a functional 
system model, a configuration model, a behavior model, a 
system behavior simulator, and a function failure logic reasoner. 
A thorough discussion of the application process and the 
advantages of FFIP over other reliability methods are presented 
in [1,2]. While the focus of this current paper is on the 
formulation of the behavior model, a brief description of the 

METHOD 
Before presenting the results, the assumptions in this paper must 
be clarified. This paper uses the Functional Basis [19| for 
defining material, energy and information flows as well as the 
functional behavior of system components. In practice it may 
be most effective for an application specific repository of 
functional behavior in place of the Functional Basis. Secondly, 
these functional representations of components have distinct 
failed states dependent on the flow of material, energy, or 

Copyright © 2008 by ASME 



information through them. Identification of these distinct failed 
states will become important as the path of the propagation of 
failure through the system is dependent on component behavior. 
Finally, it is necessary to define how failure flows through a 
system. In this methodology, failure is shown to propagate 
linearly along the paths of material, energy and information 
flows and affects each component differently. 

Approach 
The proposed methodology is applied by: I) Creating the 
component and functional model for the system to be analyzed; 
2) Identifying the distinct failed states for each component 
based on specified input flow and output flows; 3) Identifying 
system monitors and components that actively affect the 
propagation of failures; 4) Establishing scenarios of one or 
more initiating failures; 5) Finally, comparing multiple 
scenarios to identify effective design changes that mitigate 
failure. Steps 1 and 2 are the FFIP framework while steps 3-5 
reflect the propagation analysis being advanced in current 
research. 

Step 1. Creating the configuration and functional models 
The configuration model represents the actual design being 
considered and is developed from the functional model. The 
functional model will be the combination of all the functions 
that the system must contain. Functional modeling for the 
hardware components of the system is straight forward and well 
established [1]. The software components of the system can be 
functionally modeled and modularized with an object orientated 
programming or a general systems engineering approach [17, 
18]. At this point the flows of energy, material, signal and data 
are identified and mapped through the system. 

Step 2. Identifying component operating states (component 
behavioral model) 
Because this design paradigm uses abstract functional 
representations, identifying exact operating states can be 
challenging. For some mechanical applications the distinct 
failed states are apparent, for a simple valve, the states would 
be; failed open, failed closed, or nominal operating. Identifying 
failed states for functional software components is limited to the 
knowledge of how that component is structured [17]. For this 
reason there are two levels of identifying failed states. 
Components that have unknown failed states can be analyzed as 
nominal or failed based on their ability to operate on the 
incoming flow. A nominal state is one where a component is 
operating on a flow with the exact functionality intended by the 
designer. A failed state is when a component acts on the flow in 
a way that it was not designed to. including not acting on the 
flow at all or only limited action. The distinction between 
nominal and failed states provides a way for analyzing how the 
failure affects the component it is propagating through.   This 

allows for linear analysis of failure propagation even with non- 
linear failures. 

Step 3. Identifying system monitors 
A system monitor is any subcomponent that, by way of a signal, 
can alter the range of functionality of the parent component. A 
software example is an "exception handler", which acts as a 
functional subcomponent that receives a signal and alters the 
functional range of a parent computational component. In the 
hardware world an example can be seen in pressure relief valves 
which change the functional range of the storage tanks to which 
they are physically attached. Without the monitor the parent 
component would lose functionality based on certain input 
flows. For the software example, that means the parent 
mathematical operation could not have operated on the 
incoming data or signal flow. In the mechanical example the 
storage tank could not store the incoming material flow based 
on capacity. However, with the action of the monitor the parent 
functional component can operate on the flow without loss of 
functionality. This step is critical for determining how the 
system can alter the propagation failure. 

Step 4. Establishing scenarios 
Once the model is established, a scenario can be analyzed using 
the knowledge of the system component behavior. A scenario is 
evaluated according to the rules of the FFL reasoner over 
discrete time steps. A fault or error is induced at any functional 
component and allowed to naturally propagate through the 
system. Using FFIP it is possible to have multiple fault 
injections points. This can be used to analyze system reliability 
in scenarios of multiple simultaneous and independent 
component failures. 

Step 5. Comparing multiple scenarios 
Finally, by a comparison of multiple component failures, a 
pattern of fault propagation paths can be mapped. This 
mapping will reveal key components that require monitors for 
early fault detection. Additionally, the mapping can be used to 
compare different system configurations. 

CASE STUDY: RCS JET-FAILED LEAK MONITOR 
For an example system this method is applied to the redundancy 
management system of the reaction control system (RCS) jet. 
This example has been explained and developed in [25, 26]. 
These RCS jets are responsible for the maneuvering of the 
space shuttle as well as other space vehicles. These jets 
maneuver the vehicle through a controlled combustion of fuel 
and an oxidizer. The redundancy management software is a 
subset of the larger data processing software and is involved in 
jet selection (there are 44 on the shuttle), warning systems, and 
pilot control. There are several parts of the redundancy 
management software that deal with monitoring RCS jet 
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operation. The software component that monitors for leaks 
does so by evaluating temperature data from the fuel and 
oxidizer injectors and flags a jet as having a failure by leak if 
the temperature data is out of bounds for three or more cycles. 
This software component is called the "Jet-Failed Leak 
monitor.'' There are other monitors for detecting jet failures 
based on firing commands and reaction chamber pressure. 

Step 1. 
Figure 1 demonstrates a possible early stage design model for 
the RCS system. In this model, blocks represent system 
components and lines connecting the blocks represent the 
material, energy, or information between components. (For 
clarity, solid lines represent material and dashed lines represent 
signals). It is important to note that most of the component 
blocks could be further broken down into smaller 
subcomponents and flows. There is no minimum level of model 
depth or complexity for FFIP, making it a useful tool in the 
design stage when there is limited system knowledge. However, 
as with all models greater fidelity provides more system 
information. 
Under designed operation, a leak in either the fuel or the 
oxidizer lines is monitored with the use of temperature sensors 
on the injectors and in the jet exhaust. The temperature signals, 
along with chamber pressure and valve manifold position, are 
bundled in the multiplexer and sent to the shuttle computers and 
to ground computers. The redundancy management software 
receives the signals from the RCS of temperature, pressure, and 
valve position for all 44 jets and also receives a signal from 
their reaction jet drivers (RJDs) indicating the command that 
was sent to the fuel and oxidizer valves. The failed leak 
monitor will flag a leak after three clock cycles. The flag 
becomes a warning that is sent to the operator console. The 
flight control system can send a command to the RCS 
redundancy management software that inhibits the software and 
allows the digital autopilot (DAP) to ignore the warnings from 
the redundancy monitors. Under manual flight control the DAP 
collects the jet functionality information from all of the 
monitors in the redundancy management and selects the jets to 
be fired based on jet availability and the maneuvering 
information from the operator. The DAP sends fire commands 
to the individual RJDs which in turn open or close valves as 
mentioned previously.   Due to the complexity of this system. 

only the components involved with the jet failed leak monitor 
are developed in the later failure scenarios. 
Applying the FFIP framework to this system requires the 
development of a functional model and a behavior model. The 
functional model for this system can be seen in Figures 2 and 3. 
Figure 3 is simply an expansion of the failed leak monitor to 
illustrate that the software and hardware components of the 
system can be evaluated at similar fidelity levels. In this model 
blocks represent functional components of the system that are 
directly linked to the configuration model. Some functions are 
not represented such as transport for the signals and material 
flows. The O-ring failure from the Challenger shuttle tragedy 
clearly illustrates that these lesser implied functions should 
certainly be considered in a more thorough analysis. For 
simplicity, however, this example lumps these functions into 
other components that are represented in the model. For 
example a leak in the fuel transport lines can be seen as a leak 
in the fuel tank, either would have the same effect on the 
functionality of the RCS control while exact leak location 
would have greater importance for other failures. The flow of 
material and signal in this model is represented by the lines 
connecting the functional blocks. For clarity the material flow 
of fuel and oxidizer are represented with solid lines while the 
signals are separated between dashed and dotted lines. The 
dashed lines are generally assumed to be analog signals or 
voltages and the lighter colored lines represent command 
signals. The dotted lines represent data and are the primary 
flow within the software components of this system. Again, 
there are flows not explicitly represented in this example that 
are instead represented by broader functional blocks. 

Step 2. 
The component behavior models are the known states of each 
component, both operating and in failure. Several different 
repositories could be used to determine the possible failed states 
for the functional representations of hardware components. The 
behavior models of valves and sensor are fairly generic across 
systems but the system specific components indicate the benefit 
of system specific repositories for thorough model analysis. 
Because the software components are represented in a 
functional model and not in architectural form, component 
behavior is generally limited to "functioning*" and not 
"functioning." 

Step 3. 
The system monitors are easily identified by name. The failed 
leak monitor, through the digital auto pilot, alters the 
functionality of the RCS so that functionality of the RCS is not 
lost. The other redundancy management monitors behave 
likewise. An additional system monitor is found in the pilot 
controls and the RCS redundancy management inhibit 
command. Flight control can alter the functionality of the 
redundancy software with the inhibit command, preserving the 
functionality of the system as a whole. 
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Step 4. 
The failures within a scenario are reasoned through the FFL 
rules. Two example FFL rule sets can be seen in Figure 4. 
Using FFL logic rules two failure scenarios and the propagation 
of failure through the system are represented in Figures 5 
through 8. In the first failure scenario, illustrated in Figure 5 
and Figure 6, the initiating failure is the temperature sensor 
sending an inaccurate temperature signal. The signal sent from 
this sensor is not indicative of the actual temperature of the 
incoming fuel making this the propagation path of failure in the 
system. This failure propagates nominally through the system 
without affecting the functionality of any system components. 
The failed-leak monitor operates on the incoming signal and 
flags that jet as failed. The DAP automatically deselects that 
jet, finally leading to the loss of functionality of the jet. At this 
point the flight controller, based on other sensor data, inhibits 
the RCS redundancy management software allowing the DAP to 
return functionality to the previously deselected RCS jet. 
The second scenario, shown in Figure 7 and Figure 8, presents 
both a software and a hardware failure. The two initiating 
failures are a leak in the fuel containment system and a fault in 
the comparison function of the failed-leak monitor. The leak in 
the fuel storage decreases the flow that the fuel valve operates 
on causing failure to propagate through that component in such 
a way as to lose the designed functionality. Failure then 
propagates through the temperature sensor and to the jet where 
the functionality is again lost due to insufficient flow. The 
branch of failure that went through the temperature sensor 
propagates through nominally. The fault in the software 
comparison function causes the loss of functionality of the 
evaluator component. The functional failure of the evaluator 
component means that a failed leak flag is not triggered and no 
fault information is delivered to the DAP. If these two faults are 
simultaneous or the software function fails first the operator 
may invoke the inhibit command to bypass the RCS redundancy 
software. This is shown with the upper propagation path. The 
faulty command from the flight controller propagates through 
the system nominally and ends in the loss of function of the 
RCS jet. 
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Step 5. 
The result of comparing these two scenarios reveals important 
design safety information. The failed-leak monitor and the 
flight controller both act as monitors for this system. In the first 
scenario if only the failed-leak monitor acted on the system then 
the RCS jet function would be lost due to inaccurate 
temperature data. However, the presence of a second monitor 
can restore the functionality of the jet. In the second scenario 
the failed-leak monitor is disabled and the flight control monitor 
fails to identify the leak failure. These two scenarios illustrate a 
possible insufficiency in system monitoring by the failed-leak 
monitor and the flight controller monitor. Both monitors must 
be in operation for safe control of the RCS jets. Depending on 
the criticality and probabilities of these failure modes a designer 
might consider redundant monitoring through pressure or flow 
sensors would be one way to improve monitor reliability. 
Alternatively a different system configuration that provides 
more pertinent information to all the monitors would improve 
the effectiveness of each monitor. For example if the flight 
controller also received the injector temperature information 
then the leak in the second scenario could have been identified. 
If the failed-leak monitor also evaluated pressure or flow 
information then a failed temperature sensor would not 
propagate through the system as in the first scenario. 

DISCUSSION 
Evaluating the above two example failure scenarios provides 
insight into how the FFIP framework can be extended to 
analyze software-driven hardware systems. Where previous 
work focused on highlighting component failures, the proposed 
methodology highlights the propagation path of failure in a 
system. This additional information for the above example 
highlighted the strong dependency of the two system monitors 
and the path of that dependency. Although it is possible that the 
dependency of the monitors could be inferred through previous 
FFIP evaluation, the key components of that dependency would 
not be readily apparent. Secondly, this paper illustrates how the 
FFIP framework can be expanded to integrate software and 
hardware components and evaluate simultaneous, independent 
failures. 
In addition to the above analysis, the way that propagation of 

failure affects system components could be used for design 
decision making. In the first example scenario, the failure 
initiated by the temperature sensor propagates through the 
system without affecting the functionality of any other 
component until it reaches the actual jet. Failures that 
propagate through a component can be defined as benign when 
they do not change the functionality of that component and 
malignant when they do change the functionality. This analysis 
shows that the first scenario has a predominantly benign failure 
path, which as a result, goes unnoticed by the system monitors. 
In contrast, in the second scenario multiple components change 
functional states as a result of failure propagating through them. 
This latter propagation path would be malignant through these 

components. The biological analogy applies to the component 
level and ends at the system level. Because of multiple 
component failures, system monitors are provided with more 
accurate information regarding system state. In the second 
scenario, valve failure information would also indicate a fuel 
leak to the redundancy software. In practice, this type of failure 
propagation analysis could be used to design systems to have 
key component failures to provide early warning information to 
system monitors. By designing systems with low cost or easily 
repaired/replaced components that consistently fail and can be 
monitored, more important components can be saved by 
informed system monitors. This is already done in simple 
safety critical hardware such as automotive hydraulic jacks. 
The functionality of the lever handle is usually designed to be 
lost before the functionality of the hydraulic piston, effectively 
mitigating the propagation of failure from the initiating fault of 
too high a force on the jack. 
For complex systems it is necessary to establish what type of 
components, both hardware and software can act as key failure 
points. Hardware components can be somewhat straight 
forward and may be of assistance in establishing the kinds of 
software components being sought. Key hardware failure 
points are simple and inexpensive, such as pipe-valve 
combinations that automatically limit flow, redundant sensors or 
signal evaluators. All of these hardware components are only 
key points of failure propagation based on specific system 
configuration. It is reasonable then, that software specific key 
components for failure propagation would be dependent on 
software architecture. Therefore, it is clear that a form of 
software architecture must be included in the FFIP 
configuration model. Although the proposed methodology, 
within the FFIP framework, modeled both the software and 
hardware components in one integrated model, the software 
side still represents an area that requires further research. 
As well as research into the identification of what could act as 
key components for failure propagation in software, 
mechanisms for handling the functional flows for software 
should also be developed. In the example scenarios it was 
shown how failure flowed from physical components along the 
material, energy and signal flows. However, in a software fault, 
as described in the second scenario, the failure meant that there 
was no fault information passed between components yet 
successive components did fail for lack of that fault 
information. It is yet to be established if this is consistently the 
case for software faults or if there are alternative fault 
behaviors. 
Future work for this research includes expanding the 
characterization of failure propagation with the probability of 
the way a component would propagate failure. These 
probabilities would be added into the component behavioral 
model so that the function-failure reasoner would also evaluate 
likely propagation paths. Also, an informed system designer 
could be able to apply an FMEA style of criticality evaluation to 
determine the risk associated with any fault path. 
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Although evaluation of a system in the manner presented in this 
paper can provide useful information about system reliability, it 
is tedious because of the multiple software tools needed for 
evaluation. A single software tool that a designer could use for 
evaluating a complex system design within the FITP framework 
would increase the usability of this methodology. 

CONCLUSION 
This paper presents the extension of the FFIP framework, 
developed by Kurtoglu and Turner in [1, 2] to include software 
by evaluating a software-driven hardware system. In addition, 
the FFIP framework is expanded to include failure path 
identification and characterization. The results of this latter 
addition allow for the evaluation of system monitors and the 
comparison of system monitor designs. Through evaluating two 
failure scenarios with the proposed methodology, the 
dependency and inadequacy of the two software monitors was 
found and design changes became readily apparent from the 
results of the analysis. With further research into the 
incorporation of software in the established FFIP framework a 
useful software tool could be developed to assist design 
engineers in the evaluation and comparison of complex systems 
in the design stage. 
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