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1    Introduction 

We have developed a new method to study nonstationary signals and systems. Modern engineering 

has developed the concept and methods generally called "system theory" or "input-output rela- 

tions" and the associated concepts. This has become textbook material. We believe we generalized 

the concept of "input-output relations" by developing a new method to study systems and channels 

that applies to both the time-variant and time-invariant case. We have shown that a remarkable 

simplification occurs, both conceptually and technically, when systems are formulated in phase 

space. The phase space can be time-frequency for the usual formulation of channels/systems, but 

can also be position-wave number, for systems such as pulse propagation and array processing. 

Our method has led to practical solutions to many problems, both deterministic and random. The 

fundamental idea of our approach can be best conveyed by a contrast with the traditional method. 

The standard textbook approach which has been the foundation of input-output relations is the 

concept of a "system function", or Green's function, or impulse response function. If we have an 

input time function, f{t), which passes through a system characterized by a system function h(t). 

then the output is given by x(t) and is commonly symbolized as in Fig. 1. 

Figure 1: Input-output representation of a system in the time domain. 

For many reasons, one often transforms to the frequency domain (Fourier domain). Historically 

the most important reason has been that in that domain the relationship between input, output, and 

system function is simple for time-invariant systems. In addition, and perhaps more importantly, 

the reason for going into the Fourier domain is that one can gain insight into the nature of the 

solution. If the input, system and output transforms of the time functions are given by F(u>), H{UJ) 

and X(UJ) respectively, then the input-output relations are symbolized as in Fig. 2. 

However, we have argued and have shown that this standard formulation does not fully describe 

what is happening if the system or signals are nonstationary, and that a significant simplification 

occurs if we have input-output relations in the time-frequency plane, as symbolized in Fig. 3. 

where Cj(t,u;) and Cx(t,u>) are the input and output time-frequency distributions. The box with 

the question mark is meant to symbolize the time-frequency system function; we believe we have 



F(co) X(a>) 

Figure 2: Input-output representation of a system in the frequency domain. 

CAt,co) (' (t,a>) 

Figure 3: Input-output representation of a system in the time-frequency domain. 

solved the system approach as exemplified by the question mark, and have solved a number of 

problems to show the effectiveness of the method. In addition we point out that this approach 

lends itself to powerful approximation methods that give considerable insight into the nature of 

time-variant systems. 

Transformation of input-output relations into phase space. We write the input-output relations 

in the form 

L[t]x(t) = f(t) (1) 

where L is a linear (possible time-dependent channel). The system function can be a random 

function as we will describe consequently. For the governing system we take the linear time-variant 

system 
, ,dnx(t) , ,du-lx(t) , ,dx(t) , ,   , , an{t)—^ + On-l(f)     Mn_ \>    • • • + ai(t)—¥- + Oo(t)x(t) = f{t) 

lit1' dtn~l dt 

where 

L(D, t) = an{t)— + on-lit)-^ ... +oi(t)— + a0(t) 

D = 
dt 

(2) 

(3) 

(4) 

For the moment, for the time-frequency distribution we take the Wigner distribution defined by 

Wx,x(t, u) = ±.Jx*(t- \T) x(t + \T) e~iTU dr (5) 



We now state our main result: We write Eq. (2) in the following form 

L(D,t)x(t) = /(«) (6) 

then the input output time-frequency relations are 

L*{A,£)L{B,T)Wx,x{tM = Wu{t,u>) (7) 

where 

A = \wr^       B=\m+ju> (8) 

£ = kt+t       ^=-ii+t (9) 

The above are the basis of our approach, however, we emphasize that we have clone this in 

more general ways by developing input-output relations when partial differential equations are the 

governing equations, and also we have considered the random case. We now describe some of 

the main results we have obtained. For ease of readership we have tried to make each section 

independent of each other and have, hence, repeated some of the equations rather then referring 

the reader to other sections. 

2    Results 

2.1     Quasi-Stationary channels 

Going from the time-invariant channels case to the time-variant case is a big jump, and one naturally 

may consider the in between case, which we call "quasi stationary" or "locally stationary". By 

"locally stationary" we mean a system that is not stationary, but which is close to stationary for 

an interval of time. We have derived a criterion for local stationary in terms of time-frequency 

concepts. The basis of our derivation is simple and physical, namely that if around a time point the 

properties of the distribution does not change for that particular signal, then we have a situation 

that is indeed stationary around that time. We have obtained the following criterion: we consider 

a time point <o and if 

W(t0,uj) ~ Wt{ta)Wu{tjj) in the neighborhood of t0 (10) 

then we say that the process is locally stationary around the time point to. 

Also, if in an interval around a particular frequency point UJQ 

W(t,uQ) ~ Wt{t)Wu{uJ0) in the neighborhood of UJQ (11) 



then we will say that the process is locally stationary in the frequency variable. One can also define 

local stationarity in a time-frequency region. If at a time frequency point to,ujQ we have that 

W(ta,u)0) ~ Wt(to)W^(UJQ) in the neighborhood OHQ.UQ (12) 

then one would say that the process is stationary in a region. For this to be so, both Eq. (10) and 

(11) must hold. In addition we have defined a measure of local stationarity by how much the joint 

distribution deviates from a product form. We use 

rto+s r   rto+o     
e2= (W(to,u)-W(ta)W{u))dtdu; (13) 

J   Jto-S 

and similar criteria can be written for other types of time-frequency distribution. We have studied 

model systems and have found the above criterion to be effective. 

2.2     Other Joint Representations 

While we have used the Wigner representation, it is important to also do it for other representations, 

in order to ascertain which distributions are appropriate for different situations. We have obtained 

results for a number of special cases that are of particular interest. 

Ambiguity function domain. The ambiguity function is defined by 

Ax(t,u) = -^ fx*(t-T/2)x(t + T/2)emdt (14) 

and has been the main tool for radar and sonar systems. We have shown that 

L*(Aa,£a)L{Ba.Fa)Ax(t,uj) = Af(t,u>) (15) 

where 

1 f) l r) 
(16) 

(17) 

Two time auto correlation function equation. We have obtained the equation for the two-time 

autocorrelation function. The two-time autocorrelation is the simplest quantity that characterizes 

how a random process x(t) is correlated with itself at two different times t\, t2. It is defined by 

Rx(h,t2) = E[x(t1)x*(t2)} (18) 

where E[ ] signifies ensemble averaging. For the differential equations given by Eq. (2), where 

now x(t) is a random variable and f(t) is a random driving process, the autocorrelation function 

Rx{ti:t2) satisfies 

L f^-,*ij L* f^.fcj Rx{hM) = RfitiM) (19) 

Aa = -\i6- 
d 
0r: B« = -re+i 

"    i de 
1 
2T' °    ide + 2 



Continuous Wavelet Transform (CWT).   The CWT of a signal x(t) is denned as 

Cx{a,b) = -^ f r (^) x{t)dt (20) 

where a > 0, — oo < 6 < +00. The equation for the CWT is 

L(Aw)Cx(a,b) = Cf(a,b) (21) 

where 

Aw = | (22) 

2.3    Variance of a time-variant process 

In studying time-variant channels it is important to understand by how much they are varying 

as a function of time. We have shown that the exact instantaneous variance of a nonstationary 

random process can be obtained from the Wigner spectrum representation. What is advantageous 

in the evaluation of the variance with the time-frequency approach, is that we are integrating 

a smooth function, that is, the Wigner spectrum. Also, time-frequency distributions are very 

efficient in concentrating the information of signals in well localized regions of the time-frequency 

domain. The combination of smoothness and the concentration property is highly advantageous. 

The variance, cr2(t), of a the process v(t), is 

a2
v(t) = E [v2(t)} (23) 

where we have assumed that E [v(t)\ = 0 for all times. We now show that indeed one can use the 

Wigner distribution to calculate it. In particular 

jwv{t,uj)dw = E[v2{t)} (24) 

and hence, 

o*{t)=[Wv(t,u)du (25) 

To illustrate we consider the specific example 

^ +/3v(t) = f(t) (26) 

We have previously obtained the following exact solution 

777 /      N ! No     2Bts\n2ujt    N0       1 JV0   e~20t   , ln . 
Wv(t^) = ---^e-2^ _ + ^___--2-_-_  cos2^-o;//3sin2u,t  ,        *>0    27 

7T 2p id Z7T pz + id-       ZTT pi + Wz 



/ 
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Figure 4: Estimated and theoretical variance of v(t) of Brownian motion. 

and using this one gets 

which simplifies to 

N0   e -20t 1 No  _2/3t sin 2wt     N0      1 

nW6 a;   "+2^/32+w2      2TT /32 + w2 (cos 2wi - w//3 sin 2u^) 

a*{t) ~ 20 L 
-20t t > 0 

dw      (28) 

(29) 

As an numerical example to confirm that the instantaneous variance <J%{t) can be obtained 

from the Wigner spectrum we performed a numerical simulation. We have generated the random 

differential equation with 10000 realizations and computed the variance using the Wigner spectrum. 

In Fig. 6 we show the estimated variance and the theoretical one. The agreement is excellent. 

2.4    Transients 

If a time-invariant system, possibly random, is turned on, it will have transients until it achieves 

steady-state. Often, the transients are very important. We have been able to prove two important 

properties regarding such systems: 

a) We have shown that if we turn on the system at any finite time £o, then the spectrum at 

infinity t — oo equals the standard power spectrum that is obtained with standard techniques. 

b) Furthermore, we have been able to show that the time-frequency output can always be written 

as the sum of a transient part and a stationary part which corresponds to the power spectrum. 



In general the equation for the Wigner spectrum can be written as 

Q2n Qln-1 Q 

b2„W;+b2n-1-^ZT + ... + b1-+b0 Wx(t,u}) = u(t)^ (30) 
ATX 

where u(t) is the step function. We take the Laplace transform of Eq. (30) to obtain 

[b2ns
2n + b2n.lS

2n~l + ... + blS + b0} Wx(s,u) = ^- (31) 

Now, it follows that 

5ooH= lim Wx(t,u) = lim sfx(S)W) = ^~ = ^ |#(u;)|2 (32) 

where //(a;) is the transfer function. This shows that when i-»oo the Wigner spectrum approaches 

the stationary solution. Now, it is always possible to write the Wigner spectrum Wx(t,<jj) as a sum 

of a stationary part, constant with time, plus a transient spectrum. We write 

Wx(t,u>) = Ws(t,u)+WT(t,Lj) (33) 

To show this fact, one decomposes WX(S,LO) into a sum of partial fractions 

No ?vn A ^ 

s (b2„s2n + ^-is2""1 + ... + blS + bQ)      2ns      b2ns
2n + fon-is2""1 + • • • + M + bQ 

where A (= r- = |#(w)|2) is a constant, and JV(s) is a polynomial in the complex variable s. One 

then may prove that the stationary and transient part of the Wigner spectrum are 

Ws(t,Lo) = ^u(t)\H(uj)\2 (36) 
2?r 

Nn 'fN(s) 

In the time domain, 

Ws(<.w) = ^o(()|ffM|2 (38) 

which is exactly the stationary spectrum. 

2.5    Extension to MIMO 

Very often systems have multiple inputs and multiple outputs (MIMO systems) that are governed 

by differential equations of the form 

jX(t) = M(t)X(t) + F(t) (39) 



where now X(£) and F(t) are column vectors with n elements 

x(t) = 

1 xi(«) > 

F(t) = 

1 fi(«) N 

(40) 

\ x„(«) y \^ f„(<) y 

and A/(t) is consequently an n-by-n square matrix of complex coefficients. The derivative in Eq. 

(39) implies that every element of X(t) has to be differentiated with respect to time. Now we define 

the autocorrelation matrix of the solution vector X(i) as 

J?x(<i,<2) = £[x(*i)X(t2)t (41) 

The autocorrelation of the input vector F(t) is defined in the identical way.  We have shown that 

the equation for the autocorrelation of X(£) defined by Eq. (39) is 

•£-£-Rx - jr-RxMtfa) - —M(h)Rx + M(h)RxMHt2) = R? 
ati at2 oti OT2 

where we have written R-%., RF instead of i?x(^ii^2)i ^F(^1I^2) to keep the notation short. 

(42) 

2.6    Input-output relations for partial differential equations 

We have developed input-output equations for systems governed by partial differential equations. 

We do not give here the equation, they can be found in our papers. We argue here that our 

method gives insight into the fundamental nature of certain partial differential equations. Consider 

for example two famous differential equations, the Schrodinger free particle equation and the heat 

equation. 

dt 
On 

in 

I) 

dhp_ 
dx2 

d2u 

O.v1 

Shrodinger free particle; a = h/{2m) 

Diffusion equation; D = diffusion coefficient 

(43) 

(44) 

Much has been written as to the analogy of the two equations, and on the fact that one can be made 

equivalent to the other by considering an imaginary diffusion coefficient. We have transformed the 

equations into phase space where both become real. In this case the phase space is position and A- 

space. The results are, respectively 

dW,h 
-2ka 

d2W, V- 
dt ' dx2 

dWu      Dd2Wu 

dt 2   dx2 2Dk2Wu 

(45) 

(46) 

10 



where 

Wu(x,k; t) = -^ fu* (x--,t\u(x+-,t\ e~jkxd\ (47) 

While the only difference between the two original equations, Eq. (43) and (44), is an i, the 

difference in phase space can be readily seen and studied, and indeed each of the terms has a 

physical interpretation. We have transformed other partial differential equations, and in each case 

the physical nature of the original equations is readily seen. Moreover, we have shown that solving 

partial differential equations in phase space is simpler. 

2.7     A non-white noise model 

We have developed an example for the non-white noise case that can be done analytically and can 

be used as a model example. Consider the random differential equation 

d2x(t)      „dx(t) 

where £(£) is the noise operator that satisfies 

<[«*), «01+> = v/lu,eMt~t')cotb2^dw (49) 

It is called the quasi-classical Langevin equation and is standard in quantum optics. In such a case 

the autocorrelation function is 

R{T)=ny^coth^ (5o) 
We rewrite it as 

p(t)+0p(t) = m (si) 

with 

2kT 

Using the standard Wiener-Khinchen theorem the power spectrum is given by 

52) 
r°° h 

R(:(T) = 2DZ        tue1^ coth Zudcu       ;        Z = — 
J — oo ^"-- 

theorem the power spectrum is given 

5c(w) = 2D Zui coth ZUJ (53) 

We note that as Z —» 0 

KmRi(T) = 2D6(T) (54) 

which is the white noise case.   Using our general approach we have that the differential equation 

for the Wigner spectrum is 

1 &       od      rt        2 Wp(t,uj) =  cocothZuj (55) 

and we have found the exact solution 

1       DZ 
Wp(t,u})= -35-^—5 —w coth Zto [l -e"m* cos 2ut] (56) 

p* + U)z    IT L 

11 



2.8    Dispersive channels with damping 

Channels are generally dispersive and also have damping. The fundamental nature of dispersive 

wave propagation is that different frequencies travel at different velocities, and hence one would 

expect that a transformation into a joint position-wavenumber representation would be well suited 

to study such dispersive propagation. Using our method we have shown that a pulse can be 

propagated in a very simple way without solving the governing differential equation. The classical 

method for solving a wave equation with constant coefficients, 

^    dnu     A     dmu ,    x 

2.a«^ = 2.6-a^ (57) 
n=0 m=0 

is to substitute e
lkx~lult into it, to obtain a relation between k and to, 

N M 

J2an(-iu)n=J2bm{ik)m (58) 
n=0 7n=0 

One then solves for ui in terms of k to obtain the dispersion relation to = uj(k). There may be more 

than one solution and each solution is called a mode. The general solution for a particular mode is 

u{x,t) = -^= f S(k, 0) e
lkx-luJ<-h)t dk (59) 

V 27T J 

with 

S(k, 0) = --L=  f u{x, 0) e~lkx dx 
V2TT J 

If one defines the time dependent spectrum by 

(60) 

S(M) = S(M)e~Mfc)t (61) 

then u(x, t) and S(k,t) form Fourier transform pairs between x and A: 

u(x,t) = -^= f S{k,t)elkxdk (62) 
V 2lT J 

S{k,t) = —L [u{x,t)e~ikxdx (63) 
V 27T J 

For a complex dispersion relation 

iv{k) =uR(k) +iu>j(k) (64) 

the group velocity, vg(k), is defined by 

vg(k) = Lj'R{k) (65) 

12 



The position-wave number Wigner distribution at time t is denned as 

W(x, k,t) = — fu*(x- ±r, t) u{x + ±r, t) e~tTk dr (GG) 

where u(x, 0) is the input. We obtained an approximation to W(x, k, t) in terms of W(x, k, 0) 

Wa(x, k, t) = e2uJ,(k)t W{x - vg{k)t, k, 0) 

where Wa is the approximate Wigner distribution. This is a remarkably simple result and besides 

being easily applied, this approximation is interesting and insightful because it is physically inter- 

pretable. In particular, each local point in phase space moves at constant velocity given by the 

group velocity, with attenuation governed by uif(k). We have tested this result on many exactly 

solvable examples, and it works much better than current approximation methods, such as the 

stationary phase approximation. 

Ambiguity function. Extending this approximation approach to other representations is po- 

tentially useful. The reason is that while different representations have properties in common, 

sometimes different representations are more tractable. Of particular interest is the ambiguity 

function domain 

M{0,r,t)=  I u*(x-\T,t)u{x + \T,t)el6xdx (G7) 

We note that the ambiguity function and the Wigner distribution are a Fourier transform pair. We 

have been able to show that 

M(0,r,t) = Y I j M{e,T',a)elk^-Tl) e«K(*+i*)-u'(*-i»)l   dr> dk (68) 

This is exact. We have also been able to show that the approximate ambiguity function is 

Ma{0, T,t) = ^- I  f e2u"{k)t M(0, r', 0) e1^"^ e
ltv<>(k)e dr' dk (G9) 

Spectrogram. The spectrogram is perhaps the most widely used distribution and goes under 

many names, for example in acoustics it is called the ''lofargram". It is often used to refer to 

the time versus frequency plot of signal energy obtained by a filter-bank analysis. Since we are 

considering the phase space of position and wave number, we define the "local" (or "short-space") 

wave number transform by 

Sx{k, t) = -L / u(x', t)h*(x - x')e~ikx' dx' (70) 
v 2ir J 

where h(x) is a spatial window function that is typically narrower in extent than the wave u(.r, t). 

peaks at x = 0 and tapers to zero for |x| > 0, although this is not required in what follows. The 

position-wave number spectrogram is then given by 

P3p{x,k,t,)= \Sx(k,t) 12 
1 -ikx' 

. 2TT 
u{x\t)h*{x-x')e-lkx dx 

2 

(71) 



We have found the following approximate solution 

PsJx,k,t) a —  Ie^i((k'+k")/2)t s(k',0)S*{k",0) H*{k-k') 
27T   J 

H{k - k") e-*(x-vfl((fc'+fc")/2)t)(fc"-fc') dk>dk» (72) 

Notice now that this no longer can be put in the spectrogram form, that is, as a magnitude- 

square of some integral function. 

2.9    Position-Wavenumber Approximation for Random Dispersive Channels 

We derived an approximation of the position-wavenumber (x-k) Wigner spectrum of the random 

channel, and its impact on a propagating wave. When there is no dispersion and the channel is 

deterministic, the pulse does not spread as it propagates. However, in a random channel, the pulse 

spreads in the mean even in the absence of dispersion. Let u(x, 0) be an initial deterministic pulse, 

propagating in a random channel with Wigner spectrum Wit(x, k; t). The propagating wave u(x, t) 

is therefore also random, and its Wigner spectrum Wu(x, fc; t) is given by [1, 7] 

Wu(x,k;t) = E{^  f u* (x - ^,t\ u (x + ^,t) e-ikXd\\ (73) 

=   fwu{x-x\k;0)Wh(x',k;t)dx' (74) 

where Wu(x,k; 0) is the Wigner distribution of tt(x, 0) and E{.} denotes the expected value. The 

approach is to extend the deterministic case to the random case by introducing random parameters, 

and then ensemble averaging the deterministic approximation. 

As a case/example, we consider a dispersive channel with random speed c and exponential 

attenuation parameterized by the variable 6, with joint probability distribution P(6, c). For this 

case, the approximate Wigner spectrum of the channel is given by, 

where vg(k) = cvi(k) is the group velocity, parameterized by the random sound speed c and the 

deterministic function v\(k). The dispersionless case corresponds to v\(k) — 1. 

Let the joint probability distribution function P(b: c) be independent, with sound speed c de- 

scribed by arbitrary distribution Pc{c) and the damping parameter b given by an Erlang distribution. 

Pb(b) = r-^—v,\nbn-le-x\   b>0 (75) 
(n-1)! 

The Wigner spectrum of the channel is then approximately 

14 



To obtain the approximate Wigner spectrum of the propagating wave, we convolved this channel 

spectrum with the Wigner spectrum of the initial wave. Note that as the wave evolves the channel 

increasingly attenuates the propagating wave, and the statistics of the wave in a: are distributed 

according to Pc (tv
x,k) )• If we take Pc(c) to be Gaussian with mean CQ and variance a1, then the 

approximation is 

,2 /     A     \• 1 (»-q)"i wtr 
Wh{x. k; t) «    T—— ,e    2(2"iW (77) 

Note that at t — 0 the wave has not propagated, and the channel approximation becomes <5(x), 

which is a satisfying result in that this result is exactly satisfied by the approximation at / = 0. 

This is not true of other standard approximations, such as the stationary phase approximation, 

which is not accurate for small times. Also, note that even when there is no dispersion (v\{k) = 1). 

the channel still induces spreading on average in the wave, unlike the deterministic case for which 

the channel Wigner spectrum becomes 5(x — ct) in the absence of dispersion (and damping). 

2.10    Invariant Features for Classification 

As a pulse or wave u(x, t) propagates, it can change its shape due to factors such as frequency- 

dopcndent attenuation and dispersion by the propagation channel. This can have a deleterious 

impact on detection and classification. Hence one asks is there are features that are invariant to 

propagation effects. We have derived new central-like moments that are invariant to dispersive 

propagation as we know explain. 

Let u(0, t) denote the initial pulse as a function of time t, generated at position x = 0. Then, 

the pulse at a subsequent position is given by [4, 5, 9, 10] 

u(x,t) = -^= [F{0.cj)e>K{u)xe-juJt(Lj = -L / F(x,u)e~jutdu (78) 
v 27r./ y/2n J 

per mode, where F(0,ui) is the spectrum of the initial pulse. 

F(0,w) = —L [u(0,t) e>utdt (79) 
V 27T   J 

K(UJ) is the dispersion relation expressed in terms of k as a function of u>. If the dispersion 

relation is complex, then there is damping, resulting in frequency-dependent attenuation as the 

wave propagates. Also, we define the amplitude and phase of the wave and its Fourier transform 

by 

u{x,t) = A{x,ty^x'l) (80) 

F{x,u) =B(x,uj)ej^x'u') (81) 
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Note that 

F(0,w) =B{0,Lu)ej"l'{0'uj) (82) 

and therefore 

F{x,w) = F(0,u)e>KMx (83) 

= B(0,uj)ej^0-")ejK{u')x (84) 

It follows that, for the real dispersion relation K(u), 

B{x,u>) = J3(0,u;) (85) 

^(x,w) = ip{0,uj) + K(uj)x (86) 

The central-like moments that are invariant to dispersive propagation are given by 

An{x) =  f F*(x,u) (jjj- - tg(x,u)J   F{x,uj)duj (87) 

where tg(x,uj) — —ip'(x,uj) is the group delay of the wave. These moments are similar to central 

temporal moments, but with an important difference. To see the similarity, consider ordinary 

central temporal moments of order n, given by 

(9(t))x = J u*(x, t) (t - {t)x)n u(x, t) dt (88) 

= JF*(x,Lo)(j^-(t)x\   F(x,u)dw (89) 

where Eq. (89) follows from Eq. (88) by substituting in for u(x, t) in terms of its Fourier transform, 

and (t) is the mean time. (Note that for n = 2 this is the duration moment.) We see that the 

moments An(x) are similar to ordinary central temporal moments, except that rather than being 

centered about the average time {t)x, they are centered about the group delay tg(x,uj) of the wave. 

This centering about the group delay affords these moments with a property that is particularly 

attractive to their use as potential features for classification, namely, they do not change with 

propagation, even though the wave u(x, t) does. That is, they are independent of location x, [2. (j]. 

An(x) = An(0) (90) 

for real dispersion relations. Thus, if differences are observed in these moments for two differ- 

ent received pulses, the differences reflect differences in the source rather than differences due to 

propagation (i.e. dispersion) effects. The moments An(x) can be equivalently calculated in the 

time domain [2, 6], which is beneficial for computational purposes. In particular, the equivalent 

time-domain formulation is 

An(x) = -L  j jtn \F(x,io)\e-JUJtdujdt (91) 
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Also, as defined, the odd-order moments are identically zero. Hence we use a one-sided integral 

over t in Eq. (91) to obtain non-zero odd-order dispersion-invariant moments. 

It is important to appreciate that the results above are for a mode. Since in general each 

mode travels with a different group velocity (i.e., each mode has a different dispersion relation), 

the spectral and An moments of the total wave, which is comprised of the sum of modes, change 

with distance, even though the spectral and An moments of each mode are invariant to dispersive 

propagation. Thus, mode separation prior to calculating the moments is important in order to 

obtain invariant moments. However, even without mode separation, the moments An will be less 

variable with propagation distance than will ordinary temporal moments, and may therefore still 

be better features for classification. 

We have compared classification performance to that of ordinary temporal moments on nu- 

merical models of acoustic scattering from steel shells in a Pekeris waveguide. We evaluated the 

two-class problem of distinguishing a sphere from a cylinder, and the more challenging problem 

of distinguishing between two different cylinders, via their backscattered echoes at various prop- 

agation distances. The classification utility of our moment features was assessed by computing 

receiver operating characteristic (ROC) curves for each two-class problem. We also considered an 

approach based on a correlator receiver. We applied our dispersion-invariant approach to define a 

dispersion-invariant correlation coefficient for use as a classification feature, and have shown the 

detrimental effects of dispersion on the ordinary correlation coefficient. We calculated ROC curves 

and have shown the significant performance gains over the ordinary correlation coefficient for the 

two-class simulations. 

2.11      Fields 

We developed a direct method using phase space distributions, such as the Wigner distribution, to 

study wave propagation in a dispersive medium. We derived an explicit evolution equation for the 

Wigner distribution and methods to solve it. This has been described in the previous sections. We 

have also developed the method to the evolution of noise fields in a dispersive medium. For linear 

wave equations with constant coefficients the solution is given by 

u(x,t) = -^= f S{k,0) e-
l"{k)telkx dk (92) 

v 2TT J 

where S(k. 0) is the initial spatial spectrum which is obtained from the initial pulse by way of 

S(k,0) = -=   f u{x,0) e~ikxdx (93) 
V27T   J 

If we define 

S(M) = S(*,0)e~M*)' (94) 
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in which case 

u(x,t) = -1= [ S(k,t)elkxdk (95) 
v 2n J 

S{k,t) = -= I u{x,t)e-lkxdx (9G) 
V 27T J 

Differentiating Eq. (92) with respect to time and multiplying by i, gives 

i^-u{x,t) = -U [uj(k)S{k,0)e-luj{k)telkx dk (97) 
ut V27T J 

Now, in general, the Fourier transform of the product of two functions can simplified by the use of 

the following relation, 

j f(k)g(k)eikx dk = Jf(-i^\ g(k)eikx dk = f (±£\ Jg(k)e'kx dk (98) 

Applying this to Eq. (97) we have that 

9   ,     ,        /15\   ,     , 

We rewrite this as 

i—u{x,t) = u{K)u{x,t) (100) 

where K is the "wave number operator" defined by 

We derived the equation of motion for the Wigner distribution 

F) M 
W{x,k,t) (102) i—W(x,k,t) = 

1  d\       f,      Id 
w,fc+2ito ]-" [k-Kd-x 

We note that this equation is derived under the assumption that u is real.  In Eq. (102) what is 

meant by ui{k + h'Si) is that we substitute the operator k + ^^ in u)(k). 

Noise fields: The problem we have done is the following. We consider the case where at a 

spatial point, XQ, a noise field is produced as a function of time and we ask what the field is at a 

later time. One has that 

(X,t)   =   -L   [ F(v) e^^)(r-x0)^t(Lj 
V 27T J 

u(x,t) = -j= / F(u) e^Ml^l-^'du (103) 
v 2TT J 

where K(u>) is the dispersion relation as a function of u and where F(w) is the initial time spectrum 

at x = XQ, 

F(v) = -^=  fu{x0,t) elujtdt (104) 
V27T   J 
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By defining 

F{uj,x) = F{uj,xo)elK{uj)x (105) 

where 

F(u,x0) = F(u) (106) 

we have that 

u(x,t) = -L / F(u, x) e-lwtdw 
V 27T J 

F(LO,X) = —== / u(x, t) eiutdt 

In addition it is convenient to combine Eqs. (103) and (104) 

(107) 

(108) 

(109) 

Let us now study the statistical properties of u(x, t) considered as a random field. We first ask the 

following question. Suppose the noise field is stationary at position of generate xo, will it be time 

invariant at other positions? In particular consider 

u*(x,t)u(x,t + T) = (Y)    ffu*{xo,t')u(x0,t")e-iK^){x-Xo)+iute-iut' 

e«f(w')(x-xo)-fc/(t+T)ei«'t"|tt»dw|ft»dly (n0) 

and take the ensemble average 

E[u*{x,t)u(x,t + r] = (•£-)    f f E[u*{x0,t')u(x0,t")}e-iK^x-Xti)+iujte-1^' 

e<if(«-')(x-ao)-iw'(t+T)c*yt"(ft/(fcwft//(fc;/ (111) 

where we have assumed that K{UJ) is a deterministic function. Suppose we define R by 

R(x0, t" - t') = E[u*(xQ, t')u{x0, t")} (112) 

where we have explicitly assumed stationarity. Hence 

E[u*(x,t)u(x,t + T)] = (^-J    f f R(x0, t"-1?) e-*tf(w)(*-*o)+fc»«e-*-f 

ei^(^')(x-xo)-iw'(t+r)eiw't''di/(L;d^da;/ (n3) 

We have been able to show that this reduces to R(xo,t"). Thus we see that if the process is 

stationary at position XQ it will be stationary at any point in space.   We now consider the same 
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issue from a different perspective. We define the Wigner distribution in t, UJ of u(x: t) at a particular 

position x by: 

W(t,u; x) = -!-  I'u*{x,t-T/2)u(x,t + T/2)e-luTdT (114) 
2n J 

One defines the Wigner spectrum by 

W(t,u;x) = -!- [E[u*(x,t-T/2)u{x,t + T/2)]e-iTU,dT (115) 
27r y 

We have shown that 

iy (i) u}-x) = l- f fw (t\ u; x0) e-«(*'-«)e-*(»-^)[fc'(u-+e/2)-fc(w-fl/2)]dt/^ (U6) 

which relates the Wigner distribution at position z to the Wigner distribution of the initial pulse 

at x — XQ. We now take the ensemble average of both sides of Eq. (116). 

W(t,uj; x) = ij; / fW{t',Lj; x0) e-«(*'-')e-i(x-xo)[fc*(^/2)-fe(w-e/2)]^d0 (n7) 

Now, let us assume that W (f',o;; XQ) is independent of time which is the condition of a stationary 

process. Let us call it W (a>; XQ) . We have 

IT (t, w; *) = / / W (w; 0) (5(e)e-^e(('-t)e-^x|;c*(w+9/2)-';(u;-e/2)ldt,^ = W (w; 0) (118) 

which shows that the Wigner distribution is also stationary at position x which is consistent with 

what we derived above. 

In addition we consider the same problem using the approximate Wigner distribution. We have 

shown that an very accurate approximation can be obtained by way of 

W{t,u; x) ziW{t-Tg(uj)(x-x0),uJ1xo) (119) 

where Tg(u>) is the derivative of the dispersion 

r» = fc'M = ^ (120) 

and called the "group slowness", or "unit transit time". 

Now, take the ensemble average of Eq. (118) 

W(t, u>; x) ^W{t-Tg (u) {x - X0),UJ; x0) (121) 

and it is clear that the approximation also satisfies Eq. (118). We emphasize that the above 

considerations is for the case where the dispersion relation is deterministic. In many cases of course 

that is not the case, and such situation is under development. 
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