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Abstract 

The on-going goal of this project is to develop analytical tools and computational models for vision to be 
used as a sensor for the purpose of control. Vision, as in remote passive distributed sensing, whether in the 
visible or other spectra, is a flexible, powerful and cheap sensory modality for unmanned vehicles to interact 
with complex, unknown, uncertain and dynamic environments. To that end, algorithms and models must be 
developed to causally infer geometric (shape), photometric (reflectance) and dynamic (motion) properties of 
objects and scenes. In this report we describe progress on all areas, including the following breakthroughs: 

1. We have fully developed, after their introduction early into the project, Dynamic Active Appearance 
Models [15, 16] to describe variations in shape (domain deformation), reflectance (contrast) and motion 
via non-linear conditionally Gaussian processes that capture complex phenomena such as the motion 
of faces, flames, foliage. We have further extended these models to take into account occlusions 
phenomena [27], which are fundamental in vision. 

2. We have developed filtering and identification techniques for a class of (Ilammcrstcin) dynamical models 
driven by non-Gaussian processes that are particularly well suited to model human motion in video 
[3, 43, 6]; we have also developed computational and modeling tools to enforce priors on dynamically 
moving shapes [11, 26] to enable tracking through occlusions or with partial information. 

3. We have developed forward diffusion models and numerical schemes for integrating the ensuing partial 
differential euations for shape estimation from diffusion images (defocus or motion blur) [20]. 

A. We have proven the observability and identifiability of ego-motion in the presence of visual and inert ial 
measurements [29], and characterized the set of sufficiently exciting inputs. In addition, we have proved 
that the landscape of local minima in visual motion estimation moving forward can be removed by 
positivity constraints [47]. 

5. We have developed a framework for visual tracking of severely deforming objects, by proposing the 
first ever (infinite-dimensional) observer capable of predicting general (diffeomorphic) deformations, 
rather than just a finite-dimensional group (unpublished). 

6. We have been able to characterize visual invariants to general viewpoint and contrast changes (unpub- 
lished). 
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In addition, we have formulated a series of conjectures and developed a research program for the classification 
of time series [42, 40], together with the first steps to build dynamic action dictionaries [41, 54]. Other 
contributions include algorithms for vision-based and lidar-based localization [21], proximity distribution 
kernels for visual category recognition [32], and wide-sense filtering on Lie groups [10]. Some of this work 
has been conducted in collaboration with Stan Osher at UCLA [11. 20], Rene Vidal at Johns Hopkins [5(3], 
Anthony Yezzi at Georgia Tech. 

Outcomes at-a-glance 

This project has resulted in a number of technical achievements, and some breakthroughs, documented in 47 
publications1 in the most prestigious conferences and journals in the field of Computer Vision, including a 
texbook [19]. 

Some of the students and postdocs involved in the project have found placement in prestigious 
industrial and academic institutions in the US and abroad, including Dr. Andrea Vedaldi - awarded the 
only Outstanding PhD Award from the UCLA Computer Science Department in 2008 - now a Postdoc at 
Oxford University after turning down a Faculty Position at the Ecole Centrale in Paris, Byung-Woo Hong, 
now Assistant Professor at Chung-Ang University in Seoul - Korea, Haibin Ling, now Assistant Professor 
at Temple University, Gregorio Guidi, now an Analist at the Central Bank of Italy, Daniele Fontanelli, 
a researcher at the University of Pisa, and Alessandro Bissacco now Research Engineer at Google INC., 
Emmanuel Prados, Researcher at INRIA, Grenoble - France. 

Our work has also sparked the attention of several companies that have supported or are supporting 
corollary activities, including Mitsubishi Heavy Industries, Toshiba, Sony and Panasonic of Japan, who sup- 
ported a staff researcher to visit the Vision Laboratory for a year and resulted in state-of-the art algorithms 
for human detection in video (Toshiba) and stereo reconstruction (Panasonic), and Mobileye, INC. (Israel) 
that collaborated with the Vision Lab during the 2005 DARPA Grand Challenge prior to the commencement 
of this project. 

Technical Achievements 

Dynamic Active Appearance Models 
Images are generated by a complex interplay of photometric (illumination, reflectance), geometric (shape, 
pose) and dynamic (motion deformation) properties of the scene. These factors are intermingled, and 
non-uniquely identifiable in an image (or even a sequence of images), so that there are infinitely many 
combinations of photometric, geometric and dynamic processes that generate the same image sequences. 
When the goal is not to control each factor individually, but instead to perform classification, for instance 
the detection, recognition and localization of objects or events of interest, one seeks for the simplest possible 
models that capture the phenomenology of the data. In the past, we have developed models of so-called 
dynamic textures [14, 13] that capture temporally and spatially stationary sequences. This model has been 
extended further to represent spatially non-stationary, photometrically and temporally stationary sequences, 
which we have called Dynamic Active Appearance Models (DAAM) [16, 15]. 

DAAM are considerably more powerful than dynamic textures, which can be used to represent the 
same data with lower complexity, or to capture more complex phenomena such as a flag waving in the 
wind or a talking face with greater fidelity at equal complexity. The price we pay for that benefit is 
an increased complexity of the inference process (filtering and identification). In fact, whereas Dynamic 
Textures were essentially linear-Gaussian dynamical models, DAAM are intrinsically non-linear. However, 
the models are conditionally Gaussian in the sense that shape deformation can be characterized as a Gaussian 

'Listed in the reference section as [10, 49, 43, 42, 16, 19, 35, 23, 25, 27, 20, 28, 3, 46, 15, 34, 11, 17, 18, 58, 38, 41, 22, 54, 
48, 61, 36, 24, 21, 40. 29, 62, 32, 26, 6, 8, 33, 47, 56, 52, 7, 60, 4, 5, 12, 51, 39, 53] 



shape space (the quotient of R2 modulo the affine group); conditioned on shape, reflectance is represented 
as an affine shape space (K+ modulo monotonic continuous transformations): conditioned on reflectance 
and shape, the temporal evolution of the (finite-dimensional) representation is modeled as the output, of 
a linear-Gaussian dynamical model. So, although non-linear and non-Gaussian, the model is conditionally 
Gaussian. Unfortunately, filtering and identification of these models is no longer simply performed with 
standard subspace identification techniques [56], but instead finite-element, methods and identification of 
hybrid systems must be brought to bear. 

As we have done for the case of Dynamic Textures in the past, after developing the model and testing 
its generative power by measuring the matching fidelity of the statistics of second and higher-order of the 
data, we intend to exploit these models for the purpose of decision, specifically to detect, localize, classify 
and recognize events of interest in video. Whereas data fidelity and complexity are all that matters for 
communication purposes (transmission, compression), recognition requires handing nuisance transformations 
and endowing the models with a metric that enables efficient computation of distances and the proper 
definition of prior probability measures. This direction of investigation will be pursued in future work. 
Dynamical Models of Human Motion 

Human motion presents a significant challenge due to the importance of the application domain (secu- 
rity, persistent ISR), the variability in which they can appear in images (different clothing, different pose, 
different illumination, partial occlusions) and move (different gaits), their complex dynamics (humans are 
essentially multiple inverted penduli). Our goal is to develop techniques to detect, localize and recognize 
actions regardless of the individual, and to recognize the individual regardless of the action, clothing, pose, 
illumination etc. The first step in this program is to extract a time series from the measurements. This 
can be done in a number of ways, form trivial (consider the video itself as a time series of pixel intensity 
values) to complex (estimate silhouettes of moving humans, seen from a moving platform [30], including the 
enforcement of prior knowledge on their shape and deformation [11, 25, 17]). Once that is done, we cannot 
simply compare two time series as if they were two functions of time, using any number of functional norms, 
because of the large variability due to nuisance factors (pose, initial condition, speed of execution etc.). Long 
ago, in [2], we have been the first to propose interpreting such time series as the output of dynamical models, 
and to perform decisions - such as the recognition of an individual form her gait - by comparing statistics 
of the models identified from the data. That has worked very well for stationary sequences, for instance 
segments of walking, running, jumping, limping etc. In the past we have also extended these models to 
piecewise stationary statistics, which led us to develop techniques to perform filtering and identification of 
hybrid (jump-linear) models [57, 55, 59]. However, for more complex and transient motions, it was not clear 
at the beginning of this project how one could factor out nuisance factors such as the speed of execution of 
an action, or the initial condition, in a computationally efficient manner. During the course of this project, 
we have developed (Mercer) Kernels between dynamical models that enables one to compare them while 
discounting the effects of various factors, depending on the application, including initial time, initial condi- 
tion, distribution of the input, sequences, speed of execution etc. [3]. This work required considerable care 
in order to properly treat the non-Gaussian statisics of the input, which are filtered through non-minimum 
phase models. 

In addition, we have also developed techniques for imposing prior knowledge on the evolving shape of 
objects [11], and most recently we have developed (infinite-dimensional) models to identify the state of a 
model tracking a deforming shape. This enables the prediction not just of the motion of an object, but also 
of its deformation, which enables tracking objects through severe occlusions [26], whereas previous schemes 
could predict pose, but not shape after the target became unoccluded. 
Shape From Anisotropic Diffusion 

During the course of this project we have completed a comprehensive research program, initiated in 
previous years, on the exploitation of diffusion cues, from motion blur to defocus to confocal imaging, for the 
estimation of shape and reflectance properties of scenes. In later investigations we have also extended this 
to infer independent motions in a scene. This work has been collated in a textbook published by Springer 
Verlag in December 2006 [19]. 

In particular, one approach used for shape and motion optimization has proven especially successful, as 



we describe next. In the presence of unknown motion or unknown optical configuration, the imaging process 
is essentially a (blind) convolution process. Hence, most prior work on shape and motion inference focused 
on blind deconvolution, a notoriously ill-posed, numerically ill-conditioned process. In [20], in collaboration 
with former student P. Favaro (now at Heriot-Watt and the University of Edimburgh) and colleague S. Osher, 
we have proposed a revolutionary approach based on a forward diffusion with a space-varying stopping time. 
This has vastly exceeded the state of the art in both accuracy and computational complexity in the estimation 
of shape from defocus as well as motion blur. 
Visual-Inertial Integration 

It is generally known that vision and inertial are complementary modalities: The former is slow, global 
- modulo visbility - but yields only measurements up to a Euclidean reference and an unknown scale: the 
latter is fast and local, subject to drift. Several approaches have been proposed to integrate the two, but all 
of them, without exception that we know of, fail to address the two issues that are of most critical important 
in practical application, that is (a) the calibration between the camera reference frame and the inertial 
frame (usually assumed known through some delicate metrology), and (b) the dealing with gravity (usually 
assumed known through the usual cohort of ad-hoc fixes common in the inertial navigation practice). This 
poses an obstacle to the deployment of vision-inertial measurements, when (a) no accurate calibration is 
provided, and (b) when small errors in gravity (usually estimated by averaging acceleration over a long time 
frame) cause long-range divergence of the ensuing filter. 

In [29] we have eviscerated the observability and identifiability of a lull Euclidean frame from joint vision 
and inertial measurements. We have been able to show that (a) the camera-imu calibration is identifiable, 
so it does not need to be accurately known ahead of time and can be refined on-line, and (b) gravity is 
observable from joint, vision and inertial measurements, so it can be updated on-line while the overall filter 
is guaranteed to be observable (unlike the case of pure inertial navigation). The observability/identifiability 
conditions impose that the input sequence be sufficiently exciting. We have characterized the sufficiently 
exciting inputs in terms of a motion sequence, corresponding to an "autocalibrating motion" that can be 
performed at the beginning of an experiment, without the need for additional instrumentation. 

Since the motion usually undergone during steady-state guidance (constant velocity) does not correspond 
to a sufficiently exciting input, in general the gravity and camera-imu calibration states can drift, during 
steady-state motion. Therefore. While in practice this problem can be fixed in practice with suitable 
gain scheduling techniques, there remains the need to analyze the overall identifiability/observability of a 
dynamical model whose (non-linear) state-space is partitioned into regions that are observable, and regions 
where the parameters of the model are not identifiable. Questions we intend to address in the future is 
whether transients following transitions across such region boundaries are sufficient to absorb the drift (and 
therefore no specific action is needed in the design of observers), or whether there is an optimal strategy 
to lock the unobservable states and the unidentifiable parameters when the system goes through regions of 
state-space, and of inputs, that correspond to non-identifiable, non-observable conditions. 
Tracking Deforming Shapes (unpublished) 

Tracking deformable objects in video is an important problem in numerous application; we have already 
described the specific case of humans, but a variety of other objects are of interest. Note that even rigid 
objects can yield deformable domains when imaged through a projection, and the more complex the three- 
dimensional shape, the more complex the deformation of the projection. The usual approach to tracking such 
deformable objects consists in either treating each frame as an independent entity and segmenting the object 
from the background based on pictorial (reflectance) cues, or in tracking a. finite-dimensional representation 
of the object corresponding to its coarse motion (e.g. affine). The former approach has nothing "dynamic" 
to it, and therefore has no predictive power whatsoever (in the presence of missing data, the estimate 
remains locked to the last available measurement). The latter can extrapolate coarse motion (e.g. centroid 
and second-moment matrix), but, cannot extrapolate deformation. For instance, when a walking person is 
partially occluded, the approach extrapolates a moving cardboard figure, but not the actual deformation 
due to individual limb motion [11]. 

We have proposed what, is, to the best of our knowledge, the first approach to design a proper filter 
(observer) in the infinite-dimensional space of shapes (closed Jordan curves). This is based on endowing the 



space with a Riemaimian (Sobolev) metric, then shooting geodesies from the current best estimate of the 
state using the exponential map in the infinite-dimensional Lie group of diffeornorphisms, finally correcting 
the prediction when a new measurement of a curve becomes available. This work has yet to be published, 
although a technical report has recently been deposited. 

The next step in this program consists in making the measurement equation one step closer to the actual 
data, which are images.   So, instead of assuming that we have an intermediate representation that yields 
a pseudo-measurement (a curve), we intend to measure images directly, thus estending the framework of 
DEFORMOTION [44] to a proper dynamical system observer framework. 
Visual Invariants (unpublished) 

It was widely believed that viewpoint invariant image statistics did not exist except for planar object, 
due to [9]. In [50], we showed that viewpoint invariant statistics always exist, for scenes of arbitrary shape, 
provided Lambertian reflection. At the same time, a significant avenue of research deals with contrast- 
invariant image processing, pioneered by Koenderink [31] and Morel [1]. Unfortunately, the statistics that 
are invariant to viewpoint are not invariant to contrast, and vice-versa. Therefore, we have recently turned 
our attention to the problem of either identifying viewpoint-and-contrast invariant statistics, or disprove 
their existence. 

We have recently shown that such viewpoint-and-contrast invariants exist, and they are supported on 
a zero-measure subset of the image domain. They are related to topological constructions derived from 
the Morse-Smale complex, which we have called sub-Reeb trees. While this is already interesting, because 
it illustrates why it is possible to compress images so efficiently without much perceptual effect, what is 
remarkable is the fact that this zero-measure object is actually a sufficient statistic, meaning that from it 
one can recover exactly the original image, modulo the action of a domain diffeomorphism (viewpoint change) 
and contrast transformation (illumination change). This result, which we believe to be of great theoretical 
significance, has not yet been published, but the main argument and the proofs have been deposited in a 
technical report [45], coauthored with colleague P. Petersen. 

These results pertain to Lambertian scenes and assume that the image is approximated by a Morse 
function. While this is a fair assumption for many subsets of the image, in the sense that it is possible 
to find image statistics that are to good approximation piecewise smooth [37], there remains the need to 
first partition the image into domains where the Morse assumption is satisfied to a reasonable extent. We 
have recently begun experimenting with various approach for texture segmentation, that would provide a 
preprocessing step for the construction of a collection of sub-Reb trees. We are studying the theoretical 
properties that such as "sparse invariant coding" would have in the overall problem of performing decisions 
from image data, and at the same time we are considering numerical and computational implications that 
these representations would have, in the sense of enabling the design of more efficient image-based and 
video-based classification and recognition algorithms. 
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