
AFRL-SR-AR-TR-09-0080

REPORT DOCUMENTATION PAGE
OMBNo. 07U4-U100

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing the burden, to the Department of Defense, Executive Service Directorate (0704-0188) Respondents should be aware that notwithstanding any other provision of law. no
person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION.

1. REPORT DATE (DD-MM-YYYY)

02-26-2009
2. REPORT TYPE

Final Performance Report
3. DATES COVERED (From - To)

March 1, 2006 - Nov.30.2008

4. TITLE AND SUBTITLE
Evolvable Approaches to Software Verification and Validation

5a. CONTRACT NUMBER

5b. GRANT NUMBER

FA9550-06-10152

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Naraliari. Bhagirath
Simha. Rahul
Choudhary. Alok

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

The George Washington University
2121 I St, NW, 6th Floor

Washington, DC 20052

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Office of Scientific Research/NL

875 N. Randolph St Room 3112

Arlington VA 22203
Dr Robert 1Ierkloiz

10. SPONSOR/MONITOR'S ACRONYM(S)

AFOSR

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Distribution A: Approved for Public Release

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This project considered software protection in embedded systems built using encrypted execution platforms where instructions and data are stored

in encrypted form in memory. The objective of this project was to develop architectural solutions to address physical attacks on such encrypted

platforms when a sophisticated attacker has captured the device. The attacks are based on exploiting structure in the application code and data,

which can be uncovered by direct manipulation of hardware. An integrated hardware-software approach was taken to design a secure system to

protect against such attacks. The architecture utilizes a secure on-chip hardware component, in the form of a Field-Programmable Gate Array, as
the main protection mechanism. The reconfigurable logic in hardware, when combined with the ability of the compiler to instrument the code, was
used in powerful ways to strengthen the security of computing platforms. Several techniques, in architecture, compiler and security, were proposed

and designed. Simulations and prototyping experiments showed that this approach is feasible, easy to implement and on average adds low
performance overheads. The research involved faculty and graduate students, and partly supported two doctoral theses.

15. SUBJECT TERMS

security, hardware architecture, embedded systems, software security, tamper-resistance, encrypted execution.compiler

16. SECURITY CLASSIFICATION OF:
a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

SAR

18. NUMBER
OF
PAGES

19

19a. NAME OF RESPONSIBLE PERSON

Bhagirath Narahari

19b. TELEPHONE NUMBER (Include area code)

(202) 994 3326

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std Z39 18

Adobe Professional 7 0

Final Performance Report

Evolvable Approaches to Software Verification and
Validation

AFOSR Contract Number FA9550-06-1-0152

Principal Investigator:
Bhagirath Narahari

Department of Computer Science
The George Washington University

2121 ISt. NW, Suite 601
Washington, DC 20052

narahari@gwu.edu
(202)-994-3326

Cover Sheet: Form SF 298 attached.

1. Executive Summary.

The objective of this project was to develop integrated hardware-software approaches to
address attacks on encrypted execution and data. These are attacks on highly-encrypted
systems from a resourceful adversary who has physical access to the system and may not
need to decrypt encrypted software. The attacks are based on exploiting structure - in
encrypted instruction streams and data-that can be uncovered by direct manipulation of
hardware in a well-equipped laboratory.

To achieve the goal, research was conducted to integrate and advance current techniques
in compilers, hardware architectures, and security to develop novel techniques to protect
against physical attacks on encrypted embedded systems. Specific objectives included

• The investigation of a threat model under physical capture of system
• The design of hardware architectures, to provide secure systems, using

commercial off-the-shelf reconfigurable logic technology without requiring new
processor designs

• The development of integrated compiler-hardware techniques to protect
application code and data against physical attacks

• The study of security and performance tradeoffs and the development of adaptive
software and hardware techniques

• The provision of cycle accurate simulation infrastructure to evaluate secure
hardware techniques.

20090325300

The innovation in the approach was in exploiting the power of integrated software-
hardware methods. The hardware side of the innovation comes from using reconfigurable
logic to implement security techniques in hardware. The reconfigurable logic in
hardware, when combined with the ability of the compiler to instrument the code, can be
used in powerful ways to strengthen the security of computing platforms.

Several techniques were proposed and designed to address these objectives. The research
involved faculty and graduate students at the doctoral level, and partly supported two
doctoral dissertations.

2. Status of Effort.

The research proposed involved a number of research areas: (1) protection against attacks
on application code and application data; (2) use of reconfigurable logic to design secure
hardware; (3) integration of hardware-compiler-security techniques; (4) study of security
and performance tradeoffs; and (5) development of cycle accurate compiler and simulator
infrastructure. The study of the threat model, representing an understanding of the types
of attacks, provided us with an insight into the kinds of security techniques needed for
our system.

An integrated hardware-software approach was taken to develop a system to combat the
types of attacks considered, i.e., attacks on encrypted execution and data platforms (EED
attacks). A system architecture (called CODESSEAL) was designed and a number of
techniques were designed and tested for protection against attacks on application code
and data. The hardware side of the innovation comes from using a secure reconfigurable
logic hardware component in the form of Field Programmable Gate Arrays (FPGAs), a
technology that has proven enormously successful in performance enhancement but that
had not been exploited for security. We showed that the dynamic reconfigurability of
FPGAs, when combined with the ability of a compiler to instrument encrypted code, can
be used in powerful ways to strengthen security of computing platforms. The software
side of this project's innovation claims can be found in the compiler algorithms
developed to generate encrypted code, along with special instructions to the FPGA
targeted towards EED attacks.

A number of different techniques were designed and evaluated to protect against code
and data attacks. The algorithms required for each protection technique were designed
and implemented, the compiler was modified, and a cycle accurate simulation
infrastructure was implemented to measure the performance overhead of the proposed
system. The low performance overheads validated our approach.

One of the project objectives was to study security and performance tradeoffs and to
develop evolvable adaptive protection schemes. We developed a model to apply different
security schemes to different portions of the code based on a risk analysis of the
application code. Based on experimental and theoretical analysis, the various security
techniques provide different levels of protection against various structural (i.e., code)

attacks while incurring different amounts of performance overhead and architectural
complexity. The key architectural concept of our approach-the use of reconfigurable
logic, in the form of FPGA technology, to provide hardware solutions for software
security-was also applied to solve additional security problems such as buffer overflow
and network intrusion detection.

Our analysis of EED attacks provided a deeper understanding of the vulnerabilities of
EED systems and therefore the need to protect against such attacks. In contrast to past
approaches, we have taken an integrated software-hardware co-design approach thereby
enabling us to develop protection mechanisms at the code producer level (the compiler)
and the code consumer level (the processor). Our solutions presented novel techniques to
the problem of physical attacks on encrypted systems without re-designing the processor.
By utilizing FPGA technology for security, our research opened up new directions for
providing adaptive security protocols based on application needs thereby introducing the
problem of tradeoff of security and performance.

3. Summary of Achievements.

We made progress on several fronts in the project. Below we itemize these achievements
by topic and summarize the main results obtained. More detailed results are available in
the papers listed in the publications section, and available at
http://www.seas.awu.edu/--narahari/afosr/ along with the software developed as part of
the research.

1. Threat Models

An investigation was conducted of the types of attacks that are possible on an
encrypted execution and data (EED) platform when the adversary has captured the
device (or has physical access to the device) and has the ability to snoop on the
system bus and inject their code or data into the processor. Two broad types of attacks
are possible: attacks on structural integrity and attacks on the data. For each type of
attack, how an attacker could disrupt the execution was studied. These EED attacks
can be briefly summarized as follows:

o Code injection/Execution disruption attacks where an attacker tries to modify
or replace a portion of the application code.

o Instruction replay attacks, where the attacker tries to reissue a block of
encrypted instructions from the application code.

o Control flow attacks, where the attacker tries to disrupt the correct control
flow of the program by injecting application code blocks that are different
from what were requested by the program.

o Data injection/modification attacks, wherein the attacker attempts to inject
their data to alter or observe the application code behavior.

o Data substitution attacks, wherein the attacker tries to substitute a requested
data block with another data block produced by the application including stale
data.

The domain of embedded systems and applications includes avionics,
communications equipment, unmanned vehicles or devices, sensors and electronic
control systems. In a typical attack of the kind addressed in this research, a device is
captured and probed in a sophisticated laboratory. Such an attack can result in loss of
data (such as control settings, coordinates, and cryptographic keys), loss of
intellectual property and the ceding of informational advantage. In addition, such an
attack can be taken further to disrupt legitimate operation of the device. For example,
a communications or control device could be replaced with a tampered version that
could present an active and disruptive threat during operation. In all these cases, it is
the combination of vulnerabilities in hardware-usually embedded processors-and
software that forms the basis of these attacks.

2. Architecture and Hardware-Software Framework.

Much of the prior work in the field of encrypted execution was either susceptible to
the physical attacks addressed in this research, i.e., EED attacks, or provided
solutions that required re-design of the processor core. Requiring a re-design of the
processor incurs a high cost and requires a buy-in from the chip manufacturers. The
goal of this project was to provide architectural solutions which did not require
processor redesign. This project combines compiler and architecture techniques to
provide a solution that can be built using commercial off the shelf technology
(COTS). A system architecture - the Compiler Development Suite for Secure
Applications (CODESSEAL) - was designed and its performance was evaluated
using a cycle accurate processor simulator (see publications [2,4,7,10]).

The approach, i.e., the CODESSEAL system, augments the back-end of the compiler
to instrument each code block of the executable code (and data) with security-related
labels that are then examined by a secure hardware component that sits between
memory and the processor. The hardware platform we targeted is a standard
processor coupled with an on-chip reconfigurable fabric - this enables us to leverage
commercially available Field Programmable Gate Array (FPGA) platforms such as
those from the Xilinx Virtex II Pro family. Our main technique works as follows.
First, the back-end of the compiler module instruments the executable code by
inserting integrity checking labels into each code block. Second, the secure hardware
component implemented in the FPGA logic, which we call the Guard, intercepts
cache block read and write requests from the memory controller. An overview of our
architecture is shown in Fig. 1. The Guard processes each encrypted code block,
using the inserted labels to conduct authorization and integrity checking to detect and
prevent memory spoofing attacks, and passes on the decrypted code block to the
processor's cache. We assume that both compilation and FPGA configuration occur
in a safe location and that the FPGA cannot be manipulated by the attacker once
configured. Figure 1 shows the overview of our system - Figure 1(a) shows the
infrastructure and Figure 1(b) shows the hardware architecture. The overall
algorithm for process with the roles played by the compiler and the architecture are
illustrated in Figure 2.

Compiler

Source code or pre-compiled binary

•
Embed integrity and control flow

protection

Encrypt executable

Louder

Load program

Architecture
(FPGA)

Verify incoming cache blocks

Request more cache blocks for

verification if necessary

Pass verified blocks to the processor

Chip boundaries (trusted)

Instruction
cache

Hi

CPU
Core

'•'.as,*-

Data
cache

-v^.?. .••.
 :,,,..•••/

Guard (FPGA) [&
Stock L.b.1.^

Encryption

mi»9'«ycrnck r
External
Memory

Figure 1: (a) Framework and (b) Conceptual Architecture

Compile-time processing

C1 Break code in cache blocks (cb)
C2.Label each block cbi
C3.Compute each cache block

signature sign_compile(cb|+cb|auC|)
C4.Embed signature in object file
C5.Encrypt (AES)

Run-time Validation(loader)

LISet the program context (key)
L2. Set program start address (a»tnrt)

Run-time Validation (FPGA guard)
/-/•/.Monitor memory read/writes from the

cache controller
H2.Capture requested address

a,=address(cb()
H3. Fetch and decrypt cache block cbj
H4.Fetch stored signature of cache block

Cbh X|=sign_compile(cbi)
/-/5.Compute the signature of the fetched

block cbi, yi=sign_runtime(cbi+ a, + as,ort)
/-/6.lf (yi == Xi) then valid (send to cache)

else HALT

Figure 2: The Process: Compiler and Architecture(FPGA) Roles

The contribution is the approach itself: by relying on the secure hardware component,
i.e, the Guard, our approach can accelerate the execution of encrypted programs in a
secure environment with low overheads and without requiring new processor designs.
One particularly attractive feature of our approach is that a single piece of
information (the signature encapsulated in the label) is used to detect all three types of
memory spoofing attacks. A second advantage is that the labels are easily inserted
post-compilation and, therefore, our approach can be applied to legacy binaries. A
third advantage arises from the use of FPGAs: we showed (in [10]) how a basic EED
platform can be implemented using FPGA hardware, leaving the standard processor

components unmodified, and how the FPGA can be used to optimize the
computations involved in decryption and integrity-checking. Furthermore, because
the FPGA is reprogrammable, encryption algorithms can be changed post-deployment
and because FPGAs are widely used, chip manufacturers are increasing resistance to
physical attacks. One caveat of our approach is that the Guard module requires
knowledge of the cache block size and the address where the program is loaded,
because address offsets are part of the labels. Typically in embedded systems this
information is known prior to deployment. However, our approach may require a
special secure loader for complex servers or for desktop computers.

Implementing the CODESSEAL concept required the design of a suite of techniques
to implement the system. The suite of techniques provided were based on three
parameters: (i) the technique used to generate the signature and embed the label into
the code block; (ii) the granularity at which the code block is defined; and (iii)
location where the signature is stored in the case of data blocks. For each parameter,
different techniques were developed with varying security strengths and performance
overhead. These are summarized briefly in what follows next. As noted earlier, a
particularly attractive feature of the approach is that a single piece of information in
the label can detect all types of attacks. This information is the integrity signature.
This signature essentially embeds the program control flow into the binaries and thus
can prevent, and detect, code injection and changes to the program control flow that
are forced by the attacker. Similarly, the signature embedded into the data blocks can
prevent data injection and data substitution attacks. The method used to generate the
signatures, which are embedded as labels in the code block, gives rise to different
security techniques. We designed two different methods to compute the code block
signatures - (a) a SHA-1 signature and (b) a 32-bit CRC. The SHA-1 technique
results in higher security strength but incurs higher performance overhead. Next, the
granularity of the "code block" in the application code can be defined in different
ways with different impact on performance and portability. Data blocks are always
defined to be cache blocks and thus there is no decision to be made about granularity
of data blocks. We considered two granularities for code block: (a) the cache block
and (b) a basic block of code (segment of code between two branch points). These
techniques are presented in detail in publications [2,10] and [4] respectively. By
operating at the basic block granularity we can deal with program control flow
properties that are intrinsic to the application and independent of the architecture
specific parameters such as cache block size, and size of cache. This also requires that
our compiler optimizations work at a level removed from the architecture details. In
contrast, the cache block granularity implies architecture dependence, and working at
a lower level in the compiler, but simpler compiler modifications and better
performance. The basic block provides more portability but incurs larger performance
overhead. For the third parameter, the signatures can be stored inside the code block
or in a separate section of memory. Storing the signature separately results in lower
performance but requires more complexity in the cache controller hardware (inside
the FPGA). A summary of the performance is provided in Tables 1 and 2 in Appendix
A.

The combined compiler/FPGA technique can secure embedded systems that are
susceptible to a class of local attacks even under the protection of a fully
cryptographic runtime environment. Designed as a general mechanism for protecting
both instructions and data, our system achieves a high level of security, and utilizes
cache boundaries to greatly simplify the integrity checking process. The choice of
FPGA hardware as a security-enabling mechanism greatly simplifies the required
architectural modifications to a conventional CPU. Our simulations and prototyping
experiments have shown that this approach is feasible, easy to implement, and on
average adds low performance overhead to an existing cryptographic platform (see
Tables 1,2 in Appendix A). As concerns regarding security have spread from the
networking and software processing domains to the reconfigurable computing
community, we see a continuing need to evaluate the potential of reconfigurable
devices (such as FPGAs) as a trusted component in computing systems.

3 Security and Performance Tradeoffs: Region Based Security Levels.

One of our objectives was to study security and performance tradeoffs and to develop
evolvable adaptive protection schemes. Our different code, and data, protection
schemes resulted in different performance overheads and security strengths. The
reconfigurable logic enables different security techniques to be implemented in
hardware, and these different security techniques could be invoked by the software
depending on what security strength was desired by a particular software module. We
developed a model to apply different security schemes to different portions of the
code based on a rudimentary risk analysis of the application code. We explored
security driven code profiling to provide a proof of concept compiler-architecture
environment that allowed us to tradeoff the security and performance.

We proposed and designed Region-Based Security (RBS), a compiler driven
approach that combines risk-analysis and selective protection to help reduce the
overhead in encrypted execution platforms. The key idea is that each block of code
may be assessed for its vulnerability, following which protection is applied
selectively. For example, variable declarations and mathematical operations are
reportedly not as susceptible as control or data instructions. Hence, it makes sense to
accord these more susceptible instructions a higher degree of protection. We
contrasted this new approach with the standard encrypted-execution approach of
protecting the entire executable. Implementation of the concept required addition of a
risk analysis module to the compiler. This module is responsible for assessing the risk
inherent in each block of code. The focus was not on developing novel risk analysis
techniques; we assumed that any existing risk-analysis module can be used. Static
analysis of source code is performed to find the vulnerabilities and assign risk levels
to code segments - as a proof of concept, three levels were assigned: high, low and
neutral. The object code augmented with the risk levels annotated into the code is
then passed to the CODESSEAL system for assigning regions with risks. The
CODESSEAL architecture then invokes the corresponding security algorithm,
implemented on the reconfigurable logic in the hardware, during run-time.

Experimental results for the RBS technique, a summary of the results is shown in
Table 4 in Appendix A, for a small set of benchmarks, demonstrate that the execution
overhead is reduced considerably using this approach (see publication [3]). The
results showed that RBS was an effective, and because it is complementary to the
actual security mechanisms, can be implemented as an independent compiler module.
An RBS optimization also leads to lower power consumption and memory usage,
both valuable resources in embedded systems.

4 Compiler-Hardware Technique to counter Buffer Overflow Attacks

Buffer overflow attacks are widely accepted as one of the greatest threats to the
security of networked systems. Mobile embedded devices that move between
different networks and are capable of Internet connectivity present a unique challenge
due to resource constraints. In [11], the architecture and compiler techniques
developed were examined closely to develop a general solution to buffer overflow
attacks. The hardware-software co-design technique, which draws on our techniques,
was applied to combat the buffer overflow attacks. The technique does not require a
redesign of the processor core, and has no impact on software development cost and
low performance overhead. Code modification is done in the compiler tool-chain,
therefore the programmer is not burdened by the extra validation mechanisms.
Instrumentation directly on binary images was proposed in some cases, allowing for
legacy code and libraries to be seamlessly retrofitted with the new security techniques.
The special hardware modules do not require redesign of the processor core or
changes in the instruction set architecture (ISA); memory-mapped instructions
provided by the compiler/linker are used instead. The implementation of the hardware
module can be accomplished by a number of contrasting methods, such as the use of a
pre-synthesized soft core, a gateway chip that interfaces the CPU with the system bus,
or a hard core processor with FPGA (field programmable gate array) fabric.

As a natural extension to our CODESSEAL architecture, the existing processor was
augmented using the added hardware (FPGA logic) as a "Guard". The Guard
monitors all communications between the CPU and main memory. Every instruction
fetched by the CPU on an instruction cache (I-cache) miss goes through the Guard,
and all instructions fetched by the CPU from main memory are available to the Guard.
There is no processor modification; the main core does not need to be aware of the
additional verification, which takes place outside the core boundary. A simplified
view of the functionality implemented to protect the return address is:

• Upon a function call, the return address is stored in the Guard's hardware
stack.

• Upon a function's return, the Guard inserts the correct return address back to
the processor.

To provide these two steps, the Guard must be aware of both function calls and
returns. To accomplish this, the compiler needs modification. Before every function
CALL, the compiler inserts a memory-mapped "store to the Guard" instruction (push-
into-guard) to push the function's return address to the Guard's hardware stack.

Similarly, another instruction {notify_guard) is added just before every function
RETURN to trigger the Guard verification.

The performance of the technique was evaluated through simulations, using the same
simulation infrastructure used for the other techniques (see Appendix A for details on
the simulation infrastructure). Table 3, in Appendix A, summarizes the experimental
results including the performance overhead. Because the protection technique
operates on every function call, the performance penalty is highly dependent on the
number of function calls for each program.

The buffer overflow protection technique achieves a number of advantages over prior
solutions:

• It requires no modification of the processor or the underlying ISA, thus
requiring minimal system changes. Processor re-manufacturing and the re-
instrumentation of existing systems with new hardware can be very costly and
typically requires both hardware and operating system updates and changes.

• On average the technique achieved a 7% performance penalty on the
benchmarks that were tested.

• The system may require a minimal change to the operating system (as a small
additional module for the context switching), but the secure memory storage
for deeply nested stacks is handled by the Guard's encryption logic, so no
additional protection of memory management is necessary from the operating
system.

• Legacy software or libraries may be instrumented as binaries, so re-
compilation may not be necessary. This gives the opportunity to use legacy
libraries in a secure manner, even if the source code is not available.

• Programmers can use external libraries in a secure manner, without worrying
about potential vulnerabilities to buffer overflows.

• Targeted protection of potentially vulnerable pieces of code may be performed,
thus reducing the overall performance penalty.

5. FPGA Architecture Design

The key architectural concept in our approach was the use of reconfigurable logic, in
the form of Field Programmable Gate Array (FPGA) technology, to provide hardware
solutions for software security. In addition to exploring the design of the FPGA logic
to support the security techniques (discussed in [2,4,10]), complementary uses of
FPGA architectures for other secure software applications were also explored. In
particular two architectural solutions were devised and tested - (i) processor-memory
bus encryption and (ii) network intrusion detection. In [8], a processor-memory bus
encryption technique for embedded systems that requires no changes to applications
or hardware was proposed and evaluated. This technique exploits cache locking or
scratchpad memory, features present in many embedded processors, permitting the
operating system (OS) virtual memory subsystem to automatically encrypt data
belonging to protected processes as it is written to off-chip memory. In [5,6], FPGA-
based architectures for anomaly detection in network transmissions were designed.

Results show that this architecture correctly classifies attacks with detection rates
exceeding 99% and false alarms rates as low as 1.95%. Further details on these
solutions are provided below.

Network Intrusion Detection Architectures: Network Intrusion Detection Systems
(NIDSs) monitor network traffic for suspicious activity and alert the system or
network administrator. NIDSs can be classified into two types: signature detection
and anomaly or outlier detection. Signature detection, or misuse detection, searches
for well-known patterns of attacks and intrusions by scanning for pre-classified
signatures in TCP/IP packets. On the other hand, anomaly detection is used to capture
behavior that deviates from the norm and thus can be identified as malicious activity.
Since such connections are described by large set of dimensions, processing these
huge amounts of network data becomes extremely slow. Moreover, with the onset of
Gigabit networks, current generation networking components for NIDS will soon be
insufficient for numerous reasons; most notably because existing methods cannot
support high performance demands.

Field Programmable Gate Arrays (FPGAs) are an attractive medium to handle both
high throughput and adaptability to the dynamic nature of intrusion detection. In this
work, we designed an FPGA-based architecture for anomaly detection in network
transmissions (see publications [5,6]). We first developed a Feature Extraction
Module (FEM) which aims at summarizing network information to be used at a later
stage. Our FPGA implementation showed that we can achieve significant
performance improvements compared to existing software and ASIC implementations.
Then, we went one step further and demonstrated the use of Principal Component
Analysis (PCA) as an outlier detection method for NIDSs. PCA is appealing since it
effectively reduces the dimensionality of the data and therefore reduces the
computational cost of analyzing new data. In our experiments even though each
connection record has 41 features, we showed that PCA can effectively achieve over
99.9% detection rate with only 7 principal components. Results also showed that our
architecture gives false alarms rates as low as 1.95% for KDD 1999 cup data sets.

We implemented our design on a Xilinx Virtex-II Pro FPGA platform, taking
advantage of extensive pipelining and hardware parallelism. Overall, our
architectures for FEM and PCA outlier analysis achieve up to 21.25 Gbps and 24.72
Gbps of core throughput, respectively, clocking at a frequency of 96.56 MHz. Hence
we show that an FPGA implementation of NIDS not only gives ample flexibility but
also satisfy the needs of Gigabit connections.

5. Personnel Supported

At The George Washington University:
o Professor Bhagi Narahari. Supported in part during summer months.

10

o Professor Rahul Simha. Supported in part during summer months.
o Dr. Olga Gelbart, graduate (doctoral) student, graduated 2008.
o Mr. Eugen Leontie, graduate (doctoral) student.

At Northwestern University:
o Professor Alok Choudhary. Supported in part during summer months.
o Prof. Joseph Zambreno, former doctoral student, graduated 2006, currently on the

faculty at Iowa State University,
o Abhisek Das, Graduate student.
o D. Nguyen. Graduate student.

6. Publications

Copies of the publications listed below are also available at
http://www.seas.gwu.edu/~narahari/afosr/

1. Secure Execution with Components from Untrusted Foundries. R. Simha,
B. Narahari, J.Zambreno, A. Choudhary. In Proc. of Advanced Networking
and Communications Hardware Workshop (ANCHOR 2006), held in
Conjunction with Int. Symposium on Computer Architecture (ISCA), May
2006, Boston.

2. "Compiler-FPGA Technique to Detect Memory Spoofing in Encrypted-
Execution Platforms", E. Leontie, O. Gelbart, B. Narahari, Proc. 6'b

Annual Security Conference, April 2007, Las Vegas.
3. "Compiler directed region-based security for low overhead software

protection", Vijay Kongubangaram, Olga Gelbart, Rahul Simha, Bhagi
Narahari. In Proc. 3r IEEE International Symposium on Dependable,
Autonomic and Secure Computing (IEEE-DASC 2007), Sept., 2007.

4. "A compiler-hardware approach to software protection for embedded
systems", Olga Gelbart, Eugen Leontie, Bhagirath Narahari, Rahul Simha.
In International Journal of Computers and Electrical Engineering, March
2009.

5. "An Efficient FPGA Implementation of Principal Component Analysis
based Network Intrusion Detection System." A. Das, S. Misra, S. Joshi, J.
Zambreno, G. Memik and A. Choudhary. In Proc. of Design, Automation
& Test in Europe (DATE), Munich, Germany, March 2008.

6. "An FPGA-based Network Intrusion Detection Architecture.", A. Das , D.
Nguyen, J. Zambreno, G. Memik, and A. Choudhary. IEEE Transactions
on Information Forensics and Security (TIES), Volume 3, Issue 1, March
2008.

7. "Architectural Support for Securing Application Data in Embedded
Systems", E. Leontie, O. Gelbart, B. Narahari, R. Simha. In Proc. IEEE
Conf. Electronics and Info Tech (EIT), Iowa, May 2008.

11

8. "Operating system controlled processor-memory bus encryption". X. Chen,
R.P. Dick, A. Choudhary. In Proc. of Design, Automation & Test in
Europe (DATE), Munich, Germany, March 2008.

9. "Providing Secure Execution Environments with a last line of defense
against Trojan circuit attacks". G. Bloom, B. Narahari, R. Simha, J.
Zambreno. Submitted to Computers and Security Journal. Under review.

10. "Detecting memory spoofing in secure embedded systems using cache-
aware FPGA guards." E. Leontie, O. Gelbart, B. Narahari, R. Simha, J.
Zambreno. Under submission to ACM Transactions on Embedded
Systems.

11. "A Compiler-hardware technique for protecting against buffer overflow
attacks on embedded systems." E. Leontie, O. Gelbart, G. Bloom, B.
Narahari, R. Simha. Under submission to IEEE Transactions on
Information Forensics and Security.

Doctoral dissertations:

• J. Zambreno. Compiler and Architectural Approaches to Software Protection and
Security. Ph.D. Thesis. Electrical and Computer Engineering. Northwestern
University, June 2006.

• Olga Gelbart. Integrated Hardware/Software Approaches to Software Security for
Embedded Systems, D.Sc, Computer Science, The George Washington
University. May 18.2008.

7. Interactions/Transitions

Presentation of papers at various conferences.
Alok Choudhary, "Compiler and Architectural Approaches to Software Protection
and Security," talk at Intel Corp, July 17, 2006.
Bhagi Narahari, J. Zambreno, "Protecting Critical Computing Systems: A
Hardware/Software co-design approach", presented at Institute for Defense
Analysis (IDA), March 2006.
Bhagi Narahari, "Hardware/Software co-design approaches to software security",
presented to Network Defense Seminar, George Washington University, October
2006.
Bhagi Narahari, "Integrated Software-hardware approaches to Software Security",
presented at Cyber Defense conference, Rome Air Force Labs, May 2007.
Bhagi Narahari, "Hardware/Software co-design approaches to software security",
presented at Intel Corp, R&D Labs, Bangalore, India, December 2006.
Bhagi Narahari, "Hardware/Software co-design approaches to software security",
presented at HP Labs, Bangalore, India, December 2006.
Rahul Simha, participated in the Digital Identity Systems Workshop at
Polytechnic University in Brooklyn, September 2007.
Presentation by GWU group to visitors from Rome Labs in 2008.

12

The Pis at The George Washington University have been exploring collaborations
with Intelligent Automation Inc (IAI) and with an engineer from Thales
Communication Inc (a provider of tactical communications equipment to the US
military and government). Currently no technology transfer initiatives have been
identified, but discussions will continue.

New Discoveries, inventions, or patent disclosures. None. We will explore
the possibility of patenting the FPGA implementations of secure coprocessing.

Honors/Awards
• Eugen Leontie, a graduate student at The George Washington University,

received the Department of Computer Science's Hekimian award in 2008 for his
research in architecture support for software security.

13

Appendix A: Experimental Platform and Results.

We implemented and evaluated our techniques through extensive simulations using the
cycle accurate Simplescalar processor simulator. Our compiler techniques were
implemented by modifying the GCC compiler.

Simulation Infrastructure.

Every tool and software we have chosen to use is open-source. The project is developed
on Red Hat and Fedora Core Linux systems. We use the GCC [128] 3.3 cross-compiler,
configured to produce statically-linked ARM executables, as our software development
environment and the SimpleScalar 3.0 tool to simulate an ARM processor augmented
with an FPGA. The SimpleScalar tool was set up to run with or without branch prediction,
with 32-byte cache line size, and with various protection methods described in Chapter 4
and implemented in the FPGA.

Using an open-source compiler enabled us to add our own modifications to it in order to
embed software protection mechanisms at compile-time. GCC provides a Control Flow
Graph (CFG) data structure for the currently-compiling program. Since the CFG breaks
up the program into basic blocks, it provides us a way of embedding control flow
information (basic block labels) as well as integrity protection information (a SHA-1 hash
or a CRC in this case) at the beginning of each basic block at compile-time. Using the
compiler, we can also encrypt our software, by applying an encryption algorithm (AES in
our case) to each 128-bit sized block of instructions. We are using the compiler in a
cross-compiler mode with static linking to produce static executables for the arm-linux
target with embedded protection information. Static executables are used since they
encapsulate the entire control flow and function call graphs in one file.

We also used an open-source simulator for the ARM processor: SimpleScalar. We are
simulating an ARM 1020E 400 MHz processor. We have augmented the simulator code
with an implementation of an FPGA, which is how the Guard is implemented in
hardware. We are using the characteristics of a Xilinx Virtex-II Pro FPGA at 200 MHz as
our FPGA implementation. Thus every FPGA computation cycle that does not overlap
processor execution creates 2 processor penalty cycles. The FPGA is positioned between
the LI instruction and data caches and the main memory. The external bus and main
memory are assumed to run at 100 MHz. On every instruction or data cache miss, the
FPGA is called and an instruction block is fetched into the FPGA. The block is verified
and only then is passed to the processor's appropriate cache. The FPGA contains all
implementations of the instruction verification mechanisms as well as the implementation
of encryption and hashing algorithms. It also contains its own on-board memory of up to
3MB.

We have implemented our instruction protection scheme using two suites of
bench-marks: MiBench and DIS MiBench suite of benchmarks has been specifically
designed for a wide range of embedded applications: from image processing to network
and tree analysis algorithms. We have chosen several benchmarks from different

14

categories to show that our scheme works for a variety of applications. The DIS Suite is a
data-intensive suite of benchmarks designed to contain a large number of memory
accesses. We have chosen these benchmarks particularly to investigate how well they can
function under the data protection mechanisms.

The penalty cycles were estimated for instruction fetches assuming a 32-byte or
64 byte cache block. We note that multiple cache blocks may need to be accessed by the
FPGA pre-fetch logic in case of a basic block that spans across multiple cache blocks.
Recent FPGA implementations of AES manage to achieve high throughput by pipelining
the execution path and unrolling techniques. The AES and SHA-1 implementations
chosen by our model is one that minimizes the operational latency since high throughput
is not the target in this architecture.

The timing requirements for implementing these algorithms on a Xilinx FPGA
were obtained from commercial implementations.The 10 FPGA cycles for AES
encryption/decryption translates into 20 processor penalty cycles that are added to the
cache miss penalty. The FPGA implementation of SHA-1 takes 82 FPGA cycles which
translates to 164 processor cycles. In the case where CRC is used in place of SHA-1, the
guard takes 2 cycles. The other Guard processing time requirements is 1 cycle for address
validation. The space utilization by the fpga guard, to implement the various algorithms,
is low compared to the amount of logic available on the chips that we considered. For
example, the AES-decryption takes 284 slices out of 10K available slices on a Xilinx
Virtex2Pro.

Experimental Results.

Table 1 summarizes the performance of the different schemes on a set of selected from
the Mi-Bench suite and the Data Intensive Systems (DIS) suite of benchmarks. The table
shows the performance overhead, measured as the percentage increase in execution time
(when compared to encrypted execution) of the benchmark, for each of our schemes. The
first two columns (to the right of the benchmark) show the performance for the Cache
Block granularity. The next four columns show the performance for the Basic Block
granularity - using the CRC and SHA-1 signature schemes. For both granularities, we
examined the two cases where signatures are stored (a) internally in the code block and (b)
external to the code block in a separate portion of memory. For both the Cache block and
Basic block schemes, storing signatures internally led to higher performance overhead.
Comparing the last four columns, we observed that while SHA-1 provides the higher
security strength than CRC, it incurs a much higher overhead due to both the time
required to compute SHA-1 on the FPGA and the amount of space needed to store the
160-bit signature.

We implemented and tested the data protection schemes. Since data is fetched on cache
misses, we only dealt with a cache block granularity for data protection. We designed
three levels of data protection schemes: (a) only encryption of data, (b) encryption with
data block labels, and (c) encryption, labels and signature. Only encryption does not
prevent data injection and substitution attacks. To prevent data injection we require
address labels and signatures, analogous to code protection schemes. We note that an
attack where stale data is substituted is still possible under our current data protection

15

schemes, and our ongoing efforts are focusing on embedding a timestamp into the data.
The performance overhead is once again measured as the percentage increase in
execution time (when compared to encrypted execution) of the benchmark. Table 2
summarizes the performance overhead of our data protection schemes for some of the
benchmarks. We observe that signatures incur larger overheads, and the overall
performance overheads are within acceptable ranges.

For the simulation of the buffer overflow protection technique, we again used the
SimpleScalar[14] simulation suite and the gcc cross-compiler for the ARM processor.
Our processor contained one level of instruction and data caches, each 32KB in size, 32-
way associative, with 32-byte cache lines. The simulator used was sim-outorder. The
processor chosen was for an average embedded system: a 400MHz processor augmented
with a 200MHz FPGA (for the Guard), and an external bus and memory running at
100MHz. We tested the simulation with benchmarks from MiBench [15] and Data
Intensive Systems (DIS) [16]. Table 3 provides a summary of the experimental results;
the baseline configuration corresponds to no protection.

For evaluating the adaptive security scheme - the Region based security (RBS) scheme -
we implemented the scheme in the gcc compiler. The RBS scheme was then tested on our
simulation infrastructure. Table 4 summarizes some of the key results of our experiments.
Two security schemes are considered - a SHA-1 signature scheme and a CRC scheme.
While SHA-1 has higher security strength, it also incurs a larger penalty. The
performance penalties incurred for each security scheme is shown in the table for various
benchmarks. The RBS based adaptive security scheme incurs lower penalty in most of
the benchmarks.

16

Table 1: Performance of Code Protection Techniques

Cache Block Labels Basic Block Labels

BenchMarks (taken from
MI Bench benchmark
suite and Data Intensive
Systems, DIS, suite)

Internal
Storage
(Labels

Stored in
the Cache

Block)

External
storage
(Labels

interleaved
with cache
blocks and

stored
separate from

CRC SHA-1

External
storage

(Labels stored
separate from
code block)

Internal
storage
(Labels
stored

inside code
block)

External Storage
(Signature, and

label, stored
separate from
code block)

Internal storage
(Signature, and
labels, stored in

code block)

Bitcount 7.55 codgbjock) 0.02 9.74 0.18 47.40

Crc 8.02 0.04 0.02 17.02 0.15 99.15

Dijkstra 3.89 3.94 0.02 11.57 0.54 58.01

Fft inv 5.23 5.26 0.08 14.08 3.51 47.54

Fft 5.95 2.87 0.08 13.35 1.25 39.16

22.10 Sha 9.03 0.16 0.07 5.24 0.48

Stringsearch 10.21 12.5 5.68 20.54 38.30 110.48

susan .corners 9.01 9.72 1.72 7.79 11.54 26.24

Susan.edges 8.6 5.23 0.94 5.69 0.08 18.40

24.59

11.02

susan.smoothing 8.28 0.17 0.04 7.79 0.30

Field 0.03 0.04 0.01 2.28 0.08

Pointer 0.04 0.03 0.01 6.74 0.12 33.72

Transitive 9.89 9.3 5.28 12.64 35.24 70.50

Update 18.53 16.7 9.24 23.11 62.21 114.28

Average 7.45 4.72 1.66 11.26 11 51.61

17

Benchmark Encryption Only Encryption & Labels Encryption, Hashing, Labels
Bitcount 0.02 0.024 0.07

Crc 0.02 0.021 0.061
Djikstra 5.27 5.50 15.61

Fft 3.80 3.89 10.71
Sha 0.10 0.11 0.30

Stringsearch 9.74 10.22 29.63
Field 0.027 0.028 0.083

Transitive 4.72 4.96 14.27
Update 9.70 10.18 29.39

Table 2: Percentage Increase in Execution Time using Data Protection.

Benchmark baseline
Function

Call
Frequency

Function
calls

Function
Returns

Stack
protection
(Cycles)

%penalty

bitcount 1985181143 0.74 14625715 14625650 2159563042 8.78
crc 2661916962 3 79853258 79853236 3407158679 28
dijkstra 629872896 0.1 648251 648238 634215728 0.69
fft 634777292 1.02 6478257 6478223 685360839 7.97
fft(inv) 358609172 0.7 2494613 2494579 373084425 4.04
patricia 916560445 0.92 8446864 8446851 1020045067 11.29
sha 472226975 0.02 105630 105609 474143316 0.41
stringsearch 9012582 0.45 40799 40787 9248271 2.62
susan smooth 1216801457 0.01 113712 113690 1217489061 0.06
susan edge 174595349 0.06 97364 97345 175464647 0.5
susan corners 65129481 0.02 13143 13111 65203728 0.11
field 1275431654 0.06 788032 788016 1283041545 0.6
pointer 409127443 0.53 2160907 2160895 426517463 4.25
tc 31323833 0.06 19480 19468 31528118 0.65
update 5359253 1.1 58806 58794 5908967 10.26

Table 3: Performance of Buffer Overflow Protection Technique

Benchmark % performance penalty
Entire
system
(internal
storage,
SHA-1)

RBS-
Based
approach

Entire
System
(internal
storage,
CRC)

RBS-
Based
approach

Entire
System
(external
storage)

RBS based
approach

bitcount 47.3 22.46 9.46 4.11 0.10 0.09
crc 99.08 54.06 17.01 7.39 0.08 0.07
dijkstra 56.96 27.04 11.41 4.96 0.48 0.48
fft 41.2 23.52 12.42 5.40 1.23 1.16
patricia 1631.26 497.7 43.47 18.89 0.39 0.34
sha 21.83 4.28 5.20 2.26 0.27 0.24
stringsearch 89.13 34.42 16.86 7.33 20.05 17.56
susan 22.12 11.9 7.38 3.20 5.80 5.17
field 11.92 3.04 2.73 1.19 0.04 0.03
pointer 38.85 17.82 8.23 3.57 0.16 0.15
transitive 31.15 9.95 7.12 3.09 8.72 7.92
update 56.64 39.02 15.71 6.83 18.36 16.61

Table 4: Performance of Region-based Security Technique

19

