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1. Executive Summary. 

The objective of this project was to develop integrated hardware-software approaches to 
address attacks on encrypted execution and data. These are attacks on highly-encrypted 
systems from a resourceful adversary who has physical access to the system and may not 
need to decrypt encrypted software. The attacks are based on exploiting structure - in 
encrypted instruction streams and data-that can be uncovered by direct manipulation of 
hardware in a well-equipped laboratory. 

To achieve the goal, research was conducted to integrate and advance current techniques 
in compilers, hardware architectures, and security to develop novel techniques to protect 
against physical attacks on encrypted embedded systems. Specific objectives included 

• The investigation of a threat model under physical capture of system 
• The design of hardware architectures, to provide secure systems, using 

commercial off-the-shelf reconfigurable logic technology without requiring new 
processor designs 

• The development of integrated compiler-hardware techniques to protect 
application code and data against physical attacks 

• The study of security and performance tradeoffs and the development of adaptive 
software and hardware techniques 

• The provision of cycle accurate simulation infrastructure to evaluate secure 
hardware techniques. 

20090325300 



The innovation in the approach was in exploiting the power of integrated software- 
hardware methods. The hardware side of the innovation comes from using reconfigurable 
logic to implement security techniques in hardware. The reconfigurable logic in 
hardware, when combined with the ability of the compiler to instrument the code, can be 
used in powerful ways to strengthen the security of computing platforms. 

Several techniques were proposed and designed to address these objectives. The research 
involved faculty and graduate students at the doctoral level, and partly supported two 
doctoral dissertations. 

2. Status of Effort. 

The research proposed involved a number of research areas: (1) protection against attacks 
on application code and application data; (2) use of reconfigurable logic to design secure 
hardware; (3) integration of hardware-compiler-security techniques; (4) study of security 
and performance tradeoffs; and (5) development of cycle accurate compiler and simulator 
infrastructure. The study of the threat model, representing an understanding of the types 
of attacks, provided us with an insight into the kinds of security techniques needed for 
our system. 

An integrated hardware-software approach was taken to develop a system to combat the 
types of attacks considered, i.e., attacks on encrypted execution and data platforms (EED 
attacks). A system architecture (called CODESSEAL) was designed and a number of 
techniques were designed and tested for protection against attacks on application code 
and data. The hardware side of the innovation comes from using a secure reconfigurable 
logic hardware component in the form of Field Programmable Gate Arrays (FPGAs), a 
technology that has proven enormously successful in performance enhancement but that 
had not been exploited for security. We showed that the dynamic reconfigurability of 
FPGAs, when combined with the ability of a compiler to instrument encrypted code, can 
be used in powerful ways to strengthen security of computing platforms. The software 
side of this project's innovation claims can be found in the compiler algorithms 
developed to generate encrypted code, along with special instructions to the FPGA 
targeted towards EED attacks. 

A number of different techniques were designed and evaluated to protect against code 
and data attacks. The algorithms required for each protection technique were designed 
and implemented, the compiler was modified, and a cycle accurate simulation 
infrastructure was implemented to measure the performance overhead of the proposed 
system. The low performance overheads validated our approach. 

One of the project objectives was to study security and performance tradeoffs and to 
develop evolvable adaptive protection schemes. We developed a model to apply different 
security schemes to different portions of the code based on a risk analysis of the 
application code. Based on experimental and theoretical analysis, the various security 
techniques provide different levels of protection against various structural (i.e., code) 



attacks while incurring different amounts of performance overhead and architectural 
complexity. The key architectural concept of our approach-the use of reconfigurable 
logic, in the form of FPGA technology, to provide hardware solutions for software 
security-was also applied to solve additional security problems such as buffer overflow 
and network intrusion detection. 

Our analysis of EED attacks provided a deeper understanding of the vulnerabilities of 
EED systems and therefore the need to protect against such attacks. In contrast to past 
approaches, we have taken an integrated software-hardware co-design approach thereby 
enabling us to develop protection mechanisms at the code producer level (the compiler) 
and the code consumer level (the processor). Our solutions presented novel techniques to 
the problem of physical attacks on encrypted systems without re-designing the processor. 
By utilizing FPGA technology for security, our research opened up new directions for 
providing adaptive security protocols based on application needs thereby introducing the 
problem of tradeoff of security and performance. 

3. Summary of Achievements. 

We made progress on several fronts in the project. Below we itemize these achievements 
by topic and summarize the main results obtained. More detailed results are available in 
the papers listed in the publications section, and available at 
http://www.seas.awu.edu/--narahari/afosr/ along with the software developed as part of 
the research. 

1. Threat Models 

An investigation was conducted of the types of attacks that are possible on an 
encrypted execution and data (EED) platform when the adversary has captured the 
device (or has physical access to the device) and has the ability to snoop on the 
system bus and inject their code or data into the processor. Two broad types of attacks 
are possible: attacks on structural integrity and attacks on the data. For each type of 
attack, how an attacker could disrupt the execution was studied. These EED attacks 
can be briefly summarized as follows: 

o    Code injection/Execution disruption attacks where an attacker tries to modify 
or replace a portion of the application code. 

o   Instruction replay attacks, where the attacker tries to reissue a block of 
encrypted instructions from the application code. 

o    Control flow attacks, where the attacker tries to disrupt the correct control 
flow of the program by injecting application code blocks that are different 
from what were requested by the program. 

o    Data injection/modification attacks, wherein the attacker attempts to inject 
their data to alter or observe the application code behavior. 

o   Data substitution attacks, wherein the attacker tries to substitute a requested 
data block with another data block produced by the application including stale 
data. 



The domain of embedded systems and applications includes avionics, 
communications equipment, unmanned vehicles or devices, sensors and electronic 
control systems. In a typical attack of the kind addressed in this research, a device is 
captured and probed in a sophisticated laboratory. Such an attack can result in loss of 
data (such as control settings, coordinates, and cryptographic keys), loss of 
intellectual property and the ceding of informational advantage. In addition, such an 
attack can be taken further to disrupt legitimate operation of the device. For example, 
a communications or control device could be replaced with a tampered version that 
could present an active and disruptive threat during operation. In all these cases, it is 
the combination of vulnerabilities in hardware-usually embedded processors-and 
software that forms the basis of these attacks. 

2. Architecture and Hardware-Software Framework. 

Much of the prior work in the field of encrypted execution was either susceptible to 
the physical attacks addressed in this research, i.e., EED attacks, or provided 
solutions that required re-design of the processor core. Requiring a re-design of the 
processor incurs a high cost and requires a buy-in from the chip manufacturers. The 
goal of this project was to provide architectural solutions which did not require 
processor redesign. This project combines compiler and architecture techniques to 
provide a solution that can be built using commercial off the shelf technology 
(COTS). A system architecture - the Compiler Development Suite for Secure 
Applications (CODESSEAL) - was designed and its performance was evaluated 
using a cycle accurate processor simulator (see publications [2,4,7,10]). 

The approach, i.e., the CODESSEAL system, augments the back-end of the compiler 
to instrument each code block of the executable code (and data) with security-related 
labels that are then examined by a secure hardware component that sits between 
memory and the processor. The hardware platform we targeted is a standard 
processor coupled with an on-chip reconfigurable fabric - this enables us to leverage 
commercially available Field Programmable Gate Array (FPGA) platforms such as 
those from the Xilinx Virtex II Pro family. Our main technique works as follows. 
First, the back-end of the compiler module instruments the executable code by 
inserting integrity checking labels into each code block. Second, the secure hardware 
component implemented in the FPGA logic, which we call the Guard, intercepts 
cache block read and write requests from the memory controller. An overview of our 
architecture is shown in Fig. 1. The Guard processes each encrypted code block, 
using the inserted labels to conduct authorization and integrity checking to detect and 
prevent memory spoofing attacks, and passes on the decrypted code block to the 
processor's cache. We assume that both compilation and FPGA configuration occur 
in a safe location and that the FPGA cannot be manipulated by the attacker once 
configured. Figure 1 shows the overview of our system - Figure 1(a) shows the 
infrastructure and Figure 1(b) shows the hardware architecture. The overall 
algorithm for process with the roles played by the compiler and the architecture are 
illustrated in Figure 2. 
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Figure 2: The Process: Compiler and Architecture(FPGA) Roles 

The contribution is the approach itself: by relying on the secure hardware component, 
i.e, the Guard, our approach can accelerate the execution of encrypted programs in a 
secure environment with low overheads and without requiring new processor designs. 
One particularly attractive feature of our approach is that a single piece of 
information (the signature encapsulated in the label) is used to detect all three types of 
memory spoofing attacks. A second advantage is that the labels are easily inserted 
post-compilation and, therefore, our approach can be applied to legacy binaries. A 
third advantage arises from the use of FPGAs: we showed (in [10]) how a basic EED 
platform can be implemented using FPGA hardware, leaving the standard processor 



components unmodified, and how the FPGA can be used to optimize the 
computations involved in decryption and integrity-checking. Furthermore, because 
the FPGA is reprogrammable, encryption algorithms can be changed post-deployment 
and because FPGAs are widely used, chip manufacturers are increasing resistance to 
physical attacks. One caveat of our approach is that the Guard module requires 
knowledge of the cache block size and the address where the program is loaded, 
because address offsets are part of the labels. Typically in embedded systems this 
information is known prior to deployment. However, our approach may require a 
special secure loader for complex servers or for desktop computers. 

Implementing the CODESSEAL concept required the design of a suite of techniques 
to implement the system. The suite of techniques provided were based on three 
parameters: (i) the technique used to generate the signature and embed the label into 
the code block; (ii) the granularity at which the code block is defined; and (iii) 
location where the signature is stored in the case of data blocks. For each parameter, 
different techniques were developed with varying security strengths and performance 
overhead. These are summarized briefly in what follows next. As noted earlier, a 
particularly attractive feature of the approach is that a single piece of information in 
the label can detect all types of attacks. This information is the integrity signature. 
This signature essentially embeds the program control flow into the binaries and thus 
can prevent, and detect, code injection and changes to the program control flow that 
are forced by the attacker. Similarly, the signature embedded into the data blocks can 
prevent data injection and data substitution attacks. The method used to generate the 
signatures, which are embedded as labels in the code block, gives rise to different 
security techniques. We designed two different methods to compute the code block 
signatures - (a) a SHA-1 signature and (b) a 32-bit CRC. The SHA-1 technique 
results in higher security strength but incurs higher performance overhead. Next, the 
granularity of the "code block" in the application code can be defined in different 
ways with different impact on performance and portability. Data blocks are always 
defined to be cache blocks and thus there is no decision to be made about granularity 
of data blocks. We considered two granularities for code block: (a) the cache block 
and (b) a basic block of code (segment of code between two branch points). These 
techniques are presented in detail in publications [2,10] and [4] respectively. By 
operating at the basic block granularity we can deal with program control flow 
properties that are intrinsic to the application and independent of the architecture 
specific parameters such as cache block size, and size of cache. This also requires that 
our compiler optimizations work at a level removed from the architecture details. In 
contrast, the cache block granularity implies architecture dependence, and working at 
a lower level in the compiler, but simpler compiler modifications and better 
performance. The basic block provides more portability but incurs larger performance 
overhead. For the third parameter, the signatures can be stored inside the code block 
or in a separate section of memory. Storing the signature separately results in lower 
performance but requires more complexity in the cache controller hardware (inside 
the FPGA). A summary of the performance is provided in Tables 1 and 2 in Appendix 
A. 



The combined compiler/FPGA technique can secure embedded systems that are 
susceptible to a class of local attacks even under the protection of a fully 
cryptographic runtime environment. Designed as a general mechanism for protecting 
both instructions and data, our system achieves a high level of security, and utilizes 
cache boundaries to greatly simplify the integrity checking process. The choice of 
FPGA hardware as a security-enabling mechanism greatly simplifies the required 
architectural modifications to a conventional CPU. Our simulations and prototyping 
experiments have shown that this approach is feasible, easy to implement, and on 
average adds low performance overhead to an existing cryptographic platform (see 
Tables 1,2 in Appendix A). As concerns regarding security have spread from the 
networking and software processing domains to the reconfigurable computing 
community, we see a continuing need to evaluate the potential of reconfigurable 
devices (such as FPGAs) as a trusted component in computing systems. 

3 Security and Performance Tradeoffs: Region Based Security Levels. 

One of our objectives was to study security and performance tradeoffs and to develop 
evolvable adaptive protection schemes. Our different code, and data, protection 
schemes resulted in different performance overheads and security strengths. The 
reconfigurable logic enables different security techniques to be implemented in 
hardware, and these different security techniques could be invoked by the software 
depending on what security strength was desired by a particular software module. We 
developed a model to apply different security schemes to different portions of the 
code based on a rudimentary risk analysis of the application code. We explored 
security driven code profiling to provide a proof of concept compiler-architecture 
environment that allowed us to tradeoff the security and performance. 

We proposed and designed Region-Based Security (RBS), a compiler driven 
approach that combines risk-analysis and selective protection to help reduce the 
overhead in encrypted execution platforms. The key idea is that each block of code 
may be assessed for its vulnerability, following which protection is applied 
selectively. For example, variable declarations and mathematical operations are 
reportedly not as susceptible as control or data instructions. Hence, it makes sense to 
accord these more susceptible instructions a higher degree of protection. We 
contrasted this new approach with the standard encrypted-execution approach of 
protecting the entire executable. Implementation of the concept required addition of a 
risk analysis module to the compiler. This module is responsible for assessing the risk 
inherent in each block of code. The focus was not on developing novel risk analysis 
techniques; we assumed that any existing risk-analysis module can be used. Static 
analysis of source code is performed to find the vulnerabilities and assign risk levels 
to code segments - as a proof of concept, three levels were assigned: high, low and 
neutral. The object code augmented with the risk levels annotated into the code is 
then passed to the CODESSEAL system for assigning regions with risks. The 
CODESSEAL architecture then invokes the corresponding security algorithm, 
implemented on the reconfigurable logic in the hardware, during run-time. 



Experimental results for the RBS technique, a summary of the results is shown in 
Table 4 in Appendix A, for a small set of benchmarks, demonstrate that the execution 
overhead is reduced considerably using this approach (see publication [3]). The 
results showed that RBS was an effective, and because it is complementary to the 
actual security mechanisms, can be implemented as an independent compiler module. 
An RBS optimization also leads to lower power consumption and memory usage, 
both valuable resources in embedded systems. 

4 Compiler-Hardware Technique to counter Buffer Overflow Attacks 

Buffer overflow attacks are widely accepted as one of the greatest threats to the 
security of networked systems. Mobile embedded devices that move between 
different networks and are capable of Internet connectivity present a unique challenge 
due to resource constraints. In [11], the architecture and compiler techniques 
developed were examined closely to develop a general solution to buffer overflow 
attacks. The hardware-software co-design technique, which draws on our techniques, 
was applied to combat the buffer overflow attacks. The technique does not require a 
redesign of the processor core, and has no impact on software development cost and 
low performance overhead. Code modification is done in the compiler tool-chain, 
therefore the programmer is not burdened by the extra validation mechanisms. 
Instrumentation directly on binary images was proposed in some cases, allowing for 
legacy code and libraries to be seamlessly retrofitted with the new security techniques. 
The special hardware modules do not require redesign of the processor core or 
changes in the instruction set architecture (ISA); memory-mapped instructions 
provided by the compiler/linker are used instead. The implementation of the hardware 
module can be accomplished by a number of contrasting methods, such as the use of a 
pre-synthesized soft core, a gateway chip that interfaces the CPU with the system bus, 
or a hard core processor with FPGA (field programmable gate array) fabric. 

As a natural extension to our CODESSEAL architecture, the existing processor was 
augmented using the added hardware (FPGA logic) as a "Guard". The Guard 
monitors all communications between the CPU and main memory. Every instruction 
fetched by the CPU on an instruction cache (I-cache) miss goes through the Guard, 
and all instructions fetched by the CPU from main memory are available to the Guard. 
There is no processor modification; the main core does not need to be aware of the 
additional verification, which takes place outside the core boundary. A simplified 
view of the functionality implemented to protect the return address is: 

• Upon a function call, the return address is stored in the Guard's hardware 
stack. 

• Upon a function's return, the Guard inserts the correct return address back to 
the processor. 

To provide these two steps, the Guard must be aware of both function calls and 
returns. To accomplish this, the compiler needs modification. Before every function 
CALL, the compiler inserts a memory-mapped "store to the Guard" instruction (push- 
into-guard) to push the function's return address to the Guard's hardware stack. 



Similarly, another instruction {notify_guard) is added just before every function 
RETURN to trigger the Guard verification. 

The performance of the technique was evaluated through simulations, using the same 
simulation infrastructure used for the other techniques (see Appendix A for details on 
the simulation infrastructure). Table 3, in Appendix A, summarizes the experimental 
results including the performance overhead. Because the protection technique 
operates on every function call, the performance penalty is highly dependent on the 
number of function calls for each program. 

The buffer overflow protection technique achieves a number of advantages over prior 
solutions: 

• It requires no modification of the processor or the underlying ISA, thus 
requiring minimal system changes. Processor re-manufacturing and the re- 
instrumentation of existing systems with new hardware can be very costly and 
typically requires both hardware and operating system updates and changes. 

• On average the technique achieved a 7% performance penalty on the 
benchmarks that were tested. 

• The system may require a minimal change to the operating system (as a small 
additional module for the context switching), but the secure memory storage 
for deeply nested stacks is handled by the Guard's encryption logic, so no 
additional protection of memory management is necessary from the operating 
system. 

• Legacy software or libraries may be instrumented as binaries, so re- 
compilation may not be necessary. This gives the opportunity to use legacy 
libraries in a secure manner, even if the source code is not available. 

• Programmers can use external libraries in a secure manner, without worrying 
about potential vulnerabilities to buffer overflows. 

• Targeted protection of potentially vulnerable pieces of code may be performed, 
thus reducing the overall performance penalty. 

5. FPGA Architecture Design 

The key architectural concept in our approach was the use of reconfigurable logic, in 
the form of Field Programmable Gate Array (FPGA) technology, to provide hardware 
solutions for software security. In addition to exploring the design of the FPGA logic 
to support the security techniques (discussed in [2,4,10]), complementary uses of 
FPGA architectures for other secure software applications were also explored. In 
particular two architectural solutions were devised and tested - (i) processor-memory 
bus encryption and (ii) network intrusion detection. In [8], a processor-memory bus 
encryption technique for embedded systems that requires no changes to applications 
or hardware was proposed and evaluated. This technique exploits cache locking or 
scratchpad memory, features present in many embedded processors, permitting the 
operating system (OS) virtual memory subsystem to automatically encrypt data 
belonging to protected processes as it is written to off-chip memory. In [5,6], FPGA- 
based architectures for anomaly detection in network transmissions were designed. 



Results show that this architecture correctly classifies attacks with detection rates 
exceeding 99% and false alarms rates as low as 1.95%. Further details on these 
solutions are provided below. 

Network Intrusion Detection Architectures: Network Intrusion Detection Systems 
(NIDSs) monitor network traffic for suspicious activity and alert the system or 
network administrator. NIDSs can be classified into two types: signature detection 
and anomaly or outlier detection. Signature detection, or misuse detection, searches 
for well-known patterns of attacks and intrusions by scanning for pre-classified 
signatures in TCP/IP packets. On the other hand, anomaly detection is used to capture 
behavior that deviates from the norm and thus can be identified as malicious activity. 
Since such connections are described by large set of dimensions, processing these 
huge amounts of network data becomes extremely slow. Moreover, with the onset of 
Gigabit networks, current generation networking components for NIDS will soon be 
insufficient for numerous reasons; most notably because existing methods cannot 
support high performance demands. 

Field Programmable Gate Arrays (FPGAs) are an attractive medium to handle both 
high throughput and adaptability to the dynamic nature of intrusion detection. In this 
work, we designed an FPGA-based architecture for anomaly detection in network 
transmissions (see publications [5,6]). We first developed a Feature Extraction 
Module (FEM) which aims at summarizing network information to be used at a later 
stage. Our FPGA implementation showed that we can achieve significant 
performance improvements compared to existing software and ASIC implementations. 
Then, we went one step further and demonstrated the use of Principal Component 
Analysis (PCA) as an outlier detection method for NIDSs. PCA is appealing since it 
effectively reduces the dimensionality of the data and therefore reduces the 
computational cost of analyzing new data. In our experiments even though each 
connection record has 41 features, we showed that PCA can effectively achieve over 
99.9% detection rate with only 7 principal components. Results also showed that our 
architecture gives false alarms rates as low as 1.95% for KDD 1999 cup data sets. 

We implemented our design on a Xilinx Virtex-II Pro FPGA platform, taking 
advantage of extensive pipelining and hardware parallelism. Overall, our 
architectures for FEM and PCA outlier analysis achieve up to 21.25 Gbps and 24.72 
Gbps of core throughput, respectively, clocking at a frequency of 96.56 MHz. Hence 
we show that an FPGA implementation of NIDS not only gives ample flexibility but 
also satisfy the needs of Gigabit connections. 
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against Trojan circuit attacks". G. Bloom, B. Narahari, R. Simha, J. 
Zambreno. Submitted to Computers and Security Journal. Under review. 

10. "Detecting memory spoofing in secure embedded systems using cache- 
aware FPGA guards." E. Leontie, O. Gelbart, B. Narahari, R. Simha, J. 
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• J. Zambreno. Compiler and Architectural Approaches to Software Protection and 
Security. Ph.D. Thesis. Electrical and Computer Engineering. Northwestern 
University, June 2006. 

• Olga Gelbart. Integrated Hardware/Software Approaches to Software Security for 
Embedded Systems, D.Sc, Computer Science, The George Washington 
University. May 18.2008. 

7. Interactions/Transitions 

Presentation of papers at various conferences. 
Alok Choudhary, "Compiler and Architectural Approaches to Software Protection 
and Security," talk at Intel Corp, July 17, 2006. 
Bhagi  Narahari,   J.   Zambreno,   "Protecting  Critical  Computing   Systems:   A 
Hardware/Software  co-design  approach",  presented  at  Institute   for  Defense 
Analysis (IDA), March 2006. 
Bhagi Narahari, "Hardware/Software co-design approaches to software security", 
presented to Network Defense Seminar, George Washington University, October 
2006. 
Bhagi Narahari, "Integrated Software-hardware approaches to Software Security", 
presented at Cyber Defense conference, Rome Air Force Labs, May 2007. 
Bhagi Narahari, "Hardware/Software co-design approaches to software security", 
presented at Intel Corp, R&D Labs, Bangalore, India, December 2006. 
Bhagi Narahari, "Hardware/Software co-design approaches to software security", 
presented at HP Labs, Bangalore, India, December 2006. 
Rahul   Simha,   participated   in   the   Digital   Identity   Systems   Workshop   at 
Polytechnic University in Brooklyn, September 2007. 
Presentation by GWU group to visitors from Rome Labs in 2008. 
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The Pis at The George Washington University have been exploring collaborations 
with Intelligent Automation Inc (IAI) and with an engineer from Thales 
Communication Inc (a provider of tactical communications equipment to the US 
military and government). Currently no technology transfer initiatives have been 
identified, but discussions will continue. 

New Discoveries, inventions, or patent disclosures.  None. We will explore 
the possibility of patenting the FPGA implementations of secure coprocessing. 

Honors/Awards 
• Eugen Leontie, a graduate student at The George Washington University, 

received the Department of Computer Science's Hekimian award in 2008 for his 
research in architecture support for software security. 
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Appendix A: Experimental Platform and Results. 

We implemented and evaluated our techniques through extensive simulations using the 
cycle accurate Simplescalar processor simulator. Our compiler techniques were 
implemented by modifying the GCC compiler. 

Simulation Infrastructure. 

Every tool and software we have chosen to use is open-source. The project is developed 
on Red Hat and Fedora Core Linux systems. We use the GCC [128] 3.3 cross-compiler, 
configured to produce statically-linked ARM executables, as our software development 
environment and the SimpleScalar 3.0 tool to simulate an ARM processor augmented 
with an FPGA. The SimpleScalar tool was set up to run with or without branch prediction, 
with 32-byte cache line size, and with various protection methods described in Chapter 4 
and implemented in the FPGA. 

Using an open-source compiler enabled us to add our own modifications to it in order to 
embed software protection mechanisms at compile-time. GCC provides a Control Flow 
Graph (CFG) data structure for the currently-compiling program. Since the CFG breaks 
up the program into basic blocks, it provides us a way of embedding control flow 
information (basic block labels) as well as integrity protection information (a SHA-1 hash 
or a CRC in this case) at the beginning of each basic block at compile-time. Using the 
compiler, we can also encrypt our software, by applying an encryption algorithm (AES in 
our case) to each 128-bit sized block of instructions. We are using the compiler in a 
cross-compiler mode with static linking to produce static executables for the arm-linux 
target with embedded protection information. Static executables are used since they 
encapsulate the entire control flow and function call graphs in one file. 

We also used an open-source simulator for the ARM processor: SimpleScalar. We are 
simulating an ARM 1020E 400 MHz processor. We have augmented the simulator code 
with an implementation of an FPGA, which is how the Guard is implemented in 
hardware. We are using the characteristics of a Xilinx Virtex-II Pro FPGA at 200 MHz as 
our FPGA implementation. Thus every FPGA computation cycle that does not overlap 
processor execution creates 2 processor penalty cycles. The FPGA is positioned between 
the LI instruction and data caches and the main memory. The external bus and main 
memory are assumed to run at 100 MHz. On every instruction or data cache miss, the 
FPGA is called and an instruction block is fetched into the FPGA. The block is verified 
and only then is passed to the processor's appropriate cache. The FPGA contains all 
implementations of the instruction verification mechanisms as well as the implementation 
of encryption and hashing algorithms. It also contains its own on-board memory of up to 
3MB. 

We have implemented our instruction protection scheme using two suites of 
bench-marks: MiBench and DIS MiBench suite of benchmarks has been specifically 
designed for a wide range of embedded applications: from image processing to network 
and tree analysis algorithms.  We have chosen several benchmarks  from different 
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categories to show that our scheme works for a variety of applications. The DIS Suite is a 
data-intensive suite of benchmarks designed to contain a large number of memory 
accesses. We have chosen these benchmarks particularly to investigate how well they can 
function under the data protection mechanisms. 

The penalty cycles were estimated for instruction fetches assuming a 32-byte or 
64 byte cache block. We note that multiple cache blocks may need to be accessed by the 
FPGA pre-fetch logic in case of a basic block that spans across multiple cache blocks. 
Recent FPGA implementations of AES manage to achieve high throughput by pipelining 
the execution path and unrolling techniques. The AES and SHA-1 implementations 
chosen by our model is one that minimizes the operational latency since high throughput 
is not the target in this architecture. 

The timing requirements for implementing these algorithms on a Xilinx FPGA 
were obtained from commercial implementations.The 10 FPGA cycles for AES 
encryption/decryption translates into 20 processor penalty cycles that are added to the 
cache miss penalty. The FPGA implementation of SHA-1 takes 82 FPGA cycles which 
translates to 164 processor cycles. In the case where CRC is used in place of SHA-1, the 
guard takes 2 cycles. The other Guard processing time requirements is 1 cycle for address 
validation. The space utilization by the fpga guard, to implement the various algorithms, 
is low compared to the amount of logic available on the chips that we considered. For 
example, the AES-decryption takes 284 slices out of 10K available slices on a Xilinx 
Virtex2Pro. 

Experimental Results. 

Table 1 summarizes the performance of the different schemes on a set of selected from 
the Mi-Bench suite and the Data Intensive Systems (DIS) suite of benchmarks. The table 
shows the performance overhead, measured as the percentage increase in execution time 
(when compared to encrypted execution) of the benchmark, for each of our schemes. The 
first two columns (to the right of the benchmark) show the performance for the Cache 
Block granularity. The next four columns show the performance for the Basic Block 
granularity - using the CRC and SHA-1 signature schemes. For both granularities, we 
examined the two cases where signatures are stored (a) internally in the code block and (b) 
external to the code block in a separate portion of memory. For both the Cache block and 
Basic block schemes, storing signatures internally led to higher performance overhead. 
Comparing the last four columns, we observed that while SHA-1 provides the higher 
security strength than CRC, it incurs a much higher overhead due to both the time 
required to compute SHA-1 on the FPGA and the amount of space needed to store the 
160-bit signature. 

We implemented and tested the data protection schemes. Since data is fetched on cache 
misses, we only dealt with a cache block granularity for data protection. We designed 
three levels of data protection schemes: (a) only encryption of data, (b) encryption with 
data block labels, and (c) encryption, labels and signature. Only encryption does not 
prevent data injection and substitution attacks. To prevent data injection we require 
address labels and signatures, analogous to code protection schemes. We note that an 
attack where stale data is substituted is still possible under our current data protection 

15 



schemes, and our ongoing efforts are focusing on embedding a timestamp into the data. 
The performance overhead is once again measured as the percentage increase in 
execution time (when compared to encrypted execution) of the benchmark. Table 2 
summarizes the performance overhead of our data protection schemes for some of the 
benchmarks. We observe that signatures incur larger overheads, and the overall 
performance overheads are within acceptable ranges. 

For the simulation of the buffer overflow protection technique, we again used the 
SimpleScalar[14] simulation suite and the gcc cross-compiler for the ARM processor. 
Our processor contained one level of instruction and data caches, each 32KB in size, 32- 
way associative, with 32-byte cache lines. The simulator used was sim-outorder. The 
processor chosen was for an average embedded system: a 400MHz processor augmented 
with a 200MHz FPGA (for the Guard), and an external bus and memory running at 
100MHz. We tested the simulation with benchmarks from MiBench [15] and Data 
Intensive Systems (DIS) [16]. Table 3 provides a summary of the experimental results; 
the baseline configuration corresponds to no protection. 

For evaluating the adaptive security scheme - the Region based security (RBS) scheme - 
we implemented the scheme in the gcc compiler. The RBS scheme was then tested on our 
simulation infrastructure. Table 4 summarizes some of the key results of our experiments. 
Two security schemes are considered - a SHA-1 signature scheme and a CRC scheme. 
While SHA-1 has higher security strength, it also incurs a larger penalty. The 
performance penalties incurred for each security scheme is shown in the table for various 
benchmarks. The RBS based adaptive security scheme incurs lower penalty in most of 
the benchmarks. 
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Table 1: Performance of Code Protection Techniques 

Cache Block Labels Basic Block Labels 

BenchMarks (taken from 
MI Bench benchmark 
suite and Data Intensive 
Systems, DIS, suite) 

Internal 
Storage 
(Labels 

Stored in 
the Cache 

Block) 

External 
storage 
(Labels 

interleaved 
with cache 
blocks and 

stored 
separate from 

CRC SHA-1 

External 
storage 

(Labels stored 
separate from 
code block) 

Internal 
storage 
(Labels 
stored 

inside code 
block) 

External Storage 
(Signature, and 

label, stored 
separate from 
code block) 

Internal storage 
(Signature, and 
labels, stored in 

code block) 

Bitcount 7.55 codgbjock) 0.02 9.74 0.18 47.40 

Crc 8.02 0.04 0.02 17.02 0.15 99.15 

Dijkstra 3.89 3.94 0.02 11.57 0.54 58.01 

Fft inv 5.23 5.26 0.08 14.08 3.51 47.54 

Fft 5.95 2.87 0.08 13.35 1.25 39.16 

22.10 Sha 9.03 0.16 0.07 5.24 0.48 

Stringsearch 10.21 12.5 5.68 20.54 38.30 110.48 

susan .corners 9.01 9.72 1.72 7.79 11.54 26.24 

Susan.edges 8.6 5.23 0.94 5.69 0.08 18.40 

24.59 

11.02 

susan.smoothing 8.28 0.17 0.04 7.79 0.30 

Field 0.03 0.04 0.01 2.28 0.08 

Pointer 0.04 0.03 0.01 6.74 0.12 33.72 

Transitive 9.89 9.3 5.28 12.64 35.24 70.50 

Update 18.53 16.7 9.24 23.11 62.21 114.28 

Average 7.45 4.72 1.66 11.26 11 51.61 
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Benchmark Encryption Only Encryption & Labels Encryption, Hashing, Labels 
Bitcount 0.02 0.024 0.07 

Crc 0.02 0.021 0.061 
Djikstra 5.27 5.50 15.61 

Fft 3.80 3.89 10.71 
Sha 0.10 0.11 0.30 

Stringsearch 9.74 10.22 29.63 
Field 0.027 0.028 0.083 

Transitive 4.72 4.96 14.27 
Update 9.70 10.18 29.39 

Table 2: Percentage Increase in Execution Time using Data Protection. 

Benchmark baseline 
Function 

Call 
Frequency 

# Function 
calls 

# Function 
Returns 

Stack 
protection 
(Cycles) 

%penalty 

bitcount 1985181143 0.74 14625715 14625650 2159563042 8.78 
crc 2661916962 3 79853258 79853236 3407158679 28 
dijkstra 629872896 0.1 648251 648238 634215728 0.69 
fft 634777292 1.02 6478257 6478223 685360839 7.97 
fft(inv) 358609172 0.7 2494613 2494579 373084425 4.04 
patricia 916560445 0.92 8446864 8446851 1020045067 11.29 
sha 472226975 0.02 105630 105609 474143316 0.41 
stringsearch 9012582 0.45 40799 40787 9248271 2.62 
susan smooth 1216801457 0.01 113712 113690 1217489061 0.06 
susan edge 174595349 0.06 97364 97345 175464647 0.5 
susan corners 65129481 0.02 13143 13111 65203728 0.11 
field 1275431654 0.06 788032 788016 1283041545 0.6 
pointer 409127443 0.53 2160907 2160895 426517463 4.25 
tc 31323833 0.06 19480 19468 31528118 0.65 
update 5359253 1.1 58806 58794 5908967 10.26 

Table 3: Performance of Buffer Overflow Protection Technique 



Benchmark % performance penalty 
Entire 
system 
(internal 
storage, 
SHA-1) 

RBS- 
Based 
approach 

Entire 
System 
(internal 
storage, 
CRC) 

RBS- 
Based 
approach 

Entire 
System 
(external 
storage) 

RBS based 
approach 

bitcount 47.3 22.46 9.46 4.11 0.10 0.09 
crc 99.08 54.06 17.01 7.39 0.08 0.07 
dijkstra 56.96 27.04 11.41 4.96 0.48 0.48 
fft 41.2 23.52 12.42 5.40 1.23 1.16 
patricia 1631.26 497.7 43.47 18.89 0.39 0.34 
sha 21.83 4.28 5.20 2.26 0.27 0.24 
stringsearch 89.13 34.42 16.86 7.33 20.05 17.56 
susan 22.12 11.9 7.38 3.20 5.80 5.17 
field 11.92 3.04 2.73 1.19 0.04 0.03 
pointer 38.85 17.82 8.23 3.57 0.16 0.15 
transitive 31.15 9.95 7.12 3.09 8.72 7.92 
update 56.64 39.02 15.71 6.83 18.36 16.61 

Table 4: Performance of Region-based Security Technique 
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