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1. Introduction 
 
Accurate matching and measurement of breast lesions identified on multiple temporal mammographic 
views of breast is vital in detecting and treating breast cancer. However, lack of 3D structural knowledge 
and large compression of breast during X-ray imaging often cause mismatch among temporal 
mammograms, which eventually leads to incorrect diagnosis or localization. A 3D model is strongly 
desired that can provide accurate information about breast’s 3D geometry as well as its deformation 
during mammographic imaging. Development of a 3D finite element model is proposed to simulate and 
analyze breast deformation that can significantly improve the accuracy of matching in temporal 
mammograms and thus, the performance of diagnosis and treatment. 
 
In this research project, we have developed a mathematical model of breast deformation to simulate breast 
compression during mammographic imaging. We have developed two types of mammogram registration 
methods: magnetic resonance imaging (MRI) guided registration and generic registration. Datasets have 
been constructed to validate the developed registrations methods. Mammogram registrations have been 
performed on concurrent mammograms using MRI guided and generic registration methods. Also both 
the registration methods have been applied on temporal mammograms. Promising evaluation results 
demonstrate feasibility of the developed mammogram registration methods. The results also demonstrate 
that the developed registration methods would be very helpful in mammogram interpretation for 
improving accuracy of detection and diagnosis of breast cancer. 
 

2. Body 
 

Breast deformation during mammography has been modeled using displacement-based differential 
equations together with appropriate boundary conditions, and breast compression procedure has been 
simulated using rigorous finite element analysis (FEA) algorithm. Based on the developed mathematical 
breast deformation model and simulations, two types of breast deformation model have been developed: 
magnetic resonance image (MRI) guided deformation model and generic deformation model.  
 
2.1 Mathematical model and simulations of breast deformation in mammography 
The female breast is essentially composed of four structures: lobules or glands, milk ducts, fat, and 
connective tissue. Most biological tissues have both a viscous and an elastic response to external 
deformations. Since we are interested only in slow deformations, the response of the tissue can be 
considered due to elastic forces entirely 
 
Under assumptions that breast is uncompressible with isotropic property, breast deformation can be 
described by the following differential equations named Navier equations: 
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The above displacement differential equations have been solved using numerical method, finite element 
analysis (FEA) algorithm. FEA algorithm is the most accurate numerical technique in modeling 
deformable objects. Its physical soundness and mathematical rigor ensures the accuracy of breast 
deformation modeling that is essential for multiple mammography interpretation.  
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The basic steps of the FEM approach involving object deformations are the following: (1) Derive an 
equilibrium equation for the continuum with given material properties; (2) Select the appropriate finite 
elements and corresponding interpolation functions (also called shape functions) for the problem; (3) 
Subdivide the object into the elements (meshing); (4) Obtain the stiffness matrices for each element; (5) 
Assemble the global stiffness matrix using the element stiffness matrices; (6) Impose the given boundary 
conditions; (7) Solve the system of equations for the vector of unknown variables. We used the 
commercial software ANSYS, for numerically solving the partial differential equations. The resulting 
meshed volume and simulations of breast deformation are presented in Figure 1. 
 

   
a 

   
    b      c 

 
Figure 1. Mathematical modeling and simulations of breast deformation. (a)Meshing on breast volume using FEA algorithm; 
(b) Simulation of CC view compression (white color: natural breast shape before compression, blue color: breast shape after 
compression) (c) Simulation of ML view compression (white color: natural breast shape before compression; blue color: breast 
shape after compression) 
 
2.2 Development of registration model for mammogram registration 
Two types of mammogram registration model have been developed: magnetic resonance image (MRI) 
guided registration model and generic registration model. MRI guided registration model is developed for 
cases when concurrent MR images are available with mammograms. For most cases when only 
mammograms are available, generic registration model has been developed.  

2.2.1 MRI guided registration model 

MR images are used to construct breast volume. For each MRI slice, breast is segmented and the 2D 
breast contour is extracted using standard morphological operators. B-spline smoothing is implemented to 
remove small sharp edges that might have been generated during segmentation. Then, the 3D wireframe 
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of the breast shape is constructed by combining all the 2D breast contours as shown in Figure 2 (b). The 
non-planar surface between two contours is constructed using Coon’s Patch formulation. 

                     

           
(a)                               (b) 

 

      
 

(c)                                                                           (d) 
Figure 2. Natural breast volume construction using MR images.  (a) Patient MRI slices for building the 3D model.  (b) Wire 
Frame of the Breast.  (c) Non planar area fitted on spline curves (Coons patch).  (d) Constructed breast volume. 

2.2.2 Generic registration model 

The proposed generic registration model adjusts a generic 3D FE breast model based on patient 
mammograms and the known compression magnitude and direction recorded in mammograms. The initial 
generic model was selected from the library of existing patient MR volumes based on the criterion of 
similar proportion. The mammograms were compared to the generic model projections to obtain several 
scaling factors. The three dimensional scaling factors were computed using the ratio of patient breast and 
projection in x, y, and z directions. The following equations were used to calculate the scaling factors. 
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A new model was constructed using the adjusted contour and the projection error based on overlapping 
area was calculated.  The above process is performed using several initial generic models and the one with 
the minimum projection error is chosen as the generic model for the patient. 
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A description of the complete scaling algorithm is as follows: First we perform initial scaling of model 
using Sx, Sy, Sz.  Then we compress the model using compression distance recorded in patient 
mammogram. After compression, the model is projected onto CC view and ML view. The projection area 
is compared with the area of breast region in the mammogram and error is calculated and algorithm 
automatically selects from the set of models the one which is best based on fit of initial scaling. For the 
model chosen, curvature comparison is performed. Curvature of the model is adjusted using parameters 
S4 and S5: S4 for CC view and S5 for ML view. After curvature adjustment, model is recompressed and 
projection error is calculated. Model scaling with the least projection error is chosen and different 
measures are calculated on scaled model. A typical reconstructed breast volume from mammogram using 
generic registration models is illustrated in Figure 3.  
 

    
 
Figure 3. Generic model construction. (Left:) Generic model before using scaling factors. (Right:) Generic model after 
comparison of projection and target mammograms. 
 

2.3 Registrations among concurrent mammograms 
We developed a non-rigid registration approach with the following improvements: (1) a finite element 
model is superior to a generic geometrical model in handling complex shapes and non-rigid deformation. 
As a result, many restrictions associated with a geometrical model can be relieved. For example, the 
assumption that a breast only deforms within the cross-section of CC view is not needed. The assumption 
that a corresponding curve can only deform uniformly is also waived; (2) compression parameters are 
corrected by a global shape calibration to ensure the quality of feature registration. The details of the 
registration procedure are described in Appendix 2. An illustration of the registration procedure for 
concurrent mammograms is shown in Figure 4.  
 
2.4 Registrations among temporal mammograms 
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Temporal Registration Method analyzes mammograms by examining temporal sequences of images. Such 
temporal comparisons have value because, as a first approximation, normal breasts do not change 
significantly over time, except for minor variations associated with the menstrual cycle or significant 
changes in body weight. Some pathological changes in the breast are sufficiently subtle that they may 
pass unnoticed for many years; thus, radiologists compare images from a number of previous years. Such 
changes can be further obfuscated by different choices of X-ray imaging technique, and variation in breast 
positioning or compression. Schematic representation of the registration procedure on temporal 
mammograms is described in Figure 5.  
 

    
 

                 Figure 4.  Schematic of registration              Figure 5. Schematic of registration on temporal mammograms 
                      of concurrent mammograms 
 
2.5 Database 
22 Patient mammogram datasets were provided by Lifetime Screening Center, H. Lee Moffitt Cancer 
Center & Research Institute, University of South Florida. Mammograms were digitized at a resolution of 
75 micron and 12 bits per pixel, containing mass, calcification, or other abnormalities. The 
mammographic images have been collected over a period of time from the daily clinical case. More data 
are still being provided by Lifetime for various validation purposes. The center of a lesion is determined 
as the center of a circle (or an ellipse) manually fitted by a radiologist to the visible parts of the lesion in 
patient datasets.   
 

Table 1, Database 
Patient 
data set Lesion Type Age 

Compression 
Rate (mm) With MRI Lesion visibility 

Lesion 
Number 

1 Mass 35-50 43 Y Visible in both views 1 
2 Mass 35-50 46 N Visible in both views 1 
3 Mass 35-50 49 Y Visible in both views 1 
4 Mass 50-70 52 N Visible in both views 1 
5 Mass 50-70 54 N Visible in both views 1 
6 Mass 35-50 56 N Visible in both views 2 
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7 Mass 35-50 44 N Visible in both views 1 

8 Calcification 50-70 58 Y Visible in both views 1 
9 Mass 35-50 54 N Visible in both views 1 
10 Calcification 50-70 63 Y Visible in both views 2 
11 Mass 35-50 45 N Visible in both views 1 

12 Calcification 50-70 48 N Visible in both views 1 
13 Calcification 50-70 60 Y Visible in both views 2 
14 Calcification 35-50 52 Y Visible in both views 1 
15a Calcification 50-70 47 Y Visible in both views 1 

15b Calcification 50-71 44 Y Visible in both views 1 
16 Calcification 35-50 61 N Visible in both views 1 
17 Calcification 50-70 47 N Visible in both views 1 
18 Calcification 35-50 48 N Visible in both views 1 

        
Temporal 

cases             
15a Calcification 50-70 47 Y Visible in both views 1 
15b Calcification 50-71 44 Y Visible in both views 1 

19a Calcification 50-70 43 Y Visible in both views 1 
19b Calcification 50-70 47 Y Visible in both views 1 
20a Calcification 35-50 47 Y Visible in both views 1 
20b Calcification 35-50 46 Y Visible in both views 1 
21a Calcification 50-70 46 Y Visible in both views 1 

21b Calcification 50-70 44 Y Visible in both views 1 
22a Calcification 35-50 45 Y Visible in both views 1 
22b Calcification 35-50 43 Y Visible in both views 1 
23a Calcification 50-70 47 Y Visible in both views 1 
23b Calcification 50-70 48 Y Visible only in one 

view 
1 

 
2.6 Evaluation 
Several evaluation methods have been developed and performed to test the accuracy of the developed 
registration methods.   
 
1. 3D curve distance:  We used the minimum distance between the 2 curves to measure the error.  The 

element size could not be infinitely small.  The error could be minimized when very fine elements 
were chosen.   

2. Predicted 3D position: After the position of the matching element was found by combining 
information from CC view and ML view, we calculated the Euclidean distance between the actual 
feature position in MRI volume and its prediction.   

3. Predicted 2D lesion position: We projected the element set which corresponds to the projection of the 
feature point in one view to the other view, which formed a curve, and then calculated the minimum 
distance between the actual feature point and the projected curve.  This measure could also be used for 
the case when suspicious area is visible only in one view.  

 
 
 



10 
 

 
 
 
 
2.7 Registration results 
 

Table 2.  Algorithm performance on phantom data 

Simulated 
Mass and  
Calcification 

Average 
Error 
(mm) 

Average 
Feature 

Diameter 
(mm) 

Average 
Feature 
Distance 

(mm) 
3D curve 
distance 

0.6±0.4 10 ~ 20 25.9 ~ 
80.0 

Predicted 
3D lesion 
position 

2.6±0.8 10 ~ 20 25.9 ~ 
80.0 

Predicted 
2D lesion 
position 

2.1±0.4 10 ~ 20 25.9 ~ 
80.0 

 
Table 3:  Performance using MRI guided registration algorithm 

  3D curve 
distance 

Predicted 
2D lesion 
position 

Average Feature 
Diameter 

Data set 1 1.6  3.1  10.0~30.0 
Data set 2 1.2  2.1  10.0~30.0 
Data set 3 1.5  2.6  10.0~30.0 
Data set 4 0.4  1.6  10.0~30.0 
Data set 5 1.5  2.4  10.0~30.0 
Data set 6 1.7  2.0  10.0~30.0 
Data set 7 1.3  2.5  10.0~30.0 

 
 

Table 4:  Registration results on temporal mammograms  
using MRI guided registration algorithm 

   3D curve 
distance 

 Predicted 
2D lesion 
position 

  

Data set 1 1.6  3.1  

Data set 3 1.2  2.1  

Data set 8 1.5  2.6  

Data set 10 0.4  1.6  

Data set 13 1.5  2.4  

Data set 14 1.7  2  

Data set 15a 1.3  2.5  

Data set 19a 2.1  2.7  
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Data set 20a 2.3  3  

Data set 21a 1.9  2.9  

Data set 22a 2.2  3.1  

          

 
The generic modeling algorithm was tested when we validate algorithm accuracy on temporal pairs.  
Combined with all the available data in our database, results are listed as follows: 
 

Table 5:  Registration results on temporal mammograms  
using generic registration model 

Data set  3D curve 
distance(mm) 

Predicted 2D lesion 
position(mm) 

Data set 1 3.0 4.7 
Data set 2 5.3 3.0 
Data set 3 4.1 4.3 
Data set 4 3.9 4.9 
Data set 5 3.5 6.2 
Data set 6 4.1 4.7 
Data set 7 4.3 3.6 
Data set 8 4.6 5.9 
Data set 9 4.0 3.2 

Data set 10 3.8 4.2 
Data set 11 3.8 4.6 
Data set 12 4.7 5.3 
Data set 13 3.7 4.6 
Data set 14 4.2 4.8 
Data set 15a 4.5 4.9 
Data set 15b  4.6 4.7 
Data set 16 4.5 5.3 
Data set 17 3.8 2.4 
Data set 18 3.6 2.8 
Data set 19a 3.2 4.2 
Data set 20a 3.9 4.4 
Data set 21a 4.0 5.3 
Data set 22a 3.6 4.6 
Data set 19b 3.4 4.3 
Data set 20b 4.1 4.5 
Data set 21b 4.2 5.2 
Data set 22b 3.5 4.7 
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3. Key Research Accomplishments 
 
1. Breast deformation during mammogram imaging has been modeled using displacement-based 

differential equations 

2. Breast compression during mammogram imaging has been simulated through rigorous numerical 
algorithm, finite element analysis (FEA) method 

3. Two types of mammogram registration model have been developed. MRI guided registration model 
has been designed for cases with concurrent mammograms and MR images, and generic registration 
model has been developed for cases with only mammograms 

4. Datasets have been constructed for this project. The datasets include a dataset of breast phantom 
mammograms and MR images, a dataset of clinical concurrent mammograms with abnormal cases 
and control cases, a dataset of temporal mammograms of patients containing abnormal and control 
cases. With the help of experienced radiologists, ground truth files for the abnormal cases in the 
datasets have been constructed 

5. Strict evaluation methods have been developed to test performance of the developed registration 
methods 

6. The developed registration methods have been applied on the concurrent mammogram datasets 

7. The developed registration methods have been applied on the temporal mammogram datasets 

8. Performance of the developed mammogram registration methods in this project have been tested 
using the proposed evaluation methods 
 

4. Reportable Outcomes 
 
Manuscripts: 
1. Qiu Y, Sun XJ, Manohar V., Goldgof D, “Towards Registration of Temporal Mammograms by Finite 

Element Simulation of MR Breast Volumes”, Proceedings of SPIE Medical Imaging 2008 
2. Qiu Y, Manohar V., Sun XJ, Goldgof D,, “Two-View Mammography Registration using 3D Finite 

Element Model of the Breast”, Submitted to Journal of Medical Image Analysis, 2008 
Presentations: 
1. Goldgof D, Sun, XJ, “Accurate 3D Modeling of Breast Deformation for Temporal Mammogram 

Registration”, Era of Hope 2008 Meeting, Baltimore, USA, June, 2008 
Grant Applications: 
1. BC084050, DoD Breast Cancer Idea Award application, Principal Investigator: Dmitry Goldgof, 

Title: “Improve breast cancer detection through registration of multiple mammograms by accurate 
3D modeling of breast deformation”, duration: 07/01/2009 – 06/30/2012, total amount; $517,722 

 
5. Conclusion 

 
A mathematical model of breast deformation has been developed and breast compression during 
mammographic imaging has been numerically simulated. Two types of mammogram registration methods 
have been developed and implemented: magnetic resonance imaging (MRI) guided registration for cases 
with concurrent MR images, and generic registration for cases with only mammograms. Datasets have 
been constructed to validate the developed registration methods. Mammogram registrations have been 
performed on concurrent mammograms using MRI guided and generic registration method. Also both 
registration methods have been applied on temporal mammograms.  
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Promising evaluation results on mammogram datasets demonstrate feasibility of the developed 
mammogram registration methods. The results also indicate that the developed registration methods 
would be very helpful in mammogram interpretation for improving accuracy of detection and diagnosis of 
breast cancer. 
 
We are continuing on this project through approval of no-cost extension and results will be presented at 
the final report. 
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Abstract

This paper presents a novel method for modeling breast deformation and using it as an ef-
fective tool for two-view mammography registration. The approach is based on automatic
three-dimensional (3D) registration between mammograms and MR images. A 3D finite
element method (FEM) is used to model and simulate breast deformation during mammog-
raphy, in which two deformation models are built depending on availability of MR images
of the breast. For cases that have both MR data and mammograms, patient specific breast
deformation model is built, while for cases that only have mammograms, a generic breast
deformation model is developed. A 3D registration algorithm aligns breast lesions identi-
fied in two different views by applying the deformation model and is subsequently used
in finding precise locations of breast lesions within the natural breast volume. An evalu-
ation of 3D registration using the patient specific deformation model on 11 clinical data
sets resulted in an accurate localization with a mean error of about 2.5 mm and 1.6 mm
for lesion position prediction in mammograms and MR images, respectively. The registra-
tion algorithm using generic breast models with 27 clinical data sets resulted in a mean 2D
localization error of about 4.5 mm in predicting the lesion position in mammograms.

Key words: Breast deformation, registration, finite element model, mammogram, MRI.

1 Introduction

Currently mammography (X-ray imaging of the breast) is the most commonly used
imaging modality for breast cancer screening and diagnosis. Many studies sug-
gest that screening using two-view mammography is more effective than one-view
sytem, especially for cancers of small size [1–3]. However, in current clinical set-
tings, there is still a high amount of uncertainty involved in the readings of radi-
ologist for two-view mammograms. In interpreting mammograms, three problems
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are commonly encountered: (1) How to relate suspicious findings (mass and calci-
fication) from two views to determine the existence of cancer? (2) If a suspicious
area is found only in one view, what is its possible position in another view? (3)
When finding breast lesion(s) in mammograms, how to locate its exact position in
the natural breast volume?

The fact that there is mutual disagreement between the readings recorded by dif-
ferent radiologists further intensifies these problems. To improve the quality of in-
terpretation, a 3D model will be helpful in providing accurate information about
breast’s 3D geometry as well as its deformation.

Three types of models have been used in two-view mammography –

Statistical Models: Sahiner et al. [4] used a classifier to analyze the similarity be-
tween feature pairs in cranio-caudal (CC) and mediolateral oblique (MLO) views.
Scores from the classifier were then used to improve single-view detection. Using
the datasets from the University of Michigan and the University of South Florida,
they reported a 0.58 false positive rate with two views and a 0.73 false positive rate
with a single view. However, their approach used only limited information such as
the distance between features and nipples, which limits the reliability of the ap-
proach.

Geometrical Models: Kita et al. [2] used a simplified geometrical model to com-
pute breast deformation and then established feature correspondences. Recently, a
more sophisticated model was used to reconstruct micro-calcification clusters [3].
Geometrical models have a drawback that many assumptions have to be made to
idealize the breast deformation, which may not be valid for a highly deformed
breast.

Biomechanical Models: Non-rigid motion has been extensively studied in the
computer vision community. Huang [5] classified non-rigid motion into different
categories. Aggarwal et al. [6] provided a comprehensive survey on various mod-
eling approaches, especially those based on physical models. For example, biome-
chanical models were used to study breast biopsy and MRI/X-ray data fusion [1,7].
Wildes et al. [8] proposed a simple physical breast model for registration that
viewed the breast as a set of tissue compartments contained within an outer skin.
Highnam et al. [9] used a compression model to determine correspondence between
the CC and MLO views. Bakic et al. [10] proposed a non-rigid breast model for
task-driven mammogram segmentation. Biomechanical models have the capability
of handling irregular shapes and predicting breast deformation more accurately. A
comprehensive review of deformable modeling techniques and their applications in
medical image analysis can be found in [11] and [12, 13], respectively.

A related important issue to be addressed for accurate deformation simulation is the
need to know the material property of the breast tissues. Due to the difficulty of ob-
taining “true” material property values, it is common that soft tissues are modeled
as isotropic, linear, and homogeneous. In the context of feature registration, using
an isotropic property is a reasonable choice, although the effect of the Cooper’s
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ligaments on the overall property of breast tissue is still not clear. Due to the large
breast deformation caused by compression, more attention was directed to the non-
linear behavior of breast tissues. For example, Azar et al. [1] used an exponential
function to approximate the non-linear relationship between stress and strain. Sim-
ilarly, Samani et al. [7] used a polynomial function to account for the non-linearity
of breast tissue properties. In these studies, the non-linearity was considered for
both fat and glandular tissues, using the coefficients obtained from either a tensile
test or the tactile imaging results [14]. In the study by Tanner et al. [15], the au-
thors indicate that the impact of a linear assumption on breast modeling is not as
significant as that of boundary settings.

Schnabel et al. proposed a method [16] for validation of non-rigid medical image
registration for breast MRIs using biomechanical models. The method is based on
the simulation of biomechanical tissue deformations using finite element methods
(FEM). It involves a non-rigid image registration step based on free-form deforma-
tions using B-splines. The voxel similarity measure was computed using normal-
ized mutual information. The efficacy of the method was demonstrated on contrast
enhancement of magnetic resonance mammographic image pairs as a prototype
application.

Different breast-imaging modalities bring complementary information that can help
in establishing a concrete diagnosis. Researchers have been working on inter-modality
breast image registration and on the design of co-registered multi-modality breast
imaging system. To combine multimodal information, Coman et al. [17] proposed
a method for non-rigid co-registration of PET and MR breast images. The model
allows estimation of the inter-modal breast deformation to determine the location
within the breast. The FEM “loads” were taken as the observed inter-modal dis-
placements of several fiducial skin markers placed on the breast and visible in PET
and MRI. The analogy between orthogonal components of the displacement field
and the temperature differences in a steady-state heat transfer (SSHT) in solids was
adopted. The model assumed that there were no stress induced deformations and
used external fiducial markers for the multimodal data (PET and MRI). The method
achieved less than 5mm error in registration.

In clinical practice, mammograms are more commonly used than PET. Registra-
tion of an X-ray mammogram and an MR volume is a 2D/3D problem. One can
construct 2D projection images from the volume and apply a 2D/2D registration
approach to obtain an optimal match. This strategy can be found in the existing
literature [18–20]. Behrenbruch et al. [18] proposed a method in which an MR
breast volume was projected as an image representing uncompressed tissue. The
method projected the actual voxel enhancement characteristics via a pharmaco-
kinetic model where, low enhancement tissues were given a low intensity level in
the “pseudo X-ray” projection. On the other hand, high-enhancement voxels were
given a correspondingly high intensity value. It would be desirable if the model
deformation could be combined before projection to further improve the accuracy
of registration.
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To take the deformation into consideration, Bakic et al. [21] proposed a system-
atic model approach to evaluate sensitivity of registration methods to various types
of changes in mammograms using synthetic breast images with known deforma-
tions. The breast model had a shape defined by an ellipsoidal approximation of
the breast outline and an ellipsoidal approximation of a border between internal
regions with predominantly adipose tissue and those with predominantly fibroglan-
dular tissue. Since the synthetic model used an ellipsoidal approximation, it cannot
fully describe the shape of patient breast which ultimately affects the registration
accuracy. We refer the reader to [22] for an overview of both intra-modality and
inter-modality breast image registration techniques.

In our earlier work [23–25], we presented the main idea of utilizing a finite ele-
ment model of the breast constructed from breast MR images to model breast com-
pression during mammographic imaging and utilizing the simulation for automatic
registration of X-ray mammograms and MR images. The approach has several ad-
vantages: (1) The use of MR images allows us to set up precise breast deformation
model; (2) An incremental contact simulation scheme gives more accurate descrip-
tions of breast deformation ensuring registration quality; (3) An adaptive meshing
method enables us to strike a balance between computational efficiency and mod-
eling accuracy.

Ruiter et al. [26] used a similar approach for automatic localization of lesions which
are visible either in the mammograms or in the MR image. By using a 3D finite
element model of the deformable behavior of breast, they account for the huge
deformation during mammography and the 3D effects during deformation. Results
on six clinical cases presented an average lesion localization error of 4.3 ± 1.0mm
(in mammograms) and 3.9 ± 1.7mm (in MR images).

In a very recent study [27], a method for simulating mechanical compression of
volumetric CT breast data was presented. The method consists of the segmentation
and classification of the volumetric data into various material types, followed by a
finite element algorithm for compression simulation. The approach was unique in
the sense it permitted the assignment of individual physical mechanical properties
to each node based on the local tissue configuration. Qualitative results demon-
strated the possibility of compression simulation for a variety of objects (including
breast) using the method.

In this paper, we put forward the finite element modeling based approach intro-
duced in [23–25] as an effective way to combine information present in MRIs and
mammograms. When compared to [26], this paper makes the following substantial
contributions: (1) We propose the use of a generic breast modeling method for cases
whose MR images are not available. The method presented in this paper adapts a
generic 3D breast deformation model based on the breast mammograms and the
recorded compression amount and direction; (2) For accurate simulation of plate
compression (a dynamic contact problem), we utilze an incremental stepwise ap-
proach in which the plate motion is slow enough that breast deformation in each
step can be described by a static equilibrium equation and more importantly, mesh
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topology will not be too distorted to affect displacement prediction; (3) We support
the proposed approach with extensive experimental results.

2 Finite Element Model and Breast Deformation

Finite Element Method (FEM) is a technique for modeling deformable objects. It
has been used to study mechanical behavior of many human organs such as heart,
lung, kidney, as well as breast. The approach is based on the underlying geome-
try and the material properties of the object. Using a system of partial differential
equations to predict the movement of each node, shape analysis of the constitu-
tive elements in each state, material properties of the object under consideration,
and a set of border conditions to ensure the convergence of the solution, FEM
can predict with high accuracy the final state of the object, or any intermediate
states [7, 16, 28, 29].

The basic steps of the FEM approach involving object deformations are the follow-
ing: (1) Derive an equilibrium equation for the continuum with given material prop-
erties; (2) Select the appropriate finite elements and corresponding interpolation
functions (also called shape functions) for the problem; (3) Subdivide the object
into the elements (called meshing); (4) Obtain the stiffness matrices for each ele-
ment; (5) Assemble the global stiffness matrix using the element stiffness matrices;
(6) Impose the given boundary conditions; (7) Solve the system of equations for
the vector of unknown variables. We used the commercial software, ANSYS [30],
for numerically solving the partial differential equations of elasticity theory. It es-
sentially accomplishes the above steps both in an accurate and efficient manner.

The female breast is essentially composed of four structures: lobules or glands,
milk ducts, fat, and connective tissue. Most biologic tissues have both a viscous
and an elastic response to external deformations. Since we are interested only in
slow deformations, the response of the tissue can be considered entirely due to
elastic forces.

In this study, as a first approximation, all of the tissues in the breast were assumed
to be isotropic, homogenous, and incompressible with nonlinear elastic properties
for large deformations [1, 3, 25, 31]. A uniform Young’s modulus of 15 kPa and a
Poisson’s ratio of 0.495 were used.

Under the assumptions that breast is incompressible with isotropic property, breast
deformation can be described by the so called Navier equations of motion:

ρ0
∂2u
∂t2

= (λ + µ)
(

∂2u
∂x2 + ∂2v

∂y∂x
+ ∂2w

∂z∂x

)

+ µ∇2u + fx,

ρ0
∂2v
∂t2

= (λ + µ)
(

∂2u
∂x∂y

+ ∂2v
∂y2 + ∂2w

∂z∂y

)

+ µ∇2v + fy,

ρ0
∂2w
∂t2

= (λ + µ)
(

∂2u
∂x∂z

+ ∂2v
∂y∂z

+ ∂2w
∂z2

)

+ µ∇2w + fz,

(1)

where, (u, v, w) is the 3D displacement vector, fi is the force field, and µ and λ are
the Lame constants computed from Young’s modulus (E) and Poisson’s ratio (ν)
as µ = E

2(1+ν)
and λ = νE

(1+ν)(1−2ν)
.
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For the 3D elasticity problem, Equation (1) becomes an elliptic boundary problem.
It is possible to find a weak form or a Galerkin form [32] i.e., L(u, v) = (f, v)
instead of the usual generalization of the differential equation, Lu = f , where, L

is a linear operator, v is a test function, and (,) stands for inner product. During the
solution step, the differential equation is discretized into a series of FE equations
that form a system of algebraic equations of the form, [K]{u} = F where, [K] is
the stiffness matrix, {u} is the nodal displacement vector and {F} is the applied
load vector.

The FE model domain was discretized using unstructured 3D tetrahedral structural
solid element because of its computational efficiency and flexibility in handling
complex shapes. Each tetrahedral element was composed of 10 nodes (each side
has an additional node in the middle to model the deformations more accurately).
The elements exhibit a quadratic behavior for interpolation purposes. The resulting
meshed volume is presented in Figure 1. This was the finite element model of the
physical phantom to which the deformations was applied. For a 10-pixel sample
interval in the original image slice, 52 slices were stacked to construct the volume.

(a) Digital image of phantom (b) FE Model after meshing

Figure 1. Finite Element Model of the Phantom.

Table 1 shows the resulting number of nodes and elements in the finite element
model of the phantom for varying element sizes. In the further experiments de-
scribed in this paper, we used an element size of 8 units and the ANSYS meshing
procedure resulted in 13225 nodes and 8744 elements.

Element Size Number of nodes Number of elements

20 2836 1668

15 4010 2424

10 7899 5068

8 13225 8744

5 52982 36824

Table 1. Number of Nodes and Elements
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During X-ray imaging, force is applied through two plates that move towards each
other to compress breast. This is a dynamic contact problem that must be simulated
numerically. We approximated breast deformation during compression by incre-
mental stepwise simulation. The underlying assumption is that the motion of plate
is slow enough so that breast deformation in each step can be described by a static
equilibrium equation. More importantly, the mesh topology will not be significantly
distorted to influence the displacement prediction.

In clinical practice, the final compression magnitude is recorded, but the force ex-
erted on plates is rarely measured. So, we specified the Dirichlet condition (dis-
placement) on the plates. To avoid sliding movement between plates and breast,
we assumed that once in contact with the plates, the node will move only in the
direction of compression.

One boundary condition that appears often in breast modeling is that nodes at the
chest wall have zero displacement vectors since the breast is connected through
the chest wall to the body. To constrain the FE model when the contact surface
between the breast and the plates is modeled, the median nodes are restricted to
zero displacement vectors along the z-axis [15]. In our model we waived these
boundary conditions because of the following reasons: (i) during compression, the
breast is not rigidly fixed at the chest wall and the tissues are displaced around it;
(ii) the restriction on the degrees of freedom for the median nodes is an artificial
condition meant only for convergence purposes rather than a natural one since one
cannot predict accurately which tissue inside the breast will have zero displacement
along the z-axis. The only boundary condition imposed on our model is that the
contact between the breast and the plates is a rough contact without any sliding,
and the plates are restricted to move only along the z-axis. This boundary condition
is a natural one and doesn’t affect the convergence of the solution to Equation (1).
Figure 2 depicts a snapshot of the breast deformation simulation process.

(a) CC View (white: model before
compression; blue: model after

compression)

(b) ML View (white: model before
compression; blue: model after

compression)

Figure 2. Model CC and ML View Compression Simulation.
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3 Algorithm for Two-View Mammogram Registration

We developed two models to simulate breast deformation. One was a patient-specific
model which was used when both mammograms and MR images were available for
the patient, and the other was a generic model which was used when only mammo-
grams were available. We divide our approach in two parts, namely, (1) Breast
Model Construction; (2) Registration.

3.1 Breast Model Construction

Patient Specific Models: In cases when the patient data consisted of both mam-
magrams and MRIs, we used MR data to construct the 3D breast model of the
patient [23].

In each MRI slice, breast was segmented and the 2D breast contour was extracted
using standard morphological operators. B-spline smoothing was implemented to
remove small sharp edges that might have been generated during segmentation.
Then, the 3D breast shape was constructed by combining all the 2D breast contours
as shown in Figure 3. For more details about the model construction, we refer the
reader to [23].

(a) MRI Slices (b) Wire Frame of the Breast

(c) Non Planar Area Fitted on Spline
Curves (Coons Patch)

(d) Constructed Natural Breast Volume

Figure 3. Construction of Natural Breast Volume using MR Images.
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It is worth noting that the model ignores any deformation due to gravitational
forces. The use of unloading methods [33] that specifically address the gravity
loaded state of the breast will likely provide more reliable diagnosis and accurate
lesion localization.

Generic Model: In clinical practice, patient MRIs and mammograms are not al-
ways obtained at the same time or MRI may not be taken at all. To assist the physi-
cian for better localization of lesion or finding correspondence, we propose the use
of a generic model for correspondence recovery.

The proposed algorithm adjusts a generic 3D FE breast model based on patient
mammograms and known compression amount and direction recorded in mammo-
grams. The initial generic model was selected from the library of existing patient
MR volumes based on the criterion of similar proportion. The mammograms were
compared to the generic model projections to obtain several scaling factors. The
three dimensional scaling factors were computed using the ratio of patient breast
and projection in x, y, and z directions. The following equations were used to cal-
culate the scaling factors.

Sx =
XCC Xray

XCC ModelProjection
,

Sy =
YML Xray

YML ModelProjection
,

Sz =
ZCC Xray

ZCC ModelProjection
+

ZML Xray

ZML ModelProjection
,

(2)

where Xcc, Ycc, and Zcc describes the dimensions of the patient breast or the model
projection in the x, y, and z directions respectively.

E =

(

4AreaCC

AreaCC ModelProjection
+ 4AreaML

AreaML ModelProjection

)

2
(3)

When the error, E, in Equation (3) was above a pre-defined threshold, further ad-
justment for better boundary fitting was needed. We used two parameters (say S4

and S5) for boundary adjustment. S4 was calculated based on the maximum devi-
ation ratio in ML views and S5 was calculated based on the maximum deviation
ratio in CC views (Equation (4)).

S4 =
AreaCC Xray

AreaCC ModelProjection
,

S5 =
AreaML Xray

AreaML ModelProjection
.

(4)

Maximum deviation ratio is calculated based on the overlapping area for the cor-
responding views. For each contour which forms the generic model, the points on
the contour was adjusted using S4 or S5 (S4 for ML view and S5 for CC view).
A new model was constructed using the adjusted contour and the projection error
based on the overlapping area was calculated. The above process was performed
with several initial generic models and the one with the minimum error was chosen
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as the model for the patient. Figure 4 shows a sample generic breast model before
and after adjustment with a specific patient mammogram.

(a) Generic model before using scaling
factors

(b) Generic model after comparison of
projection and target mammograms

Figure 4. Generic Model Construction.

3.2 Registration

Image registration involves finding correspondence between coordinates in an im-
age pair. If an object’s deformation can be described by a rigid or affine transfor-
mation, the correspondence problem can be readily solved using a stereo method
in an epipolar geometry. But the fact that breast deformation is non-rigid compli-
cates the computation. For a feature in one view, its corresponding epipolar line
becomes a curve in another view. Using a generic 3D geometrical model, Kita et
al. [2] developed a compression-projection procedure to facilitate two-view feature
registration. We developed a similar approach [23–25] with the following improve-
ments: (1) a finite element model is superior to a generic geometrical model in
handling complex shapes and nonrigid deformation. As a result, many restrictions
associated with a geometrical model can be relieved. For example, the assumption
that a breast only deforms within the cross-section of CC view is not needed. The
assumption that a corresponding curve can only deform uniformly is also waived;
(2) compression parameters are corrected by a global shape calibration to ensure
the quality of feature registration.

In cases when a lesion was visible in both the CC and ML views, the following
approach was taken:

(1) The constructed natural 3D breast model was compressed based on the recorded
compression amount for one view (say CC view).

(2) After aligning with the view, based on the direction recorded in the mammo-
grams, the locations of all the features (lesions) identified in the CC view were
back projected onto the compressed breast model as straight lines. Back pro-
jection was accomplished through a simple ray tracing method. Figure 5(c)
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and (d) illustrates this step.
(3) The model was adaptively re-meshed in the regions adjacent to the straight

lines generated in step (2) and the elements through which the straight lines
pass were labeled. These features, which were tracked during compression,
resulted in 3D curves (one for each feature) in the uncompressed breast vol-
ume.

(4) Steps (1) – (3) were repeated for each feature found in the second view (ML).
(5) A feature in CC view was paired with all features in ML view and the cor-

responding distance between their 3D curves was measured (the distance be-
tween two 3D curves was defined as the minimum distance between two nodes
on these curves).

(6) All of the feature pairs were ranked based on the distances between their 3D
curves in the uncompressed model. The pair with the minimum distance was
considered as a match. In other words, they are more likely related to the same
breast lesion.

(7) The average of the two closest node locations on these corresponding 3D
curves provided the reconstructed 3D position of this feature in the natural
breast volume. Figure 5 (e) presents a figurative illustration of steps (5) – (7).

(8) Steps (5) – (7) were repeated for each feature in CC view.
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Figure 5. Correspondence Recovery Algorithm.

Figure 6 shows an overview of the system flow of the proposed method including
all of the pre-processing and the post-processing procedures.
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Figure 6. System Flow of the Proposed Approach.

4 Experimental Results

4.1 Dataset

MR volumes of patient breast were used for model construction and corresponding
mammograms were selected for compression simulation experiments. We also used
phantom data for validation purposes.

Patient Mammograms: A dataset containing 27 mammograms of 22 patients (5
patients had 2 sets of mammograms scanned at different times) was provided by the
Lifetime Screening Center, H. Lee Moffitt Cancer Center and Research Institute.
Mammograms were scanned at a resolution of 75 micron and 12 bits per pixel,
containing mass or calcification. Patient age group ranged from 30 to 70 years with
a median of 45 years. The images were collected over a period of time from daily
clinical investigations. The center of a lesion was determined as the center of a
circle (or an ellipse) manually fitted by a physician based on the visible parts of the
lesion in the patient data. Table 2 summarizes the details of the dataset.

MR Volumes of Patient Breast: The MR data of patient breasts that was collected
for clinical investigations at the Lifetime Screening Center was used for model
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Case Lesion Type Age Plate Compression
(mm)

With MRI Feature Diameter
(mm)

1 Mass 35-50 43 Y 7.2

2 Mass 35-50 46 N 10.1

3 Mass 35-50 49 Y 8.1

4 Mass 50-70 52 N 7.2

5 Mass 50-70 54 N 5.2

6 Mass 35-50 56 N 2.6

7 Mass 35-50 44 N 5.1

8 Calcification 50-70 58 Y 3.5

9 Mass 35-50 54 N 2.9

10 Calcification 50-70 63 Y 5.4

11 Mass 35-50 45 N 3.9

12 Calcification 50-70 48 N 4.2

13 Calcification 50-70 60 Y 3.8

14 Calcification 35-50 52 Y 5.2

15 Calcification 50-70 47 Y 7.3

16 Calcification 50-70 44 N 5.4

17 Calcification 35-50 61 N 5.3

18 Calcification 50-70 47 N 7.2

19 Calcification 35-50 48 N 3.9

20 Calcification 50-70 43 Y 7.1

21 Calcification 50-70 47 Y 5.3

22 Calcification 50-70 46 Y 5.6

23 Calcification 35-50 45 Y 4.8

24 Calcification 50-70 47 N 6.9

25 Calcification 50-70 46 N 5.6

26 Calcification 50-70 44 N 5.9

27 Calcification 35-50 43 N 4.7

Table 2. Summary of the Dataset

construction. The voxel size for the MRI was 1.41 x 1.41 x 2.50mm. Eleven sets of
patient MRIs were provided with corresponding mammograms.

MR Volumes and X-rays of Breast Phantom: For phantom data experiments, we
used the Triple Modality Biopsy Phantom containing simulated cystic masses and
dense masses. The phantom was scanned both with the MRI scanner and the X-ray
scanner by the Lifetime Screening Center for algorithm validation purpose. The
Triple Modality Biopsy Phantom contained 15 simulated cystic masses and dense
masses. The voxel size for the MRI was 1.41 x 1.41 x 2.50mm. Phantom X-rays
were scanned at a resolution of 75 micron and 12 bits per pixel. Each mass was
mapped to a specific element in the finite element model after model construction
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for accurate validation. Figure 7 shows a sample phantom X-ray image and the
corresponding finite element model after compression simulation.

(a) Phantom CC View X-ray
Image

(b) Phantom Model CC View after
Compression Simulation

Figure 7. Comparison of Phantom X-ray Image and Simulation Result.

4.2 Performance Evaluation Measures

We designed several measures to test the accuracy of the proposed method:

(1) 3D curve distance: We used the minimum distance between the two 3D curves
in the natural breast volume to measure the registration error.

(2) Predicted 3D position: After the position of the matching element was found
by combining information from CC and ML views, we calculated the Eu-
clidean distance between the actual feature position in the MR volume and its
prediction in the model as a measure of localization error.

(3) Predicted 2D lesion position: We projected the element set which corresponds
to the projection of the feature point in one view to the other view, which
formed a curve. We then calculated the minimum distance between the actual
feature point and the projected curve locations. This measure of prediction
error could be used for the case when the suspicious object was visible only
in one view.

4.3 Results on Breast Phantom Data

Two sets of phantom MRIs were taken and used for the registration procedure. One
was without compression and the other one with compression of 30mm.

First, the finite element model was constructed using phantom MRIs without com-
pression. The Triple Modality Biopsy Phantom that we used contained 15 simulated
cystic masses and dense masses. After model construction, we mapped each mass
to an element in the finite element model. Then, we simulated the compression
combining the phantom material property, compression amount, and appropriate
boundary conditions. During the beginning of compression, each element reacted
to the displacement coming from the neighboring elements and formed its own
displacement. After the compression simulation was fully completed, the model
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deformed and each element simulating the mass shifted to a new position. We then
recorded these elements’ new position and compared them with the actual position
as indicated in the MRI set with compression. The experiments were repeated for
all of the 15 abnormalities and the average error was 1.6 ± 0.4mm.

The MRI registration experiments above showed that the finite element model
could accurately predict the displacement of each inner element. Given this valida-
tion, we then started our experiments on finding correspondence between phantom
X-rays.

To simplify the procedure, we used the CC and the ML views of the phantom as
test data. The phantom X-ray experiment was based on the idea that feature points
visible in the CC view and ML view should be mapped to the same point in the
uncompressed phantom breast volume. We started with the CC view. With the map-
ping as shown in Figure 8 (a) and (b), a feature point in the CC view was mapped
to a set of elements. The actual matching element corresponding to the projected
simulated mass in the CC view was among these elements. Further information
was gathered from the ML view which was used to complete the matching in the
following manner. The same feature point (feature matching was done based on the
distances between their corresponding 3D curves) in the other view was identified
and another set of elements which corresponded to the projection in the ML view
was chosen. Now we had two compressed models corresponding to the CC and ML
view projections and two sets of elements corresponding to the same feature point
in the projections. These features, which were tracked during compression, resulted
in 3D curves in the uncompressed breast volume. The two sets of elements were
then put together in the same space. The mean location of the two closest nodes on
these curves gave us the element that corresponded to the actual feature point.

(a) Phantom MRI before
compression

(b) FE Model projection (c) Phantom MRI after
compression

Figure 8. Feature point mapping in phantom data.

For validation purposes, we selected a set of feature points visible in both views in
the phantom data. First, the predicted position is computed (the deformed projected
curve), then the minimum Euclidean distance between the real feature position and
its prediction is calculated as an indicator for accuracy. The average distance be-
tween the 3D curves of the corresponding features was 1.6mm. The average error
in localization was 2.1mm. The average error in the natural breast volume with
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simulated compression was within 2.6mm. Table 3 summarizes the results of the
proposed method on the phantom data. The accuracy of the finite element model
we constructed is clearly evidenced in this experiment.

Average Error
(mm)

Average Feature
Diameter (mm)

Average Feature
Distance (mm)

3D curve distance 1.6 ± 0.4 10 ∼ 20 25.9 ∼ 80.0

Predicted 3D lesion position 2.6 ± 0.8 10 ∼ 20 25.9 ∼ 80.0

Predicted 2D lesion position 2.1 ± 0.4 10 ∼ 20 25.9 ∼ 80.0

Table 3. Results on Phantom Data (Simulated Mass and Calcification)

4.4 Results on Patient Data using Patient Specific Models

The localization accuracy of the registration procedure was evaluated using seven
clinical patient data. Breast model was constructed from each patient’s MR images.
The minimum 3D distances for projected curves were computed to validate the
model and the algorithm. The average minimum distance was 1.61mm and the
average error of predicted 2D lesion position was 2.55mm. Table 4 summarizes the
results of the proposed method on real patient data using patient specific models.
These numbers are well within the required accuracy limits for reliable clinical
diagnosis.

3D curve distance
(mm)

Predicted 2D lesion
position (mm)

Feature Diameter
(mm)

Case 1 1.6 3.1 7.2

Case 3 1.2 2.1 8.1

Case 8 1.5 2.6 3.5

Case 10 0.4 1.6 5.4

Case 13 1.5 2.4 3.8

Case 14 1.7 2.0 5.2

Case 15 1.3 2.5 7.3

Case 20 2.1 2.7 7.1

Case 21 2.3 3.0 5.3

Case 22 1.9 2.9 5.6

Case 23 2.2 3.1 4.8

Average 1.61 ± 0.39 2.55 ± 0.38

Table 4. Results on Patient Data using Patient Specific Models

The groundtruth was generated by a radiologist who identified the lesion location
in both the CC and the ML views. We performed feature registration using the
proposed algorithm. Figure 9 shows this step on a sample real data. The feature
identified in CC view is shown as a black cross in Figure 9 (a). The feature was then
back-projected onto the compressed 3D model and its corresponding straight line
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(blue) is shown in Figure 9 (b). After model restoration to original uncompressed
state, the straight line (blue) deformed into a curve (red). Note that the blue line
and the red curve are inside the 3D model. The 3D model was compressed again in
the ML direction. Finally, the curve was projected onto the ML imaging plane as
shown in Figure 9 (c). In Figure 9 (d), the projected curve was overlaid with the ML
view mammogram. It can be seen that the feature identified in the ML view (black
cross) is located on the projected curve, indicating that the two features identified
in CC and ML views are highly related. It should be pointed out that even with
the adaptive meshing, the element size is still larger than the feature size (less than
5mm in diameter), which explains the width of the projected curve in Figure 9 (c)
and (d). A finer mesh is probably needed in a biopsy design, at the cost of a much
larger number of elements and subsequent computational complexity. Generally,
an exact intersection of the approximated curves is not expected because in any
registration procedure errors are bound to be present. Therefore, the lesion position
is approximated to lie at the center of the line connecting two points of the curves
with the smallest distance.

(a) (b)

(c) (d)

Figure 9. Illustration of the feature prediction procedure on a sample patient data.

4.5 Results on Patient Data using Generic Model

We tested on 27 patient mammograms that had no associated MR data to show the
accuracy of the correspondence recovery with a generic model. After the 3D curve
calculation, the position where the two 3D curves intersect each other served as the
prediction of the lesion when the model is restored to its original shape. We could
then use the element at that position in the 3D volume to track the lesion position
during the compression. Table 5 summarizes the results of the proposed method
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using generic models.

Data 3D curve distance
(mm)

Predicted 2D lesion
position (mm)

Feature Diameter
(mm)

Case 1 3 4.7 7.2

Case 2 5.3 3 10.1

Case 3 4.1 4.3 8.1

Case 4 3.9 4.9 7.2

Case 5 3.5 6.2 5.2

Case 6 4.1 4.7 2.6

Case 7 4.3 3.6 5.1

Case 8 4.6 5.9 3.5

Case 9 4 3.2 2.9

Case 10 3.8 4.2 5.4

Case 11 3.8 4.6 3.9

Case 12 4.7 5.3 4.2

Case 13 3.7 4.6 3.8

Case 14 4.2 4.8 5.2

Case 15 4.5 4.9 7.3

Case 16 4.6 4.7 5.4

Case 17 4.5 5.3 5.3

Case 18 3.8 2.4 7.2

Case 19 3.6 2.8 3.9

Case 20 3.2 4.2 7.1

Case 21 3.9 4.4 5.3

Case 22 4.0 5.3 5.6

Case 23 3.6 4.6 4.8

Case 24 3.4 4.3 6.9

Case 25 4.1 4.5 5.6

Case 26 4.2 5.2 5.9

Case 27 3.5 4.7 4.7

Average 4.0 ± 0.39 4.5 ± 0.63

Table 5. Results on Patient Data using Generic Model

4.6 Analysis

There are many studies in the literature for measuring the elasticity parameters of
soft tissues [7, 16, 34]. According to these studies the average Young’s modulus
value for fatty tissue is 1KPa, for skin is 88KPa, and for glandular tissue is 10KPa.
The overall Young’s modulus is considered to lie in the range 5KPa – 15KPa for
the entire breast modeled as a linear, continuous, incompressible, isotropic, and ho-
mogenous tissue. Since we are interested in constructing a generic model we chose
an initial Young’s modulus value of 10KPa [35]. Since the breast is considered to
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be an incompressible tissue, theoretically volume is preserved for a Poisson’s ratio
value of 0.5. However, high Poisson’s ratio can lead to instabilities in the FE model.
A value between 0.490 – 0.495 is generally accepted as computational stable yield-
ing minimum displacement error. After model calibration, we used a Poisson’s ratio
value of 0.490.

Further, for the same settings for plate compression, Young’s Modulus, and Poisson
ratio, we achieved similar accuracy for two different patient age groups (Table 6).
This illustrates that the assumed Young’s Modulus and Poisson ratio were suitable
for cases across different age groups.

Age (years) Average 3D curve
distance (mm)

Average Predicted
2D lesion position
(mm)

[ 35, 50 ) 4.0 ± 0.42 4.2 ± 0.69

[ 50, 70 ) 4.0 ± 0.37 4.7 ± 0.61

Table 6. Generic modeling results on two different patient age groups (Young’s Modulus
=10KPa, and Poisson ratio =0.495).

With larger compression rates, the error rate for the calcification cases increased
but not significantly. This is due to the fact that when plate compression increased,
the area of the resulting patient mammogram also increased, thus leading to a larger
scaling factor and changes to the shape of the generic model. Table 7 presents the
localization error of the method for large compression rates.

Plate Compression

[ 43, 47 ] mm [ 48, 54 ] mm [ 55, 63 ] mm

Average 3D curve
Distance (mm)

3.9 ± 0.45 4.0 ± 0.29 4.1 ± 0.33

Average 2D Local-
ization (mm)

4.3 ± 0.56 4.5 ± 0.91 4.9 ± 0.53

Table 7. Performance on calcification cases using generic mode with different plate com-
pression.

5 Discussion and Conclusions

Detecting micro-calcifications and masses in mammograms taken from two differ-
ent views is critical for early diagnosis of breast cancer and successful treatment.
We presented a deformable model based method to improve feature registration
between two mammographic views. We built a finite element model of the breast
based on real patient MR data. The advantage of using a 3D finite element model is
that non-rigid breast deformation can be computed accurately, which is lacking in
2D registration methods. We devised a stepwise incremental approach to simulate
plates motion, which enables us to model large breast deformation through a series
of static equilibrium calculation. We also employed an adaptive meshing technique
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to reduce the computational cost. The use of MRIs of the same patient to build a
finite element model further ensures the registration quality. The following steps
summarizes the steps involved:

(1) 3D Finite element model of the breast was constructed using breast MR im-
ages.

(2) Breast model was compressed using recorded compression and direction data
in the mammograms.

(3) Features (calcification and mass) were manually identified by radiologists in
two mammographic views.

(4) Identified mammographic features were back-projected onto the model to gen-
erate their 3D positions in the natural breast volume.

(5) Correlation of mammographic features from two views was determined based
on their 3D positions.

Results presented in this paper showed that our approach could predict lesion corre-
spondence with reasonable accuracy. A dataset containing 11 patient mammograms
along with associated MR data was built and tested with patient specific models.

In the absence of MR data, a generic modeling approach allowed simulation of bio-
logical soft tissue deformation by choosing and adjusting an alternative model that
best corresponds to a patient’s mammogram. Experimental results on a dataset con-
sisting of 27 mammograms allowed us to demonstrate that this model succeeds in
reproducing the mechanical behavior of breast tissue in a compression experiment
with reasonable accuracy.

As future work, we plan to extend this method to cases when the lesion is visible
in only one view. We propose to adopt the following approach to find the predicted
position for the same lesion in the other view:

(1) The view where a suspicious feature was found (say CC view) is chosen as the
starting point. The 3D finite element model is compressed with the recorded
compression amount and direction in the CC view.

(2) The feature is back-projected onto the compressed model to generate a straight
line. Figure 10(a) illustrates steps (1) and (2).

(3) The model is adaptively re-meshed in the regions adjacent to the straight line
generated in step (2) and the elements through which the straight line passes
is labeled. The detected feature, which is tracked during compression, results
in a 3D curve in the uncompressed breast volume. Figure 10(b) shows a figu-
rative example of this step.

(4) The model is then compressed with the recorded ML data and the curve found
in the original model in step (3) deforms.

(5) After complete compression simulation, the deformed curve is projected onto
the view where no lesion was found in the beginning. Figure 10(c) demon-
strates this step. The region along this curve indicats the most suspicious area
in which a second reading is strongly recommended to see whether a featured
was overlooked. The thickness of this 2D curve is determined by the resolu-
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tion of the 3D model and the size of the feature identified in the first view
(CC).
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Figure 10. Second Reading Algorithm.

A subsequent direction we have attempted to explore is in correspondence iden-
tification between image features identified in two-view mammography taken at
different times [36,37]. We use the 3D finite element model as a tool for simulating
and analyzing breast deformation to improve the accuracy of matching in tempo-
ral mammograms [38]. Let us call the pair of views (CC and MLO) taken at one
time instant as temporal pairs TP1 and TP2. First, we performed the compression
simulation for the temporal pair TP1 according to the compression rate recorded in
the mammograms. The 3D location of the lesion using these two views is predicted
using back projection onto the model using the procedure described in this paper.
After we completed the same procedure for the temporal pair TP2, we compared
both the predicted 3D locations from TP1 and TP2 in the finite element model
and used the Euclidean distance as the measure of correspondence error. Figure 11
shows an illustration of this registration procedure.

In conclusion, we believe that the methods presented in this paper offer useful tools
for lesion position prediction and lesion correspondence construction. They hold
great promise in both early breast cancer diagnosis and the subsequent surgery
planning.
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Accurate matching and measurement of breast lesions identified on multiple temporal mammographic views of breast are

vital in detecting and treating breast cancer.  However, lack of 3D structural knowledge and large compression of breast

during x-ray imaging often cause mismatch among temporal mammograms, resulting in incorrect diagnosis or localization. 

A 3D model is strongly desired to provide accurate information about a breast’s 3D geometry as well as its deformation.  We

have developed a 3D biomechanical model to simulate and analyze breast deformation and to register breast lesions on

multiple views of mammograms.  This study is expected to significantly improve the accuracy of matching in temporal

mammograms and thus the performance of diagnosis and treatment.

Two types of 3D biomechanical models of breast deformation have been developed and numerically simulated by using

rigorous finite element method (FEM).  One model is developed upon magnetic resonance (MR) images of the breast, and

the other one, named generic model, is based solely on mammograms.  When available, MR images of breast are used to

construct natural breast shape.  When MR images of breast are not available, we utilize generic model of breast deformation

based on breast volume estimate.  Through numerical simulations of breast deformation, it is observed that a spot on

mammogram corresponds to a curve in the natural breast volume.  Based on this, we have developed matching methods to

locate the same breast lesions in multiple views of mammograms by minimizing distances between recovered curves from

the different views of mammograms.

We have experimented with the proposed methods on breast phantom images and clinical mammograms; patient images

contain both cases with or without simultaneous MR images.  The biomechanical model of breast deformation and

registration of breast lesions on one time mammograms have been well validated.  Currently, we are working on registration

among multiple temporal mammograms.

This study proposes to use a 3D finite element model with routine clinical data to assist detection and treatment of breast

cancer.  We have been incorporating principles of radiology, breast imaging, and computer vision to the research for

accurate detection, location, and corresponding treatment of breast cancer.  Moreover, the proposed modeling technique can

be used in routine screening, diagnosis, and surgical planning.
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