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OBJECTIVES 

To carry out fundamental and wide ranging research investigations involving the nonlinear 

wave propagation which arise in physically significant systems with emphasis on nonlinear 

optics. The modeling and computational studies of wave phenomena in nonlinear optics 

include ultrashort pulse dynamics in mode-locked lasers, localized modes in waveguide arrays 

and photonic lattices, novel phenomena in quadratic nonlinear media and the dynamics of 

dispersive shock waves. 

STATUS OF EFFORT 

The Pi's research program in nonlinear wave propagation is broad based and very active. 

There have been a number of important research contributions carried out as part of the 

effort funded by the Air Force. During the period 15 March 2006 - 30 November 2008, eight 

papers were published in refereed journals, two book chapters were published, two refereed 

conference proceedings were published and nineteen invited lectures were given. The key 

results and research directions are described below in the section on accomplishments/new 

findings. Full details can be found in our research papers which are also listed at the end of 

this report. 
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Research investigations carried out by the PI and colleagues included the following. The 

modes, dynamics and properties of mode-locked lasers which are used to create ultrashort 

pulses were analyzed. Titaniuni:sapphire (Ti:sapphire or Ti:s) lasers are often used to pro- 

duce ultrashort pulses on the order of a few femtoseconds. There are other mode-locked 

lasers which produce ultrashort pulses, such as Sr-Forsterite, fiber lasers, and Chromium- 

doped lasers. Ti:s lasers are known to have outstanding characteristics. These mode-locked 

lasers can be used to generate a regularly spaced train of ultrashort pulses separated by one 

cavity round-trip time. A typical mode-locked laser system consists of a Thsapphire crystal 

which exhibits a nonlinear Kerr response and has a large normal group-velocity dispersion 

(GVD). This requires a set of prisms and/or mirrors specially designed to have large anoma- 

lous GVD in order to compensate for the normal GVD of the crystal. Recent experiments 

conducted at the University of Colorado, in collaboration with our group, demonstrated 

that such lasers can be approximated by dispersion-managed systems and the intra-cavity 

pulse was found to be described by a dispersion-managed soliton. Improved mathematical 

models reflecting gain and loss mechanisms are being developed; these models contain gam 

and filtering terms saturated by energy and a loss term saturated by power. The new models 

describes the mode-locking and dynamics of solitons. 

A characteristic of short pulse lasers is the carrier-envelope phase (CEP) slip which is the 

change in phase between carrier and envelope from pulse to pulse in the pulse train. This 

is the phase slip that the intra-cavity pulse accumulates over one cavity round-trip before 

being emitted from the output coupler. The intra-cavity slip is affected by the nonlinearity 

and dispersion of the cavity. Control of the phase slip allows researchers to stabilize trains of 

ultrashort pulses which are useful for applications. Improved understanding of the phase slip 

and noise characteristics will help experimentalists improve the characterisitcs/stabilization 

of the pulse train. 

Investigations of pulse propagation in photonic lattices were carried out. There has also 



been important experimental research on discrete optical wave-guides and the propagation of 

their nonlinear modes. Experimentalists have been able to construct one and two dimensional 

lattices by interfering laser beams. This all-optical technique is a significant advantage 

over prior methods in which the background lattice structure was developed by mechanical 

fabrication. 

Early experimental observation of one-dimensional nonlinear lattice modes in corrugated 

optical waveguide arrays demonstrated that at sufficiently high power, a laser beam could be 

self-trapped inside the waveguide. This demonstrated the formation of a lattice or discrete 

soliton. Importantly, such waveguides can be constructed on extremely small scales and. as 

mentioned above, recently have been constructed by all-opitcal means. In turn, such non- 

linear waves in waveguide arrays have attracted special attention due to their realizability. 

Lattice nonlinear Schrodinger equations provide excellent models. We developed asymp- 

totic and computational methods which describe observed phenomena and found localized 

pulse solutions to two-dimensional optical lattices with both regular and irregular lattice 

backgrounds. Irregular lattice backgrounds include vacancy defects, edge dislocations and 

quasi-crystal structures. 

Research involving quadratic, or so-called \(2). nonlinear optical materials has led to 

a novel asymptotic systems of equations. Detailed calculations indicate that, in certain 

parameter regimes, there are stable localized pulse solutions. In other cases, the equations 

have unstable and singular solutions. The possibility of such singular solutions indicates 

sii nations when extreme damage to the underlying optical crystal is possible. 

Dispersive shock waves (DSW's) were investigated. With experimentalists at the Univer- 

sity of Colorado, dispersive shock :'blast" waves and interactions were studied. The relevant 

analytical approximations and theory for DSW's were developed and results were compared 

with experiment and computation; key differences between DSW and viscous shock waxes 

were also described. DSW's arise in nonlinear optics and many other areas of physics. 



ACCOMPLISHMENTS/NEW FINDINGS 

Dynamics of ultra-short laser pulses and frequency combs 

Research breakthroughs over the past few years with mode-locked lasers, such as Ti:sapphire 

lasers, have enabled scientists to generate regularly spaced trains of ultrashort pulses, which 

are separated by one cavity round-trip time. Fig. ?? below shows a schematic of a mode- 

locked Ti:sapphire laser and the emitted pulse train. Typical values for a Tbsapphire mode- 

locked laser are pulse width: r = 10 fs = 10~14 sec and repetition time: 7^ = 10 ns 

= 10"8 sec. 
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Figure 1: Ti:sapphire laser (left) and the emitted pulse train (right). 
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Figure 2: Schematic of a pulse train (left) and its spectrum -frequency comb (right ] 

Associated with the spectrum of the pulse train is a frequency comb, whose frequencies 

are separated by the laser's repetition frequency /rep = ^— = 100 MHz; u>r 2-/,,.,,: see 



Fig. ?? above. In this figure Tn,4>n are the center time and phase of the nth pulse. In the 

absence of noise, the pulse's spectrum determines the bandwidth, while the repetition-time, 

Trep = T„+i - Tn, and overall phase slip. Acp = 4>n+i ~ </>n, determine the comb function 

in frequency space. The frequency of the fc'th comb line (enumerated around the center 

frequency) is u>k = ku)vev + u0, where o;rep = 2ir/Trep and u)0 = A(f>ujrep/2-K are the repetition 

and offset frequencies which are depicted in Fig. ??. The linewidth (LJI/2 in the inset) is the 

FWHM (full width half maximum) of the comb function around each comb frequency. In 

the deterministic case, for a large number of pulses N >> 1, the linewidth can be estimated 

to be uJi/2 = 0{jjf—). Additional noise leads to jitter in the center time, T„, and phase, o„. 

which in turn broadens the FWHM of the comb lines. 

As discussed above, mode-locked lasers such as Ti:sapphire (Ti:s) laser systems (see 

Fig. ??) can generate trains of optical pulses, whose spectrum consists of frequency comb 

lines (see Fig. ??). Important progress in the development of extremely stable optical os- 

cillators has been made possible by the use of controlled femtosecond frequency combs. 

Extremely stable frequency combs have been generated by Ti:s laser systems, but others 

such as SnForsterite lasers are also being studied intensively. We have been working with 

faculty in the Department of Physics at the University of Colorado on this research. 

In our research we have been studying a distributed dispersion-managed, power energy 

saturation (PES) model system. For a pulse with amplitude u{z,t), power P(z,t) = |ul2, 

and energy E(z) = J_x \u\2 dt, which is propagating in the z direction, our normalized 

equation takes the form 

du     d(z)02u 2 ig IT il 
1dI + —W + n(z)H u = TTE/EZ

U
 
+ YTEJE^

U
" " i + P/P„"      -' 

where the constant parameters .9, r, I, EsaU Psat are positive. The first, term on the right 

hand side represents saturable gain, the second is nonlinear filtering (r 7^ 0) and the third is 

saturable loss. This model generalizes the well-known master laser equation. An important 



observation is that when the loss term is approximated in the weakly-nonlinear regime by a 

Hist order Taylor polynomial we obtain the master laser equation. Hence, the master laser 

equation is included in the power saturated model as a first order approximation. 

The dimensionless governing equation is obtained by transforming to the following vari- 

ables: 

z = z/zt, t' = t/U , " = E/ y/K 

where E is the envelope of the electromagnetic field /,,P» are the characteristic time (pro- 

portional to pulse width) and power respectively. We take z, = 1/(P„70), where ")0 (in units 

1/MW-mm) is the nonlinear coefficient in the laser crystal, <y, r and / have all been scaled 

by 2* and the normalized dispersion is given by 

d(z) = -k"{z)/kl   K = t2Jzt, 

where k" is the GVD (in units fs2/mm). In normalized units we find 

A(z) 
d(z) = (d) + 

lc 

with (d) being the average dispersion (net GVD), A the deviation from the average GVD, 

and lc the normalized laser-design map length. Usually one considers a two step dispersion 

map where Aj, j = 1,2 are taken to be constant in the mirror+prism components (j = 

1) and crystal (j = 2). The map length over which the anomalous dispersion occurs is 

01,. where 0 < 6 < 1; typically we take 8 = 1/2 in Tbsapphire laser applications. We 

also introduce the map strength parameter s, which is proportional to the area under the1 

dispersion map, s = \[0 Ai — (1 — 0) A2], In addition to dispersion-management, we also have 

nonlinear-management in this laser model . Here nonlinear-management means that /; = 1 

(transformed from 70 in dimensional variables) inside the Tbsapphire crystal and n = 0 

outside the crystal: that is. we assume linear propagation inside the prisms and mirrors. 

In Fig. ?? below a schematic diagram of the normalized dispersion- managed configuration 

associated with a mode-locked Ti:sapphire laser system is shown. 
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Figure 3: Figure shows a typical dispersion-managed configuration. 

In our earlier research investigations in fiber optics we derived, based on the asymptotic 

procedure of multiple scales, a nonlinear integro-differential equation (not given here due 

to space considerations) which governs the dynamics of dispersion-managed pulse propaga- 

tion. This governing equation is referred to as the dispersion-managed nonlinear Schrodinger 

(DMNLS) equation. When there is no gain or loss in the system, for strongly dispersion- 

managed systems, the DMNLS equation plays the role of the "'pure" NLS equation which 

is the relevant averaged equation when there is either small or no dispersion-management. 

When gain and loss are included as in the PES equation we have a modification of the "pure" 

DMNLS equation. 

With or without dispersion-management the PES equation naturally describes the locking 

and evolution of pulses in mode-locked lasers that are operating in the soliton regime. To 

describe our research in more detail, we fix typical values of the parameters, vary the gain 

parameter g and the map strength s. When g < g*(s) no localized solution is obtained; 

i.e. in this case the effect of loss is stronger than a critical gain value and the evolution of 

a Gaussian profile decays to the trivial solution. Conversely, when g > g*(s), there exists 

a single localized solution, u = L/O(0 
exP(zM~) where fj,, called the propagation constant. 



is uniquely determined given the specific values of the other parameters. The localized 

solutions of the modified DMNLS equation with gain-loss in the different regimes are shown 

in Fig. ??; in this figure we see that for given map strengths the amplitude of the pulses 
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Figure 4: Solitons of the DMNLS equation with gain-loss corresponding to different map 

strengths and gain parameters. Notice that these solitons occur only for a specific value of 

propagation constant, //, in contrast to the unperturbed case where solutions exist for all 

fj, > 0, thus providing the mode-locking mechanism. 

increases with g. In addition, we see that the pulses become broader as the map strength, 

.s', increases. Blow up is not obtained, even under extreme gain. As mentioned earlier, the 

influence of gain-loss on pulses in this model is to create the mode-locking mechanism. The 

resulting modes also correspond closely to the modes of the unperturbed equation with the 

same propagation constant /J,. 

Interestingly it is known that only for a narrow range of parameters the master laser 

eiination (when the loss term is taken to be the first two terms of the Taylor expansion of 

the last, power saturated term, in the PES equation) exhibits stable soliton solutions with 

mode-locking evolution. Otherwise the solitons are found to be unstable; either dispersing to 

radiation or evolving into nonlocalized quasi-periodic states. In addition, for diffrerent pa- 

rameters, the amplitude can also grow rapidly under evolution. Thus, the basic master laser 

equation captures some qualitative aspects of pulse propagation in a laser cavity: however, 
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since there is only a small range of the parameter space for which stable mode-locked soliton 

pulses exist, it does not reflect the wide ranges of operating conditions where mode-locking 

occurs. 

The PES and the master laser equation have parameters which are obtained from experi- 

ments. When there is insufficient gain in Eq. (??), both models show that pulses dissipate to 

zero. Remarkably, a distinguishing feature of the PES model is that even under large gain, 

pulses do not blow-up nor do they exhibit instabilities. Indeed, when the gain is greater than 

some threshold value g = g*. during the evolution the pulse readjusts itself as it mode locks 

into a stable localized mode, or soliton solution, which we refer to as a soliton wave at tract or 

(SWA). Furthermore, all pulses that evolve into SWAs can be obtained independently using 

a mode finding algorithm which we developed in our earlier research supported by AFOSR. 

Power saturation models also arise in other problems in nonlinear optics and are im- 

portant in the underlying theory. For example, power saturation models are important in 

the study of the dynamics of localized lattice modes (solitons, vortices, etc) propagating in 

photorefractive nonlinear crystals. If the nonlinear term in these equations was simply a 

cubic nonlinearity. without saturation, two dimensional fundamental lattice solitons would 

he vulnerable to blow up singularity formation, which is not observed. Thus saturable terms 

are crucial in these problems. 

Carrier-envelope phase slip 

As mentioned above, mode-locked lasers can generate a regularly spaced train of ultra- 

short pulses separated by one cavity round-trip time. The phase slip is the change of the 

phase offset between carrier and envelope from pulse to pulse in the pulse train which accu- 

mulates over one cavity round-trip, before being emitted from the output coupler. Fig. ?? 

depicts the physical origin of the carrier envelope phase (CEP) shift. The intra-cavity slip 

is induced by the nonlinearity and dispersion of the cavity. The phase offset UJ0 in the 

frequency comb is proportional to the carrier envelop phase UJ0 = A&u)rep/2Tr where the 



repetition frequency is wrep = 2ir/Trep and the carrier envelop phase is given by Acftcf = Ad). 

envelope 

Figure 5: The carrier-envelope phase. A<J>CE — A<p, changes during propagation, because 

the envelope propagates at the group velocity while the carrier wave propagates at I he phase 

velocity. 

A typical Ti:s laser, such as the one depicted in Fig. ??, consists of a Thsapphire crystal 

that has a nonlinear Kerr response as well as large normal group-velocity dispersion (GVD), 

and a set of prisms and mirrors specially designed to have large anomalous GVD. The pump 

laser excites the ThSapphire crystal, causing it to lase and the pulse undergoes large changes 

inside the Tksapphire cavity . The combined contributions to the phase slip depends on the 

nonlinear phase and nonlinear dispersion in the cavity. The crystal induces a nonlinear effect 

as well as large normal GVD; the mirror and prisms induce large anomalous GVD that nearly 

balances the normal GVD of crystal with a small net-positive GVD (average dispersion) over 

one round-trip. The pulse bounces between the mirrors and output coupler and is "sampled" 

every round-trip at the output coupler (which transmits only 6% of the energy). When the 

laser is mode-locked a regularly-spaced ultrashort pulse train is emitted from the cavity. In 

our earlier work we employed a perturbed NLS equation without gain/loss; i.e. we took 

g = T = I = 0 in Eq. (??), but we added a small nonlinear term on the RHS of proportional 

to n(z)(\u\2ti)t and a higher order (third order) linear dispersive term (see below).    The 
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nonlinear term on the right-hand side, often called the "shock'' term, corresponds to small 

nonlinear dispersion arising from the Kerr effect. The shock term is particularly import.nil 

for shorter pulses and it induces a nonlinear change in the phase slip, which is known to 

depend on pulse energy (pump power). 

We found the nonlinear slip, i.e., the slip induced by nonlinear phase and nonlinear 

dispersion effects, to be well-approximated by 

(5NJL « 3k"lc/T0s, 

where k" is average-cavity GVD, r0 is the pulse width. lc is the optical cavity length and 

s is the map strength. This result shows that the phase slip that is induced by nonlinear- 

dispersion vanishes with stronger dispersion-management, which is consistent with the iu- 

sensitivity of the slip to pulse energy with strong dispersion-management. An additional 

effect which impacts the phase slip is third-order dispersion (TOD), which can be mod- 

eled by adding [ik'" / (6'yoP*To)}uut (normalized) to the right-hand side of Eq. (?? (with 

g = T = I = 0), where k'" is the average TOD coefficient, i.e., the net TOD per round-trip 

of the cavity and P, is the characteristic power. 

Thus the laser cavity was modeled by a dispersion and nonlinearity managed nonlinear 

Schrodinger equation (perturbed NLS), that takes nonlinear phase (self-phase modulation) 

and small nonlinear dispersion into account. In our work we developed a detailed asymptot ic 

theory which gave analytic results that described the carrier-envelope phase shift in this 

dispersion-managed NLS equation. Control of the carrier envelope phase shift is important 

in applications. It is a key aspect to obtain highly stable optical oscillators. 

Comparison of theory with experiments 

Motivated by the question of whether or not the mode-locked pulses observed in the 

laboratory were actually solitons, a number of experiments were performed in the Dept. of 

Physics at the University of Colorado. It was found that the "pure'7 dispersion-managed 

theory, without gain/loss terms (i.e.  in this case g = r — I = 0 in Eq.   (??)) agrees with 
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experiments remarkably well. Moreover, in recent work accounting for g,T,l •£- 0 we found 

that when the system mode locks, the solitons are well approximated by pure dispersion- 

managed solitons. This further supports the comparisons of theory and experiment and 

the carrier envelope phase slip calculation described above. In Fig. ?? the full width half 

maximum (FWHM) is plotted vs. the average pulse energy for various values of the net- group 

delay dispersion (GDD). The dashed lines are the theoretical values. This experimental 

research also shows that dispersion-management soliton concepts are broadly applicable. 
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Figure 6: Fundamental pulse parameters in a mode-locked Titaniumisapphire laser. The 

points are the measured temporal FWHM at four values of the average cavity GDD. The 

curves are the solutions of the Dispersion Managed NLS equation. The legend states the 

GDD values in is2. The errors for the GDD are approximately Y'A and the errors for the r 

values are negligible on the scale shown. Inset shows the breathing dynamics of a dispersion- 

managed soliton |u|2 as it- propagates along z. 
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Noise; induced linewidth in frequency combs 

We have discussed earlier that mode-locked Ti:s lasers generate trains of optical pulses, 

whose spectrum consists of frequency comb lines. These combs are represented by evenly- 

spaced frequencies and an offset frequency that is proportional to the carrier envelope phase 

(see Fig. ??). 

Random physical effects ran induce a linewidth. or uncertainty, in a comb line frequency. 

Sonic random effects can be minimized but, as far back as 1958, Schawlow and Townes 

discovered that the linewidth, or monochromaticity, of a single-mode continuous-wave (cw) 

laser is fundamentally limited by the random process of amplified spontaneous emission 

(ASE) in the lasing medium. We studied the limits of frequency combs associated with mode- 

locked lasers in the presence of ASE noise and obtained a scaling law result. In particular, we 

analyzed the frequency combs generated by trains of pulses emitted from mode-locked lasers 

when the center-time and phase of the pulses undergo noise-induced random walk, which 

in turn broadens the comb lines. Detailed asymptotic analysis and computation of the 

ensemble-averaged spectrum revealed a time-frequency duality. In particular, the increase 

of the standard deviation of the center-time with pulse number, and the increase of the 

linewidth with frequency, are closely related. More precisely, the standard deviation of the 

center-time jitter of the n'th pulse is found to scale as ?7,p/2, where p is a jitter-exponent, 

while the linewidth of the fc'th comb line scales as k2'p. The linear-dispersionless system 

(;; = 1) and pure nonlinear soliton (p = 3) dynamics in lasers are found as special cases of 

this time-frequency duality relation. 

Although this result was derived for mode-locked lasers, the general nature of the result 

indicates that it can be applied to the stochastic dynamics associated with other frequency 

combs. 

L3 



Nonlinear Optics in Waveguide arrays and photonic lattices 

Nonlinear light wave propagation in photonic lattices, or periodic optical waveguides, 

is an active and interesting area of research. This is due, in part, to the realization that 

photonic lattices can be constructed on extremely small scales, typically a few microns in 

size. They allow the possibility of manipulation and navigation of lightwaves in small regions. 

Localized nonlinear optical pulses which occur on one and two dimensional backgrounds have 

been investigated. These backgrounds can be either fabricated mechanically such as those 

comprised of AlGaAs materials or ail-optically using photo-refractive materials where the 

photonic structures are constructed via interference of two or more plane waves. 

In two-dimensional photonic lattice applications, a nonlinear Schrodinger equation with 

an external potential, derivable from Maxwell's equations, is the governing equation. The 

equation in normalized form is 

Oil 
i— + Alt - V(x, y)u + \u\'2u = 0 (2) 
uz 

Here n(.r.ij.z) corresponds to the slowly-varying complex amplitude of the electric field in 

the plane that is propagating along the z direction, Au = uxx + uyy corresponds to diffraction. 

V(x, y) is an external optical potential, and the cubic term in u originates with the nonlinear- 

Kerr change of the refractive index for a cubic or ;\<3' nonlinear index. The optical potential 

corresponds to a change in the linear refractive index of the medium, which can be achieved 

either by etching or with an all-optical inductance technique. We note that the potential 

assumed in this study is uniform along the propagation direction z, although in principle, 

non-uniform potentials in z could also be considered in a manner analogous to diffraction or 

dispersion-management. 

Recently we have begun a collaboration with faculty in the Electrical Engineering De- 

partment at the University of Colorado. They have constructed defect, dislocated photonic 

lattice systems and quasi-crystal potentials in the laboratory. By a defect we mean thai only 
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one or two lattice sites are affected by either removing a small number of sites or enhancing 

the amplitude of these sites. A dislocated photonic lattice system has, for example, a line 

of sites merging with another. A quasi-crystal structure has long range order but is not 

periodic. The general quasi-crystal potential we study is given by 

JV-l 

V(x,y) = -^ E' ,jfc[cos(27rn/;V)i+sin(27rn/Af)y] 

which corresponds to the diffraction of plane waves that emanate from N equally spaced 

points on a circle. When N = 2,3,4,6 regular periodic lattice backgrounds result. The 

simplest nontrivial (i.e nonperiodic) case is N = 5 which is often referred to as a Penrose 

potential—this is named after R. Penrose who discussed such functions in the mathematical 

context of tiling the plane. We are currently studying higher order and more general cases. 

Defect, dislocation and quasi-crystal structures are often seen in nature. Typical cases are 

given in Fig ?? below. 
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Figure 7:   vacancy defect, left, dislocation, middle, quasi-crystal order N 

structure-right 

5 -Penrose 

In our research we constructed, by using our recently developed computational met hods, 

nonlinear localized pulses which are associated with complex defect photonic lattices such 

as the ones in Fig ??. To date most investigators have considered regular lattices. Photonic 

lattice systems and waveguide arrays, which we often approximate as discrete systems, are 

natural components of optical design.  Since they can be fabricated in small physical envi- 
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ronments they allow the possibility of controlling and tuning light waves in confined regions 

and to navigate light in one and two dimensional networks. 

Dynamics and pulse propagation in quadratic nonlinear optical media 

In many applications the leading nonlinear polarization effect in an optical material is 

quadratic; they are usually referred to as \^ materials. We have found that in multidimen- 

sional nonresonant \^ materials, the nonlinear equation governing the slowly varying enve- 

lope of quasi-monochromatic wave trains is a coupled nonlinear system involving both the 

optical field and mean terms. They are a generalization of the classical nonlinear Schrodinger 

equation. We call these equations NLSM systems (M stands for the mean contribution). In 

water waves similar scalar systems were derived in 1969 by Benney and Roskes. A few years 

later, a special case of this system was found to be integrable. The latter system is frequently 

referred to as the Davey-Stewartson (DS) system. 

We have derived both scalar and a vector NLSM systems directly from Maxwell's equa- 

tions. The vector NLSM systems generalize the well known 1 + 1 vector NLS equations to 

inultidhnrnsions. Such vector multidimensional systems arc new in mathematical physics: 

they have not yet been derived in other physical systems. 

In our research we found that the \ optical system can exhibit wave collapse corre- 

sponding to a suitable ranges of parameter and initial data. This indicates that intense 

optical pulses can occur in these systems. We believe that experimentalists will be able to 

observe this phenomena since the analagous situation was recently observed in cubic non- 

linear media. These theoretical results indicate that in this range of parameters researchers 

must be careful in their experiments to prevent damaging the underlying optical crystal. 

The NLSM system of equations possesses nonlocal-nonlinear coupling between a field that 

is associated with the first harmonic, with a "cascaded" effect from the second harmonic, 

and a static field that is associated with the mean term (i.e., the zero'th harmonic). The 

system that we analyzed in detail can be written in the following non-dimensional form, 

in 



iuz + -AM + \u\2u — pu(j>x = 0 , (3a) 

I2) I    JX   J (;5h) 

where u(.r.ij.z) corresponds to the field associated with the first-harmonic, <f){x,y,z) cor- 

responds to the mean field, and v and p are real constants that depend on the physical 

parameters. 

It can be proven that the above system can admit wave collapse of localized waves when 

v > 0. We remark that the initial conditions are u(x,y.O) = uo(x,y), cf>(x,y,0) = <J)Q(X, //). 

such that equation (??) is satisfied at z = 0, i.e., 4>o,xx + ^'Po.yy — {\UQ\
2
)X- 

We also note that our numerical solutions indicate that as wave collapse occurs, the 

solution tends to the steady state mode found from the above NLSM system (??)• The 

steady solution is obtained by assuming a solution of the form u(x,y,z) = F(x,y)elX" and 

<p(x,y,z) = G(x,y), where F and G are real functions and A is a positive real number. 

Substituting this ansatz into equations (??) gives 

-XF + 'AF + F* - pFGx =0 . (4a) 

Gxx + vGyy = (F2)x . (41)) 

We plan to investigate whether localized optical pulses can be obtained when we have an 

underlying optical lattice.  We are also investigating the possibility of light navigation and 

optical switching. 

Dispersive Shock Waves 

Shock waves in compressible fluids is a classically important field in applied mathematics 

and physics, whose origins date back to the work of Riemann. Such shock waves, which we 

refer to as classical or viscous shock waves (VSW's), are characterized by a localized steep 

gradient in fluid properties across the shock front. Without viscosity one has a mathematical 

discontinuity; when viscosity is added to the equations, the discontinuity is "regularized" 
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and the solution is smooth. An equation that models classical shock wave phenomena is the 

Burgers equation 

ut + uux = vuxx (5) 

If v = 0, we have the inviscid Burgers equation which admits wave breaking. When the 

underlying characteristics cross a discontinuous solution, i.e. a shock wave, is introduced 

which satisfies the Rankine-Hugoniot jump conditions which, in turn, determines the shock 

speed. Analysis of Burgers equation shows that there is a smooth solution given by 

1 1         .r1,           1   v, u = taring —(x 1) \ 
2 2 Ml/        2 U 

which tends to the shock solution as v —» 0. Thus the mathematical discontinuity is regu- 

larized when viscosity v is introduced. 

Another type of shock wave is a so-called dispersive shock wave (DSW). Early obser- 

vations of DSW's were ion-acoustic waves in plasma physics. Subsequently, Gurevich and 

Pitaevskii studied the small dispersion limit of the Korteweg-deVries (KdV) equation. They 

obtained an analytical representation of a DSW. As opposed to a localized shock as in the 

viscous problem, the description of a DSW is one with a sharp front with an expanding, 

rapidly oscillating rear tail. The Korteweg-deVries (KdV) equation with small dispersion is 

given by 

ut + uux = e2uxxx ((i) 

where 0 < t << 1 regularizes the discontinuity that otherwise would be present. The 

mathematical technique used to analyze DSW's relies on wave averaging, often referred 

to as Whitham theory. Whitham theory is used to construct equations for the parameters 

associated with slowly varying wavetrains; it provides an analytical basis for DSW dynamics. 

For KdV the Whitham equations can be transformed into Riemann-invariant form, which 

can be: analyzed in detail. One finds that there are two speeds associated with a DSW: one is 

18 



the speed associated with the frontal wave which is a soliton (located at xs in the figure), and 

the other speed corresponds to the group velocity of near linear trailing waves on the rear end 

(depicted by Xi in the figure) of the DSW. The picture and details are quite different from 

viscous shock waves which, for example, occurs in Burgers equation; cf. the leftmost Fig. ?? 

which depicts a typical DSW associated with the KdV equation and a classical or viscous 

shock wave (located at xc in the figure) associated with the Burgers equation. Interestingly, 

the structure of the KdV DSW is strikingly similar to the original plasma observations. 

2t/„ 

DSW-. 

lllll 
ii 

I 
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Figure 8: Left figure: typical DSW satisfying the KdV eq. (??) and a classical shock wave 

satisfying Burgers eq. (??); middle figure: "in-trap" blast wave; right figure: "out-of-trap" 

blast wave. Numerical simulations are given below those of the corresponding experiment. 

Recent experiments in Bose-Einstein condensates (BEC) and nonlinear optics have en- 

hanced interest in DSW's. The BEC experiments, originally performed in the Physics De- 

partment at the University of Colorado, motivated our studies. Shock waves emanating 

from a blast or explosion are well known in the study of viscous shock waves. Interestingly 

a similar situation occurs in the context of DSW's. The dispersive blast wave experiment 

and computational results are shown Fig. ?? - middle and right figures. Recent experiments 

in nonlinear optics carried out in the laboratory of ,J. Fleischer at Princeton University have 

also observed similar blast waves and other interesting DSW phenomena. 
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The governing equations we studied are a defocusing NLS equation with an additional 

external potential. In BEC this equation is usually called the Gross-Pitaevski equation. Im- 

portantly, a similar equation occurs in nonlinear optics. The equation is given in normalized 

form as 
f2 

ie% + -V2* - V(r, 2, *)tf - |^|2^ = 0 (7) 

where V(r,z) contains details describing the cylindrically symmetric potential trap and ad- 

ditional laser terms, $> is the wavefunction and e2 is a small parameter related to the conden- 

sate. Two different configurations were studied: the so-called "in-trap" and "out-of-trap" 

cases. The two cases correspond to the turning on of a tightly focused laser beam when the 

BEC was in either a trapped or an expansion (the latter is called nontrapped) configuration. 

The laser beam creates a dispersive blast wave in the radial direction. 

Numerical simulations were found to agree extremely well with the experiments. In Fig. 

?? (middle and right figures), experimental and numerical results are shown for the two BEC 

configurations: the numerical image is a contour plot of J \^/\2dz (darker is less dense). Our 

initial analytical studies were carried out on the 1-D semi-classical NLS equation without 

the external potential since the experiments indicated that after some propagation time the 

DSW's were approximately 1-D in character and weakly influenced by the potential. 

As indicated earlier, an analytical approach to DSW's uses Whitham averaging theory. 

Whitham analysis associated with NLS equations in various contexts have been investigated 

by a number of authors and in order to effectively compare the analysis with BEC experiment 

and simulations, by ourselves. Whitham averaging over the first four conservation laws of 

NLS, using a 1-phase traveling wave solution, leads to suitable parameters satisfying a system 

of hyperbolic PDE's which can be written in Riemann-invariant form. Solving the Riemann- 

invariant system corresponding to step initial data, yields a description of an NLS DSW. 

The NLS DSW is a slowly modulated wave train which varies from a large trailing wave 

which is well approximated by a moving dark (gray) soliton, to a nearly linear wavetrain at 
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the front, moving with its group velocity; like KdV the NLS DSW has two speeds. The 1-D 

NLS theory was applied to both of the multi-dimensional blast wave cases. The analytical 

results were very good; however due to radial and potential effects there is a difference in 

phase and to a lessor degree in amplitude. 

While interactions of viscous shock waves are well known, the situation associated with 

DSW's is still at an early stage. We have made some progress in our research, but more 

work still needs to be done in order to develop a broad and detailed understanding. We are 

investigating DSW interactions in physically interesting systems by employing both Whitham 

methods and asymptotic analysis applied to the solution obtained by the inverse scattering 

transform. 

We are studying the effect of higher dimensions on the interaction of DSW's. In this 

regard, we mention that in recent nonlinear optics experiments carried out in J. Fleischer's 

laboratory, interacting DSW's were observed. For example sec Fig. ?? which depict various 

DSW interactions. 

h 
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Figure 9: Interactions of DSW's; top (b):  nearly one dimensional; middle (d):  interacting 

cylindrical waves bottom (f): cylindrical DSW interacting with a one dimensional DSW. 
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We also analyzed another interesting problem in the theory of DSW's: the piston dis- 

persive shock problem. Here a dispersive shock propagates with a constant speed into a 

dispersive fluid. The one dimensional semi-classical NLS Eq. with imposed moving bound- 

ary values is the governing equation. For small piston speed the result is a DSW separating 

the fluid at rest with the piston. At large enough piston speed there is a bifurcation of shock 

behavior and a locally periodic wave train is generated between the DSW and the piston. 

Dispersive shock waves are an interesting and developing area of research which we believe 

will play an increasingly important role in nonlinear optics applications and other areas of 

physics. 
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