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ABSTRACT

Wavelet-based distributed data processing holds much promise for
sensor networks; however, irregular sensor node placementpre-
cludes the direct application of standard wavelet techniques. In
this paper, we develop a new distributed wavelet transform based
on lifting that takes into account irregular sampling and provides a
piecewise-planar multiresolution representation of the sensed data.
We develop the transform theory; outline how to implement itin
a multi-hop, wireless sensor network; and illustrate with several
simulations. The new transform performs on par with conventional
wavelet methods in a head-to-head comparison on a regular grid of
sensor nodes.

1. INTRODUCTION

Wireless sensor networks have emerged as an important applica-
tion area for distributed signal processing. Sensor networks consist
of nodes that sense phenomena of interest, process the measure-
ments, and share data via a wireless, multi-hop routing network.
Nodes have limited on-board power supplies, and since commu-
nication power consumption typically dominates over processing
power by orders of magnitude, intelligent, in-network signal pro-
cessing is necessary to reduce the amount of transmitted data.
Whenever possible, transmissions outside the network should take
the form of summarizedresultsandconclusionsrather thanraw
data. Such processing must be bothdistributed— not requiring
all data in a central location — andlocalized— requiring access
only to data in a node’s immediate vicinity.

The restrictions on signal processing algorithms for sensor
networks are considerably complicated by theirregular node
placementtypical of real-world deployments. While most tradi-
tional regular-grid signal processing techniques do not translate
directly to this setting, much of the literature on distributed sig-
nal processing for sensor networks has nonetheless assumedreg-
ular sampling grids, a fact highlighted in [1]. To help rectify this
discrepancy, we propose in this paper what is to our knowledge
the first distributed, two dimensional (2-D), irregular-grid wavelet
transform for sensor networks capable of multiscale, piecewise-
planar approximation of node measurements (two wavelet vanish-
ing moments). We provide a detailed treatment not only of the
transform theory (based on wavelet lifting [2]) but also itsimple-
mentation issues, developing along the way a new distributed tri-
angulation protocol that extends the work of [3].

Section 2 discusses related work in wavelet processing for sen-
sor networks. Section 3 overviews the lifting approach thatwe
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exploit in the later sections. Section 4 develops a multiscale struc-
ture on the sensor nodes; Section 5 derives the requisite filters;
and Section 6 deals with the iteration of the transform. Section
7 develops a new technique for distributed network triangulation.
Section 8 demonstrates the approximation power of our transform
coefficients with two distributed compression examples. Section 9
concludes and reviews our ongoing work.

2. RELATED WORK

Multiscale algorithms are not difficult to motivate for sensor net-
work applications, since the laws of physics often induce inthe
measured data a natural multiscale structure that can guidethe
scope and extent of in-network signal processing and communi-
cation. In particular, as sensors become more distant from each
other, the spatial correlations between their measurements will de-
cay rapidly. This suggestslocal processing at fine scalesbetween
neighboring nodes andglobal processing at coarse scalesbetween
more far-flung nodes.

DIMENSIONS [4] uses an in-network wavelet transform to fa-
cilitate querying and storage of sensor network measurements, but
it assumes a regular-grid placement of nodes. The same assump-
tion is shared by the wavelet-based Wisden system [5] for struc-
tural monitoring. Similarly, [6] proposes separable application of
1-D regular-grid wavelet transforms to solve the 2-D sensorbroad-
cast problem. The lifting-based, regular-grid distributed wavelet
transform in [7] is similar in spirit to the one proposed here. It
employs a 1-D wavelet decomposition along a path through the
2-D measurement field; however, no method for determining the
optimal path is given. While the technique could be extended
to use irregular-grid 1-D wavelets, such an approach is not capa-
ble of fully capturing the higher-dimensional spatial dependencies
among the measurements. Similar conclusions apply to the 1-D
Haar protocol described in [8].

The work in [9], which this paper extends, provides an
irregular-grid, fully 2-D, distributed wavelet transformfor sensor
networks, based on piecewise-constant multiscale approximation
and multiscale routing structures. In this paper, we develop a
distributed lifting transform capable of piecewise-planar approx-
imation and requiring noa priori multiscale network structure.
There has been significant prior treatment of centralized irregular-
grid lifting in both the computer graphics and statistical estimation
communities (see [10,11] and the references therein); we base our
distributed scheme here on a technique suggested in [11].

3. WAVELET LIFTING ON IRREGULAR GRIDS
Wavelet lifting [2] replaces the measurement at each sensornet-
work node with a wavelet coefficient representing the inner prod-
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uct of the measured field with a wavelet function in a basis or frame
expansion. The process is multiscale, starting from the original
node measurements at some finest scaleJ and iterating to a final,
coarsest scale0. Denote the complete set of nodes byE(J) and
the complete measurements bysJ ; these comprise the finest-scale
set of scaling coefficients. We assume that each node knows its
location in space; providing this information is an area of active
research [12].

Adopting with slight modification the notation of [11] and
starting withj = J − 1, we say that each scalej of the transform
first splits the set of nodesE(j + 1) into a set of#E(j) “even”
coefficients located at nodesE(j) and a set of#O(j) “odd” co-
efficients located at nodesO(j).1 This divides the set of scaling
coefficients into two new setssj+1,E(j) andsj+1,O(j). The co-
efficients insj+1,O(j) give rise to the scale–j wavelet coefficients
dj,O(j). We say that these arepredictedusingsj+1,E(j) and re-
fer to the nodes inO(j) as predicted nodes.The coefficients in
sj+1,E(j) are thenupdatedto sj,E(j) usingdj,O(j) in order to pre-
serve the weighted average of the scaling coefficients; the nodes in
E(j) are known asupdated nodes.

The scale–j set of scaling coefficientssj,E(j) replaces the even
scaling coefficients from scalej + 1, and the transform then iter-
ates oversj,E(j) at coarser scalej − 1, continuing until a root
set of scaling coefficients resides at the nodes inE(0). At that
point, the set of terminal scaling coefficientss0 and the entire set
of wavelet coefficients{dj}j∈{0,...,J−1} number the same as the
original field measurements atE(J) and completely describe them
— that is, the entire process is invertible.

The key issues in any lifting decomposition are (1) determin-
ing which values are to bedecimatedat each scale (i.e., partition-
ing nodes intoE(j) andO(j)), and (2) defining filters to calculate
the scaling and wavelet coefficients at each scale. In a regular-grid
setting, the grid structure guides both these choices — decima-
tion to a coarser grid is trivial, and the same set of scaling and
wavelet filters can be applied at each grid point. With grid irreg-
ularity, choosing which nodes to decimate becomes more compli-
cated, and the lack of a predictable spatial neighbor distribution
necessitates adapting different filter coefficients for each node.

The technique in [9] exploits the simplicity of piecewise-
constant multiscale approximation and leverages hierarchical rout-
ing structures (see [13] for an example) to sidestep these two is-
sues. The routing groups nodes into clusters, and the transform
assigns within each cluster a scaling coefficient (average)to an
elected clusterhead node while assigning wavelet coefficients (dif-
ferences from the average) to the other nodes. Clusterheadspartic-
ipate in the next transform level. The routing hierarchy thus guides
decimation, and simple averaging avoids the need for filtersthat
depend on spatial neighbor distributions. Unfortunately,when the
data are smoother than piecewise-constant, this approximation will
not completely sparsify the wavelet coefficients, degrading perfor-
mance in applications such as compression and de-noising. To en-
able higher-order multiscale approximation and to free ourselves
from dependency on multiscale routing structures, we must meet
both the challenges of decimation and local filter design head-on.

4. SENSOR NODE DECIMATION

At each scalej we separate predicted nodes from the previous
scale into predicted nodesO(j) and updated nodesE(j), where

1# denotes here the number of elements in a set.

E(j + 1) = E(j) ∪ O(j). Naturally, O(j) andE(j) must be
disjoint. Additionally, we wish the decimated setO(j) to be as
large as possible at each scale in order to have as few scales as
possible. To accomplish this, we construct a mesh to guide the
decimation — in particular (but without loss of generality)a De-
launay triangulation(DT) of the nodes at scalej [10, 11]. DT’s
can be built in a distributed fashion, as detailed in Section7. The
triangulation is calculated once (at the finest level of the transform)
and then locally updated as points are removed at each scale.To
begin, each node need only discover its location and share this in-
formation among nodes within its communication range (see [12]
and the references therein).

Using the mesh, we first define theneighborsof a node at scale
j as those nodes with which it shares an edge in the scale–j mesh.
We can then designate which points to remove at each transform
level by appealing to a notion ofscalein the irregular grid. The
mesh allows us to assign anarea of supportto each node — a
computation detailed in Section 5.3. While in a regular grideach
node has the same support area, each node in an irregular gridhas
a different area and, thus, a unique scale. Since multiscaleanal-
ysis provides increasingly broad views of a measurement field at
each scale, it follows naturally that we should remove the smallest-
scale (-area) points at each transform level. Recall, however, that
a node predicted at levelj cannot have predicted neighbors at that
level. To avoid violating these conditions, we propose the follow-
ing greedy solution to decimating nodes:

1. Mark all nodes on the mesh boundary as updated, placing
them inE(j).

2. Mark the node with the smallest area among unmarked
nodes as predicted, placing it inO(j).

3. Mark the predicted node’s neighbors in the mesh as up-
dated, placing them inE(j).

4. Return to Step 2 while unmarked nodes remain.

Step 1 ensures the stability of the predict stage (discussed
further in Section 5.2) and guarantees that boundary nodes form
the coarsest setE(0). While this protocol is essentially a cen-
tralized one, it provides an elegant solution to decimationwith
relatively low overhead. One could imagine a message-passing
scheme where nodes eventually agree on which one has the next
smallest area; however, the associated communication overhead
could become prohibitive as the network grows. The triangulation
algorithm is deterministic given node locations, and so we can eas-
ily compute the decimation order outside the network after gather-
ing the nodes’ self-localized positions and then inform individual
nodes of the transform level at which they are decimated.

Figure 1 illustrates two successive levels of decimation. Pre-
dicted nodes at scalej are marked with dark circles in Figure 1(a).
Following removal of these points and local re-triangulation, a new
set of predicted nodes is designated at scalej − 1 in Figure 1(b).
Experimentally, this technique removes approximately25% of the
nodes per scale.

5. DISTRIBUTED FILTER DESIGN

Once the setsO(j) andE(j) have been designated, we must com-
pute the scale–j wavelet coefficients for the nodes inO(j) and
scaling coefficients for the nodes inE(j). This entails assigning
predict and update filters to operate on the coefficients at neigh-
boring nodes. When the node locations remain fixed, both the dec-
imation order and filter coefficients need only be computed once.



(a) (b)

Fig. 1. Triangulated mesh of sensor nodes (a) at scalej and (b) at
coarser scalej − 1 (• denotes vertices to be decimated).

While we suggest that the decimation structure be centrallycom-
puted and disseminated to the nodes as outlined in Section 4,the
filter coefficients can be efficiently computed in a distributed fash-
ion and stored locally at the nodes for future reference.

5.1. Refinement relations

We first specify how the wavelet and scaling functions are related
across scales in our piecewise-planar biorthogonal wavelet trans-
form, which is inspired by Section 7.2.3 of [11]. Label the row
vector of scaling functions to be generated at scalej for nodes
in E(j) asΦj,E(J), and let the scaling coefficientssj,E(j) form
a column vector. Similarly, letΨj,O(j) represent the row vector
of scale–j wavelet functions at nodes inO(j) with an associated
column vectordj,O(j) of wavelet coefficients. To relate the scal-
ing functions from the finer scalej + 1 to the scaling and wavelet
functions at scalej, define an#O(j) × #E(j) predict filterPj

and an#E(j) × #O(j) update filterUj to operate as follows

Φj,E(j) = Φj+1,E(j) + Φj+1,O(j)Pj

Ψj,O(j) = Φj+1,O(j) − Φj,E(j)Uj .
(1)

Similarly,Pj andUj relate the scaling coefficients from scalej+1
to the scaling/wavelet coefficients at coarser scalej as

dj,O(j) = sj+1,O(j) − Pjsj+1,E(j)

sj,E(j) = sj+1,E(j) + Ujdj,O(j).
(2)

Without careful design the transform may be far from orthogo-
nal, resulting in coefficients whose impact on reconstruction in the
spatial domain is poorly related to their magnitudes in the wavelet
domain. Entries inPj andUj must therefore be chosen so that the
transform is as close to orthogonal as possible. The filters also con-
trol how distributed and local the transform will be. An element in
a row ofPj or Uj must be nonzero only if the node corresponding
to that element’s column is a neighbor of the node corresponding
to the element’s row in the scale–j mesh. Moreover, data gath-
ered incalculating these predict and update filter coefficients at
each node must come only from neighbors of each node at scalej.
With these requirements in mind, we describe how to locally fill in
the entries ofPj andUj and discuss the associated communication
traffic.

5.2. Predict filters

The predict filter has the most straightforward design. We desire
the transform to have two vanishing moments; that is, if the data
are planar, then the wavelet coefficients should be zero. To com-
pute the wavelet coefficient at a predicted pointnp ∈ O(j), we

regress a plane through its neighbors in the scale-j mesh. De-
note these neighbors asN (np) ∈ E(j). Per (2), the value of
the wavelet coefficient is the difference between the scale-(j + 1)
scaling coefficient atnp and the value predicted by the plane at the
location ofnp. The1 × #N (np) vectorp

j,np
of predict coeffi-

cients2 atnp is given by

p
j,np

= [1, x(np), y(np)](X
′X)−1X ′, (3)

wherex(·) andy(·) give thex andy coordinates of a node and
the#N (np) × 3 matrix X = [1, x(N (np)), y(N (np))] (where
1 is a column vector of ones). Properly sorted, the coefficients
in p

j,np
fill sensornp’s row in Pj at the positions corresponding

to neighborsN (np). The remainder of the elements in the row,
corresponding to more distant nodes, are zero, and thus the entire
process is local. Figure 2(a) depicts the one-time local data flow
at scalej during computation of predict filter coefficients, with
neighbors of predicted nodes transmitting their(x, y) coordinates
for use in (3).

This predict scheme illuminates why care is taken in Section
4 to exclude boundary nodes when selecting nodes for prediction.
When the angular distribution in polar coordinates of neighbors
around a predicted node does not cover most of the range[0, 2π),
planar regression becomes extrapolation in the region withno data
points, leading to numerical instability. Several intricate, central-
ized techniques are mentioned in [11] to deal with this instabil-
ity. To counter this problem in a distributed fashion, we simply
choose never to decimate nodes on the boundary of the finest-level
mesh, since these are precisely the nodes that do not have neigh-
bors throughout the surrounding[0, 2π) space.

5.3. Scaling function support areas

Computing the update coefficients, to follow shortly, requires
maintaining integrals of the scaling functions at scalej in terms of
integrals of the scaling functions at scalej + 1. If we consider the
scaling functions at the finest scale to be indicator functions over
pseudo-Voronoi regions surrounding the nodes, then this amounts
to calculating and updating the scaling function support areas. The
first set of integrals is extracted from the finest-scale mesh, with
each node assigning to itself1/3 the area of each triangle to which
it belongs [10].

Denote byAj,nu the integral of scaling functionφj,nu ∈
Φj,E(j) at updated nodenu ∈ Ej . Integrating the first equation of
(1) atnu yields

Aj,nu = Aj+1,nu +
X

nk∈N (nu)

p
j,nk

(nu)Aj+1,nk
, (4)

whereN (nu) describes the neighbors ofnu whose wavelet coef-
ficients arepredictedat scalej; p

j,nk
(nu) gives the predict co-

efficient nodenk applies to the scale–(j + 1) scaling coefficient
of nodenu. Essentially, to compute the integral of the scale–j
scaling function for an updated nodenu, we add the integral of
its scale–(j + 1) scaling function to a weighted sum of the scale–
(j + 1) scaling function integrals of its predicted neighbors. The
prediction coefficients fornu at those neighbors provide the sum
weights. Figure 2(b) illustrates the one-time communication traffic

2Underlining is used here to distinguishlocally computed filter coeffi-
cient vectors.
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Fig. 2. One-time communication at scalej between predicted (•) and updated (◦) nodes during filter coefficient calculation. Messages are
labelled between a predicted nodenp and an updated neighbornu. (a)nu sends its(x, y) coordinates to each node it predicts; (b)np sends
its weighted areap

j,np
(nu)Aj+1,np to nu; (c) nu sends its new areaAj,nu to np; (d) np sends its calculated updated coefficient fornu,

uj,np
(nu), to nu.

generated during area re-calculation, with predicted nodes trans-
mitting their areas weighted by predict coefficients to eachupdated
node participating in the prediction.

5.4. Update filters

To ensure transform stability, the update operator should keep the
sum of scaling coefficients weighted by the scaling functionin-
tegrals constant across scale. Wavelet biorthogonality relations
equate this requirement to providing each wavelet functionwith
a zero integral. Integrating the second equation of (1), setting
the left-hand side to zero, and solving for the update matrixUj

indicates that we must satisfyAj+1,O(j) = Aj,E(j)Uj . While
[11] recommends a centralized solution of this equation, itcan be
solved column-wise with virtually no reduction in approximation
performance.

We apply to each column ofUj theminimum-normapproach
first suggested in [10], which has a stabilizing effect on theoverall
transform. For each predicted nodenp ∈ O(j) we must find the
minimum-norm update coefficient column vectoruj,np

such that
Aj+1,np = Aj,N (np)uj,np

(whereAj,N (np) is a row vector of
neighbor areas). This can be solved by a simple pseudo-inverse,
so that

uj,np
=

A′
j,N (np)Aj+1,np

P

nk∈N (np) A2
j,nk

. (5)

Sinceuj,np
only applies to neighbors ofnp in the level–j mesh,

calculation of update coefficients is again local. Note thatthe prop-
erly sorted elements ofuj,np

represent non-zero entries in thecol-
umnof UJ corresponding to nodenp, since the predicted node is
computing these update coefficients.

Figure 2(c) depicts the one-time data flow required for com-
puting the update filter coefficients, with scale-j areas of updated
nodes passing to predicted nodes for update coefficient calculation.
The appropriate update coefficient is then sent in Figure 2(d) back
to each updated node for use in subsequent transformations.

5.5. Managing coefficient calculation

Assuming adequate synchronization among nodes (see [14], for
example), no central management is required to calculate the pre-
dict and update filters. The distributed computation at scale j pro-
ceeds as follows: Predicted nodes first wait for an interval appro-
priate for the scale to ensure that they learn of all neighbors in the

scale–j mesh. Then, they exchange data with these neighbors and
compute the transform coefficients for both themselves and their
updated neighbors. Finally, they re-triangulate for the next level
of the transform and inform their updated neighbors of the new
connectivities.

This procedure, of course, assumes ideal communication
links. Since the network and the decoder must agree on the neigh-
bors of each node, extra care will be necessary to ensure en-
coder/decoder synchronization if the communication linksare un-
reliable. While such a protocol is beyond the scope of this paper,
we note that its overhead can be amortized over several transform
calculations, since the filter coefficients are calculated only once.

6. DISTRIBUTED TRANSFORM COMPUTATION

Once the predict and update filter coefficients have been locally
calculated and stored for each levelj ∈ {J − 1, ..., 0} of the
transform, multiple wavelet transformations of measured data can
proceed using these filter coefficients. Following (2), we first com-
pute a wavelet coefficientdj,np for each predicted sensornp and
then compute a scaling coefficientsj,nu for each updated sensor
nu using the new set of wavelet coefficients.

As before, denote the set of neighbors around a predicted node
np asN (np), and letp

j,np
be the row vector of predict coefficients

computed atnp in (3). Using its scale–(j + 1) scaling value and
those from its neighbors,np computes its scale–j wavelet value as

dj,np = sj+1,np − p
j,np

sj+1,N (np), (6)

wheresj+1,N (np) is a column vector of scaling coefficients. Fig-
ure 3(a) depicts the required local data flow, with neighborssimply
transmitting their scale–(j + 1) scaling coefficients to nodenp.

Similarly, let N (nu) again describe the predicted neighbors
in the scale–j mesh of an updated nodenu. Place the update co-
efficients calculated fornu by its predicted neighbors in the row
vectoruj,nu

. Note that thisrow vector contains the properly sorted
nonzero elements ofnu ’s row inUj ; it should not be confused with
any of thecolumnvectors of update coefficients calculated atpre-
dictedsensors in (5). Using its scale–(j + 1) scaling value and the
scale–j wavelet values from its neighbors inN (nu), nu computes
its scale-j scaling value as

sj,nu = sj+1,nu + uj,nu
dj,N (nu), (7)
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Fig. 3. Communication at scalej between predicted (•) and up-
dated (◦) nodes repeated during each wavelet transform. Messages
are labelled between a predicted nodenp and an updated neighbor
nu. (a) nu sends its scale–(j + 1) scaling coefficientsj+1,nu to
each predicted neighbor; (b)np sends its scale-j wavelet coeffi-
cientdj,np value to each updated neighbor.

wheredj,N (nu) is a column vector of wavelet coefficients. Fig-
ure 3(b) illustrates the associated traffic pattern, with each updated
node passing its scale–j wavelet coefficient to each of its neigh-
bors to enable their scaling values calculations.

Again, no centralized administration is necessary to manage
this process, apart from all nodes in the network agreeing tobe-
gin a new transform calculation — a process that can proceed at
a time-scale appropriate for the measured phenomenon and/or op-
erator interest. When the measured field is transformed to scale
j, each predicted nodenp merely waits for nodes inN (np) to
send their scale–(j + 1) scaling coefficients before computing its
scale–j wavelet coefficient. Similarly, eachnu waits for the scale-
j wavelet coefficients from its predicted neighbors before comput-
ing its new scaling coefficient. The transform proceeds through
scales in a completely asynchronous and distributed fashion, never
progressing to the next, coarser scale until all computations at the
previous, finer scale are complete.

7. DISTRIBUTED TRIANGULATION

As detailed in Section 3, a mesh is required at each scale of the
transform to provide connectivity for the predict and update calcu-
lations, and areas extracted from the mesh at the starting scale are
required to initialize the scaling function integral re-calculation of
Section 5.3. For the lifting transform to be truly distributed, con-
struction and maintenance of the mesh must be distributed.

With some modifications, the algorithm from [3] suffices to
compute a triangulated mesh. The algorithm builds a Planar Local-
ized Delaunay triangulation (PLDel). Given a node communica-
tion radius, the resulting PLDel contains the edges in a centralized
DT whose lengths do not exceed the communication radius. First,
nodes broadcast their locations, and each node collects theloca-
tions of neighbors within its communication radius. Each node
then locally computes a Delaunay triangulation based on itscol-
lected points and broadcasts the associated triangles to its neigh-
bors within communication range. Once a node has received these
triangle messages, it consolidates message triangles withlocally
computed triangles to obtain a final set of valid Delaunay triangles
with vertices at that node. The triangle edges with the node as an
endpoint, along with any non-includedGabriel edges,3 form the

3A Gabriel edge is one for which the circle whose diameter coincides

(a) (b)

Fig. 4. Test data fields: (a) noisy quadratic bump with discontinu-
ity, and (b) Gaussian bumps on a smooth, quadratic field.

set of PLDel edges rooted at that node. Edge discovery is guaran-
teed to be two-way, meaning that each edge is discovered by both
of its vertices.

We require more than just connectivity, however. A node must
also know about the triangles rooted at itself for area computation;
unfortunately, the triangulation may produce edges whose lengths
exceed the nodes’ communication radius by up to a factor of 2.
This means that, while a valid triangle could be discovered at one
vertex, the other pair of vertices in the triangle may be out of ra-
dio range of each other and hence will not themselves discover the
triangle. Allowing a two-hop communication path between these
vertices does not present a problem in our application; indeed,
paths between vertices will generally become multi-hop as the
transform scale becomes coarser. Therefore, we propose adding an
additional communication step to the method of [3]: Once a node
has identified its set of valid triangles, it informs the other pair of
nodes in each triangle of their membership in that triangle.Us-
ing found and received triangles, a node can then incorporate any
non-included Gabriel edges, forming additional triangles. While
this requires some additional negotiation with neighbors,the num-
ber of Gabriel edges remaining after the second round of message
passing is typically very small in practice.

Ideally, the node density and communication radius will both
be sufficiently high so that most edges of the perfect DT have
lengths within twice that radius. When this is the case, the dis-
tributed triangulation will produce a mesh such as Figure 1(a),
where all but the exceptionally long edges at the boundary ofthe
DT are captured in the distributed mesh. When interior linksof
the DT exceed this bound, the distributed mesh will exhibit non-
triangular polygons in its interior, whose perimeters create interior
“boundaries” that must be treated similarly to exterior boundaries
to ensure stability of the predict operator of Section 5.2.

When the node density and communication radius allow the
distributed triangulation to capture all but the longest edges on the
boundary of the DT, re-triangulation of the mesh after decimation
follows easily using the technique of [15]. Since only interior ver-
tices are subject to decimation, such nodes can locally compute
new Delaunay triangles and inform their previous neighborsof
their new connections with each other, maintaining a Delaunay
mesh throughout scale. In the case that the distributed triangula-
tion differs on its interior from the DT, mesh refinement can pro-
ceed with the predicted point linking its closest neighbor to the
others.

with the edge does not contain any other nodes of the triangulation.
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Fig. 5. Results of nonlinear approximation experiments. Mean square error (log-scale) is plotted on they-axis with the number of ap-
proximation coefficients used in the reconstruction on thex-axis. We note the rapid decay of the approximation error of (a) the noisy, dis-
continuous quadratic field and (b) the smooth Gaussian bump field. Performance is comparable to more traditional biorthogonal CDF(2,2)
wavelets on square-grid sampling for (c) the noisy, discontinuous quadratic and (d) smooth Gaussian bump fields.

8. DISTRIBUTED APPROXIMATION EXAMPLES

We present two brief evaluations showcasing the effectiveness of
our proposed transform.

First, echoing an example of [1], we simulate in-network non-
linear approximation (compression without coefficient quantiza-
tion) of the transform coefficients prior to transmission toan ex-
ternal data sink. In this scenario, the sink floods the network with a
magnitude threshold below which wavelet coefficients are consid-
ered insignificant. Each node with a significant coefficient passes
its coefficient value and node ID to the sink, which reconstructs the
measurement field via the inverse wavelet transform. We include
successively smaller coefficients in the reconstruction togenerate
nonlinear approximation curves of increasing fidelity. We con-
sider the two fields shown in Figure 4; the first is a noisy quadratic
bump with a discontinuity, and the second is a set of random
Gaussian bumps populating a smoothly varying quadratic field.
Both examples contain super-planar features beyond the scope of
piecewise-planar approximation. For each field, we created300
sample points from uniformly distributed random node locations.
Figures 5(a) and (b) display the nonlinear approximation results
for each, plotting along they-axis the mean-square approximation
error on a log scale and along thex-axis the number of wavelet
coefficients used in the approximation. Both curves exhibitthe
smooth, rapidly decreasing decay we expect from a wavelet trans-
form on piecewise-smooth data.

Second, as a sanity check, we also compare the performance
of our transform to a biorthogonal wavelet transform with the
same number of vanishing moments (CDF(2,2) [4]) on aregularly
spacedsquare grid of 256 grid points. We compare the nonlinear
approximation curves, as shown in 5(c) and (d). The solid lift-
ing approximation curve is nearly coincident with the CDF dashed
curve, indicating that our distributed lifting transform is competi-
tive with traditional wavelet techniques.

9. CONCLUSIONS AND FUTURE WORK

We have developed a fully distributed, irregular-grid wavelet trans-
form and protocol for sensor networks that is capable of piecewise-
planar multiscale approximation. We have presented distributed
solutions to implementation issues included mesh building, fil-
ter coefficient calculation, and transform coefficient calculation.
The transform coefficients have desirable performance under
threshold-based processing such as distributed compression and
even perform competitively with centralized, regular-grid wavelet

techniques. In current work, we are developing a suite of dis-
tributed processing algorithms based on this transform andexplor-
ing issues of higher order approximation, transform stability, trans-
form coefficient quantization, and extension to 3-D grids.
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