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ABSTRACT

Wavelet-based distributed data processing holds muchipedior
sensor networks; however, irregular sensor node placeprent
cludes the direct application of standard wavelet techesquin
this paper, we develop a new distributed wavelet transfaaeet
on lifting that takes into account irregular sampling anoviies a
piecewise-planar multiresolution representation of #resed data.
We develop the transform theory; outline how to implemerr it
a multi-hop, wireless sensor network; and illustrate witkiesal
simulations. The new transform performs on par with coriegat
wavelet methods in a head-to-head comparison on a regidesfgr
sensor nodes.

1. INTRODUCTION

Wireless sensor networks have emerged as an importantappli
tion area for distributed signal processing. Sensor nésvoonsist

of nodes that sense phenomena of interest, process the nmeasu
ments, and share data via a wireless, multi-hop routing orétw
Nodes have limited on-board power supplies, and since commu
nication power consumption typically dominates over pssaey
power by orders of magnitude, intelligent, in-network sibpro-
cessing is necessary to reduce the amount of transmitted dat
Whenever possible, transmissions outside the networkid lhake

the form of summarizedesultsand conclusionsrather tharraw
data Such processing must be bathstributed— not requiring

all data in a central location — aridcalized— requiring access
only to data in a node’s immediate vicinity.

The restrictions on signal processing algorithms for senso
networks are considerably complicated by tineegular node
placementypical of real-world deployments. While most tradi-
tional regular-grid signal processing techniques do remdiate
directly to this setting, much of the literature on distiti sig-
nal processing for sensor networks has nonetheless assemed
ular sampling grids, a fact highlighted in [1]. To help régctihis
discrepancy, we propose in this paper what is to our knoveedg
the first distributed, two dimensional (2-D), irregulafebwavelet
transform for sensor networks capable of multiscale, pieme
planar approximation of node measurements (two waveléskan
ing moments). We provide a detailed treatment not only of the
transform theory (based on wavelet lifting [2]) but alsoirtgle-
mentation issues, developing along the way a new distiibuite
angulation protocol that extends the work of [3].

Section 2 discusses related work in wavelet processingfer s
sor networks. Section 3 overviews the lifting approach that
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exploit in the later sections. Section 4 develops a mulésstuc-
ture on the sensor nodes; Section 5 derives the requisiesfilt
and Section 6 deals with the iteration of the transform. iBect
7 develops a new technique for distributed network triaatjoth.
Section 8 demonstrates the approximation power of ourfivams
coefficients with two distributed compression example<tiSe 9
concludes and reviews our ongoing work.

2. RELATED WORK

Multiscale algorithms are not difficult to motivate for senset-
work applications, since the laws of physics often induce¢him
measured data a natural multiscale structure that can dhale
scope and extent of in-network signal processing and coriimun
cation. In particular, as sensors become more distant frach e
other, the spatial correlations between their measurenvétitde-
cay rapidly. This suggestscal processing at fine scalégtween
neighboring nodes arglobal processing at coarse scalestween
more far-flung nodes.

DIMENSIONS [4] uses an in-network wavelet transform to fa-
cilitate querying and storage of sensor network measurtsnient
it assumes a regular-grid placement of nodes. The same pssum
tion is shared by the wavelet-based Wisden system [5] focstr
tural monitoring. Similarly, [6] proposes separable apgtiion of
1-D regular-grid wavelet transforms to solve the 2-D sehsoad-
cast problem. The lifting-based, regular-grid distriltlteavelet
transform in [7] is similar in spirit to the one proposed hete
employs a 1-D wavelet decomposition along a path through the
2-D measurement field; however, no method for determiniieg th
optimal path is given. While the technique could be extended
to use irregular-grid 1-D wavelets, such an approach is apa<
ble of fully capturing the higher-dimensional spatial degencies
among the measurements. Similar conclusions apply to the 1-
Haar protocol described in [8].

The work in [9], which this paper extends, provides an
irregular-grid, fully 2-D, distributed wavelet transforfor sensor
networks, based on piecewise-constant multiscale appeaiion
and multiscale routing structures. In this paper, we develo
distributed lifting transform capable of piecewise-plaapprox-
imation and requiring n@ priori multiscale network structure.
There has been significant prior treatment of centralizedjidar-
grid lifting in both the computer graphics and statisticgtimation
communities (see [10,11] and the references therein); se bar
distributed scheme here on a technique suggested in [11].

3. WAVELET LIFTING ON IRREGULAR GRIDS

Wavelet lifting [2] replaces the measurement at each semsir
work node with a wavelet coefficient representing the inrredp



Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
2005 2. REPORT TYPE 00-00-2005 to 00-00-2005
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Distributed Wavelet Transform for Irregular Sensor Network Grids £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Rice University,Department of Electrical & Computer REPORT NUMBER
Engineering,Houston, T X,77005

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONY M(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Wavelet-based distributed data processing holds much promise for sensor networks; however, irregular
sensor node placement precludes the direct application of standard wavelet techniques. In this paper, we
develop a new distributed wavelet transform based on lifting that takesinto account irregular sampling
and provides a piecewise-planar multiresolution representation of the sensed data. We develop the
transform theory; outline how to implement it in a multi-hop, wir eless sensor network; and illustrate with
several simulations. The new transform performson par with conventional wavelet methodsin a
head-to-head comparison on aregular grid of sensor nodes.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18.NUMBER | 19a. NAME OF
ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE Same as 6
unclassified unclassified unclassified Report (SAR)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18



uct of the measured field with a wavelet function in a basisamge
expansion. The process is multiscale, starting from thgiraal
node measurements at some finest sdadad iterating to a final,
coarsest scal@. Denote the complete set of nodes by.J) and
the complete measurements 4y, these comprise the finest-scale
set of scaling coefficients We assume that each node knows its
location in space; providing this information is an area dive
research [12].

Adopting with slight modification the notation of [11] and
starting withj = J — 1, we say that each scajeof the transform
first splitsthe set of node€(;j + 1) into a set of#E(j) “even”
coefficients located at nodds(;) and a set of+O(j) “odd” co-
efficients located at node8(;).> This divides the set of scaling
coefficients into two new sets; 1 g(;) ands;;1,0(;)- The co-
efficients ins; 1, 0(;) give rise to the scalg-wavelet coefficients
d; o). We say that these amredictedusing s;;1,z(;) and re-
fer to the nodes irO(j) as predicted node3he coefficients in
5j11,5(;) are therupdatedto s; g (;y usingd; o ;) in order to pre-
serve the weighted average of the scaling coefficients;ddesin
E(y) are known asipdated nodes.

The scales set of scaling coefficients; z(; replaces the even
scaling coefficients from scale+ 1, and the transform then iter-
ates overs; p(;) at coarser scalg — 1, continuing until a root
set of scaling coefficients resides at the node&'(0). At that
point, the set of terminal scaling coefficienis and the entire set
of wavelet coefficient{d; } ;co,...,s—13 humber the same as the
original field measurements AY.J) and completely describe them
— that is, the entire process is invertible.

The key issues in any lifting decomposition are (1) determin
ing which values are to bdecimatecht each scale (i.e., partition-
ing nodes intaF (j) andO(5)), and (2) defining filters to calculate
the scaling and wavelet coefficients at each scale. In aaeguid
setting, the grid structure guides both these choices —rdeci
tion to a coarser grid is trivial, and the same set of scaling a
wavelet filters can be applied at each grid point. With gridgdr
ularity, choosing which nodes to decimate becomes more lkomp
cated, and the lack of a predictable spatial neighbor Higion
necessitates adapting different filter coefficients foheamde.

The technique in [9] exploits the simplicity of piecewise-
constant multiscale approximation and leverages hieicatiout-
ing structures (see [13] for an example) to sidestep theeagw
sues. The routing groups nodes into clusters, and the transf
assigns within each cluster a scaling coefficient (average)n
elected clusterhead node while assigning wavelet coeaftiglif-
ferences from the average) to the other nodes. Clusteripeatits-
ipate in the next transform level. The routing hierarchystguides
decimation, and simple averaging avoids the need for fitteas
depend on spatial neighbor distributions. Unfortunatelyen the
data are smoother than piecewise-constant, this apprtmimaill
not completely sparsify the wavelet coefficients, degradierfor-
mance in applications such as compression and de-noisingn-T
able higher-order multiscale approximation and to freeselwes
from dependency on multiscale routing structures, we muesgtm
both the challenges of decimation and local filter desigrifma

4. SENSOR NODE DECIMATION

At each scalej we separate predicted nodes from the previous
scale into predicted node3(;j) and updated nodeE(j), where

14 denotes here the number of elements in a set.

E(j +1) = E(j) UO(j). Naturally, O(y) and E(j) must be
disjoint. Additionally, we wish the decimated s@fj) to be as
large as possible at each scale in order to have as few sales a
possible. To accomplish this, we construct a mesh to guide th
decimation — in particular (but without loss of generalityDe-
launay triangulation(DT) of the nodes at scalg[10, 11]. DT's
can be built in a distributed fashion, as detailed in Secfioithe
triangulation is calculated once (at the finest level of taagform)
and then locally updated as points are removed at each stale.
begin, each node need only discover its location and sharath
formation among nodes within its communication range (4€¢ [
and the references therein).

Using the mesh, we first define theighborsof a node at scale
j as those nodes with which it shares an edge in the staiesh.
We can then designate which points to remove at each transfor
level by appealing to a notion aftalein the irregular grid. The
mesh allows us to assign amea of supporto each node — a
computation detailed in Section 5.3. While in a regular g@dh
node has the same support area, each node in an irreguldragrid
a different area and, thus, a unique scale. Since multiscaé
ysis provides increasingly broad views of a measuremertt &gl
each scale, it follows naturally that we should remove thelkst-
scale (-area) points at each transform level. Recall, hewyélrat
a node predicted at levglcannot have predicted neighbors at that
level. To avoid violating these conditions, we propose thikodv-
ing greedy solution to decimating nodes:

1. Mark all nodes on the mesh boundary as updated, placing
theminE(j).

2. Mark the node with the smallest area among unmarked
nodes as predicted, placing it@(j).

3. Mark the predicted node’s neighbors in the mesh as up-
dated, placing them i&(j).

4. Return to Step 2 while unmarked nodes remain.

Step 1 ensures the stability of the predict stage (discussed
further in Section 5.2) and guarantees that boundary namtes f
the coarsest sef(0). While this protocol is essentially a cen-
tralized one, it provides an elegant solution to decimatiatin
relatively low overhead. One could imagine a message4pgssi
scheme where nodes eventually agree on which one has the next
smallest area; however, the associated communicatiorneaer
could become prohibitive as the network grows. The triaaiioth
algorithm is deterministic given node locations, and so are&as-
ily compute the decimation order outside the network afeeher-
ing the nodes’ self-localized positions and then informivitlial
nodes of the transform level at which they are decimated.

Figure 1 illustrates two successive levels of decimatiore- P
dicted nodes at scajeare marked with dark circles in Figure 1(a).
Following removal of these points and local re-triangwatia new
set of predicted nodes is designated at sgalel in Figure 1(b).
Experimentally, this technique removes approximasly of the
nodes per scale.

5. DISTRIBUTED FILTER DESIGN

Once the set®(j) andE(j) have been designated, we must com-
pute the scale;-wavelet coefficients for the nodes ®(j) and
scaling coefficients for the nodes Hi(j). This entails assigning
predict and update filters to operate on the coefficients ighne
boring nodes. When the node locations remain fixed, bothehe d
imation order and filter coefficients need only be computetkeon



Fig. 1. Triangulated mesh of sensor nodes (a) at s¢aled (b) at
coarser scalg — 1 (e denotes vertices to be decimated).

While we suggest that the decimation structure be centcalty-
puted and disseminated to the nodes as outlined in Sectithe 4,
filter coefficients can be efficiently computed in a distrdmlifash-
ion and stored locally at the nodes for future reference.

5.1. Refinement relations

We first specify how the wavelet and scaling functions arateel
across scales in our piecewise-planar biorthogonal watrales-
form, which is inspired by Section 7.2.3 of [11]. Label thavro
vector of scaling functions to be generated at sgafer nodes
in E(j) as®; g5, and let the scaling coefficientg ;) form
a column vector. Similarly, le#; o ;) represent the row vector
of scales wavelet functions at nodes i@(;) with an associated
column vectord; o ;) of wavelet coefficients. To relate the scal-
ing functions from the finer scalg+ 1 to the scaling and wavelet
functions at scalg, define an#O(j) x #E(j) predict filter P;
and an# E(j) x #0(7) update filterU; to operate as follows

C5p() = Pir1.eG) + Lirrom P 1)
Vj06) = ®ir1,06) — Pe()Ui-

Similarly, P; andUj relate the scaling coefficients from scale 1
to the scaling/wavelet coefficients at coarser sgale

dj,0() = 8j+1,04) — Pisjt1,80) 2
85,8() = Si+1.8() T Ujdj00)-
Without careful design the transform may be far from orthogo
nal, resulting in coefficients whose impact on reconstaucin the
spatial domain is poorly related to their magnitudes in theelet
domain. Entries irP; andU; must therefore be chosen so that the
transformis as close to orthogonal as possible. The filteoscan-
trol how distributed and local the transform will be. An elemin
a row of P; or U; must be nonzero only if the node corresponding
to that element’s column is a neighbor of the node correspgnd
to the element’s row in the scalg-mesh. Moreover, data gath-
ered incalculating these predict and update filter coefficients at
each node must come only from neighbors of each node at scale
With these requirements in mind, we describe how to locdllinfi
the entries ofP; andU; and discuss the associated communication
traffic.

5.2. Predict filters

The predict filter has the most straightforward design. Wsrde
the transform to have two vanishing moments; that is, if thead
are planar, then the wavelet coefficients should be zero.of@ ¢
pute the wavelet coefficient at a predicted poipt € O(j), we

regress a plane through its neighbors in the sgaieesh. De-

note these neighbors ag(n,) € E(j). Per (2), the value of

the wavelet coefficient is the difference between the s¢ale-1)

scaling coefficient at,, and the value predicted by the plane at the

location ofn,. Thel x #MN (n,) vectorpj of predict coeffi-
=J,np

cientg atn,, is given by

= [1,2(np), y(np) (X' X)X, ®)

Ljn,y
wherez(-) andy(-) give thex andy coordinates of a node and
the #N (np) x 3 matrix X = [1,z(N (np)), y(N(np))] (where

1 is a column vector of ones). Properly sorted, the coeffisient
in i fill sensorn,’s row in P; at the positions corresponding

to neiShbors/\/(np). The remainder of the elements in the row,
corresponding to more distant nodes, are zero, and thusitine e
process is local. Figure 2(a) depicts the one-time loca €atv
at scalej during computation of predict filter coefficients, with
neighbors of predicted nodes transmitting theiry) coordinates
for use in (3).

This predict scheme illuminates why care is taken in Section
4 to exclude boundary nodes when selecting nodes for prewlict
When the angular distribution in polar coordinates of nbahk
around a predicted node does not cover most of the rih@e ),
planar regression becomes extrapolation in the regionnuittiata
points, leading to numerical instability. Several inttesacentral-
ized techniques are mentioned in [11] to deal with this inita
ity. To counter this problem in a distributed fashion, we iyn
choose never to decimate nodes on the boundary of the fenedt-I
mesh, since these are precisely the nodes that do not haye nei
bors throughout the surroundif@, 27) space.

5.3. Scaling function support areas

Computing the update coefficients, to follow shortly, regsi
maintaining integrals of the scaling functions at scaile terms of
integrals of the scaling functions at scgle- 1. If we consider the
scaling functions at the finest scale to be indicator fumstiover
pseudo-Voronoi regions surrounding the nodes, then thisuats
to calculating and updating the scaling function suppaéaar The
first set of integrals is extracted from the finest-scale mestn
each node assigning to itsélf3 the area of each triangle to which
it belongs [10].

Denote by A; ., the integral of scaling functiom; ., €
®; g(;) at updated node., € E;. Integrating the first equation of
(1) atn,, yields

Ajny, =Ajsim, + > P

=Jnk
ng €N (ny)

(nu)Aj+1,7Lk7 (4)

whereN (n.,) describes the neighbors af, whose wavelet coef-
ficients arepredictedat scalej; P, (n.) gives the predict co-
Bin,

efficient noden;, applies to the scalé+ + 1) scaling coefficient

of noden,. Essentially, to compute the integral of the scale—
scaling function for an updated nodg,, we add the integral of
its scale{j + 1) scaling function to a weighted sum of the scale—
(4 + 1) scaling function integrals of its predicted neighbors. The
prediction coefficients fon,, at those neighbors provide the sum
weights. Figure 2(b) illustrates the one-time commundaratraffic

2Underlining is used here to distinguiscally computed filter coeffi-
cient vectors.



Fig. 2. One-time communication at scaléetween predicteds] and updatedd) nodes during filter coefficient calculation. Messages are

labelled between a predicted nodgand an updated neighbat,. (a)n. sends it§z, y) coordinates to each node it predicts; f3)sends

its weighted are@, (nw)Ajt1m, 10n.; (C) n. sends its new ared; », ton,; (d) n, sends its calculated updated coefficientsiqr,
Binp

Uj i,y (M), 1O T

generated during area re-calculation, with predicted sddoms-
mitting their areas weighted by predict coefficients to agutiated
node participating in the prediction.

5.4. Update filters

To ensure transform stability, the update operator shoeégpkhe
sum of scaling coefficients weighted by the scaling funciion
tegrals constant across scale. Wavelet biorthogonallgtioas
equate this requirement to providing each wavelet functiith
a zero integral. Integrating the second equation of (1)inget
the left-hand side to zero, and solving for the update mdifix
indicates that we must satist; 1 0;) = A; g;)U;. While
[11] recommends a centralized solution of this equatiooait be
solved column-wise with virtually no reduction in approxtion
performance.

We apply to each column df; the minimum-normapproach
first suggested in [10], which has a stabilizing effect ondherall
transform. For each predicted nodg € O(j) we must find the
minimum-norm update coefficient column vecter,, ~such that
Ajting = AjN(np)Ln, (WhereA; v, is a row vector of
neighbor areas). This can be solved by a simple pseudosigyver
so that ,

Aj N (ny) A1,
Ying =35 — 42— ®)
ng €N (np) “7ing
Sincegjmp only applies to neighbors af, in the levels mesh,
calculation of update coefficients is again local. Note thatprop-
erly sorted elements o_fj’np represent non-zero entries in tha-
umnof U, corresponding to node,, since the predicted node is
computing these update coefficients.

Figure 2(c) depicts the one-time data flow required for com-
puting the update filter coefficients, with scalereas of updated
nodes passing to predicted nodes for update coefficienilesiton.
The appropriate update coefficient is then sent in Figurpl2ddk
to each updated node for use in subsequent transformations.

5.5. Managing coefficient calculation

Assuming adequate synchronization among nodes (see (4], f
example), no central management is required to calculateri
dict and update filters. The distributed computation atesg¢alro-
ceeds as follows: Predicted nodes first wait for an interpplre:
priate for the scale to ensure that they learn of all neighbothe

scale4s mesh. Then, they exchange data with these neighbors and
compute the transform coefficients for both themselves hait t
updated neighbors. Finally, they re-triangulate for thet hevel

of the transform and inform their updated neighbors of the ne
connectivities.

This procedure, of course, assumes ideal communication
links. Since the network and the decoder must agree on tg@-nei
bors of each node, extra care will be necessary to ensure en-
coder/decoder synchronization if the communication liakssun-
reliable. While such a protocol is beyond the scope of thigepa
we note that its overhead can be amortized over severafdrams
calculations, since the filter coefficients are calculatelg once.

6. DISTRIBUTED TRANSFORM COMPUTATION

Once the predict and update filter coefficients have beerlyoca
calculated and stored for each levele {J — 1,...,0} of the
transform, multiple wavelet transformations of measurathd¢an
proceed using these filter coefficients. Following (2), wst fiom-
pute a wavelet coefficient; ., for each predicted sensay, and
then compute a scaling coefficiesit ., for each updated sensor
n,, using the new set of wavelet coefficients.
As before, denote the set of neighbors around a predictesl nod
np asN(nyp), and Ietpj be the row vector of predict coefficients
Ljngp

computed ak, in (3). Using its scaleiy + 1) scaling value and
those from its neighborsy, computes its scalg-wavelet value as
(6)

djny = Sjtimy =P,

p5j+1,./\f(np)7

wheres; 1 ar(n,,) iS @ column vector of scaling coefficients. Fig-
ure 3(a) depicts the required local data flow, with neighlsargly
transmitting their scale< + 1) scaling coefficients to node,.

Similarly, let M'(n,,) again describe the predicted neighbors
in the scales+ mesh of an updated nodg,. Place the update co-
efficients calculated fon,, by its predicted neighbors in the row
vectoru, ,, . Note that thigow vector contains the properly sorted
nonzero elements of,'s row in Uj;; it should not be confused with
any of thecolumnvectors of update coefficients calculateged-
dictedsensors in (5). Using its scalg—+ 1) scaling value and the
scale4 wavelet values from its neighbors.M(n.. ), n.. computes
its scalej scaling value as

+ U, 5N ()

@)

Sjny = Sj+1,ny



Fig. 3. Communication at scal¢ between predictedsf and up-

Fig. 4. Test data fields: (a) noisy quadratic bump with discontinu-
ity, and (b) Gaussian bumps on a smooth, quadratic field.

dated 6) nodes repeated during each wavelet transform. Messages

are labelled between a predicted negeand an updated neighbor
n.. (@) n. sends its scalés + 1) scaling coefficient;+1,n,, to
each predicted neighbor; (), sends its scalg-wavelet coeffi-
cientd;, », value to each updated neighbor.

whered; x(n,) is @ column vector of wavelet coefficients. Fig-
ure 3(b) illustrates the associated traffic pattern, witthegpdated
node passing its scalg-wavelet coefficient to each of its neigh-
bors to enable their scaling values calculations.

Again, no centralized administration is necessary to manag
this process, apart from all nodes in the network agreeirggeto

set of PLDel edges rooted at that node. Edge discovery isaguar
teed to be two-way, meaning that each edge is discoveredthy bo
of its vertices.

We require more than just connectivity, however. A node must
also know about the triangles rooted at itself for area cdatjon;
unfortunately, the triangulation may produce edges whesgths
exceed the nodes’ communication radius by up to a factor of 2.
This means that, while a valid triangle could be discovertezha
vertex, the other pair of vertices in the triangle may be dute
dio range of each other and hence will not themselves disthee
triangle. Allowing a two-hop communication path betweeaestn

gin a new transform calculation — a process that can proceed a Vertices does not present a problem in our application; edde

a time-scale appropriate for the measured phenomenonraom/o
erator interest. When the measured field is transformedate sc
j, each predicted node, merely waits for nodes itV (n,) to
send their scalds + 1) scaling coefficients before computing its
scale wavelet coefficient. Similarly, each, waits for the scale-
j wavelet coefficients from its predicted neighbors beforapat-
ing its new scaling coefficient. The transform proceedsugho
scales in a completely asynchronous and distributed fash&ver
progressing to the next, coarser scale until all computatai the
previous, finer scale are complete.

7. DISTRIBUTED TRIANGULATION

As detailed in Section 3, a mesh is required at each scaleeof th
transform to provide connectivity for the predict and upgdedicu-
lations, and areas extracted from the mesh at the startialg ace
required to initialize the scaling function integral rdexdation of
Section 5.3. For the lifting transform to be truly distribdt con-
struction and maintenance of the mesh must be distributed.
With some modifications, the algorithm from [3] suffices to
compute a triangulated mesh. The algorithm builds a Plaoeal:
ized Delaunay triangulation (PLDel). Given a node commamic
tion radius, the resulting PLDel contains the edges in arabned
DT whose lengths do not exceed the communication radiust, Fir
nodes broadcast their locations, and each node collectsedhe
tions of neighbors within its communication radius. Eaclieo
then locally computes a Delaunay triangulation based oooiks
lected points and broadcasts the associated triangles teigh-
bors within communication range. Once a node has receisith
triangle messages, it consolidates message triangleslaeitily
computed triangles to obtain a final set of valid Delaunanigies
with vertices at that node. The triangle edges with the nadana
endpoint, along with any non-include@abriel edges’ form the

3A Gabriel edge is one for which the circle whose diameter aidis

paths between vertices will generally become multi-hophes t
transform scale becomes coarser. Therefore, we proposegaaid
additional communication step to the method of [3]: Once deno
has identified its set of valid triangles, it informs the atpair of
nodes in each triangle of their membership in that triangls-
ing found and received triangles, a node can then incorpanay
non-included Gabriel edges, forming additional triangl&¢hile
this requires some additional negotiation with neighbthrs num-
ber of Gabriel edges remaining after the second round ofagess
passing is typically very small in practice.

Ideally, the node density and communication radius wilhbot
be sufficiently high so that most edges of the perfect DT have
lengths within twice that radius. When this is the case, tise d
tributed triangulation will produce a mesh such as Figur&),1(
where all but the exceptionally long edges at the boundathef
DT are captured in the distributed mesh. When interior liaks
the DT exceed this bound, the distributed mesh will exhibihn
triangular polygons in its interior, whose perimeters tzeaterior
“boundaries” that must be treated similarly to exterior hdaries
to ensure stability of the predict operator of Section 5.2.

When the node density and communication radius allow the
distributed triangulation to capture all but the longegesion the
boundary of the DT, re-triangulation of the mesh after detion
follows easily using the technique of [15]. Since only imener-
tices are subject to decimation, such nodes can locally atenp
new Delaunay triangles and inform their previous neighhmfrs
their new connections with each other, maintaining a Dedgun
mesh throughout scale. In the case that the distributeqigwia-
tion differs on its interior from the DT, mesh refinement caa-p
ceed with the predicted point linking its closest neightmithite
others.

with the edge does not contain any other nodes of the triatigal
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Fig. 5. Results of nonlinear approximation experiments. Mearasgjerror (log-scale) is plotted on theaxis with the number of ap-
proximation coefficients used in the reconstruction onttexis. We note the rapid decay of the approximation erroepft{e noisy, dis-
continuous quadratic field and (b) the smooth Gaussian bwetth fPerformance is comparable to more traditional bigitimal CDF(2,2)
wavelets on square-grid sampling for (c) the noisy, disooius quadratic and (d) smooth Gaussian bump fields.

8. DISTRIBUTED APPROXIMATION EXAMPLES

We present two brief evaluations showcasing the effectiserof
our proposed transform.

First, echoing an example of [1], we simulate in-network-non
linear approximation (compression without coefficient rjiza-
tion) of the transform coefficients prior to transmissioratoex-
ternal data sink. In this scenario, the sink floods the netwidth a
magnitude threshold below which wavelet coefficients aresch
ered insignificant. Each node with a significant coefficieadges
its coefficient value and node ID to the sink, which recorsithe
measurement field via the inverse wavelet transform. Weidtecl
successively smaller coefficients in the reconstructiogetoerate
nonlinear approximation curves of increasing fidelity. \Wenc
sider the two fields shown in Figure 4; the first is a noisy qatadr
bump with a discontinuity, and the second is a set of random
Gaussian bumps populating a smoothly varying quadratid.fiel
Both examples contain super-planar features beyond thme sufo
piecewise-planar approximation. For each field, we creatsd
sample points from uniformly distributed random node |amz.
Figures 5(a) and (b) display the nonlinear approximaticulis
for each, plotting along thg-axis the mean-square approximation
error on a log scale and along theaxis the number of wavelet
coefficients used in the approximation. Both curves exhtét
smooth, rapidly decreasing decay we expect from a wavelesir
form on piecewise-smooth data.

techniques. In current work, we are developing a suite of dis
tributed processing algorithms based on this transformeaptbr-

ing issues of higher order approximation, transform sitgbitans-
form coefficient quantization, and extension to 3-D grids.
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(71

Second, as a sanity check, we also compare the performance

of our transform to a biorthogonal wavelet transform witle th
same number of vanishing moments (CDF(2,2) [4]) oagularly
spacedsquare grid of 256 grid points. We compare the nonlinear
approximation curves, as shown in 5(c) and (d). The solid lif
ing approximation curve is nearly coincident with the CDElulzd
curve, indicating that our distributed lifting transforsmiéompeti-
tive with traditional wavelet techniques.

9. CONCLUSIONS AND FUTURE WORK

We have developed a fully distributed, irregular-grid wavé&ans-
form and protocol for sensor networks that is capable ofguigse-
planar multiscale approximation. We have presented Higet
solutions to implementation issues included mesh buildfilg
ter coefficient calculation, and transform coefficient aidton.
The transform coefficients have desirable performance runde
threshold-based processing such as distributed compreasid
even perform competitively with centralized, regulardgriavelet
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