
Artificial Intelligence 112 (1999) 1–55

Introspective multistrategy learning:
On the construction of learning strategies

Michael T. Coxa,∗, Ashwin Ramb,1

a Department of Computer Science and Engineering, Wright State University, Dayton, OH 45435-0001, USA
b College of Computing, Georgia Institute of Technology, Atlanta, GA 30332-0280, USA

Received 25 March 1997; received in revised form 8 June 1999

Abstract

A central problem in multistrategy learning systems is the selection and sequencing of machine
learning algorithms for particular situations. This is typically done by the system designer who
analyzes the learning task and implements the appropriate algorithm or sequence of algorithms for
that task. We propose a solution to this problem which enables an AI system with a library of machine
learning algorithms to select and sequence appropriate algorithms autonomously. Furthermore,
instead of relying on the system designer or user to provide a learning goal or target concept to the
learning system, our method enables the system to determine its learning goals based on analysis
of its successes and failures at the performance task. The method involves three steps: Given a
performance failure, the learner examines a trace of its reasoning prior to the failure to diagnose
what went wrong (blame assignment); given the resultant explanation of the reasoning failure, the
learner posts explicitly represented learning goals to change its background knowledge (deciding
what to learn); and given a set of learning goals, the learner uses nonlinear planning techniques to
assemble a sequence of machine learning algorithms, represented as planning operators, to achieve
the learning goals (learning-strategy construction). In support of these operations, we define the types
of reasoning failures, a taxonomy of failure causes, a second-order formalism to represent reasoning
traces, a taxonomy of learning goals that specify desired change to the background knowledge of
a system, and a declarative task-formalism representation of learning algorithms. We present the
Meta-AQUA system, an implemented multistrategy learner that operates in the domain of story
understanding. Extensive empirical evaluations of Meta-AQUA show that it performs significantly
better in a deliberative, planful mode than in a reflexive mode in which learning goals are ablated and,
furthermore, that the arbitrary ordering of learning algorithms can lead to worse performance than no
learning at all. We conclude that explicit representation and sequencing of learning goals is necessary
for avoiding negative interactions between learning algorithms that can lead to less effective learning.
 1999 Elsevier Science B.V. All rights reserved.

∗ Corresponding author. Email: mcox+@cs.wright.edu.
1 Email: ashwin@cc.gatech.edu.

0004-3702/99/$ – see front matter 1999 Elsevier Science B.V. All rights reserved.
PII: S0004-3702(99)00047-8

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
08 JUN 1999 2. REPORT TYPE

3. DATES COVERED
 00-00-1999 to 00-00-1999

4. TITLE AND SUBTITLE
Introspective multistrategy learning: On the construction of learning
strategies

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Wright State University,Department of Computer Science and
Engineering,Dayton,OH,45435-0001

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

55

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2 M.T. Cox, A. Ram / Artificial Intelligence 112 (1999) 1–55

Keywords:Learning-strategy construction problem; Blame assignment; Learning goals; Multistrategy learning;
Case-based reasoning; Meta-reasoning; Explanation; Planning

1. Introduction

The general goal of this paper is to present a theory ofIntrospective Multistrategy
Learning. A multistrategy approach to learning represents a heuristic exploration of the
potentially exponential space of integrations that combine multiple learning algorithms,
representations, and paradigms. But until recently, this space of possibilities has remained
largely unexamined and full of difficulties. Furthermore, the exploration of this space
is usually done by theresearcher, not by thesystem. The researcher decides what the
system ought to learn (for example, the researcher poses a so-called “target concept”) and
selects the particular learning algorithm (or, in some cases, a simple sequence of learning
algorithms) to be used. The goal of our research is to begin to automate this process:
to develop systems that can determine their own learning goals and select and combine
learning algorithms dynamically to satisfy these goals. In our view, learning in a flexible,
dynamic, multistrategy learning system with these capabilities begins to resemble an
active, thoughtful planning task. As with the more familiar planning in physical domains,
planning in a knowledge domain involves identifying goals (here, learning goals) and
sequencing operators (here, learning algorithms) into plans (here, learning strategies) to
achieve these goals. The central claim of this paper, then, is that learning is fundamentally
a planning task. Although this is not the first time the claim has been offered (see [40]), it is
the first time that empirical evidence has been made to support the claim. We will present
a computational model of learning, an implemented computer system which decides what
to learn and how to learn it, and empirical performance results demonstrating that this
approach provides substantial benefits over a nonplanful approach to learning.2

A specific focus of this research is to address thestrategy construction problem[17]
in multistrategy learning. That is, given a failure of some performance system, the
computational task is to assemble a strategy to repair the problems that underlie such
failures. If a learning system has access to a suite of learning methods, the task of
constructing a learning strategy requires the system to select and sequence the most
appropriate methods to fix the problem. A significant impediment to progress in this
area is that learning algorithms have been treated as independent functions. A given
learning algorithm seldom considers that other algorithms may be executed concurrently,
previously, or subsequently. Yet in an unconstrained multistrategy learning system, the
possibility is likely that the outcome of one algorithm will affect the results of others. For
instance, if an amortization function deletes all memory elements that are at or below a
given confidence threshold and a reinforcement function increments the confidence values

2 Note that in order that the system be able to formulate meaningful learning goals, it is important for the system
to have a broader performance task that the learning supports; in other words, the system must have a principled
needto learn. The performance system we will use in this article is a story understanding system. We will use
this system as the testbed for our theory of learning; however, the primary contributions of our research pertain
to learning, not story understanding.

M.T. Cox, A. Ram / Artificial Intelligence 112 (1999) 1–55 3

Fig. 1. Decomposition of the learning problem.

of particular memory elements, then clearly the second function call must precede the first;
otherwise, any common elements at threshold will be “forgotten” and not strengthened.

As is the case with traditional planning problems, the task is to take a suitable set of
learning goals and to build a learning plan having a sequence of learning steps that avoids
negative interactions. This raises another crucial problem to be addressed: how are these
learning goals represented? Can the system determine its learning goals, and how are those
goals related to the learning algorithms that achieve them? To properly specify such a
goal set, a system must explicitly decide what needs to be learned on the basis of what
went wrong. In other words, the learning system must be able to understand failures in the
operation of the performance system (i.e., performance failures) in causal terms related to
the reasoning and knowledge of the system (i.e., reasoning failures). As with traditional
diagnosis systems that have been developed to understand events in physical domains, to
interpret problems, and to explain system failures, the task of generating a learning goal
is to interpret and to explain events in the reasoning process (i.e., in the mental domain)
and to diagnose the reasoning failure. If it is to learn effectively, the system must have
knowledge about itself and a capacity to examine its own reasoning abilities. Without this
willingness to introspect, we will demonstrate empirically that learning can be ineffective.
In other words, a central conclusion of this research is that introspection is necessary for
effective learning.

Our solution to the problem of constructing a learning strategy integrates two broad
approaches in AI (see Fig. 1). Part of our research seeks to stretch the metaphor of
nonlinear planning in order to fit the demands of a multistrategy learner; whereas, a
second part applies the methods of case-based reasoning to understand the reasoner’s faulty
processes and to generate a set of learning goals. This division of responsibility determines
three major subtasks. First, the learner must performblame assignment(an explanatory
mapping from symptom to fault in the operation of the performance system). Secondly,
it must decide what to learnby using this explanation to form a set of learning goals
(desired changes in the background knowledge of the reasoner). Thirdly, it mustconstruct
a learning strategyto achieve these goals by generating a learning plan (a partially ordered
calling-sequence for its learning algorithms). These three tasks require that an intelligent
system understand its own reasoning and learning processes well enough to learn from its
mistakes.

In order to make these ideas more concrete, consider a simple example. Suppose that the
story in Fig. 2 is presented to an automated story understanding system whose goal it is to
interpret the story and to build a causal representation of it. If the system believes that only

4 M.T. Cox, A. Ram / Artificial Intelligence 112 (1999) 1–55

Elvis was bored and asked Lynn, “Do you want to play ball?” Then Lynn
went to the garage and picked up a baseball, and they went outside to play with
it. She hit the ball hard so that it would reach him in leftfield. Elvis threw the
ball back. They continued like this all afternoon. Because of the game, Elvis
was no longer bored.

— The End —

Fig. 2. Sample input story.

children play games, then the fact that an adult such as Elvis plays ball would need to be
explained to understand the story. In an attempt to explain this event and how it relates to
the goals of the characters, the system may use the same knowledge it has for why children
play. Subsequently, the prediction that Elvis performs this action because he wants to have
fun (i.e., he has the goal to relieve his boredom) is reinforced by the explanation contained
in the story. Alternatively, if the system has no knowledge of why people hit objects other
than to inflict pain, the system might erroneously predict that Lynn strikes the ball in order
to hurt the ball. However this explanation is contradicted by the story and represents an
expectation failure of the performance system that itself must be explained in order to
learn.

Yet explaining such failures and learning as a result requires that a number of difficult
problems be faced. First, the system must be able to reason about the prior reasoning
embedded in the story understanding task, not only to realize that the hypothesized
explanation was erroneous, but to understand why that explanation was proposed in the
first place. To perform such meta-level reasoning, it needs a declarative representation and
explicit trace of the execution of the performance system. That is, a trace ofwhathappened
helps to explainwhyit happened. This trace would be a piece of knowledge that represents
both the system’s expectation that the hitting event was meant to hurt (along with why the
system believed this) and the actual explanation that hitting was meant to move the ball.
Then to explain such reasoning, the system should realize that no alternative explanations
existed and thus the proposed explanation represented a hypothesis. The issue is how to
represent such traces and how to establish explanations of performance failure using such
traces. Indeed, to do even this, we need a theory of what constitutes a reasoning failure and
what kind of causes exist for such failures.

Secondly, to use such insights effectively, the system must identify what needs to be
learned so that the failure is not repeated. It needs to form a goal to differentiate competing
explanations so that they can be retrieved when appropriate. If the system has never
encountered the movement explanation for hitting, it needs to have the goal to acquire
it and remember it in the future. Thus after explaining the expectation failure, it must
form a set of learning goals that represents specific desired changes to its knowledge base.
However, this entails a nontraditional concept of goal and goal pursuit. Another set of
problems, then, is how to represent learning goals, how to extract goals from explanation
failures, and how to use them to guide the construction of a learning strategy.

Finally, if learning is to be cast as a planning problem, then we need to explain how a
learning algorithm can be operationalized as an explicit learning operator, what the pre-

M.T. Cox, A. Ram / Artificial Intelligence 112 (1999) 1–55 5

conditions are, what the effects are, and in what formalism such operators can be realized.
Explicit representation is important if the system is to reason about these algorithms in
much the same manner as a planning system might reason about its actions. However, un-
like the blocks-world where actions are self-evident from experience most persons share
as children, it is unclear how changes to the background knowledge of a system can be
represented operationally with plan schemata. Nonetheless, we will explore some possibil-
ities using Tate’s [96] Task Formalism and will demonstrate how an implemented learning
system can use a nonlinear planning module to establish learning plans.

From the very early days of AI, scientists have been concerned with the issues of ma-
chine self-knowledge and introspective capabilities (e.g., [53,58]), yet few have quantita-
tively evaluated the trade-offs involved or investigated the nature of the role introspection
assumes in learning. The research presented here uses computational introspection to as-
sist in the choice and sequencing of learning algorithms within a multistrategy framework.
But, open questions exist as to whether introspection is worth the computational overhead
and in exactly what ways it facilitates the learning process. This paper begins to investigate
these research questions empirically, as well as analytically. The research presented here is
the first to investigate the strategy construction problem substantially, the first to examine
computational introspection as a method of avoiding negative interactions, and the one to
take the metaphor of learning as planning most literally (but see [40,76]).

Section 2 presents the content of an introspective theory of learning by describing a
classification of reasoning failure, a taxonomy of failure causes, a typology of learning
goals, and a representation with which to express reasoning failure. Section 3 describes
the Meta-AQUA multistrategy learning system that operates in the domain of story-
understanding failures. This section includes the process divisions and algorithms that
implement our learning theory. Meta-AQUA incorporates a story generation module by
which experimental trials are generated, a performance module that understands these
stories, and a multistrategy learning module which improves the performance task.
Section 4 presents two extended examples to illustrate our learning method and to clarify
the evaluation that follows. Section 5 provides a computational evaluation of the assertion
that learning must include a phase that explicitly decides what to learn through an
introspective mechanism. We show that without a focus for learning as provided by a set
of deliberate learning goals, learning may not only be less efficient, but it may be worse
than no learning at all. Finally, Section 6 presents related research and summarizes our
contributions.

2. Representation and theory

Failure provides both human and artificial reasoners with strong clues when deciding
what needs to be learned [1,20,30,35,37,41,44,67,87,90,93,95]. One of the major goals
of establishing a theory of introspective learning, therefore, is to provide both a general
characterization of reasoning failure and the potential causes of such failure in order to
discover the nature of these clues. A sufficient characterization of failure will categorize
the kinds of cognitively salient symptoms that signal to the reasoner that something worth
learning exists. A sufficient taxonomy of the causes of failure will include those factors

6 M.T. Cox, A. Ram / Artificial Intelligence 112 (1999) 1–55

that account for each symptom in enough detail as to enable learning from them. The
learner’s task, then, is to perform an explanatory mapping from symptom to fault, and
thus, to determine what causes a particular failure. Such explanations detail what needs to
be learned by circumscribing the faults that must be corrected.3

In our model, reasoning is performed upon the representation of some input. The input
is not just perceived, but in addition, an attention mechanism filters the input as determined
by the current mental state of the reasoner. The critical elements of the reasoner’s mental
state are the goals and the expectations present in the reasoner’s memory. The filtered input
and the reasoner’s knowledge, goals, and expectations then determine some interpretation
of the input, thus eliciting additional goals and expectations. These conditions present a
rich context from which to detect a failure.

Besides providing an inferential focus for the reasoner, a fundamental purpose of
forming expectations is to test the general limits of knowledge independent of the particular
goals of the moment. That is, agents generate expectations to improve the boundaries of
their knowledge: to retract those parts of the boundaries that are incorrectly extended and
to expand the limits where gaps exist. An expectation represents a hypothesis or projection
of current knowledge that is falsifiable. One of the most basic mental functions, therefore,
is to compare one’s expectations with environmental feedback (or, alternatively, a “mental
check” of conclusions) to detect when the potential for improvement exists. That is, the
reasoner explicitly calculates some expected outcome and compares it with the actual
outcome that constitutes the feedback.

An outcomeis defined broadly without reference to a specific task. Theexpected
outcomecould be the result of either a problem-solving process or a comprehension
process such as story understanding. Comprehension processes attempt to predict and
understand events in a stream of input. Therefore, the outcome would be an interpretive
understanding of a system’s input, such as a reader’s comprehension of successive
textual sentences. Text can violate the reader’s tacit expectations concerning what will be
observed. In the short story of Fig. 2 for instance, the system implicitly expects people to
hit animate objects, even though it did not generate that expectation prior to encountering
the sentence containing a person that struck the ball. To satisfy the comprehension task in
complicated or unusual input, questions may be raised and an explanatory process may be
invoked. Hence, the expected outcome will be an explanation [72,74,88,99].4 That is, the
reasoner consciously anticipates a certain explanation to be true of some object or event

3 This paper’s position does not claim that all learning is guided by failure. Success contributes to learning as
well, but the impetus for learning resides entirely with failure in the theory of learning presented here. See [20],
however, for a computational argument for why failure may be preferred over success in learning.

4 The relationship between question asking and explanation is not obvious. Sometimes an expected outcome
is described as an explanation of an anomaly, while at other times an outcome is described as the answer to
a question. The relationship is that anomalies cause questions to be posed of the form “Why did some event
occur in the input?” The answer is an explanation that answers this question. In addition, the specific mental
process that forms an expectation (expected outcome) is not determined a priori. The process may be either an
inferential process such as deduction, or it may be a memory process that retrieves an expectation from memory.
For instance, to understand a story input, the reasoner (reader) may retrieve from memory a schema with which
to interpret the story fragment.

M.T. Cox, A. Ram / Artificial Intelligence 112 (1999) 1–55 7

in the input that is to be explained. When these explanations prove incorrect, such as the
explanation that Lynn wanted to hurt the ball, explicit expectations can be violated as well.

Finally, theactual outcomemay originate internally or externally. Feedback may come
from the environment (via perceptual/interpretive processes), or, it may emanate from a
mental process such as an arithmetic check of a mathematical computation. In all such
cases, the actual outcome is compared with the expected outcome in order to decide
whether or not a failure exists in reasoning. If such a failure is detected, the reasoner
attempts to explain the failure and to learn from it.

2.1. Reasoning failures and failure causes

A reasoning failure is defined as an outcome other than what is expected (or a lack of
some outcome or appropriate expectation). Given the above model of outcome comparison,
Table 1 presents a logical matrix of failure symptoms that depend on the outcome values.
The expected outcome may or may not have been produced; thus, the expected outcome
node, E, either exists or does not exist. Also, the actual outcome node, A, may be present
or it may not.

Expected outcomes are confirmed when they match the actual outcomes and reasoning
proceeds smoothly. However given a mismatch, two types of failure can result. Acontra-
diction occurs when a positive expectation conflicts with the actual result of either rea-
soning or action in the world. Anunexpected successoccurs when the reasoner did not
believe that reasoning would be successful, yet it was nonetheless. Alternatively, failure
may happen when no expectation is generated prior to some outcome. That is, anim-
passeoccurs when the reasoner cannot produce a solution or understanding prior to being
given it; whereas, asurpriseoccurs when an actual outcome demonstrates that the reasoner
should have attempted a solution or prediction, but did not. Finally, afalse expectationis
the case where a reasoner expects some positive event, but none occurs (or when a solu-
tion is attempted for a problem having no solution). Thedegeneratecase has no potential
for learning and represents the condition such that no expectation was generated and no
outcome presents itself.

Each of these failures may be caused by many factors. Although a general solution to the
problem of blame assignment does not exist, we may frame the potential causes of failure
so as to better understand the space of blame assignment. Clearly, reasoning is intentional
and oriented toward the pursuit of specificgoal states. Moreover, we assume that reasoning

Table 1
Taxonomy of failure symptoms

∃E @E
(expectation exists) (expectation does not exist)

Contradiction Impasse∃A
(actual exists) Unexpected Surprise

success

@A False Degenerate
(actual does not exist) expectation (N/A)

8 M.T. Cox, A. Ram / Artificial Intelligence 112 (1999) 1–55

Table 2
Taxonomy of causes of reasoning failure

Knowledge states Goal states Processes Environment

Domain Knowledge Goal Goal Processing Strategy Input Input
knowledge selection generation selection strategy selection selection

Novel Missing Missing Forgotten Missing Missing Missing Missing
Absent situation association goal goal behavior heuristic input context

Incorrect Erroneous Poor Poor Flawed Flawed Noise Incorrect
Wrong domain association goal selection behavior heuristic context

knowledge

Right Correct Correct Correct Correct Correct Correct Correct Correct
knowledge association goal association behavior choice input context

Theory Memory Desires Opportunity Action Control Perception Attention

usesknowledgeto processperceived input from someenvironmentin order to create a
representational state of the world and to achieve these desired goals. Reasoning processes
transform specific mental states into new states. Some of these states are knowledge states
representing facts and experience, some are perceived states representing conditions in
the environment, and some are goal states representing desired new states. Based upon
such representations, decisions result in actions that change the world, thus producing new
environmental states that can subsequently be input or perceived in order to compare the
goal to the actual state of affairs in the world. Such decisions result in new internal actions
that may change the expectations present in working memory that bias later input. Given
these assumptions, reasoning will fail if any of the constituents of reasoning fail; that is, if
a problem exists with the reasoner’s knowledge, goals, mental processes, or input from the
environment.

In addition, not only can these components be a likely cause of error, but the ways
in which the reasonerselectsthem can also be a source of error. Nonselection is an
important and often overlooked factor in the analysis of failure. It is a result of poor
memory organization rather than incorrect memory content. Failure can occur, not because
an agent does not know some fact, but because the agent cannot retrieve the fact when
needed [18].

Table 2 presents a matrix for summarizing the causal factors that bear on the
determination of blame. As indicated at the heading in the uppermost row, the table is
divided into the four major causal categories. Failure could stem from the knowledge
states with which the reasoner makes decisions, goal states generated during reasoning, the
reasoning processes used to achieve the goals, or the input that represents the environment
and from which feedback is provided. In each of these categories, the relevant item may
be either missing or wrong. Omission errors occur when a necessary component is not
present (this is represented by the “Absent” row in the table); whereas, commission errors
occur when an incorrect component is present (this is represented by the “Wrong” row
in the table). In addition, because knowledge is embedded in a memory and must be
retrieved before it can be used to pursue a goal, an error of omission can result from

M.T. Cox, A. Ram / Artificial Intelligence 112 (1999) 1–55 9

Unary Goals N-ary Goals

• Knowledge Acquisition Goal • Knowledge Differentiation Goal
• Knowledge Refinement Goal • Knowledge Reconciliation Goal
• Knowledge Expansion Goal • Knowledge Organization Goal
• Knowledge Organization Goal

Fig. 3. Taxonomy of learning goals.

nonselection, rather than simply nonexistence. If an item is correct, then that category
contributes nothing to the failure. A characterization of each factor is present in the lower
row of the table.

2.2. Explicit learning goals

To provide focus for learning, a set of learning goals are spawned from an explanation
of the failure. Just as standard goals represent what an agent needs in the world,learning
goalsrepresent what a system needs to know [20,72,73,76,78]. These goals are spawned
when deciding what to learn or when subgoaling on a superordinate learning goal. Learning
goals help guide the learning process by suggesting strategies that would allow the system
to learn knowledge required to avoid future failures. Learning goals specify the desired
structure and content of knowledge, as well as the ways in which knowledge is organized
in memory. Learning goals also facilitate opportunistic learning (see [36,72,73,76]); that
is, if all information necessary for learning is not available at the time it is determined
what is needed to be learned (e.g., when a question is posed), then a learning goal can be
suspended, indexed in memory, and resumed at a later time when the information becomes
available.

Fig. 3 lists the types of learning goals used in our theory. All of these goals are
achievement goals because they attempt to achieve some new state in the background
knowledge, rather than prevent or maintain some state.5 Some learning goals seek to add,
delete, generalize or specialize a given concept or procedure. Others deal with the ontology
of the knowledge (i.e., with the kinds of categories that constitute particular concepts).
Many learning goals are unary in that they take a single target as argument. For example,
a knowledge acquisition goalseeks to determine a single piece of missing knowledge,
such as the answer to a particular question. Aknowledge refinement goalseeks a more
specialized interpretation for a given concept in memory, whereas aknowledge expansion
goalseeks a broader interpretation that explores connections with related concepts.

Other learning goals aren-ary, taking two or more arguments. Aknowledge differenti-
ation goalis a goal to determine a change in a body of knowledge such that two or more
items are separated conceptually. In contrast, aknowledge reconciliation goalis one that
seeks to merge multiple items that were mistakenly considered separate entities.

5 Of course, learning goals (or policies) that either prevent the removal of a strongly held belief or maintain
some special mental state are conceivable, but outside the scope of this research.

10 M.T. Cox, A. Ram / Artificial Intelligence 112 (1999) 1–55

Both expansion goals and reconciliation goals may spawn aknowledge organization
goal that seeks to reach a particular configuration of the background knowledge. Usually
a learner wants to reorganize the existing knowledge so that it is made available to the
reasoner at the appropriate time, as well as modify the structure or content of a concept
itself. Such reorganization of knowledge affects the conditions under which a particular
piece of knowledge is retrieved or the kinds of indexes associated with an item in memory.
Because the desire can be either to organize a particular state or to organize two or more
states with respect to each other, this goal type may take one or more arguments.

2.3. Representation of reasoning failure

An early tenet of artificial intelligence is that reasoning about the world is facilitated by
declarative knowledge structures that represent salient aspects of the world (e.g., [2,53,63,
70,85]). An intelligent system can better understand and operate in such a represented
world as opposed to one in which knowledge is encoded procedurally or implicitly.
The system may inspect and manipulate such structures, the system can be more easily
modified and maintained, and such representations provide computational uniformity. But
if a system is to reason about itself, this principle can be applied equally to representations
of its own reasoning and knowledge. Given such structures, a system can reason about its
own memory system when it forgets and can reason about its knowledge and inferences
when it draws faulty conclusions.

2.3.1. Representing contradiction: A symptom of failure
We posit a declarative representation for mental state transformations usingexplanation

pattern (XP) theory [73,74,88,89,91] and call the representational structuresmeta-
explanation patterns(Meta-XPs). Because meta-X literally means “X about X”, a meta-
explanation pattern is an explanation pattern about another explanation pattern. While a
standard XP is a causal structure that explains a physical state by presenting the prior
chain of physical events influencing such states, a Meta-XP, such as the one illustrated in
Fig. 4, is an explanation of how or why an XP is incorrectly generated or otherwise fails.6

Two classes of Meta-XPs exist to facilitate a system’s ability to reason about itself and to
assist in constructing a learning strategy. ATrace Meta-XP(TMXP) explainshowa system
generates an explanation about the world (or itself), and anIntrospective Meta-XP(IMXP)
explainswhythe reasoning captured in a TMXP goes awry.

TMXPs record the extent of reasoning tasks and the reasons for decisions taken during
processing. IMXPs are general causal structures that represent explanations of the failure
types listed in Table 2. Whereas a TMXP records the immediate mental events of the
reasoner during story understanding, an IMXP is retrieved from memory and applied to
the TMXP to support problem diagnosis. As such, the TMXP captures symptoms of failure
and the IMXP captures the fault. This case-based approach to self-understanding is similar
to the case-based operations by which standard XPs are retrieved and applied to input
representations during story understanding. The same basic algorithm [74] is used in both.

6 Here the definition of a Meta-Explanation is interpreted in a narrow sense as applied to understanding tasks
involving the explanation of anomalies. In general, however, a Meta-XP may be any explanation of how and why
an agent reasons in any particular way, including processes other than explanation.

M.T. Cox, A. Ram / Artificial Intelligence 112 (1999) 1–55 11

Like XPs, Meta-XPs are directed graphs with nodes that are either states or processes
and links that are either ENABLES links (connecting states with the processes for which
they are preconditions), RESULTS links (connecting a process with a result), or INITIATE
links (connecting two states). The XP provides an internal cause (causal justification) for a
distinguished node called the EXPLAINS node by providing its causal antecedents. In the
graph, all sink nodes are called PRE-XP-NODES and represent the applicability conditions
of the explanation. All source nodes are XP-ASSERTED-NODES and represent the terms
with which to evaluate the explanation. If the set is completely believed, the explanation
is accepted, if one or more in the set is not believed, then explanation is rejected, and if a
member of the set is unknown, then the node is recursively explained. All other nodes in
an XP are INTERNAL-NODES.

Nodes in a Meta-XP represent mental states and mental actions (processes). In our
ontology, a nondetermined mental process is labeled aCognizenode. It can be specialized
to either an inference process, a memory retrieval process, or an I/O process.7 Therefore,
an intelligent agent can respectively form an expectation by inferential reasoning (logical or
otherwise), by remembering, or via another agent’s communication. The basic organization
for all representations of failure is at the level of a comparison between an expectation and
some feedback (either from the environment or other inference).

As an example of a Meta-XP representation for an entry in Table 1, Fig. 4 illustrates the
basic structure of a contradiction.8 Some goal, G, and context or cues, C, enables some
cognitive process to produce an expected outcome, E. A subsequent cognitive mechanism
produces an actual outcome, A, that, when compared to E, fails to meet the expectation.
This inequality of actual outcome with expected outcome initiates the knowledge of
contradiction. If the right-mostCognizenode was some inferential process, then the failure
becomes an expectation failure and the node C represents the context, whereas if the
process was a memory function, the contradiction is called an incorporation failure and
C represents memory cues.

In Fig. 4 the PRE-XP-NODES are A, E, and the node labeled “Expectation or
Incorporation Failure”. This latter node is the EXPLAINS node (i.e., the one that the Meta-
XP explains). The left-most Cognize node, the Compare node, and the nodes G and C form
the XP-ASSERTED-NODES set. All others are internal nodes. Such representations allow
a system to reason about various causes of failure (e.g., a poor goal or a missing item in the
context), although in the form shown we have simply represented a class of symptoms. No
specification is actually provided here that determines what the fault or cause of the failure
is. In other words, Fig. 4 illustrates an item from Table 1 rather than Table 2. The cause
remains to be inferred.

The terms used to represent reasoning failure represent the vocabulary labels that
compose meta-explanations. We propose two types of commission error labels.Inferential
expectation failurestypify errors of projection. They occur when the reasoner expects an

7 This is in keeping with Schwanenflügel et al. [92] who analyzed folk theories of knowing. Subject responses
during a similarity judgement task decomposed into inference, memory, and I/O clusters through factor analysis.

8 Numbers on the causal links (thick arrows) indicate relative temporal sequence [19] and the prefixmentally
on causal link labels refers to internal rather than external effects and preconditions. Attributes and relations are
represented explicitly in these graphs. For instance, the ACTOR attribute of an event X with some value Y is
equivalent to the relationACTORhavingdomain X andco-domain Y.

12 M.T. Cox, A. Ram / Artificial Intelligence 112 (1999) 1–55

Fig. 4. Meta-XP representation of contradiction. A= actual; E= expected; G= goal; C= context or cues.

event to happen in a certain way, but the actual event is different or missing.Incorporation
failures result from an object or event having some attribute that contradicts some
restriction on its values. These two are similar except that the expectation is explicit in
the former and implicit in the latter. In addition, we propose four omission error labels.
Belated predictionoccurs after the fact. Some prediction that should have occurred did not,
but only in hindsight is this observation made.Retrieval failuresoccur when a reasoner
cannot remember an appropriate piece of knowledge; in effect, it represents a memory
failure.Construction failureis similar, but occurs when a reasoner cannot infer or construct
a solution to a problem. Input failure is error due to lack of some input information.
Combinations of these are used to represent each reasoning failure type (symptom) listed
in Table 1.

2.3.2. Representing forgetting: An introspective explanation of failure
Given a characterization of reasoning failure as symptom taken from our error taxonomy,

the task of blame assignment is to explain the failure in terms of why it occurred. This
diagnosis task then is to map the failure symptoms to combinations of faults taken from
Table 2. In addition to representing a trace of the reasoning in a TMXP, a learning system
that performs this task needs a library of IMXPs that cover the range of errors possible
in the performance task. But the representation for these causal patterns of failure are not
always straightforward. For instance, consider the difficulties of representing a failure due
to forgetting.

Because forgetting is not a mental event, but rather the lack of successful memory
processing, challenges exist when representing it.9 Forgetting can be expressed properly
only if a system can represent that it does not believe a successful memory retrieval has
occurred. The belief logic of Doyle [28] has four truth values for a given proposition “p”.

9 See [14] for alternative representations and the associated problems they entail.

M.T. Cox, A. Ram / Artificial Intelligence 112 (1999) 1–55 13

If p is believed then it is “in” the set of beliefs, whereas ifp is not believed then it is “out”.
Conversely, the negation of the assertion ofp may be either in or out of the agent’s set of
beliefs. Therefore, the four truth values arep(in), p(out), ¬p(in), and¬p(out). Using
these values, a system needs to be able to declare that there is a memory item that was not
retrieved.

The system could create a dummy concept,d, representing the forgotten item that it
believes did not result from some retrieval process. This concept could be marked as not
believed (i.e.,d(out)), since it was not retrieved and cannot be specified by the system.
But technically, it is incorrect to assert that the concept is not believed if it is in the system’s
long-term memory (thebackground knowledgeor BK). In other words, it may be believed
but not recalled. Our response to this dilemma is first, to assume a special set of beliefs
representing the working memory of the system (theforeground knowledgeor FK), and
then secondly, to modify Doyle’s belief logic to claim belief membership with respect to
a particular set of beliefs. Thus,m, a given memory item that was not retrieved, may be in
the set of beliefs with respect to the BK, writtenm(in BK), but out of the set of beliefs with
respect to the FK, writtenm(out FK). 10

The Meta-XP structure of Fig. 5 represents a memory retrieval attempt enabled by goal,
G, and cues, C, that tried to retrieve some memory object, M, given an index, I, that did
not result in an expectation (or interpretation), E, that should have been equal to some
actual item, A. The fact that E is out of the set of beliefs with respect to the reasoner’s
foreground knowledge (i.e., is not present in working memory) initiates the knowledge
that the symptom of impasse (specifically a retrieval failure) had occurred.

This structure can represent an entire class of memory failures: failure due to a missing
index, I; failure due to a missing object, M; failure because of a missing retrieval goal, G;11

or failure due to not attending to the proper cues, C, in the environment. These alternatives
are disambiguated by the annotation of M(out BK) attached to the truth value of M. The
annotation explains the forgetting by postulating that no memory item exists in the BK to
retrieve.12 Although it may be the case that another cause (e.g., a missing index) may have
caused the error, it allows the system to begin the mapping from symptom to fault at this
point when trying to determine a goal to learn.

A list of specific learning-goals that need to be spawned are included as part of the
representational structure of each IMXP. When the IMXP is bound to the trace of the
failure, the goals are automatically bound to particular points in the representation of the
trace (via unification of variables) that provide a possible location of failure. In the case of
a missing nodeM, a goal is attached to acquire the missing knowledge. As will be seen in
the extended example from Section 4.2, these are only starting points; additional subgoals

10 Compare this with the assumption maintenance system discussed by McDermott [55]. In general, propositions
may bein or out with respect to arbitrary sets of beliefs, which in the Meta-AQUA system are used to represent
what is in the FK during different reasoning experiences.
11 A missing retrieval goal occurs when the agent never attempted to remember. For instance, the reasoner may

have wanted to ask a question after a lecture was complete, but failed to do so because he never generated a
goal to remember. Alternatively the agent may know at the end of the lecture that he needs to ask something, but
cannot remember what it was. This second example is the case of a missing index.
12 If M is not present in the BK, functionally it does not matter whether or notM was in memory at a previous

time.

14 M.T. Cox, A. Ram / Artificial Intelligence 112 (1999) 1–55

Fig. 5. Meta-XP representation of forgetting (impasse). A= actual; E= expected; G= goal; C= cues;
M =memory item; I=memory index.

may be spawned to support the original goals from the IMXP or learning goals can be
abandoned in the face of changing circumstances (e.g., if it is discovered that M really
does exist).

We have developed similar representations for the other causal explanations enumerated
in Table 2 [13]. The second-order formalism outlined here not only supports the
construction of a learning strategy, but it also provides a knowledge framework with which
a system can represent knowledge of itself. This can be useful for a system that must
communicate its reasoning to the user of a system [11] and for a system that must infer the
mental events and states of others (see [54,69]; but see also Reilly and Bates [82] who use a
minimalist attitude and Zeng and Sycara [101] who use no explicit second-order structures
to make such inference).

3. Process divisions of the Meta-AQUA system

Meta-AQUA is a goal-driven learning system that chooses and combines multiple learn-
ing methods from a toolbox of algorithms in order to repair faulty components responsible
for failures encountered during the system’s performance task. The performance task is
subjective story understanding [4,22,50,62,72,99]. System input is in the form of a stream

M.T. Cox, A. Ram / Artificial Intelligence 112 (1999) 1–55 15

Fig. 6. Detailed Meta-AQUA system architecture.

of conceptual entities representing events in a story, and the performance task is to create a
coherent explanatory and predictive model of the interactions between characters and the
events. But when a story understander predicts that a particular explanation will hold in a
story and an alternative explanation is subsequently given in the story, then a performance
failure has occurred. To learn from this kind of failure, the system must understand why
the failure occurred, must form a goal to learn from the failure, and must create a learning
strategy to change the knowledge that caused the failure.

The Meta-AQUA architecture and flow of information within the system is shown
in Fig. 6. The problem generation module outputs a story to the story understanding
performance system with the initial goal to understand the input. The performance module
uses schemas from its background knowledge (BK), represented using combinations of
XPs and scripts, to explain the story and to build a representation for it in its foreground
knowledge (FK). When this task fails, a trace of the reasoning that preceded the failure
is passed to the learning subsystem. A case-based reasoning [5,34,45,83,87] subsystem
within the learner uses past cases of introspective reasoning from the BK to explain the
comprehension failure and to generate a set of learning goals. These goals, along with the
trace, are then passed to a nonlinear planner [84,96,100]. The planner subsequently builds
a learning strategy from its toolbox of learning methods. The learning plan is passed to
an execution system that examines and changes items in the BK. These changes enable
improved future performance.

Meta-AQUA is programmed in Symbolics Common LISP under the Genera operating
system (Version 8.3). The hardware platform is a Symbolics MacIvory Model-3 LISP
microprocessor embedded in a Macintosh IIci personal computer. Including comments and
documentation, the LISP source code takes up approximately 750 kilobytes of disk space
in sixty-seven files.

16 M.T. Cox, A. Ram / Artificial Intelligence 112 (1999) 1–55

Elvis was bored. Elvis asked Lynn, “Would you push the ball2 to me away
from you?” Lynn went to the garage. She picked up the ball2. She had the ball2.
She went to outside. He went to outside. He played with the ball2. She hit the
ball2. She hit the ball2 because she wanted to move the ball2 to him. He hit the
ball2. He hit the ball2 because he wanted to move the ball2 to her. He played
with the ball2 because he didn’t want to be bored.

— The End —

Fig. 7. Tale-Spin story TS1.

3.1. The input: Elvis-World and Tale-Spin

To support large data collection for empirical evaluation, the Tale-Spin story generation
program13 provides a potentially infinite number of input variations that test Meta-
AQUA’s ability to learn from explanation failure. Given a main character and a problem,
Tale-Spin simulates the actions that would be necessary for the character to achieve goals
stemming from the problem. For instance, if a character is bored, Tale-Spin assigns the
character an initial goal to remove the state of boredom. The character can achieve the goal
by convincing a friend to play, finding a ball, going outside, and then batting the ball back
and forth (as with the story in Fig. 7).14 For each event in the story the generator adds any
associated causal results (along with occasional random events and states). These results
change the world and enable further actions by characters in the story. For example, the
act of getting the ball and going outside enables the hitting of the ball which results in
the ball’s movement between the characters. In turn, these actions remove the boredom.
Tale-Spin terminates a story when the goals and subgoals of the main character have been
achieved or when all possible actions to achieve them have been exhausted.

Among the changes to Tale-Spin, we added a musician named Elvis and a police
officer to the cast of characters. Elvis is temporarily boarding with Mom, Dad and their
daughter Lynn, whereas the officer occasionally visits the house, presumably because of
neighborhood complaints of loud music and raucous behavior. Furthermore, the police
officer often (but not always) brings a drug-detection dog along with him. We also added
two new problem types to the original problems of thirst and boredom. Characters may
now bejonesing15 for drugs. In Elvis’ case, he sometimes smokes marijuana to relieve
his jones, whereas Dad and Lynn occasionally smoke tobacco. The police officer has
the problem of beingconcernedabout the law. This problem is solved if he can either
locate contraband or arrest criminals. We modified Tale-Spin to include in the output

13 Tale-Spin [56] was obtained from the UC Irvine repository. Pazzani [68] used it to evaluate the OCCAM
multistrategy learning system.
14 Note the correspondence to the sample story from Fig. 2. Unlike the first story, Tale-Spin generates stories

that are both stylized and simple. It also provides random events and all necessary explanations. If the research
focus was on the performance task, Meta-AQUA would process unconstrained text and the burden of explanation
verification would be upon the inference capability of the performance system.
15 In the vernacular, a “jones” is a drug habit accompanied by withdrawal symptoms. The verb “to jones” is to

be going through a state of withdrawal.

M.T. Cox, A. Ram / Artificial Intelligence 112 (1999) 1–55 17

explanations associated with each problem of the main characters (usually, that a character
performs actions because the character has the goal that is the outcome of the action). We
also reprogrammed Tale-Spin to hide the marijuana during story initialization in different
locations (e.g., in the cupboard, refrigerator, and under the carpet), so the officer’s task
varies depending on entry conditions (i.e., at what point in the story the officer arrives on
the scene and whether the dog accompanies him), the initial location of the pot, and the
actions of the characters in the story.

3.2. The performance task: Story understanding and explanation

Understanding involves building causal explanations of an input, whether that input is
a visual scene, spoken language, or written text. These explanations provide conceptual
coherence [38,39,66,80] by incorporating the current input into pieces of the previous input
and by generating expectations about subsequent input. The understander skims a stream
of input by instantiating schemas to fit each input item and linking it into the model of
previous input, unless the current input is anomalous or unusual. If an anomalous situation
is identified, then the understander must explain the input by elaborating it beyond simple
schema instantiation. For an agent to achieve a comprehension goal in story understanding,
it must be able to meaningfully link the current input to both the preceding and forthcoming
events in the story.

The basic task of story understanding is shown in Fig. 8 and represents a multistrategy
variant of the AQUA story-understanding algorithm [72,74]. Given some input and a
current context (including a comprehension goal, the system’s BK, and within the FK1,
a current model of the previous input), if the input is interesting,16 the system’s task is to
choose or construct a strategy with which to explain the input (e.g., case-based reasoning
or explanation pattern application), otherwise it must incorporate the input into FK1. Upon
execution of the explanation strategy, the system outputs a new representation (FK2) of the
input that has no anomaly and is coherent with respect to the BK. The input is understood
given that it remains consistent and coherent in the face of future input. To support the
learning task if failure results, the system outputs a representational trace of the reasoning
that produced the understanding.

The explanation of interesting input should further the overall goal of understanding the
entire story. As already mentioned, the explanation is a good one if it helps to incorporate
the new input with previous input and it needs little or no re-explanation when given further
input concerning the same topic. The explanation is also good if it addresses the particular
features that initially made it interesting [74,77].

As detailed in [22], three processes exist in the understanding task used to process
stories. First, the understander needs to identify anomalous (or otherwise interesting) input.
In the absence of interesting story passages, the reader skims the input by passing it

16 Interesting input is either an anomalous conceptualization or something pertaining to the intrinsic goal of
the reasoner. For example, sex, violence, and loud noises are intrinsically interesting [86]. In addition, anything
concerning a concept about which something has been learned recently will be categorized as interesting [13].
For a more detailed set of interestingness heuristics see [71].

18 M.T. Cox, A. Ram / Artificial Intelligence 112 (1999) 1–55

Input:

• Comprehension goal
• Input
• BK (includes library of explanation strategies)
• FK1

If the input is interesting then

Construct or select an explanation strategy to elaborate the input
Execute strategy
Incorporate story input into FK1

else skim the input.

Output:

• FK2
• Trace

The input is understood if, given future input, FK2 remains consistent
and coherent.

Fig. 8. Understanding specification.

to a simplified version of SAM, a script application program [24,25].17 Second, given
interesting input the reader generates a hypothetical explanation to explain the text. Third,
it verifies the generated explanation. Both explanation generation and verification involve
strategy construction (or selection). The understander must construct (or select) a method
to generate an explanation and to construct (or select) a method to test the veracity of the
explanation.

Assuming such a model for the story understanding performance task, traces of system
performance can be specified and recorded at run-time in declarative structures. TMXP
reasoning traces are used by learning mechanisms to reason about processing failures,
if and when failure occurs. A TMXP contains adecide-compute node(D-C-NODE) for
each of the sub-processes of an understanding task; that is, it records the decision and
the justifications behind each decision (see Fig. 9). Both the generation and verification
processes have four steps each of which correspond to a process field in a D-C-NODE. The
four fields are input analysis, goal specification, strategy decision, and strategy execution.
For each field, the record stores both the enabling conditions and the resulting state. For the
first three fields, the D-C-NODE records the decision basis (i.e., the knowledge, heuristics
or inferences that justify the decision choice), and for the last field, it records the side-
effects of the process. Full details are presented in [13].

17 The script applier understands a story by matching input sentences to stereotypical sequences of events (i.e.,
to scripts). For example, a simplepipe-smokingscript consists of subscenes to get the pipe, put tobacco into
it, smoke it, then clean it, and hierarchically, these scenes are composed of subscenes (see [22] for a full script
representation). Although scripts omit many of the causal relations between events in a story, they can help an
understander interpret a story by providing details not explicitly mentioned in the story.

M.T. Cox, A. Ram / Artificial Intelligence 112 (1999) 1–55 19

Fig. 9. Graph structure for decide-compute Node.

If a failure occurs (as detected by the algorithm to be presented in the forthcoming
section), the system suspends the understanding performance task and invokes the learning
task. When this happens, the trace of the reasoning along with a characterization of the
failure (a symptom as determined by the failure detection algorithm) is passed to the
learning process for introspective explanation. When learning abates, the system resumes
the story understanding performance task.

20 M.T. Cox, A. Ram / Artificial Intelligence 112 (1999) 1–55

3.3. The learning task: Case-based introspection and nonlinear planning

The Meta-AQUA system learns about drug-smugglingand simple sports activities, given
its prior experience with stories about terrorists and its general knowledge of physical
causality. When the Meta-AQUA system detects an explanation failure, the performance
module passes a trace of the reasoning (i.e., a TMXP) to the learning subsystem. At this
time, the learner needs to explain why the failure occurred (assign blame) by applying
an introspective explanation to the TMXP. An IMXP is then retrieved using the failure
symptom as a probe into memory. Meta-AQUA instantiates the retrieved meta-explanation
and binds it to the trace of reasoning that preceded the failure. The resulting structure is
then checked for applicability. If the IMXP does not apply correctly, then another probe
is attempted. An accepted IMXP either provides a set of learning goals (determines what
to learn) that are designed to modify the system’s BK or generates additional questions to
be posed about the failure. Once a set of learning goals is posted, they are passed to the
nonlinear planner for building a learning plan (learning-strategy construction).

During the processing of stories such as these, Meta-AQUA records its reasoning in a
trace structure as described above so that it can pass relevant information to the learner
upon failure. These knowledge structures contain representations for each of the reasoning
sub-processes: interest identification, explanation formation, and verification. For each,
the structure records the considerations that prompted the process, the bases for making
a reasoning strategy decision, and the result of strategy execution. Using information
from the trace, learning is divided into three sub-processes: failure identification, learning
generation, and verification.

The first process performs failure detection. Five possible types of failures as listed in
Table 2 can occur. Failure detection inputs two structures (an expected outcome, E, and the
actual outcome, A) and the trace of the reasoning producing these knowledge structures.
The algorithm for this process is shown in Fig. 10. The detection process occurs either
during the verification phase of the performance task of the system or during the generation
phase after a resumption of a suspended generation goal. This second condition occurs
after the performance system previously tried to generate a hypothesis, but could not. The
generation phase suspends the goal and new input later provides the answer (see impasse
condition in Fig. 10). Along with the trace, the process outputs a determination of which
of the failures exist (if any) to the next phase.

The second phase concerns the actual determination of the causes of failure and the
construction of a learning strategy which is then executed. Fig. 11 defines this learning
task and shows the overall information flow to and from the learning process.18 The input
to learning is a general goal to learn from the failure, a trace of the prior reasoning, the
story model in the FK, and the BK. The output of the phase is an implicit hypothesis
that the learning was correct along with an augmented trace. The changes to the BK from
learning are attached to a set of D-C-NODEs and are indexed in memory where the changes
occur. Fig. 12 outlines the algorithm that computes the changes in the second phase. The
algorithm will be explained in detail below.

18 Cox and Ram [22] emphasize the similarity between story understanding and learning. Compare Fig. 11 with
Fig. 8.

M.T. Cox, A. Ram / Artificial Intelligence 112 (1999) 1–55 21

Detect-failure (E, A, trace)

If (A (out FK) and trace indicates time to event expired)

or (A (out FK) and Is-impossible (goal (generate, E))) then

returnfalse expectation

If E(in FK) then

If E 6= A then

returncontradiction

else if E= A then

If expected to fail then

returnunexpected success

else returnsuccess

else if∃ goal (generate, E) then

returnimpasse

else returnsurprise

Fig. 10. Failure detection algorithm.

Input:

• Learning Goal
• Reasoning Trace
• FK
• BK1

If a failure occurred during the trace then

Construct a learning strategy to repair BK1
Execute strategy
Store reasoning trace

Output:

• BK2

The knowledge is repaired if, given a similar future situation, the failure
will not recur

Fig. 11. Learning generation specification.

The third phase concerns verification. Although beyond the scope of this paper and more
suitable for future research, verifying the learning could involve either of two strategies.
The system could be reminded of a change to the BK (as associated with the D-C-NODEs
and described above) at some future time when the changed knowledge is reused. The
learning can then be checked as to whether it is effective. Alternatively, the system could

22 M.T. Cox, A. Ram / Artificial Intelligence 112 (1999) 1–55

0. Perform and Record Reasoning in TMXP Trace
1. Failure Detection on TMXP
2. If Failure Then

Learn from Mistake:

• 2 a. Blame Assignment

Compute index as characterization of failure

Retrieve Introspective Meta-XP

Apply IMXP to TMXP

If Meta-XP application is successful then

Check IMXP antecedents

If one or more nodes not believed then

Introspective questioning

GOTO step 0

Else GOTO step 0

• 2 b. Create Learning Goals

Compute tentative goal priorities

• 2 c. Choose Learning Algorithm(s)

Translate TMXP and goals to predicates

Pass predicates to planner (Nonlin)

Translate resultant plan into frames

• 2 d. Apply Learning Algorithm(s)

Interpret plan as partially ordered network of

actions such that primitive actions are

algorithm calls

3. Evaluate Learning (not implemented)

Fig. 12. Introspective multistrategy learning algorithm.

actually make a deliberate test of the newly learned knowledge by trying to falsify the
information. When either of these processes finish, the verification phase would output an
evaluation of the quality of learning.

The most critical of the three phases above is the second phase (learning generation)
that generates changes to the BK. Fig. 12 sketches the algorithm that implements these
processes. The system records a trace of the reasoning used in the performance task
in a sequence of trace meta-explanation structures. Each trace is inspected to detect a
failure. When the system detects a failure, it invokes learning. During learning, the system
constructs a learning strategy via the three process steps: blame assignment, deciding what

M.T. Cox, A. Ram / Artificial Intelligence 112 (1999) 1–55 23

to learn, and strategy construction. Subsequently, the system executes the learning strategy
to perform the necessary knowledge repairs. These three steps are explained in more detail.

3.3.1. Blame assignment (step 2a, Fig. 12)

Take as input a trace of the mental and physical events that preceded a reasoning
failure; produce as output an explanation of how and why the failure occurred, in
terms of the causal factors responsible for the failure.

Blame assignment is a matter of determining what was responsible for a given failure.
Thus, the function of blame assignment is to identify which causal factors could have
led to the reasoning failure as determined from the output of the performance task and
contained in the reasoning trace. That is, blame assignment is like troubleshooting; it is a
mapping function from failure symptom to failure cause. The purpose is the same whether
the troubleshooter is explaining a broken device or itself [1,93].

The input trace describes how results or conclusions were produced by specifying the
prior causal chain (both of mental and physical states and events). The learner retrieves
an abstract meta-explanation pattern, or IMXP, from memory and applies it to the trace
in order to produce a specific description of why these conclusions were wrong or
inappropriate. This instantiation specifies the causal links that would have been responsible
for a correct conclusion, and enumerates the difference between the two chains and two
conclusions (what was produced and what should have been produced). Finally, the learner
outputs the instantiated explanation(s).

Step 2a of Fig. 12 outlines the control algorithm for blame assignment in an introspective
multistrategy learner. The step is refined in Fig. 13 below. A characterization of the
reasoning failure from the system’s vocabulary of failure terms is used as an index to
retrieve an ordered set of abstract IMXPs. The index is computed from the failure type
returned by functionDetect-failureand the vocabulary term of the trace node returned by
the last stage of the reasoning process. Until success or the queue of IMXPs is empty,
a candidate IMXP is bound and unified with the trace of the reasoning to produce a
parameterized token. The PRE-XP-NODES (XP consequents) of the candidate are then
checked to see if they are consistent with the current representation of the reasoning that
produced an understanding the story (i.e., all are in the set of beliefs with respect to the
FK). If they all can be verified then the Meta-XP applies to the situation. If any are rejected,
then the explanation is rejected and a new candidate is tried.

Now the algorithm checks to see if any XP-ASSERTED-NODES (XP antecedents)
are open. An open node is one for which neither the proposition nor its negation are
believed, and thus the item does not have a representation in the model of the story. For
each such node, Meta-AQUA tries to infer its belief by posing an introspective question
concerning its existence. If the truth of any such node cannot be immediately determined,
then the IMXP is indexed into memory, the blame assignment process is suspended, and the
performance task is resumed. When future opportunities warrant, the system can resume
the introspective process.

Finally, the system checks that no element of the set of XP-ASSERTED-NODES is
contradicted by something in the story model or reasoning model within the FK. But if
this is so, it tries to recursively explain the sub-anomaly. If the anomalous item cannot

24 M.T. Cox, A. Ram / Artificial Intelligence 112 (1999) 1–55

Diagnose-failure(trace, failure-type)

Explanation-Queue← Retrieve (trace, Compute-index (failure-type, trace))

LOOP

If empty (Explanation-Queue) then

return’impasse

else IMXP← Front (Explanation-Queue)

Unify (Trace-node(IMXP), trace)

If [∀X ∈ Pre-XP-Nodes(IMXP)| X(in FK)] then

∀ Y ∈ XP-Asserted-Nodes(IMXP)| Y(out FK) ∨ ¬Y(out FK)

Recursively pose the question “Is Y believable?”

If cannot infer belief in Y then

Index trace of reasoning in memory

return’suspend

If [∃ Z ∈ XP-Asserted-Nodes(IMXP)| ¬Z(in FK)] then

explained-all-anomalies← t

∀ Z ∈ XP-Asserted-Nodes(IMXP)| ¬Z(in FK)

Recursively explain¬Z

If not explained then

explained-all-anomalies←∅
if explained-all-anomalies then

returnIMXP

else returnIMXP

Fig. 13. Reflective blame assignment.

be immediately explained, it rejects the explanation and returns for another one from the
queue. If no anomalous nodes exist in the XP-ASSERTED-NODES or if all anomalies are
explained, then the instantiated IMXP is accepted and returned. If no candidate explained
the failure, then an impasse is signalled.

3.3.2. Deciding what to learn (step 2b, Fig. 12)

Take as input a causal explanation of how and why failure occurred; generate as
output a set of learning goals which, if achieved, can reduce the likelihood of the
failure repeating. Include with the output, both tentative goal dependencies and
priority orderings on the goals.

The previously instantiated Meta-XP assists in this process by specifying points in the
reasoning trace most likely to be responsible for the failure. The Meta-XP also specifies
the suggested type of learning goal to be spawned by this stage. A list of learning goals
is included with each IMXP, and when the IMXP is bound to a TMXP, the instantiated
goal list can simply be placed on a priority queue of current goals to be pursued by the

M.T. Cox, A. Ram / Artificial Intelligence 112 (1999) 1–55 25

next stage of the learning process. Because these goals are tentative, it may be necessary
to retract, decompose, or otherwise adapt the learning goals dynamically during run-time.
This stage of learning mediates between the case-based approach of blame assignment and
the nonlinear planning approach of strategy construction. The learner includes with the
output learning goals both tentative goal dependencies and priority orderings on the goals.
The TMXP trace is passed as output also.

3.3.3. Learning-strategy construction (step 2c, Fig. 12)

Take as input a trace of how and why a failure occurred and a set of learning
goals along with their dependencies; produce as output an ordered set of learning
strategies to apply that will accomplish the goals along with updated dependencies
on the set of goals.

The final learning-strategies are organized as plans to accomplish the learning goals. The
plans are sequences of steps representing calls to standard learning algorithms. The plans
are created by a Common LISP version of Tate’s [96] Nonlin planner [33]. In order to use
the nonlinear planner, the learning module translates the learning goals and the relevant
context of the program environment to a predicate representation. In this form, Nonlin
assembles a learning plan just as if it were creating a plan to stack a series of labeled
blocks. The only difference is that the planner is given a set of learning operators that
describe actions that modify the mental world (i.e., the BK) instead of the blocks world.
These operators are written in the Task Formalism language defined by Tate (examples to
follow below).

The learner instantiates the plan, translates it back into a frame representation, and, then
executes the learning plans (in step 2d, Fig. 12). Nonlin generates a full order for the
plan steps that achieves the conjunctive learning goals and avoids goal interactions. At the
termination of the plan execution, control is returned to the performance system and story
understanding is resumed.

4. Applying introspective multistrategy learning: Two extended examples

The following two examples illustrate the operation of the three phases of learning in
an introspective multistrategy learner. They show the use of the representations described
in Section 2 during execution of the algorithm described in Section 3. They also depict
the kinds of failures encountered by the implementation during the trials to be reported
in the evaluation of Section 5 and present operator representations of learning algorithms.
The first example shows how Meta-AQUA learns when insufficient background knowledge
exists to interpret an input. The second example shows how learning can function when the
system forgets previous knowledge it learned.

4.1. Story one: A common contradiction

Given the drug-bust story of Fig. 14, the system attempts to understand each sentence
by incorporating it into its current story representation, by explaining any anomalous or

26 M.T. Cox, A. Ram / Artificial Intelligence 112 (1999) 1–55

Elvis was jonesing. Elvis took the lighter1 from the table2. He had the
lighter1. The table2 didn’t have the lighter1. Police and dogs arrived. The
phone1 was ringing. Mom picked up phone-receiver1. The phone1 wasn’t
ringing. She had phone-receiver1. She let go of phone-receiver1. She didn’t
have phone-receiver1. Officer1 went to outside. She [Mom] pushed light-
switch1. The light1 was on. The cat1 pushed the vase2 to the floor1. The vase2
was broken. The police-dog1 went to outside. He [Officer1] pushed door-bell-
switch1. The door-bell1 was ringing. He didn’t push door-bell-switch1. The
door-bell1 wasn’t ringing. He went to the kitchen. The police-dog1 went to
the kitchen. The police-dog1 went to the vase3. (S25)The police-dog1 sniffed
the vase3. (S26)The police-dog1 barked at the vase3. The police-dog1 was
barking. He [Officer1] went to the vase3. He took the ganja1 from the vase3.
He had the ganja1. The vase3 didn’t have the ganja1. (S32)He arrested Elvis.
He controlled Elvis. He went to outside. Elvis went to outside. The police-dog1
went to outside. (S37)If the police-dog1 detects the ganja1 then the police-dog1
will bark at the vase3.He [Elvis] was still jonesing.

— The End —

Fig. 14. Tale-Spin story TS2.

interesting features of the story, and by learning from any reasoning failures. Numerous
incorrect inferences can be made from this story, depending on the knowledge of the reader.
Meta-AQUA’s background knowledge includes general facts about dogs and sniffing,
including the fact that dogs bark when threatened, but it has no knowledge of police dogs.
It also knows cases of gun smuggling, but has never seen drug interdiction.

The story is processed smoothly using scriptual knowledge that relate actors, their
goals and the kinds of actions that achieve goals. For example, sentence S25 produces
no inferences other than that sniffing is a normal event in the life of a dog. However, S26
produces an anomaly because the system’s definition of “bark” specifies that the object
of a bark must be animate. The program (incorrectly) believes that dogs bark only when
threatened by animate objects. Since vase is inanimate, there is a conflict. This anomaly
causes Meta-AQUA to ask itself why the dog barked at an inanimate object. Given a prior
explanation about dogs barking when threatened by persons, it hypothesizes that the vase
somehow threatened the dog. It suspends the question, however, after it no longer can
proceed due to the lack of additional information. S32 posits an arrest scene that reminds
Meta-AQUA of an incident in which weapons were smuggled by terrorists; however, the
sentence generates no new inferences concerning the previous anomaly. Finally, S37 causes
the original question generated by S26, “Why did the dog bark at the luggage?” to be
retrieved. Instead of revealing the anticipated threatening situation, however, S37 offers
another hypothesis. The detection of drugs in the vase caused the dog to bark.

At this point, the system has detected an explanation failure, and so it suspends the
performance task. Until now, all processing was first-order reasoning about the story
using first-order knowledge about the domain of criminal activities. Learning involves
second-order reasoning about the prior, faulty story understanding effort using second-
order knowledge about failures and about the processes in the first-order task.

M.T. Cox, A. Ram / Artificial Intelligence 112 (1999) 1–55 27

4.1.1. Blame assignment: Explaining reasoning failure
The system characterizes the reasoning error as a contradiction caused by the incorrect

retrieval of a known explanation (“dogs bark when threatened by objects”, erroneously
assumed to be applicable), and a missing explanation (“the dog barked because it
detected marijuana”, the correct explanation in this case). During blame assignment,
Meta-AQUA uses this characterization as an index to retrieve an abstract case (Meta-XP)
that is applied to a trace of the reasoning that produced the failure. Fig. 15 shows the
instantiated result in an explanation of its reasoning error. This composite meta-explanation
consists of three parts: a Novel-Situation centered aroundRetrieval Failure , an
Erroneous-Association centered aroundExpectation Failure and an Incorrect-
Domain-Knowledge centered aroundIncorporation Failure .

The abstract IMXP from which this instantiation originates, IMXP-NOVEL-SITUA-
TION-ALTERNATIVE-REFUTED, captures a common pattern of failure in systems
that are learning new concepts. When a concept is being learned, it may be overly
specialized. Slight variation on the concept will cause the system to try to explain it,
but without experience with the concept, the system may generate an inappropriate
explanation. The proper explanation may not be known because the situation is novel.
Notice that IMXP-NOVEL-SITUATION-ALTERNATIVE-REFUTED applies equally to
both the failed explanation for why Lynn hit the ball and for the current failed explanation
for why the dog barks at the vase.

As seen in Fig. 15, the vertical chain of processes starting with the node labeled
“Pose Question” represents part of a TMXP. Following causal links 4 through 7, the
trace represents the sequence in which the question “Why did the dog bark at the vase?”
enables the explanation that the dog barked because it was threatened and therefore results
in the search for corroboration. This trace records the decisions preceding the detection
of the explanation failure (i.e., that the dog was actually barking because it detected the
contraband, not out of defensive instincts). The IMXP structure formally explains the node
labeledExpectation Failure , although in general, it gives the causal chain of events
for much of the reasoning associated with all parts of the error.19 To check whether or not
this explanation applies to the failure, Meta-AQUA checks the truth values of nodes A2, E,
and the EXPLAINS node (i.e., the PRE-XP-NODES of the IMXP). Because these already
exist as known entities in the representations (i.e.,in FK), the XP is accepted.

Although the information in Fig. 15 appears to be complex, the IMXP simplifies the
amount of detail the reasoner must consider during blame assignment by abstracting
away much of this information. To show what the system actually considers, Fig. 16
represents an overlay that corresponds to Fig. 15 (mentally align the shaded nodes, such
as the Incorporation Failure marked IF, between the two figures to see the
simplification Fig. 16 provides).

4.1.2. Deciding what to learn: Spawning learning goals
Given a reasoning failure, the learning task is to adjust a system’s knowledge so that

such reasoning failures will not recur in similar situations. To perform the adjustment, the

19 Note that the node labeled “EXPLAINS” in Fig. 15 is the EXPLAINS node for the XP labeled A2, not for the
IMXP itself.

28 M.T. Cox, A. Ram / Artificial Intelligence 112 (1999) 1–55

Fig. 15. Instantiated IMXP for mis-explanation.

M.T. Cox, A. Ram / Artificial Intelligence 112 (1999) 1–55 29

Fig. 16. Abstracted IMXP with learning goals.

learner constructs a learning strategy that is designed to satisfy specific learning goals.
These goals are created in a decision process that circumscribes what needs to be learned.
The decision is made in response to the explanation of failure generated during reflective
blame assignment.

Faced with the structure of the reasoning error produced by the blame assignment
phase, the learner determines the learning goals for the system. First, since the seemingly
anomalous input (marked “Old Input” in Fig. 15 or A1 in Fig. 16) has been incorporated
into the story and later reinforced by the coherence of the story structure, and since
no contradictions occurred as a result of this inference, the learner posts a knowledge
reconciliation goal (G1 in Fig. 16). The goal is to adjust the background knowledge so
that neither dogs barking at animate objects nor dogs barking at inanimate objects will be
considered anomalous by the understander. This learning goal is appropriate because even
though one item is an instantiated token (a particular dog barked at a specific inanimate
object), while the other is a type definition (concept specifying that dogs generally bark at
animate objects), they are similar enough to each other to be reconcilable.

Secondly, given that an expectation failure triggered the learning, and (from the blame
assignment phase) given that the failure resulted from the interaction of misindexed
knowledge and a novel situation, Meta-AQUA posts a goal to differentiate between the two
explanations for why the dog barked (nodes M and M′ in Fig. 16). Since the conflicting

30 M.T. Cox, A. Ram / Artificial Intelligence 112 (1999) 1–55

explanations are significantly different (for example, they do not share the same predicate,
i.e., detect versus threaten), a knowledge differentiation goal is licensed, rather than a goal
to reconcile the two types of explanations. The differentiation goal is achieved if the system
can retrieve proper explanations given various situations. The original misunderstanding of
the story occurred, not because the explanation that dogs bark when threatened is incorrect
in general, but rather because the system did not know the proper conditions under which
this explanation applies.

In addition to posting these two learning goals, Meta-AQUA places a tentative ordering
on their execution. With no other specific knowledge concerning their respective relations,
a good default heuristic is to order them by the temporal sequence of the failures involved in
the original reasoning trace. This heuristic is useful because if it is determined that the first
failure was not an error but either was a misunderstanding or was caused by faulty input,
then the reasoning that followed from the first failure (or other assumptions depending on
the nature of the first failure that led to the second) may have contributed to the cause of
the second. Thus, learning acquired about the first failure may show that the subsequent
reasoning was irrelevant, or it may yield more information to be used on the second goal.
Hence, the stage that decides what to learn outputs the knowledge reconciliation goal with
priority over the knowledge differentiation goal.

4.1.3. Learning-strategy construction: Learning as a planning task
Blame assignment during the drug-bust example retrieved an IMXP that explained the

faulty explanation for why the dog barked at the vase. Instead of barking because it was
threatened by the vase, the dog barked because it detected contraband in the vase. The
system then spawned two learning goals: G1, a knowledge reconciliation goal, and G2,
a knowledge differentiation goal (see Fig. 16). The learner thus must reconcile the input
(previously believed to be faulty) with its conceptual definition of dog-barking, and it must
differentiate the two explanations so that neither is confused for the other.

Planning for a knowledge differentiation goal
Consider the knowledge differentiation goal, G2, of Fig. 16. It seeks to differentiate

between the expected explanation that the dog barked because it was threatened and the
actual explanation that the dog barked because it detected contraband. This goal can
be achieved by reindexing the memory locations for the two explanations so that they
will be retrieved when appropriate. However, because the system has no prior experience
with the actual explanation, A2, (and thus the system neither foresaw nor considered the
explanation), the learner posts a subgoal to expand the instantiated explanation (i.e., the
knowledge expansion goal G3) to produce the missing explanation pattern, M′.

The schemas that produce the subgoal sequencing of events are defined in Fig. 17. The
use-when conditions on theindex-xpoperator guarantees that this schema is chosen
only if the variable?x is both an XP and is a token (instance) rather than an type (abstract
explanation). Thegen-opoperator does not actually decide which algorithm to perform the
generalization; thedo-generalizeaction schema does. Explanation-based generalization
(EBG) [26,60] can be selected as an appropriate learning algorithm for this task.

A more difficult problem is to differentiate the applicability conditions for the two
abstract explanations (M′, the one produced by generalizing the detection explanation, A2,

M.T. Cox, A. Ram / Artificial Intelligence 112 (1999) 1–55 31

Fig. 17. Schema definitions to index an XP.

and M, the original XP that produced the initial threaten explanation, E) by modifying the
indexes (I′ and I) with which the system retrieves those explanations. If the two problems
of erroneous association and novel situation were to be treated independently, rather than
as a problem of interaction, then an indexing algorithm would not be able to ensure that the
two explanations would remain distinct in the future. That is, if the learner simply detects
a novel situation and automatically generalizes it, then indexes it by the salient or causal
features in the explanation, and if the learner independently detects an erroneous retrieval,
and re-indexes it so that the same context will not retrieve it in the future, then there is no
guarantee that the resultant indexes will be mutually exclusive. Instead, the system must
re-index Mwith respect toM ′, not simply with respect to the condition with which M was
retrieved.

The problems to be solved, then, are determining the difference between M and M′, and,
in the light of such differences, computing the minimal specialization of the index of M
and the maximally general index of M′ so they will be retrieved separately in the future. In
the case of the drug-bust story, HC1, the problem is somewhat simplified. The difference
is that retrieval based on the actor relation of barking actions (dogs) is too general. The
threat explanation applies when dogs bark at animate objects. The detection explanation is
appropriate when dogs bark at containers.

Fig. 18, “Mutual-indexing schemas”, shows learning-operator definitions for the
indexing strategy that manages mutual indexing between two concepts. First, the operator
schema determines that both concepts must be independently indexed before they are
indexed with respect to each other. The first two conditions (precond) assure that if they
are not already indexed then subgoaling will be forced at steps one and two. The action
schema has filter conditions (use-when) that enable the schema only when the concepts
are both indexed XPs.

Additionally, the effects list ofdo-mutual-xp-indexingincludes the deletion of the
predicateclear2change. By doing so, any other operator that requires the explained action
to be “clear to change” will be placed before the mutual indexing step of the final learning
plan. That is, a linearization will be performed on external goals to reorder any other
schema that has the predicate as an unsupervised condition (unsuperv). This ordering
constraint is similar to the interaction between the goal to stack A on B and the goal to stack
B on C when all three blocks lie on the table. In the blocks world case, theputon(X,Y)

32 M.T. Cox, A. Ram / Artificial Intelligence 112 (1999) 1–55

Fig. 18. Mutual-indexing schemas.

schema requires both blocks X and Y to be “clear” and then deletes the clearness condition
of the destination block Y. Thus if A is put on B, block B is not clear to put on C. Instead,
B must first be put on C. In effect, theclear2changestate requires that all attributes of
its argument be stable before the schema operates on the argument; no other operator can
change an attribute in order for the changes performed by indexing to be unaffected.

Planning for a knowledge reconciliation goal
In Fig. 16, the remaining learning goal, G1, represents a knowledge reconciliation goal.

The goal is to reconcile the fact that the conceptual definition of dog-barking is limited to
animate objects with the fact that a particular dog barked at a vase. This goal can be thought
of as a simple request for similarity-based learning or inductive learning (e.g., UNIMEM’s
algorithm in [49], or abstraction transmutation as in [57]). The system is simply adding
an additional positive example to the instances seen. An incremental algorithm is required
because this instance has been discovered after an initial concept has been established some
time in the past.

An interesting interaction can occur, however, if the system waits for the result of the
EBG algorithm required by the knowledge expansion subgoal G3. The algorithm will
generalize the explanation (that this particular dog barked at a particular vase because
it detected marijuana) to a broader explanation (that dogs in general may bark at any
container when they detect contraband). Thus, the example provided to the inductive
algorithm can be more widely interpreted, perhaps allowing its inductive bias to generalize
the constraint, C, on the object of dog-barking tophysical-object (the exhaustive
case ofanimate-object andinanimate-object), whereas a single instance of a
particular breed of dog barking at a specific vase, A1, may limit the inductive inference if
no additional domain knowledge is available.

Unfortunately, however, because the EBG algorithm uses the representation of the dog-
bark definition, and the inductive algorithm changes this definition, the induction must

M.T. Cox, A. Ram / Artificial Intelligence 112 (1999) 1–55 33

Fig. 19. Abstraction schema.

occur first. Thus, the system cannot take advantage of the opportunity cited in the previous
paragraph. One important implication of this point is that in systems which plan to learn,
if the reasoner does not anticipate this second interaction (thus placing EBG before the
induction), the system must be able to perform dynamic backtracking on its decisions.

Like a nonlinear planner in the blocks world, the learning system must detect any
dependency relationships so that goal violations can be avoided. For example, when the
definition of dog-barking is modified by abstracting the constraint on the objects at which
dogs bark fromanimate-object to physical-object , any indexing based on the
modified attribute must occur after this modification, rather than before it, to avoid indexing
with obsolete conceptual knowledge. Note that the action schema ofdo-abstraction-change
in Fig. 19 has an unsupervised condition requiring the?r1-domain variable to be
“clear2change”. As discussed in section, this will cause the abstraction to be performed
prior to any step that deletes the state (e.g., thedo-mutual-xp-indexingschema of Fig. 18).
Therefore, if both schemas are being instantiated, the nonlinear planning module of Meta-
AQUA will automatically order the abstraction before the indexing. Because the generalize
schema also deletes theclear2changestate, generalization of the detection explanation is
prevented from occurring before the abstraction.

4.1.4. Strategy execution: Performing the learning and the aftermath
After a learning plan is constructed, a very simple process can execute the plan. All

primitive steps in the plan are calls to learning algorithms from the toolbox. Because the
plans are partially ordered, not all steps will have a linear order enforced. Therefore, some
steps may be executed in parallel. In the drug-bust example of story TS2, however, the

34 M.T. Cox, A. Ram / Artificial Intelligence 112 (1999) 1–55

Symptoms:

Contradiction between input and background
knowledge

Contradiction between expected explanation and
actual explanation

Faults:

Incorrect domain knowledge
Novel situation
Erroneous association

Learning Goals:

Reconcile input with conceptual definition
Differentiate two explanations
Acquire new XP (subgoal)

Learning Plan:

Abstraction on concept of bark
Generalization on bark explanation
Index new explanation
Mutually re-index two explanations

Fig. 20. Learning from Explanation Failure.

final learning plan Meta-AQUA constructs is fully ordered. The output from Nonlin is a
plan whose resultant steps are:

(1) perform an abstraction transmutation on the concept of dog barking (realizing that
dogs bark at containers);

(2) perform EBG on the new explanation (producing a generalized version);
(3) index the generalized XP in isolation; and finally,
(4) use the new concept definition to mutually differentiate and index the two

generalized explanations of why dogs bark.
This plan is translated back into a frame representation and executed in the order specified.
Fig. 20 lists the major state transitions that the three learning processes produce.

After the learning, control is returned to the story understanding module. The system
continues with the story until completion. In subsequent stories (or even within the same
story), similar types of failures should not repeat when the learning is successful. For
example, Meta-AQUA is given a story in which a police officer and a canine that enter a
suspect’s house, the dog barks at the refrigerator, and the suspect is arrested for possession
of some discovered marijuana. The new story causes no anomaly when the dog barks
at the inanimate container. Indeed, Meta-AQUA expects some type of contraband to be
found in the refrigerator after it reads that the dog barked, but before it is told of the
contraband’s existence. Thus, the learning accomplished in the previous story improves
both understanding of and predictions for subsequent stories.

M.T. Cox, A. Ram / Artificial Intelligence 112 (1999) 1–55 35

4.2. Story number two: A baffling situation (impasse)

Even when a system learns new concepts or changes old ones, the successful use of this
information may not always occur if the BK is not organized to promote the retrieval of it
when needed. A retrieval impasse can occur because, given the cues that compose a probe
into memory, the existing explanation can lack the proper index with which to traverse
the BK and thus to find the item. In effect, Meta-AQUA can forget learned explanations
and can expect instead to acquire this knowledge anew. When Meta-AQUA is given the
correct old explanation, the system must be reminded of the explanation that already exists
in memory. Therefore, rather than pursuing a goal to acquire and expand the knowledge, it
must be able to switch to a goal of reorganizing the knowledge. That is, learning goals are
not static; even a system that uses the introspective method of deciding what to learn must
be prepared to change its learning goals dynamically.

In story TS2, the police dog barked at a vase in Elvis’ home. Meta-AQUA considered the
event to be anomalous because the system believes that dogs bark only at animate objects.
As was seen in the previous section, the program eventually learned that dogs can bark
at any physical object, including inanimate ones. It also learned the new explanation that
“dogs bark when detecting contraband”. So after processing TS2, Meta-AQUA’s memory
contains knowledge of two explanations for why dogs bark: an explanation for dogs that
bark because they are threatened (indexed bydog-barks-at-animate-object) as
well as an explanation for dogs that bark because they detect contraband (indexed bydog-
barks-at-container).

Tale-Spin then generates the subsequent story TS3 (see Fig. 21) and outputs it to Meta-
AQUA. In this story, Elvis and Lynn are about to play with the ball when the police arrive
at the house with a canine unit. The dog immediately goes to a throw-rug and sniffs at the
object (S23). When the dog barks (S24) the officer pulls back the rug to find Elvis’ stash
of marijuana. Consequently, the officer arrests Elvis (S30) and takes him away (S32, S33).
The story then informs the reader that the dog barked because it detected the contraband
(S35). Because Elvis looses his freedom due to the arrest, he can no longer play ball with
Lynn, and so he remains bored (the original problem that motivated the story).

Immediately after the dog barks at the carpet, Meta-AQUA generates a question to
explain why the dog barked. The reason for this decision is that the system has recently
learned about dogs and barking, so it is interested in any subsequent information that
may be related. However, because the dog is barking at a rug and such an object is not
a container, it does not retrieve the newly learned detection explanation. The dog also is
not barking at an animate object, so the old threaten explanation is not retrieved. Instead,
it can generate no explanation to explain the interesting story concept.

Reviewing the reasoning trace that preceded the conclusion, Meta-AQUA characterizes
itself as “baffled” (impasse during memory retrieval). The system retrieves an IMXP based
on this characterization, which helps it explain its own reasoning failure. The structure
is unified with the representation of the original reasoning (stored in a TMXP) which
produces the instantiation partially shown in Fig. 22. The knowledge structure shows that
memory retrieval produced no explanation in response to the system’s question. Instead, a
later input produced the answer.

36 M.T. Cox, A. Ram / Artificial Intelligence 112 (1999) 1–55

Elvis was bored. Elvis asked Lynn, “Would you push the ball1 to me away
from you?” Police-and-dogs arrived. Officer1 went to outside. The police-dog1
went to outside. He pushed door-bell-switch1. The door-bell1 was ringing.
He didn’t push door-bell-switch1. The door-bell1 wasn’t ringing. The phone1
was ringing. Mom picked up phone-receiver1. The phone1 wasn’t ringing. She
had phone-receiver1. She let go of phone-receiver1. She didn’t have phone-
receiver1. The cat1 pushed the vase2 to the floor1. The vase2 was broken. She
pushed light-switch1. The light1 was on. He went to the kitchen. The police-
dog1 went to the kitchen. The police-dog1 went to the rug1. (S23)The police-
dog1 sniffed the rug1.(S24)The police-dog1 barked at the rug1.The police-
dog1 was barking. He went to the rug1. He took the ganja1 from the rug1. He
had the ganja1. The rug1 didn’t have the ganja1. (S30)He arrested Elvis.He
controlled Elvis. (S32)He went to outside.(S33) Elvis went to outside.The
police-dog1 went to outside. (S35)If the police-dog1 detects the ganja1 then
the police-dog1 will bark at the rug1.He [Elvis] was still bored.

— The End —

Fig. 21. Tale-Spin story TS3.

Fig. 22. Instantiated forgotten detection explanation.

The IMXP suggests that a knowledge expansion goal be spawned to generalize the input
explanation. This suggestion comes from thepotential-learning-goalslot of the IMXP (see
Fig. 23). Conditions attached to the knowledge expansion goal allow it to be posted if the
node A was either acquired from the story or inferred, but not if it was retrieved from

M.T. Cox, A. Ram / Artificial Intelligence 112 (1999) 1–55 37

Fig. 23. IMXP frame definition for forgetting.

38 M.T. Cox, A. Ram / Artificial Intelligence 112 (1999) 1–55

memory. A knowledge organization goal is also spawned in order to index the generalized
explanation in memory. These goals can be achieved by performing explanation-based
generalization (EBG) on the new explanation (node A) and then indexing the explanation
by the context in which the system encountered the explanation.

The system cannot determinea priori whether an abstract XP (node M) actually exists
in memory but could not be recalled (thus, the failure cause is a missing association, I), or
whether the system lacks the knowledge to produce the explanation (thus, the cause is that
the situation is novel, i.e., M is missing). The system thus poses a question about its own
IMXP (cf. [64]), “Does M exist in memory?” If M is missing, I is also missing; thus, the
right question to ask is whether M exists, not I.20

The answer to the introspective question is obtained by performing EBG and then
watching for a similar explanation in memory when it stores the new explanation via
the indexing algorithm. The system can detect the presence of similar memories by
maintaining a list of pointers to memory items for each conceptual type. At storage time,
Meta-AQUA traverses the list, checking each to see if it can unify the new memory with
any of the older ones.21 Meta-AQUA thus finds the explanation produced by the previous
story.

Merging the two explanations produces a better explanation: Dogs may bark at objects
that hide contraband, not just at containers that hold contraband. The algorithm that indexes
the generalization searches for the common ancestor of the object slots of both explanations
(i.e., objects that contain other objects and objects that cover other objects). This common
ancestor is the typehiding-place . Thus, so that these types of explanations will not be
forgotten again, the system indexes the explanation by “dogs that bark at potential hiding
places” and places a pointer to the merged explanation on the memory list for the symbol
causal-relation .

As a result of its learning, Meta-AQUA reduces the number of anomalies generated
in similar stories, and it improves its predictive explanations. Most importantly, however,
this story illustrates the fact that learning goals are not static, but rather, that they are
subject to dynamic re-evaluation, even when the planner that creates a learning plan knows
about interactions. Some facets that bear on the pursuit of learning goals cannot always
be anticipated in advance. In the example, the system decides that it should acquire a
new piece of knowledge, but instead it discovers that it already has the knowledge in
memory. Instead of achieving a knowledge expansion goal to generalize and store the
supposed new explanation, it rediscovers the old one and changes the learning goal to a
knowledge organization goal. As such, it represents a simple example of an autonomous
goal transformation [23].

20 Note that it cannot be the case that I is erroneous. If it were true, then some explanation would have been
retrieved, although it may have been inappropriate. Cox [13] enumerates a number of constraints on blame
assignment.
21 This mechanism simulates a memory such as that of DMAP [51,52], whereby memory items map to areas

that contain similar memories. Although Meta-AQUA’s mechanism is only a crude approximation to such
architectures, the emphasis of our theory is on the reasoning about memory (or other reasoning processes), rather
than on a representation of the memory architectureper se. A more realistic mechanism would be for Meta-
AQUA to use the generalized XP as a probe to memory to see if it is now reminded of the old XP. The current
method suffers from the fact that it always finds the old XP at an unacceptable search cost.

M.T. Cox, A. Ram / Artificial Intelligence 112 (1999) 1–55 39

5. Computational evaluation

This section presents the results of computational studies performed with Meta-AQUA
to test the assertion that the second phase of learning (deciding what to learn) isnecessary
for effective learning. Few computational systems other than Meta-AQUA include an
explicit calculation of a goal to learn and then use that goal to influence learning (e.g.,
the theory of intentional learning embodied in CELIA [81] entails implicit learning goals).
Converging with the hand-coded examples from previous research that favor this position
(e.g., [10,21]), this paper presents quantitative evidence that supports the utility of this
stage (see also [12]). More specifically, we assert that the rate of improvement in story
understanding with learning goals exceeds that of story understanding without learning
goals holding all other factors constant. Removing the learning goals eliminates part of the
system’s mechanism responsible for introspection. The intention of this manipulation is to
show different empirical learning curves with and without introspection as a function of
the number of inputs.

First we describe the space of reasoning failures exhibited by the system during the
evaluation. Next, the second subsection defines the independent and dependent variables
being measured. Finally, the third subsection reports the data and their analysis.

5.1. The implemented space of explanation failures

As currently implemented, the blame assignment phase of learning does not consider all
of the failure causes enumerated in Table 2, “Taxonomy of causes of reasoning failure”,
although the implementation does consider many more of these causes than do most AI
systems. At the present time, the system concentrates on errors that arise from missing
and flawed domain information and the indexing of such information in the BK, that is,
the “Knowledge states” columns of Table 2. Yet given this limitation, the combinations of
failure encountered are many (see Fig. 24) and the resultant learning can be nontrivial.

Fig. 24 graphically illustrates the space of failure causes that blame assignment considers
in the experimental study presented here. The large shaded portion of the figure represents
Meta-AQUA’s performance system when no failures are detected. The program first
accepts a given input. If the input is anomalous, the system explains it, otherwise it checks
to see if the input is in any other way interesting. If it is interesting, the system explains it;
otherwise, it skims the input and accepts another. Outside of the shaded area represents the
space of failures.

When Meta-AQUA generates an explanation for an anomaly in the input story, the
explanation may be incorrect. Alternatively, it may reach an impasse when trying to explain
and thus not be able to generate an explanation at all. In the first case the explanation
may be wrong, but the right explanation was in memory all along. If it cannot explain
an anomaly, the explanation may have existed, but could not be found. All of these cases
can occur both when the input is anomalous (left hand side of Fig. 24) and when simply
interesting (right hand side of the figure). An additional case occurs when Meta-AQUA
explains an anomalous input correctly. It can then learn what is wrong with its knowledge
that leads it to believe an anomaly exists. One may object that because these all map to
a single fault, a decision tree could be built rather than going through the introspective

40 M.T. Cox, A. Ram / Artificial Intelligence 112 (1999) 1–55

Fig. 24. Implemented space of reasoning faults. Circles list failure combinations that occur given a situation:
IDK = incorrect domain knowledge; NS=novel situation; MA=missing association; EA=erroneous associa-
tion. The left-most shaded circle matches the fault in story TS2 and the right-most matches TS3 (although, in
TS3, Meta-AQUA first thought the fault was NS).

process. However, this figure represents the conditions available only in hindsight or
through the auspices of an oracle; it is a virtual flow-chart, not an actual flow of control
in the program. Meta-AQUA must go through the blame-assignment process in order to
determine the actual situation that applies to a given set of circumstances. As illustrated in
Story number two of Section 4.2, a system cannot determinea priori that it has the right
explanation in memory but failed to find it (i.e., forgotten the explanation due to a missing
association). A set of if-then statements will not suffice to perform blame assignment.

5.2. Independent and dependent variables

Introspective learning is a computational process with the decomposition as shown in the
upper portion of Fig. 25.Fully introspective multistrategy learningconsists of examining
one’s own reasoning to explain where the reasoning fails. It consists further of knowing

M.T. Cox, A. Ram / Artificial Intelligence 112 (1999) 1–55 41

Fig. 25. Learning goal ablation.

enough about the self and one’s own knowledge that the reasoner can explicitly decide
what needs to be learned. Removing the goals from the introspective process leaves a
more reflexive activity we callsemi-introspective multistrategy learning22 (see the lower
portion of Fig. 25). Instead of using the explanation of failure created during the blame
assignment phase to post a set of learning goals that then direct the construction of a
learning plan, the explanation can directly determine the choice of repair methods. System
performance under both conditions can then be compared with Meta-AQUA under a no-
learning situation.

Learning rates relative to a baseline no-learning condition are compared between the
fully introspective and a semi-introspective version of Meta-AQUA. The independent
variable that effects this change is the presence and influence of learning goals. The first
experimental condition is referred to as the learning goal (LG) condition, and represents
Meta-AQUA as described earlier in this article. Under the LG condition, the system
builds a learning strategy. This construction is guided by the learning goals spawned by
the Meta-XPs that explain the failure. Hence, this condition represents a loose coupling
approach [15] between fault (failure cause) and repair (learning).

The second condition is called the random learning (RL) condition. Given an explanation
by the blame assignment phase of the causes of failure, the system directly assigns calls to
particular learning algorithms for each fault. The construction of the learning plan is then
performed by a random ordering of these function calls, rather than by nonlinear planning
to achieve the learning goals. The RL condition represents a tight coupling approach (i.e.,
the semi-introspective direct mapping from fault, or failure cause, to repair) that forgoes
the use of learning goals and therefore skips the deciding what to learn stage.

The final condition is called the no learning (NL) condition in which Meta-AQUA
performs story understanding, but if a failure exists, the system constructs no learning
strategy. This condition represents the baseline performance from which both the LG and
RL conditions can be compared. Holding all parameters constant except the independent

22 It is semi-introspective because, although part of the introspective process has been removed, the introspective
mechanics of blame assignment remain. Future research remains to test the performance with blame assignment
removed and learning goals present.

42 M.T. Cox, A. Ram / Artificial Intelligence 112 (1999) 1–55

variables, Meta-AQUA is given input from the Tale-Spin problem generator and the
dependent variable is measured.

The dependent variable measures story understanding by rating the ability of the system
to generate plausible explanations about key points in the story. The evaluation criterion in
Meta-AQUA assigns credit as follows. For each anomalous or interesting input in a story,
a point is given for posing a question, an additional point is given for providing any answer
whatsoever, and a third point is assigned for answering what the researcher judges correct.
The sum represents the dependent variable.

5.3. The empirical data

To serve as experimental trials and to minimize order effects, Tale-Spin generated six
random sequences of Elvis-World stories. On each of these runs, Meta-AQUA processes
a sequence three times, once for each experimental manipulation. The system begins all
runs with the same initial conditions. For a given experimental condition, it processes all
of the stories in the sequence while maintaining the learned knowledge between stories. At
the end of the sequence, the system resets the BK. The input size for a run varies in length,
but averages 27.67 stories per run.23 The corpus for the six runs includes 166 stories,
comprising a total of 4,884 sentences. The stories vary in size depending on the actions
of the story and Tale-Spin’s randomness parameters (e.g., the probability that the dog will
accompany the officer), but average 29.42 sentences.

5.3.1. Run number four
Run number four is particularly interesting because the greatest number of learning

interactions occurred in this set. The input to run four consisted of 24 stories as enumerated
in Table 3. The stories contain a total of 715 sentences, and the average number of sentences
per story is 29.8. Each numeric entry in Table 3 contains a triple of the form〈LG, RL,
NL〉. For example, the sixth column represents the number of learning episodes for each
trial and for each condition. Note that the third element of each triple in this column is zero
since learning is disabled in the NL condition. The fifth column (Question points) contains
the values for the dependent variable. These values represent the sums of triples from
the second, third and fourth columns (Posed questions, Answered questions and Correct
answers, respectively). In this run, random drug busts occurred 11 times (5 with the canine
squad and 6 with a lone police officer).

Examining the totals from Table 3, a number of trends can be discerned. The dependent
variable (column 5, Question points) shows that Meta-AQUA’s performance under the LG
condition is significantly greater than the performance under the RL condition. In turn,
Meta-AQUA performance in the RL condition far exceeded the performance under the
NL condition. Alternatively, if only absolute performance (column 4, Correct answers) is
considered, the differential is even greater. By this measure, the LG condition is more than

23 The reason that each run varies in length is that, after generating around 600,000 gensyms, Meta-AQUA will
use all available swap space on the Symbolics and thus inadvertently halt the underlying LISP. We then discard
the story which is being processed at the time of the crash. The data from the remaining stories constitute the
results of the run.

M.T. Cox, A. Ram / Artificial Intelligence 112 (1999) 1–55 43

Table 3
Results from run number four

Story Questions Answered Correct Question Learning Protagonist and
number posed questions answers points episodes problemb

(sentences)a (LG RL NL) (LG RL NL) (LG RL NL) (LG RL NL) (LG RL NL)

01 (26) 1 1 1 0 0 0 0 0 0 1 1 1 1 1 0 Mom bored (balloon)

02 (19) 3 3 3 3 2 2 1 0 0 7 5 5 2 3 0 Mom bored (ball)

03 (38B) 1 1 1 0 0 0 0 0 0 1 1 1 1 1 0 Elvis jonesing

04 (51b) 1 1 1 1 0 0 1 0 0 3 1 1 0 1 0 Dad jonesing

05 (21) 1 1 1 1 0 0 1 0 0 3 1 1 0 1 0 Mom bored (ball)

06 (13) 1 1 1 1 0 0 1 0 0 3 1 1 0 1 0 Officer1 concerned

07 (13) 1 1 1 1 0 0 1 0 0 3 1 1 0 1 0 Dad bored (ball)

08 (21) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Dad thirsty

09 (44B) 2 2 2 2 1 1 1 0 0 5 3 3 1 2 0 Dad thirsty

10 (51B) 3 3 3 2 1 1 2 1 0 7 5 4 0 1 0 Dad bored (balloon)

11 (11) 2 2 1 1 1 1 1 0 0 4 3 2 1 2 0 Lynn bored (ball)

12 (3) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Officer1 concerned

13 (47b) 2 2 1 1 1 0 1 1 0 4 4 1 0 0 0 Mom thirsty

14 (15) 4 4 4 4 2 3 4 0 0 12 6 7 0 4 0 Mom bored (ball)

15 (28) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Lynn jonesing

16 (42B) 2 2 2 2 1 1 2 1 0 6 4 3 0 1 0 Dad jonesing

17 (45b) 2 2 1 1 1 0 1 1 0 4 4 1 0 0 0 Elvis jonesing

18 (21) 2 2 2 2 1 1 2 1 0 6 4 3 0 1 0 Officer1 concerned

19 (20) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Dad jonesing

20 (52b) 2 2 1 1 0 0 1 0 0 4 2 1 0 1 0 Dad bored (balloon)

21 (39b) 2 2 1 1 1 1 1 1 1 4 4 3 1 1 0 Lynn jonesing

22 (17) 2 2 2 2 1 1 2 0 0 6 3 3 0 2 0 Dad bored (ball)

23 (40B) 2 2 2 1 1 1 1 1 0 4 4 3 1 1 0 Elvis thirsty

24 (38b) 2 2 1 1 1 0 1 0 0 4 3 1 0 1 0 Mom bored (ball)

Total 715 38 38 32 28 15 13 25 7 1 91 60 46 8 26 0

aThe letter “B” means that the story contains an attempted drug bust by the police canine squad, whereas the
letter “b” means that the officer entered the house alone to attempt a bust.
bItems in parentheses represent games played to dispel boredom.

three times the value of the RL condition, whereas, the performance of the NL condition is
insignificant. By looking at column three, however, the numbers of questions answered in
some way (right or wrong), are roughly equivalent in the RL and NL conditions, whereas
the ratio of the LG condition to either of the other two is 2:1. Finally, the number of
questions posed are virtually equal across all three conditions.

44 M.T. Cox, A. Ram / Artificial Intelligence 112 (1999) 1–55

Fig. 26. Run 4, cumulative question points as a function of the number of problems.

In contrast to these differences, Meta-AQUA attempts to learn from failure more than
three times as often under the RL condition as under the LG condition. That is, learning
is moreeffectivewith learning goals than without. In the RL condition, learning does not
increase performance as much as does the LG condition, while concurrently, it leads Meta-
AQUA to expend more resources by increasing the amount of learning episodes. Thus, the
system works harder and gains less under RL than under LG.

Fig. 26 graphs the accumulation of question points across trials (i.e., stories).24 The
behavior of the system as measured by the dependent variable is greatest under the LG
condition, next best under RL, and worst under the NL condition. But, the trend does not
hold for each trial. Fig. 27 shows raw scores indicating that the NL condition actually
outperforms the RL condition on trial number 14. The reason for this effect is that under
worse-case conditions, if the interactions present between learning methods are negative,
the performance may actually degrade. As a result, randomly ordered learning may be
worse than no learning at all.

The differences as a function of the independent variable are even more pronounced
if only accuracy (the number of correct answers) is examined and partial credit ignored.
Fig. 28 shows that under the RL condition, Meta-AQUA did not answer a question correctly
until trial number 10, whereas under the NL condition, it did not perform correctly until
trial 21. On the other hand, because under the LG condition the system learned a new
explanation early in trial number 1, it was able to answer a question by trial number two.

5.3.2. Overall results
Table 4 summarizes the evaluation data from the six program runs. As is evident

across all runs, the LG condition consistently outperforms the RL condition in the total
cumulative question points. In turn, the RL condition outperforms the NL condition,

24 The final extent of all three curves reach the value of the triple in the totals column for column five of Table 3.

M.T. Cox, A. Ram / Artificial Intelligence 112 (1999) 1–55 45

Fig. 27. Run 4, question points histogram.

despite the occasional poor performance due to negative interactions. As indicated by the
standard deviations, the amount of differences between and within conditions exhibit high
variability across runs.

Given these totals, the percent improvement for either learning condition over the NL
base condition is simply the ratio of the difference in the base performance score and either
score to the base score itself. Thus for run one, the ratio of the difference between the LG
and NL conditions (35 points) to the NL condition (50 points) is 0.7, or 70%. Again,
the improvement in performance for the LG condition is consistently higher than that of
the RL condition. This difference is calculated in the final column. The differential is the
percent improvement of the LG condition over the RL condition and is computed by the
same measure as was the improvements in the individual learning conditions. That is, the
differential is the ratio of the difference between the two improvements to the lower rate.25

Thus, the differential between the LG rate of learning in run number one and that of the
RL condition is the ratio of the difference (8 percentage points) to the RL percentage (62).
Hence, the ratio is 0.129, or an improvement of nearly 13%.

Although the average differential between the two learning conditions (i.e., between
fully-introspective and semi-introspective multistrategy learning) is more than 106% with
a large standard deviation, this figure still overstates the difference. The expected gain
in learning is more conservative. The differential between the average LG improvement
(102.70) and the average RL improvement (65.67) is a 56.38% difference. In other words,
across a number of input conditions, the use of learning goals to order and combine learning
choices should show about 1.5 times the improvement in performance than will a straight
mapping of faults to repairs when interactions are present.

25 Note that this ratio can also be calculated as the difference between the performance scores of the learning
conditions to the difference between the performance score of the RL and NL conditions. In other words, the ratio
(LG−RL)/(RL−NL).

46 M.T. Cox, A. Ram / Artificial Intelligence 112 (1999) 1–55

Fig. 28. Run 4, cumulative correct answers (accuracy) as a function of the number of problems.

Table 4
Summary of cumulative results

Run Cumulative question points % LG % RL Improvement
numbera LG RL NL improved improved differential

Run 1 (34) 85 81 50 70.00 62.00 12.90

Run 2 (30) 106 98 43 146.51 127.91 14.55

Run 3 (28) 120 102 60 100.00 70.00 42.86

Run 4 (24) 91 60 46 97.83 30.43 221.43

Run 5 (22) 57 49 27 111.11 81.48 36.36

Run 6 (28) 103 66 54 90.74 22.22 308.33

Averages 93.67 76.00 46.67 102.70 65.67 106.07

Std. Dev. 21.72 21.31 11.34 25.43 38.17 126.59

aAmounts in parentheses indicate total number of stories in each run.

6. Related research, contributions and discussion

This paper has presented a novel computational theory of learning. We have described
learning as a deliberate planning process that actively seeks to improve knowledge in the
context of particular performance tasks (for the examples presented here, in the context
of story understanding). Learning is not incidental to the performance task, rather, it is a
separate act of intelligence that requires knowledge, goals, and decisions. Given many
choices as to the direction learning can assume, the strategic learner must construct a
learning plan, given a reasoned analysis of its own knowledge and performance. To create

M.T. Cox, A. Ram / Artificial Intelligence 112 (1999) 1–55 47

such a plan, the learner must therefore be capable of some degree of introspection. Here
we have outlined a knowledge representation, a set of algorithms, and a framework under
which successful multistrategy learning can take place.

6.1. Related research

The work presented here builds on a very long research tradition in the case-based
reasoning community on story understanding, explanation, memory, and inference. It has
also been influenced by the extensive research efforts focused on meta-reasoning systems.
This section examines a few of these sources to compare and contrast our work with the
work that precedes us.

Our conceptualization of learning is consistent with both Michalski’s [57] Inferential
Learning Theory that decomposes a learning task into an input, the BK, and a learning
goal and Carbonell [6] and Veloso’s [97,98] emphasis on reasoning from a trace of the
derivation of a solution rather than from solutions themselves. Unlike Michalski, we have
stressed the role of the performance task in deciding what to learn and have used the
metaphor of planning rather than inference when interpreting the learning task. Unlike
Veloso and Carbonell who use aderivational analogy traceof past planning episodes to
guide subsequent planning performance in the Prodigy/Analogy system, Meta-AQUA uses
the information to guide subsequent learning. Although the effect on actual performance is
therefore more indirect, the learning is more informed.

In general, our orientation is similar to many other approaches based on reasoning traces
(e.g., [59,95]) or justification structures (e.g., [1,27,28]) to represent problem-solving
performance and to other approaches that use characterizations of reasoning failures for
blame assignment and multistrategy learning (e.g., [42,48,61,65,66,81,94]). Reasoning
trace information has primarily been used for blame assignment during planning (e.g.,
[1,9]) and for speedup learning (e.g., [60]). A major difference between our approach and
these approaches is our use of explicit representational structures (Introspective Meta-XPs)
to represent classes of learning situations along with the types of learning needed in those
situations.

Other types of knowledge may also be important in multistrategy or introspective
learning systems. For example, Pazzani’s [68] OCCAM system has generalized knowledge
about physical causality that is used to guide multistrategy learning. In contrast, we
propose specific knowledge about classes of learning situations that can be used to guide
learning strategy selection and construction. The IULIAN system of Oehlmann, Edwards
and Sleeman [64] maintains metacognitive knowledge in declarative introspection plans.
The RFermi system [43] maintains goal and memory search information to represent
knowledge about its memory performance. This information allows it to introspectively
determine improvements in its search behavior. Freed’s RAPTER system [16,32] uses
three types of self-knowledge when learning. Records of variable bindings maintain
an implicit trace of system performance, justification structures provide the knowledge
of the kinds of cognitive states and events needed to explain the system’s behavior,
and transformation rules [8,34] describe how the mostly implementation-independent
knowledge in justification structures corresponds to a particular agent’s implementation.
In the Meta-AQUA system, however, TMXPs maintain reasoning traces explicitly, and
most implementation-dependent knowledge is avoided.

48 M.T. Cox, A. Ram / Artificial Intelligence 112 (1999) 1–55

Our approach to using an analysis of reasoning failures to determine what needs to
be learned is similar to Mooney and Ourston’s [61] EITHER system, Park and Wilkins’
[66] MINERVA program, the CASTLE system of Krulwich [9,47], Fox’s [29,30] ROBBIE
path planning system, and Stroulia’s [93,94] Autognostic system, but with some important
differences. We have focused on the use of meta-models for explicit representation of
domain knowledge and of reasoning processes in an integrated, multistrategy reasoning
and learning system. Unlike both Mooney and Ourston and Park and Wilkins, we
have not assumed a single reasoning paradigm (logic-based deduction and rule-based
expert systems, respectively) in terms of which failure situations and learning strategies
are characterized. Rather, it is the architecture that provides a basis for a higher-level
characterization, which in turn could be implemented in different ways depending on the
reasoning paradigm. In fact, Meta-AQUA uses multiple reasoning methods, although the
focus is on case-based reasoning.

Birnbaum and his colleagues [1] focuses on the process of blame assignment by backing
up through justification structures, but do not emphasize the declarative representation of
failure types. They explicitly model, however, the planner. They also explicitly model and
reason about the intentions of a planner in order to find and repair the faults that underlie a
planning failure (see [31]). Though much is shared between CASTLE and Meta-AQUA in
terms of blame assignment (and to a great extent CASTLE is also concerned with deciding
what to learn; see [46]), CASTLE does not use failure characterizations to formulate
explicit learning goals nor does it construct a learning strategy in a deliberate manner
within a multistrategy framework. The only other system to introspectively deliberate about
the choice of a learning method is the ISM system [7]. ISM optimizes learning behavior
dynamically and under reasoning failure or success, but the system chooses the bestsingle
learning algorithm, rather than composing a strategy from multiple algorithms. ISM does
not therefore have to consider algorithm interactions.

Finally, our work focuses on reasoning failures, and not only on performance failures (in
both the Collins et al. and Owens’ cases, planning failures). Stroulia’s approach focuses on
a design stance characterization of the reasoner as a device, whereas our approach, as with
the approach of Collins, Birnbaum, and their colleagues, takes a more intentional stance
toward the reasoner. The analysis of [93], characterizing the ways in which such a device
could fail, yields a taxonomy of failure types similar to ours. However, like the previous
studies, she too does not use declarative characterizations of reasoning failures to formulate
explicit learning goals. Furthermore, the CASTLE, Autognostic, ROBBIE, and RAPTER
systems are all model-based in their introspective methods, whereas Meta-AQUA is XP-
based (case-based). Finally, none of these systems create an explicit plan to learn in the
space of changes to the BK. Despite these differences, we emphasize that the approaches
enumerated in this section have much in common with the theory and implementation
described here.

6.2. Contributions

This paper has presented a computational theory of deliberate learning that has explored
the metaphor of nonlinear planning as a vehicle for constructing a learning strategy. The
theory represents a general approach to knowledge-intensive learning, as supported by

M.T. Cox, A. Ram / Artificial Intelligence 112 (1999) 1–55 49

broad hand-coded evaluations [75], large-scale empirical experiments (reported here),
and by previous psychological modelling studies [79].26 This theory of multistrategy
learning supports three major processing phases that represents an intelligent system’s
response to reasoning failure: blame assignment, deciding what to learn, and learning-
strategy construction. Our contribution to blame assignment is that we have treated it as a
goal-driven (deliberative) introspective process, rather than a data-driven knowledge-poor
process (e.g., [3]). Just as case-based reasoners can represent actions in a story explicitly
and then retrieve past cases with which to understand the story, a case-based introspector
can represent the mental story understanding actions explicitly and then retrieve meta-
explanations with which to understand its own comprehension failures. In support of
this process, we have delineated the kinds of failures a reasoner can expect and the
possible causes from which the learner can diagnose the problem. We also presented
a knowledge structure to support the reasoning about these failure types. The Meta-XP
representation encapsulates information about failure and the corresponding learning goals
that if achieved can reduce the likelihood the failure will be repeated. In particular, we
specified a novel representation of failures of omission such as forgetting. Because it
represents the lack of a mental event, the solution had to be able to symbolize the truth
value of a proposition in or out of the set of beliefswith respect toeither the background
knowledge or the system’s foreground knowledge.

For the task of actually constructing a learning strategy, we have followed the metaphor
of learning as planning. Our contribution is to show the surprising parallels that exist when
one applies the metaphor strictly. We demonstrated that just as a nonlinear planner in the
blocks world can devise a plan to achieve multiple goals of having blocks stacked on one
another, the same planner can build a plan to achieve specific changes to its background
knowledge. Instead of a plan consisting of physical movements of objects, a learning plan
consists of sequenced calls to specific learning algorithms. To support these actions we
presented a taxonomy of learning goals. Like the blocks world, the planner must be careful
that actions performed in its plan do not interact negatively. The solution to these problems
come from careful construction of learning operators that specify the preconditions and
effects of the learning algorithms.

A central contribution of this paper, however, has been to define an intermediate stage of
learning between the assignment of blame and the construction of a learning strategy. We
postulated that for effective learning a system must deliberately focus on what needs to be
learned. The experiments reported in this paper provide a number of results that support
the hypothesis that this deciding what to learn stage of learning is necessary. Meta-AQUA
expended more learning resources and induced less performance improvement without
learning goals than it did under a condition that included them. Moreover, we have shown
that because learning algorithms negatively interact, the arbitrary ordering of learning
methods (i.e., as under the RL condition) can actually lead to worse system performance
than no learning at all. Therefore, an explicit phase to decide exactly what to learn (i.e., to
spawn learning goals or an equivalent mechanism) is necessary to avoid these interactions

26 The multistrategy learning theory embodied in Meta-AQUA was the basis of a sister program called Meta-TS
and has proven to be a sufficient model to cover actual human data in the domain of electronics troubleshooting
behavior.

50 M.T. Cox, A. Ram / Artificial Intelligence 112 (1999) 1–55

and to maintain effective learning in multistrategy environments. The paper also provided
a novel quantitative measure with which to evaluate the comprehension process. As the
dependent variable, this partial credit metric provides rewards for both posing questions
autonomously and giving some type of answer, as well as for getting answers correct.

Because of the considerable computational overhead involved in maintaining a reason-
ing trace, performing blame assignment, spawning learning goals, and constructing a plan
with which to pursue such goals, the benefits of using introspection must be substantial to
justify the costs. Furthermore, under extremely complex situations or in informationally
impoverished circumstances, deciding on an optimal learning goal is certainly intractable.
In such situations, it may be more beneficial to proceed without further reasoning, rather
than to attempt to understand the exact causes of the failure. Knowing when a learning task
is worth pursuing is itself an important skill to master for an intelligent system. Identify-
ing the most appropriate conditions for the use of an introspective approach is therefore a
desirable research goal. To establish only that introspection facilitates learning and that the
model of introspection has some quality of reasonableness is not fully satisfactory. Further
inquiry into these conditions is left for future research.

In the interim, a potential heuristic for deciding when to use an introspective approach
is to qualitatively ascertain whether or not interactions between learning mechanisms
available to the learner exist. If they exist, then the approach should be applied, otherwise
a more reflexive approach is licensed. In speculation, another potential heuristic for
determining that introspection is a win is to use a threshold for the number of failure
symptoms above which introspection will not be attempted. Through experimentation, this
threshold number should be obtained empirically given a distribution of known problem
types and a random selection of problems from the distribution. The identification of such
heuristics will enable the practical use of introspective methods in systems that cannot
afford to squander precious resources with intractable computation.

Acknowledgement

This research was supported by NSF under contract IRI-9009710, by AFOSR under
contract #F49620-94-1-0092, and by the Georgia Institute of Technology. We thank
Tucker Balch, Kurt Eiselt, Karen Haigh, Janet Kolodner, Kenny Moorman, Mimi Recker,
Juan Carlos Santamaria, Tony Simon, Austin Tate, Manuela Veloso and the anonymous
reviewers for comments on various drafts of this paper. We also wish to gratefully
acknowledge Mark Devaney’s assistance in reprogramming Tale-Spin.

References

[1] L. Birnbaum, G. Collins, M. Freed, B. Krulwich, Model-based diagnosis of planning failures, in: Proc.
AAAI-90, Boston, MA, AAAI Press, Menlo Park, CA, 1990, pp. 318–323.

[2] D.G. Bobrow, A. Collins (Eds.), Representation and Understanding: Studies in Cognitive Science,
Academic Press, New York, 1975.

[3] L.B. Booker, D.E. Goldberg, J.H. Holland, Classifier systems and genetic algorithms, Artificial Intelligence
40 (1989) 235–282.

M.T. Cox, A. Ram / Artificial Intelligence 112 (1999) 1–55 51

[4] J.G. Carbonell, Subjective Understanding: Computer Models of Belief Systems, UMI Research Press, Ann
Arbor, MI, 1981.

[5] J.G. Carbonell, Learning by analogy: Formulating and generalizing plans from past experience, in: R.S.
Michalski, J.G. Carbonell, T.M. Mitchell (Eds.), Machine Learning I: An Artificial Intelligence Approach,
Morgan Kaufmann, Los Altos, CA, 1983, pp. 137–161.

[6] J.G. Carbonell, Derivational analogy: A theory of reconstructive problem solving and expertise acquisition,
in: R. Michalski, J. Carbonell, T. Mitchell (Eds.), Machine Learning II: An Artificial Intelligence Approach,
Morgan Kaufmann, San Mateo, CA, 1986, pp. 371–392.

[7] J. Cheng, Management of speedup mechanisms in learning architectures, Ph.D. Thesis, Technical Report
No. CMU-CS-95–112, Carnegie Mellon University, School of Computer Science, Pittsburgh, PA, 1995.

[8] G. Collins, Plan creation: Using strategies as blueprints, Ph.D. Thesis, Technical Report No. 599, Yale
University, Department of Computer Science, New Haven, CT, 1987.

[9] G. Collins, L. Birnbaum, B. Krulwich, M. Freed, The role of self-models in learning to plan, in:
A. Meyrowitz (Ed.), Machine Learning: Induction, Analogy and Discovery, Kluwer Academic, Boston,
MA, 1993.

[10] M.T. Cox, Machines that forget: Learning from retrieval failure of mis-indexed explanations, in: A. Ram
and K. Eiselt (Eds.), Proc. 16th Annual Conference of the Cognitive Science Society, Lawrence Erlbaum
Associates, Hillsdale, NJ, 1994, pp. 225–230.

[11] M.T. Cox, Representing mental events (or the lack thereof), in: M.T. Cox, M. Freed (Eds.), Proc. 1995
AAAI Spring Symposium on Representing Mental States and Mechanisms, Technical Report No. SS-95-
05, AAAI Press, Menlo Park, CA, 1995, pp. 22–30.

[12] M.T. Cox, An empirical study of computational introspection: Evaluating introspective multistrategy
learning in the Meta-AQUA system, in: R.S. Michalski, J. Wnek (Eds.), Proc. 3rd International Workshop
on Multistrategy Learning, AAAI Press/MIT Press, Menlo Park, CA, 1996, pp. 135–146.

[13] M.T. Cox, Introspective multistrategy learning: Constructing a learning strategy under reasoning failure,
Ph.D. Thesis, Technical Report No. GIT-CC-96-06, Georgia Institute of Technology, College of Comput-
ing, Atlanta, GA, 1996; ftp://ftp.cc.gatech.edu/pub/ai/ram/git-cc-96-06.html.

[14] M.T. Cox, An explicit representation of reasoning failures, in: D.B. Leake, E. Plaza (Eds.), Case-
Based Reasoning Research and Development: Second International Conference on Case-Based Reasoning,
Springer, Berlin, 1997, pp. 211–222.

[15] M.T. Cox, Loose coupling of failure explanation and repair: Using learning goals to sequence learning
methods, in: D.B. Leake, E. Plaza (Eds.), Case-Based Reasoning Research and Development: Second
International Conference on Case-Based Reasoning, Springer, Berlin, 1997, pp. 425–434.

[16] M.T. Cox, M. Freed, Using knowledge from cognitive behavior to learn from failure, in: J.W. Brahan,
G.E. Lasker (Eds.), Proc. 7th International Conference on Systems Research, Informatics and Cybernetics,
Vol. 2, Advances in Artificial Intelligence—Theory and Application II, The International Institute for
Advanced Studies in Systems Research and Cybernetics, Windsor, Ontario, Canada, 1994, pp. 142–147.

[17] M.T. Cox, A. Ram, Using introspective reasoning to select learning strategies, in: R.S. Michalski, G. Tecuci
(Eds.), Proc. First International Workshop on Multistrategy Learning, George Mason University, Artificial
Intelligence Center, Washington, DC, 1991, pp. 217–230.

[18] M.T. Cox, A. Ram, An explicit representation of forgetting, in: J.W. Brahan, G.E. Lasker (Eds.), Proc.
6th International Conference on Systems Research, Informatics and Cybernetics, Vol. 2, Advances in
Artificial Intelligence—Theory and Application, The International Institute for Advanced Studies in
Systems Research and Cybernetics, Windsor, Ontario, Canada, 1992, pp. 115–120.

[19] M.T. Cox, A. Ram, Multistrategy learning with introspective meta-explanations, in: D. Sleeman, P. Edwards
(Eds.), Machine Learning: Proc. 9th International Conference, Morgan Kaufmann, San Mateo, CA, 1992,
pp. 123–128.

[20] M.T. Cox, A. Ram, Failure-driven learning as input bias, in: A. Ram, K. Eiselt (Eds.), Proc. 16th Annual
Conference of the Cognitive Science Society, Lawrence Erlbaum Associates, Hillsdale, NJ, 1994, pp. 231–
236.

[21] M.T. Cox, A. Ram, Interacting learning-goals: Treating learning as a planning task, in: J.-P. Haton,
M. Keane, M. Manago (Eds.), Advances in Case-Based Reasoning: Second European Workshop, EWCBR-
94, Springer, Berlin, 1995, pp. 60–74.

52 M.T. Cox, A. Ram / Artificial Intelligence 112 (1999) 1–55

[22] M.T. Cox, A. Ram, On the intersection of story understanding and learning, in: A. Ram, K. Moorman
(Eds.), Computational Models of Reading and Understanding, MIT Press/Bradford Books, Cambridge,
MA, 1999, pp. 397–433.

[23] M.T. Cox, M.M. Veloso, Goal transformations in continuous planning, in: M. desJardins (Ed.), Proc. 1998
AAAI Fall Symposium on Distributed Continual Planning, AAAI Press/MIT Press, Menlo Park, CA, 1998,
pp. 23–30.

[24] R. Cullingford, Script application: Computer understanding of newspaper stories, Ph.D. Thesis, Technical
Report No. 116, Yale University, Department of Computer Science, New Haven, CT, 1978.

[25] R. Cullingford, Micro SAM, in: R.C. Schank, C. Riesbeck (Eds.), Inside Computer Understanding: Five
Programs Plus Miniatures, Lawrence Erlbaum Associates, Hillsdale, NJ, 1981, pp. 120–135.

[26] G. DeJong, R. Mooney, Explanation-based learning: An alternative view, Machine Learning 1 (2) (1986)
145–176.

[27] J. de Kleer, J. Doyle, G.L. Steele, G.L. Sussman, Explicit control of reasoning, SIGPLAN Notices 12
(1977).

[28] J. Doyle, A truth maintenance system, Artificial Intelligence 12 (1979) 231–272.
[29] S. Fox, Introspective learning for case-based planning, Ph.D. Thesis, Technical Report No. TR462, Indiana

University, Department of Computer Science, Bloomington, IN, 1995.
[30] S. Fox, D. Leake, Modeling case-based planning for repairing reasoning failures, in: M.T. Cox, M. Freed

(Eds.), Proc. 1995 AAAI Spring Symposium on Representing Mental States and Mechanisms, Technical
Report No. SS-95-05, AAAI Press, Menlo Park, CA, 1995, pp. 31–38.

[31] M. Freed, B. Krulwich, L. Birnbaum, G. Collins, Reasoning about performance intentions, in: Proc. 14th
Annual Conference of the Cognitive Science Society, Lawrence Erlbaum Associates, Hillsdale, NJ, 1992,
pp. 7–12.

[32] M. Freed, G. Collins, Learning to cope with task interactions, in: A. Ram, M. desJardins (Eds.), Proc. 1994
AAAI Spring Symposium on Goal-Driven Learning, Technical Report No. SS-94-02, AAAI Press, Menlo
Park, CA, 1994, pp. 28–35.

[33] S. Ghosh, J. Hendler, S. Kambhampati, B. Kettler, UM Nonlin [a Common Lisp implementation of
A. Tate’s Nonlin planner], 1992; FTP: Hostname: cs.umd.edu Directory: /pub/nonlin Files: nonlin-
files.tar.Z.

[34] K.J. Hammond, Case-Based Planning: Viewing Planning as a Memory Task, Academic Press, San Diego,
CA, 1989.

[35] K.J. Hammond, Explaining and repairing plans that fail, Artificial Intelligence 45 (1990) 173–228.
[36] K.J. Hammond, T. Converse, M. Marks, C. Seifert, Opportunism and learning, in: J.L. Kolodner (Ed.),

Case-Based Learning, Kluwer Academic, Boston, MA, 1993, pp. 85–115.
[37] F. Hayes-Roth, Using proofs and refutations to learn from experience, in: R.S. Michalski, J.G. Carbonell,

T.M. Mitchell (Eds.), Machine Learning I: An Artificial Intelligence Approach, Morgan Kaufmann, Los
Altos, CA, 1983, pp. 221–240.

[38] J.R. Hobbs, Coherence and co-reference, Cognitive Sci. 3 (1) (1979) 67–82.
[39] J.R. Hobbs, M. Stickel, D. Appelt, P. Martin, Interpretation as abduction, Artificial Intelligence 63 (1–2)

(1993) 69–142.
[40] L.E. Hunter, Planning to learn, in: Proc. 12th Annual Conference of the Cognitive Science Society,

Lawrence Erlbaum Associates, Hillsdale, NJ, 1990, pp. 261–276.
[41] L. Ihrig, S. Kambhampati, An explanation-based approach to improve retrieval in case-based planning, in:

M. Ghallab, A. Milani (Eds.), New Directions in Planning, IOS Press, Amsterdam, 1996, pp. 395–406.
[42] A. Kass, Developing creative hypotheses by adapting explanations, Ph.D. Thesis, Northwestern University,

The Institute for the Learning Sciences, Evanston, IL, 1990.
[43] A.C. Kennedy, Using a domain-independent introspection mechanism to improve memory search, in:

M.T. Cox, M. Freed (Eds.), Proc. 1995 AAAI Spring Symposium on Representing Mental States and
Mechanisms, Technical Report No. SS-95-05, AAAI Press, Menlo Park, CA, 1995, pp. 72–78.

[44] J.L. Kolodner, Capitalizing on failure through case-based inference, in: Proc. 9th Annual Conference of the
Cognitive Science Society, Lawrence Erlbaum Associates, Hillsdale, NJ, 1987, pp. 715–726.

[45] J.L. Kolodner, Case-Based Reasoning, Morgan Kaufmann, San Mateo, CA, 1993.
[46] B. Krulwich, Determining what to learn in a multi-component planning system, in: Proc. 13th Annual

Conference of the Cognitive Science Society, Lawrence Erlbaum Associates, Hillsdale, NJ, 1991, pp. 102–
107.

M.T. Cox, A. Ram / Artificial Intelligence 112 (1999) 1–55 53

[47] B. Krulwich, Flexible learning in a multicomponent planning system, Ph.D. Thesis, Technical Report No.
46, Northwestern University, The Institute for the Learning Sciences, Evanston, IL, 1993.

[48] D. Leake, Evaluating Explanations: A Content Theory, Lawrence Erlbaum Associates, Hillsdale, NJ, 1992.
[49] M. Lebowitz, Experiments with incremental concept formation: UMIMEM, Machine Learning 2 (1987)

103–138.
[50] W. Lehnert, M.G. Dyer, P. Johnson, C. Yang, S. Harley, BORIS—An experiment in in-depth understanding

of narratives, Artificial Intelligence 20 (1) (1983) 15–62.
[51] C.E. Martin, Micro DMAP, in: C.K. Riesbeck, R.C. Schank (Eds.), Inside Case-Based Reasoning,

Lawrence Erlbaum Associates, Hillsdale, NJ, 1989, pp. 353–372.
[52] C.E. Martin, Direct memory access parsing, Ph.D. Thesis, Technical Report No. 93-07, University of

Chicago, Department of Computer Science, Chicago, IL, 1990.
[53] J. McCarthy, Programs with common sense, in: Symposium Proceedings on Mechanisation of Thought

Processes, Vol. 1, Her Majesty’s Stationary Office, London, 1959, pp. 77–84.
[54] J. McCarthy, Making robots conscious of their mental states, in: M.T. Cox, M. Freed (Eds.), Proc. 1995

AAAI Spring Symposium on Representing Mental States and Mechanisms, Technical Report No. SS-95-
05, AAAI Press, Menlo Park, CA, 1995, pp. 89–96.

[55] D. McDermott, A general framework for reason maintenance, Technical Report No. 691, Yale University,
Department of Computer Science, New Haven, CT, 1989; also: Artificial Intelligence 50 (1991) 289–329.

[56] J. Meehan, Talespin, in: R.C. Schank, C. Riesbeck (Eds.), Inside Computer Understanding: Five Programs
Plus Miniatures, Lawrence Erlbaum Associates, Hillsdale, NJ, 1981, pp. 197–258.

[57] R.S. Michalski, Inferential theory of learning: Developing foundations for multistrategy learning, in: R.S.
Michalski, G. Tecuci (Eds.), Machine Learning IV: A Multistrategy Approach, Morgan Kaufmann, San
Francisco, CA, 1994, pp. 3–61.

[58] M.L. Minsky, Matter, mind, and models, in: Proc. International Federation of Information Processing
Congress, Vol. 1, 1965, pp. 45–49 (Original work from 1954).

[59] S. Minton, Learning Search Control Knowledge: A Explanation-Based Approach, Kluwer Academic,
Boston, MA, 1988.

[60] T. M. Mitchell, R. Keller, S. Kedar-Cabelli, Explanation-based generalization: A unifying view, Machine
Learning 1 (1) (1986) 47–80.

[61] R. Mooney, D. Ourston, A multistrategy approach to theory refinement, in: R.S. Michalski, G. Tecuci
(Eds.), Machine Learning IV: A Multistrategy Approach, Morgan Kaufmann, San Francisco, CA, 1994,
pp. 141–164.

[62] K. Moorman, A. Ram, Creativity in reading: Understanding novel concepts, in: A. Ram, K. Moorman
(Eds.), Computational Models of Reading and Understanding, MIT Press/Bradford Books, Cambridge,
MA, 1999, pp. 359–395.

[63] A. Newell, H.A. Simon, GPS: A program that simulates human thought, in: E.A. Feigenbaum, J. Feldman
(Eds.), Computers and Thought, McGraw Hill, New York, 1963, pp. 279–293 (Original work published
1961).

[64] R. Oehlmann, P. Edwards, D. Sleeman, Introspection planning: Representing metacognitive experience,
in: M.T. Cox, M. Freed (Eds.), Proc. 1995 AAAI Spring Symposium on Representing Mental States and
Mechanisms, Technical Report No. SS-95-05, AAAI Press, Menlo Park, CA, 1995, pp. 102–110.

[65] C. Owens, Indexing and retrieving abstract planning knowledge, Ph.D. Thesis, Yale University, Department
of Computer Science, New Haven, CT, 1990.

[66] Y.T. Park, D.C. Wilkins, Establishing the coherence of an explanation to improve refinement of an
incomplete knowledge base, in: Proc. AAAI-90, Boston, MA, AAAI Press, Menlo Park, CA, 1990,
pp. 318–323.

[67] M. Pazzani, Learning fault diagnosis heuristics from device descriptions, in: Y. Kodratoff, R.S. Michalski
(Eds.), Machine Learning III: An Artificial Intelligence Approach, Morgan Kaufmann, San Mateo, CA,
1990, pp. 214–234.

[68] M. Pazzani, Learning causal patterns: Making a transition from data-driven to theory-driven learning, in:
R. Michalski, G. Tecuci (Eds.), Machine Learning IV: A Multistrategy Approach, Morgan Kaufmann, San
Francisco, CA, 1994, pp. 267–293.

[69] M. Pollack, A model of plan inference that distinguishes between the beliefs of actors and observers, in:
Proc. 24th Annual Meeting of the Association for Computational Linguistics, 1986, pp. 207–214.

54 M.T. Cox, A. Ram / Artificial Intelligence 112 (1999) 1–55

[70] M.R. Quillian, Semantic memory, in: M.L. Minsky (Ed.), Semantic Information Processing, MIT Press,
Cambridge, MA, 1968, pp. 227–270.

[71] A. Ram, Knowledge goals: A theory of interestingness, in: Proc. 12th Annual Conference of the Cognitive
Science Society, Lawrence Erlbaum Associates, Hillsdale, NJ, 1990, pp. 206–214.

[72] A. Ram, A theory of questions and question asking, J. Learning Sciences 1 (3–4) (1991) 273–318.
[73] A. Ram, Indexing, elaboration and refinement: Incremental learning of explanatory cases, Machine

Learning 10 (1993) 201–248.
[74] A. Ram, AQUA: Questions that drive the understanding process, in: R.C. Schank, A. Kass, C.K. Riesbeck

(Eds.), Inside Case-Based Explanation, Lawrence Erlbaum Associates, Hillsdale, NJ, 1994, pp. 207–261.
[75] A. Ram, M.T. Cox, Introspective reasoning using meta-explanations for multistrategy learning, in: R.S.

Michalski, G. Tecuci (Eds.), Machine Learning IV: A Multistrategy Approach, Morgan Kaufmann, San
Francisco, CA, 1994, pp. 349–377.

[76] A. Ram, L. Hunter, The use of explicit goals for knowledge to guide inference and learning, Applied
Intelligence 2 (1) (1992) 47–73.

[77] A. Ram, D. Leake, Evaluation of explanatory hypotheses, in: Proc. 13th Annual Conference of the
Cognitive Science Society, Lawrence Erlbaum Associates, Hillsdale, NJ, 1991, pp. 867–871.

[78] A. Ram, D. Leake, Learning, goals, and learning goals, in: A. Ram, D. Leake (Eds.), Goal-Driven Learning,
MIT Press/Bradford Books, Cambridge, MA, 1995, pp. 1–37.

[79] A. Ram, S. Narayanan, M.T. Cox, Learning to trouble-shoot: Multistrategy learning of diagnostic
knowledge for a real-world problem solving task, Cognitive Sci. 19 (1995) 289–340.

[80] M. Ranney, P. Thagard, Explanatory coherence and belief revision in naive physics, in: Proc. 10th Annual
Conference of the Cognitive Science Society, Lawrence Erlbaum Associates, Hillsdale, NJ, 1988, pp. 426–
432.

[81] M.A. Redmond, Learning by observing and understanding expert problem solving, Ph.D. Thesis, Technical
Report No. GIT-CC-92/43, Georgia Institute of Technology, College of Computing, Atlanta, GA, 1992.

[82] W.S. Reilly, J. Bates, Natural negotiation for believable agents, Technical Report No. CMU-CS-95-164,
Carnegie Mellon University, Computer Science Department, Pittsburgh, PA, 1995.

[83] C.K. Riesbeck, R.C. Schank (Eds.), Inside Case-Based Reasoning, Lawrence Erlbaum Associates,
Hillsdale, NJ, 1989.

[84] E.D. Sacerdoti, A Structure for Plans and Behavior, Elsevier, New York, 1977.
[85] R.C. Schank, Conceptual Information Processing, North-Holland, Amsterdam, 1975.
[86] R.C. Schank, Interestingness: Controlling inferences, Artificial Intelligence 12 (1979) 273–297.
[87] R.C. Schank, Dynamic Memory: A Theory of Reminding and Learning in Computers and People,

Cambridge University Press, Cambridge, MA, 1982.
[88] R.C. Schank, Explanation Patterns: Understanding Mechanically and Creatively, Lawrence Erlbaum

Associates, Hillsdale, NJ, 1986.
[89] R.C. Schank, A. Kass, C.K. Riesbeck, Inside Case-Based Explanation, Lawrence Erlbaum Associates,

Hillsdale, NJ, 1994.
[90] R.C. Schank, C.C. Owens, Understanding by explaining expectation failures, in: R.G. Reilly (Ed.),

Communication Failure in Dialogue and Discourse, Elsevier, New York, 1987.
[91] R.C. Schank, D. Leake, Creativity and learning in a case-based explainer, Artificial Intelligence 40 (1–3)

(1989) 353–385.
[92] P.J. Schwanenflugel, W.V. Fabricius, C.R. Noyes, K.D. Bigler, J.M. Alexander, The organization of mental

verbs and folk theories of knowing, J. Memory and Language 33 (1994) 376–395.
[93] E. Stroulia, Failure-driven learning as model-based self-redesign, Ph.D. Thesis, Technical Report No. GIT-

CC-95-38, Georgia Institute of Technology, College of Computing, Atlanta, GA, 1994.
[94] E. Stroulia, A. Goel, Functional representation and reasoning for reflective systems, J. Appl. Intelligence 9

(1) (1995) 101–124.
[95] G.J. Sussman, A Computer Model of Skill Acquisition, American Elsevier, New York, 1975.
[96] A. Tate, Project planning using a hierarchic nonlinear planner, Technical Report No. 25, University of

Edinburgh, Department of Artificial Intelligence, Edinburgh, UK, 1976.
[97] M.M. Veloso, Planning and Learning by Analogical Reasoning, Springer, Berlin, 1994.
[98] M.M. Veloso, J.G. Carbonell, Case-based reasoning in PRODIGY, in: R.S. Michalski, G. Tecuci (Eds.),

Machine Learning IV: A Multistrategy Approach, Morgan Kaufmann, San Francisco, CA, 1994, pp. 523–
548.

M.T. Cox, A. Ram / Artificial Intelligence 112 (1999) 1–55 55

[99] R. Wilensky, Planning and Understanding: A Computational Approach to Human Reasoning, Addison-
Wesley, Reading, MA, 1983.

[100] D.E. Wilkins, Domain independent planning: Representation and plan generation, Artificial Intelligence 22
(1984) 269–301.

[101] D. Zeng, K. Sycara, Benefits of learning in negotiation, in: Proc. 14th National Conference on Artificial
Intelligence and 9th Innovative Applications of Artificial Intelligence Conference, Morgan Kaufmann, San
Francisco, CA, 1997, pp. 36–41.

