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PREFACE

This thesis constructs a theory of introspective multistrategy learning. In large part,
the work represents a machine learning theory in the area of multistrategy systems that
investigates the role of the planning metaphor as a vehicle for integrating multiple learning
algorithms. To another extent, the research is a cognitive science treatise on a theory of
introspective learning that specifies a mechanistic account of reasoning about reasoning
failure. The central idea is to represent explicitly the normal reasoning of an intelligent sys-
tem in specific knowledge structures. When failure occurs, the learner can then examine
the structures to explain what went wrong and hence to determine the proper learning meth-
ods. Thus, the overarching goal of the theory is to understand systems that turn inwards
upon themselves in order to learn from their own mistakes.

| first became interested in reflective systems that process representations of them-
selves when working in the laboratory of Larry Barsalou. He and Chris Hale were building
a theory of explanation in humans within the domain of troubleshooting small engine
mechanics. | spent a year programming a system called MECH (Barsalou, Hale & Cox,
1989) that was designed to present domain knowledge about lawn mower engines, test their
troubleshooting ability, and collect reaction times and other responses. In addition to its
data collection mode, the program had a training mode with which information could be
presented to the student before the test phase of a given experiment.

The MECH system had the ability to read data files that contained the entire domain
theory: the engine system-subsystem decomposition, the test and repair screens, user selec-
tion functions, and associated textual data. With these files the experimenter could build
domain-independent informational systems, not simply variations about engines. Included
in the file formats was a means for specifying graphics screens that would be displayed at
each subsystem along with the associated text screen for the user. Thus, the user could
traverse the data base along graphical links to move from the fuel subsystem to the details
of the carburetor component within that system, for example.

So, given this flexible capability at the end of the project, | conceived the idea to com-
pile all of the comments for the program code and its subsystem modules. | designed a
number of graphics screens that illustrated the hierarchical structure of the modules, func-
tions, data structures and code. | then bound the appropriate program comments to the
associated graphics screens using the generic file formats with which Chris had built the



engine explanation system. | could then turn MECH upon its own descriptions so that it
would explain itself to Larry or Chris or any subsequent programmer they hired. The con-
cept was simple and intriguing and stayed with me until this time.

This thesis poses the question “How can a reasoner create a learning strategy when it
fails at its reasoning task?” The problem is called, simply enough, the learning-strategy
construction problem. As a metaphor, consider a lawn mower. When the lawn mower
breaks down, someone has to repair it so that it will work right in the future. Strategy con-
struction is like choosing the right tools from the a tool box and planning how to use them
to fix the broken lawn mower (see Figure 1). The person who does the repair is usually the
owner, that is, if the task is not too hard. One of the things that the repairman has to worry
about, however, is that the sequences of repair steps must be ordered properly so that they
do not interfere with the overall goal of fixing the machine. For example, if the lawn mower
runs out of gas because it has a small hole in the gas tank, the repairman must weld the dam-
aged tanlkbeforeadding gasoline to the tank. If the reverse order is chosen, then the gas
will drain out of the tank and the entire machine might ignite (if not explode) when welding
the fuel tank.

% 11995 Snowolff

Figure 1. The strategy construction problem

Returning to the task of repairing the knowledge base of the reasoner, the problem is
to choose and combine a few learning algorithms, given some suite of standard fixes, in
order to fix the knowledge base of the system. Researchers usually perform this task. But
in the research presented here, we want to automate the task of choosing the algorithms and
let the machine solve the problem autonomously and dynamically. For the task of fixing
the lawn mower, this is like putting a robot on top of the toolbox (see Figure 2).

When it comes to picking tools to fix the lawn mower, the task is usually straightfor-
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Figure 2. Automating the construction task

ward. The symptom of failure is often closely associated with the fix because the fault that
caused the symptom is directly observable. For example, the lawn mower does not mow
straight because the wheel has come loose. Because the cause of the error is readily appar-
ent, the tool for the job is easy to determine. The task of assigning blame to a given failure

is trivial because the cause is directly connected to the symptom.

But at other times, determining the cause of failure is much more problematic because
the symptom of failure is more indirectly related to the fault. One cannot always tell what
is wrong (and thus what needs to be repaired) by simply looking at the mower. If the lawn-
mower makes a noise and the grass is not cut properly (see Figure 3), then the problem of
assigning blame is that the fault must be inferred from the outcome of the performance task
(i.e., grass cutting), rather than being directly observed. From a trace of the mower’s path,
the reasoner has to figure out what went wrong.
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Figure 3. The blame-assignment problem

When trying to reason about what goes wrong in an intelligent system, the problem is
compounded. A cognitive system is much more complicated than a simple lawn mower
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and the chain of events between the initiation of a train of thought and its outcome is longer
and more convoluted. With most intelligent systems no observables exist except the con-
clusions from long series of inferences. Therefore it is imperative that an explicit represen-
tation for the reasoning be present so that the system can “observe” it.

Moreover, even with mowing the lawn, the problem may be not so much with the
device that cuts the lawn, but with the agent who cuts it (see Figure 4). That is, the reason
the lawn is cut poorly may reside with the ability of the one doing the pushing. In our case,
the fault may reside with the knowledge with which inferences are made rather than with
the form of the logic used to make the inference.
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Figure 4. Cognitive causes of failure

Therefore, to repair the situation so that the lawn is cut better in the future, it may be
necessary to fix the knowledge that “drives” the performance task (the robot), rather than
to fix the performance system itself (the mower). Figure 5illustrates this point. This entails
understanding the causes of the failure, explaining what went wrong with the reasoning that
caused the failure, and knowing enough about one’s own knowledge and the tools of knowl-
edge repair to choose the right tools to fix the problem without letting these tools interfere
with each other.

This thesis explores these issues from many perspectives. The intent is to look at the
problem from both a technical and computational standpoint where we can analyze the rep-
resentations and transformations useful in solving it mechanistically and to examine it from
a synoptic and psychological standpoint to glean a bit of the human gestalt involved.
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Figure 5. How to repair the failure?
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SUMMARY

The thesis put forth by this dissertation is that introspective analyses facilitate the
construction of learning strategies. Furthermore, learning is much like nonlinear planning
and problem solving. Like problem solving, it can be specified by a set of explicit learning
goals (i.e., desired changes to the reasoner’s knowledge); these goals can be achieved by
constructing a plan from a set of operators (the learning algorithms) that execute in a
knowledge space. However, in order to specify learning goals and to avoid negative
interactions between operators, a reasoner requires a model of its reasoning processes and
knowledge. With such a model, the reasoner can declaratively represent the events and
causal relations of its mental world in the same manner that it represents events and
relations in the physical world. This representation enables introspective self-examination,
which contributes to learning by providing a basis for identifying what needs to be learned
when reasoning fails. A multistrategy system possessing several learning algorithms can
decide what to learn, and which algorithm(s) to apply, by analyzing the model of its
reasoning. This introspective analysis therefore allows the learner to understand its
reasoning failures, to determine the causes of the failures, to identify needed knowledge
repairs to avoid such failures in the future, and to build a learning strategy (plan). Thus, the
research goal is to develop both a content theory and a process theory of introspective
multistrategy learning and to establish the conditions under which such an approach is
fruitful.

Empirical experiments provide results that support the claims herein. The theory was
implemented in a computational model called Meta-AQUA that attempts to understand
simple stories. The system uses case-based reasoning to explain reasoning failures and to
generate sets of learning goals, and it uses a standard non-linear planner to achieve these
goals. Evaluating Meta-AQUA with and without learning goals generated results
indicating that computational introspection facilitates the learning process. In particular,
the results lead to the conclusion that the stage that posts learning goals is a necessary stage
if negative interactions between learning methods are to be avoided and if learning is to
remain effective.
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CHAPTER |
INTRODUCTION
WURFSCHEIBE, mit DISCUS,
Vorgesichten besternt, starred with premonitions,
wirf dich throw yourself
aus dir hinaus. out of yourself.
[0 Paul Celan (1970), p. 41. [ translation (1986), p. 39.

This research investigates goal-driven learning by specifying a computational model
of introspective multistrategy learning (IML)The theory concerns introspection because
learning in the model depends on the ability of the learner to reason about internal reason-
ing processes and mental states. To do this, a system must represent its knowledge about
its own reasoning explicitly and declaratively in a tangible knowledge structure so that it
can examine and manipulate it. It is a multistrategy theory because it is intended to inte-
grate a wide variety of learning methods in a uniform manner. The specific focus of the
research is on thiearning-strategy construction problenThat is, given some computa-
tional performance task specified by the system’s goals, context and some input, if a failure
occurs during the task, the problem is to construct a learning strategy with which to repair
the faulty components of the system. The solution to this problem is a hybrid model having
two phases. In the event of a reasoning failure, the first phase uses case-based methods to
retrieve declarative meta-explanation structures that support self-reflective blame assign-
ment of the reasoning failure and that assist in the generation of a set of learning goals.
Learning goals are necessary to mediate between the explanation of failure and the learning
needed to avoid the failure in the future. Given such learning goals, the second phase of the
model uses a non-linear planner to construct a partially ordered sequence of calls to specific
learning algorithms to achieve the goals. The model implementation, called Meta-AQUA,
illustrates our solution to the problem of selecting a learning algorithm in machine learning
contexts. Itis also used to simulate the learning performed by humans during complex rea-
soning tasks.
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1.1 Research Motivation

An intelligent agent learns from its mistakes; a fool is doomed to repeat them. Thus,
if one wants to understand intelligence, it is important to understand learning. Moreover,
if one wishes to build either intelligent devices or models of intelligent agents, it is also
important to give these systems the ability to learn from their experience, especially failed
experiences, so that they can improve their performance over time and avoid repetition of
failures. A system designer cannot hope to incorpaoahtanitio all the knowledge neces-
sary for a nontrivial intelligent system, so learning provides a way to acquire or extend
knowledge incrementally over time. Even supposing all knowledge could be incorporated
into a system by some knowledge engineer, engineers occasionally make mistakes. Thus,
learning will be required in order to detect and remove inconsistencies in the knowledge.
Furthermore, even if a system has an exhaustively complete and consistent knowledge base,
the world is dynamically changing. The system would therefore have to adjust its knowl-
edge, otherwise it would soon become obsolete. But, beyond these engineering arguments,
we are interested in understanding and building models of learning in order to discover a
little bit about ourselves: about how we cope with mountains of information; about how we
detect and retract mistaken assumptions and incorrect beliefs; and about how we adapt to
the constantly changing world that surrounds us. Given this complex state of affairs, how
can one best view the learning needed to institute these kinds of changes?

Consider, for example, a student trying to learn to program in the language LISP. Typ-
ically, one of the most difficult lessons to master is the concept of recursion. Despite having
mastered the separate features of a programming language, when attempting to program a
recursive function that incorporates known operations, students often fail. When a pro-
gramming bug occurs, the student must both learn what went wrong with the specific recur-
sive problem (i.e., recover from the current bug) and generalize and refine the concept of
recursion (i.e., repair the student’s knowledge so that bugs will not repeat in similar recur-
sive problems). The student has a number of choices to perform these learning tasks. The
student may return to a previous example, may re-read the textual instructions, may reflect
over the problem solving that preceded the failure, or simply continue to the next problem
with the hope that further problem solving will illustrate the proper method of solving such
examples (Pirolli & Recker, 1994). Which strategy to use is a crucial decision that bears
on the effectiveness of learning and thus the subsequent performance of the programmer.

To endow a machine with a similar strategic ability to learn, one might allow it to
select a method from some library of learning algorithms when it makes reasoning errors
during its performance task. For example, if a machine is designed to read simple stories,
it might make mistakes when trying to understand the sentences in a story or when attempt-
ing to predict the actions or motivations of characters in a story. If it has read numerous
stories about terrorism, it may use past cases of terrorist smuggling to understand an anal-
ogous story about drug smuggling. Yet its knowledge about events in the new story may
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be incomplete or incorrect. When it reads about dogs that bark at suspicious luggage, it
should be able to predict that the dog is barking in order to signal the presence of contra-
band. But if it does not have such knowledge, then it needs to be able to acquire experience
about these events by creating a knowledge acquisition strategy consisting of various calls
to routines in its library. Even if it has relevant cases, however, it may not actually be able
to retrieve an appropriate case in a given situation while reading new stories. When it dis-
covers this lack, it must be able to adjust the organization of its knowledge by constructing
a memory reindexing strategy. IML theory directly addresses this problem of deliberately
constructing a strategy with which to learn given some failure in its performance task.

When confronted by failure, a strategic learner must know what caused the failure and
explain what went wrong in order to know what needs to be learned. Yet, the number of
events that can mishap is immense. Therefore, an agent must not only decide on a strategy
to learn, but first, the agent must sift through a large number of explanations that may
account for any given failure. For instance, consider the Walnut Cove cartoon in Figure 6.

In this cartoon, Andrew’s brother sneaks into his bedroom to wake him. He starts to
scream that since it is already 8 o’clock in the morning Andrew will be late for school if he
does not get ready quickly. As they run down the stairs, Andrew is asked whether or not he
is forgetting anything important, to which he replies that he believes so. With a bit more
thought, Andrew decides that he has definitely forgotten something, but he still cannot
recall what it might be. Finally, as Andrew tries to clear his head at the bus stop, we dis-
cover Andrew’s problem. It is Sunday, so the bus is not in service.

Waiting outside, Andrew will probably be wondering why the bus is late. To explain
the bus’s failure to arrive on time, Andrew might reason about the physical operation of the
bus from some naive model of automobiles and engines. He might conclude that the driver
ran out of gas either because of a hole in the gas tank or because of some other mechanical
failure. As this cartoon illustrates, however, the real problem is with Andrew’s memory
system, rather than with the bus’s engine system. But, his memory is not the only causal
factor that bears on his mistake. A major contribution to his memory problem was caused
by his brother. By providing misinformation (“you’re going to be late for school”), his
brother gave him the wrong context from which to reason initially. Finally, Andrew seri-
ously needs to consider his goals. The main problem is that Andrew is pursuing an inap-
propriate goal given his circumstances.

We see that the causes of failure may come from many sources; not only will failure
occur from physical sources in the world, but Andrew must be able to look within himself
to consider additional factors such as his own knowledge, memory, inferences, input, con-
text and goals. Andrew does start to consider this; it is significant that Andrew knew that
he was forgetting something, even though he could not remember what it was. Only after
he knows what went wrong can Andrew learn not to repeat this mistake, perhaps by not
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trusting his brother when he first wakes up in the morning, or perhaps by evaluating his
goals more carefully.

These types of learning problems are ubiquitous. They confront not only the reasoner
who tries to solve problems in some world, such as Andrew trying to decide his morning
activities, but also agents trying to understand other agents like themselves. For example,
in order for a reader of Walnut Cove to fully comprehend the cartoon’s story, the agent must
be able to understand Andrew’s failure in terms of the mental events within Andrew, not
simply the physical events drawn within the strip. Moreover, not only must readers be
attuned to factors that affect failures performed by the characters of a story, but in order to
improve their reading skills, readers must also be able to reason about their own compre-
hension failures when they incorrectly predict the twists and turns of a story. In both prob-
lem-solving tasks like daily planning and comprehension tasks like story understanding, a
reasoner must be able to explain reasoning failure in order to construct some coherent strat-
egy with which to learn.

1.2 The Problem

Simply stated, and in the narrowest sense, the central problem addressed by this
research is the learning-strategy construction problem (Cox & Ram, 1991), particularly, in
failure-driven learning. That is, given some goal-specific performance task (e.g., story
understanding or problem solving), a context and some input, if a failure occurs during the
task, the computational learning problem is to choose or construct a learning strategy with
which to repair the background knowledge of the sys’te'ﬁme knowledge is considered
repaired if, given a similar future situation, the failure will not recur. Yet, as seen in the
previous section, the problem is not a simple one. In order to fix the knowledge effectively,
the learner must first understand both the knowledge it is fixing and the error that gave rise
to the need to learn. Since failure often is caused by faulty reasoning, the learner must be
able to represent, examine, and reason about its own reasoning. In the broadest sense, then,
this thesis attempts to carve out a theory of introspection and self-understanding.

Yet, it is not immediately apparent why introspection is necessary, or even desirable,
in many cases. Introspection has the distinct disadvantage of considerable computational

1. The construction task may be as simple as choosing an algorithm from a list or may involve con-
structing a complex plan of sequenced learning steps that constitute the strategy. Chapter VIl will
provide details. The background knowledge of the system is not just a repository for the domain
theory. It contains declarative representations for all long term knowledge, such as conceptual cat-
egories, episodes and cases, control knowledge (heuristics), beliefs, and knowledge about its own
knowledge and reasoning processes (metaknowledge).
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overhead. Furthermore, it is a well-founded fact that the veracity of human introspection

is very limited? In general, however, adding introspection to a machine allows it to have an
idea of what it is doing and why. A machine applying deductive theorem-proving certainly
does not understand mathematics in the same manner that a mathematician does. Because
no model of the problem-solving process exists in an automatic theorem prover, the
machine does not understand theorem proving even though it can perform it. We do not
claim that introspection is a computational panacea; rather, this research investigates the
role of introspection when constructing a learning strategy and the contingencies under
which it is beneficial.

The problem of strategy construction is quite challenging because to construct a strat-
egy, a system needs to know specifically what is supposed to be learned; to decide what
needs to be learned, it must know the cause of failure; and to determine the full cause of the
failure, it must be able to reflect upon its own reasoning. Thus, three major problems exist
when facing a reasoning failure (Ram & Cox, 1994): blame assignment, deciding what to
learn, and strategy construction. Figure 7 illustrates the relationships between these prob-
lems in graphical form. As will be explained shortly, the first two are case-based reasoning
problems, whereas the third is a non-linear planning problem.

1. Blame Assignment- explain the misunderstanding by mapping from the
symptom of the failure to the cause of the failure;

2. Decide What to Learn- form a set of explicit goals to change the knowl-
edge so that such a misunderstanding is not repeated in similar situations;

3. Strategy Construction— construct a learning plan by which to achieve
these goals.

From a machine learning perspective, serious obstacles exist when confronting the
strategy construction problem. Many learning algorithms have been developed in the past
thirty years of machine learning research, so there may be many options and algorithms
from which to choose. Under the rubric of multistrategy learning research (e.g., Michalski
& Tecuci, 1994), recent trends aim at incorporating the multiplicity of algorithms into a
cohesive whole in which multiple strategies can be combined to tackle complex learning

2. In fact, evidence exists that introspection can actually degrade performance in skilled tasks that
require judgements (Wilson & Schooler, 1991) and that in general, people are overly-confident in
cognitive tasks such as question answering (Fischhoff, Slovic, & Lichtenstein, 1977). Also, see
the criticism of early psychological studies that used trained introspection as a methodological
tool (e.g., Boring, 1953).
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Failure Learning |
Failure Blame Causes Deciding What | Goals Strategy Learning
Symptoms Assignment to Learn P~ onstruction Dlan

\ Case-Based Reasoning / Nonlinear Planning

Figure 7. Decomposition of the learning problem

problems. In the current state of the art in machine learning research, however, humans
analyze characteristic performance parameters (i.e., the particular input context and distri-
bution of learning problems) and then decide what algorithms or combination of algorithms
are best suited to the data. A major goal of this research is to begin to automate this process.
The wish is to give machines a library of learning methods and have them independently
decide which should be used to fix the problems that inevitably occur.

As indicated by the problems facing novice LISP programmers discussed in Section
1.1, there is also a cognitive science interpretation to this problem. Rather than merely for-
mulating a method by which to engineer the machine learning problems in strategy con-
struction, we are interested in developing a model that applies to humans engaged in
deliberation over learning choices. Considering known human limitations from the psy-
chological literature imposes realistic constraints on the model. The resulting cognitive
model is not always easy to separate from the machine learning model, but we will attempt
to draw some specific predictions from the model that suggest testable hypotheses for the
psychological community. We also will have to deal with the well-known philosophical
and psychological problem of distinguishing between cognition and metacognition.
Finally, although we do not claim that the algorithms and representations used by the com-
putational model actually exist within the head of an individual, IML theory provides an
explicit computational model of metacognitive behavior and deliberate learning.

1.3 The Solution

The goal of integrating multiple learning algorithms is a daunting one, since it is an
open question as how best to combine often conflicting learning-mechanisms. This
research examines the metaphor of goal-driven planning as a tool for performing this inte-
gration. Learning is thus viewed as solving a planning problem (Cox & Ram, 1995; Hunter,
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1990b; Ram & Hunter, 1992; Ram & Leake, 1995). By maintaining a declarative trace of
reasoning that supports a particular choice of performance goals or plans, retrieving past
cases of meta-reasoning that can explain the reasoning failure, and then directly inspecting
and manipulating such explanations, an intelligent system can generate explicit learning
goals that constitute desired knowledge charfgasplan is subsequently assembled by
choosing learning algorithms from the system'’s repertoire and ordering them in an appro-
priate way so that the learning goals are achieved.

The theory presented in this work is interesting because the choice of algorithm is not
simply a function of the input, where the input is some set of assertions about the world, or
even a faulty solution tree. Instead, since the input to the learner represents a trace or
declarative representation of the prior reasoning that produced the solution, the choice of a
learning strategy is a function of the reasoning that produced the“sireolution plan is
usually a structured set of physical operations that institutes changes in the world, such as
chess moves that modify an external board position; in contrast, a reasoning trace is a struc-
tured set of mental operations that produces internal changes of mental states, selects prob-
lem operators, and eventually results in objects like solution plans. Thus, to decide on a
choice of learning strategies, our theory of learning depends on introspection of the mental
world, as much as it depends on an analysis of both the problem and the solution in the
external world. In contrast, systems that make decisions based on a solution alone have
only an indirect relationship to the actual causes of the failure.

This dissertation illustrates these problems and solutions within the context of a theory
of introspective multistrategy learning with an implemented learning system called Meta-
AQUA. The system learns by choosing a learning strategy on the basis of introspective
explanations of its own performance failures. The performance task for Meta-AQUA is
story understanding. That is, given a stream of concepts as the representation for a story
sequence, the task is to create a causally connected conceptual interpretation of the story.
As described in the previous section (on page 8), if the system fails at the task, its subse-
guent learning tasks are (ilame assignment explain the failure; (28lecide what to learn
— form a set of explicit learning goals; and then [@arning-strategy constructiort con-
struct a learning plan to achieve these goals.

3. Examples of learning goals are to answer a question or to reconcile two divergent assertions. Sec-
tion 6.3 in Chapter VI will further enumerate the kinds of learning goals that exist in this theory.

4. Carbonell (1986) argues that an important insight into analogical reasoning is that solution deri-
vations contain useful information beyond the information in the solution itself. His derivational
analogy method is to map the derivation of old solutions onto new problems, rather than map old
solutions into new solutions. This insight was one of the earliest arguments in favor of maintain-
ing reasoning traces in support of learning.
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As illustrated in Figure 8, the implementation of the solution to the above tasks has
two parts. The system maintains a declarative trace of reasoning that leads to or supports
a particular choice of goals or plans. Then, given a reasoning failure, the case-based rea-
soning (CBR) half of the learning subsystem retrieves past cases of introspective reasoning
that support reflective blame assignment of the reasoning failure and that assist in the gen-
eration of a set of learning goals. Given such learning goals (representing desired changes
in the system’s background knowledge), the second part of the learning system is a nonlin-
ear planner that constructs a partially ordered sequence of calls to different learning algo-
rithms. Figure 7 on page 9 also shows this bipartite structure of the model.

Learning Subsystem

Performance Subsystem Multistrategy
Learning
—> Story . —— | CBR —»{ Planner
Sltory Understandlng Trace ng;rlgng
nput

Learning
Algorithms

Learning
Algorithm
Toolbox

Story
Representation

Knowledge
Representation

Learning
Plans

Execute Learning

Figure 8. Basic Meta-AQUA system architecture

One of the key contributions of this thesis is a representational structure catieha
explanation patterfMeta-XP) (Cox, 1991; Cox & Ram, 1991; Ram & Cox, 1994). The
structures can represent how an explanation is created (i.e., record the reasoning that gen-
erates an ordinary explanation), and they can represent causal patterns that explain why
explanations fail (i.e., capture past cases of meta-reasoning about failure). In IML theory,
the notion of a Meta-XP has been extended to represent performance failure in general, not
just explanation failures.
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A key construct in the solution to the strategy construction problem is the idea of a
learning goal(Cox & Ram, 1994a; Ram, 1990; 1991; Ram & Hunter, 1992; Ram & Leake,
1995). Rather than specifying a desired state of the world, a learning goal represents a
desired state of knowledge. A prototypical example of a learning goal is a question, the
answer to which represents the achievement of the goal. A major hypothesis of this disser-
tation is that learning goals arecessaryn order to mediate between the explanation of
failure and the learning needed to avoid the failure; a direct mapping is not sufficient in all
cases. Many case-based reasoning systems use the direct indexing of repairs by indexes
that represent the conditions under which they are appropriate. This thesis will demonstrate
that such linkage may lead to incorrect results when the chosen learning methods interact.
Researchers cannot assume the learning algorithms are independent. Just as planning goals
assist in alleviating the problems of interacting planning steps (i.e., paining a ladder and
painting a ceiling; see Sussman, 1975 for an early discussion), learning goals can solve the
problems of interacting learning strategies.

Although the Meta-AQUA system implements a performance module that conducts
story understanding, the dissertation is not about story understanding or the comprehension
process itself. The performance module is therefore quite simple. Likewise, although
Meta-AQUA contains an indexed dynamic-memory module, no results will be reported on
memory issues. Moreover, even the learning algorithms contained in Meta-AQUAs library
are simplified reconstructions of well-known methods. This work does not contribute new
learning methodper se rather, it presents a new methodology dignamically combining
standard learning methods so that larger learning problems may be solved than those upon
which individual learning algorithms were designed to opetathe work is not concerned
with first-order reasoning as much as it is concerned with the second-order reasoning
required to learn deliberately. Thus, the research contributions are to be found in the rep-
resentations used to model the mental world and the methods used to manipulate them, not
in Meta-AQUA's first-order story-understanding performance.

1.4 Learning Goals and the Decomposition of the Problem

The research presented in this document arose from the pursuit of a simple question:
Given a library of learning algorithms, how can one build an appropriate strategy with
which to repair a system that has failed during its performance task? Originally, the task of
answering the strategy-construction question appeared to be straightforward and rather
direct. The goal of solving this problem became quite complex, however, because in order
to answer the question a number of sub-questions arose. Each of these questions had to be

5. In a likewise reductionist fashion, Michalski and Ram (1995) propose a method for combining
primitive inferential transmutations into standard learning methods.
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answered in order to answer the main question, and many of these questions had further
sub-questions that demanded answers.

1.4.1 The Learning Goal Metaphor

The pursuit of this research question also illustrates the notion of a learning goal, one
of the key concepts of this dissertation. In its most basic form, the research question posed
above is a goal to learn; this knowledge acquisition goal specifies a desired state of infor-
mation to achieve in a scientific body of knowledge. Furthermore, the list of sub-questions
generated by the original question forms a subgoal tree exactly like the goal trees generated
by automated problem-solvers (see Figure 9, to which this chapter will return). Most
importantly, however, this analogy between goal-driven problem-solving and learning is
not only useful in understanding the thesis, but is a central analogy for the research itself.

Learning is like problem solving and planning. As such, learning indeed represents
the proverbial search for knowledge. Moreover, to answer a question is to solve a problem,
albeit aninternal one; it is to achieve a new mental state that sufficiently fills a gap in a
structured body of knowledge. One can externalize the new knowledge by formalizing it
with mathematics, by writing it in English and by drawing a picture on a piece of paper, but
the question’s answer is essentially an abstract and internal informational-state, rather than
a concrete state of the world, even when the answer can be composed as a list of physical
operations in the world as can many plans.

Contrastingly, cynics will argue that the pursuit of research goals is basically an exter-
nalized problem to be solved and that the actual goal is to achieve a tangible such as a grad-
uate degree. Any knowledge a student obtains is a collateral effect of the problem solving
performed during the process while in schBdut there are many reasons to consider a
learning goal an especially different and interesting type of goal instead.

The comparison between how a scientist or student conducts research and the view of
learning as a purposeful pursuit of knowledge is more than just an interesting analogy.
Although this thesis will not formulate a formal theory of scientific discovery (but see
Nersessian, 1992; Thagard, 1993), it is nonetheless enlightening to consider the scientist’s
job and draw some conclusions. Knowledge is the central focus of both the scientist and

6. So, a continuum appears to exist upon which learning systems lie. At one end are theories like
the one presented in this document in which goals are internal and learning explicit, and at the
other end are theories in which goals are external and the learning implicit (or a collateral effect
of processing external goals). An example of this second category is the learning theory embodied
in Soar (Laird, Rosenbloom & Newell, 1986; Newell, 1990). See also Barsalou (1995).
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Figure 9. Primary research subgoal tree and contributions
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the student. When scientists perform experiments, they are not just performing acts in the
world in order to make certain states of the world become true; or if they do, these actions
are subservient to the task of shedding light on the scientist's understanding (or lack
thereof) about some facet of the world. The additional knowledge that can be gathered by
an experiment (positive or negative) is the main reason for the actions, rather than the direct
results of the experiments themselves. Itis often not until after the experiment that this new
knowledge is formalized in order to communicate it to the rest of the academic community.
Scientific reasoning is also interesting because the scientist or student is reasoning about
the thesis’s line of reasoning, not just the natural world.

The answers to scientific questions are unusual as well. Scientists do not simply ask
others if the answers they construct and the arguments they concoct are correct (although
feedback from colleagues is useful). Answers to interesting scientific questions are not
found by consulting the index of a textbook (although literature searches for related mate-
rial are valuable). Granted, the pursuit of internal learning goals is a hybrid task, entailing
both mental and physical actions. Physical actions are required to perform many of the
information collecting tasks, much of the reasoning that scientists manipulate is in highly
formal and external representations, and much of the logical reasoning has been formalized
to a point that it can be carried out without much thought. But inevitably, when scientists
are alone to think about their questions, theories, and inferences, they secretly peer into
their own heads to consider how confident they are with certain conclusions, evidence and
arguments. Introspection is fundamental in science because reasoning and knowledge are
at the forefront. Learning in scientific discovery is a goal-driven cognitive behavior.

1.4.2 The Decomposition of a Learning Goal

Consider again the research goal tree of Figure 9 on page 14. Its function is to illus-
trate the central analogy of this dissertation and to serve as a pictorial guide when reading
this thesis. Although the chronological pursuit of these goals was not in the order suggested
by the numbering of the individual questions, the figure helps to visualize the logical struc-
ture of this dissertation. The central strategy-construction question, Q1, not only generates
an entire tree of subgoals below it, but, once answered, raises the question Q0. The ques-
tion of evaluation can be considered a supergoal if such a question is phrased as “How
should one evaluate the method of strategy construction?” The figure also annotates each
guestion with an abbreviated answer for each major research area (italicized in the figure)
covered by this report. These answers constitute the major contributions of this research.

The original question (Q1) posed the learning-strategy construction problem. The
answer to Q1 is to view learning as a planning problem. Given a learning goal, a learner
can treat learning methods as problem-solving operators and use them to build a learning
plan. This immediately raises the questions of what learning goals look like and how can
such goals be generated (Q2). The answer to Q2 is that to generate the learning goals, the
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learner needs to explain the failure. The learning goals originate from an explanation of the
causes of the failure and are of multiple types as defined in a goal taxonomy. The blame
assignment question (Q3) can then be answered if some representation exists of the prior
reasoning and if the learner uses a characterization of the failure in order to retrieve some
abstract explanation of the failure. But to represent failure, a reasoner must know what can
cause failures (Q4) and it must have some formalism with which to perform the represen-
tation (Q5). Finally, to know the cause of the failure, the kinds of possible failures must be
specified (Q6), and to represent the failure, a useful level of detail for the formalism must
be determined (Q7). To be complete, IML theory must address all of these questions.

Traversing the tree from the bottom to the top, the following eight subsections will
briefly describe the answers to these eight research questions in turn. Each subsection
header is labeled with the corresponding question number from the figures in parentheses
to organize the explanations. Subsequent chapters reexamine these eight questions in
depth. By starting at the bottom of the tree and working upwards, readers will observe the
support for answering a given research question before considering the question itself.

1.4.2.1 What kinds of reasoning failure exist? (Q6)

This document will circumscribe failure with respect to two disparate but related types
of reasoning processes. Reasoning may consist of problem-solving steps (such as planning,
design, or troubleshooting), or it may involve comprehension of some stimulus (like under-
standing a story or results of a plan). A reasoning failure is defined as an outcome other
than what is expected or a lack of some outcome, whether that outcome is a solution from
some problem solving episode or an expectation from a comprehension process (Cox,
1993; Cox & Ram, 1994b). Five variations of failure exist under this definition.

If a system incorrectly analyzes some input, or solves some problem incorrectly, so
that its expected analysis, prediction or solution differs from the actual outcome given some
criteria or feedback, then a failure has occurred. This is the conventional notion of failure
and will be termed @ontradiction Alternatively, anmpassas defined as either a failure
of a process to produce any result or as the condition under which no process is available
to attempt a result. Moreover, if a reasoner expects an event to occur, but nothing happens,
then the failure is called false expectatioﬁ A false expectation will also be considered to
exist when a unnecessary solution to a (non)problem is developed. If a system has no
expectation, yet an event occurs which should have been expected, sheprigeexists
(Cox, 1993). Finally, if a system expects that it will not be able to compute any answer or
the correct answer, but it does nonetheless, then another failure class exists cafled-an

7. Note that Andrew’s failure (see Figure 6 on page 6) is a false expectation, a type of error that Al
systems seldom confront. Section 3.2.1.3 on page 47 provides more detalils.
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pected successThis research defines reasoning failure in a larger scope than previous
accounts (e.g., Hammond, 1989; Minton, 1988; Newell, 1990) and presents a unique
declarative representation for each of the five classes of failure.

1.4.2.2 What can cause reasoning failure? (Q4)

A taxonomy of general failure-causes answers Q4 by covering the possible causal fac-
tors in reasoning systems (Cox, 1992, 1993; Cox & Ram, 1994b; Ram, Cox, & Narayanan,
1995). Assuming that reasoning is thealdirectedprocessingf a giveninputusing the
reasoner'knowledgeonly a limited number of classes of faults can be responsible for a
given failure: the reasoning failure can originate in either the reasoner’s goals, its perfor-
mance strategies, the input, or the domain knowledge (see Table 1). Furthermore, given an
additional assumption that knowledge is memory-based (i.e., subject to retrieval and orga-
nizational problems), then the organization of suspended goals (via indexes), processing
strategy associations (via heuristics), or the organization of the domain knowledge (via
indexes) may also be to blame. In the very last column, failures can be accounted for by
attentional deficits that produce a flawed input context. In this causal taxonomy of reason-
ing failures, if one of these categories is responsible for an error, the item corresponding to
the category is either absent or incorrect. If anitem s correct, then that category contributes
nothing to the failure. The taxonomy is comprehensive and goes beyond systems that limit
the cause of error by assuming, for instance, noise-free input or other simplifications. The
blame assignment task can therefore be characterized as a symptom-to-fault mapping from
types of failure as specified in Section 1.4.2.1 to the causes of failure in Table 1.

Table 1: Basic taxonomy of causes of reasoning failure

Domain Knowledge Goal Goal Processing | Strategy Inout Input
Knowledge Selection Generation Selection Strategy Selection P Selection
Novel Missing Missing Forgotten Missing Missing Missing Missing

Absent | Situation Association | Goal Goal Behavior Heuristic Input Context

Wrong | Incorrect Erroneous J Poor Poor Flawed Flawed Incorrect
Domain Association | Goal Selection Behavior Heuristic Noise Context
Knowledge

Right Correct Correct Correct Correct Correct Correct Correct Correct
Knowledge | Associationj Goal Association | Behavior Choice Input Context
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1.4.2.3 At what level of granularity should reasoning be represented? (Q7)

If reasoning is to be represented declaratively so that the system can introspect upon
it, then the answer to this question determines the level of abstraction at which the repre-
sentations should be constructed. Schank, Goldman, Rieger, & Riesbeck (1972) claim that
a mere set of two mental primitives (MTRANS and MBUILD) are sufficient to represent
the utterances of humans concerning verbs of thought such as “I forgot that it was Sunday.”
Alternatively, many in the Al community have built systems that record elaborate traces of
reasoning, keep track of knowledge dependencies or inference, or encode much meta-
knowledge concerning the structure of internal rules and defaults (e.g., Davis, 1980; Doyle,
1979). Our position is that the overhead involved with a complete trace of mental behavior
and knowledge structures is intractable and does not reflect a reasonable capacity as pos-
sessed by humans. Instead, a system should be able to capture enough details to represent
a common set of reasoning failures functionally necessary for learning (Cox, 1995). This
document will explicitly represent all failure types enumerated in Section 1.4.2.1 with such
a level of granularity and will specify what such representations offer an intelligent system.

1.4.2.4 How to represent mental states and reasoning mechanisms? (Q5)

By extending explanation pattern (XP) theory (Schank, 1986; Ram, 1989, 1991), the
types of failures in Section 1.4.2.1 can be reasoned about deliberately. A meta-explanation
pattern (Meta-XP) is an explanation of how and why an explanation goes awry in a reason-
ing system (Cox, 1991; Ram & Cox, 1994). Two classes of Meta-XPs facilitate a system’s
ability to reason about itself and assist it in constructing a learning strate@yack Meta-

XP (TMXP) explains how a system generates an explanation about the world or itself, and
an Introspective Meta-XRIMXP) explains why the reasoning captured in a TMXP fails
(Cox & Ram, 1992b). The TMXP records the structure of reasoning tasks and the reasons
for processing decisions in a series of decide-compute nodes that resemble the derivational
analogy traces of the PRODIGY system (Veloso & Carbonell, 1994). The IMXP is a gen-
eral causal structure composed of primitive, network structures that represent typical pat-
terns of reasoning failure. The IMXPs are retrieved and applied to instances of reasoning
captured in TMXPs, and assist in forming the learning goals of the systems after failure
occurs. Although the full details will be presented in later chapters, Figure 10 illustrates an
instantiated IMXP bound to a (partially shown) TMXP reasoning trace that together repre-
sents a failure of forgetting to fill up with g&sThe failure symptom is a (memory) impasse

as described in Section 1.4.2.1, whereas the failure fault is likely to be a missing index at
the node | (i.e., likely to be thmissing associationell of Table 1).

8. This might have been an explanation that Andrew considered while waiting for the bus to arrive.
See Section 1.1.
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Figure 10. Forgetting to fill the tank with gas
A=actual intention; E=expectation; Q=question; C=context; I=index; G=goal

In addition to providing the basic representational framework of IML theory, this
research has also generated two technical contributions. First, the formalization has made
an explicit distinction between the background knowledge (BK) and the foreground knowl-
edge (FK) of a reasoner. These divisions are necessary functional distinctions that allow a
system to represent reasoning processes such as memory retrieval and are similar to psy-
chological differences between long-term store and working memory. Secondly, to repre-
sent memory phenomena such as forgetting, it was necessary to extend Doyle’s (1979)
multi-valued logic. Instead of relying on values suchraghe set of beliefs oout of the
set of beliefs, Cox & Ram (1992a) extend them to camerandout of the beliefswith
respect to a particular set of belief§ hus, as seen in Figure 10, to represent forgetting one
can mark a target memory item as beog of the set of beliefs with respect to the FK,
yetin the set of beliefs with respect to the BK (Cox, 1994b; Cox & Ram, 1992a). This
sufficiently represents retrieval failure while maintaining consistency.

1.4.2.5 How to explain a reasoning failure? (Q3)

To reason effectively about one’s own knowledge, goals, and reasoning requires an
ability to introspect explicitly. A computational model of introspective learning is a sec-
ond-order theory that contains a formal language for representing first-order processes and
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that specifies the processing of instances of this representation. The reasoning algorithm
used to perform such processing is similar to the algorithms used to reason about events and
processes represented in the original domain, that is, case-based reasoning algorithms.
Case-based understanding (1) takes as input some event in its domain along with its con-
text, (2) based on salient cues in the input, retrieves a prior case to interpret the input, then
(3) adapts the old solution to fit the current situation, and finally (4) outputs the result as its
understanding of the domain. Similarbase-based introspectiq@ox, 1994a) (1 takes

as input a representation of some prior faulty reasoning in the form of a TMXB4d&ed

on salient cues in the input, retrieves a prior case of reflection in the form of an IMXP to
interpret the input, then (Badapts the old case to fit the current situation, and finally (4
outputs the result as its self-understanding and learning goals. Here, the system’s domain
is itself.

Case-based introspection has proven useful during blame-assignment in Meta-AQUA.
Failure analyses cannot always look to the external world for causes. Often the assignment
of blame is with the knowledge and reasoning of the system itself. Therefore, when Meta-
AQUA encounters a reasoning failure while reading stories, it uses case-based introspec-
tion to explain why it failed at its reasoning task. The system uses this analysis as a basis
to form learning goals and subsequently to construct a learning plan to repair its memory.
The control algorithm used for introspective (second-order) reasoning is essentially the
same as the XP-application control algorithm used in explanatory (first-order) reasoning in
AQUA (Ram, 1989, 1991, 1993, 1994) and SWALE (Kass, Leake, & Owens, 1986; Schank
& Leake, 1990).

1.4.2.6 How to decide what to learn? (Q2)

Once a failure is understood and its causes identified, learning must be focussed by
deciding on a number of specific targets. Learning goals represent these desires explicitly
(Cox & Ram, 1994a; Ram, 1990, 1991; Ram & Hunter, 1992; Ram & Leake, 1995). The
learning goals are designed so that, if achieved, they will reduce the likelihood of repeating
the failure. After blame assignment, the learning goals are obtained from the instantiated
IMXP that is bound to the trace of reasoning represented in the TMXP. The IMXP contains
a list of learning goals that point to the most likely sources of error in the graph structure
representing the pattern of reasoning failure. Some learning goals seek to add, delete, gen-
eralize or specialize some concept or procedure. Others deal with the ontology of the
knowledge, that is, with the kinds of categories that constitute particular concepts.

Many learning goals are unary in that they take a single target as argument. For exam-
ple, aknowledge acquisition godHunter, 1990b; Ram, 1990, 1991) seeks to determine a
single piece of missing knowledge, such as the answer to a particular questiorowi
edge refinement goakeks a more specialized interpretation for a given concept in memory,
whereas &nowledge expansion gos¢eks a broader interpretation that explores connec-
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tions with related concepts. Other learning goals take multiple arguments. For instance, a
knowledge differentiation goglCox & Ram, 1995) is a goal to determine a change in a
body of knowledge such that two items are separated conceptually. In contkastyk

edge reconciliation goglCox & Ram, 1995) is one that seeks to merge two items that were
mistakenly considered separate entities. Both expansion goals and reconciliation goals
may include or spawn lkenowledge organization go@Ram, 1993) that seeks to reorganize

the existing knowledge so that it is made available to the reasoner at the appropriate time,
as well as modify the structure or content of a concept itself. Such reorganization of knowl-
edge affects the conditions under which a particular piece of knowledge is retrieved or the
kinds of indexes associated with an item in memory.

1.4.2.7 How to choose or construct a learning strategy? (Q1)

Finally, given a set of learning goals, a decision must be made to determine which
learning strategies are most appropriate for achieving it. The approach taken is to treat the
learning task as a traditional planning problem, creating a learning plan that is composed
of a series of learning algorithm calls that will achieve the learning goals. However, unlike
learning algorithms executed by single-strategy systems, the learner must dynamically con-
sider possible interactions that may occur between the learning strategies. It is therefore
important to recognize that when multiple items are learned from a single episode, the
changes resulting from one learning algorithm may affect the knowledge structures used by
another algorithm. Such dependencies destroy any implicit assumption of independence
built into a particular learning algorithm used in isolation. For example, if one algorithm
generalizes a conceptual definition, thus introducing or altering constraints on an attribute
of the definition, any memory re-indexing based on this attribute must occur after the mod-
ification, rather than before it, in order for the indexing to be effective.

A standard nonlinear planner is therefore used to resolve these types of dependencies
and goal interactions (Cox & Ram, 1995). The planner is treated as a black box. Itis pro-
vided with an input of specific learning goals and the context in a predicate representation.
The learning algorithms are represented in the form of standard STRIPS (Fikes & Nilsson,
1971) operators so that the planner can reason about these interactions, pick the appropriate
algorithms, and sequence the algorithm calls as partially ordered steps in a learning plan or
strategy. The algorithms can then be executed in the sequence specified by the plan.

1.4.2.8 How can the research be evaluated? (QO)

The theory developed during this research has been evaluated from both machine
learning and cognitive science perspectives. To investigate and evaluate the theoretical
problems, an introspective version of AQBAalled Meta-AQUA was implemented.
AQUA is a question-driven story understanding system that learns about terrorist activities.
Its performance task is to “understand” the story by building causal explanations that link
the individual events into a coherent whole. Meta-AQUA adds introspective reasoning and
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learning using Meta-XP structures. Meta-AQUA's performance domain consists of using
knowledge of terrorist activities (taken from the original AQUA system) to understand and
explain stories of drug smuggling. Meta-AQUA's learning domain consists of using knowl-
edge of reasoning failure (contained in the Meta-XP structures) to understand, explain, and
learn from its own errors of story understanding. In support of the main system, a large
frame system manages Meta-AQUAs knowledge representation. A publicly available
story-generation system called Tale-Spin (Meehan, 1981) supplies automatically-generated
input at Meta-AQUA's front end, while a publicly available nonlinear planning system
called Nonlin (Ghosh, Hendler, Kambhampati, & Kettler, 1992; Tate, 1976) generates the
final learning plan at Meta-AQUA's back-end.

We evaluate the program in a number of contexts. In machine-learning environments,
the emphasis has been on the problem of choosing computational learning algorithms,
given some learning task. Hand-coded examples represent a number of paradigmatic cases
of reasoning failure (see Section 2.1 for two such examples). The examples demonstrate
the utility of our approach when learning algorithms interact. Also, a series of experiments
with the Tale-Spin example generator empirically investigate the performance features of
the system with and without interactions (see Section 9.2 for the experimental results). In
this study, Meta-AQUA performed better in a fully introspective mode than in a reflexive
mode in which learning goals were ablated. In particular, the results lead to the conclusion
that the deciding to learn stage that posts learning goals is a necessary stage if negative
interactions between learning methods are to be avoided and if learning is to remain effec-
tive. In addition, the IMXPs have been shown to apply without modification in a second
story-understanding domain (Cox & Freed, 1994).

With respect to a cognitive science evaluation, the emphasis has been to derive a plau-
sible model of how human learners choose particular approaches or metacognitive strate-
gies given some problem-solving ta¥kTo test its plausibility, Meta-AQUA was modified
in order to model one protocol in a set of human data in a LISP troubleshooting domain
(Cox & Kell, 1993). The protocol was chosen from data gathered in the School of Educa-
tion at Berkeley concerning the behavior of novice LISP programmers. These data support
the positive relationship between metacognitive reasoning and learning in novel problem-
solving domains (Pirolli & Recker, 1994). These data were collected and analyzed without
knowledge of this dissertation work, and the Meta-AQUA system was developed without
knowledge of the data. The results support the claim that the theory is a reasonable and
sufficient model of reflection and learning and that the theory is appropriate for both prob-
lem-solving and story-understanding tasks.

9. AQUA stands for Asking Questions and Understanding Answers.

10. See also Cox (1994c) for a description of the relation between IML theory and research into the
roles of metacognition, problem solving and cognitive aging in human subjects.
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The theory has also been used to model human data in real-world problem-solving
tasks. In collaboration with colleagues from the Industrial and Systems Engineering
Department of the College of Engineering at Georgia Tech, we have successfully used this
approach in the domain of diagnostic repair of circuit boards, modeling the behavior of
expert troubleshooters at NCR'’s electronics assembly plant in Atlanta (Ram, Narayanan, &
Cox, 1995). The Meta-TS system was developed as a dual model. Based also on IML the-
ory, it relies on shallow associative knowledge of failure, rather than deeper causal knowl-
edge of failure (as is the case with the Meta-AQUA system).

1.5 Overview of the Dissertation

This dissertation follows the structure of the goal tree decomposition as seen in Figure
9 (p. 14). The questions in the tree are roughly divided into two parts. The lower part (i.e.,
guestions Q4 through Q7) contains questions of representation and content, whereas the
upper part (i.e., questions Q1 through Q3) pertains to process and functionality. After con-
cluding Part One, “PRELIMINARIES,” with a chapter that introduces the notion of content
theories and process theories, the thesis will continue with Part Two, “A CONTENT THE-
ORY OF MENTAL REPRESENTATION,” followed by Part Three, “A PROCESS THE-
ORY OF LEARNING AND INTROSPECTION.”

Part Two presents a knowledge-level theory of the content of the mental world. The
effort invested into the construction of this theory was substantial, and thus, the represen-
tational issues will dominate a large section of the initial part of the thesis. The results,
however, provide foundational support for the remainder of the thesis. Part Three explains
how a system can perform particular learning functions and improve its performance. The
resulting answers will constitute a process theory of introspective learning. This section
will present the major computational steps necessary to create a learning strategy and with
which to reason about the internal world of mental representations as provided by part one,
the content theory.

Part Four concludes the thesis by first examining the Meta-AQUA implementation of
IML theory. The architecture of the system is explained and the implementation is evalu-
ated with respect to how well it has answered the questions in Figure 9. As with any good
guestion, this research has spawned more questions than answers, so Part Four also
addresses future research, as well as related research. A concluding chapter highlights the
main points of the thesis, and an epilogue openly speculates on the implications of this
research.
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CHAPTER I

CONTENT THEORIES AND PROCESS THEORIES

By distinguishing sharply between the knowledge level and the symbol level the theory
implies an equally sharp distinction between the knowledge required to solve a prob-
lem and the processing required to bring that knowledge to bear in real time and real
space.

[J Alan Newell (1982), p. 117.

Two parts or sub-theories exist within any complete cognitive theory that claims to
explain, describe, or predict intelligent behavior and reasoning. cdhe&nt theorypro-
vides the vocabulary and structure for representing knowledge, as well as the ontology and
content of the knowledge. Content theories provide a component theory that specifies the
objects or components in the domain and the features that best describe the components.
Also, a content theory provides constraints and inferential relationships between the fea-
tures. Content theories therefore possess commitments to both domain ontology as well as
domain physics in a body of knowledge (Domeshek, 1992). pgrbeess theorgpecifies
the classes of transformations performed on such knowledge (Birnbaum, 1986; Domeshek,
1992). Moreover, a process theory isuactional theoryif the processes are justified by
some teleological commitment (i.e., if the theory defines a specific functional role for each
process that contributes to the cognitive task for which the theory is offered as an explana-
tion). Because the focus of this research is reasoning about reasoning failure (in order to
learn), rather than reasoning about some external task, our process theory is a description
of second-order introspective processes in the learning task, as well as the first-order pro-
cesses in the performance task. Furthermore, to learn effectively from reasoning failure,
the learner must be able to represent the cognitive processes responsible for failure explic-
itly. Our content theory is thus unique in that it becomes a descriptive language to explicitly
represent both the first-order processes described in our process theory, as well as the events
in the external world.

The intent of this thesis is to outline a broad theory of introspection, understanding,
and learning by providing specific commitments as to the kind of processes that account for
such cognitive activities and the kind of representational language that is suited for compu-
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tationally describing and making inferences from these phenomena. To make clear the
first-order processes that need to be captured by the representations, to clarify the special
relationship between the content theory and the process theory, to foreshadow the imple-
mentation of these theories in the Meta-AQUA multistrategy learning system, and to pro-
vide concrete examples that will support assertions throughout the remainder of the
dissertation, the following section (Section 2.1) will describe two of the short, hand-coded
stories Meta-AQUA understands and from which it learns. The subsequent section (Section
2.2) discusses the distinction between content theories and process theories in terms of the
difference between knowledge and process. The third section (Section 2.3) then relates
these concepts to both the task and domain of Meta-AQUA and to the two implementational
examples.

2.1 The Drug-Bust Examples

As previously described (Section 1.4.2.8), the performance task of Meta-AQUA is to
understand stories in the domain of drug-smuggling, given its past experience with terrorist
stories. From a conceptual representation of the input sentences, the story understanding
task is to build a coherent interpretation of such input using the knowledge structures in its
memory stores. Its memory is divided into a foreground knowledge (FK), where it main-
tains the current model of the story, and a background knowledge (BK), where the system
stores a library of declarative knowledge structures including explanations, cases, and rep-
resentations of its own reasoning processes. When Meta-AQUA detects anomalies or other
interesting input in the story, it attempts to explain the anomaly; otherwise, it skims the
story by applying scripts (Cullingford, 1978; Schank & Abelson, 1977). If a failure of
explanation occurs, the system must explain the failure, decide what to learn, assemble a
learning strategy, and execute that strategy.

2.1.1 A Common Contradiction

As an example, consider the simple story in Figure 11. Given the drug-bust story, the
system attempts to understand each sentence by incorporating it into its current story rep-
resentation. Numerous inferences can be made from this story, many of which may be
incorrect.

In the story, sentence S1 produces no inferences other than that sniffing is a normal
event in the life of a dog. However, S2 produces an anomaly because the system’s defini-
tion of “bark” specifies that the object of a bark must be animate. The program (incorrectly)
believes that dogs bark only when threatened by animate objects. Since luggage is inani-
mate, there is a conflict. This anomaly causes Meta-AQUA to ask itself why the dog barked
at an inanimate object. Given a prior explanation about dogs barking when threatened by
persons, it hypothesizes that the luggage somehow threatened the dog. It suspends the
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S1:A police dog sniffed at a passenger’s luggage in the airport termi-
nal.

S2:The dog suddenly began to bark at the luggage.

S3:The authorities arrested the passenger, charging him with smug-
gling drugs.

S4:The dog barked because it detected two kilograms of marijuana in
the luggage.

Figure 11. Hand-coded story HC1 (from Cox & Ram, 1991)

guestion, however, after it no longer can proceed due to the lack of additional information.
S3 posits an arrest scene that reminds Meta-AQUA of an incident in which weapons were
smuggled by terrorists; however, the sentence generates no new inferences concerning the
previous anomaly. Finally, S4 causes the original question generated by S2, “Why did the
dog bark at the luggage?” to be retrieved. Instead of revealing the anticipated threatening
situation, however, S4 offers another hypothesis: “The dog detected drugs in the luggage.”

At this point, the system has detected an explanation failure, and so it suspends the
performance task. Until now, all processing was first-order reasoning about the story using
first-order knowledge about the domain of criminal activities. Learning involves second-
order reasoning about the prior, faulty story-understanding effort using second-order
knowledge about failures and about the processes in the first-order task. Introspective
learning must be able to represent the processes that detect the anomalies in the story, that
generate explanations, and that verify the explanations once made.

Meta-AQUA uses a case-based approach to explain its reasoning failures (i.e., per-
form blame assignment). The system characterizes the reasoning error as an expectation
failure caused by the incorrect retrieval of a known explanation (“dogs bark when threat-
ened by objects,” erroneously assumed to be applicable), and a missing explanation (“the
dog barked because it detected marijuana,” the correct explanation in this case). During
blame assignment, Meta-AQUA uses this characterization as an index to retrieve an abstract
Meta-XP (IMXP) that is applied to a trace of the reasoning (TMXP) that produced the fail-
ure. This structure then aids the system in posting a number of learning goals that, if
achieved, will modify the system’s BK so that similar errors are not repeated in future epi-
sodes. The modifications are a change of the dog-barking definition to remoarithe
mate-object constraint, a generalization of the new explanation, and a mutual
reindexing of the new explanation with respect to the erroneous threaten explanation.
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The explanation failure was a common occurrence when learning about a new
domain. When a concept is being learned, it may be overly specialized. Slight variation
on the concept will cause the system to try to explain it, but without experience with the
concept, the system may generate an inappropriate explanation. The proper explanation
may not be known because the situation is novel. Much of the power of the IML method
comes from a library of such common patterns of reasoning failure.

2.1.2 A Baffling Situation

After processing the previous story, Meta-AQUA's BK contains two explanations for
why dogs bark: the memory contains an explanation for dogs that bark when threatened
(indexed bydog-barks-at-animate-object ) as well as the explanation for dogs
that bark because they detect contraband (indexetbhybarks-at-container ).
Meta-AQUA is then given a second story (Figure 12).

S1: The police officer and his dog entered a suspect’s house.
S2: The dog barked at a pile of dirty clothes.

S3: The police officer looked under the clothes.

S4: He confiscated a large bag of marijuana.

S5:The dog was praised for barking at the occluding object.

Figure 12. Hand-coded story HC2 (from Cox, 1994b)

Although the initial sentence, S1, causes no unusual processing, the second sentence,
S2, is interesting to Meta-AQUA because the system has recently changed its concept of
dog-bark . The system therefore poses a question to ascertain the reason the dog barked.
Unfortunately, because it is barking at neither an animate object nor a container, no XP is
retrieved to produce a cause for the event. The question-answering process is subsequently
suspended because of the impasse, and the question is indexed in memory. Meta-AQUA
uses an opportunistic strategy of waiting until the story provides further information before
resuming the process.

Sentence S3 causes the system to postulate a possible causal link between S2 and S3
simply because of their temporal relation; however, no evidence directly supports their

11. Section 8.4.2, “Indexing,” starting on page 192, describes the implementation of the indexing
scheme used to generate indexes such as these.
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association. S4 reminds the system of a case in which contraband was confiscated. The
system thus infers that the suspect was most likely arrested. Finally, S5 causes a reminding
of the earlier question about the dog barking at the pile of laundry. The reasoning that was
associated with this previous question is resumed. The system also infers a causal relation
from S5. Thatis, although the sentence does not explicitly assert it, Meta-AQUA concludes
that the dog’s detection of the marijuana caused the dog to bark in the first place. As a
result, this conclusion answers the original query.

Reviewing the trace of processing that led up to this conclusion, Meta-AQUA charac-
terizes its condition as being “baffled;” that is, it could not explain why the dog barked and
instead just “drew a blank,” and now it has inferred one. The system retrieves an IMXP
based on this characterization, which again helps it explain its reasoning failure. The IMXP
is a declarative representation of memory retrieval failure. The system is not able to deter-
mine a priori whether an explanation actually existed in memory that it could not previ-
ously recall, or whether it lacks the knowledge with which it could have produced the
explanation. It thus poses an introspective question about its own IMXP, “Does such an
explanation exist in memory or not?”

The answer to this question is obtained by going ahead and performing a generaliza-
tion on the inferred explanation (producing the XP “dogs generally bark when detecting
contraband”), indexing it by the context in which the system inferred the explanation
(“dogs barking at piles of objects”), and then watching for a similar explanation in memory
when it stores it. Itthus finds at storage time the explanation produced by the previous story
(from Section 2.1.1) and must backup from the strategy the system had originally intended.
So now the system generalizes the two explanations with respect to each other. It thus pro-
duces a better explanation than either the inferred one or the one from the previous story:
dogs bark at objects that hide contraband, not simply at containers. So that these types of
explanations will not be forgotten again, it indexes the new explanation by potential hiding
places.

Like the “common contradiction” example, this second example illustrates another
typical explanation failure. When novices are learning about new phenomena, they often
forget the explanations generated by previous experiences. It takes a few times to see a new
behavior before the learner understands the purpose of the behavior and conditions under
which explanations of the behavior apply. It is these kinds of abstract patterns of failure
(contradictions and baffling situations) that comprise the integral pieces of knowledge that
a content theory must represent and with which the cognitive processes involved in intro-
spective learning will use to construct a learning strategy.
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2.2 Knowledge and Process

Although differing in technical terminology, many researchers have made the distinc-
tion between knowledge and process in terms of the division between representation and
the transformations on such representations. Notwithstanding the insights of previous the-
ories, we claim that a content theory is not merely a logical description of the domain under
consideration, and the process theory is not simply an enumeration of the kinds of infer-
ences that can occur in such domains. Instead, the theories provide a declarative represen-
tation of those aspects of the domain that are salient and teleologically useful to process
transformations and a vocabulary with which to express such representations. Moreover,
in an introspective theory of learning, the content of knowledge includes a declarative rep-
resentation of the cognitive processes themselves because, as illustrated in the previous sec-
tion, a learner must be able to represent and explain how processes fall, if it is to learn from
its mistakes. In IML theory, both the content theory and the process theory have two parts:
One part explains cognition in the performance task (story understanding) and the other
part explains cognition in the introspective task (learning).

The division between knowledge and process is a common one. In computer science,
a significant division between data models and algorithms exists, both of which are consid-
ered fundamental to a principled understanding of computation (Aho & Ullman, 1992). A
data model is the abstract representation of objects and operations, whereas, algorithms
represent structured specific computational details for manipulating these data. For exam-
ple, an array is a data model of linear sequences of like elements. The operations consist
of functions to access or store a given element. Algorithms exist to sort the elements in an
array. This separation is much like the division between knowledge and process (inference)
in artificial intelligence. There is a difference between the representation of the objects and
events (operations between objects) and the processes that operate on these representations.

Newell (1982) made a similar distinction when separating knowledge-level theories
and symbol-level theories. Atthe knowledge level, agents make decisions according to the
principle of rationality. They act when they possess knowledge that such actions will
achieve their goals. However, the knowledge that agents use to determine what action to
follow can be separated from the process that is used to actually determine such*ctions.
Thus, all processes exist on the symbol level that is a lower level of abstraction. Only at the
symbol level do knowledge-level abstractions assume a computational reification and spec-
ification.

McCarthy & Hayes (1969) used this same division when speaking of the difference
between epistemology and heuristics; that is, between the representation of the knowledge
and inferences used with such knowledge, and the implementational details used to instan-
tiate such representations and inferences. This is also reminiscent of the philosophical dis-
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tinction (Ryle, 1949) between “knowledge that” (i.e., declarative knowledge in Al terms)
and “knowledge how” (i.e., procedural knowledge). However, with the case of the Meta-
AQUA examples, the relevant division is a peculiar one and the separation not as clear. The
reason for this condition is that, because the system uses a second-order introspective pro-
cess to learn about the first-order reasoning processes, the critical data is a representation
of the first-order processes themselves. In the theory we describe in this thesis, both the
content and process theories have first-order and second-order components. Although both
the representations and the processes are thus convoluted, a major goal of this thesis is to
unravel the content and process descriptions in a comprehensible fashion.

In any case, the representation of knowledge is a very difficult task, even in first-order
cognitive theories. Early work in logic demonstrated that some peculiar problems exist
when representing knowledge in a general manner (Moore, 1977). Foremost, the term “to
know” cannot be treated as a standard logical predicate of theKoiow (John, P). In
ordinary logic, one can substitute inner terms that are equivalent in truth without changing
the overall truth values of the outer expressions. This property is a&feckntial trans-
parency Thus, if both A and B are true, substituting any true term for either A or B will
not change the truth value of the expression B itself. However, the second term of the
above predicat&now is referentially opaque. For example, it may be true that “If it rains,
then John’s car will get wet.” Now when given that it is raining, it is necessarily true that
John’s car will get wet. But alternatively, if it is true that “John knows that if it rains, then
his car will get wet” and it is also true that it is raining, one cannot necessarily infer that
John knows that his car is wet. This disparity is equivalent to the logically correct sequence
A - B; A, therefore B versus the incorrect inferen&amow (John, A — B); A, therefore
Know (John, B).

Another important contribution of the logic community is their early emphasis upon
declarative representation (see the discussion in Birnbaum, 1991). But for the logicians,
building a representation means to design logical inference mechanisms or axiomatizations
for particular verbs or actions such as “to use” (McCarthy & Hayes, 1969) or “to know”
(Moore, 1977). They worry about the syntax of well-formed formulae (e.g., the constraints

12. Note that this assertion is not without its critics. Palmer (1978) argues that knowledge and pro-
cess are interrelated because the representation is dependent upon the purpose for which it is used.
This functional dependence is also echoed by Schank, Collins & Hunter (1986) in the context of
inductive-category formation. Although for the purpose of engineering a theory, we claim that the
separation has its benefits when considering knowledge in an quasi-independent fashion, we also
recognize the intertwined relations between the two components. These relationships will be
made explicit where possible. See, for example, the discussions in Section 2.3. Note, however,
that strong proponents of the separation of knowledge and process do exist, such as Tulving (1994)
who claims that “there is no direct correlation between kinds of knowledge and forms of knowing,
between representation and process.” (p. vii)
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on logical connectives), the semantics of correspondence (how terms can be mapped to the
real-world or possible worlds), and above all else, absolute consistency. Although gaining
logical precision with such an agenda, they pay the price of painstaking expressiveness and
brittleness given the need to avoid inconsistency at all costs. When it comes to representing
concrete objects and events in particular domains with particular tasks they have less to
say.13 Moreover, within the predicate logic, formulae have the aforementioned property of
referential transparency. Thus, logicians perhaps are tempted to ignore the representation
of terms that refer to objects and events simply because, as long as the truth value remains
constant, it does not matter what the content of the term may be.

Alternatively, when a researcher wishes to build a content and process theory of rep-
resentation, the individual begins with the domain. Analysis of the domain determines the
significant processes within that domain and those features of the domain that must be rep-
resented to support these processes. The content representation provides an ontological
vocabulary of terms with which to signify the meanings, the relations between the terms,
and a syntax for combining the terms and making inferences from them. Indexing vocab-
ulary specifies those features under which representations are stored and retrieved from
memory (see Birnbaum, 1989). The process theory provides a functional account of those
cognitive processes that produce the behavior in the domain. The overarching goal is to
provide a interlocking language for representing concrete experiences and behavior, rather
than logical assumptions or deductions. The most interesting challenge of IML theory is
not just to produce a process and a content theory concerning the task of story understand-
ing in a domain of criminal activities, but to produce two additional theories that apply to
the task of introspective learning in the domain of story-understanding failures.

2.3 The Domain of Story-Understanding Failures

A typical cognitive theory accounts for a specific class of intelligent tasks in a partic-
ular domain of effort requiring reason. With respect to the first-order task of story under-
standing and the domain of drug-smuggling from the Meta-AQUA examples (Section 2.1),

a content theory provides a language that adequately describes specific objects and events
in the world of smuggling and general planning for criminal activity; whereas, a process
theory specifies the mental processes involved in story understanding such objects, events,
and plans. That is, the content theory of story understanding is a first-order theory of how
humans mentally represent the important events and characteristics of the story when read-

13. But as exceptions, see the work of Hayes (1979/1992) and then ARPA's knowledge sharing effort
that uses the predicate logic as a starting point from which to formalize a number of domains (e.g,
Gruber, 1993; Patil, Fikes, Patel-Schneider, Mckay, Finin, Gruber, & Neches, 1992). An internet
URL on the subject ibttp://www-ksl.stanford.edu/kst/kst-overview.html .
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ing, and the process theory describes the important mental manipulations of these represen-
tations that produce a coherent interpretation of the story. The process theory of
understanding explains and predicts the behavior of agents engaged in reading about crim-
inal behavior, such as inferring goals and plans of the actors involved in the story (described
with the content theory), and incorporating such inferences into the overall interpretation.
When explaining unusual events in a given story (such as dogs barking at inanimate
objects) the process theory enumerates the kinds of reasoning performed by the reader
when given a representation of the prior events in the story contained in the FK and the gen-
eral and specific knowledge in the reader’s BK. Moreover, the theory describes the trans-
formations necessary to generate an explanation and would specify the connectivity
between cooperating processes. The content theory of story understanding describes those
features and relationships of the domain in need of represenithému enumerates a
vocabulary with which to express such representations. The objects in the content theory
(domain knowledge of story understanding and smuggling) and processes in the process
theory (the transformations on such knowledge) are thus related, but mostly distinct.

As shown in Figure 13, when reasoning about a story, the reader develops representa-
tions for the events that produce state changes in the characters and objects of the story.
When explaining a novel or unusual action in the story, the reasoner performs mental
actions or events that produce new interpretations of these representations. Note that both
Story-Reprl and Story-Repr2 are mental representations for the state changes in the
story. For exampleStory-Reprl might be the representation for the dog barking at the
luggage, whereaStory-Repr2 might be a modified representation explaining why the dog
did such an act. The content theory of story understanding provides the language for these
representations (e.g., scripts, cases, and XPs), while the process theory of story understand-
ing presents a description of the processes that transform them (e.g., script processing,
anomaly detection, and explanation).

When adding a second-order theory of introspective learning, however, the content
and process theories become more intimately related. The content theory of introspective
learning must be able to represent the events and state changes that the process theory of
story understanding describes. The process theory of introspective learning is a theory of
how these second-order representations are changed. Now, if the system is to process mem-
ories of its own processing, then a language is needed with which to represent the process-
ing itself. During reflection, the processes transform and operate upon descriptions of
themselves. So, because the external domain of this thesis is story understanding, the pro-
cess theory must specify the cognitive processes that account for understanding and expla-

14. Equally important, a content theory implicitly, and sometimes explicitly, determines those fea-
tures and relationships which ametworth representing. It therefore provides a computationally
tractable level of abstraction, rather than an exhaustive, descriptive inventory of the object domain.



34 0O 2.3 The Domain of Story-Understanding Failures

[ Statel o \ “ ; : Story \‘ ; : Introsp \
Charactey Reprl Reprl
Story Mental Mental
Event Event Event
State2 of Story Introsp
\ Charactef )k \ i Repr2 / k \ i Repr2 /

The Story Reasoning about the story Introspective reasoning about
events and objects story understanding events

Figure 13. Multilevel representations and processes

nation (as would any standard theory of understanding). In addition, it must be able to
represent those features crucial to improving the performance. In a story understanding
system that learns, it must therefore be able to declaratively represent failure and how the
system responds to failure (i.e., those features most important to improving the perfor-
mance of the system). But, moreover, the content theory of introspective learning concen-
trates on declarative representations of these comprehension processes; the content theory
of criminal agents and events is secondary.

Again looking at Figure 13, when reasoning about a explanation failure, the learner
develops representations for the mental events that produce state changes in the interpreta-
tions of the story. When explaining a reasoning failure, the reasoner performs mental
actions or events that produce reasons for the failure. Note thatritotisp-Reprl and
Introsp-Repr2 are mental representations for the state changes in the story-understanding
process. For exampl&#trosp-Reprl might be a trace of the reasoning that produced the
conclusion that the dog barked because it was threatened, whetesp-Repr2 might
be an introspective explanation for why the reasoninbpirosp-Reprl failed. The con-
tent theory of introspective learning provides the language for these representations (e.g.,
TMXPs and IMXPs), while the process theory of learning presents a description of the pro-
cesses that construct a learning strategy.

The process theory within the IML framework contends that the performance task of
story understanding consists of those processes depicted in Figure 14. An understanding
goal is input into an analysis process that determines whether anything unusual exists
within the story input. If so, it passes the unusual input to the next phase for further pro-
cessing; otherwise, it skims the input. The anomaly is given to the explanation generation
process, which finds a relevant explanation strategy from the system’s memory. This pro-
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cess then generates an explanation and passes it to a verification phase. The explanation,
along with a goodness of fit] is then returned as a result, or, if the plan is insufficient, the
problem is suspended and the process restarted when additional information is present.

The content theory of story understanding provides the vocabulary used to describe
stories of drug-smuggling and terrorist activity as perceived by a reader. It contains both
domain-independent information (such as the facts that stories have main actors and events
have results and preconditions) and domain-dependent facts (such as the typical goals and
plans of persons who use coercion and stealth) and other causal features and relations rel-
evant to understanding actors and actions in the stories. To reason explicitly about the pro-
cess of explanation and story understanding, however, a system must be able to represent
not only the final result of comprehending the story, but it must also possess a way of
recording a trace of the processes that produces the explanation. It is not sufficient to sim-
ply annotate the final explanations with features signifying what occurred during the under-
standing proces® Thus, a content theory of introspective learning (i.e., of story-
understanding failures, or more generally, of reasoning failure) provides the vocabulary
used to describe these traces and the representations of knowledge used to explain process
failures.

Instead of simple annotations, it is desirable to create a chain of structures or nodes,
one for each process in the planning effort. Each node records the input and output, the
bases and context for its results, and a link to the following process (details are presented
in Section 4.4.1). In this way the system can represent, for example, an anomaly analysis,
an explanation generation, and a verification, producing an explanation that did not work,
then a reformulation of the question followed by another series of analyze, generate and
verify steps. A benefit of producing this record is that it is also available for use by subse-
guent processes in the planning mechanism. By recording the explanation process and rep-
resenting it explicitly, far more information is available with which to understand the
current story, as well as to improve interpretation of future stories.

The approach this document will take, then, is consistent with the above analysis. It
will develop a specific model of reasoning, along with a representational language and a
knowledge taxonomy for expressing instances of reasoning and reasoning failure. Once
expressed in some declarative, inspectable form, a system can process instances of its own

15. The implementation actually returns either verified or not verified, rather than a qualitative fit.

16. One reason for precluding such an approach is that the process of explanation is recursive; that
is, an explanation may be generated by an arbitrary number of passes through the explanatory
loop. For example, an explanation may have preconditions that themselves require explaining.
An annotated explanation is therefore insufficient to distinguish between the various activities at
similar points in the process.
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Figure 14. Question-driven understanding
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reasoning in much the same manner as it processes input from the world. This enables a
learner to explain its failures, decide what to learn, and then construct a learning strategy.

2.4 Prolog to Parts Two and Three: The content and the process

Because of the peculiar relationship between content theories and process theories
when explaining introspection, the material will necessarily be distributed somewhat
throughout the following chapters, rather than occurring in strict, sequential order.
Although most of the material concerning content theories and representations will come
first, some of the representation of processes must await the chapters explaining the pro-
cesses before full details can be presented. On the other hand, if the chapters on process
preceded that of content, then some of the material would necessarily have to wait for the
section on representation because some of the processes crucially depend on the structure
of the representations. So where necessary, the following two parts of the thesis will pro-
vide explicit pointers to provide the interested reader with details concerning the relation-
ship between the content and process theories. Forward references from Part Two (A
CONTENT THEORY OF MENTAL REPRESENTATION) will point to details in Part
Three (A PROCESS THEORY OF LEARNING AND INTROSPECTION), and backward
references will provide the inverse function.
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Part Two

A CONTENT THEORY OF MENTAL REPRESENTATION
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CHAPTER Il

SYMPTOMS AND CAUSES OF FAILURE: THE CONTENT

The general idea of failure-based understanding is that examining how we make com-
parisons between our expectations and what actually occurs is the key to our knowl-
edge of the understanding process itself.

[0 Schank & Owens (1987), p. 203.

Failure provides both human and artificial reasoners with strong clues when deciding
what needs to be learned (Birnbaum, Collins, Freed & Krulwich, 1990; Cox & Ram, 1994b;
Fox & Leake, 1995a; Hammond, 1986; Hayes-Roth, 1983; Kolodner, 1987; Pazzani 1990b;
Reason, 1992; Schank, 1982; Schank & Owens, 1987; Sussman, 1975; Stroulia, 1994; Van-
Lehn, 1991b). One of the major goals of establishing a content theory of introspective
learning, therefore, is to provide both a general characterization of reasoning failure and the
potential causes of such failure in order to discover the nature of these clues. A sufficient
characterization of failure will categorize the kinds of cognitively salient symptoms that
signal to the reasoner that something worth learning exists. A sufficient taxonomy of the
causes of failure will include those factors that account for each symptom in enough detail
as to enable learning from them. The learner’s task, then, is to perform an explanatory map-
ping from symptom to fault, and thus, to determine what causes a particular failure. Such
explanalt;ons detail what needs to be learned by circumscribing the faults that must be cor-
rected.

17. This chapter’s position does not claim that all learning is guided by failure. Success contributes
to learning as well, but the impetus for learning resides entirely with failure in the theory of learn-
ing presented here. For alternative theories, see Siegler’s evolutionary theory of learning in which
the strategies, concepts, and rules that most successfully adapt under competition become associ-
ated to specific conditions (Siegler, 1991). See also Jones & VanLehn (1991) and VanLehn
(1991b) for an additional counter-view, but see Appendix A, “THE DEGREES OF FREEDOM
IN LEARNING” for a computational complexity argument for why failure may be preferred over
success in learning.
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Failure occurs in sundry ways: a seat belt malfunctions during an automobile crash on
a rainy evening; a nuclear power plant experiences an unscheduled release of radioactive
gasses; a student solves only 60% of the problems on a physics test correctly; a passage
from Dostoyevsky is misinterpreted by a reader; and, like Andrew from the Walnut Cove
cartoon (discussed in Chapter I, page 6), people hold incorrect expectations. But given
these situations, with what perspective should these examples be best interpreted? That is,
should the causes of failure be explained with reference to the external environment and
contingencies that bear on the reasoner or with reference to internal factors of the reasoner?

For example, is the reason that a person is injured in a car crash because the seat belt
fails or because the driver chose to drive too fast despite the rainy conditions? Do reactor
gasses become injected into the environment because of mechanical malfunctions, because
of poor design or because of operator failure? The position here is to focus upon failures
made by the reasoner and the causes internal to the reasoner, rather than failures caused by
external events and devices. Internal causes form the emphasis because this is the location
over which the learner has personal control of the situation. It does no good to explain a
failure in non-operational terms, if the goal is to improve performance (Owens, 1990b;
Ram, 1989; Ram & Leake, 1991); instead, the reasoner must evaluate internal decisions and
goals in order to change its mental world in the light of the situation and thereby to avoid
repeating the failure indefinitelf

All reasoning failures do not stem from incorrect reasoning, however. Often, itis a
lack of attention or reasoning that contributes to mistakes. For instance, Andrew’s failure
originated in the lack of a mental event; he did not remember it was Sunday. Moreover, he
was waiting for a bus that never arrived and so the external manifestation of the failure was
unusual; it was the lack of an external event. Failure is not always calculating a wrong solu-
tion. Indeed, many of the wrong answers on a student’s test may have been marked wrong
simply because they were left blank. Thus, errors come in two varieties: errors of commis-
sion and errors of omission.

Although past research has developed domain-independent taxonomies of failure
(e.g., Kass, 1986, 1990, specifies a taxonomy of failure during explanation and both Ham-
mond, 1989, and Owens, 19904, report a taxonomy of planning failures), much of this pre-
vious work is task dependent. To provide a content theory of introspective learning, this

18. Granted, this change in the internal environment may include new goals such as changing the
configurations of the external world so as to make planning or reasoning more efficient. For
instance, one may place paper filters in a location near the coffee machine in order to facilitate
plans for the brewing of morning coffee. Although attention to such interactions will be mini-
mized here, see Hammond (1990) for an approach to such task interactions and associated learn-

ing.
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chapter provides a taxonomy of reasoning failure that is both domain independent and, to
the greatest extent possible, task independent. After Section 3.1 presents a theoretical
model of reasoning based on the generation of expectations, Section 3.2 will analyze the
model to exhaustively enumerate the classes of failures implied by the model. Such classes
of failure constitute the failure symptoms a reasoner should be able to detect. Given these
classes of failures that systems or humans may perceive as symptoms, Section 3.3 taxono-
mizes the possible factors involved as causes of such classes of failure. The process theory
that specifies how a system can map from symptom to fault will be deferred until Chapter
VII (Section 6.2, “Blame Assignment: Explaining reasoning failure”). Instead, the current
chapter provides a content theory for representing failure symptoms and causes (faults)
used in the process theory, while the next chapter provides a formalism for representing this
content in declarative structures.

3.1 A General Model of Expectation-Driven Reasoning

Given an intelligent system, reasoning is performed upon the representation of some
input. Unlike the simple characterization depicted in Figure 15, the input is not just per-
ceived, but in addition, an attention mechanism filters the input as determined by the current
mental state of the reasoner. The crucial elements of the reasoner's mental state are the
goals and the expectations present in the reasoner’s memory. The filtered input, along with
the reasoner’s knowledge, goals and expectations, then determine some interpretation of
the input representation causing some additional goals and expectations. These conditions
present a rich context from which to detect a failure.

Figure 15. A reasoner’s input

The reasoner is not just interpreting input, either. Rather than passively perceiving
objects in the environment, an intelligent agent actively predicts future events surrounding
such objects. Moreover, an agent deliberately performs actions in the world. Reasoning
functions in support of efforts to understand the world and to achieve goals in the world.
But, the world model the reasoner constructs is not confined to the narrow band of the
present as determined by the current input; rather, the model spans the events in the imme-
diate past as interpreted by experience and generates expectations of what the world will be
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like in the immediate and far futures. Expectations enable the reasoner to be prepared for
the future. The reasoner can thus avoid anticipated failures by generating contingency
plans for them (Hammond, 1986, 1989). From the point of view of learning, however, the
most interesting and valuable expectations are those that are violated, because these types
of expectations provide the potential for improving the reasoner’s anticipate-and-avoid
behavior.

Thus, another fundamental purpose of forming expectations is to test the general lim-
its of knowledge, independent of particular goals of the moment. That is, agents generate
expectations to improve the boundaries of their knowledge: to retract those parts of the
boundaries that are incorrectly extended and to expand the limits where gaps exist. An
expectation represents a hypothesis or projection of current knowledge. When the hypoth-
esis is falsified or when the projection is violated, the potential for self-improvement exists.
One of the most basic mental functions, therefore, is to compare one’s expectations with
environmental feedback (or, alternatively, a “mental check” of conclusions). As a simple
model of this comparison operation, consider Figure 16. The reasoner calculates some
expected outcome and compares it with the actual outcome that constitutes the feedback.

Compare

Actual Expected

Figure 16. The basic comparison model

An outcomas defined broadly without reference to a specific task. @tpected out-
comecould be the result of either a problem-solving process or a comprehension process.
If it is a problem-solving process, the outcome could be in terms of a solution to a problem
specification. For example, a problem may be specified as an operational goal to solve an
eight-square puzzle. The solution is thus a series of transformations that end in the goal
state. If the problem-solving task is a planning task, the outcome is a plan of actions that
willaccomplish a goal. If the problem is a design specification, the outcome is the proposed
design that will satisfy the design function.
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Comprehension processes, on the other hand, attempt to predict and understand events
in a stream of input. Therefore, the outcome would be an interpretive understanding of a
system’s input, such as a reader’s text comprehension of successive sentences or an art
critic’s visual comprehension of a painting. Both text and art can violate the observer’s tacit
expectations concerning what will be observed. In the drug-bust example from Section
2.1.1 for instance, the Meta-AQUA system implicitly expects dogs to bark at animate
objects, even though it did not generate that expectation prior to encountering the sentence
containing a dog that barked at luggage. To satisfy the comprehension task in complicated
or unusual input, questions may be raised and an explanatory process may be ivoked.
Hence, the expected outcome will be an explanation (Ram, 1991, 1994; Wilensky, 1983).
That is, the reasoner consciously anticipates a certain explanation to be true of some object
or event in the input which is to be explained. When these explanations prove incorrect,
such as the explanation that the luggage threatened the dog, explicit expectations can be
violated as well.

In addition, the specific mental process that forms an expectation (expected outcome)
is not determined priori. The process may be either an inferential process such as deduc-
tion, or it may be a memory process that retrieves an expectation from memory. For
instance, to understand a story input, the reasoner (reader) may retrieve from memory a
schema with which to interpret the story fragment.

Finally, theactual outcomenay originate either internally or externally. Thatis, feed-
back may come from the environment (via perceptual/interpretive processes, of course), or
it may emanate from a mental process such as an arithmetic check of a mathematics com-
putation. In all such cases, the actual outcome is compared with the expected outcome in
order to decide whether or not a failure exists in reasoning. If such a failure is detected, the
reasoner attempts to explain the failure and to learn from it.

3.2 Types of Reasoning Failure

A reasoning failuras defined as an outcome other than what is expected (or a lack of
some outcome or appropriate expectation). Such a definition, in light of the basic model
above, presents a number of implications. Indeed, a logical matrix can be drawn depending
on the values of the expected and actual outcomes. The expected outcome may or may not

19. The relationship between question asking and explanation is not always obvious. Sometimes the
expected outcome is described as an explanation of an anomaly, while at other times the outcome
is described as the answer to a question. The relationship in comprehension tasks is that anomalies
cause questions to be posed of the form “Why did some event occur in the input?” The answer is
an explanation that answers this question.
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have been produced; thus, the expected outcome node, E, either exists or does not exist.
Also, the actual outcome node, A, may exist or it may not. These values define a truth table
as shown in Table 2.

Table 2: Logical truth table for reasoning model

[E [E
expectation exists expectation does not exist
A Contradiction Impasse
actual exists
False Degenerate
actual does not exist EXpeCtatiOI'] (N/A)

3.2.1 Four Basic Cases

Given this analysis, four basic conditions exist: contradiction, impasse, false expecta-
tion, and one degenerate case. The following four subsections will examine each in suc-
cession. Subsequent sections will introduce two more failure types (surprise and
unexpected success).

Q6% What kinds of reasoning failure exist?
Ans6: Contradiction, impasse, false expectatio
surprise, and unexpected success.

=}

a. The numbering on the questions in boxes throughout the text refer to the subgoal struc-
ture in Figure 9 on page 14.

3.2.1.1 Contradiction

If a system incorrectly understands some input, or solves some problem incorrectly,
so that its expected interpretation or solution differs from the actual state of affairs (given
some criteria or feedback), then a failure has occurred. This is a very conventional notion
of failure and will be termed aontradiction Contradictions are errors of commission
since the reasoner generates an specific expectation that is subsequently proved false.

An obvious instance of a contradiction would be for a student to solve a physics prob-
lem incorrectly because of incorrect or missing assumptions. As a less obvious example,
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another student may be told that the infinite series999@quivalent to 1.0 (which is true).

The assertion contradicts the student’s naive concept of numbers and the normal expecta-
tions arising with regular decimal series. Although this is not an overt error of commission
as is the first example, it nonetheless represents the holding of an incorrect belief that con-
tradicts a correct statement. Rather than questioning the statements of the teacher (i.e., the
validity of the input), however, the good student will notice the inconsistency, pay closer
attention to the lesson, and hopefully, question the validity of the student’s own concepts
and beliefs.

3.2.1.2 Impasse

An impassas an error of omission defined as either a failure of a process (memory or
inferential) to produce any outcome or as the condition under which no process is available
to generate an outcome. If a reasoner is baffled when attempting to remember a fact or
solve a problem, an impasse is said to have occurred. Andrew’s episode of forgetting that
it is Sunday is an example of a memory impasse. “Drawing a blank” on a brain-teaser is a
problem-solving or inference example of impasse.

In the Soar model of general cognition, the impasse is a pivotal concept. Newell
(1990) categorizes four types of impasses within the Soar architecture and enumerates
them: tie impasse, no-change impasse, reject impasse, and conflict impasse. Events during
Soar’s decision cycle lead to each of these cases. For example, a tie impasse results when
two or more actions are suggested by productions without preferences for one over the rest.
A no-change impasse results when productions do not produce a significant change from
the previous decision cycle. Each of these impasses will result in new subgoals to pursue,
but are not explicitly considered failures. The taxonomy originates from an exhaustive
analysis of the Soar decision cycle and are thus specific to the Soar architecture (or to sim-
ilar decision control structures). Our impasse failure type is most similar to Soar’s no-
change impasse. We have not dealt with conflict resolution is any sophisticated way at the
current time.

3.2.1.3 False expectation

False expectationsccur when a reasoner expects an outcome that never occurs or is
impossible. For example, a spectator may expect to see the launch of the space shuttle
Endeavorwhile at Cape Canaveral, but engineers abort the launch. The spectator experi-
ences a false expectation (perhaps even depression) when the launch time comes and goes
with no takeoff. In the Walnut Cove cartoon, Andrew expects that the bus will come, but it
does not. A novice theoretical computer scientist might expect that she has a solution to
the “Halting Problem 2% not knowing that Turing proved many years ago that no such solu-
tion is possible.
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3.2.1.4 The degenerate case

The cell marked as degenerate corresponds to the condition where a reasoner has
formed a question or problem, has not generated an answer or solution, and has not been
provided one by the environment. Despite the fact that a reasoner may consider this con-
dition and dwell on the fact that no progress is being made in the reasoning, the case is not
classified as a true failure. Instead, the problem or question is in either the state of active
processing or of current suspension. Until either a solution or answer is generated or until
one is provided by an external source, the failure cannot be said to haveZrizature is
detected in response to a comparison or after it is determined that a result is not really pos-
sible (i.e., false expectation). Therefore, this case will be considered degenerate in the
matrix.

3.2.2 Extending the Analysis

The four cases above are sufficient to cover most of the model of Figure 16 (p. 44) if
time is not considered in the equation. However, by considering that the reasoner’s
expected outcome and the actual outcome (the nodes E and A) may occur in two different
orders, a new dimension emerges. A reasoner may determine an expected outcome in
advance, or through hindsight given some feedback, may determine that one should have
been produced previously. Consider Table 3.

Table 3: Expanded table for reasoning model

-E - E'then A Athen-E

expectation does not exist;|  expectation does not exist;
expectation exists feedback after knowing feedback before knowing
expectation does not exist expectation does not exist

A Contradiction Impasse Surprise

actual exists
False Degenerate Degenerate
actual does not exist EXpECtation (N/A) (N/A)

20. The problem is to predict whether an arbitrary program will successfully return control or
whether it will enter into an infinite loop.

21. Itis arguable that if a reasoner is reminded of a long outstanding problem, in effect, it could be
called a failure. Moreover, if time constraints are included in the analysis, then this case may also
be considered a failure. For example, if a solution is not produced by a student during an exam
within a certain time increment, then it is marked wrong and no feedback is presented by the eval-
uator.
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3.2.2.1 Surprise

When a system has no explicit expectation, yet an event occurs which should have
been expected, thensairpriseexists. In these cases, the reasoner considers the node, A,
before considering the existence of E; that is, before the reasoner realizes that the expecta-
tion, E, should have been generated. Using hindsight, it is up to the reasoner to recognize
that there should have been a problem to solve or that the reasoner should have tried to
remember to do something.

For example, a robot may never infer that it needs to refuel its vehicle despite the fact
that it has viewed the gas gauge steadily drop (example borrowed from Owens, 1991).
When it eventually runs out of gasoline, it is able to deduce that the incident stems from
earlier failure to formulate the refueling problem and subsequently solve it by planning to
obtain the resource.

3.2.2.2 Unexpected success

Finally, if one considers that the comparison operation actually produces a value, then
this analysis produces another failure type. The value of the comparison is some relation
between the expected outcome, E, and the actual outcome, A. In Figure 17, this relation is
marked as the node R. When reasoning is successful, then this value should of course be
equality; that is, the relation, R, in Figure 17 should be the “=" value. When reasoning is
unsuccessful, this value will be the™value.

Expected

\Z

Actual

Figure 17. The extended comparison model

Reasoners are able to make predictions about this value (i.e., predict whether they will
be successful at a future reasoning task). The normal condition is that all reasoners expect
to succeed in their reasoning goals, but this is not always the case. So the expectation may
actually be a prediction of that value. To be specific, the reasoner expects the value of E to
be something other than A, the actual outcome. Thus, they expect R to b€’ thafe.



50 O 3.3 Causal Factors in Reasoning Failure

This condition expands the table a final time, producing Table 4.

Table 4: Final table for reasoning model

E S
5:“.7: ’ | —EthenA A then -E
expectation 1s Opposile o expectation does not exist; [  expectation does not exist;
) ) actual; i.e., expects feedback after knowing p XIS,
A Contradiction Unexpected Impasse Surprise
actual exists Success
False Degenerate Degenerate Degenerate
actual does not Expectation (N/A) (N/A) (N/A)
exist

If a reasoner expects that it will not be able to compute any answer or the correct
answer, but it does nonetheless, then another failure class exists calleexqected suc-
cess Reasoner are obviously aware of their comparisons if performed with deliberation,
so the reasoner may actually anticipate the accuracy of their predictions. Therefore, if a
reasoner expects that the comparison will show inequality, then the reasoner is anticipating
that performance will not be successful. That s, the reasoner expects to fail in a future rea-
soning task, yet succeeds nonetheless.

Although one normally would consider this type of a failure to occur during problem
solving or planning, it may also happen during memory performance. Metamemory studies
show that humans can predict whether or not they will remember items well. See, for exam-
ple, the experimental studies of feelings-of-knowing, i.e., judgements of future recognition
of an item that was not recalled during some memory test (e.g., Krinsky & Nelson, 1985)
and judgements-of-learning, i.e, judgements at rehearsal time as to future memory perfor-
mance (e.g., Nelson & Dunlosky, 1991). Therefore, an agent may predict that memory will
fail on a given item when, in practice, retrieval succeeds. Like the representation of con-
tradiction, the agent expects one outcome (failure), yet another occurs (success) during an
unexpected successes.

3.3 Causal Factors in Reasoning Failure

The purpose of the preceding material is to enumerate the kinds of failure a system
should be able to anticipate during reasoning. These types of failures (contradiction,
impasse, false expectation, surprise, and unexpected success) constitute the salient features
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during reasoning that an intelligent should be able to detect and then explain. Here we enu-
merate the types of causes from which a system has to choose when constructing such
explanations of reasoning failure. The task of explaining failure is to map members of one
taxonomy (failure symptoms) to members of another (failure faults or causes).

To organize the possible sources of reasoning failure, it is again necessary to consider
reasoning in terms of general assumptions. Clearly, reasoning is intentional and thus, ori-
ented toward the pursuit of specific goal states. Moreover, we assume that reasoning uses
knowledge to process perceived input from the environment in order to create a represen-
tational state of the world and to achieve these desired goals. Reasoning processes trans-
form specific mental states into new mental states. Some of these states are knowledge
states representing facts and experience, some are perceived states representing conditions
in the external environment, and some are goal states representing desired new states in the
environment. Based upon such representations, reasoning produces decisions that result in
actions that change the world, thus producing new environmental states that can subse-
guently be input or perceived by the reasoner in order to compare the goal to the actual state
of affairs in the world. Such decisions result in new internal actions that may change the
expectations present in working memory that bias later input. Given these assumptions,
reasoning will fail if any of the constituents of reasoning fail; that is, if a problem exists
with the reasonerknowledgegoals mentalprocessesor input from theenvironment

3.3.1 Selection Factors

In addition, not only can these components be a likely cause of error, but the ways in
which the reasoner selects them can also be a source of error. Non-selection is an important
and often overlooked factor in the analysis of failure. It is a result of poor memory organi-
zation rather than incorrect memory content. That is, failure can occur, not because an
agent does not know some fact, but because the agent cannot retrieve the fact when needed.

Computer memory is sometimes viewed as a virtually error-free medium in which
retrieval of data is performed by simple fetch operations. As computer memories grow,
however, brute-force search for the address to perform the fetch becomes increasingly
intractable. Memory indexing is added in order to make memory retrieval more efficient.
A memory-indexing mechanism is a trade-off between time to search and accuracy of
retrieval; although efficiency is gained, indexing schemes risk not finding the proper infor-
mation. Thatis, given some query, a computer may not find or be able to select a knowledge
item, a suspended goal, or a reasoning strategy at &lbm the user’s point of view, it can
“forget.”

The indexing problem(Domeshek, 1992; Kolodner, 1984, 1993; Owens, 1993;
Schank, 1982; Schank & Osgood, 1990) is that of choosing cues, or features in an input, to
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be used as indexes for retrieving from memory the knowledge structures necessary to pro-
cess an input. The converse problem, isghablem of forgettindCox & Ram, 1992a). If

the cues are not chosen with care during retrieval time, or if the indexes are not chosen well
during encoding, the reasoner may not recall a memory structure when it is needed. The
forgetting problem is to reorganize memory and the indexes by which memory is accessed.
Because reasoning failures may occur due to faulty memory organization, as well as

because of faulty reasoning components or faulty knowledge, the selection or retrieval of

knowledge plays an important role in the determining of cause of failure.

3.3.2 A Taxonomy of Reasoning Failure Causes

Table 5, “Detailed taxonomy of causes of reasoning failure,” presents a matrix for
relating the causal factors that bear on the determination of blame. Asindicated at the head-
ing in the uppermost row, the table is divided into four major causal categories. Failure
could stem from the knowledge states with which the reasoner makes decisions, goal states
generated during reasoning, the reasoning processes used to achieve the goals, or the input
that represents the environment and from which feedback is provided. In each of these cat-
egories, the relevant item may be either missing or Wr%?n'mat IS, omission errors occur
when a necessary component is not present (this is represented by the “Absent” row in the
table); whereas, commission errors occur when an incorrect component is present (this is
represented by the “Wrong” row in the table). In addition, because knowledge is imbedded
in a memory and must be retrieved before it can be used to pursue a goal, an error of omis-
sion can result from non-selection, rather than simply nonexistence. If an item is correct,
then that category contributes nothing to the faifdre.

For each dimension represented by a column in the table, a general characterization
of it also exists in the last table row. These will be explained as entries in the table are dis-
cussed. The subtable suggests that similar causal factors are attributable to perceived
agents (see Section 3.3.6). Although Table 5 organizes many factors in a coherent fashion,
the task of identifying which of the factors are responsible for blame is clearly a complex
one, especially when multiple causes exist.

22. Note that to characterize a componerihasmpletds actually a diagnosis of a component miss-
ing at some finer level of detail. Incomplete is therefore not a row of this table.

23. One of the targets of this research has been to produce representations for the cells of Table 5.
Explicit Meta-XP representations are provided in Section 4.4, “Meta-Explanation Patterns,” start-
ing on page 79. The representations of the various cells are chained into composite structures that
capture typical failure patterns that occur during reasoning.
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Table 5: Detailed taxonomy of causes of reasoning failure

Knowledge States Goal States Processes Environment
Domain Knowledge Goal Goal Processing | Strategy Inout Input
Knowledge Selection Generation Selection Strategy Selection P Selection
Novel Missing Missing Forgotten Missing Missing Missing Missing
Absent] Situation Association § Goal Goal Behavior Heuristic Input Context
Wrong Incorrect Erroneous [ Poor Poor Flawed Flawed Incorrect
Domain Association § Goal Selection Behavior Heuristic Noise Context
Knowledge
Right Correct Correct Correct Correct Correct Correct Correct Correct
Knowledge | Association | Goal Association | Behavior Choice Input Context
Theory Memory Desires Opportunity Action Control Perception Attention

External Agent

External Objects
Physical Causation
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For three of the columns: domain knowledge; goal generation; and processing strat-
egy, a natural dualism is present in their interpretation. For example, strategies represent
both mental and physical actions. Thus, there exist mental actions such as operators for
mental arithmetic (e.g., integrate by parts in the calculus domain of the LEX program; see
Mitchell, Utgoff, & Banerji, 1983) as well as physical actions like robot navigation sche-
mas (e.g., avoid-static-obstacle; see Arkin, 1987). For each type of action, associated heu-
ristics are used by a reasoner to choose when to apply the action. In a similar fashion, there
is a physical and mental manifestation of goals and domain theories. Thus, an agent can
have mental reasoning goals, such as “remember where | parked the car,” and can also have
goals to achieve states in the world, like “be at my car’s locatféiikewise an intelligent
agent can have knowledge about the world as well as self-knowledge. Although these
nuances are important distinctions to observe, as discussed earlier, the primary treatment
presented here will concentrate on internal mental factors rather than external causes.

Despite the focus on the deliberative and top-down components of thought, rather than
the data-driven or situation-specific factors, we cannot deny that bottom-up factors affect
both reasoning and learning. As a research strategy, however, external factors will be min-
imized or ignored to provide scope and focus. Such a position is consistent with traditional
cognitive science perspectives (see arguments in support of this position by Gardner, 1987,
Hayes, Ford & Agnew, 1994; and Newell & Simon, 1972), although the emphasis is indeed
at odds with some recent stances, such as the situated cognition paradigm (e.g., Clancey,
1991; Suchman, 1987).

Q4: What can cause reasoning failure?
Ans4: Knowledge, goals, processes, input, and
the way each are selected.

The remaining material of Section 3.3 will examine each of the four major categories
in some depth, and provide examples of how failure can result from them. The first section
on knowledge states is the longest, but much of the discussion will also apply to aspects of
the remaining sections. The final subsection will also provide constraints upon the causal
factors that assist in making the task of blame assignment more tractable. The chapter will
close with a brief summary.

24. Note that the former is a subgoal of the latter.
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3.3.3 Knowledge States

The domain knowledge of a system represents its theory of the objects, relations, and
actions in the domain. This theory consists of facts and propositions in some declarative
representation regarding the entities in the domain (i.e, its semantic knowledge of the
domain) and some record of the events that have occurred during its experience with the
domain (i.e., its episodic knowledge of the domain). In addition, since knowledge is main-
tained in memory, retrieval or selection of knowledge can also contribute to failure.

3.3.3.1 Domain knowledge

The most basic type of failure occurs when the system’s domain knowledge is at fault.
A domain theory presents the rules, concepts, and relations involved in a particular self-
contained knowledge system. For example, the classic cup-domain (Mitchell, Keller, &
Kedar-Cabelli, 1986; Winston, Binford, Katz, & Lowry, 1983) provides inference rules
used to identify household objects in the cup category (eup,[] stable O liftable [
open-vessel; stable [ has-bottom [ flat-bottom).

A domain theory is considered incompl&té pieces of the knowledge base are miss-
ing. Therefore, anovel situatiorrepresents an error of omission such that a reasoner has
no knowledge with which to interpret some input or with which to solve some problem. In
rule-based systems incompleteness occurs when a rule or an antecedent of a rule is missing,
while frame-based systems are incomplete when concepts or attributes of concepts are
missing.

Alternatively, a domain theory is considered incorrect if there are pieces of the knowl-
edge base present that should not becorrect domain knowledge an error of commis-
sion occurring when incorrect knowledge erroneously biases an interpretation of some
input or when incorrect knowledge is used to make faulty inferences in problem-solving.
In rule-based systems this occurs when an extra rule or antecedent of a rule is present, while
frame-based systems are inconsistent when concepts or attributes are present that should
not be.

Rule-based domain theories areerly specifiavhen they are missing some rules or
when they possess extra antecedents (in a frame system, this entails missing concept types

25. Note that the use of incompleteness as a logical term is different. A logically incomplete domain
theory is one in which a positive example of a category cannot be proven. This may occur if an
extra antecedent on a rule exists, not just when rules are missing. A missing antecedent does not
itself lead to logically incomplete theories.
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or extra preconditions or constraints). Such theories are overly specific because either the
inclusion of a missing rule or the deletion of an extra antecedent would include previously
rejected positive examples. Domain theories @arerly generalwhen they are missing
antecedents or when they possess extra rules (in a frame system, this entails missing pre-
conditions or extra types). Such theories are overly general because either the deletion of
an extra rule or the inclusion of a missing antecedent would reject an example that is mis-
takenly included in the concept (Mooney & Ourston, 1994).

In the drug-bust scenario (Section 2.1), Meta-AQU&y-bark concept is overly
specific because it possess a constraint that the object of the action is animate. In effect, it
states that dogs bark only at animate objects. By the classification of Table 5, this condition
is termed incorrect domain knowledge.

(define-frame dog-bark

(isa (value (event)))

(actor (default (doq)))

(object (constraint (animate-object)))
..

As aresult, the input token (a dog barking at a piece of luggage) is rejected as a mem-
ber of thedog-bark type and considered anomalous. Actually the system should have
accepted the input example as a member oflthgebarks  concept; however, the concept
was overly specific because of the constraint on the object slot. A contradiction was the
result. If Meta-AQUA used a rule-based domain theory, then this error would be caused by
an extra antecedent such as in the following Horn-clause rule.

dog-barks [1 actor=dog [ object=animate Q)

The important point to consider here is that the error type is implementation indepen-
dent. The taxonomy of causal factors in reasoning failure depends on neither a frame-based
nor a rule-based representation.

3.3.3.2 Knowledge selection

Because the knowledge of any non-trivial domain is extensive, exhaustive search is
usually computationally prohibitive. In response, many knowledge bases are organized by
associative indexes that link particular cues in the contexts with relevant knowledge. A fail-
ure may therefore occur, not because relevant knowledge does not exist for the reasoner, but
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rather, because the knowledge cannot be selected from memory due to poor indexing.
Thus, amissing associatiowill cause an error of omission (the correct memory element
will not be retrieved), whereas amroneous associatiowill cause an error of commission

(the wrong memory element will be retrieved).

Note that every erroneous association necessarily implies a missing association; that
is, if a system retrieves an incorrect memory item, it must be the case that it did not retrieve
the correct item. If the proper index had existed, then the correct item would have been
retrieved. Therefore, the correct index must have been m&ing.

Like domain theories, indexes can also be overly general and overly specific. Con-
sider that two ways exist in which one can think of indexing errors. Say the following
attribute values exist: Red, blue, green, black, white, brown, gray, yellow, orange, and pur-
ple (see Figure 18). Assume also that red, blue and green are the primary colors; black and
white are the shading colors; and the rest are the irregular colors.

Colors

/

Primary Color Shading Color Irregular Color

Red Blue Green Black White Brown Gray Yellow Orange Purple

Figure 18. Example generalization hierarchy for color

26. The possibility exists that two indexes were matched, one pointing to the correct information and
the other pointing to the erroneous information. Given some conflict resolution, the incorrect one
is then chosen. In this case, one is tempted to say that no missing index is implied. However,
despite the fact that IML theory does not directly address conflict resolution (nor does Meta-
AQUA implement it), the index considered missing is one whose antecedents or preconditions
would have matched accurately enough to avoid the resolution process.
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Now a memory item, M, indexed by the shading colors could either be of the two rep-
resentational forms below.

Black -~ M (2)

White - M 3)

That is, either the above two indexes (2 and 3) can represent the association, or the
index below (4) can.

Shading_Color - M. (4)

Index 4 is a generalized index and equivalent to the previous two simple indexes. In
addition, suppose that an indexed explanation exists that asserts red and blue composes to
the color purple. This explanation, E, might then be indexed by the following three indexes:

Red - E (5)
Blue - E (6)
Purple - E (7

Retrieval failures may now occur in a number of ways. If, instead of Index 5 and Index
6, the indexPrimary_Color - E exists in their place, then this index is overly general.
The explanation, E, will be brought to bear at inappropriate times. Such a condition is
equivalent to the erroneous associatiGneen - E, being added to the existing indexes.
On the other hand, if Index 2 is missing, then Index 3 must be overly specific when retriev-
ing the memory item M (i.e., Index 3 should really be Index 4). Therefore, a missing asso-
ciation is equivalent to an overly specific index because it does not match the cues in the
context at retrieval timé’

As another illustration, consider the second example in the drug-bust scenario from

27. Note the family resemblance between these two knowledge selection failures, erroneous associ-
ation and missing association, to the domain knowledge failures of incorrect domain knowledge
and novel situation respectively. This resemblance permeates across the columns of Table 5.
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Chapter 1l (Section 2.1.2). In this episode Meta-AQUA forgets the earlier constructed
explanation that the dog barks when detecting contraband; that is, an impasse is reached
when no explanation come to mind. The reason for the impasse is that the explanation had
earlier been indexed by dogs barking at containers, which is overly specific when in the new
context of a dog barking at a laundry pile.

3.3.4 Goal States

Goals are distinguished knowledge states that focus the reasoning and provide the rea-
soner with a specific target state to achieve. They represent the desires or intentional states
held by a system. If a reasoner fails to generate an appropriate goal or subgoal, or if the
reasoner generates an inappropriate (sub)goal, then reasoning will not likely succeed. Sys-
tem resources will be expended on tasks not likely to provide progress in the profitable
directions. In addition, if the reasoner cannot immediately achieve a goal, the goal may be
suspended and indexed in memory with the hope that an opportunity may arise with which
to achieve the goal in the future. As is the case with normal knowledge states, such sus-
pended goals are subject to retrieval failure, if they are not indexed in such a way as to cor-
respond to the contexts within which opportunities await.

One may object to this taxonomic category on the grounds that a goal is just another
knowledge state and not any different when explaining failure. For example, a fact may
exist in the knowledge base that a particular terrorist was convicted. In addition, a prose-
cuting attorney may have the goal to achieve the state of another terrorist being convicted.
One might argue that very little difference exists in the structure of the two pieces of knowl-
edge. However, major differences exist, not just with the semantics of each, but with the
actions a system performs in response to each. When a system determines the cause of its
failure is that it had an incorrect goal, then it must continue the blame assignment to deter-
mine why it posted such a goal; whereas, if the system determines that the reason it fails is
due ztg some specific knowledge, then this is often sufficient for the blame assignment
task:

3.3.4.1 Goal generation

In goal-driven intelligent systems, two obvious causes of failure are that the correct
goal was not generated and that the wrong goal was generated (Owens, 1990b, 1991). Ifa
problem exists in an agent’s world, then the reasoner should detect it and generate a goal to

28. Itis important to avoid arbitrarily long chains of meaningless causation. One heuristic is actually
more specific than indicated above. A system can stop blame assignment if encountering a knowl-
edge element in the BK; the process continues if the item is an element of the FK or is a goal.
More details are provided in Section 6.2.
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solve it. But, if the problem is never detected, the goal will not be generated. This cause
of failure is called amissing goal If, on the other hand, a goal is generated to solve a prob-
lem that is not actually a problem, then the cause of failing to solve it is caiedregoal>®

Goals are also generated during a comprehension task to more fully understand those
inputs which are anomalous or otherwise interesting. Such understanding goals seek to
explain the particular input state by creating causally connected links to prior states and
events in the input stream. Therefore, a missing goal can be a failure to detect an anomalous
input state and a poor goal can be incorrectly characterizing an input state as anomalous
when not. Subsequent goals may thus be misguided.

Often we need to look for why the goal was not spawned or why the wrong one was
spawned by looking at the knowledge, so a relation between these categories exist. Note
that goals are members of the FK (except when suspended), whereas knowledge is stored
in the BK.

3.3.4.2 Goal selection

Unfortunately, even the most appropriate goals cannot always be pursued at the
moment they are generated. Sometimes the resources or knowledge necessary for goal pur-
suit are not available to the reasoner, and so the reasoner must wait until the resources
become available. Rather than wait indefinitely, an opportunistic reasoner (Birnbaum &
Collins, 1984; Hammond, 1988; Hammond, Converse, Marks & Seifert, 1993; Hayes-Roth
& Hayes-Roth, 1979; Ram, 1989; Simina & Kolodner, 1995) will suspend blocked goals,
store them in memory, and pursue other goals until the time the resources are ﬁesent.
Therefore, as with any item stored in memory, suspended goals may not be retrieved or
selected at the moment they are needed by the reasoner. Goals, like domain knowledge, are
subject to the problem of forgetting when the indexes created at storage time do not match
the cues present in the context at retrieval time.

29. Note that the wrong goal may be generated, while at the same time an incorrect goal may be
missing. However, unlike knowledge selection errors, this is not necessarily the case. The errors
are independent.

30. More specifically, goals that are spawned during reasoning exist in the FK. If the goals cannot
be achieved immediately, however, they may be transferred to the BK, along with a trace of the
reasoning that spawned them, in order to suspend the processing until their achievement is more
likely (e.g., when the preconditions upon which they depend become available). During such this
process, the goals are indexed in the BK by features selected to match elements of the environment
that are characteristic of conditions likely to exist when resumption of the goal pursuit is profit-
able. When a goal is resumed, it is returned to the FK from the BK.
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A forgotten goais a suspended goal that was not retrieved from memory at the appro-
priate time (this cause is equivalent to a missing association). Alternatively, a failure is
caused by @oor selectiorwhen the goal selected from memory is inappropriate given the
current context (this cause is equivalent to an erroneous association). As with the knowl-
edge selection category, if an inappropriate goal is selected, then it must be the case that the
appropriate goal was not selected (i.e., poor selection implies forgotten goal).

As an example of a forgotten goal, a member of an audience listening to a lecture may
want to ask a question of the speaker. Instead of interrupting the speaker, the listener may
decide to wait until the end of the lecture. After all, the speaker may answer the question
in the remainder of the presentation. However, at the end of the presentation, the listener
may not remember to ask the question, if it was not already answered. The cues available
at the end of the lecture may not be sufficient for retrieving the question from m&mory.

3.3.5 Processes

The process column considers those factors in reasoning which produce mental
actions and transformations of knowledge. That is, it considers the soundness of the rea-
soning itself. The choice of which reasoning strategy to use in a given situation is a matter
of control of mental action. In many Al systems (e.g., PRODIGY, Minton, 1988), the con-
trol is by mean of some heuristic rules or triggering mechanisms.

With respect to humans, Reder (1987) has shown that after reading a story, human
subjects use different strategies to answer questions posed about the story and vary the strat-
egies used depending on existing conditions such as the time from reading the story to ask-
ing the question. In some cases, a person will use a direct memory retrieval method while
at other times a person will infer a plausible answer based upon related facts. Moreover,
her report also supports the existence of a specific strategy-selection stage of question
answering that automatically evaluates the knowledge relevant to the question and then
deliberately decides on a strategy. Siegler (1988) has reported similar strategy choices with
respect to addition, subtraction, and reading skills in children.

3.3.5.1 Processing strategy

Candidate reasoning processes can be either fine-grained (e.g., a problem-solving
operator) or large-grained (e.g., a reasoning paradigm such as means-ends analysis). A
relation between domain knowledge and the processing strategy column is that an error

31. Note that variants exist when forgetting a goal. Forgetting to do some action is equivalent to what
psychologist refer to as failure of perspective memory (Reason, 1992).
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could be a missing precondition in an operator rather than a missing operator itself.

If a process is incorrect by the inclusion of some faulty rule, rule antecedent, assertion,
precondition, or incorrect sequencing of operators, then the error of commission is termed
aflawed behaviar If, on the other hand, a reasoning process is missing a rule, rule ante-
cedent, assertion, or precondition, then the failure is callmgsaing behavior For exam-
ple, a failure may be due to an agent lacking a specific skill to achieve a goal.

3.3.5.2 Strategy selection

For processing strategies the organization is captured by heuristic rules that link appli-
cability conditions with some operator or process. Reasoning strategies are applied only if
they are selected using some heuristic that determines they are applicable. Thus, the heu-
ristics can be thought of as “indexes.” So, as with the other selection columns considered
so far, a failure may occur, not because the reasoner does not have the strategy with which
to process the input, but rather because it does not have the specific heuristic to signal the
strategy’s applicability, or because another heuristic selects a competitive strategy.

A failure that happens due to non-selection of a given process is an error of commis-
sion called amissing heuristic Alternatively, if a process is chosen by mistake, then the
flawed heuristieerror of commission is said to have occurred. As with previous selection
failures, if the wrong process has been chosen, then it must be the case that the correct pro-
cess has not been selected; that is, a flawed heuristic implies a missing heuristic.

For example, the kinds of explanations that Meta-AQUA may produce are determined
by the methods of explanation as well as the knowledge in its BK. During the reading of
the drug-bust story, if Meta-AQUA had decided to use case-based reasoning rather than XP
application, the explanation of why the dog barked at the luggage may have been suffi-
ciently different.

3.3.6 Environment

The most complex column is the one representing the input to the system from its
environment. The major distinctions in this dimension are between perception (or what is
input from the environment) and attention (what is selected for further processing by the
reasoner from the perceived input).

The input to a system constitutes the interface between the internal world (cognition)
and the external world (environment). As suggested by the sub-table, if one allows inter-
action with other agents in the world, then there may be blame associated with the goals,
strategies, input and knowledge of other agents. Thus, for example, noise in the input may
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actually be due to deception by opponents caused by conflicting goals of the external agent.
This makes blame assignment exceedingly difficult. However if one is to categorize an
open world, this source of blame must be acknowledged. The input column is most inter-
esting if one considers that there exists an input, the perception of the input, and the inter-
pretation of the perception of the input. However, for the purposes of brevity and focus, the
treatment in the following sections will often ignore such distinctions, concentrating on the
analysis of the main table alone.

3.3.6.1 Input

Noiseis considered a fault if a piece of the input from the environment is incorrect. It
is perhaps unusual to consider this failure as an error of commission since the reasoner may
not have caused the noise. However, itis useful to think of the error as being committed by
the environment itself (e.g., faulty data-collection equipmehtissing inputis an error of
omission by the environment such that some critical piece of information is not present in
the perceiver’'s environmental context.

As an example of noise, an agent may be told that a deceased individual came back to
life (which is false). Because the input contradicts the firm belief in people’s mortality, the
input should be questioned. In this case the agent may question the validity of the statement
because it contradicts a firm expectation. However, unlike faulty equipment that may cause
noise in an input, this example is intentiofral.

3.3.6.2 Input selection

Unlike the errors discussed in the immediately preceding subsection, the errors of
input selection are errors attributable to the reasoner, not the environment itself. The lack
of attention to proper element in the input stream can cause reasoning to go astray. A error
of omission is therefore calledmissing contextwhereas, an error of commissionngor-
rect context Again, like previous selection columns, an incorrect context implies a missing
context.

Unlike the other selection columns, however, the causal factors represented by input
selection are not memory organization problems; rather, they are attentional mechanisms
(possibly related to goals and expectations). An error may occur, not because there is not
a requisite piece of information in the perceptual field (i.e., input) of an agent, but rather,
because the agent does not focus on the information or consider it properly.

32. In general, see Johnson & Seifert (in press) for recent research regarding the effects of misinfor-
mation on human inferences and judgements.
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In summary, failures can be caused by either knowledge states, goal states, processes,
or by environmental input. In each case, a distinction exists between the component being
at fault or the selection of the component being at fault. Furthermore, in each of these eight
categories, the item may be either wrong or missing. The result is sixteen causes of failure
that may explain reasoning error, plus combinations of each.

3.3.7 Causal Invariants

Although the table of reasoning failure causes (Table 5 on page 53) is complex, the
number of possible explanatory combinations generated from the table is not the full per-
mutation of the number of cells in the table. Some conjunctions are not possible because a
number of invariants and constraints exist within the table. Five are listed below.

1. Itis not possible to have an error of commission without also having an error of omis-
sion in all of the selection categories. This has been discussed in the previous subsec-
tions on selection.

2. Itis not possible to have both a correct association and an erroneous association. If the
correct cell is enabled, then neither of the other two cells in the column can coexist.

3. If both factors within a given column are present (missing and wrong), each necessar-
ily corresponds to separate objects. A single knowledge token cannot both be correct
and wrong.

4. ltis not possible for an erroneous association to exist without either a novel situation
or a missing association also present. The reason is that an erroneous association sig-
nals an expectation failure: something was retrieved that should not have been. Some-
thing else should have been retrieved instead. Thus, something is either not present in
the domain knowledge (and therefore cannot be retrieved) or it was present, but no
association was present with which to retrieve it.

5. Anovel situation trivially implies a missing association. If there is no item in memory,
then there cannot be an index to organize itin memory. The same can be said for miss-
ing goal (implies forgotten goal), for missing behavior (implies missing heuristic) and
for missing input (implies missing context).

These constraints on the combinations of causal values assist a system when attempt-
ing to map from failure symptom to explanatory fault.
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3.4 Summary and Discussion

This chapter described a general model of expectation-driven reasoning, extracted
from the model a set of failure types or symptoms, and then constructed a taxonomy of
causal factors that can explain individual reasoning failures from this derived set. Given
this model of reasoning, we claimed that a learner must be sensitive to the symptoms of
contradiction, impasse, false expectation, surprise, and unexpected success. When explain-
ing such failure symptoms, a learner must be sensitive to the knowledge it used, the goals
it pursued, the process with which it reasoned, and the environment within which the rea-
soning was oriented. Such taxonomies of failure symptoms and faults do not originate from
anad hoccompilation of everyday mistakes withpest hocgeneralization over this list
(i.e., akind of “list and induce” method); rather, they stem from a reasoned analysis of ideal
models of intelligent performance. This method of developing content-theory taxonomies
represents an improvement over previous intuitive methods of analysis. One can challenge
the taxonomy (or compare it with others) by examining either the assumptions or the anal-
yses of the model. Without such arguments, a comparison of alternate lists of examples or
categories is meaningless.

Along the way, individual sections presented a number of examples from real-life,
from artificial domains, and from the Meta-AQUA implementation to argue in support of
these basic results. The reasoning model is specific to neither domain nor task and contains
no unreasonable assumptions. Therefore, the set of failure types derived from the model
represents a testable hypothesis from which experimental methods may determine the rea-
sonableness of the model. Although this dissertation will not attempt to test this hypothesis
with human subjects, the following chapter will put forward functional justifications for
why these categories are useful in computational systems. Chapter IX will support the
hypothesis with empirical results from computational studies rather than psychological
methods>S See Chapter X, FUTURE RESEARCH (Section 10.1.7, “Failure Types as a
Cognitive Category”), however, for speculation as to a possible inquiries that may be made
in conjunction with experimental psychologists.

This chapter has provided the theoretical constructs that support a theory of introspec-
tive multistrategy learning. Because the theory chiefly concerns learning, the concentration
of analysis has been on how performance systems can fail and what constitutes the causes
of such failure. Only through an analysis of such features can a system be developed which
can learn to avoid such failures. This chapter has therefore described the content of the the-

33. Chapter IX will also entertain two additional hypotheses and describe experiments with the
Meta-AQUA system to test these hypotheses. The hypotheses are that (1) introspection facilitates
learning and (2) IML theory represents a sufficient explanation for human introspection.
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ory from which the following chapter will give a concrete vocabulary and representation.
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CHAPTER IV

MENTAL STATES AND MECHANISMS: THE REPRESENTATION

But the number of those which are simple and primitive is not very large. For, in mak-
ing a review of all those in which I have enumerated, we may easily notice that there
are but six which are such, i.e. wonder, love, hatred, desire, joy and sadness; and that
all the others are composed of some of these six, or are species of them. That is why, in
order that their multitude may not embarrass my readers, 1 shall here treat the six
primitive passions separately; and afterwards I shall show in what way all the others
derive from them their origin.

[0 Rene Descartes, (1649/1955), p. 362.

An early tenet of artificial intelligence is that reasoning about the world is facilitated
by declarative knowledge structures representing salient aspects of the world. A declara-
tively represented world is easier for an intelligent system to understand and operate within
than one in which knowledge is encoded procedurally or implicitly. The system may
inspect and manipulate such structures, the system can be more easily modified and main-
tained (by either its programmer or itself), and such representations provide computational
uniformity.34 Furthermore, if a system is to reason about itself, the above tenet can be
applied to representations of its own reasoning and knowledge. The aim of this chapter,
therefore, is to begin to outline a declarative representation of mental activity. The goal is
to explicitly represent the mental world that reasons about the physical world, just as past
research has explicitly represented the physical world itself. Instead of representing states
and events in the physical world, this chapter discusses how and at what grain level one
should represent mental states and mental events. Given such representations, learning pro-

34. Proponents of procedural representations have argued against these points and countered with
advantages of their own. See Winograd (1975/1985), especially his argument that second-order
knowledge is easier to represent procedurally. See Stein & Barnden (1995) for arguments in favor
of the procedural representation of some knowledge via mental simulation or projection of hypo-
thetical events. Yet, at the very least, this thesis presents an existence proof that stands in direct
opposition to the claim that declarative representation of second-order knowledge is too difficult.
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cesses such as those to be presented in Part Three can better map symptoms of failure to
their underlying faults (causes of failure) in support of blame assignment. This chapter pre-
sents the representational component of our content theory based, in part, on explanation-
pattern theory. In particular, it will illustrate the concepts by assembling representations for
the five failure symptom types described in the previous chapter.

4.1 Epistemology and Ontology

To support effective explanation of reasoning failure, and therefore to support learn-
ing, it is necessary to represent the thought processes and conclusions that constitute the
reasoning being explained. A large number of terms exist in the English language that con-
cern mental activity. Although surface features of a language utterance are not equivalent
to the processes or states that may or may not lie behind a given utterance, a number of
English expressions point to interesting problems for declarative representations. A few
“cognitively homogeneous” terms will be examined that generally refer only to the internal
world of the reasoner, rather than the external world of physical objects and other per-
sons>® Thus, this chapter will ignore non-cognitive mental states such as emotions (affect,
e.g., fear and love). Rather, it will focus on more simple concepts such as think, forget, and
imagine, although humans are likely to think thoughts about the external world, forget to
perform actions in the world, and imagine what the physical world may be like. With such
constraints, the hope is to insulate the task by avoiding consideration of the more complex
terms that intertwine the internal and external worlds, and instead, attempt to sketch an
ontology of mental representations and a vocabulary of the content of such representations.

Many cognitive vocabularies make a prominent distinction between mental states (as
knowledge or belief) and mental mechanisms (as the mental events that process knowledge
or information). For example, conceptual dependency (CD) theory (Schank, 1972, 1975)
distinguishes between two sets of representations: primitive mental ACTs and mental
CONCEPTUALIZATIONSs upon which the ACTs operate. In addition, the theory proposes
a number of causal links that connect members of one set with members of the other. With
such building blocks, a representational language such as CD must be able to represent
many process terms: think (about), remember, infer, realize and calculate; and numerous
state terms: fact, belief, guess, doubt, and disbelief. This document will refer to the execu-
tion of any mental process (or arbitrarily long string of processes) by the generiCtagm
nize 36 and to a CONCEPTUALIZATION simply by the terBtate or Mental-

State . See Figure 19, “Preliminary partial ontology of mental terfisfor an initial

35. Certainly the boundary between the two worlds is not a very clean line. Terms such as “speak”
concern the manipulation of mental terms (e.g., concepts), but complicate the representation with
details of expression, translation, interpretation and the physical means of conveyance.
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sketch of a target ontological vocabulary for mental representations. If a reasoner is to
understand its own reasoning and mental conditions in any substantial level of detail, it will
require a semantic hierarchy containing representations for most of these cognitive terms.

In addition to the state-process dichotomy, IML theory subdivides process terms by
function into mental events that involve memory and transfer of information and those that
involve computation or inferenc® We associate inferential processes with logical or
hypothetical reasoning. Example terms incliitigoothesize , Speculate , Deduce,
Corroborate , andPostulate . However, these inferential terms also include those
that receive little attention in the Al community (e.nfuit ). In Figure 19, inferential
processes are subdivided into those driven by deliberate goals for proceSaing-(
late ) and those in which belief is either more incidental or less eRaetlige ).

Until recently, examples of memory processes such as remember, remind, recall, rec-
ognize, and forget (but here, the lack of a process occurring) have been largely unexamined
and without explicit representation. Especially in the context of case-based reasoning or
any problem solving that depends on indexed memory hierarchies to support a performance
task, understanding the operation of memory can be of benefit when learning (see also
Leake, 1995, Fox & Leake, 1995a, 1995b, and Kennedy, 1995, for additional arguments in
favor of this position). A system that is to adjust the organization of memory will have a
better chance of success if it has knowledge of the function and operation of the (cognitive)
device it is changing. Thus, for a system to understand and change its own memory effec-
tively, it is important that the system be able to represent the memory processes explicitly.

4.2 Granularity of Representation

Schank (1975) developed CD theory to account for the kinds of inferences made by
speakers of natural language. To represent language utterances, Schank composed a set of
minimal conceptual primitives that would represent the interlingual basis that people used
to reason when communicating, rather than simply some representation of the surface

36. The general term “to think” is an unfortunately overloaded term. It can be used in the sense of
“to think about” (referring to a generic mental process) or “I think so” (referring to some qualita-
tive level of confidence). Therefore, cognize is a less ambiguous representational label.

37. The shaded ovals in the figure represent unrepresented vocabulary terms. For example, this doc-
ument ignores emotion (except for Descartes’ primitive passion taxonomy at the beginning of this
chapter), either as a contributor to failure or as an ontological entity in need of representation.

38. Schwanenflugel, Fabricius, Noyes, Bigler & Alexander (1994) analyzed folk theories of know-
ing. Subject responses during a similarity judgement task decomposed into memory, inference,
and /O clusters through factor analysis.
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Figure 19. Preliminary partial ontology of mental terms
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structure of language. As an example, ATRANS does not represent particular words,
although it roughly maps to an abstract transfer of objects by an agent, such as the verb “to
receive” at the surface level. The transfer of possession is not something that necessarily
happens in the physical world (e.g., the transfer of ownership); rather it is an abstract social
and psychological act that may or may not be accompanied by overt physical movements.
Figure 20 shows an example of the ATRANS representation of “John received something
from Mary.” The double arrow represents a two-way conceptual dependency relat?t?nship
between the agent on the left and the action on the right. Schank postulated a set of 11 prim-
itive ACTs to which all language utterances by speakers on nontechnical topics could be
mapped. The primitives have an important feature of canonical form; that is, all surface
forms with the same meaning map to the same representation (e.g., “John received some-
thing from Mary.” is equivalent to “Mary gave something to John.”). They also provide a
declarative structure and the semantic inferences (e.g., Mary’s object is no longer possessed
by her) that provide meaning to the representation.

o o= John
John & ATRANS «— X «

—< Mary

Figure 20. CD representation of abstract transfer (ATRANS)

o=physical object; D=direction

Yet, many have argued that such a small set of primitives are not sufficient to represent
the meaning of many common natural language utterances. Wilensky (1986a) claims that
many of the inferences made by the understanders of language are at an intermediate level
of representation, rather than at a primitive level. For instance, the inference that “if a per-
son buys a cake, the agent probably received it from a cashier” is found at the conceptual
level of “buy,” rather than at the level of the ATRANS primitive in CD theory. Nothing in
the meaning of abstract transfer is specific enough to include this condition.

Conversely though, to represent reflexive thoughts about reasoning, complete repre-
sentations for all inferences and memory processes that generate such inferences, along
with a complete enumeration of all knowledge dependencies, are not required. People cer-

39. A concept has a dependency relationship to a governing concept in a CD network when the
dependent does not make sense without the governor and, moreover, when it further explains the
governor (Schank & Tesler, 1969).
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tainly cannot maintain a logically complete and consistent knowledge base, nor can they
perform full dependency-directed backtracking (Stallman & Sussman, 1977) or reason
maintenance for belief revision (Doyle, 1979); rather, they depend on failures of reasoning
and memory of past errors to indicate where inconsistencies in their knowledge lie. That
is, as knowledge is locally updated, a knowledge base will often become globally inconsis-
tent and partially obsolete. It is at the point in which a system (either human or machine)
attempts to reuse obsolete information that inconsistency becomes most apparent and fur-
ther learning is enabletf. People often do know when they err if their conclusions contra-
dict known facts, if plans go wrong, or if they forget (even if they cannot remember the
forgotten item). Representations should support such types of self-knowledge, and it is at
this level of granularity that aepistemologically adequa(®cCarthy & Hayes, 1969) con-

tent theory of mental representations can be built.

For the above reasons, capturing the full level of details concerning mental activity is
not necessary, and CD’s two primitives mental ACTS are not sufficient to comprise an ade-
guate representational system that can express states and mechanisms of the mental world.
Rather, a vocabulary needs to be delivered that can minimally express the causal relation-
ships involved in reasoning, but concurrently support the explanation of failure in sufficient
detail that learning goals can be chosen. That is, granularity is determined functionally.

Q7: At what level of granularity should reasoning be represented?
Ans7: At enough detail to support learning from failure.

4.3 Representing Forgetting: An example

As an example of the kinds of representations that are required for effective introspec-
tive learning, this section will consider how to represent forgetting. The task is especially

40. See also McRoy (1993) for a related discussion of resource constraints on inference, the prob-
lems of logical inconsistency and logical omniscience, and the proposed relationship of these
problems to the agent’s own involvement in introspection. Related also, but from a psychological
perspective, Glenberg, Wilkinson & Epstein (1982/1992) have shown that self-comprehension of
text can be an illusion (i.e., people sometimes do not accurately monitor their own level of text
comprehension), and they speculate that it is at the point where reading comprehension fails that
humans are alerted to the need for learning.
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interesting since the verb forget refers to a non-event, rather than a mental process. Issues
will be addressed by considering three prevailing formalisms: logic, conceptual depen-
dency, and explanation patterns. This section will show that, although all three representa-
tions have expressive ability, the explanation pattern knowledge representation possesses
the most straight forward means for capturing the causal structure, inferences, and meaning
of the mental term forget.

4.3.1 Logic

In order to use representations of mental terms effectively, a system should consider
the structure of the representation, rather than simply how a system can syntactically
manipulate representations or make sound inferences from them. In this regard, however,
single logical predicates such as “forget” or “remember” are not entirely useful when trying
to understand the memory failure of a person, P.

Forget (P, M)
- Remember (P, M)

Because the predicates involve memory, it is helpful to posit the existence of two con-
trasting sets of axioms: the background knowledge (BK), or long-term memory of the
agent, P, and the foreground knowledge (FK), representing the currently conscious or active
axioms of the agent. Equation (8) shows the resulting interpretation of perswgetting
memory itemM\.

Forget (P, M) — [M. (M OBK,) O(M OFK,) (8)

With such a representation, one can also express the proposition that the Person
knows that he has forgotten something; that is, the memory k&ns on the tip of agent
P’s tongue. P knows thatM is in his background knowledge, but cannot retrieve it into his
foreground knowledge:

[M. (M OBKy) O FK,, O(M OFK,) 9)

But to start to include these interpretations is to add content to the representation,
rather than simply semantics. It is part of tietaphysical interpretatioMcCarthy &
Hayes, 1969) of the representation that determines an ontological category (i.e., what ought
to be represented), and it begins to provide epistemological commitments (e.qg., that the sets
BK and FK are necessary representational distinctions). However, meaning is not only cor-
respondences with the world to be represented, but meaning is also determined by the infer-
ences a system can draw from a representation (Schank, 1975). The “forget” predicate
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offers little in this regard. Moreover, this predicate will not assist a reasoning system to
understand what happens when it forgets some memory item, M, nor will it help the system
learn to avoid forgetting the item in the future. Finally, because the semantics of a mental
event which did not actually occur is not represented well by a simple negation of a predi-
cate representing an event which did occur (Cox & Ram, 1992a), the logical expression
—Remember (John, M) is essentially a vacuous proposition. This is not to say that logic
cannot represent such a mental “non-event,” rather, this simply illustrates that it is not an
elementary task to construct an adequate representation of forgetting and that a single log-
ical predicate will not suffice.

4.3.2 Conceptual Dependency

An alternative representational approach was undertaken by Schank, Goldman,
Rieger & Riesbeck (1972) in order to specify the primitive representations for all verbs of
thought in support of natural language understanding. They wished to represent what peo-
ple say about the mental world, rather than represent all facets of a complex memory and
reasoning model. They therefore used only two mental ACTS, MTRANS (mental transfer
of information from one location to another) and MBUILD (mental building of conceptu-
alizations), and a few support structures such as MLOC (mental locations, e.g., working
memory, central processor and long-term membty).

As a consequence, the CD representation of forgetting by Schank and his colleagues
is as depicted in Figure 21 (cf. Figure 20). John does not mentally transfer a copy of the
mental object, M, from the recipient case, that of John’s long-term memory, to his central
processor. Such a representation does provide more structure than the predicate forms
above, and it supports inference (e.g., if M was an intention to do some action, as opposed
to a proposition, then the result of such an act was not obtained; Schank, 1975, p. 60). How-
ever, the CD formalism cannot distinguish between the case during which John forgot due
to M not being in his long-term memory and a case of forgetting due to missing associations
between cues in the environment and the indexes with which M was encoded in memory.
Thus, it does not provide enough information to learn from the experience.

41. Schank, Goldman, Rieger, & Riesbeck (1972) actually referred to working memory as immedi-
ate memory and the central processor as a conceptual processor. | have used some license to keep
terms in a contemporary language. Moreover, Schank and his colleagues used a third primitive
ACT, CONC, which was to conceptualize or think about without building a new conceptualiza-
tion, but Schank (1975) eliminated it from the theory. For the purposes of this research, however,
the differences do not matter.
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o R [>CP(John)
John% MTRANS < M «

—< LTM (John)

Figure 21. CD representation of forgetting

o=mental object or conceptualization; R=Recipient;
CP=Central Processor; LTM=Long Term Memory

4.3.3 Explanation Pattern Theory

To represents some of the nuances implied by the term forget and not easily captured
by either logic or CDs, IML theory uses an extension of Explanation Pattern (XP) theory
(Leake, 1992; Owens, 1990a; Ram, 1989, 1991, 1994; Schank, 1986; Schank & Kass,
1990).42 Essentially, XPs are directed graphs with nodes that are either states or processes
and links that are either ENABLES links (connecting states with the processes for which
they are preconditions), RESULTS links (connecting a process with a result), or INITIATE
links (connecting two states). The links of an XP (as we use them here) include numbering
to indicate relative temporal sequence between links. Figutiliastrates an explanation
for why a volitional agent, A, performs a given action, M (i.e., it explainsatter relation
of M). The causal reason is that the agent has the goal of achieving the desired state, GS,
and the agent knows that GS will results from M if he performs it (Ram, 1989).

A Meta-XP is similar to a standard XP in that it is an explanatory causal structure. The
major difference between the two is that instead of presenting a causal justification for a
physical relation (such as why people look like their ancestors) or a volitional role relation
(such as why a person performs a given action), a Meta-XP explains how and why an agent
reasons in a particular manner.

The Meta-XP structure of Figure 23 represents a memory retrieval attempt enabled by
goal, G, and context cues, C, that tried to retrieve some memory object, M, given an index,
[, that did not result in an expectation (or interpretation), E, that should have been equal to

42. See also Almonayyes (1994), Kerner (1995), and Schank, Kass & Riesbeck (1994) for additional
applications of XP theory.

43. Attributes and relations are represented explicitly in these graphs. Thus, the ACTOR attribute
of an event X with some value Y is equivalent to the rela#@ir ORhavingdomain X andco-
domain Y. Section 4.4 provides further details concerning this notation.
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Volitional
Agent A

Volitional
Agent A

Figure 22. XP representation of XP-GOAL-OF-OUTCOME->ACTOR
GS=good state; MOP=memory organization package

some actual item, A. The fact that E is out of the set of beliefs with respect to the reasoner’s
foreground knowledge (i.e., is not present in working memory) initiates the knowledge that
a retrieval failure had occurred.

Because forgetting is not a mental event, but rather the lack of successful memory pro-
cessing, challenges exist when representing it. Forgetting can be expressed properly only
if a system can represent that it does not believe a successful memory retrieval has occurred.
The belief logic of Doyle (1979) has four truth values for a given proposition “p.” If p is
believed thenitis in the set of beliefs, whereas if p is not believed then it is out. Conversely,
the negation of the assertion of p may be either in or out of the agent’s set of beliefs. There-
fore, the four truth values areip(), p(out ), =p(in ), and-p(out ). Using these values, a
system needs to be able to declare that there is a memory item that was not retrieved.

The system could create a dummy concept representing the forgotten item that it
believes did not result from some retrieval process. This concept could be marked as dis-
believed with the above notation, since it was not retrieved and cannot be specified by the
system. But technically, it is incorrect to assert that the concept is not believed, if it is in
the system’s background knowledge. In other words, it is believed but not recalled. Cox
& Ram’s (1992a) response to this dilemma was first, to assume a special set of beliefs rep-
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co-domain

Mentally
Enables

co-domain

Memory
Retrieval

Decision
domain\, Basis

co-domain

Mentally

Results Results

Retrieval
Failure

co-domain co-domain

Figure 23. Meta-XP representation of forgetting
A=actual; E=expected; G=goal; C=cues; M=memory item; I=memory index.

resenting the working memory of the system (the FK), and then secondly, to modify
Doyle’s belief logic to claim belief membership with respect to a particular set of beliefs.
Thus, P, a given memory item that was not retrieved, may be in the set of beliefs with
respect to the BK, written R#( gx), but out of the set of beliefs with respect to the FK, writ-
ten Pout g).

As specified in Table 6, the number of ways that the memory retrieval process may fail
depends on the conditions of the nodes A, E, G, I, and M. If the memory item, M, is not in
the BK (i.e., Mut gy)), then there is nothing to be retrieved. This can occur either
because there never was a concept in memory to be retrieved, or because the item was pre-
viously deleted from memory. Ostensibly, no difference exists between the two in this rep-
resentation. For example, in the Meta-AQUA story understanding system, a novel situation
exists when trying to explain a police dog barking at a passenger’s luggage in the airport
(Section 2.1.1). The system had previously encountered dogs barking only at animate

44. Compare this with the assumption maintenance system discussed by McDermott (1989). In gen-
eral, propositions may bie or out with respect to arbitrary sets of beliefs, which in the Meta-
AQUA system are used to represent what is in the FK during different reasoning experiences.
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Table 6: Truth values of graph nodes for forgetting

Description A E G I M
Absent Memory _ .
(Novel Situation) N Fx out g« N Fx out g out gk
Absent Index , . .
(Missing Association) N Fx out gx N e out g in gg
Absent .
Retrieval Goal N Fx out g¢ out g« 0 0
Absent
Feedback out gk out gx b 0 O

0 =don't care

objects, so it had no structure in memory to understand this novel event. Although this
example does not represent forgettpey se in systems that delete memory items in order

to facilitate learning (e.g., Markovitch and Scott, 1988; Smyth & Keane, 1995), trying to
retrieve a deleted item is equivalent to a novel situation from a computational perspective.

A more prototypical instance of forgetting is illustrated in the second Meta-AQUA
story of Chapter Il (Section 2.1.2). The system acquires a new explanation for why dogs
bark, but because it indexes it by containers, the subsequent story is not able to retrieve it
given the context of a dog barking at a pile of dirty clothes (the location of the suspect’s
stash of contraband). The correct index is missing and so no explanation is retrieved,
although it certainly knows the correct explanation. The node truth values on the Meta-XP
representation of this event are arrayed according to the second row from the top of Table
6 (refer to Figure 23 for the corresponding nodes or peek ahead to Figure 29 on page 88).

These tabularized values on the representation of Figure 23 capture an entire class of
memory failures: failure due to a missing index, I; failure due to a missing object, M; failure
because of a missing retrieval goal,“@or failure due to not attending to the proper cues,

C, inthe environment. Having such a declarative representation allows the system to reason

45. A missing memory-retrieval goal is equivalent to an agent never trying to remember. For
instance, the reasoner may have wanted to ask a question after a lecture was complete, but failed
to do so because he never generated a goal to remember once the lecture was complete. Alterna-
tively the agent may know at the end of the lecture that he needs to ask something, but cannot
remember what it was. This second example is the case of a missing index. Note that both a miss-
ing index and an incorrect index may be present at the same time. In such cases, a target item is
not retrieved, whereas an interfering item is retrieved instead.
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about the various causes of forgetting; it can inspect the structural representation for a
memory failure and therefore, analyze and consider the reasons for the memory failure.
Such an ability facilitates learning because it allows a learner to explain the reasoning fail-
ure and use the result in determining what needs to be ledihed.

4.4 Meta-Explanation Patterns

In most interpretations (e.g., Kuokka, 1990, p. 5; Hayes-Roth, Waterman, & Lenat,
1983, p. 402), meta-X can be translated to “X about X. Therefore, a meta-explanation pat-
tern (Meta-XP) is an explanation pattern about another explanation pattern. Whereas, an
Explanation Pattern (XP) is a causal structure that explains a physical state by presenting
the chain of physical events causing such states, a Meta-XP is an explanation of how or why
an XP is generated incorrectly or otherwise fAfi§wo classes of Meta-XPs exist to facil-
itate a system’s ability to reason about itself and to assist in selecting a learning algorithm
or strategy. ATrace Meta-XR(TMXP) explainshow a system generates an explanation
about the world (or itself), and dntrospective Meta-XRPIMXP) explainswhythe reason-
ing captured in a TMXP goes awry. Thus, a TMXP records the extent of reasoning tasks
and the reasons for decisions taken during processing. An IMXP is a general causal struc-
ture that represent explanations of various the failure types from the taxonomy of Chapter
lll. The IMXP structures represent past experience of reasoning about the self (i.e., cases
of meta-reasoning) and assist in forming the learning goals of the system after failure
occurs. Whereas a TMXP records the immediate mental events of the reasoner and they
exist in the FK, IMXPs are retrieved from the BK and applied to TMXPs. This case-based
approach to self understanding is similar to the operations by which standard XPs are
retrieved and applied to input representations for story understanding. The same basic
algorithm is used in each.

Q5: How to represent mental states and reasoning mechan|sms?
Ans5: Use meta-explanation patterns.

46. See Cox (1994b) for a discussion of related computational models of forgetting.

47. Here the definition of a Meta-Explanation is interpreted in a narrow sense as applied to under-
standing tasks involving the explanation of anomalies. In general, however, a Meta-XP may be
any explanation of how and why an agent reasons in any particular way, including processes other
than explanation.
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Explanation patterns (XPs) are similar to justification trees, linking antecedent condi-
tions to their consequences. The XP is essentially a directed graph of concepts, connected
with RESULTSENABLESandINITIATES links. A RESULTSlink connects a process
with a state, while aENABLESink connects a precondition state to a process.IMRA
TIATES link connects two states. The set of sink nodes in the graph is calldeREe
XP-NODESYsee Figure 24). These nodes represent what must be present in the current sit-
uation for the XP to apply. One distinguished node in this set is calle@EXRLAINS
node. Itis bound to the concept which is being explained. Source nodes are d¥Pmed
ASSERTED-NODESAII other nodes artNTERNAL-XP-NODES

}

e p

Figure 24. XP as a directed graph
a=asserted; i=internal; p=pre-XP; e=explains

For an XP to apply to a given situation, 8RE-XP-NODESmust be in the current
set of beliefs. If they are not, then the explanation is not appropriate to the situation. If the
structure is not rejected, then a{P-ASSERTED-NODESre checked. For eackP-
ASSERTEMode verified, alINTERNAL-XP-NODESconnected to it are verified. If all
XP-ASSERTED-NODES®an be verified, then the entire explanation is verffed.

In the representation presented here, attributes are treated as first-class objects; that is,
attribute relations have an explicit frame representation. For instance, the greater-than rela-
tion of Figure 25 has botdomain andco-domain slots. Therefore, the token greater-
than.7 expresses the proposition that the integer two is greater than one. Moreover, this
same notation can represent the slot (attribute) of a frame.réhdt  attribute of men-
tal-process.21 is a relation (result.52) from dsmain (mental-process.21) to itso-
domain (mental-state.12). As indicated by the lowest level of parentheses, frame slots
have both value and relation facets. This explicit representation allows a system to assert
specific propositions about slots, instead of only values. A system can therefore ask a ques-
tion about theesult  slot itself. Questions such as “What was the result of mental-pro-

48. See Ram (1994) for additional details concerning the structure and use of explanation patterns.
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cess.21?” need only refer to the value facet of the attribute; but, questions such as “Why did
the process result in state.12?” can only be formed properly ifebalt  relation has an
explicit representation (Ram, 1989; Wilensky, 1986b).

greater-than.7 -
(greater-than-relation
(domain (value 2))
(co-domain  (value 1)))

mental-process.21 -
(mental-process
(result (value mental-state.12)
(relation result.52)))

result.52 -
(result-relation
(domain (value mental-process.21))
(co-domain  (value mental-state.12)))

Figure 25. Relations as first-class objects
arrows = token assignments

4.4.1 Trace Meta-XPs

Ram (1990, 1994) has developed a theory of motivational explanation based on deci-
sion models which characterize the decision process that an agent goes through in deciding
to perform an action. For example, the religious-fanatic explanation for suicide bombing
is a decision model describing why a bomber would choose to perform a terrorist strike in
which the bomber dies (see Figure 26 and compare to Figure 22 on patjeRén's
model claims that an agent first considers any relevant goals, goal priorities, and the
expected outcome of performing the action. The actor then makes a decision whether or
not to enter into such a role, and if so, performs the action. IML theory extends the model
to account for introspective reasoning.

Meta-reasoning can be conceptualized in a similar manner. A set of states, priorities,
and the expected strategy outcome determine a reasoner’s decision of a processing strategy,
like the above factors determine the actor’s decision to act. Based on general knowledge,
current representation of the story, and any inferences that can be drawn from this knowl-
edge, the reasoner chooses a particular reasoning strategy. Once executed, a strategy may

49. TheConsiderations (two goals and one belief) comprise the XP-ASSERTED-NODES, the
Chooses-To-Enter node is the lone INTERNAL-XP-NODE, and tiector relation is the only
PRE-XP-NODE (and represents the EXPLAINS node of the XP).
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Goal (A, Protect-Family )

goal-ordering

expected-outcome Not (Goal (A,BS))

mentally-enables

Chooses-To-Enter

2 mentally-results

domain

—>

domain co-domain
MOP

Suicide-Bombing M

Self-
Outcome

co-domain

Volitional
Agent A

results

members

Volitional
Agent A

Death-
State
object A

Protect
Family

Figure 26. Volitional XP for why agent performs suicide bombing
(adapted from Ram, 1993)

BS=bad state; GS=good state; MOP=memory organization package
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produce further reasoning, requiring additional strategy decisions.

These decisions are chained into threads of reasoning such that each one initiates the
goal that drives the next. Though the chains can vary widely, in the task of question-driven
story understanding, the chains take the following form: Identify AnomalyGenerate
Explanation— Verify Hypothesis (see Figure 14 on page 36 in Chapter Il). Note that since
the explanation generation phase produces a hypothesis and the verification phase produces
a measure of goodness, if the hypothesis has been confirmed with a sufficiently high confi-
dence, then the overall product of the understanding process has been a sound explanation.
Alternatively, if the explanation has been disconfirmed, then a later failure identification
phase should generate the question “Why did the explanation fail?” This knowledge goal
triggers the learning process.

The understanding process is recursive in nature. For example, if a hypothesis gener-
ates a new question, then the reasoner will spawn a recursive regeneration of the sequence
because an unanswered question is anomalous. Like physical explanations that explain
how objects work in the physical world, and volitional explanations that explain why agents
perform various acts in the world, introspective explanations explain how and why conclu-
sions are drawn by the reasoner; they explain events in the mental world.

When insufficient knowledge exists on which to base a decision, a useful strategy is
to simply defer making the decision. The reasoning task is suspended and later continued
if and when the requisite knowledge appears. This is a form of opportunistic reasoning.
Meta-XPs are able represent chains of reasoning that follow from opportunistic reasoning
as well as uninterrupted decisions.

A Trace Meta-XP, representing the trace of the reasoning process, is a chain of
Decide-Compute-Nod€B-C-Nodes). Figure 28 shows the outermost frame defimtion
of the decide-compute-node type whose graph structure is shown in Figure 27. A non-
recursive single instance of explanation would be a chain of three D-C-Nodes, one for each
phase in the anomaly-identification/generate-explanation/verify-hypothesis seglience.
These nodes record the processes that formulate the knowledge goals of a system, together

50. Frame figures use the following notation:

X0------ an attribute value;

X)------ a frame of type X;

=X ------ variable binding to the outermost slot named X;
(=X =Y) - - alist of variable bindings;

(X =Y) --- anframe of type X with referent alias named Y.

This last feature is included so that variable can be bound to slots other than the outermost slots.
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with the reasons for and the results and side-effects of performing such mental actions. The
trace of reasoning is similar to a derivational analogy trace as described by Carbonell
(1986) and Veloso and Carbonell (1994). A Trace Meta-XP is a specific explanation of why

a reasoner chooses a particular reasoning method and what results from the strategy. Like
an XP, the Meta-XP can be a general structure applied to a wide range of contexts, or a spe-
cific instantiation that records a particular thought process. One distinguishing property of
Trace Meta-XPs is that a decision at one stage is often based on features in previous stages.
For example, the decision of how to verify a hypothesis may be based on knowledge used
to construct the hypothesis initially. This property, deciding based on previous knowledge,

is particularly true of learning, which, by definition, is based on prior processing.

4.4.2 Introspective Meta-XPs

Whereas a Trace Meta-XP explains how a failure occurred, by providing the sequence
of mental events and states along with the causal linkage between them, an Introspective
Meta-XP explains why the results of a chain of reasoning are wrong. The IMXP posits a
causal reckoning between the events and states of the TMXP. In addition, an IMXP pro-
vides a learning goal specifying what needs to be learned. Then, given such an explanation
bound to a reasoning chain, the task of the system is to select a learning strategy to reduce
the likelihood of repeating the failure.

An IMXP consists of six distinctive parts:

* The IMXP type class.

* The failure type accounted for by the IMXP.

» A graph representation of the failure.

» Temporal ordering on the links of the graph.

* An ordered list of likely locations in the graph where processing errors
may have occurred.

A corresponding list of learning goals to be spawned for failure repair.

There are three classes of IMXPs: base, core, and compdasteetypes constitute
the basic vocabulary (labels) with whiclere IMXPs are built. We have identified seven
primitive types in the base class: successful prediction, inferential expectation failure,

51. Note that in most of this work the initial phase of anomaly identification is simplified. Rather
than considering all four steps represented in a D-C-Node, the algorithm skips the input analysis
step, posts a goal to interpret the input, and then uses only a single strategy as outlined in the text.
The result is a signal whether or not an anomaly exists together with the anomaly’s cause. See,
for example, Figure 14, “Question-driven understanding,” on page 36.
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(define-frameD-C-NODE

(isa (value (meta-xp)))
(actor (value (volitional-agent))) ;; The agent making the decision.
(enables- (value (d-c-node))) ;; Points to previous d-c-node in TMXP chain.
(initial-state  (value (considerations))) ;; Preconditions
(strategy-choice

(value (strategy-choice-value))) ;; What strategy chosen
(strategy-decision

(value (decision-process ;; Why strategy chosen

(actor (value =actor)
(relation =role)) ;; Same as role slot below.

(basis-of-decision (value (basis)))
(main-result (value =strategy-choice)))))
(role (value (actor ;; The actor slot of the decision-process.
(domain (value =strategy-decision))
(co-domain (value =actor)))))
(strategy-execution
(value (mental-process)))
(side-effect  (value (considerations)))

(main-result (value (outcome ;; Return values from the strategy-execution.
(results- ;;Backpointer from where this outcome resulted
(value =strategy-execution)))))

(explains (value =role)) ;; Explains why agent picks strategy-execution

(pre-xp-nodes (value (=explains =main-result =side-effect)))
(xp-asserted-nodes
(value (=initial-state)))
(internal-nodes
(value (=strategy-decision =strategy-choice
=strategy-execution)))
(link1 (value (mentally-enables
(domain (value =initial-state))
(co-domain (value =strategy-decision)))))
(link2 (value (mentally-results
(domain (value =strategy-decision))
(co-domain (value =strategy-choice)))))
(link3 (value (mentally-enables
(domain (value =strategy-choice))
(co-domain (value =strategy-execution)))))
(link4 (value (mentally-results
(domain (value =strategy-execution))
(co-domain (value =main-result)))))
(link5 (value (mentally-results
(domain (value =strategy-execution))
(co-domain (value =side-effect)))))
(links (value (=link1 =link2 =link3 =link4 =link5))) ;; List of all causal links.
)

Figure 28. Frame definition for Decide-Compute-Node
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incorporation failure, belated prediction, retrieval failure, construction failure, and input
failure. The core types are representations of the failure types enumerated in Table 4,
“Final table for reasoning model,” on page 50. They include representations for failures
such as contradiction and impasse, and the IMXP representation for each will be shown in
Section 4.7. Core types are combined to faxompositd MXPs that describe situations
encountered by reasoning agents, such as the “Drug Bust” examples in Section 2.1.

The internal graph structure of an IMXP consists of nodes, representing both mental
states and mental events (processes), and the causal links between them. The nodes and
links have the same semantics as those described for TMXPs in section 4.4.1. The graph
gives both a structural and a causal accounting of what happened and what should have hap-
pened when information was processed.

Consider the graph diagram in Figure 29 (cf. Figure 23). It represents the introspec-
tive reasoning of the second drug-bust story in Chapter Il (Section 2.1.2). In this story, the
Meta-AQUA system forgets the explanation learned in the previous story, that dogs will
bark at inanimate objects when they detect contraband. Because this explanation was
indexed by containers, the system retrieves no explanation to explain why the dog is bark-
ing at a pile of dirty clothes; that is, it experiences a memory impasse. Later in the story,
when the officer praises the dog for barking at the clothes, the system infers that the expla-
nation should have been a detection explanation. This graph structure represents the com-
posite IMXP ANOMALY-AND-BAFFLED. It contains but one core case, a missing
association, and has at its heart the base case of retrieval failure. In Figure 30, a frame def-
inition is provided for the IMXP composite type from which the instance portrayed in Fig-
ure 29 was formed?

Base class IMXPs represent a primitive type or component in the content theory of
mental events from which traces of reasoning failures may be constructed. The goal is to
enumerate a sufficient number of these basic types to cover the major kinds of reasoning
failures that arise in story understanding and other tasks. The types of failures (discussed
Section 3.2 on page 45) fall into two complementary classes: commission error and omis-
sion error. Commission errors stem from reasoning which should not have been performed
or knowledge which should not have been used. Omission errors originate from the lack
of some reasoning or knowledge. The content theory herein contains Base IMXPs to
describe both classes of failure.

52. The frame definition is simplified in order to show it here. All facet notation is removed because
only value facets of slots are shown in the figure. In addition, the figure shows only the important
slots to illustrate the definition. Some slots are missing.
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Figure 29. Representation for forgotten detection explanation

A=actual; E=expected; Q=question; I=index; M=memory item



(define-framdMXP-BAFFLED-AND-RESOLVED
(isa (composite-introspective-meta-xp))
(failure-cause (novel-situation.0 missing-assoc.0))
(q (relation(explanations (=a))))

(a (xp (explains =q)))

(e (xp (explains =Qq)))

(i (index (domain =q) (co-domain =m)))
(m (xp))

(truth-value  (truth (domain =e)
(co-domain out-fk.0)))

(equals (equal-relation(domain =a)
(co-domain =e)))

(rf (retrieval-failure(initiates- =truth-value)
(expected-outcome =€)
(actual-outcome =a)))

(new-input  (entity))

(later-process (cognize))
(rc (trace-meta-xp

(identification =g-id)

(generation =hypo-gen)

(link3 =link2)

(link4 (mentally-results (truth out-fk.0)))))
(d-c-node

(strategy-choice questioning.0)

(strategy-execution pose-question.0)

(side-effect (considerations =con

(prime-state =k-goal)))

(link4 =link1)))
(knowledge-acquisition-goal

(goal-object

(generate (co-domain =q)))))
(d-c-node

(strategy-decision =h-decision)

(g-id

(k-goal

(hypo-gen

4.4 Meta-Explanation Patternsl

IMXP Class
Whijch one we do not know
Baffling question
;Actual explanation
;Missing expectation
Index used to retrieve E
;; Forgotten xp
E not in set of beliefs wrt FK

Agtual should have been
;equal to what was expected
The memory failure
explained by the IMXP

;Story input

Inference in this case
JReasoning chain

;Question identification

Knowledge goal to answer
;the question

Hypothesis generation

(main-result (outcome =o (members (=link4))))

(link4 (mentally-results (co-domain =0)
(truth out-fk.0)))))
(decision-process
(basis-of-decision =h-decision-basis)))
(h-decision-basis
(basis (knowledge
(collection
(members ((knowledge-state
(co-domain =i)

(h-decision

XP retrieval in this case

Existence of | is the basis
;;to use case-based explanation

(believed-item =i))))))))

;;Links are in temporal order

and all correspond to the
;numbered links in Figure 29.

(links (=link1 =link2 =link3 =link4 =link5 =link6))

(link1 (mentally-results (domain pose-question.0)
(co-domain (outcome (members (=q))))))

(link2 (mentally-enables (domain =con)
(co-domain =hypo-gen)))

(link3 (mentally-results (domain =rc)
(co-domain =e)))

(link4 (mentally-initiates (domain =truth-value)
(co-domain =rf)))

(link5 (mentally-enables (domain =new-input)
(co-domain =later-process)))

(linké (mentally-results (domain =later-process)
(co-domain =a)))

(explains =rf)

(pre-xp-nodes (=a =e =rf))
(internal-nodes (=q =hypo-gen =later-process =i))
(xp-asserted-nodes (=g-id =m =new-input))
(potential-faults (=a =i))
(potential-learning-goals
((knowledge-expansion-goal
(goal-object =a)
(subgoals =krg)
(priority (integer-value =pr))
(backptr (plan))
(conditions ((inferred.0 acquired.0)))
(knowledge-reorganization-goal =krg
(goal-object =i)

;:\What the IMXP explains.

XP consequents.

Neither sink nor source nodes
XB antecedents.

;Nodes for blame-assignment
Corresponding learning goals

;Expand the new explanation

;;JReorganize memory to hold it

(priority (integer-value (less-than =pr))))))))))

Figure 30. IMXP frame definition for forgetting
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4.5 Vocabulary

The partial ontological hierarchy of mental terms in Figure 19 on page 70, pictures
some basic type identifiers of the mental domain. They represent the most fundamental
labels used to identify particular classes of mental actions and states and provide the prim-
itive building blocks with which declarative structures are assembled to describe the pro-
cessing that occurs within intelligent systems. A major goal of an understanding system
operating in a mental world is to refine the labels of structures as additional knowledge is
gained about particular actions in the domain. For instance, a system may only know that
a particular node is some kind of cognitive process, thus it labels it with the vocabulary term
Cognize . If the system subsequently discovers that it is a memory process, the label can
be refined tdVlemory Process .°3 As more information is ascertained, the system may
determine that the structure actually repres&wssall or Recognize . As each labelis
refined, additional inferences are warranted.

Not shown in Figure 19 are the terms used to represent failure. These vocabulary
labels are the base IMXP types mentioned in the previous subsection. This research has
identified two types of commission error labelsferential expectation failuregsypify
errors of projection. They occur when the reasoner expects an event to happen in a certain
way, but the actual event is different or missinfncorporation failuresresult from an
object or event having some attribute that contradicts some restriction on its values. Four
omission error labels have also been identifiddlated predictioroccurs after the fact.

Some prediction that should have occurred did not, but only in hindsight is this observation
made. Retrieval failuresoccur when a reasoner cannot remember an appropriate piece of
knowledge; in essence, it represents forgetting or memory faildmnstruction failures

similar, but occurs when a reasoner cannot infer or construct a solution to a prdblaum

failure is error due to lack of some input information. To construct the five core types of
failure (outlined in Section 3.2), these labels are used. The basic organization for all of
these representations is at the level of a comparison between an expectation and some feed-
back (either from the environment or additional inference or menﬁﬁ‘r;@.ehlmann,
Edwards, and Sleeman (1995) stress the importance of metacognitive processing to provide
expectations and to monitor comprehension, both in human and machine systems. The rep-
resentations used by any system should support these processes. The following sections
provide representations for both successful and for failed mental processing.

53. Although the vocabulary item is listed Bemory Process in Figure 19, the IMXP figures
have been usinglemory Retrieval . The terms are used interchangeably.

54. See Krulwich (1995) for another view on basic level categories for mental representations.
Instead of granularity, however, his discussion centers on the proper level of abstraction.
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4.6 Representing Reasoning Success

An illustration of a simple base type representations is contained in Figut\gith
this figure and the ones to come representing subsequent core IMXEadhie nodes
may actually consist of an arbitrarily long chain of computations. The node is actually rep-
resented by a TMXP rather than a single process. See Figure 32 for the frame definition of
this graph structure for further clarification.

Mentally
Enables

Mentally
Results

Mentally
Results

Mentally
Initiates

Successful
Prediction

Figure 31. Meta-XP representation of successful prediction
A=actual; E=expected; G=goal; C=context or cues

The EXPLAINS node of the XP is the node labeled “Successful Prediction.” The
equals relation between A and iBentally-initiates the node. Now, let node A
be an actual occurrence of an event, an explanation, or an arbitrary proposition. The node
A results from either a mental calculation or an input concept. Let node E be the expected
occurrence. The expected node,rggntally-results from some reasoning trace
enabled by some goal, G, and context, C. Now if the two propositions are identical, so that

55. Compare this figure with the final comparison model of expectation-driven reasoning (Figure 17
on page 49).
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(define-framdMXP-SUCCESSFUL-PREDICTION

(isa (core-introspective-meta-xp))
(failure-cause nil.0)
(a (entity))
(e (entity

(truth hypothesized-in.0)))
(9 (goal))
(rc (trace-meta-xp

(identification

(d-c-node =d-c-n
(initial-state =preconditions) ))
(main-result =e)))))
(preconditions (considerations
(mentally-enables =d=c=n)
(prime-state =q)))
(comparison (inferential-process
(argl =a)
(arg2 =e)
(main-result =equals)))
(sp (successful-prediction
(initiates- =equals)
(expected-outcome =€)
(actual-outcome =a)))
(equal-relation
(domain =a)
(co-domain =e)))
(later-process (cognize))
(nodes (=a =e =sp =equals =rc =later-process
=comparison =preconditions))
(pre-xp-nodes (=a =e =sp))
(explains =sp)
(internal-nodes (=equals =rc))
(xp-asserted-nodes

(equals

(=later-process =comparison =preconditions))

(link1 (mentally-enables
(domain =preconditions)
(co-domain =rc)))

(link2 (mentally-results
(domain =rc)
(co-domain =e)))

(link3 (mentally-results

(domain =later-process)
(co-domain =a)))

(link4 (mentally-results
(domain =comparison)
(co-domain =equals)))

(link5 (mentally-initiates
(domain =equals)
(co-domain =sp)))

(links (=link1 =link2 =link3 =link4 =link5))

)

;; No failure.

;; Actual outcome.

;; Expected outcome.

;; Expected to be believed.

;; Main goal.

;; Trace of reasoning chain.

;; The node has an alias

;; Reasoning trace results in node e.

., Points to alias above.

;; Node this IMXP explains.

;; List of all nodes in IMXP.

;; List of all links in IMXP.

Figure 32. Successful prediction frame definition
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A U E, then a successful prediction has occur®Bailures occur when 4 E. This state

exists when either A and E are disjoint or there are conflicting assertions within the two
nodes. For example A and E may be persons, but the concept at node E contains a slot spec-
ifying gender =male.0, whereas the concept at A contains the glemder =female.0.
Although successful prediction produces no learning, a representation must exist for it.

Before examining the representation for reasoning failures, it is worth noting that the
basic representation of successful prediction can account for many of the process terms in
our target ontology (Figure 19 on page 70), not just classes of failure. Figure 33 illustrates
successful prediction when the value of begnize node that produces the expectation,

E, isa memory process. This representation can easily capture the distinctions between an
incidental reminding, a deliberate recall, and recognition; that is, the three sub-nodes of
Rememberin Figure 19. The structural differences depend on the nodes C and G, and the
temporal order of the causal links resulting in nodes E and A (see Table 7). If there is no
knowledge goal (Ram, 1991; Ram & Cox, 1994; Ram & Hunter, 1992) to retrieve some
memory item, only cues in the environment, and if E is retrieved before A is produced, then
the structure is a reminding. On the other hand, if there is a deliberate attempt to a memory
item that is later compared to some feedback, A, then the structure represents recall.
Finally, if A is presented followed by a memory probe, then the structure represents recog-
nition, whether or not a retrieval goal exists. It is also significant to note that the memory
Elaboration  term of Figure 19 can be represented as a feedback loop from E to C such
that each new item retrieved adds to the context that enables further memory
retrieval®‘This is represented as a dashed line in Figure 33.

4.7 Representing Reasoning Failure to Support Learning

To support learning, a theory should have a level of representation that reflects the
structure and content of reasoning failures. Section 3.2, “Types of Reasoning Failure”
extends the scope of reasoning failure to include the following forms: contradiction,
impasse, false expectation, surprise, and unexpected success. This section provides explicit
representations for each of these five types at a level of representation that is sufficient for
learning.

56. On the other hand, if Al E, then there are more questions remaining on the predicted node E.
If there are unanswered questions, the system will wait for more information before it introspects.
Such cases are not represented in the current implementation, although there are cases in which
one would want to reason about partial computations. See also the brief discussion in Section
3.2.1.4.

57. This characterization is admittedly simplified since cue elaboration incorporates top-down infer-
ential processes as well as bottom-up additions to memory cues.
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Successful
Prediction

co-domain

codomain

Mentally
Enables

Memory
Retrieval

Mentally
Results l

Figure 33. Meta-XP representation of several remembering events

A=actual; E=expected; G=goal; C=context or cues

Table 7: Structural differences between remembering events

Memory Structural Features Description
Term

Reminding || Has only Cues; Incidental;
E before A No Knowledge Goal

Recall Cues and Goal; Deliberate;
E before A Has Knowledge Goal

Recognition|| May or may not have Goal, Borderline between 2 above;
A before E Has judgement
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4.7.1 Contradiction

Figure 34 illustrates the representation for a contradiction failure. Some goal, G, and
context or cues, C, enables some cognitive process to produce an expected outcome, E. A
subsequent cognitive mechanism produces an actual outcome, A, which when compared to
E, fails to meet the expectation. Realizing this inequality of actual outcome with expected
outcome initiates the knowledge of contradiction.

Mentally
Enables

Mentally
Results

Mentally
Results

Mentally
Initiates

Expectation or
Incorporation
Failure

co-domain

domain

Figure 34. Meta-XP representation of contradiction
A=actual; E=expected; G=goal; C=context or cues

If the right mostCognize node is an inferential process, then the failure is labeled
Expectation Failure and the node C represents the context; whereas, if the process
was a memory function, the contradiction is labdlecbrporation Failure and C
represents memory cues. The latter case occurs when an input concept does not meet a con-
ceptual category during understanding. Both inferential expectation failure and incorpora-
tion failure are errors of commission. Some explicit expectation was violated by later
processing or input.

4.7.2 Impasse

Figure 35, “Meta-XP representation of impasse,” represents a class of omission fail-
ures that include forgetting as discussed earlier. Some goal, G, and context or cues, C,
enables a cognitive process to attempt production of an expected outcome, E. Because the
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expectation, E, was not generated, it cannot be compared to an actual outcome, A, produced
by a subsequent cognitive mechanism. Realizing that E is not in the set of beliefs with
respect to the foreground knowledge of the system (i.e., was not brought into or created
within working memory) initiates the knowledge of failure.

Mentally
Results

- Mentally
Results

Retrieval or
Construction
Failure

co-domain

Expected
Outcome

Figure 35. Meta-XP representation of impasse

A=actual; E=expected; G=goal; C=context or cues

If the right-mostCognize term is a memory retrieval process, then the Meta-XP
indeed represents forgettiﬁ@and the structure is labeldktrieval Failure . The
impasse is a memory process that fails to retrieve anything. If the node is an inferential pro-
cess, however, then the impasse failure is equivalent to the failures as recognized by Soar
(a blocked attempt to generate the solution to a goal), and the structure is |&lueied
struction Failure . A construction failure occurs when no plan or solution is con-
structed by the inference process.

4.7.3 False Expectation

As seen in Figure 36, the representation of false expectation anticipates an actual event
(A1) which never occurs or cannot be calculated. Instead, another evgntdises the

58. Compare Figure 35, “Meta-XP representation of impasse,” with Figure 31, “Meta-XP represen-
tation of successful prediction,” to see why ForgetindRemember.
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Figure 36. Meta-XP representation of false expectation

A=actual; E=expected; G=goal; C=context or cues
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reasoner to realize the error through hindsight. It is not always evident what this second
event may be, however. Sometimes itis a very subtle event associated with just the passage
of time, so there is no claim here that the second event is a conscious one. In this sequence,
the reasoner realizes that the anticipated event is out of the set of beliefs with respect to the
FK, and will remain so.

Despite the fact that false expectation and surprise are not closely related in the table
of failure types (Table 4, “Final table for reasoning model,” on page 50), they are quite
related in structure. As will be seen in the subsequent subsection, they both share the incor-
rectly anticipatecdsuccessful Prediction node and also the node labeedlated
Prediction

4.7.4 Surprise

Figure 37, “Meta-XP representation of surprise,” represents a class of failures rarely
treated in any Al system. A surprise occurs when a hindsight process reveals that some
expectation was never generated. The explanation is that there was never a goal, G2, to cre-
ate the expectation, either through remembering or inferring. Some earlier process with
goal, G1, failed to generate the subsequent goal. When the node A is generated, however,
the system realizes that it is missing. This error, by definition, is a missing expectation dis-
covered after the fact. Again, note the similarity between the representations for surprise
and false expectation.

4.7.5 Unexpected Success

Finally, Figure 38, “Meta-XP representation of unexpected success,” contains a Meta-
XP representation of an unexpected success, a failure similar to contradiction. However,
instead of E being violated by A, the expectation is that the violation will occur, yet does
not. That is, the agent expects not to be able to perform some computation (e.g., create a
solution to a given problem), yet succeeds nonetheless. In such cases the rigébgiost
nize term will be some inferential process. If this process is a memory term instead, the
failure represents the case of an agent that does not expect to be able to remember some fact
or event when necessary, yet when the time comes, it does nonetheless.

4.8 Summary and Discussion

The few examples presented in this chapter demonstrate both the usefulness and com-
plexity of representing mental events and states. The chapter began by describing a target
ontology of mental terms that would provide a useful vocabulary for systems that reason
about the mental domain. The remainder of the chapter concentrated on composing a rep-
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Figure 37. Meta-XP representation of surprise

A=actual; E=expected; G1,G2=goals; C=context or cues
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Figure 38. Meta-XP representation of unexpected success

A=actual; E=expected; G=goal; C=context or cues
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resentation for just those terms that pertain to the five failure symptoms derived in the pre-
vious chapter. If a system is to learn from its reasoning failures effectively, it needs to
represent the kind of mental symptoms and faults it is likely to encounter so that these can
be reasoned about explicitly. Only enough representational detail must be provided so that
the system can explain its own failures and thereby learn from them. That is, the represen-
tations must have causal and relational components that identify those factors that explain
how and why a failure occurred. A knowledge structure called a trace meta-explanation
pattern is used to provide a record of system reasoning. It explains how the failures occur.
An Introspective Meta-Explanation Pattern represents an abstract causal pattern of failure
that explains why the reasoning embodied in a trace fails.

Despite the difficulty of formulating a complete representation of mental events, the
effort promises to aid a system when reasoning about itself or other agents, especially when
trying to explain why its own or another’s reasoning goes astray. Furthermore, even though
the CD representation of mental terms leaves much detail unrepresented, the original goal
of Schank et al. (1972) to represent the mental domain is a fruitful one. If future research
can more fully specify a representational vocabulary for the ontological items illustrated in
Figure 19, these domain independent terms can help many different intelligent systems rea-
son in complex situations where errors occur.

Although many of the details of this chapter may be overly simplified, the formalism
remains an improvement over many of the representational systems proposed in the past
(e.g., logic and CD theory) with respect to representing mental states and mechanisms.
Especially considering the emphasis by Schank on expectation as a driving force in text
comprehension and problem solving (a point made explicitly as early as Schank, 1972, and,
to some extent, in Schank & Tesler, 1969), the CD representation for the concept of “expec-
tation” is not sufficient to express its central role in cognition. For example, the CD repre-
sentation for “John expects Bill to become a doctor” (Schank et al., 1972, p. 29) is shown
in Figure 39. Very little information is provided in this structure, and few inferences may
be obtained from it or learning performed from it.

Bill
f ﬂ[ ~= MLOC (LTM (John))

Doctor

Figure 39. CD representation of expectation

f=future tense; MLOC=Mental Location; LTM=Long
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The following chapters of Part Three will introduce the process theory of introspec-
tion and learning. Chapter V first presents a model of understanding and then a model of
learning. Chapter VII provides the algorithms that underlie these models and that manip-
ulate the current chapter’s representations when learning. Additional examples from the
Meta-AQUA system will illustrate the utility of Meta-XP representations.
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Part Three

A PROCESS THEORY OF LEARNING AND INTROSPECTION
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CHAPTER V

A PROCESS THEORY OF UNDERSTANDING AND LEARNING

Learning without creativity is like a butterfly without wings.

[J Anonymous (from a fortune cookie following a Korean meal).

In most cognitive science theories, problem solving, understanding and learning are
distinct processes that have few family resemblances. They each play an integral role in a
cognitive milieu, but are, for the most part, studied independently with little regard to one
another. But as we have emphasized, the relationship between reasoning (either problem
solving or comprehension) and learning is intimate because an introspective learning com-
ponent must be able to explain and understand failures in the reasoning component, if learn-
ing is to remain effective (i.e., if multiple learning methods woven into its learning-strategy
are not to interact negatively). Here we develop an interrelated theory of these cognitive
functions and show the close relationships between them by comparison and by contrast.

Having examined the content theory of introspective multistrategy learning during
Part Two, this chapter presents a process theory of both understanding and learning. Sec-
tion 5.1 reviews the major suppositions of the theory presented in Parts One and Two.
These assumptions also support the models developed in this chapter. Section 5.2 outlines
a generalized process theory for multistrategy reasoning that applies to both problem-solv-
ing and comprehension tasks. Section 5.3 refines the process theory specifically to com-
prehension tasks and then specializes it further to account for the task of story
understanding. Section 5.4 develops a process model of learning that parallels the model
of understanding. Section 5.5 then compares the model of understanding from Section 5.3
with the learning model of Section 5.4.

5.1 Theoretical Assumptions

The results, conclusions and the very structure of this theory depends on the broad
assumptions enumerated in Figure 40. Although several sections of this document have
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already discussed these assumptions, this section briefly reiterates them to provide a review.
These assumptions allow us to be specific as to the kinds of models and the details associ-
ated with them that will be presented in this chapter.

¢ Reasoning is goal-directed processing of input given
some background knowledge.

A multistrategy approach is appropriate for both rea-
soning and learning.

Knowledge is memory-based.

Learning is failure-driven.

Figure 40. Assumptions

First and foremost, we assume that cognition is essentially goal-directed processing
of a given input using the reasoner’s knowledge (see the discussion in Section 3.3). In pur-
suit of such goals a cognitive system produces expectations of the future. Our focus is
therefore on the deliberative and top-down components of thought, rather than on the data-
driven or situation-specific factors.

Second, all reasoning can be cast in a multistrategy framework. For the purposes of
this document, problem-solving, understanding, and learning are all considered to involve
the choice of strategies in some sense. Whereas much of this thesis has already argued that
learning is multistrategy affair, Section 5.2 will argue that both problem-solving and under-
standing should be considered to involve an executive control process that determines a rea-
soning strategy.

A third assumption is that the reasoner’s knowledge and past experience is memory-
based, and therefore subject to storage and retrieval constraints, particularly the indexing
problem. The indexing problem (see the discussion in Section 3.3.1) is the problem of
choosing cues, or features of an input, to be used as indexes for retrieving from memory the
knowledge structures necessary to process an input. Thus, in such memories, knowledge
organization is a significant concern for both reasoning and learning furittions.

Finally, we assume a failure-driven approach to learning and reasoning (see the intro-
ductory comments of Chapter Ill), which concentrates on contradictions, impasses, false
expectations, surprises, and unexpected successes to indicate when attentional resources
are appropriate. Aailure is defined as a computational outcome other than what is
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expected or a lack of some outcome (or appropriate expectation).

Given such assumptions, the cognitive tasks of reasoning, understanding, and learning
have interesting parallels in the overall theory of introspective multistrategy learning.

5.2 Multistrategy Reasoning

In a classic study of human problem-solving, Newell and Simon (1972) outlined a
model that humans appear to follow when engaged in reasoning about complex problems.
An initial process first translates the perception of the external environment into an internal
representation of the problem. Second, the reasoner selects a method such as recognition
or heuristic search by which to solve the probl@(?‘nfl'hird, the method is applied to the
problem. Finally, if the problem is not solved, then the reasoner either chooses another
method, reformulates the problem, or quits. In their framework, the emphasis is upon rep-
resentation of the problem and multiple problem-solving methods between which the rea-
soner must decide. We likewise emphasize multistrategy components that select and
construct strategies during reasoning and during learning.

In expert system development, a crucial engineering problem is to match an appropri-
ate inference method to the task domain of concern. The generic-task view of Chan-
drasekaran (1989), Steels’ (1990) study of componential frameworks, and McDermott’s
(1988) work on role-limiting methods all lend additional support for the multistrategy
assumption by arguing that different general methods exist that apply to specific problem-
solving tasks. More than one method may apply to a given task or subtask, so strategy
selection and composition is unavoidable in problem solving, whether performed by the
knowledge engineer or the knowledge-based systemfself.

59. This third premise suggests that knowledge is composed of two parts. As discussed in Section
4.3 on representing forgetting, the system’s background knowledge, or BK, contains more that just
the domain theory of the performance task. It represents all long-term knowledge including meta-
knowledge, heuristic knowledge, associative knowledge, and knowledge of process. In contrast
to the BK, the foreground knowledge, or FK, constitutes the current model of the input that has
been constructed, and the memory of the reasoning with which such a model was built.

60. See Simon (1979) for a discussion of alternative strategies given a single problem representation.

61. For specific implementations of the multistrategy approach to problem solving, see Goel, Al,
Donnellan, Garza, & Callantine (1994) for descriptions of ROUTER, Punch (1991) for a discus-
sion of the TIPS system, Reinders & Bredeweg (1992) for the REFLECT system, Oehlmann,
Edwards & Sleeman (1995) for the IULIAN system, and Kuokka (1990) for the MAX system.
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Meta-level tools have also been developed for expert systems to automate the gener-
ation of knowledge acquisition assistants. For instance, the PROTEGE-II knowledge
acquisition shell (Puerta, Egar, Tu, & Musen, 1992) combines domain- and task-indepen-
dent mechanisms to construct appropriate problem-solving methods (e.g., heuristic classi-
fication and skeletal-plan refinement) that fit a given problem domain. Therefore, rather
than one basic mechanism, many different processes and algorithms must account for cog-
nition. The open question is how are they combined. Punch, Goel, and Brown (1996)
report a robust mechanism for selecting between a fixed set of alternatives called the spon-
sor-selector mechanism. This control mechanism has been tested in applications involving
planning, design and assembly. Hence, the strategy construction problem (which subsumes
the selection task) is clearly pertinent to problem solving, as well as learning.

The first paragraph of Chapter | specified the operational definition of learning as “...
given some computational performance task specified by the system'’s goals, context and
some input, if a failure occurs during the task, the problem is to construct a learning strategy
with which to repair the faulty components of the system.” In similar terms, an operational
definition of a generalized reasoning task can be stated that subsumes both understanding
and problem solving.

Given some input from the world (e.g., preprocessed perceptual input or
text from a story), a current context, including contextual goals and BK, if
the input is anomalous (or otherwise interesting), choose or construct a
reasoning strategy with which to explain the input.

As with the characterization of learning, the top level of computation concerns the
choice of a reasoning strategy, rather than the choice of a solution operator. The outermost
control is thus an executive reasoning process at the meta-level. This multi-level reasoning
is consistent with the approach of the MOLGEN system (Stefik, 1981), in which a plane of
reasoning exists in both the design plane (the reasoning task in MOLGEN’s domain) and
the meta-plane (the task of choosing an operator in the design plane). As a result of this
division, to choose a reasoning strategy the system should understand and model its own
algorithms. Though consistent with Stefik, however, the model here does not presuppose
separate planes of computation.

In the formulation presented here, reasoning is a variant of the generate-and-test par-
adigm, with the enhancement of a front-end identification process to filter anomalous, or
otherwise interesting, input (see Figure 41). So, if no unusual input to the system exists, no
significant resources will be expended on reasoning. Therefore, in the absence of interest-
ing input, an understander will skim its data; a problem solver will simply act reactively or
habitually. In such situations there is no deliberation. With interesting input, however, a
reasoner should construct and execute a strategy, thus generating some response that
resolves the anomaly that sparked the interest. Subsequently, the result is verified by some
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means constructed by the reasoner. If the result is falsified, then the generation process
begins anew.

Get Input

Figure 41. Basic reasoning model

5.3 Process Model of Understanding

The research presented here has concentrated on developing the details of first-order
reasoning in the form of understanding or comprehension, rather than problem solving.
Understanding involves building causal explanations of the input. These explanations pro-
vide conceptual coherence by incorporating the current input into pieces of the previous
input and by generating expectations about subsequent input. The understander skims a
stream of input by instantiating schemas to fit each input item and linking it into the previ-
ous concepts of the story, unless the input is anomalous. If an anomalous situation is iden-
tified, then the understander must explain the input by elaborating it beyond simple schema
instantiation.

5.3.1 Three Sub-processes of Understanding

Figure 42 shows three processes in the general understanding task. First, the under-
stander needs to identify anomalous (or otherwise intere§fimg)ut; second, it generates
a hypothetical explanation to explain the anomaly; and third, it verifies the generated expla-
nation. Both explanation generation and verification involve strategy construction. The
understander must construct a method to generate an explanation and to construct a method
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Understanding
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Identification
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Example Strategies:

Generate
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Explanation

- XP Application
- Analogy
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Example Strategies:
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- Compare to Input

- Suspend

Goodness

Figure 42. Sub-processes of understanding

to test the veracity of the explanation. A number of possible strategies from which the sys-

tem may select are shown in Figure 42. With respect to the more generic model shown in

Figure 41, the two understanding sub-processes of constructing hypothetical explanations
and verifying hypotheses correspond to the generate and test processes, reﬁ?ectively.

With this model, an operational statement of story understanding is as follows:

Given some input from the story, the system’s current foreground knowl-
edge (FK), including contextual goals and a current representation of the

story, and the system’s background knowledge (BK), if the input is anoma-
lous (or otherwise interesting), choose or construct a strategy with which to

62. In Meta-AQUA, interesting input is either an anomalous conceptualization or something pertain-
ing to sex, violence, or loud noises. In addition, anything concerning a concept about which some-
thing has been learned recently will be categorized as interesting. For a more detailed set of
interestingness heuristics, see Ram (1990b).

63. This is not unlike Klahr and Dunbar’s (1988) model of scientific discovery, where there is a
hypothesis generation phase followed by hypothesis verification and evidence testing phases. The
major difference, though, is that IML theory assumes no explicit exploration of a hypothesis space
via search. Instead a simple, indexed memory provides suggestions that constitute hypotheses.



5.3 Process Model of Understandirig 111

explain the input, else incorporate the input into f£KOutput a new story
representation (FK), including a representation of the reasoning that pro-
duced it, that has no anomaly and is coherent with respect to the BK.

5.3.2 Understanding Elvis’ Behavior

Story-understanding is the processing task chosen to test our theory of introspection
and learning. In particular, this research develops an explicit, if somewhat simplified,
model of the processing performed by an implementation of question-driven story under-
standing. The model of understanding used in this thesis is a modification of the reasoning
method used by the AQUA story understanding system (Ram, 1991, 1993, 1994). The
implementation is in a program called Meta-AQUA.

As an example, Meta-AQUA might process a story about a polite, Memphis musician
named Elvis boarding with a young, Southern farﬁﬂWhiIe processing the story, Meta-
AQUA constructs a model of the characters and the actions involved in the story. When the
story reveals that Elvis occasionally smokes marijuana in the house, endangering his safety
and freedom, as well as that of the family’s with which he lives, the system detects an anom-
aly that must be explained to fully understand the story. The event is anomalous because
the model of Elvis constructed before the point of his taking drugs was one of a law-abiding
citizen. A conflict occurs as a result of trying to unify the picture of Elvis as a typical, adult
male (assumed to be happy) with the picture of him as an individual likely to commit a
crime (thus, apt to be desperate).

To explain the incongruity, the system must understand the anomaly. Meta-AQUA
accomplishes this by consulting a decision model (Ram, 1990a) that describes the planning
process an agent performs when considering a choice of actions in the world. The objective
of the analysis is to refine the nature of the anomaly and to identify the parts of the story
that bear on the anomaly, so as to more clearly ascertain what needs to be explained to
resolve the anomaly. An analysis of the story yields the facts that Elvis is not desperate, yet
at the same time he performs an act that threatens the loss of his liberty. This situation is
certainly anomalous because the decision model asserts that people value the goal of pre-
serving their own freedom above most other goals they possess, other than the goal preserv-
ing their lives. A goal competition (Wilensky, 1983) therefore exists that Meta-AQUA must
explain.

64. Although only outlined in general descriptions here, this scenario is from a 31-sentence story.
For a complete program listing of the Meta-AQUA output from this story, see Appendix B. The
example will also be dealt with in more detail by Chapter VIII.
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Following this analysis, Meta-AQUA poses a series of questions about the anomaly
and the context of the story surrounding the anomaly. In this case, the system asks what
would cause a man to carry out an action he knew could result in his own arrest. If this
guestion can be answered, then the anomaly would likely be resolved, and the story would
be considered understood.

To explain events in a story, Meta-AQUA can generate two types of explanations.
Physical explanationgive a causal account of events according to a model of the way
things work in the world, whereasmlitional explanationgjive a causal account of why peo-
ple perform the acts they do in the world. The former class links physical events (such as
the burning of flammable materials) with probable causes (such as the lighting of materials
with combustible devices). The latter type of explanation links the actions of agents in a
story to their goals and beliefs, thus providing a motivation for story characters. Inthe Elvis
scenario, Meta-AQUA retrieves, instantiates, and adapts a cigarette-smoking explanation,
which produces expectations in the story (e.g., that the smoking will relieve a nervous emo-
tional state). It can either look for verification of the explanation by tying it into the story,
or it can suspend the explanation until a later point in time. The explanation can be verified
when subsequent sentences in the story confirm the hypothesis.

Figure 43 diagrams the process decomposition that produces an understanding of
Elvis’ situation®® First the system performs simple anomaly detection. An anomaly is sig-
naled when either the input conflicts with known facts in the BK, or when the system is oth-
erwise unable to successfully incorporate the representation of the input into the current
story model in the FK. An explanation process then attempts to resolve the anomaly by
constructing a causal account of the input with respect to both the story and the system’s
knowledge. The resulting hypothesis is then tested for degree of fit or believability.

5.3.3 Question-Driven Understanding

Both the generate and the verify components of understanding have four steps (again
see Figure 43). In effect, given some anomalous state the reader encounters, if it is to
explain the anomaly and thus understand the story, it must answer the following questions:

* How did the anomaly occur?
* What needs to be explained?
* How can | explain this?

65. Figure 43 is a repetition of Figure 14 from page 36.
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Subsequently it will:

* Resolve the anomaly by generating an explanation.

The initial step is to elaborate the anomaly in order to provide a focus that is relevant
to determining what occurred within the story. The reasoner also refines the anomaly in
such a way that a specific question can be posed. Since the specification of the explanation
process must be more precise than simply “explain the anomaly,” it adds little benefit to
simply ask what the reason is for the anomaly. Although it may be clear that some repre-
sentation for a character like Elvis indicates thaidze typical-person.0, that a later rep-
resentation of hinisa criminal-person.0, and that the two representations will not unify
in the program internals, a better characterization of the anomaly provides specific circum-
stances (including motivations, states, goals, and beliefs) in terms of both a model of nor-
mative decisions and a model of the current story that point to possible locations of the
anomaly. Moreover, by providing a story context, a system avoids much search, since the
context should contain only the pertinent details known so far. A talented programmer can
set up the anomalies that its system knows about in such a way that resolution is all but
guaranteed. Itis better to have some process that attempts to focus the anomaly so that con-
ditions not envisioned by the programmer can also be addressed.

Given such detail, the function of the next step is to provide a set of questions that rep-
resents gaps in the model of the story with respect to the anomaly. Any such question can
be viewed as &nowledge goa(Cox & Ram, 1995; Ram, 1989, 1991; Ram & Hunter,
1992), since it specifies the knowledge states that, if achieved, would provide coherence to
both the story and what the system knows (its BK). Following this specification the system
can pick an explanation strategy that will answer these questions (i.e., achieve the knowl-
edge goals). Once a strategy is determined, the program can generate the explanation.

The first step in explanation generation is similar to the blame assignment step in
learning, the second is goal specification, and the third is strategy construction. After per-
forming these steps, the reasoner can execute the reasoning method. Like our learning
model (see Section 5.4) that offers no new learning algorithenseand instead presents
a method of choosing between and combining a number of extant strategies, the reasoning
model also concentrates on the strategy choices and combinations. Depending upon the
given situation, a system may choose from case-based reasoning, analogy, explanation
application, or any number of reasoning strategies for generation (see Figure 43). To per-
form a test of the resulting hypothesis, a reasoner may devise an experiment, ask someone,
or simply wait, in the hope that the answer will be provided by future input.

To verify the hypothesized explanation, the verification process makes a similar four-
step analysis. The first step, however, that of finding the source of the hypothesis, is known
to follow in sequence from the generation proc%%Step two is to determine whether to
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attempt to prove or disprove the hypothesis. Given a target approach, the system then needs
to choose an algorithm best suited to achieving the goal. Once the algorithms have been
selected and ordered, the hypothesis can then be evaluated.

Given such a model for the performance task, traces of system performance can be
specified and recorded in declarative structures. As described in Section 4.4.1 (starting on
page 81), a TMXP contains a decide-compute node (D-C-NODE) for each of the sub-pro-
cesses of an understanding task; that is, it records the decision and the reasons behind each
decision in every step of Figure 43. To understand what parts of the comprehension process
are recorded in these knowledge structures, carefully compare Figure 43 (p. 113) with Fig-
ure 27 (p. 85). Both the generation and verification processes have four steps each of which
correspond to a process field in a D-C-NODE. The four fields are input analysis, goal spec-
ification, strategy decision, and strategy execution. For each field, the record stores both
the enabling conditions and the resulting state. For the first three fields, the D-C-NODE
records the decision basis, and for the last field, it records the side-effects of the process.

If a failure occurs (as detected by the algorithm to be presented on page 121), the sys-
tem suspends the understanding performance-task and invokes the learning task. When this
happens, the trace of the reasoning along with a characterization of the failure (as deter-
mined by the failure detection algorithm) is passed to the learning process for introspective
explanation. When learning abates, the system resumes the performance task.

5.4 Process Model of Learning

In contrast to the first-order performance task, a similar model of the second-order
learning task completes our theory of introspective multistrategy learning. When a failure
occurs, learning processes inspect the traces of performance in order to explain the failure
and decide what to learn. Subsequently, a learning strategy can be assembled and executed.
Here we functionally justify such a process model, place it in the context of multistrategy
systems, and overview the IML algorithm to be further refined in the next two chapters.

Simon (1983) defines learning as “changes in the system that are adaptive in the sense
that they enable the system to do the same task or tasks drawn from the same population
more efficiently and more effectively the next time” (p. 28). Thus, some performance task
exists that receives an input and acts upon it given its knowledge dealing with that class of
data. A measure of this performance is then passed to a learning task, whereupon it makes

66. Yet, in instances where a hypothesis is not self-generated, but provided to the reasoner as input,
step one would indeed require significant computation.
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changes to the knowledge used by the performance system, depending on the success or
failure of the performance. This general view of learning is diagramed in Figure 44.

Performance Learning
Performance | Measure
—> — > Subsystem

Input Subsystem

Knowledge Modifications

Figure 44. Traditional model of learning

For instance, students often learn to program computers in LISP, first knowing another
language such as Pascal. But as LISP novices, the code that results from their problem
solving is usually overly-extenuated, inefficient, buggy, and written in an imperative style
with loops and block control-structures. As students learn to debug their programs better
and acquire mastery of more LISP functions, the code becomes much more compact, effi-
cient, bug-free, and written recursively within a functional programming style. The differ-
ence in performance is due to a change in the knowledge and skills used by the programmer
both to understand and solve problems and to implement the resulting solutions. These
conceptual changes come about from a removal of rigid, Pascal-like coding habits, an
acquisition of new LISP techniques, and a reorganization of the applicability conditions for
much of the knowledge relevant to the task of computer programming.

In contrast to Simon’s definition, the Inferential Learning Theory of Michalski (1991,
1994F7 defines a learning task as consisting of three components: some input (informa-
tion), the BK, and a learning goal. Even though this description does not explicitly refer to

67. See also Michalski & Ram (1995) for a more detailed inspection of the relation between views
presented here and those of Michalski.
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the performance of a reasoning system, and so differs from IML theory, the concept of a
learning goal is central to both Michalski’'s model and the model of learning presented here.
The learning goal determines the relevant pieces of the input, the knowledge to be acquired,
and the criteria for evaluating the learning. The model of learning presented here is consis-
tent with these constraints, and, as championed by Michalski, concentrates on a multistrat-
egy approach to learning whereby more than one learning strategy can be brought to bear
upon a given learning task. Because the multistrategy approach applies equally well to both
reasoning (in the form of either problem-solving or understanding) and to learning, this
framework is a natural one for integrating the learning and the performance tasks.

5.4.1 Multistrategy Learning

Recent attention to multistrategy learning systems is evident from numerous sources
in the machine learning literature (e.g., Carbonell, Knoblock & Minton, 1991; Michalski,
1993; Michalski & Tecuci, 1991, 1994) and in the psychological literature (e.g., Anderson,
1983, 1993; Wisniewski & Medin, 1991). Such research constitutes a functional approach
that designates the kinds of strategies a learning architecture needs to perform and the con-
ditions for applying each. Multistrategy learning systems are those that integrate several
learning algorithms into a unified whole, and thus contrast with single-strategy systems
such as Soar (Newell, 1990; Laird et al., 1986; Rosenbloom, Laird, & Newell, 1993) in
which all learning is performed by a single learning mechanism. Whereas any learning in
Soar reduces to the chunking mechanism, methods as disparate as explanation-based learn-
ing, similarity-based learning, deduction, abduction, constructive induction, and analogy
can be directly included in the same multistrategy framework. In Soar, such learning strat-
egies must be built up from the chunking mechanism via a production implementation
(Steier et al., 1987/1995§.

Approaches to multistrategy learning fall into three broad categories, which we call
strategy selection models, toolbox models, and cascade models. The common element in
all these approaches is the use of multiple learning methods to allow the reasoning system
to learn in multiple types of learning situations.

68. A more critical evaluation of the single-strategy approach is that learning is actually a melange
of several mechanisms of the architecture (Pylyshyn, 1991). Learning can be obtained as a result
of goal-driven problem solving (as is with the Soar framework), or by the passive exposure to
experience or goal-orientations (for instance, see Barsalou, 1995), or by instruction, by trial and
error, by perceptual reorganization or insight, or numerous other mechanisms. The position here,
though, is that the question of whether learning is single-strategy or multistrategy is still an open
one. This research is simply a start toward the development of a framework that can more vigor-
ously study this question and those like it.
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In strategy selection modelthe reasoner has access to several learning strategies,
each represented as a separate algorithm or method. Learning involves an explicit decision
stage in which the appropriate learning strategy is identified, followed by a strategy appli-
cation stage in which the corresponding algorithm is executed. Methods for strategy selec-
tion also differ. Pazzani's (1990a; 1994) OCCAM system, for example, tries each learning
strategy in a pre-defined order until an applicable one is found; Reich's (1994) BRIDGER
system uses a task analysis of the problem-solving task to determine the appropriate learn-
ing strategies for each stage of the task; Hunter's (1990a) INVESTIGATOR system repre-
sents prerequisites for application of each learning strategy; Cheng’s (1995) ISM speedup
mechanism manager optimizes the learning behavior of the Theo (Mitchell, Allen, Chala-
sani, Cheng, Etzioni, Ringuette, & Schlimmer, 1991) problem-solving architecture; and the
Meta-AQUA system uses characterizations of reasoning failures to determine what to learn
and, in turn, the learning strategies to use when building a learning plan.

Toolbox modelsire similar to strategy selection models in that they too incorporate
several learning strategies in a single system. The difference is that these strategies are
viewed as tools that can be invoked by the user to perform different types of learning. The
tools themselves are available for use by other tools; thus, learning strategies may be orga-
nized as co-routines. An example of this approach is Morik's (1994) MOBAL system, in
which learning occurs through the cooperation of several learning tools with each other and
with the user. Another example of the toolbox class is the PRODIGY (Carbonell et al.,
1991; Minton, Carbonell, Etzioni, Knoblock & Kuokka, 1987) system. The system com-
bines explanation-based learning, case-based (analogical) learning, abstraction, experi-
mentation, static analysis, and tutoring. However, the system is designed as a research test-
bed for analyzing and comparing different methods, rather than as a system that chooses a
learning method itself. Instead, the experimenter chooses a learning module to run against
a given problem-solving test suftd.

In cascade model$wo or more learning strategies are cascaded sequentially, with the
output of one strategy serving as the input to another. For example, Danyluk's (1994)
GEMINI system uses a cascade of explanation-based learning, conceptual clustering, and
rule induction strategies, in that order, to combine analytical and empirical learning into a
single learning system. Clearly, these categories of models are not exclusive of each other
(e.g., a strategy selection system may choose to cascade learning strategies in certain cir-
cumstances), but they serve to characterize the major ways in which learning strategies may
be integrated.

69. The analogy module of PRODIGY is currently being modified to integrate both EBL and
abstraction with case-based learning using a cascade model (Veloso & Carbonell, 1994).
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Research into multistrategy learning is useful on pragmatic grounds when complex
worlds are the domains of learning systems. Such approaches allow for maximal flexibility.
Significant interactions are present in multistrategy systems, however, that are not apparent
in isolated systems. For example, if two algorithms modify the domain knowledge of the
system, and a dependency exists between the two, such that one strategy modifies a part of
the domain knowledge that the second one uses, then an implied sequencing must be
enforced; that is, the first strategy must be applied before the second. Such dependencies
do not exist in single-strategy systems. Research into multistrategy systems contributes to
many such issues that pertain to applied systems.

The general model of learning from Figure 44 can be refined to a multistrategy frame-
work as seen in Figure 45. Some input is processed by a multistrategy performance system
in a manner dependent upon its goals, expectations, and the knowledge in its memory. A
trace of the processing is passed to the learning subsystem. The learning module then uses
different methods from a library or toolbox of standard algorithms to make changes to the
knowledge in memory. Usually, the tools selected from the toolbox are chosen by the
researcher (e.g., as is with the PRODIGY system. See Veloso & Carbonell, 1994, or Car-
bonell et al., 1991). The goal of this dissertation is to specify a method by which to auto-
mate this choice and combination.

Learning Subsystem

Performance Subsystem

: Multistrategy
Multistrategy .
— Performance ——» Learning
©)

Learning
Algorithm
Memory Toolbox

Execute Learning

Figure 45. Model of introspective multistrategy learning
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5.4.2 Process Divisions within the Model of Learning

The performance system records its reasoning during story understanding in a TMXP
trace structure as described in Section 4.4.1 (p. 81). These knowledge structures contain
representations for each of the reasoning sub-processes: anomaly identification, hypothesis
formation, and verification (see Figure 43 on page 113). For each, the structure records the
considerations that prompted the process, the bases for making a reasoning strategy deci-
sion, and the result of strategy execution. After reasoning completes an inference chain,
the reasoning trace is passed to a learning process if a failure is detected.

The learning model itself has three processes. It must monitor the performance sys-
tem to check for failures, explain and learn from the failure when detected, and, in the ideal
model, it should verify that the learning was reasonable. Figure 46 illustrates these three
tasks and the information passed between them.

Learning ¢ TMXP

Failure
Identification

Failure

Example Strategies:

Generate

- Generalize then Re-index
- Abstraction then EBG Changes to BK
- Re-read Text Instructions

Hypothesis

Example Strategies: .
P 9 Verify

- Falsification Test Learning
- Opportunistic Check

Goodness

Figure 46. Sub-processes of learning

The first process performs failure detection. As outlined in Section 3.2, five types of
failures can occur. Failure detection inputs two structures (an expected outcome, E, and the
actual outcome, A) and the trace of the reasoning producing these knowledge structures.
The algorithm for this process is shown in Figure 47. The detection process occurs either
during the verification phase of the performance task of the system or during the generation
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phase after a resumption of a suspended generation goal. This second condition occurs
after the performance system previously tried to generate a hypothesis, but could not. The
generation phase suspends the goal and new input later provides the answer. See impasse
condition in Figure 47. Along with the trace, the process outputs a determination of which

of the failures exist (if any) to the next phase.

Detect-failure (E, A, trace)

begin
If (A (out g4) and trace indicates time to event expired)
or (A (out ) and impossible (goal (generate, E))) then

return false expectation
If E(in ) then

if E # A then
return contradiction
else if E = A then
If expected to fail then
return unexpected success
else return success

else if Ogoal (generate, E) then
return impasse

else return surprise
end

Figure 47. Failure detection algorithm

The second phase concerns the actual determination of the causes of failure and the
construction of a learning strategy which is then executed. The strategies from which it
may construct a learning plan is dependent upon the IMXP structures in memory. Although
this phase will be dealt with in detail by the next section, alternate strategies that may result
include combinations of fine-grained knowledge transmutations or more global approaches
such as a student’s strategy of re-reading instructions when all else fails. The output of the
phase is an implicit hypothesis that the learning was correct along with an augmented trace.
The changes to the BK from learning are attached to the TMXP and are indexed in memory
where the changes occur.

The third phase concerns verification. Although beyond the scope of this thesis and
more suitable for future research, verifying the learning could involve either of two strate-
gies. The system could be reminded of a change to the BK (as associated with the TMXP
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and described above) at some future time when the changed knowledge is reused. The
learning can then be checked as to whether it is effective. Alternatively, the system could
actually make a deliberate test of the newly learned knowledge by trying to falsify the infor-
mation. When either of these processes finish, the verification phase would output an eval-
uation of the quality of learning.

5.4.3 Generating Changes to the BK

Ram and Cox (1994) have argued that three fundamental learning-processes must be
performed if learning is to be effective in an open world where many sources of failure
exist. The processes are referred tdsne-assignmer{Birnbaum et al., 1990; Freed,
Krulwich, Birnbaum & Collins, 1992; Minsky, 1961/1963; Stroulia, Shankar, Goel & Pen-
berthy, 1992; Weintraub, 1991deciding what to learfCox & Ram, 1995; Hunter, 1989,
1990b; Keller, 1986; Krulwich, 1991; Leake & Ram, 1993; Ram, 1991; Ram & Hunter,
1992), andearning-strategy constructiofCox & Ram, 1991; Ram & Cox, 1994; Michal-
ski, 1991). Inthe event of a performance failure, these processes answer the following three
questions’?

¢ How did the failure occur?
¢ \What must be learned?
¢ How can this be learned?

Subsequently the learner will:
* Repair the background knowledge.

To justify our process decomposition that answers these three questions, we advance
the following argument: To construct a strategy, a system needs to know what is supposed
to be learned,; to decide what needs to be learned, it must know the cause of failure; to deter-
mine the cause of the failure, it must perform blame assignment; and to perform complete
blame assignment in many situations, it must reflect upon its own reasoning. The first sub-
section to follow elaborates the functional justifications for the process decomposition and
the role introspection plays in them, whereas, the second subsection presents an overview
of the algorithm that instantiates these processes.

70. Note the similarity to the questions on page 112.
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5.4.3.1 Functional justification for introspection as a component of learning

To properly select an algorithm when constructing a learning strategy, the system must
know what it needs to learn; it must havkearning goalor target. Imagine that the learning
algorithms from which the system chooses are like operators in planning paradigms
(Hunter, 1990b; Ram & Hunter, 1992). To select an operator effectively in planning sys-
tems, the system must have a goal toward which operators make progress; thus, selection
of the actions that constitute steps of a plan is based on the goal of the system. Since oper-
ators have results and preconditions, they can be chained such that different operators are
chosen on the basis of resultant states that satisfy the preconditions of, and therefore enable,
other operators. Thus, they can be chained to produce a series of plan steps that eventually
matches the plan goal. Similarly, as plan steps produce changes in the world, learning strat-
egies produce changes in the system’s BK. To produce productive changes in the BK, then,
the system must have an appropriate learning goal.

Learning goals also provide a focus for learning and thus help to avoid the combina-
torial explosion of inferences (Ram & Cox, 1994; Ram & Hunter, 1992). In general, most
learning is intractable without some bias. In order to avoid considering all possible input,
inferences from this input, and all possible changes to the BK that might improve perfor-
mance, learning goals give direction to the learner, as do problem-solving goals to a general
inference machine. Traditionally, a target concept (i.e., learning goal) is provided to a
learning system (e.g., the target concept of a cup in Mitchell et al., 1986). This research
enables a system to determine its own target of learning.

Furthermore, to generate the learning goal, the system must know the cause of the fail-
ure. Blame assignment (or, conversely, credit assignment) is a well-known problem, going
back as far as Minsky (1961/1963), involving the construction of explanations for how and
why a failure occurs (or how and why success occurs). Without having knowledge of what
caused the system to fail at its reasoning task, it is difficult to know what to learn to avoid
subsequent failures in like situations. Perhaps bottom-up reinforcement schedules (e.qg.,
Sutton, 1992) or associative PDP nets (Rumelhart & McClelland, 1986) can help the sys-
tem learn what to do without it knowing why, but surely no deliberative methods will be
able to form a goal to modify the BK in any meaningful way without first analyzing the fail-
ure/t Explanation is therefore crucial in fully understanding the relation between the cur-
rent state of the system, its BK, and the current condition of the external world. In this way
blame assignment can be viewed as a special form of abduction.

71. Pylyshyn (1991) argues the strong position that connectionist nets are essentially statistical pat-
tern matchers. The nets learn directly from the environmental stimulus without the intervention
of a reasoning mechanism or interpretation from explicit knowledge.
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To perform effective blame assignment, the system must be able to reason about its
own reasoning, in addition to reasoning about the world or the results of its own reasoning.
Determining the reasons why failure occurs is often not simply a matter of understanding
events in the world, or even the plans created. Rather, failures can be attributable to the rea-
soning process or to the choice of one. Newell and Simon (1972) show that human subjects
often make reasoning mistakes because of the wrong choice of reasoning strategy. Given
the “Magic Squares” word problem, such that the numbers in some matrix must add up
across, up, down, and diagonally, the solution is quite easy using an analogy to tic-tac-toe,
but is extremely difficult using means-ends analysis. Unfortunately, most subjects use this
latter reasoning and therefore cannot solve the problem. To explain this problem effec-
tively, it is useful to have a mental interpretation of the problem solving process, as well as
an explanation that deals with the problem itself.

As another case of the relationship between blame assignment and introspection, con-
sider the stranded motorist example (Cox & Ram, 1992a). If an agent runs out of gas on a
vacation, a number of causes could have contributed to the failure. A problem could have
occurred with the car’s fuel system (perhaps a hole developed in the gas tank or fuel lines),
or a problem could have occurred with the driver's memory system (perhaps the agent for-
got to fill up with gasoline before starting his trip). If the agent is aware of his prior reason-
ing, including the formulation of a goal to fill up the tank, then when the car rolls to a stop,
he should be reminded of the suspended planning goal. The blame is thus associated prin-
cipally with the mental faculties and the indexes that address the forgotten task, rather than
with the physical operation of the car, although there is an unmistakable interaction
between the twd? One important type of introspection is to realize that the cause of failure
was not the plan or solution generated by the reasoner before the trip, but instead was the
memory system and the organization of the knowledge that together did not retrieve the sus-
pended goal, given the state of being at or near the gas station. Rather than improve the
plan itself, such an analysis can allow a system to improve the organization of the BK by
learning better indexes for particular types of suspended goals.

Therefore in many situations, a model of introspection is required to perform blame
assignment. Blame assignment is crucial in choosing a learning goal, and the choice of a
learning algorithm depends on the learning goal. The following subsections examine the
overall introspective multistrategy learning (IML) algorithm and each learning step above
in turn.

72. Without some naive knowledge of the physical model of the car, the act of filling the gas tank is
meaningless; thus, memory for performing it is mechanical at best.
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5.4.3.2 Overview of the IML algorithm

Although the following two chapters provide additional details, this section gives an
overview of the IML process. Figure 48 sketches the primary algorithm used in introspec-
tive multistrategy learning. The system records a trace of the reasoning used in the perfor-
mance task in a number of TMXPs. Each TMXP is inspected to detect a failure. When the
system detects a failure, it invokes learning. During learning, the system constructs a learn-
ing strategy with three process steps as described in previous sections. These steps are
blame assignment, deciding what to learn, and strategy construction. Subsequently, the
system executes the learning strategy to perform the necessary knowledge repairs.

Each of the three subsequent passages presents an operational statement of three main
learning processes in the algorithm.

Blame assignmen(step 2a, Figure 48)

Take as input a trace of the mental and physical events that preceded a rea-
soning failure; produce as output an explanation of how and why the fail-
ure occurred, in terms of the causal factors responsible for the failure.

Blame assignment is a matter of determining what was responsible for a given failure.
Thus, the function of blame assignment is to identify which causal factors (from Table 5,
“Detailed taxonomy of causes of reasoning failure,” on page 53) could have led to the rea-
soning failure as determined from the input (a member of Table 4, “Final table for reason-
ing model,” on page 50). That s, blame assignment is like troubleshooting; it is a mapping
function from failure symptom to failure cause. The purpose is the same whether the trou-
bleshooter is explaining a broken device or itself (Stroulia, 1994).

The input trace describes how results or conclusions were produced by specifying the
prior causal chain (both of mental and physical states and events). The learner retrieves an
abstract Meta-XP called an IMXP from memory and applies it to the trace in order to pro-
duce a specific description of why these conclusions were wrong or inappropriate (the algo-
rithm will be covered in Section 6.2). This instantiation specifies the causal links that
would have been responsible for a correct conclusion, and enumerates the difference
between the two chains and two conclusions (what was produced and what should have
been produced). Finally, the learner outputs the instantiated explanation(s).
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0. Perform and Record Reasoning in Trace

1. Failure Detection on Reasoning Trace
2. If Failure Then
Learn from Mistake:

* 2 a. Blame Assignment

Compute index as characterization of failure
Retrieve Meta-XP
Apply Meta-XP to trace of reasoning

If Meta-XP application is successful then
Check Meta-XP antecedents

If one or more nodes not believed then
Introspective questioning
GOTO step 0

Else GOTO step O

* 2 b. Create Learning Goals
Compute tentative goal priorities

» 2 c. Choose Learning Algorithm(s)

Translate Meta-XP and goals to predicates
Pass goals and Meta-XP to planner (Nonlin)
Translate resultant plan into frames

» 2 d. Apply Learning Algorithm(s)

Interpret plan as partially ordered network of

actions such that primitive actions are algo-
rithm calls

3. Evaluate Learning (not implemented)

Figure 48. IML learning algorithm
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Deciding what to learn(step 2b, Figure 48)

Take as input a causal explanation of how and why failure occurred; gener-
ate as output a set of learning goals which, if achieved, can reduce the like-
lihood of the failure repeating. Include with the output, both tentative goal-
dependencies and priority orderings on the goals.

The previously instantiated IMXP explanation-pattern assists in this process by spec-
ifying points in the reasoning trace most likely to be responsible for the failure. The Meta-
XP also specifies the suggested type of learning goal to be spawned by this stage. Because
these goals are tentative, it may be necessary to retract, decompose, or otherwise adapt the
learning goals dynamically during run-time. This stage of learning mediates between the
case-based approach of blame assignment and the non-linear planning approach of strategy
construction.

The learner includes with the output learning goals both tentative goal-dependencies
and priority orderings on the goals. The TMXP is passed as output as well. Section 6.3 on
page 143 discusses this phase of the learning task in the context of a working example.

Learning-strategy construction (step 2c, Figure 48)

Take as input a trace of how and why a failure occurred and a set of learn-
ing goals along with their dependencies; produce as output an ordered set
of learning strategies to apply that will accomplish the goals along with
updated dependencies on the set of goals.

The final learning-strategies are organized as plans to accomplish the learning goals.
The plans are sequences of steps representing calls to standard learning algorithms. The
plans are created by a Common LISP version of Tate’s (1976) Nonlin planner (Ghosh et al.,
1992). In order to use the nonlinear planner, the learning module translates the learning
goals and the relevant context of the program environment to a predicate representation. In
this form, Nonlin assembles a learning plan just as if it were creating a plan to stack a series
of labeled blocks. The only difference is that the planner is given a set of learning operators
that describe actions that modify the mental world (i.e., the BK) instead of the blocks world.

The learner instantiates the plan, translates it back into a frame representation, and,
then executes the learning plans (in step 2d, Figure 48). At the termination of the learning
plan execution, control is returned to the performance system. Section 7.2 on page 158 will
provide details for the strategy construction phase.
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5.5 Comparison of Learning and Understanding

Throughout this exposition numerous parallels have been drawn between introspec-
tive learning and understanding. Compare Figure 42 with Figure 46, for example, which
shows the sub-processes of understanding and learning respectively, as modeled by this
research. This chapter has argued, given a multistrategy approach, that a good strategy for
both is to identify anomalies, then generate some response to the anomaly, then test the
response. The augmented generate-and-test paradigm fits both equally well. Both are con-
cerned with selecting or combining a strategy, rather than applying a particular one. Both
models are highly top-down and goal-driven. As many of the arguments advanced in this
document show, goals are essential for both focus and direction.

Both the form and the function of the generation phases in learning and understanding
are similar (see Figure 49). The structure of both is to take some unusual input (reasoning
failure or incongruous story concept), elaborate the input, generate some goal that provides
focus for the process, then change some knowledge base to achieve the function of the pro-
cess. Changes during story understanding take place in the FK, whereas changes during
learning take place in the BK.

A number of differences, however, exist between learning and understanding. For
example, as understanding can be likenecetmvery so too, learning can be likened to
repair. In the planning literature a number of researchers have made the distinction
between recovery and repair (see, for example, Owens, 1991; Hammond, 1989). When a
plan fails, the planner must recover from the error so additional progress can be made
toward the goal. After recovery, the plan needs to be repaired and stored again in memory,
so that the plan failure will not recur.

For example, if an autonomous robot vehicle finds an expected fuel cache missing and
thereby runs out of gasoline, it must first recover from the potentially threatening situation
by obtaining fuel (example taken from Owens, 1991). Therefore, the explanation of the
failure will dictate the means of recovery. If the robot concludes that it cannot find the gas-
oline because it is lost, then it should recover by obtaining orientation information;
whereas, if it explains the fuel's absence because of theft, then the recovery taken will
involve turning back or calling for assistance. The repair (to adjust its plans and the infor-
mation upon which the plan was based) also follows from the explanation of the failure.
For instance, if the robot previously considered taking on extra fuel, but did not because it
assumed that the fuel cache would be at the proper location and easy to find, then this expla-
nation of its decision would lead the system to modify its knowledge concerning the per-
sistence of fuel caches. This modification would bias it toward conservative decisions in
the future, and thus make it less likely to repeat the failure.
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Figure 49. Parallels between learning and understanding
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The difference between recovery and repair can be applied to the processes of under-
standing and learning in an analogous manner. The understanding process requires a recov-
ery phase when it fails. If some explanation does not work, then first there is a need to
create a new explanation or somehow to seek one out. Once the correct (or more useful)
explanation has been derived, the system needs to learn from the experience by repairing
its knowledge, so as not to repeat the failure. Thus, as seen in Figure 49, the understanding
process operates on the FK to instill the change that removes the anomaly (thus constituting
the recovery); whereas the learning process operates on the BK, producing a repaired
knowledge base with which the failure will not be as likely in future similar situations. The
recovery is a system’s response to anomalous input from the outside world that its knowl-
edge could not adequately understand, whereas the learning is a response to the mental
world’s inadequacy.

Functional reasons exist for having an explicit input analysis stage in both learning
and understanding. Most programs accept cleanly defined problems as input, such that lit-
tle ambiguity and sharp distinctions concerning what needs to be done exist. In more prac-
tical systems, problem elaboration is necessary to clarify what may actually be ill-defined
tasks. For example, Al planning tasks are often structured and circumscribed by the pro-
grammer or user, not the planner. A planner may be given operational goal specifications
from which a state, such as one block being on top of another, may be achieved. The tasks
of recognizing that a problem exists for which a plan is required and establishing the goal
specifications, however, are not considered a part of the planner’s reasoning process. In
comprehension tasks such as story understanding, the problems are not usually so well
defined. In learning, the problem of recovery is to modify the story representation in such
a way that the anomaly is coherent with respect to the rest of the story and the system’s BK.
This specification is so broad that either the programmer must be very clever, so as to
include the specifications implicitly, or the explanation must be somewhat trivial. To nar-
row the range of behaviors appropriate for recovery, then, is to elaborate the input anomaly,
s0 as to identify what went wrong and why.

5.6 Summary

This chapter presented a first-order process theory for understanding and second-
order process theory of learning by defining the phases of each, by outlining what steps are
used to accomplish such functions, and by arguing why each phase is required by the the-

73. Kolodner (1993) also speakssifuation assessme(dr elaboration) of new input in preparation
for case retrieval. The function is the same as input analysis above. In non-trivial systems, a sig-
nificant part of the problem is to massage the input into a form that is most useful for both pro-
cessing and retrieval.
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ories. IML theory holds that both understanding and learning consists of three phases. The
first stage is an input elaboration stage, the second is generation phase, and the final phase
is verification. Although each stage is important, this research has concentrated on the gen-
eration stage of each. One of the most significant contributions of this research is the spec-
ification of the generation stage within learning. This process consists of a step to perform
blame assignment, a step to decide what to learn by forming explicit goals to learn, and a
final step to construct a learning plan. The plan is then simply executed to accomplish the
desired learning.

We have also placed both the reasoning and learning processes within a multistrategy
framework. Many methods may exist with which a reasoner can solve a problem, an under-
stander can comprehend an input, and a learner can improve its performance. The choice
of a best set of methods an