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PREFACE

This thesis constructs a theory of introspective multistrategy learning. In large
the work represents a machine learning theory in the area of multistrategy system
investigates the role of the planning metaphor as a vehicle for integrating multiple lea
algorithms. To another extent, the research is a cognitive science treatise on a the
introspective learning that specifies a mechanistic account of reasoning about reas
failure. The central idea is to represent explicitly the normal reasoning of an intelligent
tem in specific knowledge structures. When failure occurs, the learner can then exa
the structures to explain what went wrong and hence to determine the proper learning
ods. Thus, the overarching goal of the theory is to understand systems that turn in
upon themselves in order to learn from their own mistakes.

I first became interested in reflective systems that process representations of
selves when working in the laboratory of Larry Barsalou. He and Chris Hale were buil
a theory of explanation in humans within the domain of troubleshooting small en
mechanics. I spent a year programming a system called MECH (Barsalou, Hale &
1989) that was designed to present domain knowledge about lawn mower engines, te
troubleshooting ability, and collect reaction times and other responses. In addition
data collection mode, the program had a training mode with which information coul
presented to the student before the test phase of a given experiment.

The MECH system had the ability to read data files that contained the entire do
theory: the engine system-subsystem decomposition, the test and repair screens, use
tion functions, and associated textual data. With these files the experimenter could
domain-independent informational systems, not simply variations about engines. Inc
in the file formats was a means for specifying graphics screens that would be display
each subsystem along with the associated text screen for the user. Thus, the use
traverse the data base along graphical links to move from the fuel subsystem to the d
of the carburetor component within that system, for example.

So, given this flexible capability at the end of the project, I conceived the idea to c
pile all of the comments for the program code and its subsystem modules. I desig
number of graphics screens that illustrated the hierarchical structure of the modules,
tions, data structures and code. I then bound the appropriate program comments
associated graphics screens using the generic file formats with which Chris had bu
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engine explanation system. I could then turn MECH upon its own descriptions so th
would explain itself to Larry or Chris or any subsequent programmer they hired. The
cept was simple and intriguing and stayed with me until this time.

This thesis poses the question “How can a reasoner create a learning strategy w
fails at its reasoning task?” The problem is called, simply enough, the learning-stra
construction problem. As a metaphor, consider a lawn mower. When the lawn m
breaks down, someone has to repair it so that it will work right in the future. Strategy
struction is like choosing the right tools from the a tool box and planning how to use t
to fix the broken lawn mower (see Figure 1). The person who does the repair is usual
owner, that is, if the task is not too hard. One of the things that the repairman has to w
about, however, is that the sequences of repair steps must be ordered properly so th
do not interfere with the overall goal of fixing the machine. For example, if the lawn mo
runs out of gas because it has a small hole in the gas tank, the repairman must weld th
aged tankbeforeadding gasoline to the tank. If the reverse order is chosen, then the
will drain out of the tank and the entire machine might ignite (if not explode) when weld
the fuel tank.

Returning to the task of repairing the knowledge base of the reasoner, the probl
to choose and combine a few learning algorithms, given some suite of standard fix
order to fix the knowledge base of the system. Researchers usually perform this task
in the research presented here, we want to automate the task of choosing the algorith
let the machine solve the problem autonomously and dynamically. For the task of fi
the lawn mower, this is like putting a robot on top of the toolbox (see Figure 2).

When it comes to picking tools to fix the lawn mower, the task is usually straight

Figure 1. The strategy construction problem

1995 Snowolff
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ward. The symptom of failure is often closely associated with the fix because the faul
caused the symptom is directly observable. For example, the lawn mower does not
straight because the wheel has come loose. Because the cause of the error is readily
ent, the tool for the job is easy to determine. The task of assigning blame to a given fa
is trivial because the cause is directly connected to the symptom.

But at other times, determining the cause of failure is much more problematic bec
the symptom of failure is more indirectly related to the fault. One cannot always tell w
is wrong (and thus what needs to be repaired) by simply looking at the mower. If the la
mower makes a noise and the grass is not cut properly (see Figure 3), then the prob
assigning blame is that the fault must be inferred from the outcome of the performanc
(i.e., grass cutting), rather than being directly observed. From a trace of the mower’s
the reasoner has to figure out what went wrong.

When trying to reason about what goes wrong in an intelligent system, the proble
compounded. A cognitive system is much more complicated than a simple lawn m

Figure 2. Automating the construction task

1995 Snowolff

Figure 3. The blame-assignment problem

1995 Snowolff
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and the chain of events between the initiation of a train of thought and its outcome is lo
and more convoluted. With most intelligent systems no observables exist except the
clusions from long series of inferences. Therefore it is imperative that an explicit repre
tation for the reasoning be present so that the system can “observe” it.

Moreover, even with mowing the lawn, the problem may be not so much with
device that cuts the lawn, but with the agent who cuts it (see Figure 4). That is, the re
the lawn is cut poorly may reside with the ability of the one doing the pushing. In our c
the fault may reside with the knowledge with which inferences are made rather than
the form of the logic used to make the inference.

Therefore, to repair the situation so that the lawn is cut better in the future, it ma
necessary to fix the knowledge that “drives” the performance task (the robot), rather
to fix the performance system itself (the mower). Figure 5 illustrates this point. This en
understanding the causes of the failure, explaining what went wrong with the reasonin
caused the failure, and knowing enough about one’s own knowledge and the tools of k
edge repair to choose the right tools to fix the problem without letting these tools inte
with each other.

This thesis explores these issues from many perspectives. The intent is to look
problem from both a technical and computational standpoint where we can analyze th
resentations and transformations useful in solving it mechanistically and to examine it
a synoptic and psychological standpoint to glean a bit of the human gestalt involved

Figure 4. Cognitive causes of failure

1995 Snowolff
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Figure 5. How to repair the failure?

1995 Snowolff
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 SUMMARY

The thesis put forth by this dissertation is that introspective analyses facilitate
construction of learning strategies. Furthermore, learning is much like nonlinear plan
and problem solving. Like problem solving, it can be specified by a set of explicit learn
goals (i.e., desired changes to the reasoner’s knowledge); these goals can be achie
constructing a plan from a set of operators (the learning algorithms) that execute
knowledge space. However, in order to specify learning goals and to avoid neg
interactions between operators, a reasoner requires a model of its reasoning proces
knowledge. With such a model, the reasoner can declaratively represent the even
causal relations of its mental world in the same manner that it represents event
relations in the physical world. This representation enables introspective self-examin
which contributes to learning by providing a basis for identifying what needs to be lea
when reasoning fails. A multistrategy system possessing several learning algorithm
decide what to learn, and which algorithm(s) to apply, by analyzing the model o
reasoning. This introspective analysis therefore allows the learner to understan
reasoning failures, to determine the causes of the failures, to identify needed know
repairs to avoid such failures in the future, and to build a learning strategy (plan). Thu
research goal is to develop both a content theory and a process theory of introsp
multistrategy learning and to establish the conditions under which such an approa
fruitful.

Empirical experiments provide results that support the claims herein. The theory
implemented in a computational model called Meta-AQUA that attempts to unders
simple stories. The system uses case-based reasoning to explain reasoning failures
generate sets of learning goals, and it uses a standard non-linear planner to achiev
goals. Evaluating Meta-AQUA with and without learning goals generated res
indicating that computational introspection facilitates the learning process. In partic
the results lead to the conclusion that the stage that posts learning goals is a necessa
if negative interactions between learning methods are to be avoided and if learning
remain effective.
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CHAPTER I

INTRODUCTION

WURFSCHEIBE, mit DISCUS,
Vorgesichten besternt, starred with premonitions,
wirf dich throw yourself
aus dir hinaus. out of yourself.

Paul Celan (1970), p. 41. translation (1986), p. 39.

This research investigates goal-driven learning by specifying a computational m
of introspective multistrategy learning (IML). The theory concerns introspection becau
learning in the model depends on the ability of the learner to reason about internal re
ing processes and mental states. To do this, a system must represent its knowledge
its own reasoning explicitly and declaratively in a tangible knowledge structure so th
can examine and manipulate it. It is a multistrategy theory because it is intended to
grate a wide variety of learning methods in a uniform manner. The specific focus o
research is on thelearning-strategy construction problem. That is, given some computa
tional performance task specified by the system’s goals, context and some input, if a f
occurs during the task, the problem is to construct a learning strategy with which to r
the faulty components of the system. The solution to this problem is a hybrid model ha
two phases. In the event of a reasoning failure, the first phase uses case-based met
retrieve declarative meta-explanation structures that support self-reflective blame a
ment of the reasoning failure and that assist in the generation of a set of learning g
Learning goals are necessary to mediate between the explanation of failure and the le
needed to avoid the failure in the future. Given such learning goals, the second phase
model uses a non-linear planner to construct a partially ordered sequence of calls to s
learning algorithms to achieve the goals. The model implementation, called Meta-AQ
illustrates our solution to the problem of selecting a learning algorithm in machine lear
contexts. It is also used to simulate the learning performed by humans during comple
soning tasks.
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1.1  Research Motivation

An intelligent agent learns from its mistakes; a fool is doomed to repeat them. T
if one wants to understand intelligence, it is important to understand learning. More
if one wishes to build either intelligent devices or models of intelligent agents, it is
important to give these systems the ability to learn from their experience, especially f
experiences, so that they can improve their performance over time and avoid repetit
failures. A system designer cannot hope to incorporateab initio all the knowledge neces-
sary for a nontrivial intelligent system, so learning provides a way to acquire or ex
knowledge incrementally over time. Even supposing all knowledge could be incorpo
into a system by some knowledge engineer, engineers occasionally make mistakes.
learning will be required in order to detect and remove inconsistencies in the knowle
Furthermore, even if a system has an exhaustively complete and consistent knowledg
the world is dynamically changing. The system would therefore have to adjust its kn
edge, otherwise it would soon become obsolete. But, beyond these engineering argu
we are interested in understanding and building models of learning in order to disco
little bit about ourselves: about how we cope with mountains of information; about how
detect and retract mistaken assumptions and incorrect beliefs; and about how we ad
the constantly changing world that surrounds us. Given this complex state of affairs,
can one best view the learning needed to institute these kinds of changes?

Consider, for example, a student trying to learn to program in the language LISP.
ically, one of the most difficult lessons to master is the concept of recursion. Despite h
mastered the separate features of a programming language, when attempting to pro
recursive function that incorporates known operations, students often fail. When a
gramming bug occurs, the student must both learn what went wrong with the specific r
sive problem (i.e., recover from the current bug) and generalize and refine the conc
recursion (i.e., repair the student’s knowledge so that bugs will not repeat in similar re
sive problems). The student has a number of choices to perform these learning task
student may return to a previous example, may re-read the textual instructions, may r
over the problem solving that preceded the failure, or simply continue to the next pro
with the hope that further problem solving will illustrate the proper method of solving s
examples (Pirolli & Recker, 1994). Which strategy to use is a crucial decision that b
on the effectiveness of learning and thus the subsequent performance of the progra

To endow a machine with a similar strategic ability to learn, one might allow it
select a method from some library of learning algorithms when it makes reasoning e
during its performance task. For example, if a machine is designed to read simple st
it might make mistakes when trying to understand the sentences in a story or when att
ing to predict the actions or motivations of characters in a story. If it has read nume
stories about terrorism, it may use past cases of terrorist smuggling to understand an
ogous story about drug smuggling. Yet its knowledge about events in the new story
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be incomplete or incorrect. When it reads about dogs that bark at suspicious lugga
should be able to predict that the dog is barking in order to signal the presence of co
band. But if it does not have such knowledge, then it needs to be able to acquire expe
about these events by creating a knowledge acquisition strategy consisting of variou
to routines in its library. Even if it has relevant cases, however, it may not actually be
to retrieve an appropriate case in a given situation while reading new stories. When
covers this lack, it must be able to adjust the organization of its knowledge by constru
a memory reindexing strategy. IML theory directly addresses this problem of deliber
constructing a strategy with which to learn given some failure in its performance task

When confronted by failure, a strategic learner must know what caused the failure
explain what went wrong in order to know what needs to be learned. Yet, the numb
events that can mishap is immense. Therefore, an agent must not only decide on a s
to learn, but first, the agent must sift through a large number of explanations that
account for any given failure. For instance, consider the Walnut Cove cartoon in Figur

In this cartoon, Andrew’s brother sneaks into his bedroom to wake him. He star
scream that since it is already 8 o’clock in the morning Andrew will be late for school i
does not get ready quickly. As they run down the stairs, Andrew is asked whether or n
is forgetting anything important, to which he replies that he believes so. With a bit m
thought, Andrew decides that he has definitely forgotten something, but he still ca
recall what it might be. Finally, as Andrew tries to clear his head at the bus stop, we
cover Andrew’s problem.  It is Sunday, so the bus is not in service.

Waiting outside, Andrew will probably be wondering why the bus is late. To expl
the bus’s failure to arrive on time, Andrew might reason about the physical operation o
bus from some naïve model of automobiles and engines. He might conclude that the
ran out of gas either because of a hole in the gas tank or because of some other mec
failure. As this cartoon illustrates, however, the real problem is with Andrew’s mem
system, rather than with the bus’s engine system. But, his memory is not the only c
factor that bears on his mistake. A major contribution to his memory problem was ca
by his brother. By providing misinformation (“you’re going to be late for school”), h
brother gave him the wrong context from which to reason initially. Finally, Andrew s
ously needs to consider his goals. The main problem is that Andrew is pursuing an
propriate goal given his circumstances.

We see that the causes of failure may come from many sources; not only will fa
occur from physical sources in the world, but Andrew must be able to look within him
to consider additional factors such as his own knowledge, memory, inferences, input
text and goals. Andrew does start to consider this; it is significant that Andrew knew
he was forgetting something, even though he could not remember what it was. Only
he knows what went wrong can Andrew learn not to repeat this mistake, perhaps b
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Figure 6. Andrew’s failure

(Reprinted with special permission of King Features Syndicate)
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trusting his brother when he first wakes up in the morning, or perhaps by evaluatin
goals more carefully.

These types of learning problems are ubiquitous. They confront not only the reas
who tries to solve problems in some world, such as Andrew trying to decide his mor
activities, but also agents trying to understand other agents like themselves. For exa
in order for a reader of Walnut Cove to fully comprehend the cartoon’s story, the agent
be able to understand Andrew’s failure in terms of the mental events within Andrew
simply the physical events drawn within the strip. Moreover, not only must reader
attuned to factors that affect failures performed by the characters of a story, but in ord
improve their reading skills, readers must also be able to reason about their own co
hension failures when they incorrectly predict the twists and turns of a story. In both p
lem-solving tasks like daily planning and comprehension tasks like story understand
reasoner must be able to explain reasoning failure in order to construct some coheren
egy with which to learn.

1.2  The Problem

Simply stated, and in the narrowest sense, the central problem addressed b
research is the learning-strategy construction problem (Cox & Ram, 1991), particular
failure-driven learning. That is, given some goal-specific performance task (e.g.,
understanding or problem solving), a context and some input, if a failure occurs durin
task, the computational learning problem is to choose or construct a learning strategy
which to repair the background knowledge of the system.1 The knowledge is considered
repaired if, given a similar future situation, the failure will not recur. Yet, as seen in
previous section, the problem is not a simple one. In order to fix the knowledge effecti
the learner must first understand both the knowledge it is fixing and the error that gav
to the need to learn. Since failure often is caused by faulty reasoning, the learner m
able to represent, examine, and reason about its own reasoning. In the broadest sens
this thesis attempts to carve out a theory of introspection and self-understanding.

Yet, it is not immediately apparent why introspection is necessary, or even desir
in many cases. Introspection has the distinct disadvantage of considerable computa

1. The construction task may be as simple as choosing an algorithm from a list or may involve con
structing a complex plan of sequenced learning steps that constitute the strategy. Chapter VII w
provide details. The background knowledge of the system is not just a repository for the domai
theory. It contains declarative representations for all long term knowledge, such as conceptual ca
egories, episodes and cases, control knowledge (heuristics), beliefs, and knowledge about its o
knowledge and reasoning processes (metaknowledge).
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overhead. Furthermore, it is a well-founded fact that the veracity of human introspe
is very limited.2 In general, however, adding introspection to a machine allows it to hav
idea of what it is doing and why. A machine applying deductive theorem-proving certa
does not understand mathematics in the same manner that a mathematician does. B
no model of the problem-solving process exists in an automatic theorem prover
machine does not understand theorem proving even though it can perform it. We d
claim that introspection is a computational panacea; rather, this research investigat
role of introspection when constructing a learning strategy and the contingencies u
which it is beneficial.

The problem of strategy construction is quite challenging because to construct a
egy, a system needs to know specifically what is supposed to be learned; to decide
needs to be learned, it must know the cause of failure; and to determine the full cause
failure, it must be able to reflect upon its own reasoning. Thus, three major problems
when facing a reasoning failure (Ram & Cox, 1994): blame assignment, deciding wh
learn, and strategy construction. Figure 7 illustrates the relationships between these
lems in graphical form. As will be explained shortly, the first two are case-based reaso
problems, whereas the third is a non-linear planning problem.

1. Blame Assignment− explain the misunderstanding by mapping from the
symptom of the failure to the cause of the failure;

2. Decide What to Learn− form a set of explicit goals to change the knowl-
edge so that such a misunderstanding is not repeated in similar situations;

3. Strategy Construction− construct a learning plan by which to achieve
these goals.

From a machine learning perspective, serious obstacles exist when confrontin
strategy construction problem. Many learning algorithms have been developed in the
thirty years of machine learning research, so there may be many options and algor
from which to choose. Under the rubric of multistrategy learning research (e.g., Mich
& Tecuci, 1994), recent trends aim at incorporating the multiplicity of algorithms int
cohesive whole in which multiple strategies can be combined to tackle complex lea

2. In fact, evidence exists that introspection can actually degrade performance in skilled tasks th
require judgements (Wilson & Schooler, 1991) and that in general, people are overly-confident i
cognitive tasks such as question answering (Fischhoff, Slovic, & Lichtenstein, 1977). Also, se
the criticism of early psychological studies that used trained introspection as a methodologica
tool (e.g.,  Boring, 1953).
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problems. In the current state of the art in machine learning research, however, hu
analyze characteristic performance parameters (i.e., the particular input context and
bution of learning problems) and then decide what algorithms or combination of algorit
are best suited to the data. A major goal of this research is to begin to automate this pr
The wish is to give machines a library of learning methods and have them independ
decide which should be used to fix the problems that inevitably occur.

As indicated by the problems facing novice LISP programmers discussed in Se
1.1, there is also a cognitive science interpretation to this problem. Rather than mere
mulating a method by which to engineer the machine learning problems in strategy
struction, we are interested in developing a model that applies to humans engag
deliberation over learning choices. Considering known human limitations from the
chological literature imposes realistic constraints on the model. The resulting cogn
model is not always easy to separate from the machine learning model, but we will att
to draw some specific predictions from the model that suggest testable hypotheses
psychological community. We also will have to deal with the well-known philosophi
and psychological problem of distinguishing between cognition and metacogni
Finally, although we do not claim that the algorithms and representations used by the
putational model actually exist within the head of an individual, IML theory provides
explicit computational model of metacognitive behavior and deliberate learning.

1.3  The Solution

The goal of integrating multiple learning algorithms is a daunting one, since it is
open question as how best to combine often conflicting learning-mechanisms.
research examines the metaphor of goal-driven planning as a tool for performing this
gration. Learning is thus viewed as solving a planning problem (Cox & Ram, 1995; Hu

Failure Blame
Symptoms

Failure
Causes

Learning
Goals Learning

PlanAssignment
Deciding What

to Learn
Strategy

Construction

Figure 7. Decomposition of the learning problem

Case-Based Reasoning Nonlinear Planning
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1990b; Ram & Hunter, 1992; Ram & Leake, 1995). By maintaining a declarative trac
reasoning that supports a particular choice of performance goals or plans, retrieving
cases of meta-reasoning that can explain the reasoning failure, and then directly insp
and manipulating such explanations, an intelligent system can generate explicit lea
goals that constitute desired knowledge changes.3 A plan is subsequently assembled b
choosing learning algorithms from the system’s repertoire and ordering them in an a
priate way so that the learning goals are achieved.

The theory presented in this work is interesting because the choice of algorithm i
simply a function of the input, where the input is some set of assertions about the wor
even a faulty solution tree. Instead, since the input to the learner represents a tra
declarative representation of the prior reasoning that produced the solution, the choic
learning strategy is a function of the reasoning that produced the error.4 A solution plan is
usually a structured set of physical operations that institutes changes in the world, su
chess moves that modify an external board position; in contrast, a reasoning trace is a
tured set of mental operations that produces internal changes of mental states, select
lem operators, and eventually results in objects like solution plans. Thus, to decide
choice of learning strategies, our theory of learning depends on introspection of the m
world, as much as it depends on an analysis of both the problem and the solution
external world. In contrast, systems that make decisions based on a solution alone
only an indirect relationship to the actual causes of the failure.

This dissertation illustrates these problems and solutions within the context of a th
of introspective multistrategy learning with an implemented learning system called M
AQUA. The system learns by choosing a learning strategy on the basis of introspe
explanations of its own performance failures. The performance task for Meta-AQU
story understanding. That is, given a stream of concepts as the representation for a
sequence, the task is to create a causally connected conceptual interpretation of the
As described in the previous section (on page 8), if the system fails at the task, its s
quent learning tasks are (1)blame assignment− explain the failure; (2)decide what to learn
− form a set of explicit learning goals; and then (3)learning-strategy construction− con-
struct a learning plan to achieve these goals.

3. Examples of learning goals are to answer a question or to reconcile two divergent assertions. Se
tion 6.3 in Chapter VI will further enumerate the kinds of learning goals that exist in this theory.

4. Carbonell (1986) argues that an important insight into analogical reasoning is that solution der
vations contain useful information beyond the information in the solution itself. His derivational
analogy method is to map the derivation of old solutions onto new problems, rather than map ol
solutions into new solutions. This insight was one of the earliest arguments in favor of maintain
ing reasoning traces in support of learning.



1.3  The Solution❖   11

has
pports
d rea-
oning

e gen-
anges
onlin-
algo-

e
at gen-
in why
eory,
al, not
As illustrated in Figure 8, the implementation of the solution to the above tasks
two parts. The system maintains a declarative trace of reasoning that leads to or su
a particular choice of goals or plans. Then, given a reasoning failure, the case-base
soning (CBR) half of the learning subsystem retrieves past cases of introspective reas
that support reflective blame assignment of the reasoning failure and that assist in th
eration of a set of learning goals. Given such learning goals (representing desired ch
in the system’s background knowledge), the second part of the learning system is a n
ear planner that constructs a partially ordered sequence of calls to different learning
rithms.  Figure 7 on page 9 also shows this bipartite structure of the model.

One of the key contributions of this thesis is a representational structure called ameta-
explanation pattern(Meta-XP) (Cox, 1991; Cox & Ram, 1991; Ram & Cox, 1994). Th
structures can represent how an explanation is created (i.e., record the reasoning th
erates an ordinary explanation), and they can represent causal patterns that expla
explanations fail (i.e., capture past cases of meta-reasoning about failure). In IML th
the notion of a Meta-XP has been extended to represent performance failure in gener
just explanation failures.

Understanding
Story

CBR Planner

MultistrategyPerformance Subsystem

Learning Subsystem

Learning

LearningTraceStory

Story
Representation

Learning

Toolbox
Algorithm

Learning
Plans

Execute Learning

 Input  Goals

Learning
Algorithms

Knowledge
Representation

Figure 8. Basic Meta-AQUA system architecture
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A key construct in the solution to the strategy construction problem is the idea
learning goal(Cox & Ram, 1994a; Ram, 1990; 1991; Ram & Hunter, 1992; Ram & Lea
1995). Rather than specifying a desired state of the world, a learning goal represe
desired state of knowledge. A prototypical example of a learning goal is a question
answer to which represents the achievement of the goal. A major hypothesis of this d
tation is that learning goals arenecessaryin order to mediate between the explanation
failure and the learning needed to avoid the failure; a direct mapping is not sufficient
cases. Many case-based reasoning systems use the direct indexing of repairs by i
that represent the conditions under which they are appropriate. This thesis will demon
that such linkage may lead to incorrect results when the chosen learning methods in
Researchers cannot assume the learning algorithms are independent. Just as plannin
assist in alleviating the problems of interacting planning steps (i.e., paining a ladde
painting a ceiling; see Sussman, 1975 for an early discussion), learning goals can so
problems of interacting learning strategies.

Although the Meta-AQUA system implements a performance module that cond
story understanding, the dissertation is not about story understanding or the compreh
process itself. The performance module is therefore quite simple. Likewise, alth
Meta-AQUA contains an indexed dynamic-memory module, no results will be reporte
memory issues. Moreover, even the learning algorithms contained in Meta-AQUA’s lib
are simplified reconstructions of well-known methods. This work does not contribute
learning methodsper se; rather, it presents a new methodology fordynamically combining
standard learning methods so that larger learning problems may be solved than thos
which individual learning algorithms were designed to operate.5 The work is not concerned
with first-order reasoning as much as it is concerned with the second-order reas
required to learn deliberately. Thus, the research contributions are to be found in th
resentations used to model the mental world and the methods used to manipulate the
in Meta-AQUA’s first-order story-understanding performance.

1.4  Learning Goals and the Decomposition of the Problem

The research presented in this document arose from the pursuit of a simple que
Given a library of learning algorithms, how can one build an appropriate strategy
which to repair a system that has failed during its performance task? Originally, the ta
answering the strategy-construction question appeared to be straightforward and
direct. The goal of solving this problem became quite complex, however, because in
to answer the question a number of sub-questions arose. Each of these questions ha

5. In a likewise reductionist fashion, Michalski and Ram (1995) propose a method for combining
primitive inferential transmutations into standard learning methods.
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answered in order to answer the main question, and many of these questions had
sub-questions that demanded answers.

1.4.1 The Learning Goal Metaphor

The pursuit of this research question also illustrates the notion of a learning goa
of the key concepts of this dissertation. In its most basic form, the research question
above is a goal to learn; this knowledge acquisition goal specifies a desired state of
mation to achieve in a scientific body of knowledge. Furthermore, the list of sub-ques
generated by the original question forms a subgoal tree exactly like the goal trees gen
by automated problem-solvers (see Figure 9, to which this chapter will return). M
importantly, however, this analogy between goal-driven problem-solving and learnin
not only useful in understanding the thesis, but is a central analogy for the research it

Learning is like problem solving and planning. As such, learning indeed repres
the proverbial search for knowledge. Moreover, to answer a question is to solve a pro
albeit aninternal one; it is to achieve a new mental state that sufficiently fills a gap i
structured body of knowledge. One can externalize the new knowledge by formalizi
with mathematics, by writing it in English and by drawing a picture on a piece of paper
the question’s answer is essentially an abstract and internal informational-state, rathe
a concrete state of the world, even when the answer can be composed as a list of ph
operations in the world as can many plans.

Contrastingly, cynics will argue that the pursuit of research goals is basically an e
nalized problem to be solved and that the actual goal is to achieve a tangible such as a
uate degree. Any knowledge a student obtains is a collateral effect of the problem so
performed during the process while in school.6 But there are many reasons to consider
learning goal an especially different and interesting type of goal instead.

The comparison between how a scientist or student conducts research and the v
learning as a purposeful pursuit of knowledge is more than just an interesting ana
Although this thesis will not formulate a formal theory of scientific discovery (but s
Nersessian, 1992; Thagard, 1993), it is nonetheless enlightening to consider the scie
job and draw some conclusions. Knowledge is the central focus of both the scientis

6. So, a continuum appears to exist upon which learning systems lie. At one end are theories lik
the one presented in this document in which goals are internal and learning explicit, and at th
other end are theories in which goals are external and the learning implicit (or a collateral effec
of processing external goals). An example of this second category is the learning theory embodie
in Soar (Laird, Rosenbloom & Newell, 1986; Newell, 1990).  See also Barsalou (1995).
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Key: Arrows represent subgoal relations;
Dashes represent virtual question/
relation

How to construct a learning strategy?
Ans: Treat strategy construction as a planning problem:
Achieve learning goals (from Q2 below) with nonlinear
planner and learning algorithms encapsulated as STRIPS-
like operators.

Q1

Q2

Q4

Q7

Q3

Q0

Q5

Q6

Constructing Learning Strategies

Evaluation

Generating Learning Goals

Explaining Failure

Defining Failure

Taxonomizing Representing

Granularity of
Representation

Mental PhenomenaCauses of Failure

(Blame Assignment Problem)

(Strategy Construction Problem)

How to decide what to learn?

How to explain a reasoning failure?

Ans: Use Meta-XP (from Q3 below) to post explicit
learning goals.

Ans: Case-based introspection: Maintain trace of
the reasoning; when failure occurs, retrieve past
case of meta-reasoning (Meta-XP) about the class of
failure; apply to trace.

How to represent mental states
and reasoning mechanisms?

What kinds of reasoning
failure exist?

What can cause reasoning
failure?

Ans: Use Meta-Explanation Patterns
(Meta-XPs).

Ans: At enough detail to support
learning from failure.

Ans: Contradiction, impasse,
false expectation, surprise, and
unexpected success.

Ans: Knowledge, goals, processes,
input, and the way each are selected.

Figure 9. Primary research subgoal tree and contributions

At what granularity level should
reasoning be represented?
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the student. When scientists perform experiments, they are not just performing acts
world in order to make certain states of the world become true; or if they do, these ac
are subservient to the task of shedding light on the scientist’s understanding (or
thereof) about some facet of the world. The additional knowledge that can be gather
an experiment (positive or negative) is the main reason for the actions, rather than the
results of the experiments themselves. It is often not until after the experiment that this
knowledge is formalized in order to communicate it to the rest of the academic commu
Scientific reasoning is also interesting because the scientist or student is reasoning
the thesis’s line of reasoning, not just the natural world.

The answers to scientific questions are unusual as well. Scientists do not simp
others if the answers they construct and the arguments they concoct are correct (alt
feedback from colleagues is useful). Answers to interesting scientific questions ar
found by consulting the index of a textbook (although literature searches for related m
rial are valuable). Granted, the pursuit of internal learning goals is a hybrid task, enta
both mental and physical actions. Physical actions are required to perform many o
information collecting tasks, much of the reasoning that scientists manipulate is in h
formal and external representations, and much of the logical reasoning has been form
to a point that it can be carried out without much thought. But inevitably, when scien
are alone to think about their questions, theories, and inferences, they secretly pee
their own heads to consider how confident they are with certain conclusions, evidenc
arguments. Introspection is fundamental in science because reasoning and knowled
at the forefront.  Learning in scientific discovery is a goal-driven cognitive behavior.

1.4.2 The Decomposition of a Learning Goal

Consider again the research goal tree of Figure 9 on page 14. Its function is to
trate the central analogy of this dissertation and to serve as a pictorial guide when re
this thesis. Although the chronological pursuit of these goals was not in the order sugg
by the numbering of the individual questions, the figure helps to visualize the logical s
ture of this dissertation. The central strategy-construction question, Q1, not only gene
an entire tree of subgoals below it, but, once answered, raises the question Q0. The
tion of evaluation can be considered a supergoal if such a question is phrased as
should one evaluate the method of strategy construction?” The figure also annotate
question with an abbreviated answer for each major research area (italicized in the fi
covered by this report. These answers constitute the major contributions of this rese

The original question (Q1) posed the learning-strategy construction problem.
answer to Q1 is to view learning as a planning problem. Given a learning goal, a le
can treat learning methods as problem-solving operators and use them to build a le
plan. This immediately raises the questions of what learning goals look like and how
such goals be generated (Q2). The answer to Q2 is that to generate the learning go
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learner needs to explain the failure. The learning goals originate from an explanation
causes of the failure and are of multiple types as defined in a goal taxonomy. The b
assignment question (Q3) can then be answered if some representation exists of th
reasoning and if the learner uses a characterization of the failure in order to retrieve
abstract explanation of the failure. But to represent failure, a reasoner must know wh
cause failures (Q4) and it must have some formalism with which to perform the repre
tation (Q5). Finally, to know the cause of the failure, the kinds of possible failures mus
specified (Q6), and to represent the failure, a useful level of detail for the formalism m
be determined (Q7).  To be complete, IML theory must address all of these question

Traversing the tree from the bottom to the top, the following eight subsections
briefly describe the answers to these eight research questions in turn. Each subs
header is labeled with the corresponding question number from the figures in parent
to organize the explanations. Subsequent chapters reexamine these eight quest
depth. By starting at the bottom of the tree and working upwards, readers will observ
support for answering a given research question before considering the question its

1.4.2.1 What kinds of reasoning failure exist? (Q6)

This document will circumscribe failure with respect to two disparate but related ty
of reasoning processes. Reasoning may consist of problem-solving steps (such as pla
design, or troubleshooting), or it may involve comprehension of some stimulus (like un
standing a story or results of a plan). A reasoning failure is defined as an outcome
than what is expected or a lack of some outcome, whether that outcome is a solution
some problem solving episode or an expectation from a comprehension process
1993; Cox & Ram, 1994b).  Five variations of failure exist under this definition.

If a system incorrectly analyzes some input, or solves some problem incorrectl
that its expected analysis, prediction or solution differs from the actual outcome given
criteria or feedback, then a failure has occurred. This is the conventional notion of fa
and will be termed acontradiction. Alternatively, animpasseis defined as either a failure
of a process to produce any result or as the condition under which no process is ava
to attempt a result. Moreover, if a reasoner expects an event to occur, but nothing ha
then the failure is called afalse expectation.7 A false expectation will also be considered t
exist when a unnecessary solution to a (non)problem is developed. If a system h
expectation, yet an event occurs which should have been expected, then asurpriseexists
(Cox, 1993). Finally, if a system expects that it will not be able to compute any answ
the correct answer, but it does nonetheless, then another failure class exists called aunex-

7. Note that Andrew’s failure (see Figure 6 on page 6) is a false expectation, a type of error that A
systems seldom confront.  Section 3.2.1.3 on page 47 provides more details.
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pected success. This research defines reasoning failure in a larger scope than prev
accounts (e.g., Hammond, 1989; Minton, 1988; Newell, 1990) and presents a u
declarative representation for each of the five classes of failure.

1.4.2.2 What can cause reasoning failure? (Q4)

A taxonomy of general failure-causes answers Q4 by covering the possible causa
tors in reasoning systems (Cox, 1992, 1993; Cox & Ram, 1994b; Ram, Cox, & Naraya
1995). Assuming that reasoning is thegoal-directedprocessingof a giveninput using the
reasoner’sknowledge, only a limited number of classes of faults can be responsible fo
given failure: the reasoning failure can originate in either the reasoner’s goals, its pe
mance strategies, the input, or the domain knowledge (see Table 1). Furthermore, gi
additional assumption that knowledge is memory-based (i.e., subject to retrieval and
nizational problems), then the organization of suspended goals (via indexes), proce
strategy associations (via heuristics), or the organization of the domain knowledge
indexes) may also be to blame. In the very last column, failures can be accounted f
attentional deficits that produce a flawed input context. In this causal taxonomy of rea
ing failures, if one of these categories is responsible for an error, the item correspond
the category is either absent or incorrect. If an item is correct, then that category contr
nothing to the failure. The taxonomy is comprehensive and goes beyond systems tha
the cause of error by assuming, for instance, noise-free input or other simplifications.
blame assignment task can therefore be characterized as a symptom-to-fault mappin
types of failure as specified in Section 1.4.2.1 to the causes of failure in Table 1.

Table 1: Basic taxonomy of causes of reasoning failure

Domain
Knowledge

Knowledge
Selection

Goal
Generation

Goal
Selection

Processing
Strategy

Strategy
Selection

Input
Input

Selection

Novel
Situation

Missing
Association

Missing
Goal

Forgotten
Goal

Missing
Behavior

Missing
Heuristic

Missing
Input

 Missing
Context

Incorrect
Domain
Knowledge

Erroneous
Association

Poor
Goal

Poor
Selection

Flawed
Behavior

Flawed
 Heuristic Noise

Incorrect
Context

Correct
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1.4.2.3 At what level of granularity should reasoning be represented? (Q7)

If reasoning is to be represented declaratively so that the system can introspec
it, then the answer to this question determines the level of abstraction at which the r
sentations should be constructed. Schank, Goldman, Rieger, & Riesbeck (1972) clai
a mere set of two mental primitives (MTRANS and MBUILD) are sufficient to repres
the utterances of humans concerning verbs of thought such as “I forgot that it was Sun
Alternatively, many in the AI community have built systems that record elaborate trac
reasoning, keep track of knowledge dependencies or inference, or encode much
knowledge concerning the structure of internal rules and defaults (e.g., Davis, 1980; D
1979). Our position is that the overhead involved with a complete trace of mental beh
and knowledge structures is intractable and does not reflect a reasonable capacity a
sessed by humans. Instead, a system should be able to capture enough details to re
a common set of reasoning failures functionally necessary for learning (Cox, 1995).
document will explicitly represent all failure types enumerated in Section 1.4.2.1 with s
a level of granularity and will specify what such representations offer an intelligent syst

1.4.2.4 How to represent mental states and reasoning mechanisms? (Q5)

By extending explanation pattern (XP) theory (Schank, 1986; Ram, 1989, 1991
types of failures in Section 1.4.2.1 can be reasoned about deliberately. A meta-expla
pattern (Meta-XP) is an explanation of how and why an explanation goes awry in a re
ing system (Cox, 1991; Ram & Cox, 1994). Two classes of Meta-XPs facilitate a syst
ability to reason about itself and assist it in constructing a learning strategy. ATrace Meta-
XP (TMXP) explains how a system generates an explanation about the world or itself
an Introspective Meta-XP(IMXP) explains why the reasoning captured in a TMXP fai
(Cox & Ram, 1992b). The TMXP records the structure of reasoning tasks and the re
for processing decisions in a series of decide-compute nodes that resemble the deriv
analogy traces of the PRODIGY system (Veloso & Carbonell, 1994). The IMXP is a g
eral causal structure composed of primitive, network structures that represent typica
terns of reasoning failure. The IMXPs are retrieved and applied to instances of reas
captured in TMXPs, and assist in forming the learning goals of the systems after fa
occurs. Although the full details will be presented in later chapters, Figure 10 illustrate
instantiated IMXP bound to a (partially shown) TMXP reasoning trace that together re
sents a failure of forgetting to fill up with gas.8 The failure symptom is a (memory) impass
as described in Section 1.4.2.1, whereas the failure fault is likely to be a missing ind
the node I (i.e., likely to be themissing association cell of Table 1).

8. This might have been an explanation that Andrew considered while waiting for the bus to arrive
See Section 1.1.
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In addition to providing the basic representational framework of IML theory, t
research has also generated two technical contributions. First, the formalization has
an explicit distinction between the background knowledge (BK) and the foreground kn
edge (FK) of a reasoner. These divisions are necessary functional distinctions that a
system to represent reasoning processes such as memory retrieval and are similar
chological differences between long-term store and working memory. Secondly, to r
sent memory phenomena such as forgetting, it was necessary to extend Doyle’s (
multi-valued logic. Instead of relying on values such asin the set of beliefs orout of the
set of beliefs, Cox & Ram (1992a) extend them to coverin andout of the beliefswith
respect to a particular set of beliefs. Thus, as seen in Figure 10, to represent forgetting o
can mark a target memory item as beingout of the set of beliefs with respect to the FK
yet in the set of beliefs with respect to the BK (Cox, 1994b; Cox & Ram, 1992a). T
sufficiently represents retrieval failure while maintaining consistency.

1.4.2.5 How to explain a reasoning failure? (Q3)

To reason effectively about one’s own knowledge, goals, and reasoning requir
ability to introspect explicitly. A computational model of introspective learning is a s
ond-order theory that contains a formal language for representing first-order process
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Figure 10. Forgetting to fill the tank with gas
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that specifies the processing of instances of this representation. The reasoning alg
used to perform such processing is similar to the algorithms used to reason about even
processes represented in the original domain, that is, case-based reasoning algo
Case-based understanding (1) takes as input some event in its domain along with it
text, (2) based on salient cues in the input, retrieves a prior case to interpret the inpu
(3) adapts the old solution to fit the current situation, and finally (4) outputs the result a
understanding of the domain. Similarly,case-based introspection(Cox, 1994a) (1′) takes
as input a representation of some prior faulty reasoning in the form of a TMXP, (2′) based
on salient cues in the input, retrieves a prior case of reflection in the form of an IMX
interpret the input, then (3′) adapts the old case to fit the current situation, and finally (′)
outputs the result as its self-understanding and learning goals. Here, the system’s d
is itself.

Case-based introspection has proven useful during blame-assignment in Meta-A
Failure analyses cannot always look to the external world for causes. Often the assig
of blame is with the knowledge and reasoning of the system itself. Therefore, when M
AQUA encounters a reasoning failure while reading stories, it uses case-based intro
tion to explain why it failed at its reasoning task. The system uses this analysis as a
to form learning goals and subsequently to construct a learning plan to repair its me
The control algorithm used for introspective (second-order) reasoning is essentiall
same as the XP-application control algorithm used in explanatory (first-order) reason
AQUA (Ram, 1989, 1991, 1993, 1994) and SWALE (Kass, Leake, & Owens, 1986; Sc
& Leake, 1990).

1.4.2.6 How to decide what to learn? (Q2)

Once a failure is understood and its causes identified, learning must be focuss
deciding on a number of specific targets. Learning goals represent these desires ex
(Cox & Ram, 1994a; Ram, 1990, 1991; Ram & Hunter, 1992; Ram & Leake, 1995).
learning goals are designed so that, if achieved, they will reduce the likelihood of repe
the failure. After blame assignment, the learning goals are obtained from the instan
IMXP that is bound to the trace of reasoning represented in the TMXP. The IMXP con
a list of learning goals that point to the most likely sources of error in the graph struc
representing the pattern of reasoning failure. Some learning goals seek to add, delet
eralize or specialize some concept or procedure. Others deal with the ontology o
knowledge, that is, with the kinds of categories that constitute particular concepts.

Many learning goals are unary in that they take a single target as argument. For e
ple, aknowledge acquisition goal(Hunter, 1990b; Ram, 1990, 1991) seeks to determin
single piece of missing knowledge, such as the answer to a particular question. Aknowl-
edge refinement goalseeks a more specialized interpretation for a given concept in mem
whereas aknowledge expansion goalseeks a broader interpretation that explores conn
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tions with related concepts. Other learning goals take multiple arguments. For instan
knowledge differentiation goal(Cox & Ram, 1995) is a goal to determine a change in
body of knowledge such that two items are separated conceptually. In contrast, aknowl-
edge reconciliation goal(Cox & Ram, 1995) is one that seeks to merge two items that w
mistakenly considered separate entities. Both expansion goals and reconciliation
may include or spawn aknowledge organization goal(Ram, 1993) that seeks to reorganiz
the existing knowledge so that it is made available to the reasoner at the appropriate
as well as modify the structure or content of a concept itself. Such reorganization of kn
edge affects the conditions under which a particular piece of knowledge is retrieved o
kinds of indexes associated with an item in memory.

1.4.2.7 How to choose or construct a learning strategy? (Q1)

Finally, given a set of learning goals, a decision must be made to determine w
learning strategies are most appropriate for achieving it. The approach taken is to tre
learning task as a traditional planning problem, creating a learning plan that is comp
of a series of learning algorithm calls that will achieve the learning goals. However, un
learning algorithms executed by single-strategy systems, the learner must dynamicall
sider possible interactions that may occur between the learning strategies. It is the
important to recognize that when multiple items are learned from a single episode
changes resulting from one learning algorithm may affect the knowledge structures us
another algorithm. Such dependencies destroy any implicit assumption of indepen
built into a particular learning algorithm used in isolation. For example, if one algorit
generalizes a conceptual definition, thus introducing or altering constraints on an att
of the definition, any memory re-indexing based on this attribute must occur after the
ification, rather than before it, in order for the indexing to be effective.

A standard nonlinear planner is therefore used to resolve these types of depend
and goal interactions (Cox & Ram, 1995). The planner is treated as a black box. It is
vided with an input of specific learning goals and the context in a predicate represent
The learning algorithms are represented in the form of standard STRIPS (Fikes & Nil
1971) operators so that the planner can reason about these interactions, pick the appr
algorithms, and sequence the algorithm calls as partially ordered steps in a learning p
strategy.  The algorithms can then be executed in the sequence specified by the pla

1.4.2.8 How can the research be evaluated? (Q0)

The theory developed during this research has been evaluated from both ma
learning and cognitive science perspectives. To investigate and evaluate the theo
problems, an introspective version of AQUA9 called Meta-AQUA was implemented
AQUA is a question-driven story understanding system that learns about terrorist activ
Its performance task is to “understand” the story by building causal explanations tha
the individual events into a coherent whole. Meta-AQUA adds introspective reasoning
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learning using Meta-XP structures. Meta-AQUA’s performance domain consists of u
knowledge of terrorist activities (taken from the original AQUA system) to understand
explain stories of drug smuggling. Meta-AQUA’s learning domain consists of using kno
edge of reasoning failure (contained in the Meta-XP structures) to understand, explain
learn from its own errors of story understanding. In support of the main system, a
frame system manages Meta-AQUA’s knowledge representation. A publicly avail
story-generation system called Tale-Spin (Meehan, 1981) supplies automatically-gen
input at Meta-AQUA’s front end, while a publicly available nonlinear planning syst
called Nonlin (Ghosh, Hendler, Kambhampati, & Kettler, 1992; Tate, 1976) generate
final learning plan at Meta-AQUA’s back-end.

We evaluate the program in a number of contexts. In machine-learning environm
the emphasis has been on the problem of choosing computational learning algor
given some learning task. Hand-coded examples represent a number of paradigmati
of reasoning failure (see Section 2.1 for two such examples). The examples demon
the utility of our approach when learning algorithms interact. Also, a series of experim
with the Tale-Spin example generator empirically investigate the performance featur
the system with and without interactions (see Section 9.2 for the experimental results
this study, Meta-AQUA performed better in a fully introspective mode than in a reflex
mode in which learning goals were ablated. In particular, the results lead to the concl
that the deciding to learn stage that posts learning goals is a necessary stage if ne
interactions between learning methods are to be avoided and if learning is to remain
tive. In addition, the IMXPs have been shown to apply without modification in a sec
story-understanding domain (Cox & Freed, 1994).

With respect to a cognitive science evaluation, the emphasis has been to derive a
sible model of how human learners choose particular approaches or metacognitive
gies given some problem-solving task.10 To test its plausibility, Meta-AQUA was modified
in order to model one protocol in a set of human data in a LISP troubleshooting do
(Cox & Kell, 1993). The protocol was chosen from data gathered in the School of Ed
tion at Berkeley concerning the behavior of novice LISP programmers. These data su
the positive relationship between metacognitive reasoning and learning in novel prob
solving domains (Pirolli & Recker, 1994). These data were collected and analyzed wi
knowledge of this dissertation work, and the Meta-AQUA system was developed wit
knowledge of the data. The results support the claim that the theory is a reasonab
sufficient model of reflection and learning and that the theory is appropriate for both p
lem-solving and story-understanding tasks.

9. AQUA stands for Asking Questions and Understanding Answers.

10. See also Cox (1994c) for a description of the relation between IML theory and research into th
roles of metacognition, problem solving and cognitive aging in human subjects.
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The theory has also been used to model human data in real-world problem-so
tasks. In collaboration with colleagues from the Industrial and Systems Enginee
Department of the College of Engineering at Georgia Tech, we have successfully use
approach in the domain of diagnostic repair of circuit boards, modeling the behavi
expert troubleshooters at NCR’s electronics assembly plant in Atlanta (Ram, Narayan
Cox, 1995). The Meta-TS system was developed as a dual model. Based also on IM
ory, it relies on shallow associative knowledge of failure, rather than deeper causal kn
edge of failure (as is the case with the Meta-AQUA system).

1.5  Overview of the Dissertation

This dissertation follows the structure of the goal tree decomposition as seen in F
9 (p. 14). The questions in the tree are roughly divided into two parts. The lower part
questions Q4 through Q7) contains questions of representation and content, where
upper part (i.e., questions Q1 through Q3) pertains to process and functionality. After
cluding Part One, “PRELIMINARIES,” with a chapter that introduces the notion of cont
theories and process theories, the thesis will continue with Part Two, “A CONTENT T
ORY OF MENTAL REPRESENTATION,” followed by Part Three, “A PROCESS THE
ORY OF LEARNING AND INTROSPECTION.”

Part Two presents a knowledge-level theory of the content of the mental world.
effort invested into the construction of this theory was substantial, and thus, the repr
tational issues will dominate a large section of the initial part of the thesis. The res
however, provide foundational support for the remainder of the thesis. Part Three exp
how a system can perform particular learning functions and improve its performance.
resulting answers will constitute a process theory of introspective learning. This se
will present the major computational steps necessary to create a learning strategy an
which to reason about the internal world of mental representations as provided by par
the content theory.

Part Four concludes the thesis by first examining the Meta-AQUA implementatio
IML theory. The architecture of the system is explained and the implementation is e
ated with respect to how well it has answered the questions in Figure 9. As with any
question, this research has spawned more questions than answers, so Part Fo
addresses future research, as well as related research. A concluding chapter highlig
main points of the thesis, and an epilogue openly speculates on the implications o
research.
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CHAPTER II

CONTENT THEORIES AND PROCESS THEORIES

By distinguishing sharply between the knowledge level and the symbol level the theory
implies an equally sharp distinction between the knowledge required to solve a prob-
lem and the processing required to bring that knowledge to bear in real time and real
space.

Alan Newell (1982), p. 117.

Two parts or sub-theories exist within any complete cognitive theory that claim
explain, describe, or predict intelligent behavior and reasoning. Thecontent theorypro-
vides the vocabulary and structure for representing knowledge, as well as the ontolog
content of the knowledge. Content theories provide a component theory that specifi
objects or components in the domain and the features that best describe the compo
Also, a content theory provides constraints and inferential relationships between the
tures. Content theories therefore possess commitments to both domain ontology as
domain physics in a body of knowledge (Domeshek, 1992). Theprocess theoryspecifies
the classes of transformations performed on such knowledge (Birnbaum, 1986; Dome
1992). Moreover, a process theory is afunctional theoryif the processes are justified by
some teleological commitment (i.e., if the theory defines a specific functional role for
process that contributes to the cognitive task for which the theory is offered as an exp
tion). Because the focus of this research is reasoning about reasoning failure (in or
learn), rather than reasoning about some external task, our process theory is a desc
of second-order introspective processes in the learning task, as well as the first-orde
cesses in the performance task. Furthermore, to learn effectively from reasoning fa
the learner must be able to represent the cognitive processes responsible for failure
itly. Our content theory is thus unique in that it becomes a descriptive language to expl
represent both the first-order processes described in our process theory, as well as the
in the external world.

The intent of this thesis is to outline a broad theory of introspection, understand
and learning by providing specific commitments as to the kind of processes that accou
such cognitive activities and the kind of representational language that is suited for co
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tationally describing and making inferences from these phenomena. To make cle
first-order processes that need to be captured by the representations, to clarify the s
relationship between the content theory and the process theory, to foreshadow the
mentation of these theories in the Meta-AQUA multistrategy learning system, and to
vide concrete examples that will support assertions throughout the remainder o
dissertation, the following section (Section 2.1) will describe two of the short, hand-co
stories Meta-AQUA understands and from which it learns. The subsequent section (S
2.2) discusses the distinction between content theories and process theories in terms
difference between knowledge and process. The third section (Section 2.3) then r
these concepts to both the task and domain of Meta-AQUA and to the two implementa
examples.

2.1  The Drug-Bust Examples

As previously described (Section 1.4.2.8), the performance task of Meta-AQUA
understand stories in the domain of drug-smuggling, given its past experience with ter
stories. From a conceptual representation of the input sentences, the story underst
task is to build a coherent interpretation of such input using the knowledge structures
memory stores. Its memory is divided into a foreground knowledge (FK), where it m
tains the current model of the story, and a background knowledge (BK), where the sy
stores a library of declarative knowledge structures including explanations, cases, an
resentations of its own reasoning processes. When Meta-AQUA detects anomalies o
interesting input in the story, it attempts to explain the anomaly; otherwise, it skims
story by applying scripts (Cullingford, 1978; Schank & Abelson, 1977). If a failure
explanation occurs, the system must explain the failure, decide what to learn, assem
learning strategy, and execute that strategy.

2.1.1 A Common Contradiction

As an example, consider the simple story in Figure 11. Given the drug-bust story
system attempts to understand each sentence by incorporating it into its current stor
resentation. Numerous inferences can be made from this story, many of which m
incorrect.

In the story, sentence S1 produces no inferences other than that sniffing is a n
event in the life of a dog. However, S2 produces an anomaly because the system’s d
tion of “bark” specifies that the object of a bark must be animate. The program (incorre
believes that dogs bark only when threatened by animate objects. Since luggage is
mate, there is a conflict. This anomaly causes Meta-AQUA to ask itself why the dog ba
at an inanimate object. Given a prior explanation about dogs barking when threaten
persons, it hypothesizes that the luggage somehow threatened the dog. It suspen
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question, however, after it no longer can proceed due to the lack of additional informa
S3 posits an arrest scene that reminds Meta-AQUA of an incident in which weapons
smuggled by terrorists; however, the sentence generates no new inferences concern
previous anomaly. Finally, S4 causes the original question generated by S2, “Why d
dog bark at the luggage?” to be retrieved. Instead of revealing the anticipated threat
situation, however, S4 offers another hypothesis: “The dog detected drugs in the lugg

At this point, the system has detected an explanation failure, and so it suspend
performance task. Until now, all processing was first-order reasoning about the story
first-order knowledge about the domain of criminal activities. Learning involves seco
order reasoning about the prior, faulty story-understanding effort using second-
knowledge about failures and about the processes in the first-order task. Introsp
learning must be able to represent the processes that detect the anomalies in the sto
generate explanations, and that verify the explanations once made.

Meta-AQUA uses a case-based approach to explain its reasoning failures (i.e.
form blame assignment). The system characterizes the reasoning error as an expe
failure caused by the incorrect retrieval of a known explanation (“dogs bark when th
ened by objects,” erroneously assumed to be applicable), and a missing explanation
dog barked because it detected marijuana,” the correct explanation in this case). D
blame assignment, Meta-AQUA uses this characterization as an index to retrieve an ab
Meta-XP (IMXP) that is applied to a trace of the reasoning (TMXP) that produced the
ure. This structure then aids the system in posting a number of learning goals th
achieved, will modify the system’s BK so that similar errors are not repeated in future
sodes. The modifications are a change of the dog-barking definition to remove theani-
mate-object constraint, a generalization of the new explanation, and a mu
reindexing of the new explanation with respect to the erroneous threaten explanatio

Figure 11. Hand-coded story HC1 (from Cox & Ram, 1991)

S1:A police dog sniffed at a passenger’s luggage in the airport termi-
nal.
S2:The dog suddenly began to bark at the luggage.
S3:The authorities arrested the passenger, charging him with smug-
gling drugs.
S4:The dog barked because it detected two kilograms of marijuana in
the luggage.
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The explanation failure was a common occurrence when learning about a
domain. When a concept is being learned, it may be overly specialized. Slight vari
on the concept will cause the system to try to explain it, but without experience with
concept, the system may generate an inappropriate explanation. The proper expla
may not be known because the situation is novel. Much of the power of the IML me
comes from a library of such common patterns of reasoning failure.

2.1.2 A Baffling Situation

After processing the previous story, Meta-AQUA’s BK contains two explanations
why dogs bark: the memory contains an explanation for dogs that bark when threa
(indexed bydog-barks-at-animate-object ) as well as the explanation for dog
that bark because they detect contraband (indexed bydog-barks-at-container ).11

Meta-AQUA is then given a second story (Figure 12).

Although the initial sentence, S1, causes no unusual processing, the second sen
S2, is interesting to Meta-AQUA because the system has recently changed its conc
dog-bark . The system therefore poses a question to ascertain the reason the dog b
Unfortunately, because it is barking at neither an animate object nor a container, no
retrieved to produce a cause for the event. The question-answering process is subse
suspended because of the impasse, and the question is indexed in memory. Meta-
uses an opportunistic strategy of waiting until the story provides further information be
resuming the process.

Sentence S3 causes the system to postulate a possible causal link between S2
simply because of their temporal relation; however, no evidence directly supports

11. Section 8.4.2, “Indexing,” starting on page 192, describes the implementation of the indexin
scheme used to generate indexes such as these.

Figure 12. Hand-coded story HC2 (from Cox, 1994b)

S1: The police officer and his dog entered a suspect’s house.
S2: The dog barked at a pile of dirty clothes.
S3: The police officer looked under the clothes.
S4: He confiscated a large bag of marijuana.
S5:The dog was praised for barking at the occluding object.



2.1  The Drug-Bust Examples❖   29

. The
inding
t was
elation
udes
As a

rac-
and
XP

MXP
eter-
vi-
the
h an

aliza-
ting
tion
ory
story

nded.
s pro-
story:
pes of
ding

ther
often
a new
under
ilure
that

intro-
association. S4 reminds the system of a case in which contraband was confiscated
system thus infers that the suspect was most likely arrested. Finally, S5 causes a rem
of the earlier question about the dog barking at the pile of laundry. The reasoning tha
associated with this previous question is resumed. The system also infers a causal r
from S5. That is, although the sentence does not explicitly assert it, Meta-AQUA concl
that the dog’s detection of the marijuana caused the dog to bark in the first place.
result, this conclusion answers the original query.

Reviewing the trace of processing that led up to this conclusion, Meta-AQUA cha
terizes its condition as being “baffled;” that is, it could not explain why the dog barked
instead just “drew a blank,” and now it has inferred one. The system retrieves an IM
based on this characterization, which again helps it explain its reasoning failure. The I
is a declarative representation of memory retrieval failure. The system is not able to d
mine a priori whether an explanation actually existed in memory that it could not pre
ously recall, or whether it lacks the knowledge with which it could have produced
explanation. It thus poses an introspective question about its own IMXP, “Does suc
explanation exist in memory or not?”

The answer to this question is obtained by going ahead and performing a gener
tion on the inferred explanation (producing the XP “dogs generally bark when detec
contraband”), indexing it by the context in which the system inferred the explana
(“dogs barking at piles of objects”), and then watching for a similar explanation in mem
when it stores it. It thus finds at storage time the explanation produced by the previous
(from Section 2.1.1) and must backup from the strategy the system had originally inte
So now the system generalizes the two explanations with respect to each other. It thu
duces a better explanation than either the inferred one or the one from the previous
dogs bark at objects that hide contraband, not simply at containers. So that these ty
explanations will not be forgotten again, it indexes the new explanation by potential hi
places.

Like the “common contradiction” example, this second example illustrates ano
typical explanation failure. When novices are learning about new phenomena, they
forget the explanations generated by previous experiences. It takes a few times to see
behavior before the learner understands the purpose of the behavior and conditions
which explanations of the behavior apply. It is these kinds of abstract patterns of fa
(contradictions and baffling situations) that comprise the integral pieces of knowledge
a content theory must represent and with which the cognitive processes involved in
spective learning will use to construct a learning strategy.
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2.2  Knowledge and Process

Although differing in technical terminology, many researchers have made the dis
tion between knowledge and process in terms of the division between representatio
the transformations on such representations. Notwithstanding the insights of previou
ories, we claim that a content theory is not merely a logical description of the domain u
consideration, and the process theory is not simply an enumeration of the kinds of
ences that can occur in such domains. Instead, the theories provide a declarative rep
tation of those aspects of the domain that are salient and teleologically useful to pr
transformations and a vocabulary with which to express such representations. Mor
in an introspective theory of learning, the content of knowledge includes a declarative
resentation of the cognitive processes themselves because, as illustrated in the previo
tion, a learner must be able to represent and explain how processes fail, if it is to learn
its mistakes. In IML theory, both the content theory and the process theory have two p
One part explains cognition in the performance task (story understanding) and the
part explains cognition in the introspective task (learning).

The division between knowledge and process is a common one. In computer sc
a significant division between data models and algorithms exists, both of which are co
ered fundamental to a principled understanding of computation (Aho & Ullman, 1992
data model is the abstract representation of objects and operations, whereas, algo
represent structured specific computational details for manipulating these data. For
ple, an array is a data model of linear sequences of like elements. The operations c
of functions to access or store a given element. Algorithms exist to sort the elements
array. This separation is much like the division between knowledge and process (infer
in artificial intelligence. There is a difference between the representation of the object
events (operations between objects) and the processes that operate on these represen

Newell (1982) made a similar distinction when separating knowledge-level theo
and symbol-level theories. At the knowledge level, agents make decisions according
principle of rationality. They act when they possess knowledge that such actions
achieve their goals. However, the knowledge that agents use to determine what ac
follow can be separated from the process that is used to actually determine such act12

Thus, all processes exist on the symbol level that is a lower level of abstraction. Only
symbol level do knowledge-level abstractions assume a computational reification and
ification.

McCarthy & Hayes (1969) used this same division when speaking of the differe
between epistemology and heuristics; that is, between the representation of the know
and inferences used with such knowledge, and the implementational details used to i
tiate such representations and inferences. This is also reminiscent of the philosophic
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tinction (Ryle, 1949) between “knowledge that” (i.e., declarative knowledge in AI term
and “knowledge how” (i.e., procedural knowledge). However, with the case of the M
AQUA examples, the relevant division is a peculiar one and the separation not as clea
reason for this condition is that, because the system uses a second-order introspecti
cess to learn about the first-order reasoning processes, the critical data is a represe
of the first-order processes themselves. In the theory we describe in this thesis, bo
content and process theories have first-order and second-order components. Althoug
the representations and the processes are thus convoluted, a major goal of this thes
unravel the content and process descriptions in a comprehensible fashion.

In any case, the representation of knowledge is a very difficult task, even in first-o
cognitive theories. Early work in logic demonstrated that some peculiar problems
when representing knowledge in a general manner (Moore, 1977). Foremost, the ter
know” cannot be treated as a standard logical predicate of the formKnow (John, P). In
ordinary logic, one can substitute inner terms that are equivalent in truth without chan
the overall truth values of the outer expressions. This property is calledreferential trans-
parency. Thus, if both A and B are true, substituting any true term for either A or B w
not change the truth value of the expressionA ∧ B itself. However, the second term of th
above predicateKnow is referentially opaque. For example, it may be true that “If it rain
then John’s car will get wet.” Now when given that it is raining, it is necessarily true t
John’s car will get wet. But alternatively, if it is true that “John knows that if it rains, th
his car will get wet” and it is also true that it is raining, one cannot necessarily infer
John knows that his car is wet. This disparity is equivalent to the logically correct sequ
A → B; A, therefore B versus the incorrect inferenceKnow (John, A → B); A, therefore
Know (John, B).

Another important contribution of the logic community is their early emphasis up
declarative representation (see the discussion in Birnbaum, 1991). But for the logic
building a representation means to design logical inference mechanisms or axiomatiz
for particular verbs or actions such as “to use” (McCarthy & Hayes, 1969) or “to kno
(Moore, 1977). They worry about the syntax of well-formed formulae (e.g., the constra

12. Note that this assertion is not without its critics. Palmer (1978) argues that knowledge and pro
cess are interrelated because the representation is dependent upon the purpose for which it is us
This functional dependence is also echoed by Schank, Collins & Hunter (1986) in the context o
inductive-category formation. Although for the purpose of engineering a theory, we claim that the
separation has its benefits when considering knowledge in an quasi-independent fashion, we a
recognize the intertwined relations between the two components. These relationships will b
made explicit where possible. See, for example, the discussions in Section 2.3. Note, howeve
that strong proponents of the separation of knowledge and process do exist, such as Tulving (199
who claims that “there is no direct correlation between kinds of knowledge and forms of knowing,
between representation and process.” (p. vii)
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on logical connectives), the semantics of correspondence (how terms can be mapped
real-world or possible worlds), and above all else, absolute consistency. Although ga
logical precision with such an agenda, they pay the price of painstaking expressivene
brittleness given the need to avoid inconsistency at all costs. When it comes to repres
concrete objects and events in particular domains with particular tasks they have le
say.13 Moreover, within the predicate logic, formulae have the aforementioned proper
referential transparency. Thus, logicians perhaps are tempted to ignore the represe
of terms that refer to objects and events simply because, as long as the truth value re
constant, it does not matter what the content of the term may be.

Alternatively, when a researcher wishes to build a content and process theory o
resentation, the individual begins with the domain. Analysis of the domain determine
significant processes within that domain and those features of the domain that must b
resented to support these processes. The content representation provides an onto
vocabulary of terms with which to signify the meanings, the relations between the te
and a syntax for combining the terms and making inferences from them. Indexing vo
ulary specifies those features under which representations are stored and retrieve
memory (see Birnbaum, 1989). The process theory provides a functional account of
cognitive processes that produce the behavior in the domain. The overarching goa
provide a interlocking language for representing concrete experiences and behavior,
than logical assumptions or deductions. The most interesting challenge of IML theo
not just to produce a process and a content theory concerning the task of story under
ing in a domain of criminal activities, but to produce two additional theories that appl
the task of introspective learning in the domain of story-understanding failures.

2.3  The Domain of Story-Understanding Failures

A typical cognitive theory accounts for a specific class of intelligent tasks in a pa
ular domain of effort requiring reason. With respect to the first-order task of story un
standing and the domain of drug-smuggling from the Meta-AQUA examples (Section
a content theory provides a language that adequately describes specific objects and
in the world of smuggling and general planning for criminal activity; whereas, a proc
theory specifies the mental processes involved in story understanding such objects, e
and plans. That is, the content theory of story understanding is a first-order theory o
humans mentally represent the important events and characteristics of the story when

13. But as exceptions, see the work of Hayes (1979/1992) and then ARPA’s knowledge sharing effo
that uses the predicate logic as a starting point from which to formalize a number of domains (e.g
Gruber, 1993; Patil, Fikes, Patel-Schneider, Mckay, Finin, Gruber, & Neches, 1992). An interne
URL on the subject ishttp://www-ksl.stanford.edu/kst/kst-overview.html .



2.3  The Domain of Story-Understanding Failures❖   33

resen-
ry of
t crim-
ribed
tion.

imate
reader
gen-

rans-
ctivity
s those

heory
ocess
.

senta-
story.

ental
at both
the

he
og
these
rstand-
ssing,

ntent
ective
eory of
ory of
s mem-
ocess-
ns of
e pro-
expla-

-

.

ing, and the process theory describes the important mental manipulations of these rep
tations that produce a coherent interpretation of the story. The process theo
understanding explains and predicts the behavior of agents engaged in reading abou
inal behavior, such as inferring goals and plans of the actors involved in the story (desc
with the content theory), and incorporating such inferences into the overall interpreta
When explaining unusual events in a given story (such as dogs barking at inan
objects) the process theory enumerates the kinds of reasoning performed by the
when given a representation of the prior events in the story contained in the FK and the
eral and specific knowledge in the reader’s BK. Moreover, the theory describes the t
formations necessary to generate an explanation and would specify the conne
between cooperating processes. The content theory of story understanding describe
features and relationships of the domain in need of representation14 and enumerates a
vocabulary with which to express such representations. The objects in the content t
(domain knowledge of story understanding and smuggling) and processes in the pr
theory (the transformations on such knowledge) are thus related, but mostly distinct

As shown in Figure 13, when reasoning about a story, the reader develops repre
tions for the events that produce state changes in the characters and objects of the
When explaining a novel or unusual action in the story, the reasoner performs m
actions or events that produce new interpretations of these representations. Note th
Story-Repr1 and Story-Repr2 are mental representations for the state changes in
story. For example,Story-Repr1 might be the representation for the dog barking at t
luggage, whereasStory-Repr2 might be a modified representation explaining why the d
did such an act. The content theory of story understanding provides the language for
representations (e.g., scripts, cases, and XPs), while the process theory of story unde
ing presents a description of the processes that transform them (e.g., script proce
anomaly detection, and explanation).

When adding a second-order theory of introspective learning, however, the co
and process theories become more intimately related. The content theory of introsp
learning must be able to represent the events and state changes that the process th
story understanding describes. The process theory of introspective learning is a the
how these second-order representations are changed. Now, if the system is to proces
ories of its own processing, then a language is needed with which to represent the pr
ing itself. During reflection, the processes transform and operate upon descriptio
themselves. So, because the external domain of this thesis is story understanding, th
cess theory must specify the cognitive processes that account for understanding and

14. Equally important, a content theory implicitly, and sometimes explicitly, determines those fea
tures and relationships which arenotworth representing. It therefore provides a computationally
tractable level of abstraction, rather than an exhaustive, descriptive inventory of the object domain
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nation (as would any standard theory of understanding). In addition, it must be ab
represent those features crucial to improving the performance. In a story understa
system that learns, it must therefore be able to declaratively represent failure and ho
system responds to failure (i.e., those features most important to improving the pe
mance of the system). But, moreover, the content theory of introspective learning co
trates on declarative representations of these comprehension processes; the conten
of criminal agents and events is secondary.

Again looking at Figure 13, when reasoning about a explanation failure, the lea
develops representations for the mental events that produce state changes in the inte
tions of the story. When explaining a reasoning failure, the reasoner performs m
actions or events that produce reasons for the failure. Note that bothIntrosp-Repr1 and
Introsp-Repr2 are mental representations for the state changes in the story-understa
process. For example,Introsp-Repr1 might be a trace of the reasoning that produced t
conclusion that the dog barked because it was threatened, whereasIntrosp-Repr2 might
be an introspective explanation for why the reasoning inIntrosp-Repr1 failed. The con-
tent theory of introspective learning provides the language for these representations
TMXPs and IMXPs), while the process theory of learning presents a description of the
cesses that construct a learning strategy.

The process theory within the IML framework contends that the performance tas
story understanding consists of those processes depicted in Figure 14. An underst
goal is input into an analysis process that determines whether anything unusual
within the story input. If so, it passes the unusual input to the next phase for further
cessing; otherwise, it skims the input. The anomaly is given to the explanation gener
process, which finds a relevant explanation strategy from the system’s memory. This

The Story Reasoning about the story Introspective reasoning about

Figure 13. Multilevel representations and processes

State1 of

Mental

Story

story understanding events

Event
Mental
Event

Story
Event

Character

State2 of
Character

Repr1

Story
Repr2

Introsp
Repr1

Introsp
Repr2

events and objects



2.3  The Domain of Story-Understanding Failures❖   35

nation,
he
ent.

cribe
both
events
als and
ns rel-
e pro-
resent

ay of
o sim-
der-

ry-
ulary
process

odes,
t, the
ented
lysis,
ork,

e and
bse-
nd rep-
the

is. It
nd a
Once
its own

at
ry

g.
t

cess then generates an explanation and passes it to a verification phase. The expla
along with a goodness of fit,15 is then returned as a result, or, if the plan is insufficient, t
problem is suspended and the process restarted when additional information is pres

The content theory of story understanding provides the vocabulary used to des
stories of drug-smuggling and terrorist activity as perceived by a reader. It contains
domain-independent information (such as the facts that stories have main actors and
have results and preconditions) and domain-dependent facts (such as the typical go
plans of persons who use coercion and stealth) and other causal features and relatio
evant to understanding actors and actions in the stories. To reason explicitly about th
cess of explanation and story understanding, however, a system must be able to rep
not only the final result of comprehending the story, but it must also possess a w
recording a trace of the processes that produces the explanation. It is not sufficient t
ply annotate the final explanations with features signifying what occurred during the un
standing process.16 Thus, a content theory of introspective learning (i.e., of sto
understanding failures, or more generally, of reasoning failure) provides the vocab
used to describe these traces and the representations of knowledge used to explain
failures.

Instead of simple annotations, it is desirable to create a chain of structures or n
one for each process in the planning effort. Each node records the input and outpu
bases and context for its results, and a link to the following process (details are pres
in Section 4.4.1). In this way the system can represent, for example, an anomaly ana
an explanation generation, and a verification, producing an explanation that did not w
then a reformulation of the question followed by another series of analyze, generat
verify steps. A benefit of producing this record is that it is also available for use by su
quent processes in the planning mechanism. By recording the explanation process a
resenting it explicitly, far more information is available with which to understand
current story, as well as to improve interpretation of future stories.

The approach this document will take, then, is consistent with the above analys
will develop a specific model of reasoning, along with a representational language a
knowledge taxonomy for expressing instances of reasoning and reasoning failure.
expressed in some declarative, inspectable form, a system can process instances of

15. The implementation actually returns either verified or not verified, rather than a qualitative fit.

16. One reason for precluding such an approach is that the process of explanation is recursive; th
is, an explanation may be generated by an arbitrary number of passes through the explanato
loop. For example, an explanation may have preconditions that themselves require explainin
An annotated explanation is therefore insufficient to distinguish between the various activities a
similar points in the process.
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reasoning in much the same manner as it processes input from the world. This ena
learner to explain its failures, decide what to learn, and then construct a learning str

2.4  Prolog to Parts Two and Three: The content and the process

Because of the peculiar relationship between content theories and process th
when explaining introspection, the material will necessarily be distributed somew
throughout the following chapters, rather than occurring in strict, sequential o
Although most of the material concerning content theories and representations will c
first, some of the representation of processes must await the chapters explaining th
cesses before full details can be presented. On the other hand, if the chapters on p
preceded that of content, then some of the material would necessarily have to wait f
section on representation because some of the processes crucially depend on the s
of the representations. So where necessary, the following two parts of the thesis wil
vide explicit pointers to provide the interested reader with details concerning the rela
ship between the content and process theories. Forward references from Part T
CONTENT THEORY OF MENTAL REPRESENTATION) will point to details in Par
Three (A PROCESS THEORY OF LEARNING AND INTROSPECTION), and backwa
references will provide the inverse function.



38 ❖   2.4  Prolog to Parts Two and Three: The content and the process



39
Part Two

A CONTENT THEORY OF MENTAL REPRESENTATION
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CHAPTER III

SYMPTOMS AND CAUSES OF FAILURE: THE CONTENT

The general idea of failure-based understanding is that examining how we make com-
parisons between our expectations and what actually occurs is the key to our knowl-
edge of the understanding process itself.

Schank & Owens (1987), p. 203.

Failure provides both human and artificial reasoners with strong clues when dec
what needs to be learned (Birnbaum, Collins, Freed & Krulwich, 1990; Cox & Ram, 199
Fox & Leake, 1995a; Hammond, 1986; Hayes-Roth, 1983; Kolodner, 1987; Pazzani 19
Reason, 1992; Schank, 1982; Schank & Owens, 1987; Sussman, 1975; Stroulia, 1994
Lehn, 1991b). One of the major goals of establishing a content theory of introspe
learning, therefore, is to provide both a general characterization of reasoning failure an
potential causes of such failure in order to discover the nature of these clues. A suffi
characterization of failure will categorize the kinds of cognitively salient symptoms
signal to the reasoner that something worth learning exists. A sufficient taxonomy o
causes of failure will include those factors that account for each symptom in enough d
as to enable learning from them. The learner’s task, then, is to perform an explanatory
ping from symptom to fault, and thus, to determine what causes a particular failure.
explanations detail what needs to be learned by circumscribing the faults that must b
rected. 17

17. This chapter’s position does not claim that all learning is guided by failure. Success contribute
to learning as well, but the impetus for learning resides entirely with failure in the theory of learn-
ing presented here. For alternative theories, see Siegler’s evolutionary theory of learning in whic
the strategies, concepts, and rules that most successfully adapt under competition become ass
ated to specific conditions (Siegler, 1991). See also Jones & VanLehn (1991) and VanLeh
(1991b) for an additional counter-view, but see Appendix A, “THE DEGREES OF FREEDOM
IN LEARNING” for a computational complexity argument for why failure may be preferred over
success in learning.
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Failure occurs in sundry ways: a seat belt malfunctions during an automobile cra
a rainy evening; a nuclear power plant experiences an unscheduled release of radio
gasses; a student solves only 60% of the problems on a physics test correctly; a p
from Dostoyevsky is misinterpreted by a reader; and, like Andrew from the Walnut C
cartoon (discussed in Chapter I, page 6), people hold incorrect expectations. But
these situations, with what perspective should these examples be best interpreted? T
should the causes of failure be explained with reference to the external environmen
contingencies that bear on the reasoner or with reference to internal factors of the rea

For example, is the reason that a person is injured in a car crash because the se
fails or because the driver chose to drive too fast despite the rainy conditions? Do re
gasses become injected into the environment because of mechanical malfunctions, b
of poor design or because of operator failure? The position here is to focus upon fa
made by the reasoner and the causes internal to the reasoner, rather than failures ca
external events and devices. Internal causes form the emphasis because this is the l
over which the learner has personal control of the situation. It does no good to exp
failure in non-operational terms, if the goal is to improve performance (Owens, 19
Ram, 1989; Ram & Leake, 1991); instead, the reasoner must evaluate internal decisio
goals in order to change its mental world in the light of the situation and thereby to a
repeating the failure indefinitely.18

All reasoning failures do not stem from incorrect reasoning, however. Often, it
lack of attention or reasoning that contributes to mistakes. For instance, Andrew’s fa
originated in the lack of a mental event; he did not remember it was Sunday. Moreove
was waiting for a bus that never arrived and so the external manifestation of the failure
unusual; it was the lack of an external event. Failure is not always calculating a wrong
tion. Indeed, many of the wrong answers on a student’s test may have been marked
simply because they were left blank. Thus, errors come in two varieties: errors of com
sion and errors of omission.

Although past research has developed domain-independent taxonomies of f
(e.g., Kass, 1986, 1990, specifies a taxonomy of failure during explanation and both
mond, 1989, and Owens, 1990a, report a taxonomy of planning failures), much of this
vious work is task dependent. To provide a content theory of introspective learning

18. Granted, this change in the internal environment may include new goals such as changing t
configurations of the external world so as to make planning or reasoning more efficient. Fo
instance, one may place paper filters in a location near the coffee machine in order to facilitat
plans for the brewing of morning coffee. Although attention to such interactions will be mini-
mized here, see Hammond (1990) for an approach to such task interactions and associated lea
ing.
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chapter provides a taxonomy of reasoning failure that is both domain independent a
the greatest extent possible, task independent. After Section 3.1 presents a theo
model of reasoning based on the generation of expectations, Section 3.2 will analyz
model to exhaustively enumerate the classes of failures implied by the model. Such c
of failure constitute the failure symptoms a reasoner should be able to detect. Given
classes of failures that systems or humans may perceive as symptoms, Section 3.3 t
mizes the possible factors involved as causes of such classes of failure. The process
that specifies how a system can map from symptom to fault will be deferred until Cha
VII (Section 6.2, “Blame Assignment: Explaining reasoning failure”). Instead, the cur
chapter provides a content theory for representing failure symptoms and causes (
used in the process theory, while the next chapter provides a formalism for representin
content in declarative structures.

3.1  A General Model of Expectation-Driven Reasoning

Given an intelligent system, reasoning is performed upon the representation of
input. Unlike the simple characterization depicted in Figure 15, the input is not just
ceived, but in addition, an attention mechanism filters the input as determined by the cu
mental state of the reasoner. The crucial elements of the reasoner’s mental state
goals and the expectations present in the reasoner’s memory. The filtered input, alon
the reasoner’s knowledge, goals and expectations, then determine some interpreta
the input representation causing some additional goals and expectations. These con
present a rich context from which to detect a failure.

The reasoner is not just interpreting input, either. Rather than passively perce
objects in the environment, an intelligent agent actively predicts future events surroun
such objects. Moreover, an agent deliberately performs actions in the world. Reas
functions in support of efforts to understand the world and to achieve goals in the w
But, the world model the reasoner constructs is not confined to the narrow band o
present as determined by the current input; rather, the model spans the events in the
diate past as interpreted by experience and generates expectations of what the world

Figure 15. A reasoner’s input
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like in the immediate and far futures. Expectations enable the reasoner to be prepar
the future. The reasoner can thus avoid anticipated failures by generating conting
plans for them (Hammond, 1986, 1989). From the point of view of learning, however
most interesting and valuable expectations are those that are violated, because thes
of expectations provide the potential for improving the reasoner’s anticipate-and-a
behavior.

Thus, another fundamental purpose of forming expectations is to test the genera
its of knowledge, independent of particular goals of the moment. That is, agents gen
expectations to improve the boundaries of their knowledge: to retract those parts o
boundaries that are incorrectly extended and to expand the limits where gaps exis
expectation represents a hypothesis or projection of current knowledge. When the hy
esis is falsified or when the projection is violated, the potential for self-improvement ex
One of the most basic mental functions, therefore, is to compare one’s expectations
environmental feedback (or, alternatively, a “mental check” of conclusions). As a sim
model of this comparison operation, consider Figure 16. The reasoner calculates
expected outcome and compares it with the actual outcome that constitutes the feed

An outcomeis defined broadly without reference to a specific task. Theexpected out-
comecould be the result of either a problem-solving process or a comprehension pro
If it is a problem-solving process, the outcome could be in terms of a solution to a pro
specification. For example, a problem may be specified as an operational goal to so
eight-square puzzle. The solution is thus a series of transformations that end in the
state. If the problem-solving task is a planning task, the outcome is a plan of actions
will accomplish a goal. If the problem is a design specification, the outcome is the prop
design that will satisfy the design function.

Actual Expected
Compare

A E

Figure 16. The basic comparison model
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Comprehension processes, on the other hand, attempt to predict and understand
in a stream of input. Therefore, the outcome would be an interpretive understanding
system’s input, such as a reader’s text comprehension of successive sentences o
critic’s visual comprehension of a painting. Both text and art can violate the observer’s
expectations concerning what will be observed. In the drug-bust example from Se
2.1.1 for instance, the Meta-AQUA system implicitly expects dogs to bark at anim
objects, even though it did not generate that expectation prior to encountering the sen
containing a dog that barked at luggage. To satisfy the comprehension task in compl
or unusual input, questions may be raised and an explanatory process may be invo19

Hence, the expected outcome will be an explanation (Ram, 1991, 1994; Wilensky, 1
That is, the reasoner consciously anticipates a certain explanation to be true of some
or event in the input which is to be explained. When these explanations prove inco
such as the explanation that the luggage threatened the dog, explicit expectations
violated as well.

In addition, the specific mental process that forms an expectation (expected outc
is not determineda priori. The process may be either an inferential process such as de
tion, or it may be a memory process that retrieves an expectation from memory.
instance, to understand a story input, the reasoner (reader) may retrieve from mem
schema with which to interpret the story fragment.

Finally, theactual outcomemay originate either internally or externally. That is, fee
back may come from the environment (via perceptual/interpretive processes, of cours
it may emanate from a mental process such as an arithmetic check of a mathematic
putation. In all such cases, the actual outcome is compared with the expected outco
order to decide whether or not a failure exists in reasoning. If such a failure is detecte
reasoner attempts to explain the failure and to learn from it.

3.2  Types of Reasoning Failure

A reasoning failureis defined as an outcome other than what is expected (or a lac
some outcome or appropriate expectation). Such a definition, in light of the basic m
above, presents a number of implications. Indeed, a logical matrix can be drawn depe
on the values of the expected and actual outcomes. The expected outcome may or m

19. The relationship between question asking and explanation is not always obvious. Sometimes t
expected outcome is described as an explanation of an anomaly, while at other times the outcom
is described as the answer to a question. The relationship in comprehension tasks is that anoma
cause questions to be posed of the form “Why did some event occur in the input?” The answer
an explanation that answers this question.
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have been produced; thus, the expected outcome node, E, either exists or does no
Also, the actual outcome node, A, may exist or it may not. These values define a truth
as shown in Table 2.

3.2.1 Four Basic Cases

Given this analysis, four basic conditions exist: contradiction, impasse, false exp
tion, and one degenerate case. The following four subsections will examine each in
cession. Subsequent sections will introduce two more failure types (surprise
unexpected success).

3.2.1.1 Contradiction

If a system incorrectly understands some input, or solves some problem incorr
so that its expected interpretation or solution differs from the actual state of affairs (g
some criteria or feedback), then a failure has occurred. This is a very conventional n
of failure and will be termed acontradiction. Contradictions are errors of commissio
since the reasoner generates an specific expectation that is subsequently proved fa

An obvious instance of a contradiction would be for a student to solve a physics p
lem incorrectly because of incorrect or missing assumptions. As a less obvious exa

Table 2: Logical truth table for reasoning model

∃E
expectation exists

∃E
expectation does not exist

∃A
actual exists

Contradiction Impasse

∃A
actual does not exist

False
Expectation

Degenerate
(N/A)

Q6a: What kinds of reasoning failure exist?
Ans6: Contradiction, impasse, false expectation,

surprise, and unexpected success.

a. The numbering on the questions in boxes throughout the text refer to the subgoal struc-
ture in Figure 9 on page 14.
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another student may be told that the infinite series .9999 is equivalent to 1.0 (which is true)
The assertion contradicts the student’s naïve concept of numbers and the normal ex
tions arising with regular decimal series. Although this is not an overt error of commis
as is the first example, it nonetheless represents the holding of an incorrect belief tha
tradicts a correct statement. Rather than questioning the statements of the teacher (
validity of the input), however, the good student will notice the inconsistency, pay cl
attention to the lesson, and hopefully, question the validity of the student’s own conc
and beliefs.

3.2.1.2 Impasse

An impasseis an error of omission defined as either a failure of a process (memor
inferential) to produce any outcome or as the condition under which no process is ava
to generate an outcome. If a reasoner is baffled when attempting to remember a f
solve a problem, an impasse is said to have occurred. Andrew’s episode of forgettin
it is Sunday is an example of a memory impasse. “Drawing a blank” on a brain-tease
problem-solving or inference example of impasse.

In the Soar model of general cognition, the impasse is a pivotal concept. Ne
(1990) categorizes four types of impasses within the Soar architecture and enum
them: tie impasse, no-change impasse, reject impasse, and conflict impasse. Events
Soar’s decision cycle lead to each of these cases. For example, a tie impasse result
two or more actions are suggested by productions without preferences for one over th
A no-change impasse results when productions do not produce a significant change
the previous decision cycle. Each of these impasses will result in new subgoals to pu
but are not explicitly considered failures. The taxonomy originates from an exhau
analysis of the Soar decision cycle and are thus specific to the Soar architecture (or t
ilar decision control structures). Our impasse failure type is most similar to Soar’s
change impasse. We have not dealt with conflict resolution is any sophisticated way
current time.

3.2.1.3 False expectation

False expectationsoccur when a reasoner expects an outcome that never occurs
impossible. For example, a spectator may expect to see the launch of the space
Endeavorwhile at Cape Canaveral, but engineers abort the launch. The spectator e
ences a false expectation (perhaps even depression) when the launch time comes a
with no takeoff. In the Walnut Cove cartoon, Andrew expects that the bus will come, b
does not. A novice theoretical computer scientist might expect that she has a solut
the “Halting Problem,”20not knowing that Turing proved many years ago that no such so
tion is possible.
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3.2.1.4 The degenerate case

The cell marked as degenerate corresponds to the condition where a reason
formed a question or problem, has not generated an answer or solution, and has no
provided one by the environment. Despite the fact that a reasoner may consider thi
dition and dwell on the fact that no progress is being made in the reasoning, the case
classified as a true failure. Instead, the problem or question is in either the state of
processing or of current suspension. Until either a solution or answer is generated o
one is provided by an external source, the failure cannot be said to have arisen.21 Failure is
detected in response to a comparison or after it is determined that a result is not reall
sible (i.e., false expectation). Therefore, this case will be considered degenerate
matrix.

3.2.2 Extending the Analysis

The four cases above are sufficient to cover most of the model of Figure 16 (p. 4
time is not considered in the equation. However, by considering that the reaso
expected outcome and the actual outcome (the nodes E and A) may occur in two dif
orders, a new dimension emerges. A reasoner may determine an expected outco
advance, or through hindsight given some feedback, may determine that one should
been produced previously.  Consider Table 3.

20. The problem is to predict whether an arbitrary program will successfully return control or
whether it will enter into an infinite loop.

21. It is arguable that if a reasoner is reminded of a long outstanding problem, in effect, it could b
called a failure. Moreover, if time constraints are included in the analysis, then this case may als
be considered a failure. For example, if a solution is not produced by a student during an exam
within a certain time increment, then it is marked wrong and no feedback is presented by the eva
uator.

Table 3: Expanded table for reasoning model

∃E

expectation exists

∃E
¬E then A

expectation does not exist;
feedback after knowing

expectation does not exist

∃E
A then ¬E

expectation does not exist;
feedback before knowing
expectation does not exist

∃A
actual exists

Contradiction Impasse Surprise

∃A
actual does not exist

False
Expectation

Degenerate
(N/A)

Degenerate
(N/A)
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3.2.2.1 Surprise

When a system has no explicit expectation, yet an event occurs which should
been expected, then asurpriseexists. In these cases, the reasoner considers the nod
before considering the existence of E; that is, before the reasoner realizes that the ex
tion, E, should have been generated. Using hindsight, it is up to the reasoner to reco
that there should have been a problem to solve or that the reasoner should have t
remember to do something.

For example, a robot may never infer that it needs to refuel its vehicle despite the
that it has viewed the gas gauge steadily drop (example borrowed from Owens, 1
When it eventually runs out of gasoline, it is able to deduce that the incident stems
earlier failure to formulate the refueling problem and subsequently solve it by plannin
obtain the resource.

3.2.2.2 Unexpected success

Finally, if one considers that the comparison operation actually produces a value
this analysis produces another failure type. The value of the comparison is some re
between the expected outcome, E, and the actual outcome, A. In Figure 17, this rela
marked as the node R. When reasoning is successful, then this value should of cou
equality; that is, the relation, R, in Figure 17 should be the “=” value. When reasonin
unsuccessful, this value will be the “≠” value.

Reasoners are able to make predictions about this value (i.e., predict whether the
be successful at a future reasoning task). The normal condition is that all reasoners
to succeed in their reasoning goals, but this is not always the case. So the expectatio
actually be a prediction of that value. To be specific, the reasoner expects the value o
be something other than A, the actual outcome. Thus, they expect R to be the “≠” value.

Actual Expected
Compare

A E

Figure 17. The extended comparison model

Relation

R



50 ❖   3.3  Causal Factors in Reasoning Failure

rrect

tion,
, if a

pating
e rea-

em
udies
xam-
ition
985)
erfor-
y will
con-
ing an

stem
tion,

features
This condition expands the table a final time, producing Table 4.

If a reasoner expects that it will not be able to compute any answer or the co
answer, but it does nonetheless, then another failure class exists called anunexpected suc-
cess. Reasoner are obviously aware of their comparisons if performed with delibera
so the reasoner may actually anticipate the accuracy of their predictions. Therefore
reasoner expects that the comparison will show inequality, then the reasoner is antici
that performance will not be successful. That is, the reasoner expects to fail in a futur
soning task, yet succeeds nonetheless.

Although one normally would consider this type of a failure to occur during probl
solving or planning, it may also happen during memory performance. Metamemory st
show that humans can predict whether or not they will remember items well. See, for e
ple, the experimental studies of feelings-of-knowing, i.e., judgements of future recogn
of an item that was not recalled during some memory test (e.g., Krinsky & Nelson, 1
and judgements-of-learning, i.e, judgements at rehearsal time as to future memory p
mance (e.g., Nelson & Dunlosky, 1991). Therefore, an agent may predict that memor
fail on a given item when, in practice, retrieval succeeds. Like the representation of
tradiction, the agent expects one outcome (failure), yet another occurs (success) dur
unexpected successes.

3.3  Causal Factors in Reasoning Failure

The purpose of the preceding material is to enumerate the kinds of failure a sy
should be able to anticipate during reasoning. These types of failures (contradic
impasse, false expectation, surprise, and unexpected success) constitute the salient

Table 4: Final table for reasoning model

∃E

expectation exists

E=¬A
R=“ ≠ ”

expectation is opposite of
actual; i.e., expects

comparison is not-equal
relation

∃E
¬E then A

expectation does not exist;
feedback after knowing

expectation does not exist

∃E
A then ¬E

expectation does not exist;
feedback before knowing
expectation does not exist

∃A
actual exists

Contradiction Unexpected
Success

Impasse Surprise

∃A
actual does not

exist

False
Expectation

Degenerate
(N/A)

Degenerate
(N/A)

Degenerate
(N/A)
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during reasoning that an intelligent should be able to detect and then explain. Here we
merate the types of causes from which a system has to choose when constructin
explanations of reasoning failure. The task of explaining failure is to map members o
taxonomy (failure symptoms) to members of another (failure faults or causes).

To organize the possible sources of reasoning failure, it is again necessary to co
reasoning in terms of general assumptions. Clearly, reasoning is intentional and thu
ented toward the pursuit of specific goal states. Moreover, we assume that reasonin
knowledge to process perceived input from the environment in order to create a repr
tational state of the world and to achieve these desired goals. Reasoning processe
form specific mental states into new mental states. Some of these states are know
states representing facts and experience, some are perceived states representing co
in the external environment, and some are goal states representing desired new state
environment. Based upon such representations, reasoning produces decisions that r
actions that change the world, thus producing new environmental states that can s
quently be input or perceived by the reasoner in order to compare the goal to the actua
of affairs in the world. Such decisions result in new internal actions that may chang
expectations present in working memory that bias later input. Given these assump
reasoning will fail if any of the constituents of reasoning fail; that is, if a problem ex
with the reasoner’sknowledge, goals, mental processes, or input from theenvironment.

3.3.1 Selection Factors

In addition, not only can these components be a likely cause of error, but the wa
which the reasoner selects them can also be a source of error. Non-selection is an imp
and often overlooked factor in the analysis of failure. It is a result of poor memory org
zation rather than incorrect memory content. That is, failure can occur, not becau
agent does not know some fact, but because the agent cannot retrieve the fact when n

Computer memory is sometimes viewed as a virtually error-free medium in wh
retrieval of data is performed by simple fetch operations. As computer memories g
however, brute-force search for the address to perform the fetch becomes increa
intractable. Memory indexing is added in order to make memory retrieval more effic
A memory-indexing mechanism is a trade-off between time to search and accura
retrieval; although efficiency is gained, indexing schemes risk not finding the proper in
mation. That is, given some query, a computer may not find or be able to select a know
item, a suspended goal, or a reasoning strategy at all from the user’s point of view, it can
“forget.”

The indexing problem(Domeshek, 1992; Kolodner, 1984, 1993; Owens, 199
Schank, 1982; Schank & Osgood, 1990) is that of choosing cues, or features in an inp
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be used as indexes for retrieving from memory the knowledge structures necessary t
cess an input. The converse problem, is theproblem of forgetting(Cox & Ram, 1992a). If
the cues are not chosen with care during retrieval time, or if the indexes are not chose
during encoding, the reasoner may not recall a memory structure when it is needed
forgetting problem is to reorganize memory and the indexes by which memory is acce
Because reasoning failures may occur due to faulty memory organization, as we
because of faulty reasoning components or faulty knowledge, the selection or retrie
knowledge plays an important role in the determining of cause of failure.

3.3.2 A Taxonomy of Reasoning Failure Causes

Table 5, “Detailed taxonomy of causes of reasoning failure,” presents a matrix
relating the causal factors that bear on the determination of blame. As indicated at the
ing in the uppermost row, the table is divided into four major causal categories. Fa
could stem from the knowledge states with which the reasoner makes decisions, goal
generated during reasoning, the reasoning processes used to achieve the goals, or t
that represents the environment and from which feedback is provided. In each of thes
egories, the relevant item may be either missing or wrong.22 That is, omission errors occu
when a necessary component is not present (this is represented by the “Absent” row
table); whereas, commission errors occur when an incorrect component is present (
represented by the “Wrong” row in the table). In addition, because knowledge is imbe
in a memory and must be retrieved before it can be used to pursue a goal, an error of
sion can result from non-selection, rather than simply nonexistence. If an item is co
then that category contributes nothing to the failure.23

For each dimension represented by a column in the table, a general characteri
of it also exists in the last table row. These will be explained as entries in the table ar
cussed. The subtable suggests that similar causal factors are attributable to per
agents (see Section 3.3.6). Although Table 5 organizes many factors in a coherent fa
the task of identifying which of the factors are responsible for blame is clearly a com
one, especially when multiple causes exist.

22. Note that to characterize a component asincompleteis actually a diagnosis of a component miss-
ing at some finer level of detail.  Incomplete is therefore not a row of this table.

23. One of the targets of this research has been to produce representations for the cells of Table
Explicit Meta-XP representations are provided in Section 4.4, “Meta-Explanation Patterns,” start
ing on page 79. The representations of the various cells are chained into composite structures th
capture typical failure patterns that occur during reasoning.
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Table 5: Detailed taxonomy of causes of reasoning failure

Domain
Knowledge

Knowledge
Selection

Goal
Generation

Goal
Selection

Processing
Strategy

Strategy
Selection

Input
Input

Selection

Novel
Situation

Missing
Association

Missing
Goal

Forgotten
Goal

Missing
Behavior

Missing
Heuristic

Missing
Input

 Missing
Context

Incorrect
Domain
Knowledge

Erroneous
Association

Poor
Goal

Poor
Selection

Flawed
Behavior

Flawed
 Heuristic Noise

Incorrect
Context

Correct
Knowledge

Correct
Association

Correct
Goal

Correct
Association

Correct
Behavior

Correct
Choice

Correct
Input

Correct
Context

Theory Memory Desires Opportunity Action Control Perception. Attention

External Agent

External Objects

Physical Causation

Absent

Wrong

Right

Knowledge States Goal States Processes Environment
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For three of the columns: domain knowledge; goal generation; and processing
egy, a natural dualism is present in their interpretation. For example, strategies rep
both mental and physical actions. Thus, there exist mental actions such as operat
mental arithmetic (e.g., integrate by parts in the calculus domain of the LEX program
Mitchell, Utgoff, & Banerji, 1983) as well as physical actions like robot navigation sc
mas (e.g., avoid-static-obstacle; see Arkin, 1987). For each type of action, associate
ristics are used by a reasoner to choose when to apply the action. In a similar fashion
is a physical and mental manifestation of goals and domain theories. Thus, an age
have mental reasoning goals, such as “remember where I parked the car,” and can als
goals to achieve states in the world, like “be at my car’s location.”24 Likewise an intelligent
agent can have knowledge about the world as well as self-knowledge. Although
nuances are important distinctions to observe, as discussed earlier, the primary trea
presented here will concentrate on internal mental factors rather than external cause

Despite the focus on the deliberative and top-down components of thought, rathe
the data-driven or situation-specific factors, we cannot deny that bottom-up factors a
both reasoning and learning. As a research strategy, however, external factors will be
imized or ignored to provide scope and focus. Such a position is consistent with tradit
cognitive science perspectives (see arguments in support of this position by Gardner,
Hayes, Ford & Agnew, 1994; and Newell & Simon, 1972), although the emphasis is in
at odds with some recent stances, such as the situated cognition paradigm (e.g., C
1991; Suchman, 1987).

The remaining material of Section 3.3 will examine each of the four major catego
in some depth, and provide examples of how failure can result from them. The first se
on knowledge states is the longest, but much of the discussion will also apply to aspe
the remaining sections. The final subsection will also provide constraints upon the c
factors that assist in making the task of blame assignment more tractable. The chapt
close with a brief summary.

24. Note that the former is a subgoal of the latter.

Q4: What can cause reasoning failure?
Ans4: Knowledge, goals, processes, input, and

the way each are selected.
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3.3.3 Knowledge States

The domain knowledge of a system represents its theory of the objects, relations
actions in the domain. This theory consists of facts and propositions in some decla
representation regarding the entities in the domain (i.e, its semantic knowledge o
domain) and some record of the events that have occurred during its experience wi
domain (i.e., its episodic knowledge of the domain). In addition, since knowledge is m
tained in memory, retrieval or selection of knowledge can also contribute to failure.

3.3.3.1 Domain knowledge

The most basic type of failure occurs when the system’s domain knowledge is at
A domain theory presents the rules, concepts, and relations involved in a particular
contained knowledge system. For example, the classic cup-domain (Mitchell, Kelle
Kedar-Cabelli, 1986; Winston, Binford, Katz, & Lowry, 1983) provides inference ru
used to identify household objects in the cup category (e.g.,cup ⇐ stable ∧ liftable ∧
open-vessel; stable ⇐ has-bottom ∧ flat-bottom).

A domain theory is considered incomplete25 if pieces of the knowledge base are mis
ing. Therefore, anovel situationrepresents an error of omission such that a reasoner
no knowledge with which to interpret some input or with which to solve some problem
rule-based systems incompleteness occurs when a rule or an antecedent of a rule is m
while frame-based systems are incomplete when concepts or attributes of concep
missing.

Alternatively, a domain theory is considered incorrect if there are pieces of the kn
edge base present that should not be.Incorrect domain knowledgeis an error of commis-
sion occurring when incorrect knowledge erroneously biases an interpretation of
input or when incorrect knowledge is used to make faulty inferences in problem-solv
In rule-based systems this occurs when an extra rule or antecedent of a rule is present
frame-based systems are inconsistent when concepts or attributes are present that
not be.

Rule-based domain theories areoverly specificwhen they are missing some rules o
when they possess extra antecedents (in a frame system, this entails missing concep

25. Note that the use of incompleteness as a logical term is different. A logically incomplete domain
theory is one in which a positive example of a category cannot be proven. This may occur if an
extra antecedent on a rule exists, not just when rules are missing. A missing antecedent does n
itself lead to logically incomplete theories.
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or extra preconditions or constraints). Such theories are overly specific because eith
inclusion of a missing rule or the deletion of an extra antecedent would include previo
rejected positive examples. Domain theories areoverly generalwhen they are missing
antecedents or when they possess extra rules (in a frame system, this entails missi
conditions or extra types). Such theories are overly general because either the dele
an extra rule or the inclusion of a missing antecedent would reject an example that is
takenly included in the concept (Mooney & Ourston, 1994).

In the drug-bust scenario (Section 2.1), Meta-AQUA’sdog-bark concept is overly
specific because it possess a constraint that the object of the action is animate. In ef
states that dogs bark only at animate objects. By the classification of Table 5, this con
is termed incorrect domain knowledge.

(define-frame dog-bark
(isa (value (event)))
(actor (default (dog)))
(object (constraint (animate-object)))
...)

As a result, the input token (a dog barking at a piece of luggage) is rejected as a
ber of thedog-bark type and considered anomalous. Actually the system should h
accepted the input example as a member of thedog-barks concept; however, the concep
was overly specific because of the constraint on the object slot. A contradiction wa
result. If Meta-AQUA used a rule-based domain theory, then this error would be caus
an extra antecedent such as in the following Horn-clause rule.

dog-barks ⇐ actor=dog ∧ object=animate (1)

The important point to consider here is that the error type is implementation inde
dent. The taxonomy of causal factors in reasoning failure depends on neither a frame-
nor a rule-based representation.

3.3.3.2 Knowledge selection

Because the knowledge of any non-trivial domain is extensive, exhaustive sea
usually computationally prohibitive. In response, many knowledge bases are organiz
associative indexes that link particular cues in the contexts with relevant knowledge. A
ure may therefore occur, not because relevant knowledge does not exist for the reason
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rather, because the knowledge cannot be selected from memory due to poor ind
Thus, amissing associationwill cause an error of omission (the correct memory eleme
will not be retrieved), whereas anerroneous associationwill cause an error of commission
(the wrong memory element will be retrieved).

Note that every erroneous association necessarily implies a missing association
is, if a system retrieves an incorrect memory item, it must be the case that it did not re
the correct item. If the proper index had existed, then the correct item would have
retrieved.  Therefore, the correct index must have been missing.26

Like domain theories, indexes can also be overly general and overly specific.
sider that two ways exist in which one can think of indexing errors. Say the follow
attribute values exist: Red, blue, green, black, white, brown, gray, yellow, orange, and
ple (see Figure 18). Assume also that red, blue and green are the primary colors; bla
white are the shading colors; and the rest are the irregular colors.

26. The possibility exists that two indexes were matched, one pointing to the correct information an
the other pointing to the erroneous information. Given some conflict resolution, the incorrect one
is then chosen. In this case, one is tempted to say that no missing index is implied. Howeve
despite the fact that IML theory does not directly address conflict resolution (nor does Meta
AQUA implement it), the index considered missing is one whose antecedents or precondition
would have matched accurately enough to avoid the resolution process.

Colors

Primary Color Shading Color Irregular Color

Red Blue Green Black White Brown Gray Yellow Orange Purple

Figure 18. Example generalization hierarchy for color
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Now a memory item, M, indexed by the shading colors could either be of the two
resentational forms below.

Black → M (2)

White → M (3)

That is, either the above two indexes (2 and 3) can represent the association,
index below (4) can.

Shading_Color → M. (4)

Index 4 is a generalized index and equivalent to the previous two simple indexe
addition, suppose that an indexed explanation exists that asserts red and blue comp
the color purple. This explanation, E, might then be indexed by the following three inde

Red → E (5)

Blue → E (6)

Purple → E (7)

Retrieval failures may now occur in a number of ways. If, instead of Index 5 and In
6, the indexPrimary_Color → E exists in their place, then this index is overly genera
The explanation, E, will be brought to bear at inappropriate times. Such a conditio
equivalent to the erroneous association,Green → E, being added to the existing indexes
On the other hand, if Index 2 is missing, then Index 3 must be overly specific when ret
ing the memory item M (i.e., Index 3 should really be Index 4). Therefore, a missing a
ciation is equivalent to an overly specific index because it does not match the cues
context at retrieval time.27

As another illustration, consider the second example in the drug-bust scenario

27. Note the family resemblance between these two knowledge selection failures, erroneous asso
ation and missing association, to the domain knowledge failures of incorrect domain knowledg
and novel situation respectively.  This resemblance permeates across the columns of Table 5.
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Chapter II (Section 2.1.2). In this episode Meta-AQUA forgets the earlier constru
explanation that the dog barks when detecting contraband; that is, an impasse is re
when no explanation come to mind. The reason for the impasse is that the explanatio
earlier been indexed by dogs barking at containers, which is overly specific when in the
context of a dog barking at a laundry pile.

3.3.4 Goal States

Goals are distinguished knowledge states that focus the reasoning and provide th
soner with a specific target state to achieve. They represent the desires or intentiona
held by a system. If a reasoner fails to generate an appropriate goal or subgoal, or
reasoner generates an inappropriate (sub)goal, then reasoning will not likely succeed
tem resources will be expended on tasks not likely to provide progress in the profi
directions. In addition, if the reasoner cannot immediately achieve a goal, the goal m
suspended and indexed in memory with the hope that an opportunity may arise with w
to achieve the goal in the future. As is the case with normal knowledge states, such
pended goals are subject to retrieval failure, if they are not indexed in such a way as t
respond to the contexts within which opportunities await.

One may object to this taxonomic category on the grounds that a goal is just an
knowledge state and not any different when explaining failure. For example, a fact
exist in the knowledge base that a particular terrorist was convicted. In addition, a p
cuting attorney may have the goal to achieve the state of another terrorist being conv
One might argue that very little difference exists in the structure of the two pieces of kn
edge. However, major differences exist, not just with the semantics of each, but wit
actions a system performs in response to each. When a system determines the cau
failure is that it had an incorrect goal, then it must continue the blame assignment to d
mine why it posted such a goal; whereas, if the system determines that the reason it
due to some specific knowledge, then this is often sufficient for the blame assign
task.28

3.3.4.1 Goal generation

In goal-driven intelligent systems, two obvious causes of failure are that the co
goal was not generated and that the wrong goal was generated (Owens, 1990b, 199
problem exists in an agent’s world, then the reasoner should detect it and generate a

28. It is important to avoid arbitrarily long chains of meaningless causation. One heuristic is actually
more specific than indicated above. A system can stop blame assignment if encountering a know
edge element in the BK; the process continues if the item is an element of the FK or is a goa
More details are provided in Section 6.2.
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solve it. But, if the problem is never detected, the goal will not be generated. This c
of failure is called amissing goal. If, on the other hand, a goal is generated to solve a pr
lem that is not actually a problem, then the cause of failing to solve it is called apoor goal.29

Goals are also generated during a comprehension task to more fully understand
inputs which are anomalous or otherwise interesting. Such understanding goals s
explain the particular input state by creating causally connected links to prior state
events in the input stream. Therefore, a missing goal can be a failure to detect an anom
input state and a poor goal can be incorrectly characterizing an input state as anom
when not.  Subsequent goals may thus be misguided.

Often we need to look for why the goal was not spawned or why the wrong one
spawned by looking at the knowledge, so a relation between these categories exist.
that goals are members of the FK (except when suspended), whereas knowledge is
in the BK.

3.3.4.2 Goal selection

Unfortunately, even the most appropriate goals cannot always be pursued a
moment they are generated. Sometimes the resources or knowledge necessary for g
suit are not available to the reasoner, and so the reasoner must wait until the res
become available. Rather than wait indefinitely, an opportunistic reasoner (Birnbau
Collins, 1984; Hammond, 1988; Hammond, Converse, Marks & Seifert, 1993; Hayes-
& Hayes-Roth, 1979; Ram, 1989; Simina & Kolodner, 1995) will suspend blocked go
store them in memory, and pursue other goals until the time the resources are pres30

Therefore, as with any item stored in memory, suspended goals may not be retriev
selected at the moment they are needed by the reasoner. Goals, like domain knowled
subject to the problem of forgetting when the indexes created at storage time do not m
the cues present in the context at retrieval time.

29. Note that the wrong goal may be generated, while at the same time an incorrect goal may b
missing. However, unlike knowledge selection errors, this is not necessarily the case. The erro
are independent.

30. More specifically, goals that are spawned during reasoning exist in the FK. If the goals canno
be achieved immediately, however, they may be transferred to the BK, along with a trace of th
reasoning that spawned them, in order to suspend the processing until their achievement is mo
likely (e.g., when the preconditions upon which they depend become available). During such thi
process, the goals are indexed in the BK by features selected to match elements of the environm
that are characteristic of conditions likely to exist when resumption of the goal pursuit is profit-
able.  When a goal is resumed, it is returned to the FK from the BK.
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A forgotten goalis a suspended goal that was not retrieved from memory at the ap
priate time (this cause is equivalent to a missing association). Alternatively, a failu
caused by apoor selectionwhen the goal selected from memory is inappropriate given
current context (this cause is equivalent to an erroneous association). As with the k
edge selection category, if an inappropriate goal is selected, then it must be the case t
appropriate goal was not selected (i.e., poor selection implies forgotten goal).

As an example of a forgotten goal, a member of an audience listening to a lecture
want to ask a question of the speaker. Instead of interrupting the speaker, the listene
decide to wait until the end of the lecture. After all, the speaker may answer the que
in the remainder of the presentation. However, at the end of the presentation, the lis
may not remember to ask the question, if it was not already answered. The cues ava
at the end of the lecture may not be sufficient for retrieving the question from memo31

3.3.5 Processes

The process column considers those factors in reasoning which produce m
actions and transformations of knowledge. That is, it considers the soundness of th
soning itself. The choice of which reasoning strategy to use in a given situation is a m
of control of mental action. In many AI systems (e.g., PRODIGY, Minton, 1988), the c
trol is by mean of some heuristic rules or triggering mechanisms.

With respect to humans, Reder (1987) has shown that after reading a story, h
subjects use different strategies to answer questions posed about the story and vary th
egies used depending on existing conditions such as the time from reading the story t
ing the question.  In some cases, a person will use a direct memory retrieval method
at other times a person will infer a plausible answer based upon related facts. More
her report also supports the existence of a specific strategy-selection stage of qu
answering that automatically evaluates the knowledge relevant to the question and
deliberately decides on a strategy. Siegler (1988) has reported similar strategy choice
respect to addition, subtraction, and reading skills in children.

3.3.5.1 Processing strategy

Candidate reasoning processes can be either fine-grained (e.g., a problem-s
operator) or large-grained (e.g., a reasoning paradigm such as means-ends analys
relation between domain knowledge and the processing strategy column is that an

31. Note that variants exist when forgetting a goal. Forgetting to do some action is equivalent to wha
psychologist refer to as failure of perspective memory (Reason, 1992).
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could be a missing precondition in an operator rather than a missing operator itself.

If a process is incorrect by the inclusion of some faulty rule, rule antecedent, asse
precondition, or incorrect sequencing of operators, then the error of commission is te
a flawed behavior. If, on the other hand, a reasoning process is missing a rule, rule a
cedent, assertion, or precondition, then the failure is called amissing behavior. For exam-
ple, a failure may be due to an agent lacking a specific skill to achieve a goal.

3.3.5.2 Strategy selection

For processing strategies the organization is captured by heuristic rules that link a
cability conditions with some operator or process. Reasoning strategies are applied o
they are selected using some heuristic that determines they are applicable. Thus, th
ristics can be thought of as “indexes.” So, as with the other selection columns consi
so far, a failure may occur, not because the reasoner does not have the strategy with
to process the input, but rather because it does not have the specific heuristic to sign
strategy’s applicability, or because another heuristic selects a competitive strategy.

A failure that happens due to non-selection of a given process is an error of com
sion called amissing heuristic. Alternatively, if a process is chosen by mistake, then t
flawed heuristicerror of commission is said to have occurred. As with previous selec
failures, if the wrong process has been chosen, then it must be the case that the corre
cess has not been selected; that is, a flawed heuristic implies a missing heuristic.

For example, the kinds of explanations that Meta-AQUA may produce are determ
by the methods of explanation as well as the knowledge in its BK. During the readin
the drug-bust story, if Meta-AQUA had decided to use case-based reasoning rather th
application, the explanation of why the dog barked at the luggage may have been
ciently different.

3.3.6 Environment

The most complex column is the one representing the input to the system fro
environment. The major distinctions in this dimension are between perception (or wh
input from the environment) and attention (what is selected for further processing b
reasoner from the perceived input).

The input to a system constitutes the interface between the internal world (cogn
and the external world (environment). As suggested by the sub-table, if one allows
action with other agents in the world, then there may be blame associated with the g
strategies, input and knowledge of other agents. Thus, for example, noise in the inpu
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actually be due to deception by opponents caused by conflicting goals of the external
This makes blame assignment exceedingly difficult. However if one is to categoriz
open world, this source of blame must be acknowledged. The input column is most
esting if one considers that there exists an input, the perception of the input, and the
pretation of the perception of the input. However, for the purposes of brevity and focus
treatment in the following sections will often ignore such distinctions, concentrating on
analysis of the main table alone.

3.3.6.1 Input

Noiseis considered a fault if a piece of the input from the environment is incorrec
is perhaps unusual to consider this failure as an error of commission since the reason
not have caused the noise. However, it is useful to think of the error as being committ
the environment itself (e.g., faulty data-collection equipment).Missing inputis an error of
omission by the environment such that some critical piece of information is not prese
the perceiver’s environmental context.

As an example of noise, an agent may be told that a deceased individual came b
life (which is false). Because the input contradicts the firm belief in people’s mortality,
input should be questioned. In this case the agent may question the validity of the stat
because it contradicts a firm expectation. However, unlike faulty equipment that may c
noise in an input, this example is intentional.32

3.3.6.2 Input selection

Unlike the errors discussed in the immediately preceding subsection, the erro
input selection are errors attributable to the reasoner, not the environment itself. The
of attention to proper element in the input stream can cause reasoning to go astray. A
of omission is therefore called amissing context; whereas, an error of commission isincor-
rect context. Again, like previous selection columns, an incorrect context implies a miss
context.

Unlike the other selection columns, however, the causal factors represented by
selection are not memory organization problems; rather, they are attentional mecha
(possibly related to goals and expectations). An error may occur, not because there
a requisite piece of information in the perceptual field (i.e., input) of an agent, but ra
because the agent does not focus on the information or consider it properly.

32. In general, see Johnson & Seifert (in press) for recent research regarding the effects of misinfo
mation on human inferences and judgements.
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In summary, failures can be caused by either knowledge states, goal states, proc
or by environmental input. In each case, a distinction exists between the component
at fault or the selection of the component being at fault. Furthermore, in each of these
categories, the item may be either wrong or missing. The result is sixteen causes of f
that may explain reasoning error, plus combinations of each.

3.3.7 Causal Invariants

Although the table of reasoning failure causes (Table 5 on page 53) is complex
number of possible explanatory combinations generated from the table is not the ful
mutation of the number of cells in the table. Some conjunctions are not possible beca
number of invariants and constraints exist within the table.  Five are listed below.

1. It is not possible to have an error of commission without also having an error of o
sion in all of the selection categories.  This has been discussed in the previous s
tions on selection.

2. It is not possible to have both a correct association and an erroneous association.
correct cell is enabled, then neither of the other two cells in the column can coex

3. If both factors within a given column are present (missing and wrong), each nece
ily corresponds to separate objects.  A single knowledge token cannot both be c
and wrong.

4. It is not possible for an erroneous association to exist without either a novel situa
or a missing association also present.  The reason is that an erroneous associat
nals an expectation failure: something was retrieved that should not have been. S
thing else should have been retrieved instead. Thus, something is either not pres
the domain knowledge (and therefore cannot be retrieved) or it was present, but 
association was present with which to retrieve it.

5. A novel situation trivially implies a missing association. If there is no item in memo
then there cannot be an index to organize it in memory. The same can be said for
ing goal (implies forgotten goal), for missing behavior (implies missing heuristic) a
for missing input (implies missing context).

These constraints on the combinations of causal values assist a system when at
ing to map from failure symptom to explanatory fault.
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3.4  Summary and Discussion

This chapter described a general model of expectation-driven reasoning, extr
from the model a set of failure types or symptoms, and then constructed a taxonom
causal factors that can explain individual reasoning failures from this derived set. G
this model of reasoning, we claimed that a learner must be sensitive to the sympto
contradiction, impasse, false expectation, surprise, and unexpected success. When e
ing such failure symptoms, a learner must be sensitive to the knowledge it used, the
it pursued, the process with which it reasoned, and the environment within which the
soning was oriented. Such taxonomies of failure symptoms and faults do not originate
an ad hoccompilation of everyday mistakes with apost hocgeneralization over this list
(i.e., a kind of “list and induce” method); rather, they stem from a reasoned analysis of
models of intelligent performance. This method of developing content-theory taxono
represents an improvement over previous intuitive methods of analysis. One can cha
the taxonomy (or compare it with others) by examining either the assumptions or the
yses of the model. Without such arguments, a comparison of alternate lists of examp
categories is meaningless.

Along the way, individual sections presented a number of examples from real
from artificial domains, and from the Meta-AQUA implementation to argue in suppor
these basic results. The reasoning model is specific to neither domain nor task and co
no unreasonable assumptions. Therefore, the set of failure types derived from the
represents a testable hypothesis from which experimental methods may determine th
sonableness of the model. Although this dissertation will not attempt to test this hypot
with human subjects, the following chapter will put forward functional justifications
why these categories are useful in computational systems. Chapter IX will suppo
hypothesis with empirical results from computational studies rather than psycholo
methods.33 See Chapter X, FUTURE RESEARCH (Section 10.1.7, “Failure Types a
Cognitive Category”), however, for speculation as to a possible inquiries that may be m
in conjunction with experimental psychologists.

This chapter has provided the theoretical constructs that support a theory of intro
tive multistrategy learning. Because the theory chiefly concerns learning, the concent
of analysis has been on how performance systems can fail and what constitutes the
of such failure. Only through an analysis of such features can a system be developed
can learn to avoid such failures. This chapter has therefore described the content of th

33. Chapter IX will also entertain two additional hypotheses and describe experiments with th
Meta-AQUA system to test these hypotheses. The hypotheses are that (1) introspection facilitat
learning and (2) IML theory represents a sufficient explanation for human introspection.
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CHAPTER IV

MENTAL STATES AND MECHANISMS: THE REPRESENTATION

But the number of those which are simple and primitive is not very large. For, in mak-
ing a review of all those in which I have enumerated, we may easily notice that there
are but six which are such, i.e. wonder, love, hatred, desire, joy and sadness; and that
all the others are composed of some of these six, or are species of them. That is why, in
order that their multitude may not embarrass my readers, I shall here treat the six
primitive passions separately; and afterwards I shall show in what way all the others
derive from them their origin.

Rene Descartes, (1649/1955), p. 362.

An early tenet of artificial intelligence is that reasoning about the world is facilita
by declarative knowledge structures representing salient aspects of the world. A de
tively represented world is easier for an intelligent system to understand and operate w
than one in which knowledge is encoded procedurally or implicitly. The system m
inspect and manipulate such structures, the system can be more easily modified and
tained (by either its programmer or itself), and such representations provide computa
uniformity.34 Furthermore, if a system is to reason about itself, the above tenet ca
applied to representations of its own reasoning and knowledge. The aim of this ch
therefore, is to begin to outline a declarative representation of mental activity. The go
to explicitly represent the mental world that reasons about the physical world, just as
research has explicitly represented the physical world itself. Instead of representing
and events in the physical world, this chapter discusses how and at what grain leve
should represent mental states and mental events. Given such representations, learn

34. Proponents of procedural representations have argued against these points and countered w
advantages of their own. See Winograd (1975/1985), especially his argument that second-ord
knowledge is easier to represent procedurally. See Stein & Barnden (1995) for arguments in fav
of the procedural representation of some knowledge via mental simulation or projection of hypo
thetical events. Yet, at the very least, this thesis presents an existence proof that stands in dire
opposition to the claim that declarative representation of second-order knowledge is too difficult.
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cesses such as those to be presented in Part Three can better map symptoms of fa
their underlying faults (causes of failure) in support of blame assignment. This chapte
sents the representational component of our content theory based, in part, on explan
pattern theory. In particular, it will illustrate the concepts by assembling representation
the five failure symptom types described in the previous chapter.

4.1  Epistemology and Ontology

To support effective explanation of reasoning failure, and therefore to support le
ing, it is necessary to represent the thought processes and conclusions that constit
reasoning being explained. A large number of terms exist in the English language tha
cern mental activity. Although surface features of a language utterance are not equi
to the processes or states that may or may not lie behind a given utterance, a num
English expressions point to interesting problems for declarative representations. A
“cognitively homogeneous” terms will be examined that generally refer only to the inte
world of the reasoner, rather than the external world of physical objects and other
sons.35 Thus, this chapter will ignore non-cognitive mental states such as emotions (a
e.g., fear and love). Rather, it will focus on more simple concepts such as think, forge
imagine, although humans are likely to think thoughts about the external world, forg
perform actions in the world, and imagine what the physical world may be like. With s
constraints, the hope is to insulate the task by avoiding consideration of the more com
terms that intertwine the internal and external worlds, and instead, attempt to sket
ontology of mental representations and a vocabulary of the content of such representa

Many cognitive vocabularies make a prominent distinction between mental state
knowledge or belief) and mental mechanisms (as the mental events that process know
or information). For example, conceptual dependency (CD) theory (Schank, 1972, 1
distinguishes between two sets of representations: primitive mental ACTs and m
CONCEPTUALIZATIONs upon which the ACTs operate. In addition, the theory propo
a number of causal links that connect members of one set with members of the other.
such building blocks, a representational language such as CD must be able to rep
many process terms: think (about), remember, infer, realize and calculate; and num
state terms: fact, belief, guess, doubt, and disbelief. This document will refer to the e
tion of any mental process (or arbitrarily long string of processes) by the generic termCog-
nize ,36 and to a CONCEPTUALIZATION simply by the termState or Mental-
State . See Figure 19, “Preliminary partial ontology of mental terms,”37 for an initial

35. Certainly the boundary between the two worlds is not a very clean line. Terms such as “speak
concern the manipulation of mental terms (e.g., concepts), but complicate the representation wi
details of expression, translation, interpretation and the physical means of conveyance.
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sketch of a target ontological vocabulary for mental representations. If a reasoner
understand its own reasoning and mental conditions in any substantial level of detail,
require a semantic hierarchy containing representations for most of these cognitive te

In addition to the state-process dichotomy, IML theory subdivides process term
function into mental events that involve memory and transfer of information and those
involve computation or inference.38 We associate inferential processes with logical
hypothetical reasoning. Example terms includeHypothesize , Speculate , Deduce ,
Corroborate , andPostulate . However, these inferential terms also include tho
that receive little attention in the AI community (e.g.,Intuit ). In Figure 19, inferential
processes are subdivided into those driven by deliberate goals for processing (Calcu-
late ) and those in which belief is either more incidental or less exact (Realize ).

Until recently, examples of memory processes such as remember, remind, recal
ognize, and forget (but here, the lack of a process occurring) have been largely unexa
and without explicit representation. Especially in the context of case-based reason
any problem solving that depends on indexed memory hierarchies to support a perform
task, understanding the operation of memory can be of benefit when learning (see
Leake, 1995, Fox & Leake, 1995a, 1995b, and Kennedy, 1995, for additional argume
favor of this position). A system that is to adjust the organization of memory will hav
better chance of success if it has knowledge of the function and operation of the (cogn
device it is changing. Thus, for a system to understand and change its own memory
tively, it is important that the system be able to represent the memory processes exp

4.2  Granularity of Representation

Schank (1975) developed CD theory to account for the kinds of inferences mad
speakers of natural language. To represent language utterances, Schank composed
minimal conceptual primitives that would represent the interlingual basis that people
to reason when communicating, rather than simply some representation of the su

36. The general term “to think” is an unfortunately overloaded term. It can be used in the sense o
“to think about” (referring to a generic mental process) or “I think so” (referring to some qualita-
tive level of confidence).  Therefore, cognize is a less ambiguous representational label.

37. The shaded ovals in the figure represent unrepresented vocabulary terms. For example, this d
ument ignores emotion (except for Descartes’ primitive passion taxonomy at the beginning of thi
chapter), either as a contributor to failure or as an ontological entity in need of representation.

38. Schwanenflugel, Fabricius, Noyes, Bigler & Alexander (1994) analyzed folk theories of know-
ing. Subject responses during a similarity judgement task decomposed into memory, inferenc
and I/O clusters through factor analysis.
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Figure 19. Preliminary partial ontology of mental terms
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structure of language. As an example, ATRANS does not represent particular w
although it roughly maps to an abstract transfer of objects by an agent, such as the ve
receive” at the surface level. The transfer of possession is not something that nece
happens in the physical world (e.g., the transfer of ownership); rather it is an abstract
and psychological act that may or may not be accompanied by overt physical movem
Figure 20 shows an example of the ATRANS representation of “John received some
from Mary.” The double arrow represents a two-way conceptual dependency relations39

between the agent on the left and the action on the right. Schank postulated a set of 11
itive ACTs to which all language utterances by speakers on nontechnical topics cou
mapped. The primitives have an important feature of canonical form; that is, all su
forms with the same meaning map to the same representation (e.g., “John received
thing from Mary.” is equivalent to “Mary gave something to John.”). They also provid
declarative structure and the semantic inferences (e.g., Mary’s object is no longer pos
by her) that provide meaning to the representation.

Yet, many have argued that such a small set of primitives are not sufficient to repr
the meaning of many common natural language utterances. Wilensky (1986a) claim
many of the inferences made by the understanders of language are at an intermedia
of representation, rather than at a primitive level. For instance, the inference that “if a
son buys a cake, the agent probably received it from a cashier” is found at the conce
level of “buy,” rather than at the level of the ATRANS primitive in CD theory. Nothing
the meaning of abstract transfer is specific enough to include this condition.

Conversely though, to represent reflexive thoughts about reasoning, complete
sentations for all inferences and memory processes that generate such inferences
with a complete enumeration of all knowledge dependencies, are not required. Peop

39. A concept has a dependency relationship to a governing concept in a CD network when th
dependent does not make sense without the governor and, moreover, when it further explains t
governor (Schank & Tesler, 1969).

Figure 20. CD representation of abstract transfer (ATRANS)

o=physical object; D=direction

 John⇔ ATRANS←X←
o John

Mary

D
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tainly cannot maintain a logically complete and consistent knowledge base, nor can
perform full dependency-directed backtracking (Stallman & Sussman, 1977) or re
maintenance for belief revision (Doyle, 1979); rather, they depend on failures of reaso
and memory of past errors to indicate where inconsistencies in their knowledge lie.
is, as knowledge is locally updated, a knowledge base will often become globally inco
tent and partially obsolete. It is at the point in which a system (either human or mac
attempts to reuse obsolete information that inconsistency becomes most apparent a
ther learning is enabled.40 People often do know when they err if their conclusions cont
dict known facts, if plans go wrong, or if they forget (even if they cannot remember
forgotten item). Representations should support such types of self-knowledge, and
this level of granularity that anepistemologically adequate(McCarthy & Hayes, 1969) con-
tent theory of mental representations can be built.

For the above reasons, capturing the full level of details concerning mental activ
not necessary, and CD’s two primitives mental ACTS are not sufficient to comprise an
quate representational system that can express states and mechanisms of the menta
Rather, a vocabulary needs to be delivered that can minimally express the causal re
ships involved in reasoning, but concurrently support the explanation of failure in suffic
detail that learning goals can be chosen.  That is, granularity is determined functiona

4.3  Representing Forgetting: An example

As an example of the kinds of representations that are required for effective intros
tive learning, this section will consider how to represent forgetting. The task is espec

40. See also McRoy (1993) for a related discussion of resource constraints on inference, the pro
lems of logical inconsistency and logical omniscience, and the proposed relationship of thes
problems to the agent’s own involvement in introspection. Related also, but from a psychologica
perspective, Glenberg, Wilkinson & Epstein (1982/1992) have shown that self-comprehension o
text can be an illusion (i.e., people sometimes do not accurately monitor their own level of tex
comprehension), and they speculate that it is at the point where reading comprehension fails th
humans are alerted to the need for learning.

Q7: At what level of granularity should reasoning be represented?
Ans7: At enough detail to support learning from failure.
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interesting since the verb forget refers to a non-event, rather than a mental process.
will be addressed by considering three prevailing formalisms: logic, conceptual de
dency, and explanation patterns. This section will show that, although all three repres
tions have expressive ability, the explanation pattern knowledge representation pos
the most straight forward means for capturing the causal structure, inferences, and me
of the mental term forget.

4.3.1 Logic

In order to use representations of mental terms effectively, a system should con
the structure of the representation, rather than simply how a system can syntac
manipulate representations or make sound inferences from them. In this regard, how
single logical predicates such as “forget” or “remember” are not entirely useful when tr
to understand the memory failure of a person, P.

Forget (P, M)
¬ Remember (P, M)

Because the predicates involve memory, it is helpful to posit the existence of two
trasting sets of axioms: the background knowledge (BK), or long-term memory of
agent, P, and the foreground knowledge (FK), representing the currently conscious or
axioms of the agent. Equation (8) shows the resulting interpretation of personP forgetting
memory itemM.

Forget (P, M) → ∃M. (M ∈BKp) ∧ (M ∉FKp) (8)

With such a representation, one can also express the proposition that the perP
knows that he has forgotten something; that is, the memory item,M, is on the tip of agent
P’s tongue.P knows thatM is in his background knowledge, but cannot retrieve it into h
foreground knowledge:

∃M. (M ∈BKp) ∈ FKp ∧ (M ∉FKp) (9)

But to start to include these interpretations is to add content to the represent
rather than simply semantics. It is part of themetaphysical interpretation(McCarthy &
Hayes, 1969) of the representation that determines an ontological category (i.e., what
to be represented), and it begins to provide epistemological commitments (e.g., that th
BK and FK are necessary representational distinctions). However, meaning is not onl
respondences with the world to be represented, but meaning is also determined by the
ences a system can draw from a representation (Schank, 1975). The “forget” pre
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offers little in this regard. Moreover, this predicate will not assist a reasoning syste
understand what happens when it forgets some memory item, M, nor will it help the sy
learn to avoid forgetting the item in the future. Finally, because the semantics of a m
event which did not actually occur is not represented well by a simple negation of a p
cate representing an event which did occur (Cox & Ram, 1992a), the logical expre
¬Remember (John, M) is essentially a vacuous proposition. This is not to say that lo
cannot represent such a mental “non-event,” rather, this simply illustrates that it is n
elementary task to construct an adequate representation of forgetting and that a sing
ical predicate will not suffice.

4.3.2 Conceptual Dependency

An alternative representational approach was undertaken by Schank, Gold
Rieger & Riesbeck (1972) in order to specify the primitive representations for all verb
thought in support of natural language understanding. They wished to represent wha
ple say about the mental world, rather than represent all facets of a complex memor
reasoning model. They therefore used only two mental ACTS, MTRANS (mental tran
of information from one location to another) and MBUILD (mental building of concep
alizations), and a few support structures such as MLOC (mental locations, e.g., wo
memory, central processor and long-term memory).41

As a consequence, the CD representation of forgetting by Schank and his colle
is as depicted in Figure 21 (cf. Figure 20). John does not mentally transfer a copy o
mental object, M, from the recipient case, that of John’s long-term memory, to his ce
processor. Such a representation does provide more structure than the predicate
above, and it supports inference (e.g., if M was an intention to do some action, as op
to a proposition, then the result of such an act was not obtained; Schank, 1975, p. 60).
ever, the CD formalism cannot distinguish between the case during which John forgo
to M not being in his long-term memory and a case of forgetting due to missing associa
between cues in the environment and the indexes with which M was encoded in me
Thus, it does not provide enough information to learn from the experience.

41. Schank, Goldman, Rieger, & Riesbeck (1972) actually referred to working memory as immedi
ate memory and the central processor as a conceptual processor. I have used some license to k
terms in a contemporary language. Moreover, Schank and his colleagues used a third primitiv
ACT, CONC, which was to conceptualize or think about without building a new conceptualiza-
tion, but Schank (1975) eliminated it from the theory. For the purposes of this research, howeve
the differences do not matter.
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4.3.3 Explanation Pattern Theory

To represents some of the nuances implied by the term forget and not easily cap
by either logic or CDs, IML theory uses an extension of Explanation Pattern (XP) th
(Leake, 1992; Owens, 1990a; Ram, 1989, 1991, 1994; Schank, 1986; Schank &
1990).42 Essentially, XPs are directed graphs with nodes that are either states or proc
and links that are either ENABLES links (connecting states with the processes for w
they are preconditions), RESULTS links (connecting a process with a result), or INITIA
links (connecting two states). The links of an XP (as we use them here) include numb
to indicate relative temporal sequence between links. Figure 2243 illustrates an explanation
for why a volitional agent, A, performs a given action, M (i.e., it explains theactor relation
of M). The causal reason is that the agent has the goal of achieving the desired stat
and the agent knows that GS will results from M if he performs it (Ram, 1989).

A Meta-XP is similar to a standard XP in that it is an explanatory causal structure.
major difference between the two is that instead of presenting a causal justification
physical relation (such as why people look like their ancestors) or a volitional role rela
(such as why a person performs a given action), a Meta-XP explains how and why an
reasons in a particular manner.

The Meta-XP structure of Figure 23 represents a memory retrieval attempt enabl
goal, G, and context cues, C, that tried to retrieve some memory object, M, given an i
I, that did not result in an expectation (or interpretation), E, that should have been eq

42. See also Almonayyes (1994), Kerner (1995), and Schank, Kass & Riesbeck (1994) for addition
applications of XP theory.

43. Attributes and relations are represented explicitly in these graphs. Thus, the ACTOR attribut
of an event X with some value Y is equivalent to the relationACTORhavingdomain X andco-
domain  Y.  Section 4.4 provides further details concerning this notation.

Figure 21. CD representation of forgetting

o=mental object or conceptualization; R=Recipient;
CP=Central Processor; LTM=Long Term Memory

 John⇔ MTRANS←M←
o CP (John)

LTM (John)

R
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some actual item, A. The fact that E is out of the set of beliefs with respect to the reaso
foreground knowledge (i.e., is not present in working memory) initiates the knowledge
a retrieval failure had occurred.

Because forgetting is not a mental event, but rather the lack of successful memor
cessing, challenges exist when representing it. Forgetting can be expressed proper
if a system can represent that it does not believe a successful memory retrieval has oc
The belief logic of Doyle (1979) has four truth values for a given proposition “p.” If p
believed then it is in the set of beliefs, whereas if p is not believed then it is out. Conver
the negation of the assertion of p may be either in or out of the agent’s set of beliefs. T
fore, the four truth values are p(in ), p(out ), ¬p(in ), and¬p(out ). Using these values, a
system needs to be able to declare that there is a memory item that was not retrieve

The system could create a dummy concept representing the forgotten item t
believes did not result from some retrieval process. This concept could be marked a
believed with the above notation, since it was not retrieved and cannot be specified b
system. But technically, it is incorrect to assert that the concept is not believed, if it
the system’s background knowledge. In other words, it is believed but not recalled.
& Ram’s (1992a) response to this dilemma was first, to assume a special set of belief

   Chooses-To-Enter

mentally-enables

co-domain

mentally-results

domain

domain

co-domain

results

Actor

Knows
Result

MOP

agent

members

expected-outcome

Volitional
 Agent A

goals

Goal (A, GS)

    Self-
Outcome

Outcome    Action M
Volitional
 Agent A

(GS )

1

2

Considerations

Figure 22. XP representation of XP-GOAL-OF-OUTCOME->ACTOR
GS=good state; MOP=memory organization package
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resenting the working memory of the system (the FK), and then secondly, to mo
Doyle’s belief logic to claim belief membership with respect to a particular set of beli
Thus, P, a given memory item that was not retrieved, may be in the set of beliefs
respect to the BK, written P(in BK), but out of the set of beliefs with respect to the FK, wri
ten P(out FK).44

As specified in Table 6, the number of ways that the memory retrieval process ma
depends on the conditions of the nodes A, E, G, I, and M. If the memory item, M, is n
the BK (i.e., M(out BK)), then there is nothing to be retrieved. This can occur eith
because there never was a concept in memory to be retrieved, or because the item w
viously deleted from memory. Ostensibly, no difference exists between the two in this
resentation. For example, in the Meta-AQUA story understanding system, a novel situ
exists when trying to explain a police dog barking at a passenger’s luggage in the a
(Section 2.1.1). The system had previously encountered dogs barking only at an

44. Compare this with the assumption maintenance system discussed by McDermott (1989). In ge
eral, propositions may bein or out with respect to arbitrary sets of beliefs, which in the Meta-
AQUA system are used to represent what is in the FK during different reasoning experiences.

Figure 23. Meta-XP representation of forgetting
A=actual; E=expected; G=goal; C=cues; M=memory item; I=memory index.
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objects, so it had no structure in memory to understand this novel event. Although
example does not represent forgettingper se, in systems that delete memory items in ord
to facilitate learning (e.g., Markovitch and Scott, 1988; Smyth & Keane, 1995), tryin
retrieve a deleted item is equivalent to a novel situation from a computational perspe

A more prototypical instance of forgetting is illustrated in the second Meta-AQ
story of Chapter II (Section 2.1.2). The system acquires a new explanation for why
bark, but because it indexes it by containers, the subsequent story is not able to retr
given the context of a dog barking at a pile of dirty clothes (the location of the susp
stash of contraband). The correct index is missing and so no explanation is retri
although it certainly knows the correct explanation. The node truth values on the Met
representation of this event are arrayed according to the second row from the top of
6 (refer to Figure 23 for the corresponding nodes or peek ahead to Figure 29 on pag

These tabularized values on the representation of Figure 23 capture an entire c
memory failures: failure due to a missing index, I; failure due to a missing object, M; fai
because of a missing retrieval goal, G;45 or failure due to not attending to the proper cue
C, in the environment. Having such a declarative representation allows the system to r

Table 6: Truth values of graph nodes for forgetting

Description A E G I M

Absent Memory
(Novel Situation) in FK out FK in FK out BK out BK

Absent Index
(Missing Association) in FK out FK in FK out BK in BK

Absent
Retrieval Goal in FK out FK out FK ∅ ∅

Absent
Feedback out FK out FK ∅ ∅ ∅

∅ = don’t care

45. A missing memory-retrieval goal is equivalent to an agent never trying to remember. Fo
instance, the reasoner may have wanted to ask a question after a lecture was complete, but fai
to do so because he never generated a goal to remember once the lecture was complete. Alter
tively the agent may know at the end of the lecture that he needs to ask something, but cann
remember what it was. This second example is the case of a missing index. Note that both a mis
ing index and an incorrect index may be present at the same time. In such cases, a target item
not retrieved, whereas an interfering item is retrieved instead.
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about the various causes of forgetting; it can inspect the structural representation
memory failure and therefore, analyze and consider the reasons for the memory fa
Such an ability facilitates learning because it allows a learner to explain the reasoning
ure and use the result in determining what needs to be learned.46

4.4  Meta-Explanation Patterns

In most interpretations (e.g., Kuokka, 1990, p. 5; Hayes-Roth, Waterman, & Le
1983, p. 402), meta-X can be translated to “X about X. Therefore, a meta-explanation
tern (Meta-XP) is an explanation pattern about another explanation pattern. Where
Explanation Pattern (XP) is a causal structure that explains a physical state by pres
the chain of physical events causing such states, a Meta-XP is an explanation of how o
an XP is generated incorrectly or otherwise fails.47 Two classes of Meta-XPs exist to facil
itate a system’s ability to reason about itself and to assist in selecting a learning algo
or strategy. ATrace Meta-XP(TMXP) explainshow a system generates an explanatio
about the world (or itself), and anIntrospective Meta-XP(IMXP) explainswhythe reason-
ing captured in a TMXP goes awry. Thus, a TMXP records the extent of reasoning
and the reasons for decisions taken during processing. An IMXP is a general causal
ture that represent explanations of various the failure types from the taxonomy of Ch
III. The IMXP structures represent past experience of reasoning about the self (i.e.,
of meta-reasoning) and assist in forming the learning goals of the system after fa
occurs. Whereas a TMXP records the immediate mental events of the reasoner an
exist in the FK, IMXPs are retrieved from the BK and applied to TMXPs. This case-ba
approach to self understanding is similar to the operations by which standard XP
retrieved and applied to input representations for story understanding. The same
algorithm is used in each.

46. See Cox (1994b) for a discussion of related computational models of forgetting.

47. Here the definition of a Meta-Explanation is interpreted in a narrow sense as applied to unde
standing tasks involving the explanation of anomalies. In general, however, a Meta-XP may b
any explanation of how and why an agent reasons in any particular way, including processes oth
than explanation.

Q5: How to represent mental states and reasoning mechanisms?
Ans5: Use meta-explanation patterns.
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Explanation patterns (XPs) are similar to justification trees, linking antecedent co
tions to their consequences. The XP is essentially a directed graph of concepts, con
with RESULTS, ENABLESandINITIATES links. A RESULTSlink connects a process
with a state, while anENABLESlink connects a precondition state to a process. AnINI-
TIATES link connects two states. The set of sink nodes in the graph is called thePRE-
XP-NODES(see Figure 24). These nodes represent what must be present in the curre
uation for the XP to apply. One distinguished node in this set is called theEXPLAINS
node. It is bound to the concept which is being explained. Source nodes are termedXP-
ASSERTED-NODES.  All other nodes areINTERNAL-XP-NODES.

For an XP to apply to a given situation, allPRE-XP-NODESmust be in the current
set of beliefs. If they are not, then the explanation is not appropriate to the situation.
structure is not rejected, then allXP-ASSERTED-NODESare checked. For eachXP-
ASSERTEDnode verified, allINTERNAL-XP-NODESconnected to it are verified. If all
XP-ASSERTED-NODES can be verified, then the entire explanation is verified.48

In the representation presented here, attributes are treated as first-class objects;
attribute relations have an explicit frame representation. For instance, the greater-tha
tion of Figure 25 has bothdomain andco-domain slots. Therefore, the token greate
than.7 expresses the proposition that the integer two is greater than one. Moreove
same notation can represent the slot (attribute) of a frame. Theresult attribute of men-
tal-process.21 is a relation (result.52) from itsdomain (mental-process.21) to itsco-
domain (mental-state.12). As indicated by the lowest level of parentheses, frame
have both value and relation facets. This explicit representation allows a system to
specific propositions about slots, instead of only values. A system can therefore ask a
tion about theresult slot itself. Questions such as “What was the result of mental-p

48. See Ram (1994) for additional details concerning the structure and use of explanation patterns

a

i

ppp

i

aaa

i i i

i

i

Figure 24. XP as a directed graph
a=asserted; i=internal; p=pre-XP; e=explains

e
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cess.21?” need only refer to the value facet of the attribute; but, questions such as “W
the process result in state.12?” can only be formed properly if theresult relation has an
explicit representation (Ram, 1989; Wilensky, 1986b).

4.4.1 Trace Meta-XPs

Ram (1990, 1994) has developed a theory of motivational explanation based on
sion models which characterize the decision process that an agent goes through in de
to perform an action. For example, the religious-fanatic explanation for suicide bom
is a decision model describing why a bomber would choose to perform a terrorist stri
which the bomber dies (see Figure 26 and compare to Figure 22 on page 76).49 Ram's
model claims that an agent first considers any relevant goals, goal priorities, an
expected outcome of performing the action. The actor then makes a decision whet
not to enter into such a role, and if so, performs the action. IML theory extends the m
to account for introspective reasoning.

Meta-reasoning can be conceptualized in a similar manner. A set of states, prio
and the expected strategy outcome determine a reasoner’s decision of a processing s
like the above factors determine the actor’s decision to act. Based on general know
current representation of the story, and any inferences that can be drawn from this k
edge, the reasoner chooses a particular reasoning strategy. Once executed, a strate

49. TheConsiderations (two goals and one belief) comprise the XP-ASSERTED-NODES, the
Chooses-To-Enter node is the lone INTERNAL-XP-NODE, and theActor relation is the only
PRE-XP-NODE (and represents the EXPLAINS node of the XP).

greater-than.7 →
(greater-than-relation

(domain (value 2))
(co-domain (value 1)))

mental-process.21 →
(mental-process

(result (value mental-state.12)
(relation result.52)))

result.52 →
(result-relation

(domain (value mental-process.21))
(co-domain (value mental-state.12)))

Figure 25. Relations as first-class objects
arrows = token assignments
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Figure 26. Volitional XP for why agent performs suicide bombing
(adapted from Ram, 1993)

BS=bad state; GS=good state; MOP=memory organization package
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produce further reasoning, requiring additional strategy decisions.

These decisions are chained into threads of reasoning such that each one initia
goal that drives the next. Though the chains can vary widely, in the task of question-d
story understanding, the chains take the following form: Identify Anomaly→ Generate
Explanation→ Verify Hypothesis (see Figure 14 on page 36 in Chapter II). Note that si
the explanation generation phase produces a hypothesis and the verification phase pr
a measure of goodness, if the hypothesis has been confirmed with a sufficiently high
dence, then the overall product of the understanding process has been a sound expla
Alternatively, if the explanation has been disconfirmed, then a later failure identifica
phase should generate the question “Why did the explanation fail?” This knowledge
triggers the learning process.

The understanding process is recursive in nature. For example, if a hypothesis g
ates a new question, then the reasoner will spawn a recursive regeneration of the se
because an unanswered question is anomalous. Like physical explanations that e
how objects work in the physical world, and volitional explanations that explain why ag
perform various acts in the world, introspective explanations explain how and why con
sions are drawn by the reasoner; they explain events in the mental world.

When insufficient knowledge exists on which to base a decision, a useful strate
to simply defer making the decision. The reasoning task is suspended and later con
if and when the requisite knowledge appears. This is a form of opportunistic reaso
Meta-XPs are able represent chains of reasoning that follow from opportunistic reas
as well as uninterrupted decisions.

A Trace Meta-XP, representing the trace of the reasoning process, is a cha
Decide-Compute-Nodes(D-C-Nodes). Figure 28 shows the outermost frame definition50

of the decide-compute-node type whose graph structure is shown in Figure 27. A
recursive single instance of explanation would be a chain of three D-C-Nodes, one for
phase in the anomaly-identification/generate-explanation/verify-hypothesis seque51

These nodes record the processes that formulate the knowledge goals of a system, t

50. Frame figures use the following notation:
X.0 - - - - - - an attribute value;
(X) - - - - - - a frame of type X;
=X - - - - - - variable binding to the outermost slot named X;
(=X =Y)  - - a list of variable bindings;
(X =Y)  - - - an frame of type X with referent alias named Y.

This last feature is included so that variable can be bound to slots other than the outermost slots
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with the reasons for and the results and side-effects of performing such mental actions
trace of reasoning is similar to a derivational analogy trace as described by Carb
(1986) and Veloso and Carbonell (1994). A Trace Meta-XP is a specific explanation of
a reasoner chooses a particular reasoning method and what results from the strateg
an XP, the Meta-XP can be a general structure applied to a wide range of contexts, or
cific instantiation that records a particular thought process. One distinguishing prope
Trace Meta-XPs is that a decision at one stage is often based on features in previous
For example, the decision of how to verify a hypothesis may be based on knowledge
to construct the hypothesis initially. This property, deciding based on previous knowle
is particularly true of learning, which, by definition, is based on prior processing.

4.4.2 Introspective Meta-XPs

Whereas a Trace Meta-XP explains how a failure occurred, by providing the sequ
of mental events and states along with the causal linkage between them, an Introsp
Meta-XP explains why the results of a chain of reasoning are wrong. The IMXP pos
causal reckoning between the events and states of the TMXP. In addition, an IMXP
vides a learning goal specifying what needs to be learned. Then, given such an expla
bound to a reasoning chain, the task of the system is to select a learning strategy to
the likelihood of repeating the failure.

An IMXP consists of six distinctive parts:

• The IMXP type class.
• The failure type accounted for by the IMXP.
• A graph representation of the failure.
• Temporal ordering on the links of the graph.
• An ordered list of likely locations in the graph where processing errors

may have occurred.
• A corresponding list of learning goals to be spawned for failure repair.

There are three classes of IMXPs: base, core, and composite.Basetypes constitute
the basic vocabulary (labels) with whichcore IMXPs are built. We have identified seve
primitive types in the base class: successful prediction, inferential expectation fa

51. Note that in most of this work the initial phase of anomaly identification is simplified. Rather
than considering all four steps represented in a D-C-Node, the algorithm skips the input analys
step, posts a goal to interpret the input, and then uses only a single strategy as outlined in the te
The result is a signal whether or not an anomaly exists together with the anomaly’s cause. Se
for example, Figure 14, “Question-driven understanding,” on page 36.
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(define-frameD-C-NODE
(isa (value (meta-xp)))
(actor (value (volitional-agent))) ;; The agent making the decision.
(enables- (value (d-c-node))) ;; Points to previous d-c-node in TMXP chain.
(initial-state (value (considerations))) ;; Preconditions
(strategy-choice

(value (strategy-choice-value))) ;; What strategy chosen
(strategy-decision

(value (decision-process ;; Why strategy chosen
(actor (value =actor)

(relation =role)) ;; Same as role slot below.
(basis-of-decision (value (basis)))
(main-result (value =strategy-choice)))))

(role (value (actor ;; The actor slot of the decision-process.
(domain (value =strategy-decision))
(co-domain (value =actor)))))

(strategy-execution
(value (mental-process)))

(side-effect (value (considerations)))
(main-result (value (outcome ;; Return values from the strategy-execution.

(results- ;;Backpointer from where this outcome resulted
 (value =strategy-execution)))))

(explains (value =role)) ;; Explains why agent picks strategy-execution
(pre-xp-nodes (value (=explains =main-result =side-effect)))
(xp-asserted-nodes

(value (=initial-state)))
(internal-nodes

(value (=strategy-decision =strategy-choice
 =strategy-execution)))

(link1 (value (mentally-enables
(domain (value =initial-state))
(co-domain (value =strategy-decision)))))

(link2 (value (mentally-results
(domain (value =strategy-decision))
(co-domain (value =strategy-choice)))))

(link3 (value (mentally-enables
(domain (value =strategy-choice))
(co-domain (value =strategy-execution)))))

(link4 (value (mentally-results
(domain (value =strategy-execution))
(co-domain (value =main-result)))))

(link5 (value (mentally-results
(domain (value =strategy-execution))
(co-domain (value =side-effect)))))

(links (value (=link1 =link2 =link3 =link4 =link5))) ;; List of all causal links.
)

Figure 28. Frame definition for Decide-Compute-Node
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incorporation failure, belated prediction, retrieval failure, construction failure, and in
failure. The core types are representations of the failure types enumerated in Ta
“Final table for reasoning model,” on page 50. They include representations for fail
such as contradiction and impasse, and the IMXP representation for each will be sho
Section 4.7. Core types are combined to formcompositeIMXPs that describe situations
encountered by reasoning agents, such as the “Drug Bust” examples in Section 2.1

The internal graph structure of an IMXP consists of nodes, representing both m
states and mental events (processes), and the causal links between them. The no
links have the same semantics as those described for TMXPs in section 4.4.1. The
gives both a structural and a causal accounting of what happened and what should hav
pened when information was processed.

Consider the graph diagram in Figure 29 (cf. Figure 23). It represents the intros
tive reasoning of the second drug-bust story in Chapter II (Section 2.1.2). In this story
Meta-AQUA system forgets the explanation learned in the previous story, that dogs
bark at inanimate objects when they detect contraband. Because this explanatio
indexed by containers, the system retrieves no explanation to explain why the dog is
ing at a pile of dirty clothes; that is, it experiences a memory impasse. Later in the s
when the officer praises the dog for barking at the clothes, the system infers that the e
nation should have been a detection explanation. This graph structure represents th
posite IMXP ANOMALY-AND-BAFFLED. It contains but one core case, a missin
association, and has at its heart the base case of retrieval failure. In Figure 30, a fram
inition is provided for the IMXP composite type from which the instance portrayed in F
ure 29 was formed.52

Base class IMXPs represent a primitive type or component in the content theo
mental events from which traces of reasoning failures may be constructed. The goa
enumerate a sufficient number of these basic types to cover the major kinds of reas
failures that arise in story understanding and other tasks. The types of failures (disc
Section 3.2 on page 45) fall into two complementary classes: commission error and
sion error. Commission errors stem from reasoning which should not have been perfo
or knowledge which should not have been used. Omission errors originate from the
of some reasoning or knowledge. The content theory herein contains Base IMX
describe both classes of failure.

52. The frame definition is simplified in order to show it here. All facet notation is removed because
only value facets of slots are shown in the figure. In addition, the figure shows only the importan
slots to illustrate the definition.  Some slots are missing.
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Figure 29. Representation for forgotten detection explanation

A=actual; E=expected; Q=question; I=index; M=memory item
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(define-frameIMXP-BAFFLED-AND-RESOLVED
(isa (composite-introspective-meta-xp)) ;;IMXP Class
(failure-cause (novel-situation.0 missing-assoc.0)) ;;Which one we do not know
(q (relation(explanations (=a)))) ;;Baffling question
(a (xp (explains =q))) ;;Actual explanation
(e (xp (explains =q))) ;;Missing expectation
(i (index (domain =q) (co-domain =m))) ;;Index used to retrieve E
(m (xp)) ;;Forgotten xp.
(truth-value (truth (domain =e) ;;E not in set of beliefs wrt FK

(co-domain out-fk.0)))
(equals (equal-relation(domain =a) ;;Actual should have been

(co-domain =e))) ;;equal to what was expected
(rf (retrieval-failure(initiates- =truth-value) ;;The memory failure

(expected-outcome =e) ;;explained by the IMXP
(actual-outcome =a)))

(new-input (entity)) ;;Story input
(later-process (cognize)) ;; Inference in this case
(rc (trace-meta-xp ;;Reasoning chain

(identification =q-id)
(generation =hypo-gen)
(link3 =link2)
(link4 (mentally-results (truth out-fk.0)))))

(q-id (d-c-node ;;Question identification
(strategy-choice questioning.0)
(strategy-execution pose-question.0)
(side-effect (considerations =con

(prime-state =k-goal)))
(link4 =link1)))

(k-goal (knowledge-acquisition-goal ;;Knowledge goal to answer
(goal-object ;;the question
(generate (co-domain =q)))))

(hypo-gen (d-c-node ;;Hypothesis generation
(strategy-decision =h-decision)
(main-result (outcome =o (members (=link4))))
(link4 (mentally-results (co-domain =o)
(truth out-fk.0)))))

(h-decision (decision-process ;;XP retrieval in this case
(basis-of-decision =h-decision-basis)))

(h-decision-basis
(basis (knowledge ;;Existence of I is the basis

(collection ;;to use case-based explanation
(members ((knowledge-state

(co-domain =i)
(believed-item =i))))))))

(links (=link1 =link2 =link3 =link4 =link5 =link6)) ;;Links are in temporal order
(link1 (mentally-results (domain pose-question.0)

(co-domain (outcome (members (=q))))))
(link2  (mentally-enables  (domain =con)

(co-domain =hypo-gen)))
(link3 (mentally-results  (domain =rc) ;;and all correspond to the

(co-domain =e))) ;;numbered links in Figure 29.
(link4  (mentally-initiates (domain =truth-value)

(co-domain =rf)))
(link5 (mentally-enables  (domain =new-input)

(co-domain =later-process)))
(link6 (mentally-results  (domain =later-process)

(co-domain =a)))
(explains =rf) ;;What the IMXP explains.
(pre-xp-nodes (=a =e =rf)) ;;XP consequents.
(internal-nodes (=q =hypo-gen =later-process =i)) ;;Neither sink nor source nodes
(xp-asserted-nodes (=q-id =m =new-input)) ;;XP antecedents.
(potential-faults (=a =i)) ;;Nodes for blame-assignment
(potential-learning-goals ;;Corresponding learning goals

((knowledge-expansion-goal
(goal-object =a) ;;Expand the new explanation
(subgoals =krg)
(priority (integer-value =pr))
(backptr (plan))
(conditions ((inferred.0 acquired.0)))

 (knowledge-reorganization-goal =krg
(goal-object =i) ;;Reorganize memory to hold it
(priority (integer-value (less-than =pr))))))))))

Figure 30. IMXP frame definition for forgetting
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4.5  Vocabulary

The partial ontological hierarchy of mental terms in Figure 19 on page 70, pict
some basic type identifiers of the mental domain. They represent the most fundam
labels used to identify particular classes of mental actions and states and provide the
itive building blocks with which declarative structures are assembled to describe the
cessing that occurs within intelligent systems. A major goal of an understanding sy
operating in a mental world is to refine the labels of structures as additional knowled
gained about particular actions in the domain. For instance, a system may only know
a particular node is some kind of cognitive process, thus it labels it with the vocabulary
Cognize . If the system subsequently discovers that it is a memory process, the labe
be refined toMemory Process .53 As more information is ascertained, the system m
determine that the structure actually representsRecall or Recognize . As each label is
refined, additional inferences are warranted.

Not shown in Figure 19 are the terms used to represent failure. These vocab
labels are the base IMXP types mentioned in the previous subsection. This resear
identified two types of commission error labels:Inferential expectation failurestypify
errors of projection. They occur when the reasoner expects an event to happen in a c
way, but the actual event is different or missing.Incorporation failuresresult from an
object or event having some attribute that contradicts some restriction on its values.
omission error labels have also been identified:Belated predictionoccurs after the fact.
Some prediction that should have occurred did not, but only in hindsight is this observ
made. Retrieval failuresoccur when a reasoner cannot remember an appropriate pie
knowledge; in essence, it represents forgetting or memory failure.Construction failureis
similar, but occurs when a reasoner cannot infer or construct a solution to a problem. Input
failure is error due to lack of some input information. To construct the five core type
failure (outlined in Section 3.2), these labels are used. The basic organization for
these representations is at the level of a comparison between an expectation and som
back (either from the environment or additional inference or memory).54 Oehlmann,
Edwards, and Sleeman (1995) stress the importance of metacognitive processing to p
expectations and to monitor comprehension, both in human and machine systems. Th
resentations used by any system should support these processes. The following s
provide representations for both successful and for failed mental processing.

53. Although the vocabulary item is listed asMemory Process in Figure 19, the IMXP figures
have been usingMemory Retrieval .  The terms are used interchangeably.

54. See Krulwich (1995) for another view on basic level categories for mental representations
Instead of granularity, however, his discussion centers on the proper level of abstraction.
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4.6  Representing Reasoning Success

An illustration of a simple base type representations is contained in Figure 31.55 With
this figure and the ones to come representing subsequent core IMXPs, theCognize nodes
may actually consist of an arbitrarily long chain of computations. The node is actually
resented by a TMXP rather than a single process. See Figure 32 for the frame definit
this graph structure for further clarification.

The EXPLAINS node of the XP is the node labeled “Successful Prediction.” T
equals  relation between A and Ementally-initiates  the node.  Now, let node A
be an actual occurrence of an event, an explanation, or an arbitrary proposition. The
A results from either a mental calculation or an input concept. Let node E be the exp
occurrence. The expected node, E,mentally-results from some reasoning trace
enabled by some goal, G, and context, C. Now if the two propositions are identical, so

55. Compare this figure with the final comparison model of expectation-driven reasoning (Figure 1
on page 49).

Figure 31. Meta-XP representation of successful prediction

A=actual; E=expected; G=goal; C=context or cues
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(define-frameIMXP-SUCCESSFUL-PREDICTION
(isa (core-introspective-meta-xp))
(failure-cause nil.0) ;; No failure.
(a (entity)) ;; Actual outcome.
(e (entity ;; Expected outcome.

(truth hypothesized-in.0))) ;; Expected to be believed.
(g (goal)) ;; Main goal.
(rc (trace-meta-xp ;; Trace of reasoning chain.

(identification
(d-c-node =d-c-n ;; The node has an alias
 (initial-state =preconditions) ))

(main-result =e))))) ;; Reasoning trace results in node e.
(preconditions (considerations

(mentally-enables =d=c=n) ;; Points to alias above.
(prime-state =g)))

(comparison (inferential-process
(arg1 =a)
(arg2 =e)
(main-result =equals)))

(sp (successful-prediction ;; Node this IMXP explains.
(initiates- =equals)
(expected-outcome =e)
(actual-outcome =a)))

(equals (equal-relation
(domain =a)
(co-domain =e)))

(later-process (cognize))
(nodes (=a =e =sp =equals =rc =later-process ;; List of all nodes in IMXP.

=comparison =preconditions))
(pre-xp-nodes (=a =e =sp))
(explains =sp)
(internal-nodes (=equals =rc))
(xp-asserted-nodes

(=later-process =comparison =preconditions))
(link1 (mentally-enables

(domain =preconditions)
(co-domain =rc)))

(link2 (mentally-results
(domain =rc)
(co-domain =e)))

(link3 (mentally-results
(domain =later-process)
(co-domain =a)))

(link4 (mentally-results
(domain =comparison)
(co-domain =equals)))

(link5 (mentally-initiates
(domain =equals)
(co-domain =sp)))

(links (=link1 =link2 =link3 =link4 =link5)) ;; List of all links in IMXP.

  )

Figure 32. Successful prediction frame definition
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A ⊇ E, then a successful prediction has occurred.56 Failures occur when A≠ E. This state
exists when either A and E are disjoint or there are conflicting assertions within the
nodes. For example A and E may be persons, but the concept at node E contains a slo
ifying gender =male.0, whereas the concept at A contains the slotgender =female.0.
Although successful prediction produces no learning, a representation must exist fo

Before examining the representation for reasoning failures, it is worth noting tha
basic representation of successful prediction can account for many of the process te
our target ontology (Figure 19 on page 70), not just classes of failure. Figure 33 illust
successful prediction when the value of theCognize node that produces the expectatio
E, is a memory process. This representation can easily capture the distinctions betw
incidental reminding, a deliberate recall, and recognition; that is, the three sub-nod
Remember in Figure 19. The structural differences depend on the nodes C and G, an
temporal order of the causal links resulting in nodes E and A (see Table 7). If there
knowledge goal (Ram, 1991; Ram & Cox, 1994; Ram & Hunter, 1992) to retrieve s
memory item, only cues in the environment, and if E is retrieved before A is produced,
the structure is a reminding. On the other hand, if there is a deliberate attempt to a me
item that is later compared to some feedback, A, then the structure represents
Finally, if A is presented followed by a memory probe, then the structure represents re
nition, whether or not a retrieval goal exists. It is also significant to note that the mem
Elaboration term of Figure 19 can be represented as a feedback loop from E to C
that each new item retrieved adds to the context that enables further me
retrieval.57This is represented as a dashed line in Figure 33.

4.7  Representing Reasoning Failure to Support Learning

To support learning, a theory should have a level of representation that reflect
structure and content of reasoning failures. Section 3.2, “Types of Reasoning Fa
extends the scope of reasoning failure to include the following forms: contradic
impasse, false expectation, surprise, and unexpected success. This section provides
representations for each of these five types at a level of representation that is sufficie
learning.

56. On the other hand, if A⊂ E, then there are more questions remaining on the predicted node E.
If there are unanswered questions, the system will wait for more information before it introspects
Such cases are not represented in the current implementation, although there are cases in wh
one would want to reason about partial computations. See also the brief discussion in Sectio
3.2.1.4.

57. This characterization is admittedly simplified since cue elaboration incorporates top-down infer
ential processes as well as bottom-up additions to memory cues.
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Table 7: Structural differences between remembering events

Memory
Term

Structural Features Description

Reminding Has only Cues;
E before A

Incidental;
No Knowledge Goal

Recall Cues and Goal;
E before A

Deliberate;
Has Knowledge Goal

Recognition May or may not have Goal;
A before E

Borderline between 2 above;
Has judgement

Figure 33. Meta-XP representation of several remembering events

A=actual; E=expected; G=goal; C=context or cues
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4.7.1 Contradiction

Figure 34 illustrates the representation for a contradiction failure. Some goal, G
context or cues, C, enables some cognitive process to produce an expected outcom
subsequent cognitive mechanism produces an actual outcome, A, which when compa
E, fails to meet the expectation. Realizing this inequality of actual outcome with expe
outcome initiates the knowledge of contradiction.

If the right mostCognize node is an inferential process, then the failure is labe
Expectation Failure and the node C represents the context; whereas, if the pro
was a memory function, the contradiction is labeledIncorporation Failure and C
represents memory cues. The latter case occurs when an input concept does not mee
ceptual category during understanding. Both inferential expectation failure and incor
tion failure are errors of commission. Some explicit expectation was violated by
processing or input.

4.7.2 Impasse

Figure 35, “Meta-XP representation of impasse,” represents a class of omission
ures that include forgetting as discussed earlier. Some goal, G, and context or cu
enables a cognitive process to attempt production of an expected outcome, E. Becau

Figure 34. Meta-XP representation of contradiction
A=actual; E=expected; G=goal; C=context or cues
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expectation, E, was not generated, it cannot be compared to an actual outcome, A, pro
by a subsequent cognitive mechanism. Realizing that E is not in the set of beliefs
respect to the foreground knowledge of the system (i.e., was not brought into or cr
within working memory) initiates the knowledge of failure.

If the right-mostCognize term is a memory retrieval process, then the Meta-X
indeed represents forgetting,58 and the structure is labeledRetrieval Failure . The
impasse is a memory process that fails to retrieve anything. If the node is an inferentia
cess, however, then the impasse failure is equivalent to the failures as recognized b
(a blocked attempt to generate the solution to a goal), and the structure is labeledCon-
struction Failure . A construction failure occurs when no plan or solution is co
structed by the inference process.

4.7.3 False Expectation

As seen in Figure 36, the representation of false expectation anticipates an actua
(A1) which never occurs or cannot be calculated. Instead, another event (A2) causes the

58. Compare Figure 35, “Meta-XP representation of impasse,” with Figure 31, “Meta-XP represen
tation of successful prediction,” to see why Forgetting≠ ¬Remember.

A E
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Figure 35. Meta-XP representation of impasse

A=actual; E=expected; G=goal; C=context or cues
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A=actual; E=expected; G=goal; C=context or cues
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reasoner to realize the error through hindsight. It is not always evident what this se
event may be, however. Sometimes it is a very subtle event associated with just the pa
of time, so there is no claim here that the second event is a conscious one. In this seq
the reasoner realizes that the anticipated event is out of the set of beliefs with respect
FK, and will remain so.

Despite the fact that false expectation and surprise are not closely related in the
of failure types (Table 4, “Final table for reasoning model,” on page 50), they are q
related in structure. As will be seen in the subsequent subsection, they both share the
rectly anticipatedSuccessful Prediction node and also the node labeledBelated
Prediction .

4.7.4 Surprise

Figure 37, “Meta-XP representation of surprise,” represents a class of failures r
treated in any AI system. A surprise occurs when a hindsight process reveals that
expectation was never generated. The explanation is that there was never a goal, G2,
ate the expectation, either through remembering or inferring. Some earlier process
goal, G1, failed to generate the subsequent goal. When the node A is generated, ho
the system realizes that it is missing. This error, by definition, is a missing expectation
covered after the fact. Again, note the similarity between the representations for su
and false expectation.

4.7.5 Unexpected Success

Finally, Figure 38, “Meta-XP representation of unexpected success,” contains a M
XP representation of an unexpected success, a failure similar to contradiction. How
instead of E being violated by A, the expectation is that the violation will occur, yet d
not. That is, the agent expects not to be able to perform some computation (e.g., cr
solution to a given problem), yet succeeds nonetheless. In such cases the right-mostCog-
nize term will be some inferential process. If this process is a memory term instead
failure represents the case of an agent that does not expect to be able to remember so
or event when necessary, yet when the time comes, it does nonetheless.

4.8  Summary and Discussion

The few examples presented in this chapter demonstrate both the usefulness an
plexity of representing mental events and states. The chapter began by describing a
ontology of mental terms that would provide a useful vocabulary for systems that re
about the mental domain. The remainder of the chapter concentrated on composing
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Figure 37. Meta-XP representation of surprise

A=actual; E=expected; G1,G2=goals; C=context or cues
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Figure 38. Meta-XP representation of unexpected success

A=actual; E=expected; G=goal; C=context or cues
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resentation for just those terms that pertain to the five failure symptoms derived in the
vious chapter. If a system is to learn from its reasoning failures effectively, it need
represent the kind of mental symptoms and faults it is likely to encounter so that thes
be reasoned about explicitly. Only enough representational detail must be provided s
the system can explain its own failures and thereby learn from them. That is, the repr
tations must have causal and relational components that identify those factors that e
how and why a failure occurred. A knowledge structure called a trace meta-explan
pattern is used to provide a record of system reasoning. It explains how the failures o
An Introspective Meta-Explanation Pattern represents an abstract causal pattern of
that explains why the reasoning embodied in a trace fails.

Despite the difficulty of formulating a complete representation of mental events
effort promises to aid a system when reasoning about itself or other agents, especially
trying to explain why its own or another’s reasoning goes astray. Furthermore, even th
the CD representation of mental terms leaves much detail unrepresented, the origina
of Schank et al. (1972) to represent the mental domain is a fruitful one. If future rese
can more fully specify a representational vocabulary for the ontological items illustrate
Figure 19, these domain independent terms can help many different intelligent system
son in complex situations where errors occur.

Although many of the details of this chapter may be overly simplified, the formal
remains an improvement over many of the representational systems proposed in th
(e.g., logic and CD theory) with respect to representing mental states and mechan
Especially considering the emphasis by Schank on expectation as a driving force i
comprehension and problem solving (a point made explicitly as early as Schank, 1972
to some extent, in Schank & Tesler, 1969), the CD representation for the concept of “e
tation” is not sufficient to express its central role in cognition. For example, the CD re
sentation for “John expects Bill to become a doctor” (Schank et al., 1972, p. 29) is sh
in Figure 39. Very little information is provided in this structure, and few inferences m
be obtained from it or learning performed from it.

Figure 39. CD representation of expectation

f=future tense; MLOC=Mental Location; LTM=Long

 f ⇔ MLOC (LTM (John))

Doctor

 Bill
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The following chapters of Part Three will introduce the process theory of introsp
tion and learning. Chapter V first presents a model of understanding and then a mo
learning. Chapter VII provides the algorithms that underlie these models and that m
ulate the current chapter’s representations when learning. Additional examples from
Meta-AQUA system will illustrate the utility of Meta-XP representations.
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CHAPTER V

A PROCESS THEORY OF UNDERSTANDING AND LEARNING

Learning without creativity is like a butterfly without wings.

Anonymous (from a fortune cookie following a Korean meal).

In most cognitive science theories, problem solving, understanding and learnin
distinct processes that have few family resemblances. They each play an integral ro
cognitive milieu, but are, for the most part, studied independently with little regard to
another. But as we have emphasized, the relationship between reasoning (either p
solving or comprehension) and learning is intimate because an introspective learning
ponent must be able to explain and understand failures in the reasoning component, if
ing is to remain effective (i.e., if multiple learning methods woven into its learning-strat
are not to interact negatively). Here we develop an interrelated theory of these cog
functions and show the close relationships between them by comparison and by con

Having examined the content theory of introspective multistrategy learning du
Part Two, this chapter presents a process theory of both understanding and learning
tion 5.1 reviews the major suppositions of the theory presented in Parts One and
These assumptions also support the models developed in this chapter. Section 5.2 o
a generalized process theory for multistrategy reasoning that applies to both problem
ing and comprehension tasks. Section 5.3 refines the process theory specifically to
prehension tasks and then specializes it further to account for the task of
understanding. Section 5.4 develops a process model of learning that parallels the
of understanding. Section 5.5 then compares the model of understanding from Secti
with the learning model of Section 5.4.

5.1  Theoretical Assumptions

The results, conclusions and the very structure of this theory depends on the
assumptions enumerated in Figure 40. Although several sections of this documen
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already discussed these assumptions, this section briefly reiterates them to provide a
These assumptions allow us to be specific as to the kinds of models and the details a
ated with them that will be presented in this chapter.

First and foremost, we assume that cognition is essentially goal-directed proce
of a given input using the reasoner’s knowledge (see the discussion in Section 3.3). I
suit of such goals a cognitive system produces expectations of the future. Our foc
therefore on the deliberative and top-down components of thought, rather than on the
driven or situation-specific factors.

Second, all reasoning can be cast in a multistrategy framework. For the purpos
this document, problem-solving, understanding, and learning are all considered to in
the choice of strategies in some sense. Whereas much of this thesis has already argu
learning is multistrategy affair, Section 5.2 will argue that both problem-solving and un
standing should be considered to involve an executive control process that determines
soning strategy.

A third assumption is that the reasoner’s knowledge and past experience is mem
based, and therefore subject to storage and retrieval constraints, particularly the ind
problem. The indexing problem (see the discussion in Section 3.3.1) is the proble
choosing cues, or features of an input, to be used as indexes for retrieving from memo
knowledge structures necessary to process an input. Thus, in such memories, know
organization is a significant concern for both reasoning and learning functions.59

Finally, we assume a failure-driven approach to learning and reasoning (see the
ductory comments of Chapter III), which concentrates on contradictions, impasses,
expectations, surprises, and unexpected successes to indicate when attentional re
are appropriate. Afailure is defined as a computational outcome other than wha

• Reasoning is goal-directed processing of input given
some background knowledge.

• A multistrategy approach is appropriate for both rea-
soning and learning.

• Knowledge is memory-based.

• Learning is failure-driven.

Figure 40. Assumptions
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expected or a lack of some outcome (or appropriate expectation).

Given such assumptions, the cognitive tasks of reasoning, understanding, and le
have interesting parallels in the overall theory of introspective multistrategy learning.

5.2  Multistrategy Reasoning

In a classic study of human problem-solving, Newell and Simon (1972) outline
model that humans appear to follow when engaged in reasoning about complex prob
An initial process first translates the perception of the external environment into an int
representation of the problem. Second, the reasoner selects a method such as reco
or heuristic search by which to solve the problem.60 Third, the method is applied to the
problem. Finally, if the problem is not solved, then the reasoner either chooses an
method, reformulates the problem, or quits. In their framework, the emphasis is upon
resentation of the problem and multiple problem-solving methods between which the
soner must decide. We likewise emphasize multistrategy components that selec
construct strategies during reasoning and during learning.

In expert system development, a crucial engineering problem is to match an app
ate inference method to the task domain of concern. The generic-task view of C
drasekaran (1989), Steels’ (1990) study of componential frameworks, and McDerm
(1988) work on role-limiting methods all lend additional support for the multistrate
assumption by arguing that different general methods exist that apply to specific prob
solving tasks. More than one method may apply to a given task or subtask, so str
selection and composition is unavoidable in problem solving, whether performed b
knowledge engineer or the knowledge-based system itself.61

59. This third premise suggests that knowledge is composed of two parts. As discussed in Secti
4.3 on representing forgetting, the system’s background knowledge, or BK, contains more that ju
the domain theory of the performance task. It represents all long-term knowledge including meta
knowledge, heuristic knowledge, associative knowledge, and knowledge of process. In contra
to the BK, the foreground knowledge, or FK, constitutes the current model of the input that has
been constructed, and the memory of the reasoning with which such a model was built.

60. See Simon (1979) for a discussion of alternative strategies given a single problem representatio

61. For specific implementations of the multistrategy approach to problem solving, see Goel, Ali
Donnellan, Garza, & Callantine (1994) for descriptions of ROUTER, Punch (1991) for a discus-
sion of the TIPS system, Reinders & Bredeweg (1992) for the REFLECT system, Oehlmann
Edwards & Sleeman (1995) for the IULIAN system, and Kuokka (1990) for the MAX system.
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Meta-level tools have also been developed for expert systems to automate the g
ation of knowledge acquisition assistants. For instance, the PROTÉGÉ-II knowl
acquisition shell (Puerta, Egar, Tu, & Musen, 1992) combines domain- and task-inde
dent mechanisms to construct appropriate problem-solving methods (e.g., heuristic c
fication and skeletal-plan refinement) that fit a given problem domain. Therefore, ra
than one basic mechanism, many different processes and algorithms must account fo
nition. The open question is how are they combined. Punch, Goel, and Brown (1
report a robust mechanism for selecting between a fixed set of alternatives called the
sor-selector mechanism. This control mechanism has been tested in applications inv
planning, design and assembly. Hence, the strategy construction problem (which sub
the selection task) is clearly pertinent to problem solving, as well as learning.

The first paragraph of Chapter I specified the operational definition of learning a
given some computational performance task specified by the system’s goals, conte
some input, if a failure occurs during the task, the problem is to construct a learning str
with which to repair the faulty components of the system.” In similar terms, an operati
definition of a generalized reasoning task can be stated that subsumes both underst
and problem solving.

Given some input from the world (e.g., preprocessed perceptual input or
text from a story), a current context, including contextual goals and BK, if
the input is anomalous (or otherwise interesting), choose or construct a
reasoning strategy with which to explain the input.

As with the characterization of learning, the top level of computation concerns
choice of a reasoning strategy, rather than the choice of a solution operator. The oute
control is thus an executive reasoning process at the meta-level. This multi-level reas
is consistent with the approach of the MOLGEN system (Stefik, 1981), in which a plan
reasoning exists in both the design plane (the reasoning task in MOLGEN’s domain
the meta-plane (the task of choosing an operator in the design plane). As a result o
division, to choose a reasoning strategy the system should understand and model i
algorithms. Though consistent with Stefik, however, the model here does not presu
separate planes of computation.

In the formulation presented here, reasoning is a variant of the generate-and-tes
adigm, with the enhancement of a front-end identification process to filter anomalou
otherwise interesting, input (see Figure 41). So, if no unusual input to the system exis
significant resources will be expended on reasoning. Therefore, in the absence of in
ing input, an understander will skim its data; a problem solver will simply act reactivel
habitually. In such situations there is no deliberation. With interesting input, howev
reasoner should construct and execute a strategy, thus generating some respon
resolves the anomaly that sparked the interest. Subsequently, the result is verified by
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means constructed by the reasoner. If the result is falsified, then the generation p
begins anew.

5.3  Process Model of Understanding

The research presented here has concentrated on developing the details of firs
reasoning in the form of understanding or comprehension, rather than problem so
Understanding involves building causal explanations of the input. These explanation
vide conceptual coherence by incorporating the current input into pieces of the pre
input and by generating expectations about subsequent input. The understander s
stream of input by instantiating schemas to fit each input item and linking it into the pr
ous concepts of the story, unless the input is anomalous. If an anomalous situation is
tified, then the understander must explain the input by elaborating it beyond simple sc
instantiation.

5.3.1 Three Sub-processes of Understanding

Figure 42 shows three processes in the general understanding task. First, the
stander needs to identify anomalous (or otherwise interesting)62 input; second, it generates
a hypothetical explanation to explain the anomaly; and third, it verifies the generated e
nation. Both explanation generation and verification involve strategy construction.
understander must construct a method to generate an explanation and to construct a

Interesting?

Get Input

N

Y

Failure?

Generate

Test

N

Y

Figure 41. Basic reasoning model
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to test the veracity of the explanation. A number of possible strategies from which the
tem may select are shown in Figure 42. With respect to the more generic model sho
Figure 41, the two understanding sub-processes of constructing hypothetical explan
and verifying hypotheses correspond to the generate and test processes, respective63

With this model, an operational statement of story understanding is as follows:

Given some input from the story, the system’s current foreground knowl-
edge (FK1), including contextual goals and a current representation of the
story, and the system’s background knowledge (BK), if the input is anoma-
lous (or otherwise interesting), choose or construct a strategy with which to

62. In Meta-AQUA, interesting input is either an anomalous conceptualization or something pertain
ing to sex, violence, or loud noises. In addition, anything concerning a concept about which some
thing has been learned recently will be categorized as interesting. For a more detailed set
interestingness heuristics, see Ram (1990b).

63. This is not unlike Klahr and Dunbar’s (1988) model of scientific discovery, where there is a
hypothesis generation phase followed by hypothesis verification and evidence testing phases. T
major difference, though, is that IML theory assumes no explicit exploration of a hypothesis spac
via search.  Instead a simple, indexed memory provides suggestions that constitute hypothese

Understanding

  Generate
 Explanation

- Case-Based Reasoning
- XP Application
- Analogy
- Suspend

Example Strategies:

     Verify
 Hypothesis- Test Hypothesis

- Compare to Input
- Suspend

Example Strategies:

Anomaly

Hypothesis

Goodness

Input

   Anomaly
 Identification

- Case-Based Reasoning
- XP Application
- Analogy
- Suspend

Figure 42. Sub-processes of understanding
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explain the input, else incorporate the input into FK1. Output a new story
representation (FK2), including a representation of the reasoning that pro-
duced it, that has no anomaly and is coherent with respect to the BK.

5.3.2 Understanding Elvis’ Behavior

Story-understanding is the processing task chosen to test our theory of introspe
and learning. In particular, this research develops an explicit, if somewhat simpli
model of the processing performed by an implementation of question-driven story un
standing. The model of understanding used in this thesis is a modification of the reas
method used by the AQUA story understanding system (Ram, 1991, 1993, 1994).
implementation is in a program called Meta-AQUA.

As an example, Meta-AQUA might process a story about a polite, Memphis musi
named Elvis boarding with a young, Southern family.64 While processing the story, Meta
AQUA constructs a model of the characters and the actions involved in the story. Whe
story reveals that Elvis occasionally smokes marijuana in the house, endangering his
and freedom, as well as that of the family’s with which he lives, the system detects an a
aly that must be explained to fully understand the story. The event is anomalous be
the model of Elvis constructed before the point of his taking drugs was one of a law-ab
citizen. A conflict occurs as a result of trying to unify the picture of Elvis as a typical, ad
male (assumed to be happy) with the picture of him as an individual likely to comm
crime (thus, apt to be desperate).

To explain the incongruity, the system must understand the anomaly. Meta-AQ
accomplishes this by consulting a decision model (Ram, 1990a) that describes the pla
process an agent performs when considering a choice of actions in the world. The obj
of the analysis is to refine the nature of the anomaly and to identify the parts of the
that bear on the anomaly, so as to more clearly ascertain what needs to be explai
resolve the anomaly. An analysis of the story yields the facts that Elvis is not desperat
at the same time he performs an act that threatens the loss of his liberty. This situa
certainly anomalous because the decision model asserts that people value the goal
serving their own freedom above most other goals they possess, other than the goal p
ing their lives. A goal competition (Wilensky, 1983) therefore exists that Meta-AQUA m
explain.

64. Although only outlined in general descriptions here, this scenario is from a 31-sentence stor
For a complete program listing of the Meta-AQUA output from this story, see Appendix B. The
example will also be dealt with in more detail by Chapter VIII.
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Following this analysis, Meta-AQUA poses a series of questions about the ano
and the context of the story surrounding the anomaly. In this case, the system asks
would cause a man to carry out an action he knew could result in his own arrest. I
question can be answered, then the anomaly would likely be resolved, and the story
be considered understood.

To explain events in a story, Meta-AQUA can generate two types of explanati
Physical explanationsgive a causal account of events according to a model of the w
things work in the world, whereasvolitional explanationsgive a causal account of why peo
ple perform the acts they do in the world. The former class links physical events (su
the burning of flammable materials) with probable causes (such as the lighting of mat
with combustible devices). The latter type of explanation links the actions of agents
story to their goals and beliefs, thus providing a motivation for story characters. In the E
scenario, Meta-AQUA retrieves, instantiates, and adapts a cigarette-smoking explan
which produces expectations in the story (e.g., that the smoking will relieve a nervous
tional state). It can either look for verification of the explanation by tying it into the sto
or it can suspend the explanation until a later point in time. The explanation can be ve
when subsequent sentences in the story confirm the hypothesis.

Figure 43 diagrams the process decomposition that produces an understand
Elvis’ situation.65 First the system performs simple anomaly detection. An anomaly is
naled when either the input conflicts with known facts in the BK, or when the system is
erwise unable to successfully incorporate the representation of the input into the cu
story model in the FK. An explanation process then attempts to resolve the anoma
constructing a causal account of the input with respect to both the story and the sys
knowledge.  The resulting hypothesis is then tested for degree of fit or believability.

5.3.3 Question-Driven Understanding

Both the generate and the verify components of understanding have four steps
see Figure 43). In effect, given some anomalous state the reader encounters, if i
explain the anomaly and thus understand the story, it must answer the following ques

• How did the anomaly occur?
• What needs to be explained?
• How can I explain this?

65. Figure 43 is a repetition of Figure 14 from page 36.
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Figure 43. Question-driven understanding
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Subsequently it will:

• Resolve the anomaly by generating an explanation.

The initial step is to elaborate the anomaly in order to provide a focus that is rele
to determining what occurred within the story. The reasoner also refines the anom
such a way that a specific question can be posed. Since the specification of the expla
process must be more precise than simply “explain the anomaly,” it adds little bene
simply ask what the reason is for the anomaly. Although it may be clear that some r
sentation for a character like Elvis indicates that heisa typical-person.0, that a later rep-
resentation of himisa criminal-person.0, and that the two representations will not unif
in the program internals, a better characterization of the anomaly provides specific cir
stances (including motivations, states, goals, and beliefs) in terms of both a model o
mative decisions and a model of the current story that point to possible locations o
anomaly. Moreover, by providing a story context, a system avoids much search, sinc
context should contain only the pertinent details known so far. A talented programme
set up the anomalies that its system knows about in such a way that resolution is a
guaranteed. It is better to have some process that attempts to focus the anomaly so th
ditions not envisioned by the programmer can also be addressed.

Given such detail, the function of the next step is to provide a set of questions tha
resents gaps in the model of the story with respect to the anomaly. Any such questio
be viewed as aknowledge goal(Cox & Ram, 1995; Ram, 1989, 1991; Ram & Hunte
1992), since it specifies the knowledge states that, if achieved, would provide cohere
both the story and what the system knows (its BK). Following this specification the sy
can pick an explanation strategy that will answer these questions (i.e., achieve the k
edge goals).  Once a strategy is determined, the program can generate the explana

The first step in explanation generation is similar to the blame assignment st
learning, the second is goal specification, and the third is strategy construction. Afte
forming these steps, the reasoner can execute the reasoning method. Like our le
model (see Section 5.4) that offers no new learning algorithmsper seand instead presents
a method of choosing between and combining a number of extant strategies, the rea
model also concentrates on the strategy choices and combinations. Depending up
given situation, a system may choose from case-based reasoning, analogy, expla
application, or any number of reasoning strategies for generation (see Figure 43). T
form a test of the resulting hypothesis, a reasoner may devise an experiment, ask som
or simply wait, in the hope that the answer will be provided by future input.

To verify the hypothesized explanation, the verification process makes a similar
step analysis. The first step, however, that of finding the source of the hypothesis, is k
to follow in sequence from the generation process.66 Step two is to determine whether to
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attempt to prove or disprove the hypothesis. Given a target approach, the system then
to choose an algorithm best suited to achieving the goal. Once the algorithms have
selected and ordered, the hypothesis can then be evaluated.

Given such a model for the performance task, traces of system performance c
specified and recorded in declarative structures. As described in Section 4.4.1 (start
page 81), a TMXP contains a decide-compute node (D-C-NODE) for each of the sub
cesses of an understanding task; that is, it records the decision and the reasons behi
decision in every step of Figure 43. To understand what parts of the comprehension p
are recorded in these knowledge structures, carefully compare Figure 43 (p. 113) with
ure 27 (p. 85). Both the generation and verification processes have four steps each of
correspond to a process field in a D-C-NODE. The four fields are input analysis, goal
ification, strategy decision, and strategy execution. For each field, the record stores
the enabling conditions and the resulting state. For the first three fields, the D-C-N
records the decision basis, and for the last field, it records the side-effects of the pro

If a failure occurs (as detected by the algorithm to be presented on page 121), th
tem suspends the understanding performance-task and invokes the learning task. Wh
happens, the trace of the reasoning along with a characterization of the failure (as
mined by the failure detection algorithm) is passed to the learning process for introspe
explanation.  When learning abates, the system resumes the performance task.

5.4  Process Model of Learning

In contrast to the first-order performance task, a similar model of the second-o
learning task completes our theory of introspective multistrategy learning. When a fa
occurs, learning processes inspect the traces of performance in order to explain the
and decide what to learn. Subsequently, a learning strategy can be assembled and ex
Here we functionally justify such a process model, place it in the context of multistra
systems, and overview the IML algorithm to be further refined in the next two chapte

Simon (1983) defines learning as “changes in the system that are adaptive in the
that they enable the system to do the same task or tasks drawn from the same pop
more efficiently and more effectively the next time” (p. 28). Thus, some performance
exists that receives an input and acts upon it given its knowledge dealing with that cla
data. A measure of this performance is then passed to a learning task, whereupon it

66. Yet, in instances where a hypothesis is not self-generated, but provided to the reasoner as inp
step one would indeed require significant computation.
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changes to the knowledge used by the performance system, depending on the suc
failure of the performance.  This general view of learning is diagramed in Figure 44.

For instance, students often learn to program computers in LISP, first knowing an
language such as Pascal. But as LISP novices, the code that results from their pr
solving is usually overly-extenuated, inefficient, buggy, and written in an imperative s
with loops and block control-structures. As students learn to debug their programs b
and acquire mastery of more LISP functions, the code becomes much more compac
cient, bug-free, and written recursively within a functional programming style. The dif
ence in performance is due to a change in the knowledge and skills used by the progra
both to understand and solve problems and to implement the resulting solutions. T
conceptual changes come about from a removal of rigid, Pascal-like coding habit
acquisition of new LISP techniques, and a reorganization of the applicability condition
much of the knowledge relevant to the task of computer programming.

In contrast to Simon’s definition, the Inferential Learning Theory of Michalski (199
1994)67 defines a learning task as consisting of three components: some input (info
tion), the BK, and a learning goal. Even though this description does not explicitly ref

67. See also Michalski & Ram (1995) for a more detailed inspection of the relation between view
presented here and those of Michalski.

Performance
LearningPerformance

Knowledge Modifications

Input

Measure

Subsystem

Figure 44. Traditional model of learning

Subsystem
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the performance of a reasoning system, and so differs from IML theory, the concep
learning goal is central to both Michalski’s model and the model of learning presented
The learning goal determines the relevant pieces of the input, the knowledge to be acq
and the criteria for evaluating the learning. The model of learning presented here is co
tent with these constraints, and, as championed by Michalski, concentrates on a mult
egy approach to learning whereby more than one learning strategy can be brought t
upon a given learning task. Because the multistrategy approach applies equally well to
reasoning (in the form of either problem-solving or understanding) and to learning,
framework is a natural one for integrating the learning and the performance tasks.

5.4.1 Multistrategy Learning

Recent attention to multistrategy learning systems is evident from numerous so
in the machine learning literature (e.g., Carbonell, Knoblock & Minton, 1991; Michals
1993; Michalski & Tecuci, 1991, 1994) and in the psychological literature (e.g., Ander
1983, 1993; Wisniewski & Medin, 1991). Such research constitutes a functional appr
that designates the kinds of strategies a learning architecture needs to perform and th
ditions for applying each. Multistrategy learning systems are those that integrate se
learning algorithms into a unified whole, and thus contrast with single-strategy sys
such as Soar (Newell, 1990; Laird et al., 1986; Rosenbloom, Laird, & Newell, 1993
which all learning is performed by a single learning mechanism. Whereas any learni
Soar reduces to the chunking mechanism, methods as disparate as explanation-base
ing, similarity-based learning, deduction, abduction, constructive induction, and ana
can be directly included in the same multistrategy framework. In Soar, such learning
egies must be built up from the chunking mechanism via a production implementa
(Steier et al., 1987/1993).68

Approaches to multistrategy learning fall into three broad categories, which we
strategy selection models, toolbox models, and cascade models. The common elem
all these approaches is the use of multiple learning methods to allow the reasoning s
to learn in multiple types of learning situations.

68. A more critical evaluation of the single-strategy approach is that learning is actually a melang
of several mechanisms of the architecture (Pylyshyn, 1991). Learning can be obtained as a res
of goal-driven problem solving (as is with the Soar framework), or by the passive exposure to
experience or goal-orientations (for instance, see Barsalou, 1995), or by instruction, by trial an
error, by perceptual reorganization or insight, or numerous other mechanisms. The position her
though, is that the question of whether learning is single-strategy or multistrategy is still an ope
one. This research is simply a start toward the development of a framework that can more vigo
ously study this question and those like it.
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In strategy selection models, the reasoner has access to several learning strate
each represented as a separate algorithm or method. Learning involves an explicit de
stage in which the appropriate learning strategy is identified, followed by a strategy a
cation stage in which the corresponding algorithm is executed. Methods for strategy s
tion also differ. Pazzani's (1990a; 1994) OCCAM system, for example, tries each lea
strategy in a pre-defined order until an applicable one is found; Reich's (1994) BRID
system uses a task analysis of the problem-solving task to determine the appropriate
ing strategies for each stage of the task; Hunter's (1990a) INVESTIGATOR system r
sents prerequisites for application of each learning strategy; Cheng’s (1995) ISM spe
mechanism manager optimizes the learning behavior of the Theo (Mitchell, Allen, Ch
sani, Cheng, Etzioni, Ringuette, & Schlimmer, 1991) problem-solving architecture; an
Meta-AQUA system uses characterizations of reasoning failures to determine what to
and, in turn, the learning strategies to use when building a learning plan.

Toolbox modelsare similar to strategy selection models in that they too incorpor
several learning strategies in a single system. The difference is that these strateg
viewed as tools that can be invoked by the user to perform different types of learning.
tools themselves are available for use by other tools; thus, learning strategies may be
nized as co-routines. An example of this approach is Morik's (1994) MOBAL system
which learning occurs through the cooperation of several learning tools with each othe
with the user. Another example of the toolbox class is the PRODIGY (Carbonell e
1991; Minton, Carbonell, Etzioni, Knoblock & Kuokka, 1987) system. The system co
bines explanation-based learning, case-based (analogical) learning, abstraction, e
mentation, static analysis, and tutoring. However, the system is designed as a resear
bed for analyzing and comparing different methods, rather than as a system that cho
learning method itself. Instead, the experimenter chooses a learning module to run a
a given problem-solving test suite.69

In cascade models, two or more learning strategies are cascaded sequentially, with
output of one strategy serving as the input to another. For example, Danyluk's (1
GEMINI system uses a cascade of explanation-based learning, conceptual clusterin
rule induction strategies, in that order, to combine analytical and empirical learning in
single learning system. Clearly, these categories of models are not exclusive of each
(e.g., a strategy selection system may choose to cascade learning strategies in cert
cumstances), but they serve to characterize the major ways in which learning strategie
be integrated.

69. The analogy module of PRODIGY is currently being modified to integrate both EBL and
abstraction with case-based learning using a cascade model (Veloso & Carbonell, 1994).
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Research into multistrategy learning is useful on pragmatic grounds when com
worlds are the domains of learning systems. Such approaches allow for maximal flexib
Significant interactions are present in multistrategy systems, however, that are not ap
in isolated systems. For example, if two algorithms modify the domain knowledge o
system, and a dependency exists between the two, such that one strategy modifies a
the domain knowledge that the second one uses, then an implied sequencing m
enforced; that is, the first strategy must be applied before the second. Such depend
do not exist in single-strategy systems. Research into multistrategy systems contribu
many such issues that pertain to applied systems.

The general model of learning from Figure 44 can be refined to a multistrategy fra
work as seen in Figure 45. Some input is processed by a multistrategy performance s
in a manner dependent upon its goals, expectations, and the knowledge in its memo
trace of the processing is passed to the learning subsystem. The learning module the
different methods from a library or toolbox of standard algorithms to make changes t
knowledge in memory. Usually, the tools selected from the toolbox are chosen b
researcher (e.g., as is with the PRODIGY system. See Veloso & Carbonell, 1994, or
bonell et al., 1991). The goal of this dissertation is to specify a method by which to a
mate this choice and combination.

MultistrategyPerformance Subsystem

Learning Subsystem

Learning
trace

Learning

Toolbox
Algorithm

Tools

Execute Learning

 Input

Memory

G

Multistrategy
Performance

Figure 45. Model of introspective multistrategy learning
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5.4.2 Process Divisions within the Model of Learning

The performance system records its reasoning during story understanding in a T
trace structure as described in Section 4.4.1 (p. 81). These knowledge structures c
representations for each of the reasoning sub-processes: anomaly identification, hyp
formation, and verification (see Figure 43 on page 113). For each, the structure recor
considerations that prompted the process, the bases for making a reasoning strateg
sion, and the result of strategy execution. After reasoning completes an inference
the reasoning trace is passed to a learning process if a failure is detected.

The learning model itself has three processes. It must monitor the performance
tem to check for failures, explain and learn from the failure when detected, and, in the
model, it should verify that the learning was reasonable. Figure 46 illustrates these
tasks and the information passed between them.

The first process performs failure detection. As outlined in Section 3.2, five type
failures can occur. Failure detection inputs two structures (an expected outcome, E, a
actual outcome, A) and the trace of the reasoning producing these knowledge struc
The algorithm for this process is shown in Figure 47. The detection process occurs
during the verification phase of the performance task of the system or during the gene

Figure 46. Sub-processes of learning

     Learning

      Generate
 Changes to BK

- Generalize then Re-index
- Abstraction then EBG
- Re-read Text Instructions

Example Strategies:

    Verify
 Learning- Falsification Test

- Opportunistic Check

Example Strategies:

Failure

Hypothesis

Goodness

TMXP

   Failure
 Identification
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phase after a resumption of a suspended generation goal. This second condition
after the performance system previously tried to generate a hypothesis, but could no
generation phase suspends the goal and new input later provides the answer. See i
condition in Figure 47. Along with the trace, the process outputs a determination of w
of the failures exist (if any) to the next phase.

The second phase concerns the actual determination of the causes of failure a
construction of a learning strategy which is then executed. The strategies from wh
may construct a learning plan is dependent upon the IMXP structures in memory. Alth
this phase will be dealt with in detail by the next section, alternate strategies that may
include combinations of fine-grained knowledge transmutations or more global approa
such as a student’s strategy of re-reading instructions when all else fails. The output
phase is an implicit hypothesis that the learning was correct along with an augmented
The changes to the BK from learning are attached to the TMXP and are indexed in me
where the changes occur.

The third phase concerns verification. Although beyond the scope of this thesis
more suitable for future research, verifying the learning could involve either of two str
gies. The system could be reminded of a change to the BK (as associated with the T

Figure 47. Failure detection algorithm

Detect-failure  (E, A, trace)

begin
If (A (out FK) and trace indicates time to event expired)
or (A (out FK) and impossible (goal (generate, E))) then

return false expectation

If E(in FK) then
if E ≠ A then

return contradiction
else if E = A then

If expected to fail then
return unexpected success

else return success

else if ∃ goal (generate, E) then

return impasse
else return surprise

end
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and described above) at some future time when the changed knowledge is reused
learning can then be checked as to whether it is effective. Alternatively, the system c
actually make a deliberate test of the newly learned knowledge by trying to falsify the in
mation. When either of these processes finish, the verification phase would output an
uation of the quality of learning.

5.4.3 Generating Changes to the BK

Ram and Cox (1994) have argued that three fundamental learning-processes m
performed if learning is to be effective in an open world where many sources of fa
exist. The processes are referred to asblame-assignment(Birnbaum et al., 1990; Freed
Krulwich, Birnbaum & Collins, 1992; Minsky, 1961/1963; Stroulia, Shankar, Goel & Pe
berthy, 1992; Weintraub, 1991),deciding what to learn(Cox & Ram, 1995; Hunter, 1989,
1990b; Keller, 1986; Krulwich, 1991; Leake & Ram, 1993; Ram, 1991; Ram & Hun
1992), andlearning-strategy construction(Cox & Ram, 1991; Ram & Cox, 1994; Michal-
ski, 1991). In the event of a performance failure, these processes answer the following
questions:70

• How did the failure occur?
• What must be learned?
• How can this be learned?

Subsequently the learner will:

• Repair the background knowledge.

To justify our process decomposition that answers these three questions, we ad
the following argument: To construct a strategy, a system needs to know what is sup
to be learned; to decide what needs to be learned, it must know the cause of failure; to
mine the cause of the failure, it must perform blame assignment; and to perform com
blame assignment in many situations, it must reflect upon its own reasoning. The firs
section to follow elaborates the functional justifications for the process decomposition
the role introspection plays in them, whereas, the second subsection presents an ov
of the algorithm that instantiates these processes.

70. Note the similarity to the questions on page 112.
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5.4.3.1 Functional justification for introspection as a component of learning

To properly select an algorithm when constructing a learning strategy, the system
know what it needs to learn; it must have alearning goalor target. Imagine that the learning
algorithms from which the system chooses are like operators in planning parad
(Hunter, 1990b; Ram & Hunter, 1992). To select an operator effectively in planning
tems, the system must have a goal toward which operators make progress; thus, se
of the actions that constitute steps of a plan is based on the goal of the system. Since
ators have results and preconditions, they can be chained such that different operat
chosen on the basis of resultant states that satisfy the preconditions of, and therefore e
other operators. Thus, they can be chained to produce a series of plan steps that eve
matches the plan goal. Similarly, as plan steps produce changes in the world, learning
egies produce changes in the system’s BK. To produce productive changes in the BK
the system must have an appropriate learning goal.

Learning goals also provide a focus for learning and thus help to avoid the comb
torial explosion of inferences (Ram & Cox, 1994; Ram & Hunter, 1992). In general, m
learning is intractable without some bias. In order to avoid considering all possible in
inferences from this input, and all possible changes to the BK that might improve pe
mance, learning goals give direction to the learner, as do problem-solving goals to a ge
inference machine. Traditionally, a target concept (i.e., learning goal) is provided
learning system (e.g., the target concept of a cup in Mitchell et al., 1986). This rese
enables a system to determine its own target of learning.

Furthermore, to generate the learning goal, the system must know the cause of th
ure. Blame assignment (or, conversely, credit assignment) is a well-known problem, g
back as far as Minsky (1961/1963), involving the construction of explanations for how
why a failure occurs (or how and why success occurs). Without having knowledge of
caused the system to fail at its reasoning task, it is difficult to know what to learn to a
subsequent failures in like situations. Perhaps bottom-up reinforcement schedules
Sutton, 1992) or associative PDP nets (Rumelhart & McClelland, 1986) can help the
tem learn what to do without it knowing why, but surely no deliberative methods will
able to form a goal to modify the BK in any meaningful way without first analyzing the fa
ure.71 Explanation is therefore crucial in fully understanding the relation between the
rent state of the system, its BK, and the current condition of the external world. In this
blame assignment can be viewed as a special form of abduction.

71. Pylyshyn (1991) argues the strong position that connectionist nets are essentially statistical p
tern matchers. The nets learn directly from the environmental stimulus without the intervention
of a reasoning mechanism or interpretation from explicit knowledge.
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To perform effective blame assignment, the system must be able to reason abo
own reasoning, in addition to reasoning about the world or the results of its own reaso
Determining the reasons why failure occurs is often not simply a matter of understan
events in the world, or even the plans created. Rather, failures can be attributable to th
soning process or to the choice of one. Newell and Simon (1972) show that human su
often make reasoning mistakes because of the wrong choice of reasoning strategy.
the “Magic Squares” word problem, such that the numbers in some matrix must ad
across, up, down, and diagonally, the solution is quite easy using an analogy to tic-ta
but is extremely difficult using means-ends analysis. Unfortunately, most subjects us
latter reasoning and therefore cannot solve the problem. To explain this problem e
tively, it is useful to have a mental interpretation of the problem solving process, as we
an explanation that deals with the problem itself.

As another case of the relationship between blame assignment and introspection
sider the stranded motorist example (Cox & Ram, 1992a). If an agent runs out of gas
vacation, a number of causes could have contributed to the failure. A problem could
occurred with the car’s fuel system (perhaps a hole developed in the gas tank or fuel l
or a problem could have occurred with the driver’s memory system (perhaps the agen
got to fill up with gasoline before starting his trip). If the agent is aware of his prior reas
ing, including the formulation of a goal to fill up the tank, then when the car rolls to a s
he should be reminded of the suspended planning goal. The blame is thus associate
cipally with the mental faculties and the indexes that address the forgotten task, rathe
with the physical operation of the car, although there is an unmistakable intera
between the two.72One important type of introspection is to realize that the cause of fail
was not the plan or solution generated by the reasoner before the trip, but instead w
memory system and the organization of the knowledge that together did not retrieve th
pended goal, given the state of being at or near the gas station. Rather than impro
plan itself, such an analysis can allow a system to improve the organization of the B
learning better indexes for particular types of suspended goals.

Therefore in many situations, a model of introspection is required to perform bl
assignment. Blame assignment is crucial in choosing a learning goal, and the choic
learning algorithm depends on the learning goal. The following subsections examin
overall introspective multistrategy learning (IML) algorithm and each learning step ab
in turn.

72. Without some naïve knowledge of the physical model of the car, the act of filling the gas tank i
meaningless; thus, memory for performing it is mechanical at best.
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5.4.3.2 Overview of the IML algorithm

Although the following two chapters provide additional details, this section gives
overview of the IML process. Figure 48 sketches the primary algorithm used in intros
tive multistrategy learning. The system records a trace of the reasoning used in the p
mance task in a number of TMXPs. Each TMXP is inspected to detect a failure. Whe
system detects a failure, it invokes learning. During learning, the system constructs a
ing strategy with three process steps as described in previous sections. These st
blame assignment, deciding what to learn, and strategy construction. Subsequent
system executes the learning strategy to perform the necessary knowledge repairs.

Each of the three subsequent passages presents an operational statement of thr
learning processes in the algorithm.

Blame assignment(step 2a, Figure 48)

Take as input a trace of the mental and physical events that preceded a rea-
soning failure; produce as output an explanation of how and why the fail-
ure occurred, in terms of the causal factors responsible for the failure.

Blame assignment is a matter of determining what was responsible for a given fa
Thus, the function of blame assignment is to identify which causal factors (from Tab
“Detailed taxonomy of causes of reasoning failure,” on page 53) could have led to the
soning failure as determined from the input (a member of Table 4, “Final table for rea
ing model,” on page 50). That is, blame assignment is like troubleshooting; it is a map
function from failure symptom to failure cause. The purpose is the same whether the
bleshooter is explaining a broken device or itself (Stroulia, 1994).

The input trace describes how results or conclusions were produced by specifyin
prior causal chain (both of mental and physical states and events). The learner retrie
abstract Meta-XP called an IMXP from memory and applies it to the trace in order to
duce a specific description of why these conclusions were wrong or inappropriate (the
rithm will be covered in Section 6.2). This instantiation specifies the causal links
would have been responsible for a correct conclusion, and enumerates the diffe
between the two chains and two conclusions (what was produced and what should
been produced).  Finally, the learner outputs the instantiated explanation(s).
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0. Perform and Record Reasoning in Trace

1. Failure Detection on Reasoning Trace

2. If Failure Then

Learn from Mistake:

• 2 a. Blame Assignment
Compute index as characterization of failure
Retrieve Meta-XP
Apply Meta-XP to trace of reasoning
If Meta-XP application is successful then

Check Meta-XP antecedents
If one or more nodes not believed then

Introspective questioning
GOTO step 0

Else GOTO step 0

• 2 b. Create Learning Goals
Compute tentative goal priorities

• 2 c. Choose Learning Algorithm(s)
Translate Meta-XP and goals to predicates
Pass goals and Meta-XP to planner (Nonlin)
Translate resultant plan into frames

• 2 d. Apply Learning Algorithm(s)
Interpret plan as partially ordered network of

actions such that primitive actions are algo-
rithm calls

3. Evaluate Learning (not implemented)

Figure 48. IML learning algorithm
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Deciding what to learn(step 2b, Figure 48)

Take as input a causal explanation of how and why failure occurred; gener-
ate as output a set of learning goals which, if achieved, can reduce the like-
lihood of the failure repeating. Include with the output, both tentative goal-
dependencies and priority orderings on the goals.

The previously instantiated IMXP explanation-pattern assists in this process by s
ifying points in the reasoning trace most likely to be responsible for the failure. The M
XP also specifies the suggested type of learning goal to be spawned by this stage. B
these goals are tentative, it may be necessary to retract, decompose, or otherwise ad
learning goals dynamically during run-time. This stage of learning mediates betwee
case-based approach of blame assignment and the non-linear planning approach of s
construction.

The learner includes with the output learning goals both tentative goal-depende
and priority orderings on the goals. The TMXP is passed as output as well. Section 6
page 143 discusses this phase of the learning task in the context of a working exam

Learning-strategy construction (step 2c, Figure 48)

Take as input a trace of how and why a failure occurred and a set of learn-
ing goals along with their dependencies; produce as output an ordered set
of learning strategies to apply that will accomplish the goals along with
updated dependencies on the set of goals.

The final learning-strategies are organized as plans to accomplish the learning
The plans are sequences of steps representing calls to standard learning algorithm
plans are created by a Common LISP version of Tate’s (1976) Nonlin planner (Ghosh
1992). In order to use the nonlinear planner, the learning module translates the lea
goals and the relevant context of the program environment to a predicate representati
this form, Nonlin assembles a learning plan just as if it were creating a plan to stack a s
of labeled blocks. The only difference is that the planner is given a set of learning oper
that describe actions that modify the mental world (i.e., the BK) instead of the blocks wo

The learner instantiates the plan, translates it back into a frame representation
then executes the learning plans (in step 2d, Figure 48). At the termination of the lea
plan execution, control is returned to the performance system. Section 7.2 on page 15
provide details for the strategy construction phase.
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5.5  Comparison of Learning and Understanding

Throughout this exposition numerous parallels have been drawn between intro
tive learning and understanding. Compare Figure 42 with Figure 46, for example, w
shows the sub-processes of understanding and learning respectively, as modeled
research. This chapter has argued, given a multistrategy approach, that a good strat
both is to identify anomalies, then generate some response to the anomaly, then te
response. The augmented generate-and-test paradigm fits both equally well. Both a
cerned with selecting or combining a strategy, rather than applying a particular one.
models are highly top-down and goal-driven. As many of the arguments advanced i
document show, goals are essential for both focus and direction.

Both the form and the function of the generation phases in learning and understa
are similar (see Figure 49). The structure of both is to take some unusual input (reas
failure or incongruous story concept), elaborate the input, generate some goal that pr
focus for the process, then change some knowledge base to achieve the function of th
cess. Changes during story understanding take place in the FK, whereas changes
learning take place in the BK.

A number of differences, however, exist between learning and understanding.
example, as understanding can be likened torecovery, so too, learning can be likened to
repair. In the planning literature a number of researchers have made the distin
between recovery and repair (see, for example, Owens, 1991; Hammond, 1989). W
plan fails, the planner must recover from the error so additional progress can be
toward the goal. After recovery, the plan needs to be repaired and stored again in me
so that the plan failure will not recur.

For example, if an autonomous robot vehicle finds an expected fuel cache missin
thereby runs out of gasoline, it must first recover from the potentially threatening situa
by obtaining fuel (example taken from Owens, 1991). Therefore, the explanation o
failure will dictate the means of recovery. If the robot concludes that it cannot find the
oline because it is lost, then it should recover by obtaining orientation informat
whereas, if it explains the fuel’s absence because of theft, then the recovery take
involve turning back or calling for assistance. The repair (to adjust its plans and the i
mation upon which the plan was based) also follows from the explanation of the fai
For instance, if the robot previously considered taking on extra fuel, but did not becau
assumed that the fuel cache would be at the proper location and easy to find, then this
nation of its decision would lead the system to modify its knowledge concerning the
sistence of fuel caches. This modification would bias it toward conservative decisio
the future, and thus make it less likely to repeat the failure.
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Decide what
 to learn

Failure

Blame
assignment

Learning
Goal

BK1

BK2

FK2

FK1

Anomaly

Knowledge
Goal

Elaborate
anomaly

Pose
question

Select
learning

Select
explanation

strategy

strategy

Question-Driven
Understanding

Input:
FK1
Anomaly ∈ FK1
BK
Output:
FK2
such that there exists the
question’s answer in FK2
that explains the anomaly

Figure 49. Parallels between learning and understanding

(Recovery)

Learning

Input:
FK
TMXP ∈ FK
BK1

Output:
BK2
such that
the failure will not
recur given a similar situation.

(Repair)

(with respect to the
rest of the story).
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The difference between recovery and repair can be applied to the processes of
standing and learning in an analogous manner. The understanding process requires a
ery phase when it fails. If some explanation does not work, then first there is a ne
create a new explanation or somehow to seek one out. Once the correct (or more u
explanation has been derived, the system needs to learn from the experience by re
its knowledge, so as not to repeat the failure. Thus, as seen in Figure 49, the underst
process operates on the FK to instill the change that removes the anomaly (thus const
the recovery); whereas the learning process operates on the BK, producing a re
knowledge base with which the failure will not be as likely in future similar situations. T
recovery is a system’s response to anomalous input from the outside world that its k
edge could not adequately understand, whereas the learning is a response to the
world’s inadequacy.

Functional reasons exist for having an explicit input analysis stage in both lear
and understanding. Most programs accept cleanly defined problems as input, such t
tle ambiguity and sharp distinctions concerning what needs to be done exist. In more
tical systems, problem elaboration is necessary to clarify what may actually be ill-de
tasks. For example, AI planning tasks are often structured and circumscribed by the
grammer or user, not the planner. A planner may be given operational goal specifica
from which a state, such as one block being on top of another, may be achieved. The
of recognizing that a problem exists for which a plan is required and establishing the
specifications, however, are not considered a part of the planner’s reasoning proce
comprehension tasks such as story understanding, the problems are not usually s
defined. In learning, the problem of recovery is to modify the story representation in
a way that the anomaly is coherent with respect to the rest of the story and the system
This specification is so broad that either the programmer must be very clever, so
include the specifications implicitly, or the explanation must be somewhat trivial. To
row the range of behaviors appropriate for recovery, then, is to elaborate the input ano
so as to identify what went wrong and why.73

5.6  Summary

This chapter presented a first-order process theory for understanding and se
order process theory of learning by defining the phases of each, by outlining what ste
used to accomplish such functions, and by arguing why each phase is required by th

73. Kolodner (1993) also speaks ofsituation assessment(or elaboration) of new input in preparation
for case retrieval. The function is the same as input analysis above. In non-trivial systems, a sig
nificant part of the problem is to massage the input into a form that is most useful for both pro-
cessing and retrieval.



5.6  Summary ❖   131

. The
l phase
e gen-
spec-
rform
and a
h the

rategy
nder-
choice

deci-
ories. IML theory holds that both understanding and learning consists of three phases
first stage is an input elaboration stage, the second is generation phase, and the fina
is verification. Although each stage is important, this research has concentrated on th
eration stage of each. One of the most significant contributions of this research is the
ification of the generation stage within learning. This process consists of a step to pe
blame assignment, a step to decide what to learn by forming explicit goals to learn,
final step to construct a learning plan. The plan is then simply executed to accomplis
desired learning.

We have also placed both the reasoning and learning processes within a multist
framework. Many methods may exist with which a reasoner can solve a problem, an u
stander can comprehend an input, and a learner can improve its performance. The
of a best set of methods and the combination of such methods represent challenging
sions for any intelligent system.
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CHAPTER VI

CASE-BASED INTROSPECTION

The best part of human language, properly so called, is derived from reflection on the
act of the mind itself.

Samuel Taylor Coleridge (1817)

The goals of this chapter are to specify how a system might reflect upon its reaso
so as to understand why its reasoning fails and to describe how it can use this underst
to decide what to learn. The details that address such goals comprise a computa
model of introspective explanation and form the first half of our process theory of in
spective learning introduced in the previous chapter. Although we do not model all o
attributes one might normally equate with human introspection (such as self-reports o
feelings of pain or perception), we provide a model that begins to account for the hu
ability to consider one’s own, conscious deliberations. By no means does this sug
however, that Meta-XP structures literally float about within the head, nor does IML the
claim that people have complete and accurate records of past reasoning from whic
can make evaluations.74 Rather, it suggests that certain patterns of reasoning failure
apparent to persons engaged in reflection, and that people can use associated expe
to generate explanations for why they fail at various types of everyday reasoning. In
these explanations allow the learner to form specific learning goals.

To make these assertions concrete and to further develop the process theory of
ing outlined in the previous chapter, we examine how a multistrategy learning system
as Meta-AQUA introspectively explains its failures and decides what to learn in the co
of a story understanding task. Meta-AQUA’s task is to create a causally connected co
tual interpretation of an input stream of concepts that represent a story sequence. If th

74. Nor does the theory claim that introspection is a computational panacea. See Chapter IX on ev
uation of the theory for conditions under which the introspective approach is considered at a dis
advantage.
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tem fails at this comprehension task, it subsequently learns by (1) using case-
methodologies to analyze and explain the cause of its misunderstanding by retrievin
cases of meta-reasoning; (2) using these past cases to deliberately create a set of l
goals to change its knowledge; and then (3) using nonlinear planning techniques to c
or construct some learning method by which it achieves these goals and hence impro
future performance. Together, these three processes form a hybrid approach combin
use of past experience to generate a set of learning goals and the use of first princip
achieve such goals.75

This chapter describes a case-based theory of introspection. In support of this
Section 6.1 briefly outlines case-based reasoning from first-order and second order pe
tives. The first part of our hybrid model is then illustrated in some detail using the M
AQUA example from Section 2.1.1. Section 6.2 explores how blame-assignment (su
cess number 1, above) is performed during introspection, whereas Section 6.3 explain
learning goals are spawned when deciding what to learn (subprocess number 2). S
6.4 summarizes and concludes by specifying the relation between the Meta-AQUA sy
and traditional case-based reasoning approaches. The next chapter will continue the
AQUA example begun here to illustrate how learning goals are accomplished usin
metaphor of non-linear planning (subprocess number 3).

6.1  Case-based reasoning and introspection

As a method for reasoning from concrete past experience, rather than from first
ciples or abstract rules,case-based reasoning(CBR) (Hammond, 1989; Kolodner, 1993
Kolodner & Simpson, 1989; Riesbeck & Schank, 1989; Simpson, 1985) has been pres
as a cognitive model of human performance. The approach has been used to mode
cognitive activities such as story understanding (Martin, 1990; Ram, 1989), explan
(Kass, Leake, & Owens, 1986; Ram, 1989), planning (Hammond, 1989; Veloso, 19
design (Hinrichs, 1992), diagnosis (Koton, 1989; Turner, 1989), legal reasoning (Ashl
Rissland, 1988; Bain, 1986), economics reasoning (Pazzani, 1990a), conflict reso
(Simpson, 1985; Sycara, 1987), analogy (Carbonell, 1983, 1986), ethical judgement
ley & McLaren, 1995), and troubleshooting (Redmond, 1992). The CBR approach
retrieve from memory the most similar case, adapt the past case to fit the current situ

75. Conceivably, the assignment of paradigms could have been reversed. A standard planner
problem-solver could have been used to explain the failure and to generate the goals and ca
based reasoning could have been used to achieve the goals. Indeed, a fully integrated syst
might be able to choose which method might be best given dynamically changing conditions (se
the discussion in Section 13.1). The reasons to use the particular methods employed here, ho
ever, are explained in Section 7.1.2.
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then apply the adapted result to the current problem. For example, judges use prece
when issuing sentences for convicted criminals, rather than rules (Bain, 1986). The
similar past legal case is adapted and applied to the current case to derive a sen
Humans also exhibit this reliance on past examples when learning domains such as m
matics and text-editor skills (Ross, 1989). This chapter proposes that CBR provides
malism for modeling introspection as well.

As argued in Section 5.4.3.1, to reason effectively about one’s own knowledge, g
and reasoning failure requires an ability to explicitly introspect. A computational mode
introspective learning is a second-order theory that contains a formal language for r
senting first-order processes and that specifies the method of processing and learnin
instances represented in this language. The reasoning algorithm used to perform
explanation and learning is similar to the interpretive case-based algorithms used to u
stand events and processes represented in the original domain.

In general terms, case-based understanding can be specified with the following
steps (Kolodner, 1993):

1.As input, take a representation of some domain episode along with its context a
reasoning goal to provide focus.

2.Based on salient cues in the input, retrieve a prior case to interpret the input.

3.Adapt the old case to fit the current situation.

4.Output the result as the system’s understanding of the domain.

When usingcase-based introspection, the system’s domain is itself. Therefore, th
algorithm is modified as follows:

1´.As input, take a representation of some prior failed reasoning (represented w
TMXP) such as an episode of case-based understanding and the goal to e
the failure.

2´.Based on salient cues in the input, retrieve a prior case of reflection (repres
with an IMXP) to interpret the input.

3´.Adapt the old case to fit the current situation.

4´.Output the result as the system’s self-understanding.
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More specifically, such an introspective process can be applied to explicit repres
tions of failed episodes of reasoning and therefore used in the task of reflective b
assignment. That is, when an understanding system encounters an anomalous inpu
sentation, it attempts to explain the anomaly. When explanation fails, a system ca
case-based reasoning to retrieve past cases of introspective reasoning that explain the
nation failure. These cases are IMXPs that represent abstract causal patterns of rea
failure.

6.2  Blame Assignment: Explaining reasoning failure

Several computational systems explain reasoning failures. CELIA (Redmond, 1
is a case-based problem-solving system that learns in the domain of engine diagno
observing an expert troubleshooter. In Redmond’s theory, four possible failure types
(one contradiction and three variations of impasse): Incorrect prediction, unexplained
nection, unknown goal, and unfamiliar information. For each one, a set of possible
causes exist that could explain the failure. CELIA performs a preliminary mapping f
failure (symptom) to cause (fault) by using a discrimination net during initial blame ass
ment, and uses the resultant general characterization of failure to select a learning (r
method. Although further blame assignment is performed by the chosen method, the
causal determination functions as a direct pointer toward relevant repairs. After dete
ing the root cause, CELIA will execute any learning method for which its immediate
conditions are satisfied. Alternatively, Meta-AQUA uses a characterization of failur
retrieve a meta-explanation that can more completely explain the failure; Meta-AQ
subsequent choice of a learning method is more indirect and mediated by learning g

The use of a discrimination net in CELIA explains the failure implicitly. Each no
in the net contains a test whose answer determines a directional branching along ne
The terminal leaves of the net contain a characterization of the failure cause, rather
structural and causal explanation. It is possible that some of the failure explanation
be formally recovered from the tree (depending on the nature of the questions), bu
approach is somewhat problematic. In contrast, explicit explanations of failure inc
prior causal information and relationships that account for the failure and contain a de
ative representation that can be analyzed, manipulated, and adapted to more fully m
given situation (including situations not specifically foreseen by the knowledge engin
Furthermore, formal explanation structures can be learned as a system encounte
environments or as particular circumstances change.76 A case-based approach using expl
nation patterns represents a powerful inference method that welds past experience

76. The scope of IML theory, however, does not currently cover how new IMXPs are learned. This
represents another area for future research.
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task of understanding the failure (Schank & Owens, 1987).

When the Meta-AQUA system detects a reasoning failure, the performance mo
passes a trace of the reasoning to the learning subsystem. At this time, the learner n
explain why the failure occurred by applying an introspective explanation to the trace.
IMXP is retrieved using the failure characterization as a probe into memory (i.e., the fa
type acts as indexing vocabulary). The retrieved meta-explanation is instantiated
bound to the trace of reasoning that preceded the failure. The resulting structure is
checked for applicability. If the IMXP does not apply correctly, then another prob
attempted. An accepted IMXP either provides a set of learning goals that are design
modify the system’s BK or generates additional questions to be posed about the fa
The following section describes the algorithm that is used in this blame-assignmen
cess.

6.2.1 The Explanation Pattern Application Algorithm

The main control algorithm Meta-AQUA uses for introspective (second-order) ex
nation is essentially the same as the XP-application control algorithm used in explan
(first-order) reasoning in both the AQUA (Ram, 1991, 1993, 1994) and SWALE (K
Leake, & Owens, 1986; Schank & Leake, 1990) systems. To describe how introspe
reasoning works, some background information on XP-application follows.

As described by Section 4.4, the XP knowledge structure is a directed graph that
antecedent conditions to their consequences. The set of sink nodes in the graph is
the PRE-XP-NODES. These nodes represent what must be present in the current si
for the XP to apply. One distinguished node in this set is called the EXPLAINS node
is bound to the concept that is being explained. For an XP to apply to a given situatio
PRE-XP-NODES must be in the current set of beliefs. If they are not, then the explan
is not appropriate to the situation. If the structure is not rejected, then all source nodes
ASSERTED-NODES) are checked. For each XP-ASSERTED node verified, all adja
nodes are marked as verified, and the verification marks are propagated towar
EXPLAINS node. If all XP-ASSERTED-NODES can be verified, then the entire expla
tion is verified. Gaps in the explanation occur when one or more XP-ASSERTED-NO
remain unverified. Each gap results in a question, which provides the system with a
for reasoning and learning, and limits the inferences pursued by the system.

Q3: How to explain a reasoning failure?
Ans3: Case-based introspection.
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Given this methodology, the algorithm for explaining and learning from a reason
failure works much the same way. Step 2 of Figure 48 on page 126 outlines the co
algorithm for blame assignment in an introspective multistrategy learner. The ste
refined in Figure 50 below.

The identification of blame during the learning phase is analogous to the me
above used in AQUA or SWALE to explain anomalies in story inputs. Instead of takin
input a conceptual representation of events in the world and outputting an explanati
the anomaly, however, the blame assignment process in Meta-AQUA takes as input
ceptual representation of the reasoning performed in explaining an event in the worl
outputs an explanation of the reasoning failure. Just as the XP application algorithm
be applied to events in the world, the reflective blame-assignment algorithm in Figu
can be applied to a set of mental events, using Meta-XPs with a single level of recur

A characterization of the reasoning failure from the system’s vocabulary of fai
terms is used as an index to retrieve an abstract IMXP. Here the characterization ser
a probe into memory, rather than providing a direct explanation. The retrieved IMXP s
ture is then bound with the trace of the reasoning to produce a parameterized token
PRE-XP-NODES are then checked to see if they are consistent with the current repr
tation of the reasoning that produced an understanding the story. If they all can be ve
then the Meta-XP applies to the situation. If any are rejected, then the explanati
rejected. If any of the nodes are neither confirmed nor rejected, a question is posed
node. When the question is not answered, the introspection is suspended, the reaso
indexed in memory and the performance task is resumed. When future opportunities
rant, the system can resume the introspective process.

1. Compute index as characterization of failure

2. Retrieve IMXP

3. Apply IMXP to TMXP trace of reasoning

4. If [∀X ∈ PRE-XP-NODES . X(in FK)] then
If [∃ Y ∈ XP-ASSERTED-NODES . ¬Y(in FK)] then

Recursively explain ¬Y
If cannot immediately explain ¬Y then

reject IMXP
Else If [∃ Z ∈ XP-ASSERTED-NODES . Z(out FK)] then

Recursively pose the question “Is Z believable?”

Figure 50. Reflective blame assignment
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More specifically, Figure 50 specifies that the IMXP applies if all PRE-XP-NOD
are in the set of beliefs with respect to the FK. If this is so, then the system makes sur
no element of the set of XP-ASSERTED-NODES is contradicted by something in the s
model or reasoning model within the FK. But if this is so, it tries to recursively explain
sub-anomaly. If the anomalous item cannot be immediately explained, it rejects the e
nation and searches for another one.77

If no anomalous nodes exist in the XP-ASSERTED-NODES, then the system ch
to see if all nodes in the set of XP-ASSERTED-NODES are in the set of beliefs with res
to the FK (i.e., all are believed).  If all are believed, it accepts the explanation.

If any nodes are not yet believed, the system poses a question to find out whet
not they can be believed (i.e., to determine if the system can infer the belief). The r
sentation for the recursive question “Is Z believable?” is listed in Figure 51. That is, l
ally it asserts “The truth value of Z is in the set of beliefs with respect to the foregro
knowledge, no?” This question is an introspective question because it is posed on a
sentation of part of the reasoning, rather than on a representation of a part of the stor
Oehlmann, Sleeman, & Edwards, 1993, for a related model of introspective questioni

Once an IMXP is retrieved and successfully applied to the trace of failed reaso
provided by some TMXP, the system must generate a set of learning goals as prev
outlined. This process will be covered in Section 6.3. But first, the following section pla
the process into context using a Meta-AQUA example from Section 2.1.

77. The possibility exists that a wait-and-see strategy might work at this point. Thus, a system cou
suspend the explanation and index it into memory. The opportunistic approach hopes that th
anomaly can be explained later. Although Meta-AQUA does not currently use this strategy, if
used, it is probably better to wait until all other explanations are exhausted first.

(truth

(domain
(value Z))

(co-domain
(value (in FK)))

(status
(value question.0)))))

Figure 51. Representation of the question “Is Z believable?”
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6.2.2 Returning to the Drug Bust Example

As presented by Chapter II, Meta-AQUA was written to test our theory of understa
ing, introspection, and learning. Given the drug-bust story of Figure 52 (reprinted f
Figure 11), the system attempts to understand each sentence by incorporating it into i
rent story representation, explain any anomalous or interesting features of the stor
learn from any reasoning failures. Numerous incorrect inferences can be made from
story, depending on the knowledge of the reader. Meta-AQUA’s background knowl
includes general facts about dogs and sniffing, including the fact that dogs bark
threatened, but it has no knowledge of police dogs. It also knows cases of gun smug
but has never seen drug interdiction.

As will be recalled, Meta-AQUA had detected an anomaly when the dog barked a
luggage because it had only experienced dogs barking at animate objects (see progra
put in Figure 53). The program then naively explained the anomaly as the dog’s resp
to a threat from the luggage. When the story provides a better explanation of the ba
episode, the system concludes that the reasoning had produced a faulty explanatio
therefore it enters a learning cycle.

The system characterizes the reasoning error as a contradiction caused by the
rect retrieval of a known explanation (“dogs bark when threatened by objects,” errone
assumed to be applicable), and a missing explanation (“the dog barked because it de
marijuana,” the correct explanation in this case). During blame assignment, Meta-A
uses this characterization as an index to retrieve an abstract case called a Meta-XP
applied to a trace of the reasoning that produced the failure. Figure 54 shows the ins
ated result in an explanation of its reasoning error. This composite meta-explanation
sists of three parts: a Novel-Situation centered aroundRetrieval Failure , an
Erroneous-Association centered aroundExpectation Failure and an Incorrect-
Domain-Knowledge centered aroundIncorporation Failure .

Figure 52. The drug-bust story (HC1)

S1:A police dog sniffed at a passenger’s luggage in the airport terminal.
S2:The dog suddenly began to bark at the luggage.
S3:The authorities arrested the passenger, charging him with smuggling
drugs.
S4:The dog barked because it detected two kilograms of marijuana in the
luggage.
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HC1
Figure 53. Meta-AQUA output during hypothesis generation of 
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Figure 54. Instantiated IMXP for mis-explanation
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The abstract IMXP from which this instantiation originates, IMXP-NOVEL-SITUA
TION-ALTERNATIVE-REFUTED, captures a common pattern of failure in systems t
are learning new concepts. When a concept is being learned, it may be overly specia
Slight variation on the concept will cause the system to try to explain it, but without ex
rience with the concept, the system may generate an inappropriate explanation. The
explanation may not be known because the situation is novel.

As seen in Figure 54, the vertical chain of processes starting with the node lab
“Pose Question” represents part of a TMXP. This trace records the decisions precedi
detection of the explanation failure (i.e., that the dog was actually barking becau
detected the contraband, not out of defensive instincts). The IMXP structure form
explains the node labeledExpectation Failure , although in general, it gives the
causal chain of events for much of the reasoning associated with all parts of the error78 To
check whether or not this explanation applies to the failure, Meta-AQUA checks the
values of nodes A2, E, and the EXPLAINS node. Because these already exist as k
entities in the representations (i.e.,in FK), the XP is accepted.

Although the information in Figure 54 appears to be complex, the IMXP simpli
the amount of detail the reasoner must consider during blame assignment by abstr
away much of this information. To show what the system actually considers, Figure 55
resents an overlay that corresponds to Figure 54 (mentally align the shaded nodes, s
theIncorporation Failure markedIF, between the two figures to see the simplifi
cation Figure 55 provides). The remaining details are not considered in depth during
uation.

A screen shot of the Meta-AQUA output during the learning associated with
example is shown in Figure 56. The left window in the screen displays processing ou
whereas the right side shows internal representations. In this case, the right half of th
ure shows the outermost instantiated frame representation of the IMXP depicted as a
in Figure 54.

6.3  Deciding What to Learn: Spawning learning goals

Given a reasoning failure, the task of the learning system is to adjust its knowled
that such reasoning failures will not recur in similar situations. To perform this adjustm
the learner constructs a learning strategy that is designed to satisfy specific learning

78. Note that the node labeled “EXPLAINS” in Figure 54 is the EXPLAINS node for the XP labeled
A2, not for the IMXP itself.
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xample story
Figure 56. Learning output and frame representation of the Meta-XP used in e
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These goals are created in a decision process that circumscribes what needs to be l
The decision is made in response to the explanation of failure generated during refl
blame assignment. The overall aim of the system is to turn reasoning failures into o
tunities to learn and to improve the system’s performance.

6.3.1 Explicit Learning Goals

To provide focus for learning, a set of learning goals are spawned from the explan
of the failure. In many theories, goals are an implicit, desired state and have no specia
resentation other than the representation for that state itself. Newell (1982) considers
as “a body of knowledge of a state of affairs in the environment” (p. 101), but one espec
distinguished from common bodies of knowledge so that an agent will strive to ach
them. In all other structural ways, goals are the same as other bodies of knowledge. N
& Simon (1972) consider the methods for achieving goals as part of the goal structure
In our approach, goals are state descriptions with annotations and a particular stru
The methods for achieving goals and the knowledge associated with the states they s
considered separate entities.

Schank & Abelson (1977) enumerate a goal taxonomy that contains seven diff
types of goals. IML theory collapses these seven into three broad distinctions (see F
57). Anachievement goalrepresents a state an agent wishes to achieve in the world
the BK. These goals represent the traditional interpretation of goal in that the state is
rently not what is desired, and to achieve the goal state some operations will be requi
accomplish transformations that result in the goal state. Contrastingly, aprevention goalis
an undesired state that the reasoner wishes to avoid, and amaintenance goalis a state that
the reasoner wishes to preserve. Both of these two type of states may be achieved by
up conditions that affect other agents (such as threats) or by doing nothing at all e
monitoring the states and preparing contingency plans.

Figure 58 depicts the generic frame definition for a goal; whereas, the end of Ap
dix D contains instantiated goal examples. A goal is essentially a binary relation from
tional-agent to a desired state (i.e., relation) in either the world or in a body of knowle
Goals are arranged in hierarchies such that the achievement of subgoals contribute
achievement of supergoals. From a given goal, pointers exists to both superiors and
dinates in the hierarchy, as well as a direct pointer to the plan for which they are in se

• Achievement Goal
• Prevention Goal
• Maintenance Goal

Figure 57. Broad goal categories
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Also associated with each goal is a type designation, a flag that indicates whether it i
cessful, a relative priority, and an absolute estimate of usefulness. Most importan
pointer exists with each goal to the trace of the reasoning that spawned and pursu
goal. When the goals are suspended and later resumed during opportunistic reasoni
reasoner can use this pointer to locate the TMXP required to resume the processing a
ated with the goal (whether the goal is pursuing a state in the world or a change in the

Just as standard goals represent what an agent needs in the world, learning goa
resent what a system needs to know (Cox & Ram, 1994b; Ram, 1991; 1993; Ram & H
1992; Ram & Leake, 1995). These goals are spawned when deciding what to learn or
subgoaling on a superordinate learning goal. Learning goals help guide the learning
cess by suggesting strategies that would allow the system to learn knowledge requi
avoid future failures. Learning goals specify the desired structure and content of kn
edge, as well as the ways in which knowledge is organized in memory. Learning goal
facilitate opportunistic learning (see Hammond, Converse, Marks, & Seifert, 1993; R
1991; 1993; Ram & Hunter, 1992); that is, if all information necessary for learning is
available at the time it is determined what is needed to be learned (e.g., when a ques
posed), then a learning goal can be suspended, indexed in memory, and resumed a
time when the information becomes available.

Figure 59 lists the types of learning goals used in IML theory. All of these goals
achievement goals because they attempt to achieve some new state in the BK, rath
prevent or maintain some state.79 Some learning goals seek to add, delete, generalize

(define-frameGOAL
(isa (value (mental-state)))
(domain (constraint ;; A goal is a mapping from a volitional-agent

(volitional-agent))) ;; (i.e., whose goal is this),
(co-domain (constraint ;; to some desired relation in the world or

(relation))) ;; in the mind.
(goal-actor (value =domain)) ;; Useful synonym.
(goal-object (value =co-domain)) ;; Another useful synonym.
(goal-type (constraint ;; Goal’s taxonomic tag.

(goal-type-value))) ;; E.g., knowledge-acquisition-goal.0.
(supergoal (constraint ;; Link to parent goal in goal hierarchy.

(goal)))
(subgoals (value nil.0)) ;; Will be a list of goals in hierarchy.
(priority (constraint ;; Current relative goal priority.

(integer-value)))
(goal-value (constraint ;; Crude measure of absolute usefulness.

(amount-value)))
(achieved (value ;; Goals begin as unachieved (false.0),

 false.0)) ;; becomes true.0 when satisfied.
(backptr (constraint ;; Back pointer

(plan)) ;; to plan that spawned this goal.
(default ;; If created for another reason,

nil.0)) ;; will be nil.
(MXP (constraint ;; Points to the TMXP

(trace-meta-xp))) ;;to which this goal is associated.
)

Figure 58. Frame definition for goals
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specialize a given concept or procedure. Others deal with the ontology of the knowl
that is, with the kinds of categories that constitute particular concepts. Many learning
are unary in that they take a single target as argument. For example, aknowledge acquisi-
tion goalseeks to determine a single piece of missing knowledge, such as the answe
particular question. Aknowledge refinement goalseeks a more specialized interpretatio
for a given concept in memory, whereas aknowledge expansion goalseeks a broader inter-
pretation that explores connections with related concepts.

Other learning goals are n-ary in nature because they take two or more argumen
knowledge differentiation goalis a goal to determine a change in a body of knowledge su
that two or more items are separated conceptually. In contrast, aknowledge reconciliation
goal is one that seeks to merge multiple items that were mistakenly considered sep
entities.

Both expansion goals and reconciliation goals may include/spawn aknowledge orga-
nization goalthat seeks to reach a particular configuration of the BK. Usually a lea
wants to reorganize the existing knowledge so that it is made available to the reasoner
appropriate time, as well as modify the structure or content of a concept itself. Such
ganization of knowledge affects the conditions under which a particular piece of knowl
is retrieved or the kinds of indexes associated with an item in memory. Because the
can be either to organize a particular state or to organize two or more states with resp
each other, this goal type may take one or more arguments.

79. Of course, learning goals that either prevent the removal of a strongly held belief or maintain
some special mental state are conceivable, but outside the scope of this research.

Unary Goals

• Knowledge Acquisition Goal
• Knowledge Refinement Goal
• Knowledge Expansion Goal
• Knowledge Organization Goal

N-ary Goals

• Knowledge Differentiation Goal
• Knowledge Reconciliation Goal
• Knowledge Organization Goal

Figure 59. A taxonomy of learning goals
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A list of specific learning-goals that need to be spawned are included as part o
representational structure of each composite IMXP. When the IMXP is bound to the
of the failure, the goals are automatically bound to particular points in the representati
the trace (via unification of variables) that provide the most likely location of failure.
will be seen in the next chapter, these are only starting points; additional subgoals m
spawned to support the original goals from the IMXP. The goals are placed on a pr
queue of current goals to be pursued by the next stage of the learning process.

6.3.2 Learning Goals in the Drug-Bust Example

Faced with the structure of the reasoning error produced by the blame-assign
phase, the learner determines the learning goals for the system. First, since the see
anomalous input (marked “Old Input” in Figure 54) has been incorporated into the s
and later reinforced by the coherence of the story structure, and since no contradi
occurred as a result of this inference, the learner posts a knowledge reconciliation goa
G1 in Figure 60). The goal is to adjust the background knowledge so that neither
barking at animate objects nor dogs barking at inanimate objects will be considered a
alous by the understander. This learning goal is appropriate because even though on
is an instantiated token (a particular dog barked at a specific inanimate object), whi
other is a type definition (concept specifying that dogs generally bark at animate obj
they are similar enough to each other to be reconcilable.

Secondly, given that an expectation failure triggered the learning, and (from the b
assignment phase) given that the failure resulted from the interaction of misindexed k
edge and a novel situation, Meta-AQUA posts a goal to differentiate between the two e
nations for why the dog barked (nodes M and M′ in Figure 60). Since the conflicting
explanations are significantly different (for example, they do not share the same pred
i.e., detect versus threaten), a knowledge differentiation goal is licensed, rather than
to reconcile the two types of explanations. The differentiation goal is achieved if the sy
can retrieve proper explanations given various situations. The original misundersta
of the story occurred, not because the explanation that dogs bark when threatened is
rect in general, but rather because the system did not know the proper conditions
which this explanation applies.

Q2: How to decide what to learn?
Ans2: Post a learning goal.
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In addition to posting these two learning goals, Meta-AQUA places a tentative or
ing on their execution (see Figure 56. “Learning output and frame representation o
Meta-XP used in example story” on page 145 for program behavior when deciding wh
learn). With no other specific knowledge concerning their respective relations, a
default heuristic is to order them by the temporal sequence of the failures involved i
original reasoning trace. The reason this may be useful is that if it is determined tha
first failure was indeed not an error but a misunderstanding or was caused by faulty
then the reasoning that followed from the first failure (or other assumptions dependin
the nature of the first failure that led to the second) may have contributed to the cause
second. Thus, learning acquired about the first failure may show that the subseque
soning was irrelevant, or it may yield more information to be used on the second
Therefore, the stage that decides what to learn outputs the knowledge reconciliation
with priority over the knowledge differentiation goal.

Although learning goals are explicit in the Meta-AQUA system, one should
assume that they are always deliberate goals in cognitive terms; rather, they are as m
computational convenience as a conscious pursuit. As Barsalou (1995) notes, an im
goal-orientation exists in all learning agents. Thus, one must be careful to disting
between the computational benefit of expressing goals explicitly and the cognitive inte
tation in which some goals may be considered to be either implicit in the behavior
agent behaves as if having the goal) or subconsciously pursued. I make no claim
which stance is preferred. For example, it cannot be reasonably claimed that hu
actively form a goal to compare visual images, although they constantly do make such
parisons. However, humans can form high-level goals when learning. For instance
ices learning LISP exhibit the goal of trying to understand a programming error
choosing the strategy of re-reading textual instructions or reviewing an earlier exa
(Pirolli & Recker, 1994; see also Ng & Bereiter, 1991). From a strictly computational p
spective, however, the research presented here intends to show that the metaphor o
driven planning is a computationally useful one when cast in a learning context. The
suit of this goal is continued in the next chapter.

6.4  Summary and Discussion

This chapter has examined the first half of the hybrid process model of IML the
concentrating on introspective explanation and the subsequent spawning of learning
It has outlined a taxonomy of goal types, including both reasoning and learning goals
has illustrated these concepts with an example from the Meta-AQUA system.

Although Meta-AQUA is firmly in the CBR tradition, our approach diverges from
somewhat. At least three elements traditionally characterize CBR. First, CBR usually
cesses instances or concrete episodic cases. However, some systems emphasize
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gration of generalized knowledge and cases (e.g., Aamodt, 1994; Kolodner & Simp
1989; Simpson, 1985), and moreover, like Meta-AQUA, some CBR systems actually
cess abstract cases, including XPs (e.g., Kerner, 1995; Schank et al., 1994). Second
emphasizes the role of memory retrieval of past examples, rather than reasoning from
principles. This focus has led to research on indexing vocabulary and case adap
However, Meta-AQUA is a hybrid system that combines the CBR of the first two learn
phases with the nonlinear planning of the third. Finally, traditional CBR systems s
goal-directed activity to focus both processing and learning (Kolodner, 1993; Ram
Hunter, 1992; Schank, 1982). Our approach to learning is also goal-directed, but in a
different style. Meta-AQUA is the first CBR system to specifically plan in the knowled
space using goals that specify changes in that space. Unlike INVESTIGATOR (Hu
1990a), which creates plans in the external world to achieve learning goals (e.g., ac
database to answer a question), Meta-AQUA’s plans operate on the internal world o
system’s background knowledge.

The next chapter will continue the example to see how Meta-AQUA’s learning p
are constructed using a metaphor of nonlinear planning given the learning goals spa
by the case-based method.  This is the second part of the hybrid learning model.
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CHAPTER VII

LEARNING AS A NON-LINEAR PLANNING TASK

I think people tend to forget that trees are living creatures. They’re sort of like dogs.
Huge, quiet, motionless dogs, with bark instead of fur.

Deep Thoughts
by Jack Handey.80

Humans are amazing in their seemingly effortless ability to learn, yet the objec
learning are quite constrained. For instance, people do not seriously entertain the
analogy that trees are like dogs with bark instead of fur. Furthermore, when most obse
read that a dog barks at luggage, they do not infer that the luggage must have been an
even if the reader has never seen a dog bark at inanimate objects.81 Instead, if they find the
passage odd, they will either implicitly or explicitly question their knowledge of the obje
at which dogs bark. One reason for these predispositions is that humans are limited t
ticular learning spaces.

Children learn very specific conceptual categories of objects in the natural world,
as the distinctions between animate objects, inanimate objects, and functional obje
devices (Keil, 1981, 1989), and they are constrained in the acquisition of word mea
(Carey, 1986). When reasoning and learning, not all possible inferences are warran
entertained, unlike the approach used in a resolution theorem-prover (e.g., AQ3, G
1969). Computational complexity theory has shown that the poverty of stimuli is so pe
sive that, for systems to learn at all, they must restrict the kinds of learning that are pos
(Osherson, Stob, & Weinstein, 1989; Wexler & Cullicover 1980, both cited in Pylysh
1991). Moreover, Mitchell (1980/1990) argues that to induce anything other than a

80. Handey (1992).

81. Human readers will entertain such possibilities, however, given the right circumstances. Fo
example, creative understanding requires that the reader suspend judgement when reading scie
fiction stories (Moorman & Ram, 1994a, 1994b).
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junction of all examples in a learner’s experience, a learner must possess a learning
That is, complex learning is biased toward certain results and only certain learning
are possible.

The previous chapter presented a taxonomy of learning goals used to provide
and to keep the learning process tractable. As cognitive science research addresse
sophisticated task domains and as more learning algorithms become available, the a
ated learning problems become increasingly complex. This focus therefore provid
valuable function. Yet the task of integrating multiple learning methods remains a dau
one because it is an open question as how best to combine the often conflicting lea
methods. This chapter investigates the metaphor of goal-driven planning as a tool fo
forming such integration. Learning is essentially viewed as solving a planning prob
The planning problem is formulated by posting learning goals (such as the goal to reco
two divergent assertions with which Meta-AQUA was left at the end of the last chap
that, if achieved, accomplish some desired change in the system’s BK. In respons
learner assembles a learning plan or strategy by choosing and ordering learning me
from its repertoire.

This chapter examines the kinds of interactions that may occur during such cons
tion tasks and how they are managed in the Meta-AQUA system. The example star
the previous chapter (originally from Section 2.1.1) is continued in order to illustrate th
interactions. Section 7.1 discusses the issue of whether blame assignment is better d
coupled with learning or mediated with learning through the arbitration of learning go
Section 7.2 shows how learning strategies can be constructed using nonlinear pla
techniques. This section also continues with the Meta-AQUA example examined in
previous chapter. Section 7.3 briefly discusses how learning plans are executed and
ments on the usefulness of nonlinear plans. Section 7.4 takes a closer look at the pla
metaphor used by the theory of Introspective Multistrategy Learning. Finally, Section
summarizes and then concludes by briefly discussing related systems, limitations
Meta-AQUA, and areas for future research.

7.1  Blame Assignment and Repair: Tight versus loose coupling

The approach of Owens (1990a, 1990b, 1991, 1993) to blame assignment and le
(repair) is very similar to the one presented here. To perform these two tasks in the do
of planning, Owens uses a knowledge structure called aPlan Failure eXplanation Pattern
(PFXP). PFXPs are declarative representations for planning failures, each of whi
related to a parable such astoo many cooks spoil the brothbut represented in abstract form
They organize high level information about an anticipated problem, lower level details
cerning what causes the problem, how to fix it if it happens, and how to learn from it w
it occurs. The structures therefore encapsulate and tightly couple the explanations of f
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with those methods used for both plan recovery and plan repair.

Like a Meta-XP, a PFXP is a causal pattern that assists in blame assignment
some symptom of failure. A Meta-XP is a causal structure that connects the sympto
causal factors from the taxonomy of failure causes from Chapter III; whereas, a PFX
causal structure that connects a symptom to bad planning decisions such as inappr
plan transformations. Like Meta-AQUA, Owens’ planning system, ANON, uses a cha
terization of failure to retrieve a PFXP that is used to do blame assignment. Thus, bot
tems use a case-based method of performing blame assignment. However, unlike
XPs that are organized by theoretical and structural considerations stemming from
underlying models of cognition,82 PFXPs are organized by the functions they are design
to perform (i.e., by the kinds of recovery and repair operations that will be performed
them). A functional theory (Birnbaum, 1986; Schank, Collins & Hunter, 1986) of bla
assignment and learning specifies that a taxonomy should be partitioned depending o
a reasoner does with a member of a category (Owens, 1991). The philosophy of tigh
pling (Hammond, 1989; Owens, 1990a, 1990b) dictates that the explanation of failu
closely bound to the repairs and recovery strategies used with the failure. Thus, know
used in blame assignment, repair and recovery is cemented into one representation
coupling has a problem, however: repair strategies can interact negatively during lear

7.1.1 Direct Mappings: Tight coupling

Once blame assignment determines an explanation of the fault, given the sympt
learner must be able to construct a strategy with which to repair the fault. Because a
ber of faults may occur (corresponding to one or more symptoms), many learning me
or algorithms may be required to repair the knowledge of the reasoner. Just as in b
assignment, direct linear mappings could be preassigned so that each fault is tightly
pled with one or more repair methods. A large table could implement such a solutio
organizing the many-to-many mappings from algorithms that apply in many situation
situations in which a number of algorithms may be relevant (see Table 8). The resu
learning strategy would be an ordered sequence of algorithms selected from the tab

Using this associative matrix technique, a learning system can not only constr
strategy by simply choosing items from the table, but can also optimize the reso
expended on the learning. For example, given faults from situations numbered 2 a
below, algorithms numbered 1 and 3 can be selected to solve the respective learning

82. Table 5, “Detailed taxonomy of causes of reasoning failure,” on page 53 comes directly from
assumption number one in Figure 40 on page 106. The failure types enumerated in Table 4 o
page 50 are derived from the reasoning model of Figure 17 on page 49.
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lems. Time and effort can be saved, however, if algorithm number 2 is selected ins
because it provides a repair for both situations.

This type of a solution has been used in a number of theories. For example, C
uses configurations of goal failures to directly map to strategies for plan repair (Hamm
1989), whereas, the TWEAKER module of SWALE uses a taxonomy of XP failure ty
to directly map to strategies that repair XPs (Kass, 1986). Both systems use direct ma
(indexing) techniques to associate particular failure characterizations to specific r
methods. For instance, the SWALE program explains the unexpected death of a h
thoroughbred using the “Jim Fixx” XP. Jim Fixx was a world-class athlete who died
congestive heart failure while jogging. When applying the XP to the death of Swale
XP fails because it expects Swale to be a human jogger. The failure type NORMAT
FILLER-VIOLATION points to a repair strategy that adapts the old explanation to fit
current situation and stores the new explanation for similar future situations (Kass, 19883

The use of PFXPs improve on this tactic by using the direct mapping approach
an explanation of failure to a repair strategy, rather than from the symptoms of failure t
repair strategy. Moreover, Owens’ use of explanation patterns for blame assignmen
improvement over discrimination nets (e.g., Redmond, 1992) when mapping from s
tom to fault (explanation of symptom). But although the principle of tight coupling is u
ful during blame assignment, it presents problems during learning-strategy selecti
construction when multiple faults occur.

Table 8: Matrix associative-solution to strategy construction

Situation
1

Situation
2

Situation
3

Situation
4

.....
Situation

M

Algorithm 1  X X

Algorithm 2    X  X

Algorithm 3  X X

:

Algorithm N  X

83. This failure is roughly equivalent to the contradiction failure Meta-AQUA experiences when
encountering a dog barking at an inanimate object. The cause isincorrect domain knowledge.
Meta-AQUA’s response is to spawn a knowledge reconciliation goal (as seen in the last chapter
This chapter will address the issue of what occurs in response to the learning goal.
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7.1.2 Indirect Mappings: Loose coupling

The issue involved with using a direct-mapping solution for the learning-strategy
struction problem is that repair methods may actually interact in such a manner tha
method negatively affects the outcome of another. It is unreasonable to assume t
learning algorithms are functionally independent, especially considering that they
designed and implemented in isolation without regard to integration issues. There
when a learner chooses two or more repair methods, the order of the methods may h
undesirable effect on the results of learning. Analogous problems have certainly
shown to exist with respect to intelligent planners; this section demonstrates that the
type of problems occur with multistrategy learning, and so a loose coupling is prefer

Even if a system’s goals to learn are implicit in the behavior of the system rather
explicit, because numerous faults may co-occur, the repairs chosen to correct the fau
bound to interact in ways that are difficult to predict. In formulations with conjunct
goals, numerous difficulties arise such as goal interactions, protection intervals, and m
to-many relationships between goals and algorithms. For instance, a familiar goal co
in planning systems is the “brother-clobbers-brother” goal interaction (Sussman, 1
whereby the result of one plan that achieves a particular goal undoes the result or pr
dition of another plan serving a different goal. If a learning goal specifies a state chan
the background knowledge of the system, rather than a state change in the world, then
ing plans can have similar effects. Changes to specific knowledge may affect pre
changes to the background knowledge performed by other learning algorithms. For e
ple, any change to a conceptual attribute must occur before a separate algorithm us
same attribute in index learning, otherwise the index might become obsolete.84

Therefore, the tight coupling approach used with PFXPs has significant disad
tages. A PFXP must contain not only pointers to the repair strategies that are relev
particular failure patterns, but it must also contain information concerning how these
egies are interleaved. The issue must also be addressed concerning what happens w
or more PFXPs both apply (e.g., how is the learning managed when bothtoo many cooks
spoil the brothandyou can catch more flies with honey than you can with vinegarapply to
a given situation). If the interactions involved are captured in more complex PFXP t
and if the researcher does not anticipate all of them, then the burden of acquiring these
posite patterns is upon the learning system. Such interactions are managed natural
a nonlinear planner when only the constituent failure types and the associated lea
goals are specified by the researcher.85 Even if the tight coupling approach can acquir
information about interactions, such a system must dynamically monitor its learning

84. Section 7.2.4 will argue this point more vigorously in the context of a concrete example.
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goal violations (a process that is explicitly performed by standard planners).

The next section presents evidence from a hand-coded example to show that non
planning techniques can eliminate the negative effects present from interacting lea
methods. This lends support for the position that to include a separate learning stag
posts explicit learning goals (i.e., that decides deliberately what to learn) is an improve
over learning systems that do not use such an intermediate stage. Chapter IX pres
more careful empirical study which reaches the same conclusion.

7.2  Learning-Strategy Construction: Learning as a planning task

The strategy-construction stage of learning builds a learning plan to achieve the l
ing goals posted by the stage that decides what to learn. The construction entails no
choosing and ordering the algorithms and operators to achieve the learning goals,
needed, it implies spawning subgoals for learning goals that cannot be achieved dire

An important issue in the strategy-construction problem is the manner in which le
ing plans are created (Hunter, 1990b; Redmond, 1992). There are two approaches
issue: a system can have either a static or a dynamic planner. A static planner simpl
the characterization of the learning goal and the context (explanations produced b
blame assignment phase) as an index into a memory of stereotypical plans. Once ret
a learning plan is instantiated and parameterized by the context, and then executed.
flexible and complex, the dynamic approach performs goal-subgoaling to produce
rather than simply using canned or hand-tailored plans. The approach here is to u
dynamic method.

This section examines the strategy-construction problem by first discussing h
nonlinear planner handles goal interactions (Section 7.2.1) and then by looking at how
is accomplished in a small domain such as the blocks world (Section 7.2.2). Subsequ
the section returns to the drug-bust example to see how Meta-AQUA performs the
tasks, but in the space of changes to the BK using learning goals. The last chapter s
how Meta-AQUA spawned two such learning goals. This chapter shows how plans c
constructed for the knowledge differentiation goal (Section 7.2.3) and the knowledge
onciliation goal (Section 7.2.4). The next major section (Section 7.3) briefly discusses
these plans are carried out.

85. Section 7.4.2, “Advantages of the Planning Metaphor,” starting on page 171 enumerates a num
ber of additional properties that make the use of learning goals suitable to the task of constructin
a learning strategy or selecting a repair.
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7.2.1 Managing Goal Interactions with Nonlinear Planning

Hierarchical non-linear planners like NOAH (Sacerdoti, 1975) and Nonlin (Ghos
al., 1992; Tate, 1976) are designed for the task of noticing the interactions between c
tive processes. A hierarchical planner creates an abstract plan to achieve a conjunc
goals and then successively refines the steps until the plan terminates in primitive a
that can be directly executed. The planning technique is nonlinear because it uses a
commitment approach that assumes all steps can co-occur unless otherwise require
this reason, steps in the plan may follow a partial order, rather than a full linear order.
steps will be placed in a particular order with respect to each other, if and only if they
flict or interact in some (positive or negative) manner.

The Task Formalism language of Tate (1976) specifies that schemas are of two
types. Operator schemas (opschemas) define planning operators and action sc
(actschemas) define actions in the representation hierarchy of a given domain.
opschema captures the way in which a goal is achieved, whereas an actschema rep
the effect of an action in the representation. Each schema is represented with the foll
basic attributes (fields).

• Thetodo  field is a pattern to be matched when expanding an abstract step into 
refined form.  When a pattern is matched it is replaced with the steps in theexpan-
sion  field.

• Theexpansion field lists a partially ordered sequence of substeps to accomplish
goal in thetodo  field.

• Theorderings  field specifies any ordering enforced on the steps in theexpan-
sion  field.

• Theconditions field determines when a matched schema is applicable. Four ty
of conditions exist (precond , unsuperv , use-when , anduse-only-for-
query ) as explained below.

Q1: How to construct a learning strategy?
Ans1: Treat strategy construction as a planning problem.
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• Theeffects  field determines the effects of the operator or action in the manner
STRIPS (Fikes & Nilsson, 1971). It contains an addlist and a delete list which cre
new states and removes old ones from the environment respectively.

The conditions field of an action or operator definition is used to establish the s
under which the schema should be used. Theprecond condition type is equivalent to
Tate’s supervised condition and represents the standard notion of a plan precondition.
specify the previous states that need to exist before the planner applies the schema
states do not exist, then the planner creates a subgoal to achieve them. Theuse-when
condition is also called a filter condition, and was termed a hold condition by Tate. C
verse & Hammond (1992) call them appropriateness conditions and directs special
tion to the distinction between them and normal preconditions above. They represe
conditions that should exist for the schema to apply to the current needs of the pla
rather than simply those conditions that must exist for the operator to be used. Uns
vised conditions are specified as typeunsuperv . They are used to place a linear order o
plan steps, rather than expand steps. Finally, theuse-only-for-query type of condi-
tion is used to bind variable temporarily.

7.2.2 Planning for Blocks World Goals

As an example of interacting goals, consider the state of Figure 61 when a plan
given the goals of arranging block A on block B and block B on block C. To place A on
block A must first be clear and then it is moved on top of block B. To achieve the goa
B on C, B only need be moved. However, if the order chosen is to move the block B
then the act of clearing A in preparation of its move to B will undo the goal state of hav
B on C. Therefore, the order of achieving the two initial goals are important becaus
results of the operations used to carry out the plans do interact.

Figure 62 contains the Task Formalism definitions for the operators and actions
stack blocks and that manage interactions such as the one discussed above. Given th
(on A B) and(on B C), a planner will match thetodo pattern of operatormakeon. Note

A B

C

Figure 61. The Sussman anomaly
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(opschema makeon
    :todo (on ?x ?y)
    :expansion (

(step1 :goal (cleartop ?x))
(step2 :goal (cleartop ?y))
(step3 :action (puton ?x ?y))

       )
    :orderings ( (step1 -> step3) ( step2 -> step3))

    :variables (?x ?y)
)

(opschema makeclear
  :todo (cleartop ?x)
  :expansion (

      (step1 :goal (cleartop ?y))
      (step2 :action (puton ?y ?z))
      )

  :orderings ((step1 -> step2))
  :conditions (

       (:use-when (on ?y ?x) :at step2)
       (:use-when (cleartop ?z) :at step2)
       (:use-when (not (equal ?z ?y)) :at step1)
       (:use-when (not (equal ?x ?z)) :at step1)
       )

  :variables (?x ?y ?z)
  )

(actschema puton
   :todo (puton ?x ?y)
   :expansion ( (step1 :primitive (puton-action ?x ?y)))
   :conditions (

(:use-when (cleartop ?x) :at step1)
(:use-when (cleartop ?y) :at step1)
(:use-only-for-query (on ?x ?z) :at step1)

       )
   :effects  (

      (step1 :assert (on ?x ?y))
      (step1 :assert (cleartop ?z))
      (step1 :delete (cleartop ?y))
      (step1 :delete (on ?x ?z))
      )

  :variables (?x ?y ?z)
   )

Figure 62. Blocks world operators
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that to achieve the goal, the planner will replace the goal with the steps in theexpansion
field of the operator. These steps are partially ordered so that both steps one and tw
come before step three, but the operator assumes that both the first two can be exec
parallel. It is only when the planner discovers the interaction between steps to achieve
goals, that one order will be chosen over another.

Using these same principles, the research here has defined operators for le
methods that solve learning goals in the BK, rather than object configuration goals i
blocks world. Instead of primitive steps that are assumed to be implemented by a robo
(e.g., theputon-action step of schemaputon), the primitive steps of learning operator
represent calls to standard learning algorithms. The following section makes this an
more clear by returning to the drug-bust example started in the previous chapter.

7.2.3 Planning for a Knowledge Differentiation Goal

Blame assignment during the drug-bust example retrieved an IMXP that explaine
faulty explanation for why the dog barked at the luggage in the airport. Instead of bar
because it was threatened by the luggage, the dog barked because it detected contra
the luggage. The system then spawned two learning goals: G1, a knowledge reconci
goal, and G2, a knowledge differentiation goal (Figure 63). The learner thus must reco
the input (previously believed to be faulty) with its conceptual definition of dog-barki
and it must differentiate the two explanations so that neither is confused for the othe

Consider the knowledge differentiation goal, G2, of Figure 63. It seeks to differen
between the expected explanation that the dog barked because it was threatened
actual explanation that the dog barked because it detected contraband. This goal
achieved by reindexing the memory locations for the two explanations so that they w
retrieved when appropriate. However, because the system has no prior experience w
actual explanation, A2, (and thus the system neither foresaw nor considered the expl
tion), the learner posts a subgoal to expand the instantiated explanation (i.e., the know
expansion goal G3) to produce the missing explanation pattern, M′.

The schemas that produce the subgoal sequencing of events are defined in Figu
Theuse-when conditions on theindex-xp operator guarantees that this schema is cho
only if the variable?x is both an XP and is a token (instance) rather than an type (abs
explanation). Thegen-op operator does not actually decide which algorithm to perfo
the generalization; thedo-generalize action schema does. Explanation-based general
tion (EBG) (DeJong & Mooney, 1986; Mitchell, Keller & Kedar-Cabelli, 1986) can
selected as an appropriate learning algorithm for this task.
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A more difficult problem is to differentiate the applicability conditions for the tw
abstract explanations (M′, the one produced by generalizing the detection explanation,2,
and M, the original XP that produced the initial threaten explanation, E) by modifying
indexes (I′ and I) with which the system retrieves those explanations. If the two probl
of erroneous association and novel situation were to be treated independently, rathe
as a problem of interaction, then an indexing algorithm would not be able to ensure th
two explanations would remain distinct in the future. That is, if the learner simply det
a novel situation and automatically generalizes it, then indexes it by the salient or c
features in the explanation, and if the learner independently detects an erroneous re
and re-indexes it so that the same context will not retrieve it in the future, then there
guarantee that the resultant indexes will be mutually exclusive. Instead, the system
re-index Mwith respect toM′, not simply with respect to the condition with which M wa
retrieved. Therefore, the problems associated with direct mapping from blame assign
to strategy construction without the mediation of learning goals are substantial.

The problems to be solved, then, are determining the difference between M an′,
and, in the light of such differences, computing the minimal specialization of the inde
M and the maximally general index of M′ so they will be retrieved separately in the futur
In the case of the drug-bust story, HC1, the problem is somewhat simplified. The differ
is that retrieval based on the actor relation of barking actions (dogs) is too general.
threaten explanation applies when dogs bark at animate objects, while the detection

;;; To index in memory some XP that is a token,
;;; first spawn a subgoal to expand the concept
;;; into a type, then perform the (non-primitive)
;;; action to index the XP.
;;;
(opschema index-xp-op
    :todo (indexed ?x)
    :expansion (

(step1 :goal (knowledge-expansion ?x))
(step2 :action (index-item ?x))

       )
:conditions (

(:use-when (isa xp ?x) :at step1))
(:use-when (isa token ?x) :at step1)

:orderings ( (step1 -> step2) )
    :variables (?x)
)

;;; To achieve a knowledge expansion goal,
;;; perform some kind of generalization.
;;;
(opschema gen-op

  :todo       (knowledge-expansion ?x)
  :expansion  (

       (step1 :action (do-generalize ?x))
      )

  :variables  (?x)
  )

Figure 64. Schema definitions to index an XP
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Figure 65, “Mutual-indexing schemas,” shows learning-operator definitions for
indexing strategy that manages mutual indexing between two concepts. The op
schema determines that both items must be independently indexed before they are in
with respect to each other. The action schema has filter conditions (use-when ) that apply
when both are indexed and both are XPs. An unsupervised condition (unsuperv ) speci-
fies that if there exists a change in the explained action, then it must occur before the
cution of this schema. That is, a linearization must be performed on external goa
reorder any other schema that may establish the change. It says in effect that we w
attributes of the target concept to be stable before it operates on the concept; no othe
ator can change an attribute in order for the changes performed by indexing to be
fected.

7.2.4 Planning for a Knowledge Reconciliation Goal

In Figure 63 on page 163, the remaining learning goal, G1, represents a know
reconciliation goal. The goal is to reconcile the fact that the conceptual definition of
barking is limited to animate objects with the fact that a particular dog barked at a pie
luggage. This goal can be thought of as a simple request for similarity-based lea
(SBL) or inductive learning (e.g., UNIMEM’s SBL algorithm in Lebowitz, 1987, o
abstraction transmutation as in Michalski, 1994). The system is simply adding an
tional positive example to the instances seen. An incremental algorithm is required be
this instance has been discovered after an initial concept has been established some
the past.

An interesting interaction can occur, however, if the system waits for the result o
EBG algorithm required by the knowledge-expansion subgoal spawned by the knowle
differentiation goal discussed above. The algorithm will generalize the explanation
this particular dog barked at a particular piece of luggage because it detected marijua
a broader explanation (that dogs in general may bark at any container when they dete
traband). Thus, the example provided to the inductive algorithm can be more widely i
preted, perhaps allowing its inductive bias to generalize the constraint, C, on the obj
dog-barking tophysical-object (the exhaustive case ofanimate-object and
inanimate-object ), whereas a single instance of a particular breed of dog barkin
a specific brand of luggage, A1, may limit the inductive inference if no additional domai
knowledge is available.

Unfortunately, however, because the EBG algorithm uses the representation o
dog-bark definition, and the inductive algorithm changes this definition, the induction m
occur first. Thus, the system cannot take advantage of the opportunity cited in the pre
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;;; To index two items with respect to each other,
;;; make sure that they are both indexed independently,
;;; then index them jointly.
;;;
(opschema mutual-index-op

   :todo (index-wrt-item ?x ?y)
   :expansion (

(step1 :goal (indexed ?x))
(step2 :goal (indexed ?y))
(step3 :action

(index-dual-items ?x ?y)))
   :orderings(

(step1 -> step3)
(step2 -> step3))

   :conditions (
(:precond (indexed ?x)
 :at step3 :from step1)
(:precond (indexed ?y)
 :at step3 :from step2)
(:use-when (not (equal ?x ?y))

:at step1))
   :effects   ()
   :variables (?x ?y))

;;; The action of indexing two explanations jointly requires
;;; that any changes to the definition of the parent type
;;; of the domains of their explains-node (that is, the
;;; explained-action) be performed before the indexing is.
;;;
(actschema do-mutual-xp-indexing

   :todo (index-dual-items ?x ?y)
   :expansion ( (step1 :primitive

(perform-mutual-indexing ?x ?y)))
   :conditions (

(:use-when (indexed ?x) :at step1)
(:use-when (indexed ?y) :at step1)
(:use-when (isa xp ?x) :at step1)
(:use-only-for-query

(explains ?explains-node ?x)
 :at step1)
(:use-only-for-query

(domain ?explains-node
 ?explained-action)

 :at step1)
(:unsuperv (changed true ?explained-action)
 :at step1)

       )
   :effects  (

(step1 :assert (indexed-wrt ?x ?y))
(step1 :assert (indexed-wrt ?y ?x)))

   :variables (?x ?y ?explains-node ?explained-action))

Figure 65. Mutual-indexing schemas
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paragraph. One important implication of this point is that in systems which plan to le
if the reasoner does not anticipate this second interaction (thus placing EBG befor
induction), the system must be able to perform dynamic backtracking on its decision

Like a non-linear planner in the blocks world, the learning system must detect
dependency relationships so that goal violations can be avoided. For example, wh
definition of dog-barking is modified by generalizing the constraint on the objects at w
dogs bark fromanimate-object to physical-object , any indexing based on the
modified attribute must occur after this modification, rather than before it, to avoid inde
with obsolete conceptual knowledge.86

Note that the action schema of abstraction in Figure 66 has an addlist and dele
effect that modifies thechanged predicate on the domain of the constraint relation. Th
effect, along with the unsupervised condition of thedo-mutual-xp-indexing action
schema of Figure 65, determines that the indexing will not be performed until the cons
becomes stable. Therefore, if both schemas are being instantiated, the Nonlin mod
Meta-AQUA will automatically order the abstraction before the indexing. A similar un
pervised condition prevents generalization of the detection explanation from occu
before the concept of dog-barking is stable.

86. This result supersedes the conjecture by Ram & Hunter (1992) that, unlike standard plannin
techniques, interactions and dependencies do not occur with learning goals.

;; Perform an abstraction transmutation on relation r1 given relation r2.
;; The function raises the co-domain of r1 to the shared parent type of
;; r1 and r2.
;;
(actschema do-abstraction-change

   :todo (abstracted ?r1 ?r2)
   :expansion ( (step1 :primitive (perform-abstraction ?r1 ?r2)))
   :conditions (

(:use-when (isa relation ?r1) :at step1)
(:use-when (isa relation ?r2) :at step1)
(:use-when (relation ?r1 ?r1-type) :at step1)
(:use-when (relation ?r2 ?r2-type) :at step1)
(:use-only-for-query (domain ?r1 ?r1-domain) :at step1)
(:use-only-for-query (co-domain ?r1 ?c) :at step1)
(:use-only-for-query (co-domain ?r2 ?a) :at step1)
(:use-only-for-query (parent-of ?c ?c-parent) :at step1)
(:use-only-for-query (parent-of ?a ?a-parent) :at step1)
(:use-when (equal ?r1-type ?r2-type) :at step1)
(:use-when (equal ?c-parent ?a-parent) :at step1))

   :effects  (
(step1 :assert (co-domain ?r1 ?c-parent))
(step1 :assert (changed true ?r1-domain))
(step1 :delete (co-domain ?r1 ?c))
(step1 :delete (changed false ?r1-domain)))

   :variables (?r1 ?r2 ?r1-type ?r2-type ?r1-domain ?c ?a ?c-parent ?a-parent))

Figure 66. Abstraction schema
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7.3  Strategy Execution: Performing the learning and the aftermath

After a learning plan is constructed, a very simple process can execute the plan
primitive steps in the plan are calls to learning algorithms from the toolbox. Becaus
plans are partially ordered, not all steps will have a linear order enforced. Therefore,
steps may be executed in parallel. In the drug-bust example, however, the final lea
plan Meta-AQUA constructs is fully ordered. As shown by the Nonlin output in Figure
the resultant steps are (1) perform an abstraction transmutation on the concept of dog
ing (realizing that dogs bark at containers); (2) perform EBG on the new explanation
ducing a generalized version); (3) index the generalized XP in isolation; and finally, (4
the new concept definition to mutually differentiate and index the two generalized exp
tions of why dogs bark. This plan is translated back into a frame representation and
cuted in the order specified.

After the learning is performed, control is returned to the story understanding mod
The system continues with the story until completion. In subsequent stories (or as w
seen in the next chapter, even within the same story), the same types of failures shou
repeat if the learning is successful. For example, after Meta-AQUA finishes reading
HC1, it can understand the story in Figure 68 correctly. In this story a police officer a
canine enter a suspect’s house, the dog barks at a garbage pail, and the suspect is
for possession of some marijuana found in the pail. The new story causes no anomaly
the dog barks at the inanimate container. Indeed, Meta-AQUA expects some type o
traband to be found in the container after it reads that the dog barked, but before it i
of the contraband’s existence in the story. Thus, learning accomplished in the pre
story improves both understanding of and predictions for subsequent stories.

7.4  The Planning Metaphor in Learning

The idea of applying the metaphor of goal-directed planning to learning tasks pre
a number of interesting research issues. The planning community has investigated

S1: A policeman entered a house of a suspect
S2: A police dog entered the house with him.
S3: Dog barked at the suspect’s garbage pail.
S4:The dog barked because it detected a half a
kilogram of marijuana in the pail.

Figure 68. Story HC3: Another hidden stash
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UMCP NONLIN V1.2 (11/91).
****
The world state is ((CO-DOMAIN BARK-EXAMPLE INANIMATE-OBJ) (DOMAIN BARK-EXAMPLE DOG-BARK) (RELA-
TION BARK-EXAMPLE OBJECT) (ISA RELATION BARK-EXAMPLE) (CO-DOMAIN BARK-DEF ANIMATE-OBJ) (DOMAIN
BARK-DEF DOG-BARK)(RELATION BARK-DEF OBJECT) (ISA RELATION BARK-DEF) (DOMAIN ACTOR2 DOG-BARK)
(EXPLAINS ACTOR2 DETECT-XP) (RELATION THREATEN-XP CAUSAL-RELATION) (ISA XP THREATEN-XP) (INDEXED
THREATEN-XP) (ISA TYPE THREATEN-XP)(ISA RELATION THREATEN-XP) (DOMAIN ACTOR1 DOG-BARK) (EXPLAINS
ACTOR1 DETECT-XP) (RELATION DETECT-XP BECAUSE) (ISA XP DETECT-XP) (ISA TOKEN DETECT-XP) (ISA RELA-
TION DETECT-XP) (ISA CASE CASE1) (ISA TOKEN CASE1)(INDEXED CASE2) (ISA CASE CASE2) (ISA TYPE
CASE2)).
The problem to be solved is:
{SCH10158}
   TEST::PLAN-SCHEMA
      Expansion:
           0 {<ND10150>[:DUMMY]}
           1 {<ND10151>[:GOAL(KNOWLEDGE-RECONCILIATION-GOAL MIKE BARK-DEF BARK-EXAMPLE)]}
           2 {<ND10152>[:GOAL(KNOWLEDGE-DIFFERENTIATION-GOAL MIKE DETECT-XP THREATEN-XP)]}
           3 {<ND10153>[:DUMMY]}
      Conditions:
           <<SC10154>>  <<SC10155>>
      Effects:
           <<SE10156>>  <<SE10157>>
Attempting to establish any unsupervised conditions...
Done establishing any unsupervised conditions.
***** PLANNING COMPLETED ******

*** The (current) plan is:
===== INITIAL STATE ==========================
(CO-DOMAIN BARK-EXAMPLE INANIMATE-OBJ)
(DOMAIN BARK-EXAMPLE DOG-BARK)
(RELATION BARK-EXAMPLE OBJECT)
(ISA RELATION BARK-EXAMPLE)
(RELATION THREATEN-XP CAUSAL-RELATION)
(ISA XP THREATEN-XP)
(INDEXED THREATEN-XP)
(ISA TYPE THREATEN-XP)
(ISA RELATION THREATEN-XP)
(DOMAIN ACTOR1 DOG-BARK)
(EXPLAINS ACTOR1 DETECT-XP)
(RELATION DETECT-XP BECAUSE)
(ISA XP DETECT-XP)
(ISA RELATION DETECT-XP)
(ISA CASE CASE1)
(ISA TOKEN CASE1)
(INDEXED CASE2)
(ISA CASE CASE2)
(ISA TYPE CASE2)
(ISA TOKEN DETECT-XP)
(CO-DOMAIN BARK-DEF ANIMATE-OBJ)
(PARENT-OF INANIMATE-OBJ PHYSICAL-OBJ)
(PARENT-OF ANIMATE-OBJ PHYSICAL-OBJ)
(ISA PERSON MIKE)

===== PLAN ACTIONS ==========================

 3: :PRIMITIVE (ABSTRACT-ITEM BARK-DEF BARK-EXAMPLE)

 8: :PRIMITIVE (EBG DETECT-XP)

 6: :PRIMITIVE (PERFORM-INDEXING DOG-BARK)

 4: :PRIMITIVE (PERFORM-MUTUAL-INDEXING DETECT-XP THREATEN-XP)

==============================================

Figure 67. Nonlin output and the final learning-plan
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tracking during the planning process and rollback during plan execution), and concurr
In one form or another, all of these issues reappear given a learning interpretation. Br
construed, the technique of nonlinear planning in the pursuit of explicit goals ca
directly mapped to learning. Instead of desired states in the world, learning goals repr
desired states in the background knowledge of the learner. Instead of operators that
in actions performed by agents, learning operators result in actions by learning
rithms.87 However, at a finer level of granularity the metaphor may not map so neatly.
example, this research has established that the brother-clobbers-brother goal interac
present in some situations during multistrategy learning; yet, it is not immediately app
whether or not all types of goal interactions from the classical planning literature will ap
to operators executing in the background knowledge. Therefore, one of our future res
goals is to more fully determine where the planning metaphor fits a learning framework
under what conditions it does not.

7.4.1 Generality of the Metaphor

Moreover, the learning performed by Meta-AQUA is not tied to either the task of s
understanding or the domain of criminal activities. By adding a few conceptual definit
for a new domain, Meta-AQUA processes and learns from the following story that para
story HC1 of Section 7.2.

As before, S1 is skimmed and, because Meta-AQUA believes that people hit ani
objects, S2 generates an anomaly. It explains the anomaly by concluding that the pe
trying to hurt the ball. When given a new explanation, Meta-AQUA generalizes it, inde
the new explanation with respect to the hurt explanation, and loosens the constraint
object ofhit to include toys as well as animate objects. Meta-AQUA uses the same M
XP as a pattern of failure and guide to learning as in the previous story.

87. See also Etzioni, Hanks, Weld, Draper, Lesh, & Williamson (1992) for related work on formal-
izing the notion of information goals that can be pursued by planners.

S1: A person enters the handball court.
S2: The person suddenly hit a handball.
S3: He hit the ball because he wanted to have fun.

Figure 69. Story HC1′: The handball game
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7.4.2 Advantages of the Planning Metaphor

The planning and problem-solving literature suggest that use of explicit goals
many benefits overad hocprocessing. Many of these benefits apply to leaning-goal p
cessing as well as standard-goal processing. Some of the advantages of using le
goals to mediate between the blame-assignment and strategy-construction stages ar
lows:

• Decouples the many-to-many relationship between failure and repair

For a given failure there may be more than one algorithm which needs to be ap
for learning. Conversely, a given algorithm may apply to many different types of failu
A direct mapping from blame or fault to algorithm choice is more difficult and less flexi
than the use of learning goals.

• Allows an opportunistic approach to solving learning problems

It is not always guaranteed that sufficient resources and/or knowledge are availa
perform learning at the time that a system realizes that it needs to learn. When this c
tion occurs it is possible to index the learning goal in memory so that it can be retriev
a later time when these requirements are met.

• Allows chaining, composition, and optimization of the means by which learning goals

achieved

For example, one algorithm may achieve two or more goals, whereas in other c
many strategies may apply to a single goal. If more than one plan applies, a system s
use the one which may contribute to the maximum achievement of other goals with the
imum amount of resource consumption.

• Allows detection of dependency relationships so that goal violations can be avoide

As described by this chapter, it is important to recognize that when multiple items
learned from a single episode, the changes resulting from one learning algorithm may
the knowledge structures used by another algorithm. Such dependencies destro
implicit assumption of independence built into a given learning algorithm used in isola
For example, the definition of dogs barking is modified by Meta-AQUA so that its c
straint on those objects at which dogs bark is generalized tophysical-object from
animate-object . However, any indexing based on the attribute associated with
objects of barking dogs must occur after this modification, rather than before it, to a
indexing on obsolete conceptual knowledge.
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• Allows parallel execution of learning algorithms

Because nonlinear plans specify a (minimal) partial ordering of steps, learning a
rithms may be executed concurrently if no ordering is imposed between two or more
by goal interactions or subgoal refinement. The issue of concurrent execution of lea
algorithms is virtually unaddressed in the machine learning community, but potential
great computational benefit. We raise the issue here, but the full exploration of such o
tunities awaits further research.

7.5  Summary and Discussion

This chapter has covered a number of diverse issues relating to the problem of
ing-strategy construction. Converging evidence argues that the learning task can su
fully be treated as a nonlinear planning task. The first section of the chapter debated
loose coupling between blame assignment and learning is preferred over tight cou
The next section explained how a nonlinear planner can perform this function, give
example from the last chapter. Subsequently, a section explained how learning pla
executed.  Finally the advantages of using the metaphor of planning was enumerate

In review, a number of important knowledge dependencies were illustrated usin
drug-bust example.  These are enumerated below.

• Even after learning goals are spawned when deciding what to learn, dynamic mo
ing of goals sometimes requires subgoals to be spawned.  This occurred when t
knowledge expansion goal was made a subgoal to the knowledge reconciliation 

• If direct mapping were to be used, reindexing would not make the associations of
confused explanations different with respect to each other.  They would be index
independently.

• Knowledge dependencies can occur when planning to learn in the BK.  The inde
of a concept depends on the implicit assumption that the attributes by which inde
is performed remain stable.

• An additional dependency exists such that changes to a conceptual definition mu
occur before generalizing the concept.  That is, it was necessary to change the c
straint on object attribute of bark before generalizing bark itself.

Introspective reasoning is crucial to detecting these dependencies. Although
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computational systems use a reflective reasoning approach (e.g., Collins, Birnbaum,
wich, & Freed, 1993; Fox & Leake, 1994; Oehlmann, Edwards, & Sleeman, 1994; Pla
Arcos, 1993; Stroulia & Goel, 1995), and a few have used the planning metaphor in l
ing (Hunter, 1990b; Quilici, in press; Ram & Hunter, 1992; Ram & Leake, 1995; Redmo
1992), none of these systems have applied the planning metaphor as strictly as Meta-
has; none execute a planner like Nonlin upon its own knowledge. One important imp
tion of this approach is that nonlinear learning plans can take advantage of the inheren
allelism associated with learning problems. As machine learning algorithms increas
enter the applied world, the need for parallelism will become evermore important. Fu
research will better illuminate the potential of this insight.

Additional future research must be directed toward incorporating more learning s
egies. One of the weak points of the current system is that it reasons during learnin
macro-level. Meta-AQUA recognizes the functional difference between generalization
specialization and therefore can choose an appropriate algorithm based on which alg
is most appropriate. However, it cannot currently select between competing algorithm
both perform generalization. Meta-AQUA does not reason at the micro-level, as do
tems that address the selective-superiority problem88 in inductive learning (see, for
instance, Brodley, 1993; Provost & Buchanan, 1992; Schaffer, 1993), although the sco
learning problems solved by Meta-AQUA is greater than these other systems.

Another limitation of the Meta-AQUA implementation is that learning self-evaluati
(step 3 of Figure 48, “IML learning algorithm,” on page 126) does not exist. Thus, M
AQUA cannot cross-validate or compare various successful algorithms, nor can it curr
judge when learning fails and another algorithm must be chosen. Just as it detects, ex
repairs and learns from reasoning failures, an interesting line of future research wou
to allow Meta-AQUA to reason about its own learning. See Leake (1992) for approa
to this problem.

To perform multistrategy learning, an intelligent system must consider a numbe
factors that are not significant in isolated learning systems. In particular, a system mu
able to handle insufficient resources and knowledge and manage dependency re
between learning algorithms at run-time. Many alternative solutions and interactions
occur, even when reasoning about simple situations. Treating the learner as a plann
principled way of confronting these difficulties. Many of the techniques and results f
the planning literature89can be appropriated in learning systems to provide a better leve

88. Empirical results suggest that various inductive algorithms are better at classifying specifi
classes or particular distributions of data than others. Each algorithm is good at some but not a
learning tasks. The selective superiority problem is to choose the most appropriate inductive alg
rithm, given a particular set of data (Brodley, 1993).
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robustness and coverage in situations where many types of failure may occur. The
to transform these failures into opportunities to learn and improve the system’s overal
formance.

89. One interesting approach to dealing with task interaction in planning domains appears in Free
& Collins (1994). To repair its own planning mechanisms, Freed and Collins show that a learne
can use self-knowledge along with an understanding of its planning failures that result from tas
interactions in the performance domain.
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Part Four

IMPLEMENTATION AND CONCLUSION
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CHAPTER VIII

META-AQUA

Total grandeur of a total edifice,
Chosen by an inquisitor of structures
For himself.  He stops upon this threshold
As if the design of all his words takes form
And frame from thinking and is realized.

Wallace Stevens (1952), pp. 510-511.

The Meta-AQUA system implements the theory of introspective multistrategy le
ing presented in the previous chapters by providing a computational realization of the
cepts within the theory. The project of building this implementation has been espec
challenging. Not only does the Meta-AQUA system, like many other programs, ha
performance system that manipulates an explicit representation of the world, but in
tion it has a learning system that analyzes and learns from the results of the perform
These results, along with a trace of the performance itself, must also be repres
explicitly. Moreover, the system uses three different representational formalisms: fra
CDs, and predicate logic.  The implementation is hence naturally complex.

As a result of the system’s complexity, deliberate decisions were made to imple
only the most significant portions of the theory within the Meta-AQUA program. F
example, the memory system in Meta-AQUA is not a full model of human mem
Instead, it is a rough approximation to the indexed dynamic memory as describe
Schank (1982). Although the implementation of the memory is crude compared to
elaborate functionality of similar memories in other programs (e.g., CYRUS - Kolod
1984; DMAP - Martin, 1990; ANON - Owens, 1990a; SMART - Veloso & Carbone
1990), it still is a better cognitive model of memory than those using exhaustive se
(e.g., FUNES - Markovitch & Scott, 1988).

Also, as a matter of pragmatics, the Meta-AQUA implementation does not ass
that all possible causes for failures enumerated in Chapter IV can occur. Instead th
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gram restricts the number of causes it considers during blame assignment.90 Although
future research intends to expand the scope of blame assignment, the current imple
tion still far exceeds the number of causes that related computational systems ent
For example, the MINERVA learning system (Park & Wilkins, 1990) is a theory revis
system similar to Meta-AQUA in its use of explanation and introspection. Howe
because MINERVA assumes a consistent knowledge base, brute force search, no
perfect processes, and well-behaved goals,missing domain knowledge is the only pos-
sible cause of failure. By making such assumptions, the blame-assignment task is ci
vented altogether. All failures are attributed to missing pieces of domain knowledge
background knowledge.

A few minor differences exist between IML theory and the embodiment of the the
in the Meta-AQUA system. These discrepancies will be made explicit in this cha
Notwithstanding these differences, the implementation represents a substantial und
ing and will be examined in some detail. The initial section (8.1) outlines Meta-AQU
system architecture and its file system. Subsequent sections examine the perfor
subsystem (8.2), the input problem generator (8.3), the memory system (8.4), an
learning subsystem (8.5), each in turn. Examples of the running behavior of the sy
when processing automatically generated input stories (rather than hand-coded s
illustrate many sections throughout. The final section (8.6) closes the chapter with a
mary and a brief discussion.

8.1  Meta-AQUA System Architecture

Meta-AQUA is a learning system that chooses and combines multiple learning m
ods from a toolbox of algorithms in order to repair faulty components responsible for
ures encountered during the system’s performance task. The program incorpora
introspective version of the AQUA (Ram, 1991, 1993, 1994) story-understanding sy
as the performance task from which learning can take place. As a front end module
performance system, a specially modified version of the Tale-Spin (Meehan, 1981) s
generation program automatically produces input data. At the back end, the UM N
planning system (Ghosh et al., 1992) creates a learning plan designed to improve th
formance. An extensive frame system (Minsky, 1975; Wilensky, 1986b) was built to
vide the formalism with which to represent the system’s knowledge, both of the dom
and of itself. This knowledge is stored in and retrieved from a simple indexed mem
The memory is partitioned into a working memory (FK) and a long-term store (BK).

90. See Section 8.5 for a specification of the scope of these assumptions with respect to the failu
causes of Table 5, “Detailed taxonomy of causes of reasoning failure,” on page 53.
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The system architecture and flow of information within Meta-AQUA is shown
Figure 70. The problem generation module outputs a story to the performance sy
with the initial goal to understand the input (i.e., build a coherent conceptual interp
tion). The story understanding system uses schemas from the BK to build a represen
of the story in the FK. If this task fails, then a trace of the reasoning that preceded the
ure is passed to the learning subsystem. A CBR subsystem within the learner use
cases of introspective reasoning from the BK to explain the failure and to generate a
learning goals. These goals, along with the trace, are then passed to a nonlinear p
The planner subsequently builds a learning strategy from its toolbox of learning meth
The learning plan is then passed to an execution system that examines and change
in the BK.  These changes enable improved performance in subsequent processing
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Story CBR Planner
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Figure 70. Detailed Meta-AQUA system architecture

Memory
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Meta-AQUA is programmed in Symbolics Common LISP under the Genera ope
ing system (Version 8.3). The hardware platform is a Symbolics MacIvory Model-3 L
microprocessor embedded in a Macintosh IIci personal computer. Including comm
and documentation, the LISP source code takes up approximately 750 kilobytes o
space in sixty-seven files. The file system definition is pictured in Figure 71.91 Two of the
modules (frame andnon-lin) are stand-alone subsystems each of which have their o
defsystem constructs. The four other modules are native to theMeta-AQUA system.
The five main modules (not including documentation) each have a separate symbol
age.  The following subsections describe each of the major subsystems in turn.

8.2  The Performance Subsystem

The AQUA program is a question-driven story understanding system whose task
explain terrorist activities and events contained in newspaper-like stories provide
input. The Meta-AQUA system learns about drug-smuggling activities, given AQU
prior experience with stories about terrorists. Both systems’ performance task
“understand” stories by building causal explanations that link the individual events in
coherent whole.92 Meta-AQUA adds introspective reasoning and multistrategy learn
using Meta-XP structures and the learning theory presented in parts Two and Three
thesis. In addition and unlike AQUA, the performance sub-system of Meta-AQUA us
multistrategy approach to understanding. Thus, the top-level goal is to choose a co
hension method by which it can understand the input.

To process input information, the system posts all performance goals and lea
goals in a priority queue. These goals are then processed by the current priority value
that the highest value is pursued first. For instance, when a new conceptual input arr
goal to understand the input is placed in the priority queue with a nominal value. I
other goals have higher values, then the comprehension goal will be taken from the
and processed. The goal to understand an input is then made into a subgoal to de

91. This definition does not include some minor details such as the statements that determine mod
dependencies (i.e.,:in-order-to  clauses).

92. Meta-AQUA actually has three performance modes from which it can operate. This chapter dis
cusses Meta-AQUA performance inread-story mode (story understanding). But in addition,
the system can be set to aLISP-programming mode in which the system attempts to create
and understand LISP code (see Section 9.3). A third mode,act-out-story, simulates goal-
driven planning behavior between two interacting characters. The characters represent a custo
official and a smuggler who attempt to act out the dynamics of story HC1 in the airport terminal.
Although this partially implemented mode is mostly outside of the scope of this document, see
Chapter XIII for speculations regarding the interaction of planning and understanding and th
potential contribution of this performance mode within the system.
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(defsystem Meta-AQUA

;;; The documentation for the Meta-AQUA System
(:module docs ("Meta-AQUA.doc") (:type :text ))

;;; The FrameSystem is a stand-alone subsystem for representation. (nine files)
(:module frames  Frame-System (:type :system ))

;;; The knowledge representation definitions. Written in frame notation.
(:module representations

("reps-import.lisp" ;; Module interface specification
 "rep_smuggle4.lisp" ;; AQUA knowledge from terrorist domain
 "rep_meta-xps.lisp" ;; XP and Meta-XP representations
 "rep_planner.lisp" ;; Knowledge to supportact-out-story  mode
 "rep_lisp-programmer2.lisp" ;; Knowledge to support LISP mode
 "rep_tspin.lisp" ;; Knowledge to support Elvis World (Tale-Spin)
 "rep_hit.lisp" ;; Knowledge to support sports events
 "rep_scripts.lisp" ;; Script representations
 "rep_cop_scripts.lisp" ;; Particular scripts to understand police activities
 "rep_roles.lisp")) ;; Miscellaneous relations

;;; Nonlin is a stand-alone subsystem. (nineteen files)
(:module non-lin  Nonlin-System (:type :system ))

;;; Meta-AQUA proper.
(:module meta-aqua

("meta-aqua-interface.lisp" ;; Module interface specification
 "constants.lisp" ;; Global constants
 "lowlevel.lisp" ;; Low-level functions for screen handling, etc.
 "story-input.lisp" ;; Hand-crafted input examples
 "goal-q.lisp" ;; Goal priority-queue management
 "memory.lisp" ;; Memory management
 "meta-xp-procs.lisp" ;; Procedures for handling meta-xps
 "learner.lisp" ;; Learning library and associated functions
 "script-applier.lisp" ;; Simple script applier
 "questions.lisp" ;; Question handling
 "explainer.lisp" ;; Explanation facility
 "cbr.lisp" ;; Simple case-based reasoner
 "understander.lisp" ;; Main story-understanding code
 "solver.lisp" ;; Main code for problem solving mode
 "eval.lisp" ;; Functions to calculate learning performance
 "init.lisp" ;; Initialization functions
 "main.lisp")) ;; Main control loop and synonym functions

;;; The Tale-Spin automatic story generator.
(:module tale-spin

("spin-interface.lisp" ;; Module interface specification.
 "tspin.lisp" ;; The main control functions.
 "extensions.lisp" ;; New functionality for Tale-Spin.
 "spin-cd-reps.lisp" ;; CD representations for Elvis World.
 "data.lisp" ;; Initial states of the world.
 "patch.lisp" ;; A fix to the main function.
 "mumble.lisp" ;; CD to English translator.
 "verbs.lisp" ;; Verb definitions.
 "alt-story.lisp" ;; Alternate initial states.
 "tspin-tokens-4-meta-aqua.lisp" ;; Frame representations for all tokens.
 "tspin-2-meta-aqua.lisp")) ;; CD to frame conversion functions.

)

Figure 71. Meta-AQUA file system definition
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For the task of story understanding, Meta-AQUA employs an algorithm whose
of control is outlined in Figure 72. First, the outer loop inputs a sentence representatio
checks to see if the concept can answer a prior question. If it can, the reasoning asso
with the question is resumed. Otherwise, the concept is passed to the understandin
rithm. The understanding algorithm consists of three phases: anomaly identifica
hypothesis generation, and hypothesis verification.

The first phase looks for questions associated with the concept by checking the
cept for interesting characteristics. Meta-AQUA considers acts of sex, violence, and
noises inherently interesting (Schank & Abelson, 1977). Moreover, any concept th
anomalous is considered interesting (Ram, 1990b), as is any concept about which th
gram has recently learned something. Inherently interesting acts are detected by th
cept type of the input. Anomaly checking is performed by comparing the input to
conceptual definitions found in the conceptual hierarchy. If a concept contradicts a
straint, an anomaly exists and a question is posed. Such a question represents a fun
tal learning goal (or more specifically, a knowledge acquisition goal). The goal i
construct or otherwise acquire an explanation of why the anomaly exists. If no anom
detected, the concept is skimmed.  Control then passes back to the beginning.

When an input is skimmed, it is passed to a simplified version of SAM, a script ap
cation program (Cullingford, 1978, 1981). The script applier understands a story by m
ing input sentences to stereotypical sequences of events (i.e., to scripts). For examp
simpledrug-bust script consists of an initial drug detection, then confiscation of the c
traband, followed by the arrest of the person possessing the drugs. Although scripts
many of the causal relations between events in a story, they can help an understande
pret a story by providing details not explicitly mentioned in the story. During the skimm
process, however, if an input is not matched with a script, then the input is placed on
of current story structures in the FK to await further processing.

As an example of the role scripts play in the input to the understanding process,
sider the following. Thepipe-smoking-script contains an instrumental scene (gain-con-
trol-of-object) that establishes the preconditions (possession of a pipe) necessary f
goal scene (smoke-pipe) of the script. The instrumental scene itself has sub-scenes
must be matched to the input, some of which in turn may have additional sub-scenes.
include the sub-sceneopen-container (if the pipe is in the cupboard), an ATRANS (to
transfer possession to the smoker), andclose-container. But in the event of a match, no
only are the sub-events which came from the story examined by the understander to
anomalies, but the inferredgain-control-of-object structure is input for anomaly detection
as well.
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Rather than skimming the input, the system may examine it in more detail by po
questions about particular parts of the input. If a question is posed, the underst
attempts to answer the question by generating a hypothesis. The basis of the deci
pose a question (i.e., what knowledge is relevant in making the determination) is
recorded in a TMXP. Strategies for hypothesis generation include application of kn
explanation patterns (“XP application”), case-based reasoning, and analogy. If no
these methods applies, then the process is suspended until a later opportunity pr
itself.93

After a hypothesis is generated, the potential answer passes to the verification
of the performance task. Strategies for hypothesis verification include devising a test
rently not implemented), comparison to known concepts, and suspension of the reas
task. Following this, the system reviews the chain of reasoning during the verifica
phase to detect failure. The failure detection process examines the reasoning trace
the algorithm described by Figure 47 on page 121. If a failure occurs, then control p
to the learning subsystem and further input processing is suspended until control re

8.3  Input Subsystem

Input to the performance system can originate in two different ways. Hand-co
stories provide explicit demonstrations of specific features of the IML learning algorit
A number of these stories (e.g., HC1 and HC2) have been discussed in previous cha
In addition, a modified version of the Tale-Spin (Meehan, 1981) story-generator was
grated into the Meta-AQUA architecture to produce stories automatically. The functio
a separate generator is to attenuate the bias of the programmer who creates hand
stories and to provide a means for randomly varying the conditions under which lea
takes place. These two conditions provided by the generator have enabled the desig
empirical study that will be reported in the next chapter.

8.3.1 The Tale-Spin Story-Generator

Given a main character and a problem for the character, the Tale-Spin module c
stories by simulating the actions that would be necessary for the character to achieve
stemming from the problem. For example, if a character has the problem of being th
Tale-Spin assigns the character an initial goal to remove a state of thirst. The cha
can achieve the goal by travelling to where water or drink exists if the location is kno
If it is not known, the character can ask another agent in the story. The character

93. Section 8.4 briefly describes how such processes are resumed.
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gains possession of the drink and finally ingests it. At selected points, the gene
inserts random events into the story. For each event in the story, the generator ad
associated causal results from the event. These results change the world and ena
ther actions by the characters in the story. For example, the act of travelling to the loc
of water enables the taking possession of it which in turn enables the drinking of it.
final action removes the hunger. The story terminates when the goals and subgoals
main character have been achieved or when all possible plans to achieve them hav
exhausted.

The Tale-Spin program was obtained from the University of California at Irvin94

where it is used as a problem generator for the OCCAM learning system (Pazzani, 1
OCCAM learns about physical causation given stories in which characters perform ac
such as playing ball when bored. So for example, when children accidentally drop a
ball, it will not break; whereas, when children drop a balloon upon a sharp object (e
rose bush), the object will break. In this case, OCCAM learns the causal intera
between object composition and surface impact. In OCCAM’s world, four main cha
ters exist. They are Dad, Mom, and their two children Lynn and Lynn. The problems
they encounter are hunger, thirst and boredom. In addition, the house contains a ca
randomly knocks vases from tables to the floor. Given these initial program condit
Tale-Spin was extended to produce stories in the domain of criminal activities.

8.3.2 The Elvis World

In order to support large data collection, additions to Tale-Spin provide nume
scenarios with a potentially infinite number of variations that test Meta-AQUA’s ability
learn from explanation failure. Among the changes, a musician named Elvis and a p
officer were added to the cast of characters. Elvis is temporarily boarding with Mom,
and family, whereas the officer occasionally visits the house, presumably becau
neighborhood complaints of loud music and raucous behavior. Furthermore, the p
officer often (but not always) brings a drug-detection dog along with him, and the dom
tic household now contains a pet dog.

Two new problem types were also added. Characters may bejonesing95 for drugs.
In Elvis’ case, he sometimes smokes marijuana to relieve his jones, whereas Dad
sionally smokes a pipe with tobacco (see Figure 15 on page 43). Lynn has also been

94. At URL ftp://ics.uci.edu/pub/machine-learning-programs/TalespinOccam, the code is publicly
available through the World Wide Web.

95. In the vernacular, a “jones” is a drug habit accompanied by withdrawal symptoms. The verb “to
jones” is to be going through a state of withdrawal.
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a tobacco habit. The police officer has the problem of beingconcernedabout the law. The
state of being concerned is relieved if he can either locate contraband or arrest crimin96

The program was also modified to hide the marijuana during story initialization in dif
ent locations around the house (e.g, in the cupboard, refrigerator, and under the carp
the officer’s task varies depending on entry conditions (i.e., at what point in the stor
officer arrives on the scene and whether the dog accompanies him), the initial locati
the pot, and the actions of the characters in the story.

Moreover, to facilitate the performance task, the Tale-Spin program was modifie
as to generate explanations of key events in the stories. The resolution of all anomali
thus incorporated within every story. For example, Tale-Spin always includes a re
why police dogs bark when generating a story. Although in an ideal implementation
understanding process should be able to make powerful enough inferences to co
explanations of the input independently, the performance task has been simplified w
Meta-AQUA. Instead of using inference to confirm hypotheses, Meta-AQUA ma
depends on the story to provide explanations that confirm them. For the implement
the research goal is to concentrate on the learning task rather than the understanding

An example of Tale-Spin output is shown in the story TS1 of Figure 73. The ex
ple is roughly equivalent to the hand-coded story that Chapters VI and VII examine
detail (i.e., the airport drug-bust story, HC1, shown in Figure 52 on page 140). Figur
shows the specific sentences of story TS1 that correspond to the sentences of stor
Unlike the hand-tailored stories, however, the length of Tale-Spin’s stories range from
108 sentences and average approximately 30.

Unlike AQUA, the Meta-AQUA story understanding subsystem does not actu
parse the sentences from an English representation. Because the focus of this re
does not center on the natural language understanding problem, Meta-AQUA assum
input sentences are already represented conceptually (i.e., Tale-Spin pre-parses
Themumble module of Tale-Spin provides stylized English paraphrases to assist the
tem user.

96. Unlike the UC Irvine version of Tale-Spin in which characters and their goals did not interact,
the program has been modified so that the police officer is a competing character with his ow
problem and goal as he arrives on the scene. Because the police will confiscate the marijua
when found and then arrest Elvis, such events may preempt the enabling conditions of action
Elvis had planned to perform. For instance, if Elvis is thirsty but the officer arrests him, this con-
dition restricts his freedom of movement so that he cannot go to the faucet for water. Therefore
the story can end with Elvis still having the problem with which he began (i.e, thirst).
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One day Elvis was jonesing. Elvis took the lighter1 from the table2. He had the

lighter1. The table2 didn’t have the lighter1. Police and dogs arrived. The phone1 was ring-

ing. Mom picked up phone-receiver1. The phone1 wasn’t ringing. She had phone-

receiver1. She let go of phone-receiver1. She didn’t have phone-receiver1. Officer1 went to

outside. She [Mom] pushed light-switch1. The light1 was on. The cat1 pushed the vase2 to

the floor1. The vase2 was broken. The police-dog1 went to outside. He [Officer1] pushed

door-bell-switch1. The door-bell1 was ringing. He didn’t push door-bell-switch1. The

door-bell1 wasn’t ringing. He went to the kitchen. The police-dog1 went to the kitchen. The

police-dog1 went to the vase3. (S25) The police-dog1 sniffed the vase3. (S26) The police-

dog1 barked at the vase3. The police-dog1 was barking. He [Officer1] went to the vase3.

He took the ganja1 from the vase3. He had the ganja1. The vase3 didn’t have the ganja1.

(S32) He arrested Elvis. He controlled Elvis. He went to outside. Elvis went to outside. The

police-dog1 went to outside. (S37) If the police-dog1 detects the ganja1 then the police-

dog1 will bark at the vase3. He [Elvis] was still jonesing.

--- The End ---

Figure 73. Tale-Spin story TS1
(Annotations in brackets; sentence numbers in parentheses)

Figure 74. Sentences from story TS1 corresponding to HC1

S25: The police-dog1 sniffed the vase3.
S26: The police-dog1 barked at the vase3.
S32: Officer1 arrested Elvis.
S37: If the police-dog1 detects the ganja1 then the police-dog1
will bark at the vase3.
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8.3.3 Interface to the Performance System

As seen in Figure 75, the interface between Tale-Spin and the performance sys
simple. Thespin function of Tale-Spin takes a character and problem to generate a
representation of the story. Themumble function generates the English equivalent of th
CD conceptual representation. Both of these outputs are then placed on the globa
able *ALL* . This variable is a list of tuples of the form <CD “generated equivale
text”>. A translation routine (functionconvert-story) then converts the CDs into a fram
representation used by Meta-AQUA. The result is placed on the global list*Story-
Concepts* . This structure is a list of tuples of the form <frame “equivalent text”
Then for each input concept, the functioninit-goals creates a knowledge acquisition goa
to understand the concept. The function places each goal on the*Goal-Queue* prior-
ity queue. In turn, the performance system evaluates each input, places the inter
result on the variable*World-Model* (so it can easily be displayed at the end of th
program as output), and indexes the result in the FK.

Before we examine the memory system, it should be made explicit that altho
there is a tight interface between the Tale-Spin story generator and the Meta-AQUA
understanding subsystem, the implementation of and theory behind the Tale-Spin g
tor in no way reflects the content or claims concerning IML theory. On the contrary,
manner in which input is created for the performance system is largely incidental to
theory and the implementation of the rest of the Meta-AQUA system. Meehan (1
asserts that stories should be both interesting and coherent. Interesting stories se
focal problem domain that span a number of levels. Coherent stories contain ra
characters that pursue individual goals that then interact. Moreover, Meehan claime
story simulation itself was a form of cognition (p. 203). None of these theoretical un
pinnings directly impinge on the theory of learning presented here. We do not subscr
nor refute any such claims. The program is used simply as a matter of computationa
venience and to generate less biased input.

8.4  Memory

Computer memory is often viewed as a virtually error-free medium in which retrie
of data is performed by simple fetch operations. As computer memories grow, how
brute-force search for the address to perform the fetch becomes increasingly intrac
Memory indexing is added in order to make memory retrieval more efficient. A mem
indexing mechanism is a trade-off between time to search and accuracy of retrieval; th
efficiency is gained, poor indexing schemes risk not finding the proper informat
Indexes are pointers from some feature in the environment (cue) to a memory elemen
ciated with that feature.
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Tale-Spin

 CD-2-Frame-Translator

Goal Generator

 Meta-AQUA

Character + problem

(spin & mumble functions)

*ALL*

(convert-story function)

*Story-Concepts*

(init-goals function)

*Goal-Queue*

*World-Model*

Figure 75. Representational flow between generator and understander

Performance Module

Story Generator

Story Understander
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The memory for Meta-AQUA is partitioned into two indexed memories: a worki
memory called the foreground knowledge, or FK, and a long-term store called the b
ground knowledge, or BK. The BK used in the current implementation consists of a
tiple-inheritance conceptual hierarchy, a case library of past episodes, a set of story s
and an indexed collection of XPs. The FK is a dynamic list of structures representin
current understanding of the story or “world model.” Although both memories are im
mented as lists of LISP symbols that have particular values, all processes other than
ing and bookkeeping functions access memory by matching the cues chosen at re
time with the indexes created at storage time.

This section explains the representation used for items stored in memory (Se
8.4.1), describes the implementation used for indexing items in memory and in retrie
them (Section 8.4.2), and works through a short story that Tale-Spin generates in or
demonstrate the advantages of opportunistic memory in the Meta-AQUA system (Se
8.4.3). The representation, indexing scheme and the structure of the memory subs
allows the generation of multiple hypotheses and their respective verification to be
leaved in arbitrary order. The example also shows that Meta-AQUA can benefit
learning even before it is finished processing the story in which the learning takes pl

8.4.1 Types and Tokens

The distinction between atypeand atokenis an important difference maintained in
Meta-AQUA’s memory. Types represent conceptual categories and are defined th
the frame-based knowledge-representation system underlying the Meta-AQUA prog
Tokens are instantiated instances (reified types). For example, Meta-AQUA’s BK con
a type definition associated with the act of barking by dogs. This type captures in ge
the assumed constraint that dogs bark at animate objects (see page 56 for an abbr
type definition fordog-barks). Contrastingly, as Meta-AQUA receives input, it instant
ates a token for the each event or assertion, including the episode of a particular dog
ing at a particular inanimate object. These tokens are incorporated into retrieved c
scripts, or XPs and stored in the FK.

A token is represented in memory as aframe variable. A frame variable is a unique
LISP symbol, such as the gensymXP-GOAL-OF-OUTCOME->ACTOR.115.97 The
symbol value of a frame variable is either aframe formor a literal frame. A literal frame
is an arbitrary structured symbol-value, whereas a frame form is represented as a lis

97. Such an XP explains that a particular actor chose to perform a particular action because of t
goal to achieve a state for which the action results. See Figure 22 on page 76 for a representati
of such XPs.
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sisting of aframe-type designatorfollowed by zero or moreslots(see Figure 76). Literals
are distinguished from other frame variables in that routines which traverse frame s
tures cannot inspect or otherwise traverse a literal.98 Slots are attribute-value relation
(sometimes called slot-filler pairs) having a particular name (i.e., therole of the slot) and
an arbitrary number offacets. A distinguished facet for every slot is thevalue facet, repre-
senting therole-filler (or simplyfiller) of the slot. Facet values may be either anattribute
value, a frame, or list of frames. Attribute values are special terminal frames that spec
member of an enumerated set. For example,green.0 is an attribute value of the enumer
ated type color-value. It fills the value facet of a color slot and evaluates to the slo
frame form “(green)”. As mentioned in Section 4.4, slots themselves are treated in
frame system as a first-class objects, and thus have explicit frame representation
Figure 25., “Relations as first-class objects,” starting on page 81). Thus, therelation facet
has as its filler a frame representing the attribute-value relation.99

A special property of the knowledge representation system is that type defini
(categories) are stored as the symbol values of the frame-type designator. As a
every token has close proximity to its corresponding type. Given a frame token as s
in Figure 76, the type definition can be found by taking the symbol-value of the sym

98. The reason for this property is that literals have no sub-frame value.

99. For details about similar approaches to knowledge representation, see Jones (1992), Ram (198
and Wilensky (1986b).

Frame-Token.772 <-
(FRAME-TYPE

(attribute-1 (facet-1-1 value-1-1)
(facet-1-2 value-1-2)
...
(facet-1-i value-1-i))

(attribute-2 (facet-2-1 value-2-1)
(facet-2-2 value-2-2)
...
(facet-2-j value-2-j))

...
(attribute-n (facet-n-1 value-n-1)

(facet-n-2 value-n-2)
...
(facet-n-k value-n-k)))

Figure 76. Generalized frame token structure
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’FRAME-TYPE. Thus in general, to find the conceptual definition of an arbitrary fra
variable,X, the LISP call(symbol-value (first (symbol-value X))) will suffice.100

8.4.2 Indexing

Conceptually, an index is a mapping from a context to a memory item. Inde
describe a situation in a story or in reasoning about a story and are typed according
role they play in reasoning. Depending on the index type (question-type.0, xp-type.0,
case-type.0, or plan-type.0), indexes map to different conceptual memory items (qu
tions, xps, cases and plans, respectively). In Meta-AQUA, each index is composed o
ple chains ofmicro-indexes(see Bhatta, 1995; Kolodner, 1993, pp. 193-245; and Owe
1993 for descriptions of more sophisticated index implementations).

For example when processing story TS1, Meta-AQUA poses the question “why
the dog bark at the vase?” It hypothesizes that the vase somehow threatens the polic
but because it cannot verify this, the system suspends the deliberation and index
question into memory. The index used to store the question is an index of typequestion-
type.0 based on a dog being the actor of the barking event and vase being the object
choice of features is determined by the path along which the anomaly is discovered
input structure. When it later examines the explanation that the dog barked beca
detected drugs, the input causes a reminding that resumes the prior verification pr
The composition of these types of indexes is shown in Figure 77.

Indexing structure in Meta-AQUA is composed of three levels. The primary leve
all indexing is specified by the triple <relation, predicate, value>, that is, by a relation
relation’sdomain , and the relation’sco-domain . An example triple would be <actor,
bark, dog>. In fact, theactor relation is an important and salient relation in gener
because it answers the question “who did what?” The relation distinguishes, for exa
explanations for why dogs bark from those explaining why seals bark. As seen in F
77, this index level is represented by placing a micro-index on thebark property of the
actor symbol. A micro-index is simply a “gensym”101that is guaranteed to be unique. Th
micro-index is then given a dog property whose value points to the next level of inde

100. In the frame knowledge representation system, function abstractions exist to compute this ma
ping. The call (*FRAME* frame-var) retrieves a token’s value, whereas (frame-type frame-var)
returns the type of a given token.

101. Actually, the implementation uses a call to the LISP functiongentemp so that the symbol will
be interned into the current symbol package.
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actor
sniffbark

micro-index.15 more indexing ...

dog seal

micro-index.16 more indexing ...

to

micro-index.24123

micro-index.24124

container animate-object

micro-index.24127

xp-type.0 xp-type.0

(SELF-CAUSE.49207) (XP-DEFENSIVE-BARK.203)

Figure 77. Indexing for items about why dogs bark
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A second level of indexing is specified by zero (or more) slots of the original relati
predicate. Each slot is represented by the tuple<role value>. For each slot, the index
requires two micro-indexes. The first (i.e.,role) represents the name of the slot. The se
ond (i.e.,value) represents one of three conditions. If the role-filler is an attribute valu
literal, it represents the frame-value of the filler. If the role-filler is a relation, it represe
the frame-type of thedomain of the relation. Otherwise, it represents the frame-type
the role-filler. As an example, consider the object at which a dog barks. The filler o
to slot is the relationat-location whosedomain is a container token. Thus, the inde
tuple is <to container>.  See the level two portion of Figure 77.

The final level of indexing specifies the index type. That is, the index specifies
kind of memory at which it points. At the end of a sequence for an index, the retriev
store (index) routine looks at or sets the memory-type. This level is represented with a
micro-index whose property is one of the following: eitherquestion-type.0, xp-type.0,
plan-type.0, or case-type.0. The value of the property will be the element (or a list
elements) stored in memory (e.g., an XP for indexes of typexp-type.0).

The functiondo-index is the major memory storage function of Meta-AQUA. It take
a memory item to be indexed, the item's type classification, and a relation that serves a
text for the mapping, and returns an instantiated index frame that represents the inde
a side-effect, it places the memory item in conceptual memory via the micro-inde
implementational scheme described above. Optionally, the memory item may be plac
conceptual memory along with any other structures that happen to be there, or it may
write what is already there, depending on the caller of the function. That is, destru
storage is optional.

In addition, every memory item added to conceptual memory through indexin
placed on a “retrieval list” for finding similar items when storing. Before a new item
indexed, the memory system performs a check on the retrieval list for the memory it
type to see if there already exists an item that is of this type. This action simulates a re
ing at storage time so that the memory system can find forgotten or lost memories.
feature is necessary forforgotten goal andmissing association errors. To make these
features more concrete, the next section examines a specific example of opportu
remindings. See also Section 8.5.4, “Forgetting a Learned Explanation,” startin
page 203.

8.4.3 Remindings in Opportunistic Memory

Consider the short story generated by Tale-Spin, TS2, as shown in Figure 78.102Given
that Meta-AQUA believes that playing is constrained to children and that people h
strike animate objects when they wish to hurt them, TS2 will generate a number of a
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alies. When sentence S8 states that Dad plays with a ball, Meta-AQUA detects an an
because the token conflicts with its conceptual definition of playing. That is, it expects
children to be actors of playing events. Likewise, S9 conflicts with its knowledge of w
kinds of objects people hit. People hitting inanimate objects cause Meta-AQUA to ex
the action. The first anomaly will cause Meta-AQUA to reach an impasse because it
not have any explanation for why people play. The second anomaly will cause M
AQUA to hypothesize that Lynn wanted to hurt the ball. Neither of these anomalies ca
resolved, so the program suspends them both in the BK. The first is indexed under
who play with balls, whereas the second is indexed by children who hit animate object103

The story now supplies an explanation for why Lynn hit the ball in sentence S
When this explanation arrives, it causes a reminding of the previous question “Why
Lynn hit the ball?” It finds this previous question in the BK and re-establishes it in the
The old question is located because theEXPLAINS node of the input XP (i.e., its conse
quent) is the hitting event that matches the index under which it was previously store104

The explanation contradicts the expectation that Lynn wanted to hurt the ball, so as wi
learning episode presented in Chapters VI and VII, Meta-AQUA is able to learn the
explanation, loosen its constraint on the objects at which people hit, and differentiat
two hitting explanations by re-indexing them with respect to each other.

102. Note the similarity between story TS2 and story HC1′ (“The handball game”) in Figure 69 on
page 170.

103. The second index would be represented asactor→hit→child→to→ball→question-
type.0→q, whereq is the question be indexed.

104. The input XP is of type XP-GOAL-OF-OUTCOME->ACTOR which states that “if the
expected outcome of an action results in a goal state for that agent, then the agent will choose
perform that act.” This is a basic assumption of rationality (Newell, 1982). See Ram (1989, 1994
for additional details concerning volitional XPs that explain why agents perform particular classes
of actions.

One day dad was bored. Dad asked Lynn, “Would you push the ball2 to me away from
you?” Lynn went to the garage. She picked up the ball2. She had the ball2. She went to out-
side. He went to outside. (S8) He played with the ball2. (S9) She hit the ball2. (S10) She hit
the ball2 because she wanted to move the ball2 to him. (S11) He hit the ball2. (S12) He hit
the ball2 because he wanted to move the ball2 to her. (S13) He played with the ball2 because
he didn't want to be bored.

--- The End ---

Figure 78. Tale-Spin story TS2
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As a result of this learning experience, when the program processes sentence S
concept is no longer anomalous. However, it is interesting to the system because
recently learned about people hitting animate objects. This causes Meta-AQUA to ex
the action. Instead of retrieving the old hurt explanation, the system applies the new e
nation which is now indexed byperson-hit-toy-object . The explanation is veri-
fied when S12 is encountered. Thus, not only does Meta-AQUA not repeat a failure,
predicts the correct explanation before encountering it. Finally, when sentence S13 i
cessed, the system simply acquires the new explanation.

Story TS2 is significant for at least two reasons. For all three of the events (one
and two hit actions), the explanations for why the actors performed the action are giv
the story, but they come at different points in the story. In particular, the explanation
answers why Dad plays with toy balls comes after the explanations for both hitting ev
even though the question “Why did Dad play with the ball?” was formed first. Opportu
tic memory allows individual questions to be processed independently of the order in w
the story provides new information. That is, opportunism allows interleaving of mult
hypothesis formations and verifications.

Secondly, this story represents a situation where Meta-AQUA actually benefits
learning within the same story in which learning occurs. There is no requirement tha
entire story be processed before learning takes place. This incremental form of learn
more cognitively plausible than non-incremental learning systems (e.g., AUTOCLA
Cheeseman, Kelly, Self, Stutz, Taylor, & Freeman, 1988) that process all input items b
generalization or performing other forms of learning. The following section describes
tures of the learning system in more detail and provides an extended Tale-Spin exam

8.5  Learning Subsystem

The three chapters of Part Three, "A PROCESS THEORY OF LEARNING AN
INTROSPECTION," have already described in detail the bulk of Meta-AQUA’s learn
mechanisms and algorithms. The two chapters of Part Two, "A CONTENT THEORY
MENTAL REPRESENTATION," examined the major representations used by the lear
system. This section looks somewhat closer at a few features not covered in this pre
material. Section 8.5.1 reviews the basic architecture of the learning system and en
ates the available learning algorithms in the system’s toolbox of learning methods. It
lists the IMXPs used by the system during learning. Section 8.5.2 discusses the sp
failure causes that the implemented blame-assignment procedure considers when a
explaining a reasoning failure. Section 8.5.3 briefly discusses learning higher-order kn
edge in the context of an Elvis World example. Finally, Section 8.5.4 works through
Tale-Spin version of example HC2, originally presented in Section 2.1.2.
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8.5.1 Divisions of the Learner

The learning subsystem performs four functions. When the performance task
the learning system performs blame-assignment, decides what to learn, constructs a
ing strategy, and then executes the strategy. The learner is partitioned into two par
case-based reasoning component performs the first two functions while a nonlinear p
performs the last two. As discussed in Chapter VI, the CBR module receives input i
form of a TMXP. The TMXP represents a trace of the failed reasoning detected dur
previous performance task. During explanation of the prior reasoning (blame assignm
it retrieves an IMXP that helps locate causes of the failure and links the symptoms of fa
with the faults. The IMXP also helps spawn a set of specific learning goals or chang
the system’s BK (deciding what to learn). These goals are then passed to a non-linea
ner, UM Nonlin v.1.2105 (Ghosh et al, 1992) along with a predicate representation of
reasoning context. As discussed in Chapter VII, the planner creates a learning plan
which to achieve the learning goals (learning-strategy construction). To do this the le
uses schemas that are similar to the STRIPS planning-schemas designed for the
World. The plan is executed by performing calls to particular learning algorithms spec
by primitive actions in the learning plan (learning-strategy execution). Following the le
ing session, control is passed back to the performance system.

As mentioned, the learning system has access to a toolbox of learning algorithms
which the Nonlin component creates a learning plan. This toolbox includes a numb
algorithms that were re-implemented so that they operate on a frame representation o
ceptual entities used by the system. The algorithms currently contained in the toolbo
case-acquisition, explanation-based generalization (EBG), abstraction, and index lea
None of these algorithms perform the same task, so once the system identifies that a
ing goal is necessary, it is unambiguous which method applies to the goal. That is
research does not address the selective-superiority problem (Brodley, 1993). Instea
research examines how to order and select learning methods at a coarse grain level i
to create a learning strategy that avoids learning-goal interactions. Future researc
address the selective superiority problem and will incorporate more methods into the
tem’s toolbox (See Section 10.1.3 on page 248).

The learning system has access to nine IMXPs that drive the learning process
IMXPs are as follows:

105. Obtained from the University of Maryland at College Park at URL ftp://cs.umd.edu/pub/nonlin
in file nonlin-files.tar.Z.
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IMXP-SUCCESSFUL-PREDICTION
IMXP-EXPECTATION-FAILURE
IMXP-RETRIEVAL-FAILURE
IMXP-NOVEL-SITUATION
IMXP-NOVEL-SITUATION-ALTERNATIVE-REFUTED
IMXP-NOVEL-SITUATION-ALTERNATIVE-REFUTED-NO-ANOMALY
IMXP-BAFFLED-AND-RESOLVED
IMXP-ANOMALY-AND-BAFFLED
IMXP-ANOMALY-EXPLAINED

These representations are the most complicated knowledge structures in the pro
To appreciate the complexity of these representations consider the representati
IMXP-BAFFLED-AND-RESOLVED in Figure 30 on page 89. Although the frame de
nition takes an entire page in eight point font, the figure is still incomplete. Some slots
removed in order to fit the page. Moreover, the IMXP is one of the more moderately s
IMXPs, not the largest.

The following section explains what failure-causes the system actually cons
when making an assignment of blame.

8.5.2 The Implemented Space of Explanation Failures

As currently implemented, the blame-assignment phase of learning does not con
all of the failure causes enumerated in Table 5, “Detailed taxonomy of causes of reas
failure,” on page 53. However, as mentioned in the introduction to this chapter, the im
mentation does consider many more of these causes than do most AI systems.
present time, the system concentrates on errors that arise from missing and flawed d
information and the indexing of such information in the BK, that is, the “Knowled
States” columns of Table 5. Yet given this limitation, the combinations of failure enco
tered are many (see Figure 79), and, as will be explained in Section 8.5.3, “Learning
higher-order knowledge,” the resultant learning can be non-trivial.

Figure 79 graphically illustrates the space of failure causes that blame assign
considers in the experimental study presented in the next chapter. The shaded por
the figure represents Meta-AQUA’s performance system when no failures are detected
program first accepts a given input. If the input is anomalous, the system explains it
erwise it checks to see if the input is in any other way interesting. If it is interesting,
system explains it; otherwise, it skims the input and accepts another. Outside of the s
area represents the space of failures.
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When Meta-AQUA generates an explanation for an anomaly in the input story
explanation may be incorrect. Alternatively, it may reach an impasse when tryin
explain and thus not be able to generate an explanation at all. In the first case the ex
tion may be wrong, but the right explanation was in memory all along. If it cannot exp
an anomaly, the explanation may have existed, but could not be found. All of these
can occur both when the input is anomalous (left hand side of the figure) and when s
interesting (right hand side of the figure). An additional case occurs when Meta-AQ
explains an anomalous input correctly. It can then learn what was wrong with the kn
edge such that it thought it was anomalous when actually it was not.

The circles at the bottom list the combinations of failure that occur given the situa
(i.e., whether the explanation was given, etc.). The shaded circle represents the fault
hand coded story HC1 as described in Chapters VI and VII. Annotations undernea
circles refer to stories described in previous or subsequent sections.

One may object that because these all map to a single fault, a decision tree co
built rather than going through the introspective process. However, this figure repre
the conditions available only in hindsight or through the auspices of an oracle; it is a vi
flow-chart, not an actual flow of control in the program. Meta-AQUA must go through
blame-assignment process in order to determine the actual situation that applies to a
set of circumstances. For example, there is no way that the system can determ
advance that it has the right explanation in memory but failed to find it (i.e., has forgo
the explanation and so the error ismissing association). A set of if-then statements will
not suffice to perform blame assignment.

This set of failure combinations represents an exhaustive set of causes tha
account for reasoning failure assuming correct processes, goals and input. Adding
other dimensions makes the blame-assignment task much more complex. Howev
believe that deriving representations for these additional combinations will be trac
given a full analysis of the possibilities. Heuristics must developed, however, to esti
when the assignment of blame will be so difficult that metareasoning should not be pu
(see next chapter).

A number of other researchers have presented learning approaches to many
other failure types not covered directly in the Meta-AQUA implementation, although t
do not specifically consider the learning-strategy construction problem. Given
research, we can outline a number of relevant approaches to failure causes from Tabl
covered in this implementation. Research from these areas can be used in the fu
make Meta-AQUA more complete.
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• Input Noise: The reasoner may possess the right knowledge, have it organized
proper manner, and use the correct reasoning methods, yet fail due to incorrect or in
plete external knowledge sources. In reasoning tasks, the blame may be due to me
ment errors, obsolete data, missing data, or explicit deception by another agent.
learning solution is to determine the conditions under which knowledge sources are re
and the kinds of data that are necessary in a given situation (Booker, Goldberg & Hol
1989). Data from human studies can be useful here to constrain the learning (e.g
Johnson & Seifert, in press).

• Incorrect Reasoning Choice: This failure type occurs when the reasoner has
appropriate knowledge structure with which to reason and an index to the structure in m
ory, but incorrectly chooses the wrong knowledge because the reasoning method it de
to use turned out to be inappropriate or inapplicable. An analysis of the choice of reas
methods results in learning control strategies designed to modify the heuristics (or ad
heuristics) used in this choice (Mitchell et al., 1983; Sleeman, Langley & Mitchell, 19

• Flawed behavior / Missing behavior: The fault may occur because of incorrect pro
cedural knowledge. Stroulia (1994) has presented an interesting metaphor that pe
directly to these failure causes. She treats a cognitive system as a device having rea
components and models them with structure-behavior-function (SBF) models. This a
her Autognostic system to perform blame-assignment with the SBF models in the
manner that other systems diagnose physical devices in the real world. Such refl
diagnoses enables self-repair (learning).

8.5.3 Learning about higher-order knowledge

As described by Section 8.3.3, Tale-Spin outputs a CD representation of events
story, and a translator converts these concepts into a frame representation that Meta-
understands. Often the input from Tale-Spin does not match Meta-AQUA’s conceptua
initions and so the system detects an anomaly (e.g., the input dog-barks concept is a
lous because the object at which the dog barks is animate whereas the conceptual de
from which the system compares the input constrains the object slot to inanimate).
ever, Meta-AQUA’s conceptual knowledge for these primitive representations is no
only source ofincorrect domain knowledge in the system. As explained in Section 8.2
during conceptual skimming a script application mechanism interprets the primitive
given to it by using hierarchical knowledge from scripts. Therefore, the inferences ge
ated by these knowledge structures themselves may also contain errors that lead to

For instance, consider story TS3 in Figure 80. To represent sentence S26 (“
smokes pot.”), Tale-Spin generates the CD primitiveINGEST whoseactor is Elvis and
whoseobject is marijuana.106This representation itself causes no anomaly because
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actors ofINGEST are volitional agents and the objects may be plants. But, the sc
applier incorporates theINGEST into a Smoke-Pipe scene of theSmoking-Script. It
then examines theSmoke-Pipe scene for interesting input (and to see if it answers any p
vious questions). Now becauseSmoke-Pipe has a constraint limiting the ingredients o
pipes to be tobacco, an anomaly will result because of the knowledge in the scene’s d
tion, not the definition of INGEST.

Following the detection of the anomaly, the system then asks why Elvis smoke
marijuana. As a consequence, Meta-AQUA will use a tobacco smoking explanatio
answer why Elvis chose to perform such an action. The resultant hypothesis is th
action of smoking the pot relieves the tension of withdrawal from the effects of an addi
substance. This explanation is later confirmed in the story (at S36), so the explanat
accepted. The subsequent learning uses an IMXP calledIMXP-ANOMALY-EXPLAINED
to change by abstraction the constraint of the smoking scene to be any plant, rather th
tobacco (unfortunately an overgeneralization).

So although only one failure type was involved (incorporation failure) and only one
learning algorithm needed (abstraction), even simple learning can be complex. The
lem is complex because inference is involved rather than just matches against conc
the BK.

106. For a full trace of the system behavior under this example, see Appendix B.

One day Elvis was bored.Elvis pushed cupboard-door away from the cupboard1. The
cupboard1 was open. He took the pipe1 from the cupboard1. He had the pipe1. The
cupboard1 didn’t have the pipe1. He pushed cupboard-door to the cupboard1. The cupboard1
wasn’t open. He pushed fridge-door away from the fridge1. The fridge1 was open. He took
the ganja1 from the fridge1. He had the ganja1. The fridge1 didn’t have the ganja1. He
pushed fridge-door to the fridge1. The fridge1 wasn’t open. He poured the ganja1 into the
pipe1. The pipe1 was filled with the ganja1. He took the lighter1 from the table2. He had
the lighter1. The table2 didn’t have the lighter1. He pushed the lighter1. The lighter1 was
on. He moved the lighter1 to the ganja1. The ganja1 was burning. He pushed the lighter1.
The lighter1 wasn’t on. (S26) He smoked the ganja1. The pipe1 wasn’t filled with the ganja1.
The pipe1 was dirty. He exhaled the smoke1 into the air1. He pushed hot-faucet-handle away
from the hot-faucet. The hot-faucet was flowing. He moved the pipe1 to the hot-faucet. The
pipe1 wasn’t dirty. He pushed hot-faucet-handle to the hot-faucet. The hot-faucet wasn’t
flowing.  (S36) He smoked the ganja1 because he didn’t want to be drug-withdrawing.

--- The End ---

Figure 80. Tale-Spin story TS3
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8.5.4 Forgetting a Learned Explanation

Even when a system learns new concepts or changes old ones, the successfu
this information may not always occur if the BK is not organized to promote the retrie
of it when needed. The examples of Section 2.1 illustrated that, even though Meta-A
may learn a new explanation in one story, it can fail to reuse the explanation in a subse
story. A retrieval impasse can occur because, given the cues that compose a prob
memory, the existing explanation can lack the proper index with which to traverse the
and thus to find the item. In effect, Meta-AQUA can forget learned explanations and
expect instead to acquire this knowledge anew. When Meta-AQUA is given the correc
explanation, the system must be reminded of the explanation that already exists in me
Therefore, rather than pursuing a goal to acquire and expand the knowledge, it must b
to switch to a goal of reorganizing the knowledge. That is, learning goals are not s
even a system that uses the introspective method of deciding what to learn must be pr
to change its learning goals dynamically.

Consider the earlier scenario examined in Chapters VI and VII. The hand-co
story, HC1 (also the automatically generated story, TS1), represents a particular confi
tion of events. In the story, a police dog barks at some luggage in an airport (or at a va
Elvis’ home in TS1). Meta-AQUA considers the event to be anomalous because the s
believes that dogs bark only at animate objects. As was seen earlier, the program eve
learns that dogs can bark at any physical object, including inanimate ones. It also l
the new explanation that “dogs bark when detecting contraband.” After processing
(TS1), Meta-AQUA’s memory contains knowledge of two explanations for why dogs b
an explanation for dogs that bark because they are threatened (indexed bydog-barks-
at-animate-object ) as well as an explanation for dogs that bark because they de
contraband (indexed bydog-barks-at-container ).107

Tale-Spin then generates story TS4 (see Figure 81) and outputs it to Meta-AQUA
this story, Elvis and Lynn are about to play with the ball when the police arrive at the h
with a canine unit. The dog immediately goes to a throw rug and sniffs at the object (S
When the dog barks (S24) the officer pulls back the rug to find Elvis’ stash of mariju
Consequently, the officer arrests Elvis (S30) and takes him away (S32, S33). The stor
informs the reader that the dog barked because it detected the contraband (S35). B
Elvis looses his freedom due to the arrest, he can no longer play ball with Lynn, and
remains bored (the original problem that motivated the story).

107. See Section 8.4 for the representation of these two indexes, especially Figure 77.
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Immediately after the dog barks at the carpet, Meta-AQUA generates a questi
explain why the dog barked (see figure Figure 82). The reason for this decision is th
system has recently learned about dogs and barking, so it is interested in any subs
information that may be related. However, because the dog is barking at a rug and su
object is not a container, it does not retrieve the newly learned detection explanation
dog also is not barking at an animate object, so the old threaten explanation is not retr
Instead, it can generate no explanation to explain the interesting story concept.

Reviewing the reasoning trace that preceded the conclusion, Meta-AQUA chara
izes itself as “baffled” (impasse during memory retrieval). The system retrieves an IM
based on this characterization, which helps it explain its own reasoning failure. The s
ture is unified with the representation of the original reasoning (stored in a TMXP) w
produces the instantiation partially shown in Figure 83, “Instantiated forgotten dete
explanation.” The knowledge structure shows that memory retrieval produced no exp
tion in response to the system’s question.  Instead, a later input produced the answe

The IMXP suggests that a knowledge-expansion goal be spawned to generaliz
input explanation. This suggestion comes from thepotential-learning-goal slot of the
IMXP (see Figure 30., “IMXP frame definition for forgetting” on page 89). Conditio
attached to the knowledge-expansion goal allow it to be posted if the node A was e
acquired from the story or inferred, but not if it was retrieved from memory. A knowled
organization goal is also spawned in order to index the generalized explanation in me
These goals can be achieved by performing explanation-based generalization (EBG)

One day Elvis was bored. Elvis asked Lynn, "Would you push the ball1 to me away
from you?" Police-and-dogs arrived. Officer1 went to outside. The police-dog1 went to out-
side. He pushed door-bell-switch1. The door-bell1 was ringing. He didn't push door-bell-
switch1. The door-bell1 wasn't ringing. The phone1 was ringing. Mom picked up phone-
receiver1. The phone1 wasn't ringing. She had phone-receiver1. She let go of phone-
receiver1. She didn't have phone-receiver1. The cat1 pushed the vase2 to the floor1. The
vase2 was broken. She pushed light-switch1. The light1 was on. He went to the kitchen. The
police-dog1 went to the kitchen. The police-dog1 went to the rug1. (S23) The police-dog1
sniffed the rug1. (S24) The police-dog1 barked at the rug1. The police-dog1 was barking.
He went to the rug1. He took the ganja1 from the rug1. He had the ganja1. The rug1 didn't
have the ganja1. (S30) He arrested Elvis. He controlled Elvis. (S32) He went to outside.
(S33) Elvis went to outside. The police-dog1 went to outside. (S35) If the police-dog1
detects the ganja1 then the police-dog1 will bark at the rug1. Lynn went to the garage. She
picked up the ball1. She had the ball1. She went to outside. He asked her, "Would you push
the ball3 to me away from you?" He asked her, "Would you push the ball2 to me away from
you?" He was still bored.

--- The End ---

Figure 81. Tale-Spin story TS4
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of TS4
Figure 82. Meta-AQUA output during hypothesis generation phase 



206 ❖   8.5  Learning Subsystem

the

ts
I), or
is that
own
is

then
the

, the
rs to
list,

ld
new explanation (node A) and then indexing the explanation by the context in which
system encountered the explanation.

The system cannot determinea priori whether an abstract XP (node M) actually exis
in memory but could not be recalled (thus, the failure cause is a missing association,
whether the system lacks the knowledge to produce the explanation (thus, the cause
the situation is novel, i.e., M is missing). The system thus poses a question about its
IMXP (cf. Oehlmann, Edwards & Sleeman, 1994), “Does M exist in memory?” If M
missing, I is also missing; thus, the right question to ask is whether M exists, not I.108

The answer to the introspective question is obtained by performing EBG and
watching for a similar explanation in memory when it stores the new explanation via
indexing algorithm. As briefly described in Section 8.4.2 (specifically see page 194)
system can detect the presence of similar memories by maintaining a list of pointe
memory items for each conceptual type. At storage time, Meta-AQUA traverses the

108. Note that it cannot be the case that I is erroneous. If it were true, then some explanation wou
have been retrieved, although it may have been inappropriate.
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checking each to see if it can unify the new memory with any of the older ones.109 Meta-
AQUA thus finds the explanation produced by the previous story (see Figure 84).

Merging the two explanations produces a better explanation: Dogs may bark at ob
that hide contraband, not just at containers that hold contraband. The algorithm
indexes the generalization searches for the common ancestor of the object slots o
explanations; that is, objects that contain other objects and objects that cover other o
This common ancestor is the typehiding-place . Thus, so that these types of explan
tions will not be forgotten again, the system indexes the explanation by “dogs that ba
potential hiding places” and places a pointer to the merged explanation on the memo
for the symbolcausal-relation .

As a result of its learning, Meta-AQUA not only detects no anomalies in stories s
as HC3 (Figure 85), it predicts the correct explanation in S7 while processing S5.
importantly, however, this story illustrates the fact that learning goals are not static
rather, that they are subject to dynamic re-evaluation, even when the planner that cre
learning plan knows about interactions. Some facets that bear on the pursuit of lea
goals cannot always be anticipated in advance. In this case, the system had decided
needs to acquire a new piece of knowledge, but instead it discovers that it had the k
edge all along. So instead of achieving a knowledge expansion goal to generalize and
what it thinks is a new explanation, it rediscovers the old one and changes the learnin
to a knowledge organization goal.

109. This mechanism simulates a memory such as that of DMAP (Martin, 1989, 1990), whereb
memory items map to areas that contain similar memories. Although Meta-AQUA’s mechanism
is only a crude approximation to such architectures, the emphasis of IML theory is on the reason
ing about memory (or other reasoning processes), rather than on a representation of the memo
architectureper se. A more realistic mechanism would be for Meta-AQUA to use the generalized
XP as a probe to memory to see if it is now reminded of the old XP. The current method suffers
from the fact that it always finds the old XP at an unacceptable search cost.

S1: A person was outside a house.
S2: The policeman approached the suspect.
S3: His dog followed.
S4: The policeman saw that the person was near a compost pile.
S5: The dog barked at the compost pile.
S6: The authorities arrested the suspect for drug possession.
S7: The dog barked because he detected drugs.

Figure 85. Subsequent test story (HC3)
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8.6  Summary

This chapter described the Meta-AQUA implementation including the four major s
systems (not including the frame representation system). These are the performanc
system, the input subsystem, memory, and the learning subsystem. The perform
system is story understanding. Among new implementational details this chapter disc
concerning the performance system was the script application module and its implic
for learning about higher-order knowledge. The input system not only provides hand
lored stories as seen in previous chapters, but, as introduced in this chapter, it also in
an automatic story generator called Tale-Spin. The memory system is an indexed me
divided into the BK and FK. An important feature of the memory is that opportuni
remindings are supported so that multiple hypothesis formations and verifications c
interleaved within a series of inputs. We also saw that Meta-AQUA can benefit from le
ing in a particular story before the story is even finished.

This chapter also reintroduced the learning subsystem. When discussing the lea
system, an example of forgetting illustrated a number of points. First, forgetting can o
when the indexes for items are poorly organized in memory. Secondly, and more im
tantly, even if it knows about interactions between learning methods, the learning sy
must be prepared to change dynamically the learning goals being pursued. Finall
example demonstrated the utility of introspective questions.

Markovitch and Scott (1993) characterize learning systems in terms of filters pl
in an information flow through a system. Meta-AQUA possesses an input bias at the
end in the information flow; that is, the bias is to prefer failed experience. Markovitch
Scott call such a filterselective experience. They divide selective experience into thre
types: error-based, uncertainty-based, and miscellaneous heuristics. The example
sented in this thesis are all error-based, although the scope of the selective-experienc
in Meta-AQUA goes beyond their formulation because, as explained in Chapter III, e
has numerous variations, only one of which (contradiction) Markovitch and Scott con-
sider. Moreover, they claim that error-based filters are useful only when the input is i
form of problem/solution tuples. During the impasse of story TS4 (Section 8.5.4), how
Meta-AQUA generates no solution, yet the system was still able to learn a valuable le
from the experience.

Meta-AQUA filters input examples in a relatively passive manner. It waits for failu
to occur, then processes them by explaining the failure, deciding what to learn, and
structing a learning strategy. Another issue to pursue would be to have the system
actively generate failed experiences in order to test or disprove some hypothesis or t
erate learning experiences for some performance task. As Appendix A asserts, how
the system must be sensitive to inductive policies concerning the task domain. Curr



210 ❖   8.6  Summary

pe of

apter
fits of
the ability of a system to actively challenge itself and its knowledge is beyond the sco
our research.

With the implementational details presented by this chapter in hand, the next ch
can now examine how the total system is evaluated in an empirical study of the bene
introspective multistrategy learning.
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CHAPTER IX

EVALUATION

The answer is that we test the validity of an empirical hypothesis by seeing whether it
actually fulfills the function which it is designed to fulfil. And we have seen that the
function of an empirical hypothesis is to enable us to anticipate experience. Accord-
ingly, if an observation to which a given proposition is relevant conforms to our
expectations, the truth of that proposition is confirmed. One cannot say that the
proposition has been proven absolutely valid, because it is still possible that a future
observation will discredit it.  But one can say that its probability has been increased.

Alfred Jules Ayer (1936), p. 99.

Unlike most performance tasks in machine learning where optimal or provably co
solutions to well defined tasks exist (e.g., classification, path planning, and puzzle solv
it is unclear how to empirically evaluate understanding tasks fully. The question of wh
means for an agent to comprehend a story does not have a simple answer in objective
Solutions to comprehension tasks are often qualitative, in contrast to quantitative task
as mathematical problem-solving. Within mathematics a definitive answer to the que
“What is 2 + 2?” exists. However, to accurately answer the question “Why did Elvis sm
marijuana?” requires inference and subjective interpretation (Carbonell, 1981) with re
to Elvis’ goals and values. Moreover, the context of the question may be relevant for u
standing why the question is being asked and, therefore, for determining the best ex
tion; whereas, the context is irrelevant to answering the addition question.110For instance,
the most relevant answer may be “Because Elvis is on a diet” if, prior to the question
reasoner is told that Lynn just baked pot brownies. No absolutely correct answer e
Rather, many answers at different levels of specification can suffice depending upo
context, the question, and the knowledge of the reasoner (Ram & Leake, 1991). One
tribution of this research is to provide a quantitative measure that de-emphasizes com
and consistent explanations. Instead, it assigns “partial credit” when evaluating how

110. The context matters only if the immediately prior addition problems have been performed in
base three.  In this case the answer would be 11 rather than 4.
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grams understand and explain the input they experience. But more important is to ev
how an understanding system learns, that is, how it improves its ability to understan

The Meta-AQUA implementation tests the theory of introspective multistrat
learning presented in the previous chapters by providing a specific commitment to the
cepts within the theory. But the assertion that the implementation tests the model imm
ately raises the questions “In what way can it be considered a test, and what are
commitments?” That is, how does the program validate the theory, and how can it be
to be falsifiable? The implementation effort by itself is falsifiable in a sense. If the the
cannot be implemented by the researcher, then the theory can be said to be undersp
But although the last chapter showed that the theory passed this basic falsifiability
this chapter presents a more rigorous hypothesis, complete with a null hypothesis th
falsify the theory if accepted (see Section 9.1.1.2).

However, the theory is difficult to validate completely and with confidence. It is
a strict psychological theory designed to explain a particular set of known human data
is it a computational theory embedded within a conventional machine learning para
having an agreed-upon evaluation criterium. A cognitive psychologist cannot simply
a couple of human experiments that prove or disprove its validity conclusively. The c
puter scientist cannot simply run its learning algorithm against a standard test suite
domain theories from the UC Irvine Machine Learning Repository) in order to compa
to other learning algorithms, nor can the theoretician derive an average-case mathem
model to predict the algorithm’s accuracy and then compare it to actual behavior
Pazzani & Sarrett, 1990). Rather, the phenomena of interest (introspections and the
in learning) are at a large grain size; the performance task (story understanding) is s
tive; the hypothesis (introspection facilitates learning) is controversial. Such a st
places the researcher in the position of having no firm conventions upon which to
when evaluating the theory; however, the advantage of it is that significant molar be
iors can be examined and interesting issues entertained that fall outside of the sta
paradigm (Schoenfeld, 1992).

So why do cognitive scientists build programs? Many researchers (e.g., Newe
Simon, 1963; Simon, 1995) consider AI programs to be theories. But to equate the t
with the implementation is not necessarily warranted. The theory is contained in the
resentational formalism and the abstract algorithms, not in the program within which t
concepts are embodied. The programs are the means for carrying out empirical e
ments on the theory, much like psychological experiments test ideas contained in the
cal assertions about the mind or about behavior. The programmed configuratio
processes, knowledge, and input and the resultant program output can themselves
objects of study and comparison with human behavior that lead to greater confiden
doubt) in a given cognitive theory (Simon & Halford, 1995). But unlike psychologi
experiments, computer simulations do have the additional burden of separating the i
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mentational details needed to make a program run in a given language from the theo
claims upon which the program is designed to test.

The instantiation of theories into programs has benefits as well as burdens. The
cess of implementing a theory in a program forces the theorist to commit to specific
putational mechanisms, such as the assertion that learning entails blame assig
decisions to learn, and strategy construction. A computational commitment also re
where the theory requires adjustment. For example, an early assumption of IML th
was that Meta-XPs possessed uniform representation (Cox, 1991). As the implemen
developed, however, it became apparent that the computation needed two types of
explanations: one to explainhow the reasoning fails (TMXP) and another to explainwhy
the reasoning fails (IMXP). The function of each type is different. So, the evolution of
theory and its commitments is facilitated by the constructive feedback provided
machine output. This chapter presents an evaluation of the current manifestation of
commitments.

We provide a detailed description of how IML theory is evaluated, both from a co
putational and a psychological perspective. Section 9.1 briefly presents two hypot
stemming from this research and outlines how they are tested. Section 9.2 provides a
putational evaluation of the first hypothesis using data generated by the Meta-AQUA
gram with automatically generated input, while Section 9.3 evaluates the second hypo
by modifying Meta-AQUA to simulate psychological protocols of human subjects. T
final section, Section 9.4, summarizes the results and discusses additional issues.

9.1  The Hypotheses

The first and last sentences of the opening paragraph of the thesis summary (p.
form the two testable hypotheses of this research:

The thesis put forth by this dissertation is that introspective analyses facili-
tate the construction of learning strategies.... Thus, the object of this
research is to develop both a content theory and a process theory of intro-
spective multistrategy learning and to establish the conditions under which
such an approach is fruitful.

In general terms, the hypotheses and claims of this thesis are as follows:

Hypothesis 1. Introspection facilitates learning
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More specifically and as operationalized by Section 9.1.1.1, this statement is eq
lent to the assertion that the rate of improvement in story understanding with learning
exceeds that of story understanding without. The results from a test of this assertio
show that a loose coupling of blame-assignment and repair is preferred to a tight cou
That is, the deciding to learn stage is necessary for effective learning.

Hypothesis 2. IML theory is a sufficient model of introspection

As Section 9.1.2 makes operational, this statement seeks to test whether the
mentation of IML theory as embodied in the Meta-AQUA program is cognitively plausib
It passes the test if, after making a small number of modifications, the program is suffi
to cover a set of human data concerning the relationship between learning and meta
tion. As will be argued in Section 9.3.3, additional support for this hypothesis comes
the theory’s generality. That is, it can account for introspective learning in two set
humans protocols in two separate domains (learning to program in LISP and learni
troubleshoot electronic circuits), and in one set of artificial data in yet another dom
(learning to understand stories).

Although much future research remains to determine a full evaluation of these a
tions, this chapter presents a number of results that directly support them. In essen
approach to examining the two statements above is as follows. First, holding all othe
tors constant in Meta-AQUA, if the rate of improvement in the performance task (i.e.
learning curve) is greater with introspection than without, introspection must be resp
ble for the improved performance. Second, if, with minimal changes, the Meta-AQ
model can cover real human data on metacognition and learning, then the theory is a
cient one.

9.1.1 Hypothesis Number 1: Introspection facilitates learning

One approach to establishing the claims set forth in the previous section is to pe
a kind of ablation study. Surgically removing the learning goals eliminates part of the
tem’s mechanism responsible for introspection. The intention of this manipulation
show different empirical learning curves with and without introspection as a function o
number of inputs.

The methodology below not only tests the hypothesis that introspection facilit
learning, but also it more directly supports the position that a loose coupling of bla
assignment and repair (via learning goals) is preferred to a tight coupling approach.111But
perhaps more importantly, this methodological approach also subjects to scrutiny the
that the second phase of learning, deciding what to learn, isnecessaryfor effective learning.
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IML theory is the only learning theory that makes such a strong claim. Few computat
systems other than Meta-AQUA include an explicit calculation of a goal to learn and
use that goal to influence learning. So in addition to the arguments and hand-coded
ples from Chapter VII that support this position, this chapter presents quantitative evid
that supports the utility of this stage.

9.1.1.1 Fully introspective and semi-introspective learning

As presented in this document, introspective learning is a computational process
a decomposition as shown in the upper portion of Figure 86.Fully introspective multistrat-
egy learningconsists of examining one’s own reasoning to explain where the reaso
fails. It consists further of knowing enough about the self and one’s own knowledge
the reasoner can use such meta-explanations when deciding what needs to be learn
reiterated throughout this document, introspection amounts to performing blame as
ment and subsequently posting explicit goals to learn. Learning amounts to the con
tion of a learning plan designed to change the reasoner’s knowledge and thereby to a
the learning goals.

111. See Section 7.1, “Blame Assignment and Repair: Tight versus loose coupling,” starting o
page 212 for a detailed discussion of the issue.

Failure Blame
Symptoms

Failure
Causes

Learning
Goals Learning

PlanAssignment
Deciding What

to Learn
Strategy

Construction

Figure 86. Learning goal ablation
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Failure
Causes Learning

PlanAssignment
Strategy

Construction

Three phases of fully-introspective multistrategy learning

Two phases of semi-introspective multistrategy learning
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One measure with which to test the hypothesis that introspection facilitates lea
is to remove the goals from the introspective process above, leaving a more reflexive
ity. That is, while holding all other variables constant, the system can be run with and w
out learning goals to determine the effect of introspection. Instead of using the explan
of failure created during the blame-assignment phase to post a set of learning goals th
direct the construction of a learning plan, the explanation can directly determine the c
of repair methods as shown in the lower portion of Figure 86. This short-circuited me
is calledsemi-introspective multistrategy learning.112

Because the most meaningful comparison of the two types of learning is between
respective learning rates, rather than their relative system performance, the evalua
each must be with respect to a base performance of the system with no learning.
requirement entails that three experimental conditions represent the independent va
Holding steady all program parameters, the input, and the initial program-state, the
experimental condition includes learning goals, a second removes learning goals, a
third removes learning altogether. Section 9.2.1 on page 219 presents further detail
cerning the exact method by which learning is performed without learning goals.

9.1.1.2 The null hypothesis

The test of hypothesis number one includes a null hypothesis. If the learning rate
learning goals does not significantly improve the performance of the system compar
the learning rate without learning goals, then introspection doesnot facilitate learning. A
possibility arises, however, that the bulk of the power of the fully introspective method a
ally resides in the blame-assignment side of the IML process depicted in the upper h
Figure 86. Blame-assignment is also introspective and has a reflective component. P
Meta-XPs, rather than learning goals, provide the functionality responsible for effe
changes in the BK. In any event, to determine fully the relative contribution to learn
both parts of the IML process (i.e., the case-based introspection side and the non-
planning side) should be examined.

So although left for future research, to determine more completely the actual as
of introspection that are most responsible for any utility gained during learning (and to
guard the null hypothesis), the experiment should also perform the following two man
lations. First, by removing blame-assignment, the system maps failure symptoms di
to learning goals (see upper half of Figure 87). Secondly, to insure that an intera
between the two learning phases is not responsible for the effects, the experiment s

112. It is semi-introspective because, although part of the introspective process has been remov
the introspective mechanics of blame-assignment remain. The next section will discuss the ram
fications of this further.
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include a fully-reflexive method. That is, the system maps failure symptoms direct
learning algorithms, hencenon-introspective multistrategy learning(lower half of Figure
87). This chapter presents the first of the three potential manipulations (i.e., remo
learning goals).  Future research will investigate the other two.

Given negative learning interactions such as those demonstrated in Section 7.
experimental expectation is that fully introspective multistrategy learning will outperfo
semi-introspective multistrategy learning. Section 9.2 provides the experimental de
the data, and the results that bear on hypothesis number one.

9.1.2 Hypothesis Number 2: IML theory is a sufficient model of introspection

Previous chapters describe a model of introspective learning that constructs a lea
strategy at a micro-level. The resultant learning plan consists of calls to machine lea
functions from standard inventories and so appears to be an engineering approach to
ing. In such light, the theory is a response to a computer science problem concernin
proper integration of machine learning algorithms in complex situations. And although
framework within which this introspective process operates is cognitively oriented (e.g
theory emphasizes memory access rather than search), it is perhaps asking too much
reader to accept the implementation as a theory of human introspection. Nonetheless
aspects of the theory pertain to human behavior and cognition in the real world (e.g
taxonomy of failure applies as equally to human reasoning failure as it does to logical e
of computation).

Failure
Symptoms

Learning
Goals Learning

Plan
Deciding What

to Learn
Strategy

Construction

Failure
Symptoms

Learning
Plan

Strategy
Construction

Alternate phases of semi-introspective multistrategy learning

Fully-reflexive (non-introspective) multistrategy learning

Figure 87. Alternate ablations
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Despite the technical orientation, a useful cognitive science experiment is to exa
whether the theory presented here could model a macro-level learning behavior. Of in
are the molar learning strategies exhibited by human novices as they acquire comple
nitive skills and domain knowledge. That is, we are interested in better understanding
driven learning at the level of deliberate behavior. This entails an approach where the
ing goals are not micro-goals, such as the goal to reconcile an input with a conceptua
egory (at best this kind of a goal represents some lower level generalization process
instead the learning goals represent explicit desires for knowledge change in the fa
real-world learning problems.

Recker and Pirolli (1995) have shown that a Soar-based model of learning c
SURF can explain individual differences exhibited by human subjects while learnin
program in LISP using instructional text. The difference that accounted for much o
variability was self-explanation strategies. Those students who explained problem
themselves during comprehension of the instructions performed well on a subsequen
formance task consisting of LISP programming exercises. The students who did not e
this behavior were not as likely to excel in the LISP task. The SURF model predicted
differences. The model took into account only domain-related elaborations; however
jects exhibited other self-explanations that the model did not cover. In particular, some
jects seemed to exploit metacognitive feedback, like comprehension monitoring, in
to judge when to learn (Pirolli & Recker, 1994). If self-reflection on the states of a subje
comprehension of the instruction indicated an understanding failure, then this was s
times used as a basis to form a learning goal.

These data are well-suited for implementation in the Meta-AQUA framework
have the virtue of already existing. An additional benefit is that both the data and the M
AQUA model arose independently. If Meta-AQUA can be changed with minimal eff
including the addition of the learning strategies suggested above, then there is eviden
IML theory is a reasonable model of introspection. In addition, the model gains credib
if it can be extended to a new performance domain: instructional text comprehensi
addition to story understanding. If the changes to the model are significant, however
the believability of our theory as an approximate model of human metacognition is
ened.  Section 9.3 reports the outcome of this experiment.

Q0: How can IML theory be evaluated?
Ans0: Test Hypotheses 1 and 2.
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9.2  Computational Evaluation

This section presents the results of computational studies performed with M
AQUA to test the first hypothesis. Section 9.2.1 describes the independent variable u
this experiment. The program is run with learning goals, without learning goals, and
no learning in order to compare learning by direct mapping of repairs to learning arbitr
by goals. Section 9.2.2 describes the dependent variable (i.e., the measure chosen
uate learning). This measure quantifies a kind of “partial credit” for self-explanation
assigning points for generating questions, additional points for issuing any answer, an
more points for computing the correct answer. Next, Section 9.2.3 reports the data
lected in the computational study. It establishes the claim that introspection facili
learning by showing that the learning curve of fully introspective multistrategy learn
indicates an improvement over the learning curve of semi-introspective multistrategy l
ing.

9.2.1 The Experimental Conditions (Independent Variable)

As discussed in Section 9.1.1, learning rates relative to a baseline no-learning c
tion are compared between a fully introspective and a semi-introspective version of M
AQUA. The independent variable that effects this change is the presence and influen
learning goals. The first experimental condition is called the learning goal (LG) cond
and represents Meta-AQUA as described in Chapter VIII. The LG condition builds a le
ing strategy guided by the learning goals spawned by the IMXP that explained the fa
and hence represents a loose coupling approach between fault (failure cause) and r

The second condition is called the random learning (RL) condition. Given the ex
nation of the causes of failure the system can directly assign calls to particular lea
algorithms for each fault. The construction of the learning plan is then performed by a
dom ordering of these function calls, rather than by non-linear planning to achieve
learning goals. Without the learning goals, the RL condition represents a tight cou
approach, that is, a direct mapping from fault to repair.

The final condition is called the no learning (NL) condition in which Meta-AQUA pe
forms story understanding, but if a failure exists, the system constructs no learning str
This condition represents the base line performance from which both the LG and RL
ditions can be compared. Surprisingly, conditions exists for which no learning outperfo
random learning (see Section 9.2.3.2 on page 224).

Holding all variables constant except the independent variables, Meta-AQUA is g
input from the Tale-Spin problem generator and a dependent variable is measured
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next section describes the criteria by which the performance of the system is measure
determining the dependent variable.

9.2.2 The Evaluation Criteria (Dependent Variables)

In previous research, paraphrase and question answering tasks have been used
sure successful story understanding (e.g., Cullingford; 1978; Lehnert, Dyer, Johnson,
& Harley, 1983; Wilensky, 1978; Schank & Riesbeck, 1981).113 If a reader sufficiently
understands a body of text, then the reader should be able to summarize the central
of the story and list the major events within the story. If the story is well understood,
the reader can answer questions concerning the events and relationships within the
However, the measurement these researchers use is qualitative, rather than quantit

With story understanding programs such as BORIS (Lehnert et al., 1983),
researchers pose questions to the system and subjectively evaluate the answers to de
text comprehension effectiveness. But such evaluation is potentially biased becaus
tempting to ask only those questions already known to be answerable. In contrast to
nally posed questions, Chi (1995, Chi et al., 1989) reports that improved learning is c
lated with human subjects who generate their own questions and explain the an
themselves (see also Pressley & Forrest-Pressley, 1985). This is the so calledself-explana-
tion effect. Thus, the ability of a system to pose self-generated questions both ind
actual understanding and simultaneously reduces the probability of asking only the
questions.

Consider the following quote from Gavelek & Raphael (1985).

One form of metacognition - metacomprehension - addresses the abilities
of individuals to adjust their cognitive activity in order to promote more
effective comprehension. We have been interested in a specific aspect of
metacomprehension - namely, the manner in which questions generated by
sources external to the learner (i.e., from the teacher or text), as well as

113. In 1991, the Third Message Understanding Conference (MUC-3) cast the evaluation criterium
for natural language systems as information extraction. The test is to provide a system with a un
form corpus of stories and to judge it based on how much information is extracted from it, how
much of the extracted information is correct (as judged by prior human evaluation on the corpus
and how much extraneous information was extracted (Lehnert & Sundheim, 1991; Lehnert
Cardie, Fisher, McCarthy, Riloff, & Soderland, 1995). Although representing an unbiased
approach, the criterium is more appropriate for evaluating text understanding (the performanc
system), rather than the learning, explanation, and metacognitive components of the performan
system.
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those questions generated by the learners themselves, serve to promote
their comprehension of text.  (p. 104)

The ability to adjust cognition in order to improve comprehension is at the heart o
research presented here. Thus, simply being able to recognize that a gap exists in one
knowledge, and to therefore ask the question “Why don’t I understand this?” (Ram, 1
is the first step to improving the understanding, rather than actually giving an answer
to evaluate the ability of the performance of the Meta-AQUA system, credit should be g
for simply posing a question that deserves asking.

A basic evaluation measure is to count the number of questions answered corre
ascertain an absolute measure of performance. However, human students who are
questions on reading tests are sometimes given points for partial answers. As discus
the introduction, unlike questions in mathematics that have a provably correct an
answers to explanatory questions are difficult to judge in an absolute sense. To m
more realistic measure, the criterium to evaluate performance in comprehension sy
such as Meta-AQUA should assign some credit for providing any answer to a questi

Therefore, the full evaluation metric is as follows. For each anomalous or interes
input in a story, a point is given for posing a question, an additional point is given for
viding any answer whatsoever, and a third point is assigned for answering wha
researcher judges correct. The sum of these three point values represents the dep
variable.

9.2.3 The Empirical Data

This section reports data from six experimental runs of Meta-AQUA. To serve
experimental trials and to minimize order effects, Tale-Spin generated six ran
sequences of Elvis World stories (see Section 8.3.2, “The Elvis World,” starting
page 185). On each of these runs, Meta-AQUA processed a sequence three times, o
each experimental manipulation. The system began all runs with the same initial c
tions. For a given experimental condition, it processed all of the stories in the sequ
while maintaining the learned knowledge between stories. At the end of the sequenc
system reset the BK. The input size for a run varies in length, but averages 27.67 s
per run.114The corpus for the six runs includes 166 stories, comprising a total of 4,884
tences. The stories vary in size depending on the actions of the story and Tale-Spin
domness parameters (e.g., the probability that characters throwing an object will st
the current toss), but average 29.42 sentences apiece.115
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9.2.3.1 Run Number Four

Run four is particularly interesting because the greatest number of negative lea
interactions occur in this set. The input to run four consists of the 24 stories as enume
in Table 9 (see Appendix C for a complete listing of all stories in this run). The stories
tain a total of 715 sentences altogether. The average number of sentences per story is

Each numeric entry in Table 9 contains a value for each condition. The entries ar
ples of the form <LG, RL, NL>. For example, the second column represents the nu
of learning episodes for each trial and for each condition. Note that the third eleme
each triple in this column is zero since learning is disabled in the NL condition. The s
column (“Question Points”) contains the values for the dependent variable. These v
represent the sums of the triples from the third, fourth, and fifth columns (“Posed Q
tions,” “Answered Questions,” and “Correct Answers,” respectively).

In this run, random drug busts occurs 11 times (5 with the canine squad and 6 w
lone police officer).116Table 10 shows the distribution of protagonists within the stories
run four.117 Dad was the most common protagonist, while Elvis, Officer1, and Lynn w
tied for the least common.

Table 11 shows the distribution of problems encountered by these main chara
Boredom is the main problem encountered in Elvis World for run four, although consi
ing the number of random drug busts, the household can hardly be classified as sedat
main characters solved (or attempted to solve) seven of these boredom problems by p
with one of three balls and solved three by playing with balloons. The state of being

114. The reason that each run varies in length is that, after generating around 600,000 gensym
Meta-AQUA will use all available swap space on the Symbolics and thus inadvertently halt the
underlying LISP system. We then discard the story which is being processed at the time of th
crash.  The data from the remaining stories constitute the results of the run.

115. As explained in Section 8.3, the input is preparsed and thus represented conceptually rather th
in English.

116. Not every time the police dog accompanies the officer will he bark at inanimate objects. It bark
at the location it thinks the pot is hidden. By random juxtapositions of events, this location will
sometimes be animate. For example, story number three of run number four (see Appendix C fo
listing) contains a drug bust by the officer and his dog. The characters randomly enter the hous
just as Elvis is preparing to smoke by filling his pipe with marijuana. As a result, the police dog
approaches Elvis and barks at him rather than at an inanimate object. The program thus dete
no anomaly in the input dog-bark concept.

117. Karen was removed from the cast of main characters available as a protagonist, and the state
hunger was removed from the possible initial problem states, so that Tale-Spin now generates
more uniform distribution of failures.
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Table 9: Results from run number four

Story
Number

(sentences)a

Learning
Episodes
(LG RL NL)

Questions
Posed

(LG RL NL)

Answered
Questions
(LG RL NL)

Correct
Answers
(LG RL NL)

Question
Points

(LG RL NL)

Protagonist and
Problemb

1 (26) 1 1 0 1 1 1 0 0 0 0 0 0 1 1 1 Mom bored (balloon

2 (19) 2 3 0 3 3 3 3 2 2 1 0 0 7 5 5 Mom bored (ball)

3 (38B) 1 1 0 1 1 1 0 0 0 0 0 0 1 1 1 Elvis jonesing

4 (51b) 0 1 0 1 1 1 1 0 0 1 0 0 3 1 1 Dad jonesing

5 (21) 0 1 0 1 1 1 1 0 0 1 0 0 3 1 1 Mom bored (ball)

6 (13) 0 1 0 1 1 1 1 0 0 1 0 0 3 1 1 Officer1 concerned

7 (13) 0 1 0 1 1 1 1 0 0 1 0 0 3 1 1 Dad bored (ball)

8 (21) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Dad thirsty

9 (44B)  1 2 0 2 2 2 2 1 1 1 0 0 5 3 3 Dad thirsty

10 (51B) 0 1 0 3 3 3 2 1 1 2 1 0 7 5 4 Dad bored (balloon)

11 (11) 1 2 0 2 2 1 1 1 1 1 0 0 4 3 2 Lynn bored (ball)

12 (3) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Officer1 concerned

13 (47b) 0 0 0 2 2 1 1 1 0 1 1 0 4 4 1 Mom thirsty

14 (15) 0 4 0 4 4 4 4 2 3 4 0 0 12 6 7 Mom bored (ball)

15 (28) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Lynn jonesing

16 (42B) 0 1 0 2 2 2 2 1 1 2 1 0 6 4 3 Dad jonesing

17 (45b) 0 0 0 2 2 1 1 1 0 1 1 0 4 4 1 Elvis jonesing

18 (21) 0 1 0 2 2 2 2 1 1 2 1 0 6 4 3 Officer1 concerned

19 (20) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Dad jonesing

20 (52b) 0 1 0 2 2 1 1 0 0 1 0 0 4 2 1 Dad bored (balloon)

21 (39b) 1 1 0 2 2 1 1 1 1 1 1 1 4 4 3 Lynn jonesing

22 (17) 0 2 0 2 2 2 2 1 1 2 0 0 6 3 3 Dad bored (ball)

23 (40B) 1 1 0 2 2 2 1 1 1 1 1 0 4 4 3 Elvis thirsty

24 (38b) 0 1 0 2 2 1 1 1 0 1 0 0 4 3 1 Mom bored (ball)

Total 715 8 26 0 38 38 32 28 15 13 25 7 1 91 60 46

a. The letter “B” means that the story contains an attempted drug bust by the police canine squa
whereas the letter “b” means that the officer entered the house alone to attempt a bust.
b. Items in parentheses represent games played to dispel boredom.
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cerned is the least recurrent problem exhibited in the run. This low frequency of occurr
is attributable to the constraint that Officer1 is the only character to whom Meta-AQUA
assign this state.

9.2.3.2 Quantitative Results

This section summarizes the results of the experiment. First, we will analyze
results of run number four, and then report a summary of all six runs. Table 9 total
results in the bottom row. Table 12 presents these results. The Question Points colum
tains the value of the dependent variable. As shown in this column, Meta-AQUA pe
mance under the LG condition is significantly greater than the performance under th
condition. In turn, Meta-AQUA’s performance under the RL condition far exceeds its
formance under the NL condition.

Alternatively, if only absolute performance is considered as measured by the nu
of correct answers, then the differential is even greater, as shown in the fifth column
this measure, the LG performance is more than three times the performance under t
condition, whereas, the performance under the NL condition is insignificant. By loo

Table 10: Main character distribution (run four)

Protagonist Incidence

Dad 9

Mom 6

Elvis 3

Lynn 3

Officer1 3

Table 11: Problem distribution (run four)

Problem Incidence

Boredom 10

Jones 7

Thirst 4

Concerned 3
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at column four, however, the numbers of questions answered in some way (right or wr
are roughly equivalent in the RL and NL conditions, whereas the ratio of the LG cond
to either of the other two is 2:1. Finally, the number of questions posed are approxim
equal across all three conditions.

In contrast to these differences in performance, Meta-AQUA attempts to learn
failure more than three times as often under the RL condition as under the LG cond
That is, learning is moreeffectivewith learning goals than without. In the RL condition
learning does not increase performance as much as does the LG condition, while co
rently, it leads Meta-AQUA to expend more resources by increasing the amount of lea
episodes. Thus, the system works harder and gains less under RL than under LG. A
closer examination of the trend in the dependent variable for run number four, this se
statistically quantifies the increase in learning effectiveness across the six runs.

Figure 88 shows the accumulation of question points across trials (i.e., stories) i
number four.118This figure illustrates a clear trend that is representative of all six runs;
behavior of the system as measured by the dependent variable is greatest under the L
dition, next best under RL, and worst under the NL condition. However, the trend doe
hold for each individual trial. For example, Figure 89, the raw scores, shows that the
condition actually outperforms the RL condition in trial number 14. The reason for
effect is that under worse-case conditions, if the interactions present between lea
methods are negative, the performance may actually degrade. As a result, ran
ordered learning may be worse than no learning at all.

The differences as a function of the independent variable are even more prono
if only accuracy (the number of correct answers) is examined and partial credit ign

Table 12: Summary of results from run four

Learning
Condition

Learning
Episodes

Questions
Posed

Answered
Questions

Correct
Answers

Question
Points

LG 8 38 28 25 91

RL 26 38 15 7 60

NL 0 32 13 1 46

118. Note that the final extent of all three curves reach the value of the triple in the totals column fo
column six.
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Figure 88. Run 4, cumulative question points as a
function of the number of problems
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Figure 90 shows that under the RL condition, Meta-AQUA did not answer a question
rectly until trial number 10, whereas under the NL condition, it did not perform corre
until trial 21. On the other hand, because under the LG condition the system learned
explanation early in trial number 1, it was able to answer a question by trial number
This striking result was facilitated by the random order of input (i.e., the second trial
pened to be about the same problem as the first) as well as by computational introspe
Figure 91 shows the raw absolute accuracy scores.

Table 13 summarizes the evaluation data from the six program runs. As is ev
across all runs, the LG condition consistently outperforms the RL condition in the
cumulative question points. In turn, the RL condition outperforms the NL conditi
despite the occasional poor performance due to negative interactions. As indicated
standard deviations, the amount of differences between and within conditions exhibit
variability across runs.

Given these totals, the percent improvement for either learning condition over th
base condition is simply the ratio of the difference in the base performance score and
score to the base score itself. Thus for run one, the ratio of the difference between th
and NL conditions (35 points) to the NL condition (50 points) is .7, or 70 percent. Ag
the improvement in performance for the LG condition is consistently higher than that o
RL condition. This difference is calculated in the final column. The differential is the p
cent improvement of the LG condition over the RL condition and is computed by the s
measure as was the improvements in the individual learning conditions. That is, the d
ential is the ratio of the difference between the two improvements to the lower rat119

Thus, the differential between the LG rate of learning in run number one and that of th
condition is the ratio of the difference (8 percentage points) to the RL percentage
Hence, the ratio is .129, or an improvement of nearly 13 percent.

Although the average differential between the two learning conditions (i.e., betw
fully introspective multistrategy learning and semi-introspective multistrategy learnin
more than 106 percent, this figure overstates the difference. The expected gain in le
is more conservative. The differential between the average LG improvement (102.70
the average RL improvement (65.67) is a 56.38 percent difference. That is, across a n
of input conditions, the use of learning goals to order and combine learning choices s
show about 1.5 times the improvement in performance than will a straight mapping of f
to repairs when interactions are present.

119. Note that this ratio can also be calculated as the difference between the performance scores
the learning conditions to the difference between the performance score of the RL and NL
conditions.  In other words, the ratio (LG-RL) / (RL-NL).
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Figure 90. Run 4, cumulative correct answers (accuracy)
as a function of the number of problems
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The results of this section show that learning is more effective with introspection
without, given the task of story understanding. Moreover, we have shown that bec
learning algorithms negatively interact, the arbitrary ordering of learning methods (i.e
under the RL condition) can lead to worse system performance than no learning at all.
an explicit phase to decide what to learn (i.e., via learning goals or an equivalent m
nism) isnecessaryto avoid such interactions in multistrategy environments. Without me
ation between blame assignment and strategy construction, (i.e., without loose cou
learning will not be effective given non-independent learning methods. The following
tion demonstrates that the content and process theories of introspective multistrategy
ing presented in Parts Two and Three are sufficient to model introspection computation

9.3  Psychological Plausibility

The previous section tested hypothesis number one, examining Meta-AQUA fro
computational perspective. This section tests hypothesis number two by examining
AQUA to see whether it is sufficient for modeling human learners. Using protocols f
the Pirolli and Recker study and taking the strategy categories as a given, the goal o
experiment is to begin to investigate the feasibility of modeling metacognitive beha
using IML theory. Although the ambitions of this section are more limited, for Me
AQUA to fully model human metacognition it should be able to simulate the follow
imaginary sequence of reasoning. A graduate student fails his AI qualifying exam and

Table 13: Summary of cumulative results

Run
Numbera LG RL NL

% LG
Improved

% RL
Improved

Improvement
Differential %

Run 1 (34) 85 81 50 70.00 62.00 12.90

Run 2 (30) 106 98 43 146.51 127.91 14.55

Run 3 (28) 120 102 60 100.00 70.00 42.86

Run 4 (24) 91 60 46 97.83 30.43 221.43

Run 5 (22) 57 49 27 111.11 81.48 36.36

Run 6 (28) 103 66 54 90.74 22.22 308.33

Averages 93.67 76.00 46.67 102.70 65.67 106.07

Std. Dev. 21.72 21.31 11.34 25.43 38.17 126.59

a. Amounts in parentheses indicate total number of stories in each run.

Cumulative Question Points
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I flunked the depth exam because I did not know good answers for the cog-
nitive science questions during the essay section and I forgot how the EBG
algorithm and Michalski’s Star algorithm really worked during the last part
of the technical section (blame assignment). Thus, I need to learn more
about both human psychology and machine learning algorithms beyond
what was in the Ph.D. reading list (deciding what to learn). One way I can
learn this is to find additional reading materials about some of the technical
algorithms and I can take the graduate cognitive psychology course that I
skipped last year. I can do a computer literature search to find papers deal-
ing with machine learning in order to review the material I had in the
machine learning class last quarter. I can then ask the other students that
passed the test if they would suggest which papers are best, go to the
library to either check them out or photocopy them, and finally read them
thoroughly. I should then implement some of the algorithms so I remember
them better. I could even run an experiment during the lab section of the
Psych class. It could investigate how humans learn from examples and
compare these results with the AI algorithms (learning strategy construc-
tion).  I’ve got to pass the test next time.

As an experiment toward the goal of creating a system that reasons in similar wa
the graduate student, this section presents the results of an effort to simulate protoc
novices that are learning to program in LISP. This result is significant, not only becau
is real instead of artificial data, but because the performance task is problem solving
than story understanding. This bolsters the support for hypothesis two by showing th
theory is general enough to apply to more than a single task domain. After discussin
Pirolli and Recker data (Section 9.3.1) and the LISP programming simulation in M
AQUA (Section 9.3.2), a concluding section (Section 9.3.3) briefly discusses a sep
IML-based implementation, called Meta-TS, that improves its ability to troubleshoot e
tronic circuits.  This research adds support to the claim of generality of the theory.

9.3.1 Learning to program in LISP

Recker and Pirolli (1995) present a cognitive model based upon data from a stu
which learners study instructional materials pertaining to LISP prior to problem solvin
the programming domain. The instruction is embedded in a computer-based hypertex
tem, through which students navigate by clicking on mouse buttons. Learners attem
understand the instructional material by explaining it to themselves, using a general
ing strategy called self-explanation. After instruction, the subjects engage in problem
ing in a recursive, LISP programming task using the CMU LISP tutor (Anderson & Re
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1985). The tutor provides intervention when the subjects make mistakes and even
guides the students through each of the test exercises. It is important to note, then,
given subject could actually finish a problem, thus producing a solution, without actu
understanding the reasons why the solution is correct or sufficient for the problem.

Previous research has shown that a subject’s engagement in self initiated expla
of examples appears to affect significantly a student’s initial understanding and their
sequent problem-solving performance (Pirolli and Recker, 1994). Besides self-exp
tions, however, these studies report that introspective behavior also correlates
problem-solving performance. Between trials during the LISP programming tasks,
jects often generated reflective protocols spontaneously and without experimenter in
tion or prompts. For example, subjects sometimes used awareness of compreh
failures as a cue to re-read example solutions or instructional text material. These kin
learning strategies helped the subjects improve their subsequent performance by le
items such as new problem-solving operators.

Recker and Pirolli analyzed the subject protocols, thereby producing a categoriz
of the kinds of protocols subjects produce. In the most broad division, statements we
three types: Monitor, Domain and Strategy.Monitoring statementsverbalize the subject’s
awareness of the level of performance or understanding. They typically assert whethe
have a successful understanding, a failed understanding, or are unsure of their know
Domain statements, on the other hand, concern the problem solutions and attempt to
grate them with their general understanding of the domain as acquired from the ins
tional text. Most protocols in this category either elaborate single problem sol
episodes, or compare and contrast a recent one with either an earlier test problem
example problem from the instruction. The third protocol category, the Strategy type, i
major focus of this thesis.

Strategy statementsare explicit statements concerning student intentions to learn.
seven subdivisions of this category (see Figure 92) relate how the students picture the
formance with respect to their knowledge of the task and the instructions from which
knowledge was gleaned. An important goal in learning in the domain of programmin
to make operational the declarative information in instructions, thus transforming pro
tional knowledge into specific procedures for writing code during the programming t
The strategies in Figure 92 center on the above goal.

9.3.2 Meta-AQUA Simulation

This section describes the changes to Meta-AQUA required to model a selected
tocol fragment from the Pirolli and Recker data. This exercise not only supports the s
ciency criterion for the cognitive plausibility of Meta-AQUA, but it also explores t
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1. Trace Restatement:
This strategy is a superficial restatement of the solution in LISP-
like terms. We have interpreted it as an attempt to rehearse the
material, thus providing a better memory for the information
therein.

2. Re-read Solution:
Re-reading the solution is a deeper review of the principle behind
the solution, trying to understand it in an abstract sense.

3. Reflect on Errors Made:
This reflective strategy attempts to learn by understanding what
went wrong with a problem-solving move that the tutor corrected.

4. Write Down Solution:
Committing solutions to paper is taken as an attempt to use an
external representation as an extension of working memory and
as an attempt to rehearse and review the material.

5. Re-read Text:
Often because additional information is obtained during the
reading of an example that is useful in better understanding the
instruction, a rereading of the text after this information has been
acquired can provide a better understanding of the information.

6. Hypothesize Alternative Solution:
Because there are multiple solutions to any given problem, often
subjects find it useful to pose alternate solutions to a recent
problem. By elaboration of the ways in which success can be
obtained, a more general understanding can be derived.

7. Identify Comprehension Failure:
Subjects sometimes know that they fail because of the tutor
feedback, but they need to specifically search for the knowledge
that was incomplete or incorrect.

Figure 92. Strategy protocol categories
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usefulness of the model in understanding the role of reflection in learning to program

The focus of Meta-AQUA, however, is neither on the understanding tasks nor on
problem-solving tasks involved in programming. Rather, the central questions exp
pertain to events that occur when problem-solving or understanding fail. As a result, M
AQUA places an emphasis upon examining a trace of the reasoning processes that pr
the failure in order to determine the causes of failure. Thus, the central concern o
model is reflective processing, similar to that which may underlie the kinds of reflec
exhibited by the subjects in the Pirolli and Recker study.

Meta-AQUA’s principal domain centers on understanding stories of drug smugg
using knowledge given from the original AQUA implementation in the domain of terr
ism. However, in addition to the story-understanding mode, it also has an alternate
lem-solving mode that models two agents, a smuggler and a drug-enforcement a
interacting in a cat and mouse scenario. This mode was initially designed to test the p
tial of integrating understanding and problem-solving. When verifying a hypothesis i
understanding task an agent might actually devise a test through problem solving, and
trying to verify a plan in a problem-solving task an agent might verify it by running the p
to understand whether the plan met his expectation during execution in the world.
mode was modified to implement the LISP programming task in the Pirolli and Re
study.

We model the subjects as problem-solvers who plan to achieve programming g
They then attempt to run the program and check whether it meets their expectations d
execution time. IML theory’s central notion of expectation failure provides a basis
modeling comprehension failures exhibited by the subjects. The changes to Meta-A
necessary to simulate a protocol in LISP programming study were slight. The m
change was an addition of simple simulator for the LISP Tutor that provided feedba
the programmers. All other additions consisted of building the knowledge-represent
frames for LISP functions, programming plans, and other objects in the programm
world that the system processed (see Appendix D, “META-AQUA OUTPUT IN LIS
PROGRAMMING MODE.”). No IMXPs were added to the system for the modification

Because Meta-AQUA is concerned with the interaction of multiple learning choi
we chose a protocol that combines three reflective strategy protocols. Subject AK88’s
tocol was taken from data reported in Pirolli & Recker (1994). The subject was given
task of creating a recursive LISP function, called Add1num, that would take as input
of integers and letters, outputting as a result a list of only the numbers incremented by
For instance, given the list ‘(1 3 a 4 b 1), the function should return the list ‘(2 4 5 2). Figure
93 details a fragment of the protocol from subject AK88 after performing this problem,
before the computer system loaded and presented the next problem.120



234 ❖   9.3  Psychological Plausibility

K88
gy we
he
ction
r
stu-
se the
gen-

real-

and

ch of
ategy
simu-
ix D

at-
We interpret this protocol as being composed of three learning strategies. First, A
becomes aware that her comprehension of recursion is not correct. This is a strate
call Identify Comprehension Failure. In Meta-AQUA this sequence is represented by t
structure in Figure 94. The subject does not understand that the correct LISP fun
should add one (using the1+ increment function) to the first item in the list if it is a numbe
and thencons that to a recursive call of the function on the rest of the list. Instead, the
dent appears to be confused about the recursive part of the function, preferring to u
increment function (1+) repeatedly. See Figure 95 for the correct code that should be
erated and the possible construction that the subject is attempting to use.

Secondly, to understand this fact AK88 tries to reflect over the error made after
izing that there was indeed a comprehension failure (see node labeledReflect on Error in
Figure 94). Thirdly, the subject is reminded of a prior example in the instructional text
decides to review it by rereading the text (node labeledReread Text in Figure 94). These
fragments are particularly interesting, not only because they are consistent with mu
the Meta-AQUA implementation and theory, but because they show a composite str
that combines three separate components. Currently, Meta-AQUA was only able to
late the construction of the top one third of the structure shown in Figure 94. Append

120. Bracketed statements are contextual information, whereas parenthetical text specifies the str
egy type as judged by multiple, blind raters.

[18:28 After solving ADD1NUM problem]

Oh I see, I would have to use 1+, I could use Add1nums because for
this, for every thing but the first element.  Unfortunately, it’s not clear
to me how this works...  I’m not sure why you would have to, you
would have to code in the beginning um...1+ you have to add 1 to the
first element of the list but for all the other elements I could just use
add1nums.

(## strategy # Id-comp-failure)
(## strategy # reflect-on-err)

I’m going to try to look through lesson five because I remember
there’s a section that says that you can use an example.

(## strategy # reread-txt)

[rereads “Useful Procedures” page of instructions]

Figure 93. Protocol fragment of subject AK88
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Programming
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Figure 94. Representation for interaction of learning strategies of
protocol fragment from subject AK88.
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shows output from the program and the goal structure that is pursued during execut
the simulation. Figure 96 shows three of the frame definitions used to represent the fl
iterative function presumed to be considered by subject AK88.

Although future research is necessary to firmly validate this approach, the results
promising. Meta-AQUA modeled most of the protocol sufficiently, both with the subje
cognitive task (problem-solving) and the subject’s meta-cognitive task (strategy cons
tion). However, because the problem-solving mode of Meta-AQUA is not fully imp
mented the simulation of the programming task was overly simplified. And becaus
system’s memory module is incomplete, the section of the protocol pertaining to the
ject’s remindings of a previous problem solving episode (i.e., a programming problem)
not finished. Therefore, to finish this trial with Meta-AQUA, the system must be p
grammed with both a more robust problem-solving process and a more plausible me
Although the above implementation is preliminary, the next section adds to this evid
in support of the sufficiency claim.

9.3.3 Learning to Troubleshoot Circuit Boards

Based on IML theory, we have implemented an independent system that simu
human protocol data involving novices that learn to troubleshoot faulty circuitry by m

Correct Recursive Approach:

(defun Add1nums (alist)
(cond ( (null alist) nil)

( (numperp (first alist))
(cons (1+ (first alist))

(Add1nums (rest alist))))
( t

(Add1nums (rest alist)]

Flawed Iterative Approach:

(defun Add1nums (alist)
(cond ( (null alist) nil)

( t
(list

(if (numberp (first alist))
(1+ (first alist))
nil {nothing})

(if (numberp (second alist))
(1+ (second alist))
nil {nothing})

.....
(if (numberp (last alist))

(1+ (last alist))
nil {nothing}))]

Figure 95. Add1nums function definitions
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e

;;; NOTE that the beginning of the definition is just like the definition of a MOP (Memory Organization Packet).
;;; There is one important difference between MOPs and LISP-functions, however. The object that is manipulated
;;; is the precondition state, instead of being something separate. One could think of the preconditions as being some
;;; kind of test on the objects that are passed to the function, but this analogy holds only partially. Thus depending on the
;;; values of the various roles in the structure one could have different variation of a function.
;;;
(define-frameLISP-FUNCTION

(isa (value (computer-command LISP-program)))
(actor (value (programmer))) ;; AK88
(preconditions (value ((state)))) ;; A list of one or more states.

;; Note that, depending on branching, this may be
;; determined only at run-time, not statically like MOPs.

(goal-scene ;; But usually not known until run-time.
(value (LISP-function

(main-result
(value =main-result)))))

(scenes (value (=goal-scene))) ;; And other scenes are of course possible.
(main-result (value (state)))
(side-effect         (value (state)))
(semantics (value (literal))) ;; How the function will behave.
(parameter-list (value =preconditions))
(program-steps (value =scenes))
(return-value (value =main-result)))

(define-frameDEFUN-CALL
(isa (value (LISP-function))) ;; Inherits from LISP-function definition above.
(name (value (literal))) ;; Function name
(lambda-list (value ((entity)))) ;; Argument list
(body (value ((LISP-function)))) ;; Function body
(parameter-list (value =name =lambda-list =body))) ;; The guts of the LISP function

;;; The following definition represents AK88’s attempt to do recursion. The student is using a kind of iterative approach:
;;; Make an output list with the incremented value of the first item of the input as the first element, the incremented value of
;;; the second item in the input as the second element, and so on.
;;;
(define-frameNEWLY-LEARNED-ADD1NUMS-DEFUN

(isa (value (defun-call))) ;; Inherits from defun-call definition above.
(actor (value (programmer))) ;; The agent performing the coding.
(name (value (literal"Add1Nums"))) ;; Recursive-add1nums-defun wanna-be.
(lambda-list (value ((entity)))) ;; Function arguments. Can be arbitrary in number at run-time.
(body (value

((cond-function ;; Representation of acond function call
(scenes
 (value

((conditional-clause ;; Representation of firstcond clause
(test-clause

(value (null-op (parameter-list (value =lambda-list)))))
(action-clauses (value (nil.0))))

 (conditional-clause ;; Representation of secondcond clause
(test-clause (value true.0))
(action-clauses

(value ((constructor-op ;; Representation ofcons function.
(first-item (value

(increment-op ;; Representation of the1+ function
(parameter-list

(value (first-op ;;Representation of thefirst function.
(parameter-list
 (value =lambda-list))))))))

(old-list (value
(list-op ;; Representation oflist function.

(parameter-list
(value (increment-op ;; Representation of the1+ function

(parameter-list
 (value (second-op ;; Representation ofsecond function

(parameter-list (value =lambda-list)))))))))
)))))))))))))))

Figure 96. Frame definitions to represent newly learned programming knowledg
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fying, acquiring and deleting associations and heuristics used to formulate shallow e
nations for circuit board behavior. The system, called Meta-TS121 (Narayanan, Ram,
Cohen, Mitchell & Govindaraj, 1992; Ram, Narayanan, & Cox, 1995), models the lear
extracted from protocols of actual novice troubleshooters at an electronics assembly
in Atlanta, Georgia. The model is based on protocol analysis of over 300 problem-so
episodes gathered at the in-circuit test facility of an NCR plant located near Atlanta
(Cohen, 1990; Cohen, Mitchell & Govindaraj, 1992).

The problem-solving module of Meta-TS uses different types of knowledge and
procedures to hypothesize the cause of a failure and to suggest repair actions for that f
Based on our data from the human operators in the NCR plant, Narayanan et al. (199
egorized diagnostic knowledge into two broad types. Associations are simple rules w
directly map a particular symptom to a specific diagnosis. This type of knowledge is
text-sensitive and is indexed by board type. Heuristics are standard rules of thumb.
rules are not context-sensitive and are applicable across board types. Heuristics ar
by the operator for troubleshooting when there is no known association for a given pro
situation. This knowledge determines the series of standard operating procedure
formed in troubleshooting a faulty circuit board. Since the problem-solving module re
on associative and heuristic knowledge, the learning module must, in general, be a
acquire, modify, or delete such associations and heuristics through experience.

The introspective learning module of Meta-TS has several strategies for learning
ciative knowledge for the troubleshooting task, including unsupervised knowledge co
lation, supervised learning from an expert, postponement of learning goals, and forg
invalid associations. The first strategy is that of unsupervised, incremental inductive l
ing, which creates an association when the problem-solving module arrives at a c
diagnosis using heuristic knowledge. The introspector compiles the heuristic knowl
into an association. The second learning strategy creates a new association through
visory input. This strategy is triggered when the system arrives at an incorrect sol
using heuristic and/or associative knowledge. A third learning strategy is that of postp
ment. This opportunistic strategy is triggered when the system is unable to get imme
input from a skilled troubleshooter. The system posts a learning goal, keeps track o
reasoning trace for the particular problem-solving episode, and asks questions at
time to gather appropriate associative knowledge. Two deletion strategies remove as
tive knowledge when it is no longer valid. The first strategy uses expert input to delete
ciations, and is invoked at the end of every problem-solving episode. The second de
strategy is unsupervised and is selected when Meta-TS arrives at an incorrect solutio
the reasoning trace shows that a single association was used in arriving at the solut

121. TS stands for troubleshooter.
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Meta-TS was evaluated using 42 actual problem-solving episodes gathered at the
tronics plant over a 2-month period. The problems dealt with various types of resistor
ures and are representative of the types of problems encountered over the perio
evaluate the learning methods, we tested the following five conditions on the 42 test
lems.

• H (hand-coded): The original non-learning system with hand-coded associatio
This condition represents a troubleshooting system that has been hand-designed
expert researcher, and is useful as a benchmark in determining the strengths an
tations of the learning strategies.

• NL (no learning): The system with all associations removed and learning turned
This condition represents a base case against which to evaluate the efficacy
learning strategies; it uses only heuristic knowledge.

• L (learning) : The system with all associations removed and learning turned on.
is the basic Meta-TS system with no prior experience.

• L42: The system with all associations removed, then trained it on the 42 test prob
with learning turned on. The system was then evaluated by re-running it on the
42 problems. This condition was intended to validate the learning strategies in M
TS by ensuring that they learned the knowledge required to solve the problems.

• L20: The system with all associations removed, then trained on 20 randomly ge
ated training problems with learning turned on. The system was then evaluate
running it on the 42 problems.

Each of these conditions were evaluated quantitatively for speed and accuracy o
42 test problems, and also qualitatively by examining the content of the learned know
and details of the solution process. Figure 97 shows the cumulative accuracy of the s
for the various conditions. The H condition arrived at the correct diagnosis in 86% o
42 problems. The L42 condition arrived at the correct diagnosis in 81% of the probl
The values for the L20, L, and NL conditions were 76.8%, 76%, and 71% respectively.
ure 98 compares the speed of the solution process (measured by the number of interm
steps) with the various learning conditions relative to the hand-coded condition. The
and L42 conditions consistently arrive at the diagnostic result faster than the H cond
The L condition takes about 20 problem episodes to reach the same speed as that o
condition and then consistently arrives at the diagnostic result faster than the H cond
At the end of the 42 problem episodes, the ratios of the learning conditions to the h
coded conditions are: 1.52 (L42 to H), 1.24 (L20 to H), and 1.06 (L to H).
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Figure 97. Cumulative diagnostic accuracy
(From Ram, Narayanan & Cox, 1995)
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The multistrategy learning module in Meta-TS clearly contributes to enhanced sy
performance in the troubleshooting task. In comparison with the non-learning system
no hand-coded associations, the associative knowledge learned by Meta-TS increa
accuracy of the diagnostic result and speeds up the problem-solving process. The p
mance of Meta-TS further increases when it is trained on similar problems before
applied to novel problems. The associative knowledge learned by Meta-TS enable
arrive at the same solution as that of the system with the hand-coded associative know
between 89% and 94% of the time.

Both the Meta-AQUA and the Meta-TS implementations have demonstrated to be
ficient models to approximate the learning of novices in a problem-solving situation.
validates the theory in a number of ways. First, the implementations have simulated
human data rather than simply appealing to the intuition of the reader. Secondly, the t
has been applied to three different task domains: learning to understand stories, learn
program a computer, and learning to troubleshoot electronic circuits. It therefore repre
a general approach to learning rather than a specific one.122Third, the theory works using
both deep causal explanations (as with the Meta-AQUA implementation) and sha
causal reasoning (as with Meta-TS). Moreover, results from the metacognition liter
also support the idea that such a model is a reasonable one with which to understand
erate learning. In particular, Brown (1987), Nelson & Narens (1994), and Weinert (1
all make strong claims that metacognitive activities are intimately and positively inte
lated with learning and understanding processes. Given these results, IML theory c
considered a reasonable model with which to understand metacognitive processes in
learning.

9.4  Summary and Discussion

The experiments discussed in this chapter provide a number of results that supp
hypotheses established at the beginning of this dissertation. Evaluating Meta-AQUA
and without learning goals generated empirical results indicating that computational i
spection (as defined in IML theory) facilitates the learning process. In particular, the re
lead to the conclusion that the deciding to learn stage that posts learning goals is a nec
stage if negative interactions between learning methods are to be avoided and if learn
to remain effective. The chapter has also provided a novel quantitative measure with w
to evaluate the comprehension process. As dependent variable, this partial credit
provides rewards for both posing questions and giving some type of answer, as well a
ting the answers right. Finally, the last section showed the generality of IML theory

122. As will also be remembered from Chapter VII, the same IMXPs have been used to understan
stories about both criminal activities as well as sports activities.  See story HC1′ on page 170.



242 ❖   9.4  Summary and Discussion

lec-
to

odel
at the

ion for
in the
ssion

oring,
psy-
psy-

ll
am-
r that
hat-

wever,
, and

n and
tion
ext of
man
nder
fec-
intro-

very
under

rea-
ting a

d
-
t
.
of
reporting two additional tasks to which the theory applies (programming in LISP and e
tronics troubleshooting). The minimal modifications necessary to get Meta-AQUA
cover the LISP learning protocol fragment suggests that IML theory is a sufficient m
of introspection. The results presented in this chapter also support the hypothesis th
failure taxonomy as described in Section 3.2 on page 45 is a reasonable categorizat
both artificial and natural reasoners because these failure types are instrumental
Meta-AQUA system from which the results were obtained. In particular, see the discu
in the summary section of Chapter III.

Research concerning introspection has long been controversial (e.g., see B
1953; Nisbett & Wilson, 1977 for objections to such research). In the early days of
chology, trained introspection was assumed to be the proprietary scientific tool of the
chologist when “objectively” studying the mind.123 The behaviorists tried to erase a
scientific association with introspection by claiming not only that learning should be ex
ined without the use of such introspective methods (e.g., Watson, 1919), but moreove
learning should be explained without reference to any intervening mental variables w
soever (e.g., Skinner, 1950, 1956). Under the banner of metacognition research, ho
interest has recently returned to the study of introspection, second-order knowledge
their roles in cognitive activities (see Section 11.2 on page 272124). Yet, to believe that
introspection is a kind of computational panacea is a deceptive assumption. Wilso
Schooler (1991) have empirically shown that conditions exist under which introspec
actually degrades specific performance (e.g., preference judgements). In the cont
story understanding, Glenberg, Wilkinson, & Epstein (1982/1992) reported that hu
self-monitoring of text comprehension is often illusory and overestimated, especially u
the conditions of long expository text. Likewise, computational introspection is not ef
tive under many circumstances, and, given the demonstrated limitations of human
spection, IML theory tries not to overstate its scope. Rather, as asserted at the
beginning the thesis, one of the goals of this research is to determine those conditions
which introspection is useful, and those under which it is not.

Because of the considerable computational overhead involved in maintaining a
soning trace, performing blame-assignment, spawning learning goals, and construc

123. Titchener and others took great pains to develop a rigorous method of introspection an
attempted to equate it with objective inspection (observation) as practiced in physics. For exam
ple, Titchener (1912) claims that “Experimental introspection, we have said, is a procedure tha
can be formulated; the introspecting psychologist can tell what he does and how he does it.” (p
500). This remarkable statement is at the same time naïve and arrogant, given the hindsight
history.

124. But in the interim, see Lieberman’s (1979/1992) article entitled “Behaviorism and the mind: A
(limited) call for a return to introspection.”
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plan with which to pursue such goals, the benefits of using introspection must be subs
to justify the costs.125Furthermore, under extremely complex situations or in informatio
ally impoverished circumstances, deciding on an optimal learning goal is certainly in
table. In such situations, it may be more beneficial to proceed without further reaso
rather than to attempt to understand the exact causes of the failure. Knowing when a
lem is worth pursuing is itself an important skill to master for an intelligent system. Id
tifying the most appropriate conditions for the use of an introspective approach is ther
a desirable research goal. To establish only that introspection facilitates learning an
the model of introspection has some quality of reasonableness is not satisfactory.
evaluation will not only show the hypothesis to be valid under a particular circumsta
but will demonstrate the conditions under which these hypotheses hold. Althoug
experimental inquiry into these conditions will be left for future research, a numbe
remarks can be made at this time.

If the distributions of the kinds of failures generated by the performance task ch
the nature of the differences in the learning curves generated in the experiments u
establish hypothesis number one (see Section 9.2.3), then applicability conditions c
established that predict when the utility of introspection exceeds its cost. The spa
applicability conditions for introspection is expected to emerge from the causal facto
organized by Table 5, “Detailed taxonomy of causes of reasoning failure,” on page 5
has already been shown through the existing implementation that introspection in c
circumstances is tractable. Thus, a lower bound is already available. It is clearly not
sible to reason in any effective manner if all possible failures occur at once. So, an an
of the interaction of the causal types in the table should result in a set of complex fai
that can be programmed into Tale-Spin in order to produce various distributions of e
Meta-AQUA is expected to have difficulty learning from some of the failure combinati
within these error distributions. As with the ablation study, measures with and with
introspection provide the independent variable for the evaluation of learning. The re
should itemize the conjunctions of failure from which it is impossible to recover and th
for which a simpler reflexive or tightly coupled approach is more suited.

An additional reason that we expect such a test to work is that, as already de
strated by this chapter and by Chapter VII, all learning methods are not independent.
they interact there will be substantial detriment to performance. Thus, one simple s
would be to add a parameter to Tale-Spin that can limit the types of failures to those w
learning repairs are known not to interact. In this condition, the learning curves for the

125. One must be cautious, however, when dismissing introspection simply because of comput
tional overhead costs. Doyle (1980) warns that to disregard the introspective component and se
knowledge in order to save the computational overhead in space, time, and notation is discardin
the very information necessary to avoid combinatorial explosions in search (p. 30).
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and RL conditions should not significantly differ. This will formally establish that at le
one condition exists within which the utility of learning goals is lessened. Howeve
establish the quantitative trade-off between the utility of introspection and the cost, a
formal estimation for the cost must be constructed.

In the interim, a potential heuristic for deciding when to use an introspective appr
is to qualitatively ascertain whether or not interactions between learning mechanisms
able to the learner exist. If they exist, then the approach should be applied, otherw
more reflexive approach is licensed. In speculation, another potential heuristic for d
mining that introspection is a win is to use a threshold for the number of failure sympt
above which introspection will not be attempted. Through experimentation, this thres
number should be obtained empirically given a distribution of known problem types a
random selection of problems from the distribution. The identification of such heuris
will enable the practical use of introspective methods in systems that cannot affo
squander precious resources with intractable computation.
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CHAPTER X

FUTURE RESEARCH

Man is not the sum of what he has but the totality of what he does not yet have, of
what he might have.

Jean Paul Sartre (1939)

The effort to construct the theory and implementation presented in this documen
been substantial and, as a result, a few questions have been left open to further in
Along the way this document has pointed out both the deficiencies of the implement
and the open theoretical issues remaining for future research. This chapter attem
gather these comments into a single space and to examine them with the intention of
ing a plan for future resolution. Additionally, some related avenues of research exis
share many of the issues pertaining to IML theory. The following pages show how
foundation presented in the previous chapters can serve as a basis for the continuati
extension of the current research and can provide a foundation upon which to app
research to learning problems involved in training and education.

The current chapter proposes a number of lines of investigation that extend the c
research. Section 10.1 continues the effort of treating learning as a planning task and
directly on the work presented here. The goal is to further formalize the computationa
of learning-strategy construction, important in multistrategy learning systems that inte
multiple learning algorithms, and to further develop IML theory as a model of human le
ing. Section 10.2 extends IML theory by posing a novel approach to learning conce
categories represented as Horn-clause propositional logic representations. This s
also speculates as to what extent such work can transfer to hierarchical case-repre
tions. We propose to develop learning algorithms that compare and contrast both exp
and actual categories when revising background theories used in classification task
manner similar to humans. Finally, Section 10.3 proposes an applied research proje
uses the IML algorithm to understand student explanation failure in the context of in
gent tutoring systems or learning environments. The research that enables a machine
son about its own explanation failures should easily be adapted to enable a mach
reason about user’s explanations failure during learning. The research directions in al
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sections combine ideas from artificial intelligence and cognitive science and hav
potential to make major contributions to both fields.

10.1  IML Theory and Implementation: Open issues

The research discussed in this section represents a direct interpolation of the c
research. Table 14 lists the issues raised in previous sections necessary to make IML
and its implementation in Meta-AQUA more complete. For each issue, the table list
sections and page numbers on which the issue was discussed. This section examin
in turn, briefly describing the problem and proposing an approach for its solution.

10.1.1 The Scope of Blame-Assignment.

As mentioned in Chapter VIII, the Meta-AQUA implementation considers only a li
ited number of causes for failure during blame assignment. This represents one of the
pressing needs for future research, that is, to expand the number of cells in Table 5 c
ered by the blame-assignment phase of learning. The amount of work required for thi
will be significant because the institution of such change requires many extension
additions.

Table 14: Extending IML theory

Issue for Future Research Section(s) Page(s)

Increasing the scope of blame assignment VIIIa

a. The discussion is contained in the introduction to  Chapter VIII.

178

Additional goal interactions 7.4 170

New learning algorithms for toolbox 7.5, 8.5.1 173, 197

Parallelism in learning plans 7.4.2, 7.5 172, 173

Learning new IMXPs 6.2 136

Auto-validation of learning 5.4.2, 7.5 121, 173

Failure types as a cognitive category 3.4 65

Extend the computational evaluation 9.1.1.2, 9.4 217, 243

Extend the modeling of human learning 9.3.2 236

Extend the representational vocabulary 4.8 101



10.1  IML Theory and Implementation: Open issues❖   247

ibute
estab-
learn-
se, an
f new
tool-
nd the
multa-

met-
ctions
trated
sman,
mine
s not
ther

nter-
puta-
s goal
s will
that a
ome
pt. If
tility

in the

of
ed in
erator
uired
tion is
For instance, new IMXPs must be developed to explain the failures and to attr
blame. In order to accomplish this task additional representation vocabulary must be
lished to declaratively represent the IMXPs (see Section 10.1.10). Furthermore, new
ing-goal types must be created that can pinpoint the potential causes. In respon
analysis of the interaction of these goals must be performed (see Section 10.1.2). I
learning goals are included, then additional learning algorithms must be added to the
box to solve these learning goals (see Section 10.1.3). Therefore, to adequately expa
blame-assignment task, a number of the projected future research topics must be si
neously considered.

10.1.2 Additional Goal Interactions.

One of the claims of this research is that learning is like planning. The planning
aphor has been successfully used in the Meta-AQUA system to detect learning intera
between learning steps within an overall learning strategy. Chapter VII has demons
that at least one classic planning-goal interaction (brother-clobbers-brother-goal, Sus
1975) does indeed fit a learning interpretation of the metaphor. But to more fully deter
at what points the planning metaphor fits learning problems and at what points it doe
fit, a survey of the planning literature (e.g., Allen, Hendler, & Tate, 1990) can examine o
classic goal interactions to see if they too apply in a learning environment.

For example, Wilensky (1983) analyzed a number of positive and negative goal i
actions that exist in conventional planners. Resources limitations (e.g., time or com
tional resources) and mutually exclusive states are two negative relationships wherea
overlap is a positive goal relationship. It seems reasonable that all of these interaction
have a learning goal interpretation. As one more example of goal conflict, suppose
particular algorithm evaluates a concept’s expected utility, and if it is lower than s
threshold, deletes it from memory. Another algorithm may generalize the same conce
the generalization is run before the forgetting (deletion) algorithm, then the expected u
may be increased so that the item is not deleted. If the algorithms are executed
reverse order, the generalization algorithm will find nothing left to generalize.

Finally, this line of inquiry also depends on more fully developing the taxonomy
learning goals. Not only are additional acquisition goals a possibility, but, as mention
Section 6.3.1 (see footnote 79), there are certainly circumstances where a learning op
will need to establish a prevention goal so that particular states of the BK are not acq
by the system or a maintenance goal established so that a particular belief or proposi
preserved.
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10.1.3 Enlarging the Toolbox.

The number of algorithms presently contained in Meta-AQUA’s toolbox is quite li
ited. Only four have been implemented at this time. They are case acquisition, E
abstraction, and index learning. To scale the system to larger and more difficult prob
and to better understand this approach to multistrategy learning, the size of the to
must be increased. In support of this goal we intend to expand the number of learning
rithms contained in Meta-AQUA’s learning strategy toolbox. An early candidate for inc
sion is the ID3 algorithm (Quinlan, 1986) that learns through decision trees.

At the current time, we have addressed learning-strategy construction in only a lim
manner. That is, we have concentrated on integrating learning algorithms that do no
form the same learning function. Therefore, to fully address learning-strategy constru
it is necessary to address the selective superiority problem (Brodley, 1993). This is a
difficult problem that involves choosing the best learning algorithm (as originally form
lated, the best inductive algorithm) with which to solve a given problem with a specific
tribution of input data. In some instances, it appears that the best way to establish th
solution for a specific problem distribution is to statistically cross-validate the meth
manually (Moore & Lee, 1994; Schaffer, 1993). In some cases, however, as with the
agement of competing speedup-learning mechanisms, progress has been made whe
ing when, where and which speedup mechanism should be selected (Cheng, 1995)126

Finally, it is an open question at what level the learning strategies in the toolbox sh
be modeled. Section 10.1.9 considers whether larger-grain strategies may be modele
this approach (see also the discussion in Section 9.3). By doing such, Meta-AQUA c
better simulate the deliberative goal-driven actions that people choose when learning
rereading text instructions to clarify information or rehearsing lines to memorize a spe
Conversely, Michalski and Ram (1995) suggest that learning algorithms may actually
more fine-grained decomposition. For example, EBG may be better modeled as a se
knowledge transmutations. At this level, the interactions between transmutations cou
as important as they are in the data presented in Chapter IX.

126. See Cheng’s ISM (Internal Speedup-Mechanism Manager) component of the Theo (Mitchel
Allen, Chalasani, Cheng, Etzioni, Ringuette, & Schlimmer, 1991) general architecture for self-
improving problem solvers. ISM is an intelligent agent embedded in the Theo system (i.e., a kind
of homunculus) that dynamically manages the selection between caching, EBG, and Bounde
Cost EBG by watching and analyzing the performance of Theo. In effect, the system receives a
input a declarative description of the behavior of Theo’s architecture, and restructures it to behav
more efficiently. This technique is very amenable with the IML approach and may be useful in
better understanding the relationship between competing learning mechanisms.
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10.1.4 Parallelism in Learning Plans

As far as we know, this research is the only place in which the issue of parallelis
learning has been raised. However, in multistrategy systems that run multiple lea
algorithms on a given set of data, the savings in computational resources can be sign
if parallel computation is applied. In order to use such an approach, it must be guara
that the algorithm running in parallel do not interact. Therefore there must be no
dependencies present so that the order of calls will not affect the results of the lea
This issue is very central to the focus of this research.

Nonlinear plans have the advantage of creating a partial order so that any step no
cifically placed before another can be run concurrently. For instance, Tate (1977/1990
cusses the use of non-linear planners to generateproject networksthat formalize a plan as
a partially ordered network of actions. Such nets represent steps in a plan, such as th
used to construct a house. For any given step in the plan, the project network specifies
steps that must come before it and those that must precede it. When constructing the
the foundation is finished before the walls are installed, which in turn precedes the roo
struction. However, the individual steps that insert the wiring and the plumbing into
walls can co-occur, although as sub-steps for the wall construction step, they must f
the foundation. Likewise, a generalized project network, such as those generated
Nonlin component of Meta-AQUA, specify the steps which may co-occur and therefore
be run simultaneously in a learning plan.

To take advantage of this feature, however, more research needs to be perform
compare the negative effects of learning algorithms in the BK and to formally examine
possible interactions present. Learning operators must then be created for any add
algorithm to enable the planner to create a learning strategy with a partial ordering e
lished. Moreover, the goal taxonomy presented in Section 6.3.1, “Explicit Learning Go
must first be more fully developed if progress is to be made in this area.

10.1.5 Learning New IMXPs.

Another question remaining to be examined is whether or not a system such as
AQUA needs to be able to learn new IMXPs or whether a relatively small set of failure
terns can be established to cover most types of common reason failures. One of the b
of XPs is that they represent abstract patterns that can be adapted and applied to e
many anomalies so that the number required to cover a limited domain is tractable en
to be enumerated by a researcher (Schank, 1986). The open issue with respect to Me
is whether there can be a relatively small set of IMXPs that can sufficiently cover the s
of possible failure causes in Table 5, or whether the learning of new causal patterns w
necessary. That is, will the number of required patterns be too large to be exhaustivel
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merated and can the domain of all reasoning failures in any way be considered “limit
Are we asking too much of the XP paradigm?

One of the reasons that we did not try to let Meta-AQUA learn new IMXPs is to av
the possible issue of circular reasoning. If the system uses IMXPs as a basis for de
what to learn, yet at the same time needs to learn IMXPs, how can the system then h
firm foundation for making any of these decisions? The outcome of considering this q
tion was our decision to see how far the research could proceed without learning IM
and then, if the implementation proved insufficient, to add learning at a later point.
rently, the researcher has the burden of providing all of the IMXP knowledge struct
used by the system. In practice, it is still undetermined whether this strategy is a good
However, until further results show otherwise, this issue need not have a high priorit

10.1.6 Auto-Validation of Learning.

One of the areas for which very little research has been attempted is the issue of
matic validation of learning results. That is, the system at present does not examine th
comes of learning in order to establish that the learning was indeed effective (this wa
unimplemented step number three of the IML algorithm in Figure 48 on page 1
Although many systems forego this line of questioning altogether, it appears that pot
exists for applying the methods developed here toward this end. As mentioned in bot
tions 5.4.2 and 7.5, the IML algorithm should be able to track the benefits of learning in
of either two ways.

By maintaining a copy of the TMXP associated with the locations in memory that
altered, when the same concepts are re-used in the future, the system could es
whether or not the additions or modifications to the BK are useful in the future. A thres
might be used to estimate whether the new knowledge works by inferring the correc
after a given number of applications of the knowledge succeeds with no additional fa
(an example of learning through success). Alternatively, if the changes proves to pr
more problems than benefits, the trace can be used to roll back the modification. Addi
research is necessary, however, to establish the exact details by which such an ap
might be justified.

Alternatively, the system could actively test its newly learned knowledge in orde
falsify it. If it cannot be easily defeated by a test, then the knowledge can be more fi
believed (yet another instance of learning via success). For example, if instead of tru
the input to the system that dogs bark at containers when detecting contraband, the s
might place contraband in a hidden location in order to see if this predicted event ac
occurs in additional scenarios. The risk is that side-effects of the plan may negatively
the reasoner. That is, the test may actually result in the arrest of the agent. Many
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arise when taking this approach (see Carbonell & Gil, 1990). In order to institute this
idation strategy, however, the problem-solving mode of Meta-AQUA must be refined a
better theory of the integration of understanding and problem solving be develo
Although this adds an extra implementational burden, the advantage of doing so res
an additional reasoning strategy. As an additional side-effect, it also furthers the inc
ration of other failure causes such asflawed-heuristic andmissing-heuristic which rep-
resent failures of choice between multiple problem-solving methods. Thus a contrib
to the future research outlined in Section 10.1.1 accrues.

As suggested by Martin (1992), the most interesting possibility for future resear
not simply to allow Meta-AQUA to monitor the effectiveness of its learning. Instead,
intriguing possibility is to have a system use the information provided by self- evalua
to decide when an introspective approach is useful. That is, the system may be able to
tually learn the conditions under which introspection is useful itself.

10.1.7 Failure Types as a Cognitive Category

As mentioned in Section 3.2, failures are of five types: contradiction, impasse,
expectation, surprise, and unexpected success. This categorical division is an im
hypothesis of this dissertation, although it has not been formally tested. It has been
some credence by functional arguments (e.g., that the failure types represent salient
toms from which the need for learning can be inferred). Also, the computational utilit
this category is established because the functionality of Meta-AQUA is based in part o
taxonomy and because Chapter IX demonstrated positive empirical results from the i
mentation. However, there exists a further claim that these categories have psychol
reality.

If this is true, then the hypothesis predicts that human subjects will understan
world based upon these basic category assignments. In speculation, it might be po
that subjects will group stories about various reasoning failures based upon these div
An experimental design for such a manipulation might be modeled after the categoriz
tasks of Wisniewski and Medin (1991).

The taxonomy does not, however, differentiate between failures due to mem
retrieval from failures due to inference. As will be remembered from Section 4.7, the
resentations of these failure types possessCognize nodes that can be refined as either
memory process or an inferential process. Therefore, the taxonomy representation p
that, for instance, people will group both impasse due to forgetting along with impasse
to not being able to infer a conclusion. Although such speculation is premature, this
similar psychological experiments might further validate IML theory or provide a rea
for changing it to a more plausible state.
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10.1.8 Extending the Computational Evaluation

The current section explores the further validation required to substantiate hypot
number one as reported in Section 9.2. The first subsection describes the research
to finish the study already begun. It adds two more empirical manipulations to the
already present in the experimental design. The second subsection explains how th
ditions under which the hypothesis holds can be established more rigorously.

10.1.8.1 Establishing the hypothesis that introspection facilitates learning

As mentioned in Section 9.1.1.2, to fully test the hypothesis that introspection fa
tates learning, a more complete set of manipulations should be performed. If both b
assignment and deciding what to learning have introspective components, then to pin
the effectiveness of introspection, both phases should be systematically ablated and
ated for effects to the performance task. The mapping from symptoms of failure to s
tion and ordering of repairs (i.e., learning-strategy construction) is as shown in
whereby blame-assignment produces the causes of failure and deciding what to lear
duces the learning goals.

symptoms → causes → learning-goals → repairs (10)

Chapter IX evaluated learning without the mediation of learning goals, but som
the power of the introspective method may actually be centered in either the blame-a
ment phase, or in the interaction between blame-assignment and deciding what to
Therefore, a full evaluation must also run the same experimental conditions as descri
Section 9.2.1, without the causal determination from blame-assignment (i.e., using a
ping from failure symptoms directly to learning goals) and without the use of either bla
assignment or deciding what to learn (i.e., using a direct mapping from symptom
repair). The inclusion of these two additional experimental manipulations can better is
the causal functions of introspection.

10.1.8.2 Determining the conditions under which the hypothesis holds

To further investigate the conditions under which the IML method is best suited
initial conditions of the program and the data should be varied. That is, both the pro
state in terms of parameter settings and the state of the BK was held constant across
all three conditions of the independent variable. The parameter settings of the Tale
program that provided the input was also held constant. By varying these conditions
be established under what conditions the hypothesis that introspection facilitates lea
holds. It is not expected that under all conditions introspection outperforms a more re
ive approach because of the considerable computational overhead of the IML metho
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Moreover, to further establish the generality of the IML method, these trials shoul
run with a different performance task than story understanding. A preliminary prob
solving mode for Meta-AQUA has already been developed. However, as mentioned in
tion 10.1.6, the creation of a robust problem solver in the IML framework will be nontriv
Not only must additional code be developed, but a general theory of the interaction bet
problem solving and learning should be developed if the implementation is to be succe

10.1.9 Extending the Model of Human Learning

As described in Section 9.3, Meta-AQUA has been modified to simulate novices
learn to program in LISP. Pirolli and Recker (1994) produced a set of protocols f
human subjects in an experimental setting that had an especially relevant feature. Be
trials the subjects would spontaneously generate protocols concerning their own u
standing of the problems previously solved. The study reported that those subjects
exhibited metacognitive explanations (i.e., explanations about their own comprehe
and their own failures) tended to learn better than those who did not. We chose to sim
a fragment of a particular subject (AK88) because it combined three different strategy
ments and so represents an instance most like the learning-strategy construction ta
Meta-AQUA program models.

The result of the simulation was favorable. Meta-AQUA modeled most of the pr
col sufficiently, both from the subjects cognitive task (problem-solving) and the subje
meta-cognitive task (strategy construction). However, because the problem-solving
of Meta-AQUA is not fully implemented the simulation of the programming task w
overly simplified. And because the system’s memory module is incomplete, the secti
the protocol pertaining to the subject’s remindings of a previous problem solving epi
(i.e., a programming problem) was not finished. Only the first third of the segment
fully simulated. Therefore, to finish this trial with Meta-AQUA, the system must be p
grammed with both a more robust problem-solving process and a more plausible me
Previous sections discuss the need for an integration of problem solving with unders
ing. Finally, a number of additional protocols need to be further simulated for IML the
to be accepted as a sufficient model of human metacognitive behavior.

10.1.10 Extending the Representational Vocabulary

Chapter IV described in detail the representation language with which Meta-XP
represented. The focus of the chapter was to develop a representation for reasoning f
and to show how they can be composed from a primitive vocabulary of terms that cons
an ontology of mental states and actions (see Figure 19 on page 70). The utility of a
plete representation of mental terms has a number of advantages. Not only can a d
tively represented mental vocabulary enhance learning and reasoning about the self
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can also enhance a system’s ability to understanding the mental properties and know
of other agents. Not only in artificial systems but also in human reasoners, the abil
understanding the mental world of others is important (Jameson, Nelson, Leones
Narens, 1993). This section simply notes that to finish the desired ontological taxon
many more mental terms need representation.

A goal of this research is to derive a formalism that can express states and mecha
of the mental world. A comprehensive representation needs to be delivered that c
shared between existing formalisms, and where the reuse of representations facilitat
uniformity and transfer across domains in order to support intelligent reasoning, un
standing and learning. In support of these goals, this section lists a number of concep
dimensions that demand representation and remaining issues that must be considere
pursuit of these research goals. Although it is perhaps premature to speculate on the
means with which they can all be represented, the following list presents a provocative
meration of potential candidates.

1. introspect, retrospect, inspect, reflect, suspect, expect.

2. expectversushopeversuswish - depends on knowledge or certainty, that is, one m
expect something when confident, but hope for an outcome when doubting, an
finally wish for something that is least likely to occur.  I suppose wepray for the
impossible; which leads this list to item 3.

3. wishful thinking  (in the face of conflicting evidence along with rigid beliefs).

4. suspend thinking, resume thinking (both of which are opportunistic),reconsider(in
the light of hindsight, rather than after an interruption usually).

5. suspend belief, (day)dream, imagine, wonder.  See Schank et al. (1972) p. 18, for 
crude representation of wonder; p. 30 for imagine).

6. apprehension, perception, precept, percept.

7. foresee (foresight),review (hindsight),intuit (insight).

8. Under foresight:foretell, apprehension, wish, hope, and expect.

9. Under hindsight:review, retrospect, remember, reconsider, reflect.
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10. Under insight:premonition, presentiment, apprehension, hunch, discovery, pre-
science.

11.algorithmic  versusheuristic processing, e.g., projective reasoning via possible
worlds given different assumptions (logic) versus given different interpretations
(analogy or metaphor).

12.group (categorize),compare, contrast, analogize.

13.want, need, desire, goal possession (all items equivalent).

14. rehearse, elaborate, search; baffled, stumped, perplexed.

15.notice, observe, surveil (search),discover, await (depends on target or expectation;
another scale by deliberation and knowledge explicitness).

16. intend (to do anact) versusgoal (to achieve astate).

17. intend, attend, pretend, suspend, portend, comprehend(understand).  See Schank
et al. (1972) pp. 70-75, for an early discussion illuminating the oftenincomprehen-
sible mental term of understand   ;-)

18. (self)explain.

10.2  Learning Bias and Category Membership: An extension

Cox and Ram (1994b) have argued in previous work (see also Appendix A, “T
DEGREES OF FREEDOM IN LEARNING”) that failure provides a computationally ef
cient bias-filter for input examples in machine-learning systems. Results in cognitive
ence (e.g., Chinn & Brewer, 1993) have likewise demonstrated a complementary ro
anomalous data in revising background knowledge in scientific and naïve theories.
are two major reasons that failure is a good bias from which to learn in both machine
humans. Failure guarantees that something worth learning exists, and it also guar
that the degrees of freedom in learning are less than those when learning from succe
novel research extension exists from which to apply this result to concept learning.
extension investigates the interaction of failure and knowledge during categorization t
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Typical theory-revision systems contain a single-concept background theory.
example, a system that contains the classical cup theory (e.g., EITHER, Mooney &
ston, 1994) assigns either “cup” or “non-cup” to all input examples and then adjus
domain rules when errors occur. Solitary classification systems, however, are not c
tively plausible. People do not fail simply by classifying a cup as a non-cup. Instead t
exists a false-assignment category (such as bowl) that competes with the correct ca
Failures then often lead human learners to use a “compare and contrast” procedu
which knowledge of the categories is refined. Yet not only is it significant that people
form this procedure, and thus such algorithms are worth discovering, but since more
straints exist under which learning can take place, such algorithms may be computatio
much more tractable. This dictates that category learning should take place in the co
of multi-category theories (Mooney & Ourston, 1991, report related progress in this 

Using Meta-XPs structures, IML theory has declaratively represented a numb
reasoning failures that Meta-AQUA can reason about explicitly. The typical reasoning
ure in category assignment is a failing positive (Mooney, 1993) such that a theory fa
categorizes an example, x, as a member of an expected category, E. Instead, x sho
categorized by some other theory as a positive member of the actual category, A.
AQUA uses a Meta-XP called anexpectation failureto reason about such situations i
story-understanding tasks (i.e., the contradiction failure type). During mis-classificatio
a multi-category domain theory, it is guaranteed that the category E is overly genera
the category A is overly-specific. Thus, for propositional Horn-clause theories, an e
rule or missing rule-antecedent must exist in Eandan extra rule-antecedent or missing ru
also exists in A.

Although not enough room exists here for a detailed description, some prelimi
heuristics for taking advantage of these constraints have been established. Moreove
ing mis-classification, an agent should consider not just the fact that it thought x w
member of E, but was not; rather, the learner should also consider why x was a mem
A. The agent can then compare and contrast the concepts E and A, the reasons why
thought to be a member of E with the reason why x was thoughtnot to be a member of A
(if that was considered at all), and if A was not considered, then why not (was a me
association incorrect?). Many theory-revision systems compare x only with the theory
porting E and cannot search for errors that may be related to an interaction between
ple categories; furthermore, none support memory errors as does the research presen

Finally, although a failing positive implicitly implies a failing negative (or perhaps
novel category), the inverse does not necessarily hold. When a successful negative o
the judgement may result in either a successful positive or an impasse. That is, it may
that the example is not a cup, but may or may not know what the actual category is. M
XPs can represent both related cases as either a forgotten category (missing-association)
or as a novel category (novel-situation). Neither case has been treated by current categ
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theory-revision systems. Although future research on this issue can make contributio
concept revision systems based on propositional Horn-clause logic, the intention is
beyond such formulations to include hierarchically-structured case memories. Exper
with case-based reasoning and explanation-pattern theory will facilitate such further e
sions of concept learning through knowledge-intensive explanation and reflection
comprehension monitoring).

A question often raised when watching demonstrations of Meta-AQUA refine con
tual categories, such as its knowledge of dog-barking, is how the system determines th
reason the dog barks is that the dog detectssomeamount of contraband inside the luggag
rather than the fact that it detects exactly two kilograms of the contraband. The answ
that it possesses an explanation about authorities who detect explosives in a previous
gling story, and thus the system can adapt that explanation to constrain the inference
occur during comprehension. It is the contraband, rather than the amount of contra
that is the focus of the explanation. Although superficially similar to the drug-bust s
HC1, a much more difficult passage for a system to understand would be the story of
who learns to perform tricks (see Figure 99).

In this case, the number of objects that the trainer holds, rather than the kin
objects, is crucial to the explanation. The role of knowledge and explanation is much
complex in understanding this story despite the shorter length. In particular, one ca
always depend on having a past case to adapt when explaining a story. If the researc
outlines in this section are accomplished, IML theory will be much closer to accounting
suchad hoccategories (Barsalou, 1983) asbarking based on the number of objects. This
will support the overall goal of establishing a more complete theory of multistrategy le
ing from both cognitive science and machine learning perspectives.

10.3  Understanding student explanation failures: An application

The goal of this applied research is to develop methods by which intelligent lear
environments can automatically detect student explanation failure and can provide a
priate feedback so that the student can correct the mistakes. In order to succeed at th

S1:A dog was trained to appear to count.
S2:When the trainer held up various objects, it would bark appropriately.
S3:The dog barked twice because it detected two bowling pins in his hand.

Figure 99. The trick story
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it is necessary to be able to declaratively represent typical explanations that students
and to be able to reason about the content and structure of these explanations. The p
distills to that of mapping from symptoms of explanation failure to causal patterns that
resent why the failure occurs, a task central to IML theory. Once a system understan
reason an explanation is wrong, it can then provide accurate feedback to the student
better explanations are generated in the future. By doing so, the student will be able to
adequately understand the target domain in which learning takes place.

In order to develop intelligent learning environments that are effective in training,
essential to monitor student progress so as to be able to provide proper feedback. To
a student model, many systems use some variant of template matching in order to in
propositions or declarative facts the student knows. This information can then be us
provide missing knowledge or to correct erroneous knowledge. However, student in
quacies often are not limited to such interpretations. Isolated rote facts are not the onl
tors that lead to poor understanding; rather, a student’s performance is more accu
estimated by how well they can explain a target domain during troubleshooting or pro
solving. The goal of this research is to develop and explore computational met
whereby student explanations can be automatically evaluated and debugged by an
gent system in order to assist the student to form better explanations on their own.

Schank, Fano, Bell, & Jona (1993) support the principle that effective teaching
tems must present goal-based scenarios. That is, rather than simply absorbing inform
that is passively presented, the student must posses specific goals that motivate and
the learning process. Therefore, a system that integrates problems solving or trouble
ing provides a more effective learning environment than do traditional browsing or tuto
systems. Moreover, not only are goals useful, but the student should generate explan
in support of these goals. Chi and her colleagues (Chi et al., 1989) have demonstrate
students who spontaneously generate explanations about a given domain perform
and learn more thoroughly than do students who generate less “self-explanations.
increase in performance is not gained by providing the explanations to the student,
found when the student can generate them independently. Hale and Barsalou (1995
shown that a distinct difference exists between the types and effectiveness of explan
generated during the troubleshooting of physical systems than when students are le
about the system and the facts related to the system. The quality and content of the
nations generated by students differ depending on the goal of the student. Also, Pirol
Recker (1994) have reported that students who reflectively debug there own reas
errors and understanding tend to be the better learners.

Given such results, the target of this line of future research is to develop environm
that support student explanations during troubleshooting in key skills such as engine
nosis. The troubleshooting task for the student is to map symptoms of system failu
faults in the system (e.g., an aircraft engine system). Explanations in this task cons
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providing justifications or causal linkages for why a given fault leads to a given sy
tom.127An intelligent learning environment that possesses a capability to improve stu
explanations during troubleshooting must have the following major components:

1. A mechanism to represent and detect failed student explanations.

2. A procedure for explaining why student explanations fail.

3. A method for deciding what needs to be learned (by the student).

4. A delivery system for providing the feedback to the student by asking questions 
prompt the student to re-explain and to discover the student’s own errors.

With these four components, learning will be enhanced by supporting, not only
principles and facts contained within a target domain, but the student’s ability to explai
relations and dynamic interactions within a domain, and also by supporting the stud
own comprehension monitoring. By emphasizing troubleshooting, the student will un
stand how target systems operate in all conditions, not just a surface understanding o
mal operating conditions. The four step procedure above is a direct adaptation o
research presented here on introspective explanation of reasoning failures, and the
represents an application of well-developed theories and computational algorithms.

To effectively build the first component above, a system must be able to represen
dent explanations in a declarative format. The explanation pattern (XP) knowledge fo
ism (Leake, 1992; Ram, 1994; Schank, 1986) presents an ideal representation that ha
tested in a number of domains. In support of the input side of this component, a subst
natural language and graphical interface must be constructed to translate student e
sions into XP format. A theory of explanation failure detection has already been wo
out (Leake, 1992), although work remains to further generalize it.

The second component of the system is the blame assignment task. The purp
this blame assignment task is to map symptoms of student explanation failure to exp
tions of the causes of failure, not unlike the student’s task of mapping symptoms of d
failure to failure causes. The result is an explanation of an explanation failure. The M
XP knowledge structures directly support such explanations. As explained in Chapte
these structures represent abstract causal patterns of reasoning failure. In support
data structure, Chapter III created a comprehensive taxonomy of failure causes. Th

127. Note that this is device blame-assignment by the student.
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onomy is both domain independent and task independent, thus making it well suited f
student troubleshooting task.

Algorithms involved in the third proposed component have been described in C
ters V through VII. The task is to take an explanation of reasoning failure and to gen
a set of partially ordered learning goals that, if achieved, will reduce the likelihood of
failure from being repeated. Although this work has concentrated in system self-ev
tion, the transformation to an evaluation of the requisite learning of an external agent s
be tractable. Work will be required to fully elaborate a set of suitable learning goals in
new domain. The theory has already been applied, however, to the domain of troubles
ing by human operators in an electronics assembly plant (Ram, Narayanan, & Cox, 1
but has never been applied to debugging explanation of actual troubleshooters in a le
environment.

Finally, rather than provide a corrected explanation directly, the goal of the fo
component is to allow students to debug their own explanations. Once the system
noses the student’s explanation failure, a series of increasingly specific hints and exa
can be provided to the student that target the failure in light of the inferred student’s le
ing goals (Hume, Michael, Rovick & Evens, 1996). These are presented in sequence
the student is able to explain the cause of the failure and provide the proper explan
Much research will be involved to refine an effective way of performing this task.

As previously noted, missing and erroneous knowledge is not the only source o
soning failure. Students errors may also occur due to memory organization problems.
is, a piece of knowledge may be present, but the associations connected with such it
memory may be missing or flawed. As an example from Barsalou, Hale and Cox (1
consider the types of rules a student engaged in troubleshooting four-stroke engine
have learned. Two possible learned rules are that when a strong smell of gas exists
engine operation, the choke may be broken and that when the engine is manufactu
Briggs and Stratton, the condenser may be broken. However, if a strong smell of ga
Briggs and Stratton engine is indicated, the student may try to test the condenser rathe
the choke. The problem is not with the students knowledge; rather, the problem is wit
memory associations connected to the rules. A system might infer this causal facto
attempt to provide an example that describes the fuel system. Chapter III provides
tional examples of causal factors implicated in explanation.

This work is novel because previous student modeling has not included an analy
student explanation and self-comprehension. Although such an application of IML th
is ambitious, the chances of success are high because the new research has a firm
tion in the results produced by this dissertation. The research promises to add an inte
dimension to training systems that support effective learning, especially in the crucia
of explanation formation and troubleshooting skill expertise.
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10.4  Summary

This chapter discussed future research in terms of open issues with the current s
IML theory, extensions to the theory, and avenues for application. Because the top
this dissertation are so broad and wide-ranging, many directions exist to furthe
research. We began by enumerating and explaining ten issues remaining underex
and directly stemming from this work and described the approaches that can be
toward them in the future. The chapter then outlined two independent research dire
that depend upon IML theory. First, the issue of learning bias and category forma
extends the reach of IML theory into the learning of categories using a compare and
trast heuristic. This heuristic is cognitively inspired from the behavior of humans,
applied to the domain of Horn-clause logics. Secondly, we suggest building intelli
tutoring systems that understand student explanation failures in the same manner tha
AQUA understands its own explanation failures. These three categories of future res
efforts (open issues, extensions and applications) demonstrate that IML theory has s
icant potential for generating new inquiry.
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CHAPTER XI

RELATED RESEARCH

Here hills and vales, the woodland and the plain,
Here earth and water seem to strive again,
Not chaos-like together crush'd and bruis'd,
But, as the world, harmoniously confus'd:
Where order in variety we see,
And where, though all things differ, all agree.

Alexander Pope (1713).

Artificial intelligence certainly does not have a monopoly of interest concerning in
spection and related topics such as learning and multistrategy reasoning. Philosophe
observers of the human condition have been fascinated by the subjects for a very long
Around the turn of the 16th century inDe Trinitate, Augustine asks “What then can be th
purport of the injunction, Know thyself? I suppose it is that the mind should reflect u
itself.”128 More recently, Hofstadter (1979/1989) convincingly argues that the concep
reflection, or an object turning in upon itself (i.e., his concept of “Strange Loops”),
common and powerful theme, in and outside of science. Strange Loops can be fou
mathematics (with the proofs of Gödel), art (with the painting of Escher), and music (
the compositions of Bach). But with few exceptions (e.g., Lyons, 1986, Pollock, 198
AI and cognitive psychology present the only mechanistic explanations for such phe
ena and represent the only disciplines that address the issue in the context of learni

The research that relates to the issues presented in this dissertation concerning
strategy learning and introspection is prolific, and we have mentioned a number o
related research works already. As a multistrategy learning theory, we have shown th
ideas behind Meta-AQUA fit into the strategy selection category of multistrategy mo
(see Section 5.4.1). In terms of failure-driven learning, we have characterized IML th

128. Cited in Lyons (1986, p. 1).
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as a loose coupling between blame assignment and repair, in direct contrast to those
ries that mandate a tight coupling (see Section 7.1). Because the preceding chapte
already connected much of the AI and psychology literatures to these and other indiv
issues, this chapter will not replicate the discussions. Instead, the chapter examin
contrasting (and complementary) approaches to reasoning about the mental domai
literatures report, particularly in the context of learning. It will review the history and c
rent status of research into introspection of mental processes and reasoning about
edge or beliefs. Partitioned into two parts, this chapter will examine the broader issue
relate to introspection and introspective learning from an AI perspective (Section 11.1
from a psychological perspective (Section 11.2). The chapter concludes with a brief
mary and discussion (Section 11.3).

11.1  Artificial Intelligence, Metareasoning, and Introspective Learning

The AI community has long considered the possibility of providing machines w
reflective faculties. In recent years, a number of conferences and symposia have bee
nized to explore some of the issues that relate to this concern: the Workshop on Meta
Architectures and Reflection held in Alghero, Italy, during October, 1986 (Maes & Na
1988); the International Workshop on Machine Learning, Meta-Reasoning and Logics
in Sesimbra, Portugal, during February, 1988 (Brazdil & Konolige, 1990); the IMSA
Workshop on Reflection and Metalevel Architectures held in Tokyo, Japan, during Nov
ber, 1992; the AAAI Spring Symposium on Representing Mental States held at Sta
University during March, 1993 (Horty and Shoham, 1993); and the AAAI Spring Sym
sium on Representing Mental States and Mechanisms held at Stanford during March
(Cox & Freed, 1995). In general, the loci of related research efforts has tended to focu
logic community on belief representation and introspective reasoning about such be
the expert system community on metaknowledge and the control of rules; the plan
community on search control and the choice of reasoning actions; and the case-bas
soning community on reasoning about reasoning failure and representations of pr
This section reviews the varieties of analysis pertaining to a computational theory of i
spection and, more specifically, of introspective multistrategy learning.

From the very early days of AI, researchers have been concerned with the issu
machine self-knowledge and introspective capabilities. Two pioneering researchers,
vin Minsky and John McCarthy, pondered these issues and put them to paper in the m
late 1950’s. Although first exchanged among colleagues, and then printed at confer
at the turn of the decade in preliminary form,129 reprints of these papers were refined an
gathered together in the seminal collection of early AI articles entitledSemantic informa-
tion processing(Minsky, 1968b). Minsky’s (1968a) contention was that for a machine
adequately answer questions about the world, including questions about itself in the w
it would have to have a executable model of itself. McCarthy (1968) asserted that



11.1  Artificial Intelligence, Metareasoning, and Introspective Learning❖   265

dge,

in-
tside
orld
swer

t also
posi-
odel
nding

e,
simu-

ion
pact
pu-

s of
elates
arning

i.e.,
s that
. This
ayes

ed
e

t
-

),
ly
so
machine to adequately behave intelligently it must declaratively represent its knowle
including knowledge of itself.  These two positions have had far-reaching impact.

Minsky’s proposal was procedural in nature while McCarthy’s was declarative. M
sky believed that an intelligent machine must have a computational model of the ou
world from which a simulated execution could answer questions about actions in the w
without actually performing any action. He argued that if a machine uses models to an
questions about events in the world and the machine itself is in the world, then it mus
use a recursive self-model or simulation to answer questions about itself, its own dis
tions, and its own behavior in the world. This was a very early prototype of a mental m
that became a precursor to similar research in both problem solving and understa
(e.g., Bhatta, 1995; Bhatta & Goel, 1992; Johnson-Laird, 1983;130deKleer & Brown, 1983/
1988; McNamara, Miller & Bransford, 1991). In the spirit of Minsky’s original them
some very novel work has also been performed to enable a machine to procedurally
late itself (e.g., Stein and Barnden, 1995).

Although a closer examination of Minsky’s propositions will be deferred until Sect
13.2 of the epilogue, Section 11.1.1 explores McCarthy’s proposals and their local im
on the logic community and their more global effect on the tone of research into a com
tational explanation of introspection. Section 11.1.2 then looks at additional varietie
research in the expert-system and planning communities. Finally, Section 11.1.3 r
some of the relevant research from the case-based reasoning and multistrategy le
communities to the research presented here.

11.1.1 Logic and Belief Introspection

As mentioned above, McCarthy (1968) not only establishes a manifesto for AI (
knowledge representation is foundational, especially in declarative form), but suggest
machines can examine their own beliefs when such beliefs are explicitly represented
suggestion is developed in McCarthy and Hayes (1969) and made explicit in both H

129. Minsky notes that he had been considering the ideas in this paper since 1954. It first appear
as Minsky (1965), although the concluding two pages of Minsky (1961/1963) address exactly th
same issue.  A significant portion of McCarthy’s ideas was first published as McCarthy (1959).

130. Johnson-Laird (1988, p. 361) explicitly takes issue with the suggestion that Minsky’s concep
of a self-model was in such a form that it could correspond to a human’s capacity for self-reflec
tion. He claims that Minsky’s formulation is equivalent to a Turing machine with an interpreter
that consults a complete description of itself (presumably without being able to understand itself
whereas humans consult an imperfect and incomplete mental model that is somehow qualitative
different. However, this argument appears to be extremely weak because the two positions are
similar and closely related.
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(1979/1981) and McCarthy (1979). A system requires such an introspective capabilit
is to reason fully about the correctness of its knowledge. This is especially useful be
beliefs are subject to retraction in the face of new information (i.e., knowledge is nonm
tonic). But beyond any technical details, McCarthy also wonders what it means f
machine to have a mental life. McCarthy (1979) enumerates six reasons why attrib
mental qualities to programs and machines is a useful effort. Among them, he claim
does Dennett’s 1978 essay on theintentional stance)that humans can more quickly an
more easily understand a program, its behavior, and its intended function by ascr
beliefs and goals to the machine than by analyzing and explaining it in the language o
gram code and computer states. But most interestingly, McCarthy takes the busin
understanding and simulating a machine’s mental life beyond a mere practical meta
He questions what it means for a machine to have consciousness and to introspect ab
mental world. Furthermore, he realizes that “introspection is essential for human
intelligence and not a mere epiphenomenon.” (McCarthy, 1995, p. 89) Thus, he is k
interested in the relation between machine and human introspection.

McCarthy (1979) defines introspection as a machine having a belief about its
mental states rather than about propositions concerning the world. This position
focussed the logic community, especially researchers such as Konolige (1985, 1988
Moore (1995), on reasoning about knowledge, belief, and internal states, rather tha
soning about process and computation. McCarthy (1993) further formalizes the id
introspection by introducing context as a first-class object that can be reasoned abou
encapsulating mental situations in formalized contexts, the reasoner can view the m
state as providing an outer context. Reasoning about one's own thoughts then involve
scending the outer context (McCarthy, 1993). Unlike our work, however, the realizatio
such an introspective mechanism has not been implemented in a computational s
Furthermore, McCarthy (1995) notes that even though reason maintenance system
Doyle, 1979) record justifications for their beliefs and can retract beliefs in response to
information, they do not have the capability of inspecting the justification structure
making specific assertions about them, nor do they have the power to derive explan
from such structures.

Although some in the logic community have generalized the logical approach to c
many mental attitudes (e.g., Ballim, 1993),131the preponderance of research has been li
ited to deductive reasoning concerning belief and uncertainty. This same research
evident in the philosophical literature on mental representations of internal states an

131. McCarthy (1979; 1995) also outlines a number of additional issues concerning the menta
domain that have received lesser attention by the logic community. He raises the issue of co
sciousness, language, intentions, free will, understanding and creativity, all of which have com
to represent provocative focal aspects of intelligent reasoning.
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theory of mind (e.g., Stich & Warfield, 1994; but see Lyons, 1986, for a prominent ex
tion). Because of the philosophical roots of logic, much of the research by logic-orie
researchers tend to focus onjustified true beliefand how one canknowa proposition is true
(classical epistemology). The focus is on idealized thought, rather than on develo
descriptive theories of actual human error-prone thought. Logical theories are prescr
in the sense that they outline how people ought to think, not how they do think.
research focus has forced the logicians into grappling with how reasoners can main
consistent and complete set of propositions and how reasoners can deduce only c
propositions from such a set. The advantage of such an orientation is that a system ca
confidence about inferences and propositions in this set; but, the disadvantage is tha
set becomes inconsistent, then from one inconsistency a system can prove false ass
Despite the fact that McCarthy and others have imbued research on introspection w
sense of legitimacy, the most damaging general criticism of the logic approach is tha
metaphor of “thought as a logical proof” is limited when applied to human thinking a
learning. Much of the reasoning process is simply not deductive (McDermott, 1987/19
But with respect to our IML theory, a critical omission is that learning is never addres
by their intellectual dialogues.

11.1.2 Knowledge-Based Systems, Quasi-Introspection, and Related Theories

The expert system community has also invested much effort into the formalizatio
metareasoning and metaknowledge. It was recognized in the late 1970’s that differ
exist between domain knowledge in the form of expert rules, and declarative control kn
edge in the form of meta-rules (Davis, 1979, 1980; see also Clancey & Bock, 19
Metarules encode knowledge about how rules should be executed, whereas ordinar
encode domain-specific knowledge. Barr (1977, 1979) noted, as we do here, the p
relation between higher-order knowledge and reasoning by knowledge-based system
human metacognition (see also Lenat, Davis, Doyle, Genesereth, Goldstein, & Sch
1983). Especially when trying to automate the transfer of domain knowledge from hu
expert to machine expert, these and other researchers have attempted to give pro
abstract knowledge of human reasoning and inference procedures, so that program
understand human experts (see for example, Clancey, 1987). Additionally, when e
systems explain a conclusion by providing to the user a list of rules through which the
tem chained to generate the conclusion, the system is said to introspect about its ow
soning. This view appears, however, to be an over-simplified example of both introspe
and explanation.

Davis and Buchanan (1977) claim that four types of meta-level knowledge e
knowledge about object representations (encoded in schemata), knowledge about fu
representation (encoded in function templates), knowledge about inference rules (en
in rule models), and knowledge about reasoning strategies (encoded in metarules)
much of this information is less akin to introspective knowledge than it is to ordin
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abstract knowledge. For example, to claim that default inheritance and learning are i
ently introspective processes (Maes, 1987b) or that extrapolating from past experie
reflective thinking (Smith, 1982/1985) is perhaps stretching the definitions of introspe
and reflection, respectively.

As another example, Genesereth (1983; also Maes, 1988) considers the meta-l
be that which decides about the base-level (or actions in the world) and explicitly incl
planning as a meta-level reasoning process. This unfortunately conflates metarea
with reasoning because the system is not reasoning about the reasoning process it132

Instead, three levels exist: object, reasoning, and meta-reasoning levels. For example
Self (1992) argues that a metacognitive component is crucial in student modeling for
ligent learning environments and proposes three levels. The base level, B, contain
rules and propositions specific to the particular tutoring domain. The reasoning leve
contains descriptions of the processes that operate on and change the B level. Fina
meta level, M, contains descriptions of those processes that monitor the progress of th
soning level processes and reason about the outcomes of the R level. Processes i
level produce changes in the B level, and processes in the M level produce changes
R level.  Stefik (1981) also emphasizes this three-level configuration.

Another popular research issue is to develop systems that can reason about LISP
tions and the actual code that represents a program’s control (Batali, 1983; Davis & B
nan, 1977; Maes, 1987a, 1988; Smith, 1982/1985). However, this form of “introspec
is too low-level. Programs need to reason about the functioning at the level of cogn
process, not at the level of program execution.133Some in the AI community are recogniz
ing some of the more subtle differences between the different families of metareaso
For example, Clancey (1992) notes that many of the metarules employed by system
as TEIRESIAS (Davis, 1979), although dealing with control, are nonetheless domain
cific. He claims that strategic knowledge is inherently procedural whereas domain sp
knowledge is rule-based. Moreover, unlike his previous work (e.g., Clancey, 1987), he
rently eschews modeling the mental process that the expert uses when reasoning ab
domain, and instead emphasizes modeling the domain that the expert knows. This c

132. A procedural difference exists between reasoning about a solution or a problem and the meta
easoning directed at the reasoning that produces such solutions or engages such problems.
instance, Carbonell (1986) notes that in order to transfer knowledge from programming a quick
sort problem on a computer in Pascal to solving the same problem in LISP, a student cannot an
logically map the Pascal solution to LISP code. The languages are too dissimilar in data structure
and process control. Instead the reasoner must reason about how the original solution was deriv
and what decisions were made while solving the first problem, analogically mapping the deriva
tion to LISP.  Reasoning is at the algorithm level, rather than the code level.

133. In the terms of Newell (1982), the reasoning should be at the symbol level rather than at th
register-transfer level of intelligent systems.
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of focus, however, seems to be as much a concession to the difficulty of representing
spective knowledge as it is a necessity dictated by representation itself.

Although many in the artificial intelligence community have recognized the neces
of reasoning about one’s own beliefs, few have both modeled and represented the pro
thatgeneratesbeliefs, and made them available to the reasoner itself. In this catego
reflective systems, a distinction exists between those systems that reason forward to
what action to perform or what computation to execute, and those that reason backw
explain a failure or learn. This is related to the distinction made in the psychological l
ature between forward strategic control and backward metacognitive monitoring (se
discussion of Nelson & Narens, 1990/1992 in Section 11.2.3). In the former category
tems attempt to choose a reasoning action based on some knowledge of the mental
at the disposal of the system. Doyle (1980), as well as Russell and Wefald (1991a, 1
Tash & Russell, 1994), use probabilistic estimations to decide which computation ha
most likely utility. Etzioni (1991) uses decision-analytic methods to weigh the trade
between deliberation cost, execution cost and goal value when choosing a goal t
which to direct attention and when deciding which action to take in service of a cho
goal. The latter category of systems (backward metacognitive monitoring) is examin
the next section.

By some measures, few people are working on introspection, but in another sens
by some in the AI community, everyone in AI must be working on introspection and me
easoning. Most intelligent programs deliberate to some extent about the types of a
that are optimal given their goals. For example, Soar (Newell, 1990; Laird et al., 1
Rosenbloom et al., 1993), Theo (Mitchell, et al., 1991), and PRODIGY (Carbonell e
1991; Minton et al., 1987) are all programs that make deliberate decisions as to the
action available in their domains. Moreover, if metaknowledge is taken to be any abs
knowledge (e.g., default knowledge), and metareasoning is any of the higher cog
functions (e.g., planning), then ironically CBR is one of the few non-introspective rea
ing paradigms remaining because it reasons from concrete experience and ep
(tokens, rather than abstract types). We agree with Maes’ (1987b) assessment that a
spective system is one whose domain is itself. But in the research presented here, w
ther define an introspective reasoner to be a system thatreasonsspecifically about itself (its
knowledge, beliefs, and its reasoning process), not those that simplyusesuch knowledge.
As demonstrated in Chapter IX, this is crucial for effective learning.

11.1.3 Relation of AI Research to IML Theory

Although many systems use higher order knowledge and processes in intell
tasks, the theory presented here is one of only a few that use introspection to support
ing in response to failure. That is, the Meta-AQUA system keeps a trace of its reason
order to reason backwards towards the failure causes and to formulate a plan to cha
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knowledge. As reiterated in this text, several fundamental problems must be addres
create such learning plans or strategies. These problems are (1) determining the cau
reasoning failure (blame assignment), (2) deciding what to learn (learning goal form
tion), and (3) selecting and ordering the best learning methods to pursue its learning
(strategy construction). A learning system that determines why reasoning fails, formu
its own learning goals, and constructs a learning strategy needs the ability to intro
about its own reasoning processes and knowledge. In support of such an assertion, C
et al. (1993) argue that to plan effectively a system must have an explicit model of i
planning and execution processes.134 In this dissertation, we have argued more genera
that to learn, a system must have an explicit model of its performance task.

In general, our orientation is similar to the approaches based on reasoning traces
Carbonell, 1986; Minton, 1988; Sussman, 1975) or justification structures (e.g., Birnb
Collins, Freed, & Krulwich, 1990; deKleer, Doyle, Steele, & Sussman, 1977; Doyle, 19
to represent problem-solving performance and to other approaches that use charac
tions of reasoning failures for blame assignment and multistrategy learning (e.g., K
1990; Mooney & Ourston, 1991; Owens, 1990a; Park & Wilkins, 1990; Redmond, 19
Stroulia & Goel, 1992). Reasoning trace information has primarily been used for bl
assignment during planning (e.g., Collins et al., 1993; Birnbaum et al., 1990; Veloso &
bonell, 1994) and for speedup learning (e.g., Mitchell, Keller, & Kedar-Cabelli, 1986)
major difference between our approach and these approaches is our use of explicit
sentational structures (Introspective Meta-XPs) to represent classes of learning situ
along with the types of learning needed in those situations.

Other types of knowledge may also be important in multistrategy or introspec
learning systems. For example, Pazzani's (1991) OCCAM system has generalized k
edge about physical causality that is used to guide multistrategy learning. In contras
propose specific knowledge about classes of learning situations that can be used to
learning strategy selection and construction. The IULIAN system of Oehlmann, Edw
and Sleeman (1995) maintains metacognitive knowledge in declarative introspection
The RFermi system (Kennedy, 1995) maintains goal and memory search informati
represent knowledge about its memory performance. This information allows it to in
spectively determine improvements in its search behavior. Freed’s RAPTER system
& Freed, 1994; Freed & Collins, 1994) uses three types of self-knowledge when lear
Records of variable bindings maintain an implicit trace of system performance, justifica
structures provide the knowledge of the kinds of cognitive states and events need
explain the system's behavior, and transformation rules (Collins, 1987; Hammond, 1
describe how the mostly implementation-independent knowledge in justification struc
corresponds to a particular agent’s implementation. In the Meta-AQUA system, how

134. This contention concerning planning is also shared by Fox & Leake (1995a).
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TMXPs maintain reasoning traces explicitly, and most implementation-dependent kn
edge is avoided.

Our approach to using an analysis of reasoning failures to determine what needs
learned is similar to Mooney and Ourston’s (1991) EITHER system, Park and Wilk
(1990) MINERVA program, the CASTLE system of Krulwich (1993; Collins et al., 199
Fox’s (1995; Fox and Leake, 1995a, 1995b) ROBBIE path planning system, and Stro
(1994; Stroulia & Goel, 1995) Autognostic system, but with some important differen
We have focused on the use of meta-models for explicit representation of domain kn
edge and of reasoning processes in an integrated, multistrategy reasoning and learni
tem. Unlike both Mooney and Ourston and Park and Wilkins, we have not assumed a s
reasoning paradigm (logic-based deduction and rule-based expert systems, respectiv
terms of which failure situations and learning strategies are characterized. Rather, it
architecture that provides a basis for a higher-level characterization, which in turn cou
implemented in different ways depending on the reasoning paradigm. In fact, Meta-AQ
uses multiple reasoning methods, primarily case-based reasoning.

Birnbaum et al. (1990) focus on the process of blame assignment by backin
through justification structures, but do not emphasize the declarative representation o
ure types. They explicitly model, however, the planner. They also explicitly model and
son about the intentions of a planner in order to find and repair the faults that unde
planning failure (see Freed et al., 1992). Though much is shared between CASTLE
Meta-AQUA in terms of blame assignment (and to a great extent CASTLE is also
cerned with deciding what to learn; see Krulwich, 1991), CASTLE does not use fa
characterizations to formulate explicit learning goals nor does it construct a learning
egy in a deliberate manner within a multistrategy framework. The only other syste
introspectively deliberate about the choice of a learning method is the ISM system of C
(1995). ISM optimizes learning behavior dynamically and under reasoning failure or
cess, but the system chooses the bestsingle learning algorithm, rather than composing
strategy from multiple algorithms. ISM does not therefore have to consider algorithm i
actions.

Finally, our work focuses on reasoning failures, and not only on performance fail
(in both the Collins et al. and Owens’ cases, planning failures). Stroulia’s approach foc
on a design stance characterization of the reasoner as a device, whereas our appro
with the approach of Collins, Birnbaum, and their colleagues, takes a more intent
stance toward the reasoner.135 The analysis of Stroulia (1994), characterizing the ways
which such a device could fail, yields a taxonomy of failure types similar to ours. Howe

135. Interestingly, Collins et al. (1993) argue from both a design stance and an intentional stance
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like the previous studies, she too does not use declarative characterizations of rea
failures to formulate explicit learning goals. Furthermore, the CASTLE, Autognos
ROBBIE, and RAPTER systems are all model-based in their introspective meth
whereas Meta-AQUA is XP-based (case-based). Finally, none of these systems cre
explicit plan to learn in the space of changes to the BK. Despite these difference
emphasize that the approaches enumerated in this section have much in common wit
theory. The following section demonstrates that commonalities also exist within muc
the psychological community’s research that investigate how persons perceive thei
minds, memories and knowledge.

11.2  Psychology, Metacognition, and Human Learning

The literature on metacognition (cognition about cognition where the self is a re
ent) and metamemory (memory and knowledge about ones own memory system
retrieval ability) provides a wide array of influences and support that bear on the res
presented here. Our model of introspective learning makes several claims about the
of learning, reasoning, and introspection that are supported by research in psycholo
metacognition. This support includes the emphasis on cognitive self-monitoring
importance of explicit representation, the emphasis on understanding one’s own me
system, and the data demonstrating a person’s ability to assess the veracity of the
responses and learning.

11.2.1 Cognition and Metacognition

Since Flavell’s (1971) coining of the term metacognition, and especially since
seminal work of Flavell and Wellman (1977), many have investigated the phenomenon
rounding cognition about cognition.136Of all research on the modern-day concept of me
cognition, the child development literature has the longest history (see, for exam
Yussen, 1985). Moreover, developmental psychology has reported the most conclusiv
dence for the importance of metacognitive strategies and monitoring (see Schneider,
Wellman, 1983). Researcher interested in learning disabilities have studied the meta
tive components of such pathologies. For example,Part II: Macrolevel Cognitive Aspects
of Learning Disabilities(Ceci, 1987) contains a number of papers relevant to this type
investigation. Research examining the relationship between metacognitive skills and
cational instruction have made significant progress. For example, Forrest-Pre
MacKinnon, and Waller (1985) and Garner (1987) report successful instruction proce

136. Brown (1987) notes that the relationship between text comprehension and metacognitive acti
ities has been studied since the turn of the century, but under the guise of other technical term
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related to both problem solving and reading comprehension (see also Ram & Leake,
for a related discussion). Most of these works concentrate on applications relevant to
ing in general school environments, although some address specific instruction of the
ing disabled. Finally, the social psychology and philosophical communities have all t
considerable interest in individuals’ beliefs about their own beliefs and beliefs about ot
beliefs (e.g., Antaki & Lewis, 1986; Pollock, 1989a, 1989b).137

Wellman (1983, 1985) views human metacognition not as a unitary phenomenon
rather as a multifaceted theory of mind. Metacognition involves several separate but re
cognitive processes and knowledge structures that share as a common theme the sel
erent. Such a theory of mind emerges from of an awareness of the differences be
internal and external worlds, that is, from the perception that there exist both mental s
and events that are quite discriminable from external states and events. This theory e
passes a number of knowledge classes considered by Wellman to be psychologica
ables:person variablesthat deal with the individual and others (for example, cogniti
psychologists can recall many facts about cognition, whereas most people cannottask
variables, which concern the type of mental activity (for example, it is more difficult
remember nonsense words than familiar words), andstrategy variablesthat relate to alter-
native approaches to a mental task (e.g., to remember a list it helps to rehearse). F
Wellman’s theory includes a self-monitoring component, whereby people evaluate
levels of comprehension and mental performance with respect to the theory and the
the theory predicts.

11.2.2 Problem Solving and Metacognition

Problem solving is one area where a natural fit exists to studies of higher cogn
processing, such as executive control and monitoring, and where much leverage for
cognitive knowledge could be gained by humans. However, few studies have examine
phenomena explicitly.  Some are reported here.

Dörner (1979) reports one of the earliest experiments on the effects of cognitive m
itoring on problem solving. The experimental design categorizes subjects into one o
conditions according to how they perform protocols after problem solving. In the in
spective condition, subjects reflect out loud about their own reasoning during problem
ing, whereas subjects in the control group discuss their solution to the problem in term

137. Pollock (1989b) distinguishes between knowledge about the facts that one knows and know
edge about one's motivations, beliefs and processes. Introspective multistrategy learning is bas
on both kinds of metaknowledge; we have argued that introspective access to explicit represent
tions of knowledge and of reasoning processes is essential in making decisions about what a
how to learn.
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the hypotheses they developed. The experiment itself involves a complicated machin
three lights. Each light can be turned on in four different colors. There are eight push
tons on the machine with which subjects control the lights and their colorations. The
jects solve ten problems during the experimental trials. Problems consist of an initial
in which the lights of the machine begin operation and a goal state consisting of a diff
light configuration. Dörner reports that the experimental group performs significantly
ter than the control group after the third trial. Moreover, Dörner claims that introspec
subjects exhibited improved performance during transfer tasks of subsequent experim
although the details of many of the experiments are lacking.

Derry (1989) offers a comprehensive model of reflective problem solving for ma
matical word problems inspired by John Anderson’s ACT* (Anderson, 1983) and P
(Anderson & Thompson, 1989) theories of general cognition. Based on such a th
Derry and her colleagues have developed an instructional system to teach word pro
to military servicemen. Prior to the development of this application, Derry performed
following experiment on groups of college students and military personnel. Given
assumption that general problem solving behaviors, such as reasoning from the goa
wards to the solution and means ends analysis, form the bases for human problem s
the experimenter gathered subject protocols during solution of mathematical word
lems. The protocols were classified into 27 categories falling into four basic phas
problem solving: clarifying a problem, developing a strategy, executing a strategy,
monitoring/checking performance. The surprising result was that neither group perfo
problem solving in a linear fashion, and that most protocols were classified into clarif
and execution phases. The strategy-development and monitoring/checking phases
significant protocols.

Delclos and Harrington (1991) report that both subject conditions with general p
lem-solving skill training and those with problem-solving coupled with metacognitive s
training demonstrate equal performance on a problem solving task. With greater task
plexity, though, subjects with the problem-solving/metacognitive training perform be
than either a control group or the problem solving training alone group. Also, Swan
(1990) claims to have established the independence of general problem aptitude from
cognitive ability. Subjects with relatively low aptitude, but high metacognitive ability, of
use metacognitive skills to compensate for low ability so that their performance is eq
lent to high aptitude subjects.

Kluwe (1987) examines the effect of problem-solving task demands on regula
behavior in subjects aged four through seven. By varying reversibility and irreversib
conditions in multiple puzzle-solving tasks (i.e., the first condition allows pieces of the
zle to be placed and then moved to alternative locations, whereas the second con
allows no movement once a piece is placed), Kluwe sought to measure the differen
problem solving strategies. Results show that although some activities change rega
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of age (for instance, all subjects increase the duration and amount of problem-solving
ations under the irreversibility condition), other activities (such as grouping the pieces
present in only the older subjects.

Finally, Davidson, Deuser, and Sternberg (1994) present results from a series of
ies that show the use of metacognitive abilities correlate with standard measures of i
gence. In their experiments on insight problem-solving they report that, although hi
IQ subjects are slower rather than faster on analyzing the problems and applying
insights (not surprising if more processing is being performed), their performance is hi
They argue that the difference in performance is due to effective use of metacognitive
cesses of problem identification, representation, planning how to proceed, and so
evaluation, rather than problem solving abilitiesper se.

This section has illustrated some of the findings that describe how humans intro
about their cognitive performance (processes) when solving problems and how this a
can lead to improved performance. Although the findings are mixed, and no resea
claims that humans are inwardly omniscient, the results support the relevance of IML
ory for modeling intelligence and learning. The next section examines the research
people’s ability to understand their own memory systems (content).

11.2.3 Metamemory

A large bulk of the research into metacognition pertains predominantly to metam
ory knowledge and monitoring of memory performance. Kausler (1991) groups
research into three broad categories: off-line memory self-evaluation, on-line memory
evaluation, and memory performance monitoring.Off-line evaluationof memory concerns
a subject’s perception of the efficiency and general operation of the subject’s memory
tions. This is often determined by the use of a questionnaire and then correlated with
sequent memory performance in experiments. For a thorough review of this lin
research, see Hultsch, Hertzog, Dixon, & Davidson (1988).

On-line evaluationreports a subject’s judgement of their performance in a particu
memory task. Both feelings-of-knowing (FOK, i.e, judgements of being able to recog
items that are not recalled) and judgements-of-learning (JOL, i.e., judgements while
ing as to the likelihood of future recall) responses are examples of on-line evaluations
instance, Lovelace and Marsh (1985) demonstrate that during study, older subjects’ j
ments of their future ability to perform a paired-associate matching task is less acc
than younger subjects’ estimates.

Finally,memory performance monitoringis the ability of a subject to associate certa
memory strategies with various memory demands or tasks. For example, experiment
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test subjects ability to choose appropriate strategies for memory problems by givin
subject unlimited time to study test words, then measure the amount of time spe
rehearsal. The length of rehearsal time is an index into the subject’s knowledge o
behavior necessary to learn the stimulus. Other experiments in this category (e.g., Br
& Pressley, 1988) measure this ability more directly. Brigham and Pressley report that
practice and feedback, older subjects are less able to determine that a keyword mne
strategy is superior to a strategy that generates semantic contexts for recalling wor
than are younger subjects, and therefore do not develop a preference for the better s
when studying.

Lovelace (1990) subdivides the on-line memory self-evaluation research categor
two additional groups: Pre-performance estimates of memory and memory monitoring
to be confused with what Kausler calls memory performance monitoring). Thepre-perfor-
mance estimatesparadigm requires subjects to predict subsequent memory performa
and then compares estimates to actual behavior.Memory monitoring, on the other hand,
concern a subject’s ability to evaluate and act upon current memory-states during tas
formance. These abilities include other subdivisions according to Lovelace: FOK or tip
the-tongue phenomena, correctness of response (postdictions), and reality monitori138

FOK judgements correspond to subjects’ estimates about their future recognition o
rently unrecalled memory items; whereas postdictions concern a subject’s belief i
veracity of their responses immediately after they have been given. Reality monitori
the differentiation between acts performed in the world and those performed in the he
plans, dreams, imagination, etc.).

Nelson and Narens (1990/1992) present a general information-processing frame
for integrating and better understanding metacognition and metamemory. Behin
framework lie three basic principles: 1. Cognitive processes are split into an object-
and a meta-level; 2. The meta-level contains a dynamic model of the object-level; and
flow of information from the object-level to the meta-level is considered monitori
whereas information flowing from the meta-level to the object-level is considered con
Although the framework is similar to Self’s model (see Section 11.1.2 page 268), it di
in that it directly integrates much of the research surveyed in sections 11.2.2 and 1
The theory addresses knowledge acquisition, retention, and retrieval in both monitorin
control directions of information flow. Monitoring processes include ease-of-learn
judgements, JOLs, FOKs and confidence in retrieved answers. Control processes i

138. I have used some license in interpreting Lovelace’s subcategories to assure consistency w
Kausler. Lovelace actually places postdictions in the memory-monitoring subcategory. He con
siders the pre-performance estimates category to refer to particular tasks, whereas the categ
that Kausler calls on-line memory self-evaluation Lovelace calls consequences of variation in tas
or processing and restricts it to metacognitions for how memory works in general.
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selection of the kind of processes, allocation of study time, termination of study, sele
of memory search strategy, and termination of search. Both acquisition and retriev
memory items have computationally explicit decompositions in their paper. Although
framework is directed at memory related performance rather than inference-based pro
solving, the distinctions between monitoring and control and the information proces
perspective is highly compatible with the views presented in IML theory. We provid
monitoring capacity for detecting failure and a control capability for guiding learning.

11.2.4 Relation of Psychological Research to IML Theory

The preceding subsections examined some of the related research in the meta
tion and metamemory communities. This section attempts to reorganize these result
respect to the theory of learning presented in this dissertation. Research regarding
cognition and metamemory processes in humans is associated with our work on intro
tive learning in at least four specific ways.

First, and foremost, is the emphasis on cognitive self-monitoring. This behavior i
human ability to read one’s own mental states during cognitive processing (Flavell & W
man, 1977; Nelson & Narens, 1990/1992; Wellman, 1983, 1985). Thus, there is a mom
by-moment insight into the content of one's mind resulting in an internal feedback fo
cognition being performed and a judgement of progress (or lack thereof). Garner (1
has argued that metacognition and comprehension monitoring are important factors
understanding of written text. Reading comprehension is therefore considered to be c
an interaction between a reader’s expectations and the textual information.139Psychologi-
cal studies have also confirmed a positive correlation between metamemory and me
performance in cognitive monitoring situations (Schneider, 1985; Wellman, 1983).
evidence, along with results from the studies above linking problem-solving perform
with metacognitive abilities, directly supports the conviction that there must be a sec
order introspective process that reflects to some degree on the performance elemen
intelligent system, especially a learning system involved in understanding tasks su
story understanding.

139. A special relation exists between metacognition, question asking and text understanding (s
Gavelek & Raphael, 1985; Pressley & Forrest-Pressley, 1985). In effect, human learners use que
tion-asking and question-answering strategies to provide an index into their level of comprehen
sion of a given piece of text. This metacognitive feedback helps readers find areas where the
understanding of the story is deficient, and thus where greater processing is necessary. Such a p
spective supports our ancillary claim that question generation is a key activity in text comprehen
sion and also that meta-level processing is important in such a learning context. As a final tangen
not only is metacognition important in language understanding, it is also important in language
generation (i.e., in metalinguistic development; see Gombert, 1992).
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Second, our IML theory places a heavy emphasis on explicit representation. T
of thought, as well as the products of thought, are represented as metaknowledge stru
and computation is not simply the calculated results from implicit side-effects of proc
ing. This emphasis is echoed in Chi's (1987) argument, that to understand knowledge
nization and to examine research issues there must be some representational fram
Although diverging from the framework suggested by Chi, IML theory provides a rob
form with which to represent knowledge about knowledge and knowledge about pro
For example, Section 4.3 illustrated that Meta-XPs can represent the difference be
remembering and forgetting (see also Cox, 1994b; Cox & Ram, 1992a), and Section
showed that the Meta-AQUA system can use such representations to reorganize m
indexes when forgetting. In general, forgetting is a neglected issue in AI and computat
learning research, yet forgetting is a significant issue in the metamemory literature (S
1978; Wellman & Johnson, 1979). The meta-explanations in our approach are simi
self-explanations (Chi & VanLehn, 1991; Pirolli & Bielaczyc, 1989; Pirolli & Recke
1994; VanLehn, Jones & Chi, 1992). This research shows that formulation of self-e
nations while understanding input examples significantly correlates with subjects' abil
learn from the examples. One difference between the two approaches, however, is tha
explanations are self-generated explanations about the world, whereas meta-explan
are explanations about the self. Despite the differences, experimental results in the ps
logical literature support the claim that representational structure is important in learn

Third, because the approach taken by the introspective learning paradigm c
addresses the issues of memory organization, it can assign blame to errors that occu
mis-indexed knowledge structures and poorly organized memory. As Section 3.3 ar
the memory organization of suspended goals, background knowledge, and reasoning
egies are as important in determining the cause of a reasoning failure as are the goals
ositions and strategies themselves. Thus, memory retrieval and encoding issue
relevant in deciding what to learn and which learning strategy is appropriate. This cla
supported by the metamemory community's focus on organizational features of me
and their relation to the human ability to know what one knows, even in the face o
unsuccessful memory retrieval.

Finally, both metacognition theory and IML theory address the issue concerning a
son’s ability to assess the veracity of their own responses. In addition, because a pers
a FOK, even when recall is blocked, the agent can make efficient use of search. Sear
elaboration is pursued when an item is on the “tip of the tongue'' and abandoned wh
item is judged unfamiliar. This search heuristic provides efficient control of memory
avoids the combinatorial explosion of inferences (Lachman, Lachman & Thrones
1979; Miner & Reder, 1994). Although people sometimes make spurious and biased
ences when assessing their own memories and reasoning, these inferences none
affect people’s decisions and thus are important components when modeling human
sion-making. For example, current case-based reasoners retrieve the best case and
to the current problem. It is only after the reasoner generates a complete solutio
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judges it to be incorrect that the system will attempt to retrieve another case for adapt
Adding a metacognitive component would allow the case-based reasoner to dynam
judge the progress toward the goal during initial problem-solving (using metacogn
monitoring) and estimate the likelihood of finding another case in memory that applie
the problem (using FOK judgements). Therefore, the reasoner could prematurely dec
“give up” on the initial case and search for a better one by judging the trade-offs involv

One of the major differences between the manner in which humans learn and the
ner in which machines do is that humans perform dynamic metacognitive monitorin
self-evaluation. Humans often know when they are making progress in problem sol
even if they are far from a solution, and they know when they have sufficiently lea
something with respect to some goal (Weinert, 1987). They know how to allocate m
resources and, for example, can judge when learning is over. Many reviews (e.g.
1987; Davidson et al., 1994; Miner & Reder, 1994; Nelson & Dunlosky, 1991; Schne
1985; Wellman, 1983) cite evidence for such claims. Research in IML theory is a ste
the direction of fully incorporating this metacognitive monitoring capability into artificia
intelligent systems.

It should be noted that the learning strategies represented in Meta-AQUA, are at a
level of granularity than those examined by much of psychology. For example, it woul
misleading to assert that the types of learning strategies studied by the metacognition
munity are similar to index learning, explanation-based generalization, and other lea
strategies used in Meta-AQUA. Instead, metacognition research focusses on a pe
choice of strategic behaviors at the level of cue elaboration, category grouping, and
rehearsal (in memory tasks); re-reading of text, question generation, and keyword s
(in text interpretation tasks); or solution checking, saving intermediate results in an ext
representation, and comprehension monitoring (in problem-solving tasks). However,
of the results from research on metacognition do support the overall approach we
taken, that of using introspection to support the selection of appropriate strategies in d
ent situations.

Not only is there a relation from psychology bearing on IML theory, but the reve
argument can be made as well. Much of the metaknowledge research in artificial in
gence has focused on knowledge about knowledge and beliefs, or knowledge abo
facts that one does or does not know. Much of the metacognition research in psych
has also focussed on similar issues, focussing on cognitive processes, strategies and
edge having the self as referent. Of particular interest is the psychological resear
metamemory, which, in addition to knowledge about knowledge, includes knowledge a
memory in general and about the peculiarities of one's own memory abilities. The em
cal results obtained from the Meta-AQUA system support the claim that metaknowl
should also include knowledge about reasoning and learning strategies. Experim
results in the metacognition literature suggests that introspective reasoning can fac
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reasoning and learning (e.g., the studies mentioned earlier: Davidson et al., 1994; D
& Harrington, 1991; Nelson & Dunlosky, 1991; and Swanson, 1990). Our research ext
these results by specifying computational mechanisms for metacognitive proces
focussing in particular on the selection and use of learning strategies.

11.3  Summary and Discussion

This chapter examined some of the research related to IML theory (but not discu
in previous chapters), both from the artificial intelligence perspective and from the co
tive psychology point of view. We described the genesis of interest in computational t
ries of introspection during the formative years of AI. The logic community has a large
to play in this early research because they established a formalism (and a legitimac
the representation of mental states and belief, including beliefs about a system’s
beliefs. We also examined the research of the expert system community and others th
claim to be developing introspective systems, but take a different approach. Finall
looked at systems that combine introspective theories with theories of learning. S
quently, this chapter examined psychological research into metacognition, problems
ing, metamemory, and the interactions between each. Both the material on AI theorie
that dealing with psychological theories evaluated the relationship between the re
research and IML theory and how such research from both fields support the claims
sented in this thesis.

Although this chapter represents a relatively broad and cursory examination of th
erature and issues, it nonetheless supports the need for further research into the relat
between metacognitive activities, intelligent performance, and learning, especially
there is a natural affinity between high-level cognition and high-level performanc
humans. The wealth of ideas in both fields that relate to the issues raised here also
for a stronger bond between those who build qualitative and mathematical theori
human behavior and those who develop computational models. Yet, before contin
beyond the modest start contained in this thesis, the psychological and AI communitie
benefit from better methodological and theoretical foundations. Often, authors use d
ent terms for the same concept (e.g., introspection and reflection),140 and sometimes the
same terms are used in different ways (e.g., metacognition is a multiple overloaded t
Indeed, Brown (1987) has described research into metacognition as a “many-headed
ster of obscure parentage.” The description applies equally as well to the man
approaches that deal with introspection, learning, and the relation between the two.

140. But although we have used the terms as synonyms until now, Section 13.2 will make a sma
distinction between introspection and reflection (see Figure 102).
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We have attempted to outline and organize some of the bewildering research
exists in relation to IML theory and the Meta-AQUA implementation. But until a larg
foundation is developed that integrates and supports the many technical approach
cognitive science perspectives, there may be only limited progress in understandin
computational role of both metacognition in human learning and introspection in mac
learning. After the next chapter summarizes the cornerstones IML theory provides
speculate in an extended epilogue as to some of the forms such a foundation may as
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CHAPTER XII

CONCLUSIONS

I know I see what I know
that I know I think
and that I don’t know. I know what I see.
But I forget. But sometimes

I forget.
I see that I am blind
and I see the blinding light And This is the Way
in everything, It should be.
but I forget. At the end of every forget

I remember.

Lonny Brown (cited in Ram Das, 1971), p. 98.

Many dissertations are written from an extremely narrow and focussed perspe
this one has attempted to start with a narrow computational problem, but then to exa
the problem from a broader cognitive science perspective. We examined topics ra
across a wide spectrum, from representations to algorithms and from historical cont
implementation. The attempt to be general in our theory of introspection has dictated
the research at least consider comprehension, problem solving, and learning in some
We take up again these three processes in an extended epilogue to come, but first, we
what this work has accomplished so far. The goal of this chapter is to briefly contextu
the contributions and major points by which the reader might remember this researc

The thesis contains four major parts. Part One introduced and motivated the pro
of constructing a learning strategy. Within it Chapter I defined the main problem and
lined its solution. This chapter introduced the issues addressed by all subsequent ma
Chapter II then explained the distinction between a process theory and a content the
cognition. Following these preliminaries, Part Two developed a content theory of lear
and introspection (Chapter III gave the content and Chapter IV provided the represen
for the content); whereas, Part Three detailed the corresponding process theory (Cha
set it up theoretically and then Chapters VI and VII provided an extended example
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made the process theory concrete). Part Four finally inventoried the implementation
theory (Chapter VIII) and evaluated the theory using the implementation (Chapter IX).
Four concludes with future (Chapter X) and related (Chapter XI) research and a final
ing (Chapter XII).

Section 12.1 explicitly lists the main points of this thesis. The subsequent four
tions (12.2-12.5), will expand on each of the four main parts to the dissertation, br
reviewing the main contributions and putting them into context for the reader. Section
finishes by reiterating the major contributions of the thesis.

12.1  Major Points of the Dissertation

To be as explicit as possible, we enumerate our most important claims here and f
with a brief summary of the points in context of an outline of the dissertation (within
summary the points are marked likewise and printed in italics). If the casual reader
from this dissertation nothing but a litany of slogans, then the following list represents
thesis in convenient sound-bite form, ordered by decreasing importance. I challeng
reader to consider them at leisure, however, and if interested, to search the appro
chapter number (in parentheses) for the source of these claims in order to indepen
determine their reasonableness.

1. The question of learning-strategy construction is important because if ignored,
system that conjunctively calls learning algorithms can incur negative interactions
(I, VII, IX)

2. Deciding what to learn is a necessary process, if learning is to remain effective
that is, if negative interactions between learning methods are to be avoided. (V
IX)

3. Explaining reasoning failure (blame-assignment) is like diagnostic troubleshoot
ing: case-based introspection is a symptom-to-fault mapping from failure type to
failure cause. (V, VI)

4. Learning is like nonlinear planning: The task is to create a plan of learning step
that achieve desired changes to the background knowledge. (VII)

5. To learn effectively requires introspection and reasoning about reasoning. (I, V, IX

6. To reason about reasoning effectively, the reasoning failure must be represent
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declaratively in explicit Meta-XP structures. (IV)

7. Failure types should be derived from a model of the reasoning process rather th
by generalization from the researcher’s intuitive list of all likely failures. (III)

8. In a computational theory of introspective learning, a special relation exists
between the content and process theories because the content theory must rep
sent what the process theory describes (i.e., process failures). (II)

9. We are starting to give machines an ability to think about themselves despite wh
the critics (e.g., Searle, 1992) think. (I-XII)

12.2  Part One: Motivations and Defining the Problem

Chapter I set up the basic arguments used by the thesis in establishing a the
introspective multistrategy learning. It provided a motivation for why an introspec
approach to learning is effective, especially when integrating disparate learning met
It then narrowed the thesis focus to the learning-strategy construction problem; that
posed the question “How can an intelligent system select and order learning methods
a performance failure?”➀The question of learning-strategy construction is importa
because if ignored, a system that conjunctively calls learning algorithms can incur neg
interactions.

The chapter placed this question in a machine learning context and asked what s
icance it has for models of human learning. The chapter outlined a solution to the str
construction problem and argued that to answer the question a number of interrelate
questions must be answered first. Figure 100 lists brief answers for each of the sub
tions in the order they were entertained by this document.141 The questions represent th
major research problems considered and the answers represent the specific contrib

Given the introduction to IML theory and the Meta-AQUA implementation in Chap
I, Chapter II provided two examples that provided tangible material to illustrate man
the abstract arguments put forward in subsequent chapters. We then explained the
ences between content and process theories and related the distinction to the perfo
domain of story understanding. A content theory specifies the salient features for r
senting knowledge in a domain; whereas, a process theory specifies the transformati

141. See Figure 9 on page 14 for the goal structure of the items in this list.
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• Q6: What kinds of reasoning failure exist?

Ans: Contradiction, impasse, false expectation, surprise, and
unexpected success.

• Q4: What can cause reasoning failure?

Ans: Knowledge, processes and goals or the way they are
indexed in memory; Environment or the way to which it is
attended.

• Q7: At what level of granularity should reasoning be represented?

Ans: At enough detail to support learning from failure.

• Q5: How to represent mental states and reasoning mechanisms?

Ans: Use meta-explanation patterns (Meta-XPs)

• Q3: How to explain a reasoning failure?

Ans: Case-based introspection: Maintain trace of the reason-
ing; when failure occurs, retrieve past case of meta-reasoning
(Meta-XPs) about the class of failure; apply to trace.

• Q2: How to automate learning decisions?

Ans: Use bound Meta-XP (above) to post explicit learning
goals.

• Q1: How to choose or construct a learning strategy?

Ans: Treat strategy selection as a planning problem: Achieve
learning goals (above) with nonlinear planner and learning
algorithms encapsulated as STRIPS-like operators.

• Q0: How can the research be evaluated?

Ans: A. Meta-AQUA implementation - Covered LISP learning
protocol; hand-coded examples; Elvis World empirical study.
Ans: B. Meta-TS implementation - Covered human data from
troubleshooting circuit boards.

Figure 100. Research goals and results (contributions)
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that knowledge.➇In a computational theory of introspective learning, a special relati
exists between the content and process theories because the content theory must re
what the process theory describes (i.e., process failures).

12.3  Part Two: Content Theory of Introspective Multistrategy Learning

Four of the eight research questions listed in Figure 100 address issues of repre
tion and content. Chapter III tackled two of them while Chapter IV handled the remain
The purpose of Chapter III was to describe what needs to be represented (i.e., the co
Because the task of learning from failure involves mapping from failure symptom to fai
cause, the representational focus is not on the content of some task domain in the
rather the theory must represent the second-order learning domain of reasoning f
Thus, this chapter provided a simplified but general model of reasoning from which fa
can be analyzed. The question of what kinds of failure exist (Q6) can then be answer
exhaustively deriving the implications of the model.

➆Failure types should be derived from a model of the reasoning process rather
by generalization from the researcher’s intuitive list of all likely failures.Our analysis of
the reasoning model showed that failure consists of contradictions, impasses, false
tations, surprises, and unexpected successes. Given these failure symptoms, the rem
of the chapter analyzed the kinds reasoning faults that can cause such symptom
argued that knowledge, goals, processes and the environment all contribute to failure
each of these categories, we additionally showed that each can have a selection or o
zational component. This then determines a matrix of causal factors that explain reas
failure (Q4).

Chapter IV provided specific knowledge structures that declaratively represen
content of reasoning failures described in the previous chapter. To represent failure
details of mental events and mental states are captured just as standard AI knowledg
resentations capture the details of physical events and states. The most important
are the causal relationship between chains of reasoning, and thus not all details of rea
need be represented. Rather, the granularity of representation must be fine enough
port explanations of failure and the learning process (Q7).

➅To reason about reasoning effectively, the reasoning failure must be represe
declaratively.To discuss how to declaratively represent the mental domain, we first ex
ined forgetting. We argued that both the logic and CD formalisms are insufficient w
representing such reasoning failures because they do not express well the causal n
involved (e.g., the difference between forgetting due to missing knowledge and that d
mis-indexed knowledge). We then described how IML theory represents an entire cla
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retrieval failures with a single meta-explanation pattern (Q5). The Meta-XP knowle
structure comes in two varieties; TMXPs represent how reasoning fails and IMXPs re
sent why reasoning fails. After providing a basic representational vocabulary, the ch
described how to represent reasoning success and all symptoms of reasoning failure.
representations compose the types of failure that a system must be able to detect an
which it must reason (i.e., contradiction, impasse, false expectation, surprise, and
pected success). Representing them explicitly simplifies the reasoning and learning

12.4 Part Three: Process Theory of Introspective Multistrategy Learning

Chapter V began by reviewing the theoretical assumptions of IML theory. It pla
the theory in the context of the multistrategy learning framework and developed a pro
model of both understanding and learning. This process theory describes how a syste
use the representations described in Part Two when learning from failure. Learning is
sidered a four phase procedure: blame assignment, deciding what to learn, learning-s
construction, and learning-strategy execution. The first two phases represent a case
approach whereas the latter two consist of non-linear planning techniques. A funct
justification of this learning model holds that➄to learn effectively requires introspection
and reasoning about reasoning.

Using the initial example from Chapter II, the next two chapters worked through
learning process that allows a system to create a learning plan in response to a perfor
failure. The performance task is story understanding. When Meta-AQUA incorre
explains an anomaly in any story it reads (or makes other errors), the system must e
the error.➂Explaining reasoning failure (blame-assignment) is like diagnostic troub
shooting: case-based introspection is a symptom-to-fault mapping from failure type to
ure cause(Q3). The system examines the prior reasoning that preceded the fa
(represented in a TMXP), retrieves an introspective explanation of the failure (repres
in an IMXP), and applies this case to the current failure to form a causal graph of the p
most likely to be responsible for the failure. With this explanation, the system can then
erate a set of learning goals that, if achieved, will correct the flaws in the system’s BK
are responsible for the failure (Q2).

④Learning is like nonlinear planning: The task is to create a plan of learning ste
that achieve desired changes to the background knowledge. Chapter VII looked at how a
non-linear planner can create a learning plan in response to the learning goals spaw
the system and as discussed by Chapter VI. To examine the relevance of the plannin
aphor to learning, we showed that Sussman’s anomaly has a correspondence when p
to make changes in a system’s background knowledge and thus interactions exist.
goals to achieveOn (Block-A, Block-B), a system can plan to achieve goals such asDif-
ferentiate (Expected-Explanation, Actual-Explanation), but it must be careful that plan



12.5  Part Four: Evaluation and Implementation of the Theory❖   289

steps,
The
con-

d, the

t high
ork-
ance,
ribed

stories

ques-
ne is

per-
ich

blish-
r oth-

nter-

arn-
al-
ble-
ISP
tion.
eory

sis that
ation
in the

earle,
steps do not interact. A learning plan consists of a partially ordered sequence of
where the primitive steps in the plan represent calls to specific learning algorithms.
creation of a non-linear learning plan represents an answer to the question of how to
struct a learning strategy in a multistrategy learning context (Q1). Once assemble
plan is simply executed by calling the appropriate learning methods.

12.5  Part Four: Evaluation and Implementation of the Theory

The description of the example by the previous two chapters was at a somewha
level. Chapter VIII provided more of the implementational details that explicate the w
ings of the Meta-AQUA system. It included separate subsections on the perform
input, memory, and learning subsystems. Most importantly, the section on input desc
the Tale-Spin story generator that was used to generate Elvis World stories. These
were used in the subsequent chapter on evaluation.

Chapter IX posed and examined two specific hypotheses in order to answer the
tion of how to evaluate the theory presented by the dissertation (Q0). Hypothesis O
that introspection facilitates learning. In an extensive empirical study, Meta-AQUA
formed significantly better in a fully introspective mode than in a reflexive mode in wh
learning goals were ablated. A novel performance metric used partial credit for esta
ing the amount of understanding the system exhibited when explaining anomalous o
erwise interesting input. In particular, the results lead to the conclusion that➁deciding what
to learn is a necessary process, if learning is to remain effective, that is, if negative i
actions between learning methods are to be avoided.

Hypothesis Two claims that IML theory represents a sufficient model of human le
ing. We showed the applicability of IML theory to human learning by modeling two re
world tasks to which the theory applies (programming in LISP and electronics trou
shooting). The minimal modifications necessary to get Meta-AQUA to cover the L
learning protocol fragment suggests that IML theory is a sufficient model of introspec
The alternate implementation of the Meta-TS system showed the generality of the th
as a human model. The results presented in this chapter also support the hypothe
the failure symptom taxonomy as described by Chapter III is a reasonable categoriz
for both artificial and natural reasoners because these failure types are instrumental
Meta-AQUA and Meta-TS systems from which the results were reported.➈We are starting
to give machines an ability to think about themselves despite what the critics (e.g., S
1992) think.
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12.6  Contributions

Figure 100 enumerates several contributions that stem from this research. As
in the thesis introduction, the narrow research goal was to establish a specific solut
the learning-strategy construction problem (i.e., given a performance failure, assem
calling sequence of learning methods while avoiding negative interactions). Our m
contribution was to develop a means for constructing a learning strategy by treatin
learning task as a planning problem. To perform this we showed how to encapsulate
ing algorithms as operator schemas in Tate’s (1976) Task Formalism and developed
onomy of learning goals that direct such operators. We also made contributions t
blame assignment problem that enable machines to formulate learning goals. This en
the specification of a case-based method of introspection wherein failures cou
explained by mapping from symptoms of failure to the underlying causes. Supporting
method we developed the meta-explanation pattern representational formalism, a
omy of failure causes, and a classification of failure symptoms. In its entirety, this th
presents a content theory and process theory of both question-driven story understa
and introspective multistrategy learning.

A more general contribution was to begin to establish empirically the conditions u
which such introspective processes are productive during reasoning and learning. We
onstrated that in the presence of learning algorithm interactions, non-introspective re
ing ran the risk of poor performance. Thus, when such negative interactions are pres
is imperative that methods such as the ones presented here be used to avoid these pr

The contributions of this thesis are extremely important if AI is to create systems
can scale their performance in the real world. Rather than attempt to develop gener
“weak” method of learning, this thesis lays the groundwork for technology that can i
grate the multitude of “strong” methods currently available in the machine learning c
munity. Especially when complex intelligent systems are drafted to perform increas
complex tasks in dynamically changing environments, performance failures are inevit
The advantages of a system that can reason about these failures and, as a result, au
cally assemble a sound strategy to deal with these misfortunes cannot be overestim

Here we have also taken a first step toward providing machines with an integral
ponent of intelligence: the sense of self. This faculty is clearly one of the most unique
important of those human qualities that separate us from the rest of the natural wor142

But to make significant progress beyond the modest beginnings presented here requ

142. If this assertion is not self-evident, then see Metcalfe and Shimamura’s (1994) preface toMeta-
cognition: Knowing about knowing.
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integration of the many aspects of intelligence that we have only partially addressed.
spection and learning are not isolated atomic processes and do not make computati
a singularly represented brand of knowledge. Instead, they represent amalgams o
cesses and knowledge that together give humans an insight into our strengths and
nesses and that provide us with leverage when dealing with the world and its m
challenges. The epilogue provides some optional words in speculation as to the po
nature of a more full integration of these components for intelligent learning machine
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CHAPTER XIII

EPILOGUE

I wish a robot would get elected president. That way, when he came to town, we
could all take a shot at him and not feel too bad.

Deep Thoughts
by Jack Handey.143

But would the above assassin not feel different if she knew that the president-r
had a sense of self? Like the computer who developed a personality inThe moon is a harsh
mistress(Heinlein, 1966) and then reverted to its original state at the novel’s close, wou
we all feel badly if we had first known the robot through conversations and interactio
During conversations, the robot might explain its goals, biases, past experience, an
haps an opinion of itself. The robot might even have the goal of self-preservation.144What
if, as envisioned by McCarthy, it really had consciousness?145When I read Heinlein’s story,
I sympathized with the machine. If the robot-president was real, an assassination mig
quite disturbing. Although the need to answer the above questions is far from immed
research into the mental lives of machines and people is starting to blur the line bet
science fact and science fiction.

The aim of this chapter is to secure the dissertation in the larger context of creatin
integrated architecture of intelligence and learning. I make some speculative comm
with respect to this problem by examining the kinds of processes (Section 13.1) an
kinds of knowledge (Section 13.2) that must be integrated for a general thinking mac

143. Handey (1992).

144. Weld and Etzioni (1994) are working on formalizing the first of Asimov’s (1942) Three Laws
of Robotics.  The first law directs robots to avoid harm to humans, the third is self-preservation

145. Note that this work does not pretend to constitute a computational theory of consciousnes
although it is related. Others have much to say on the subject, however (e.g., Chalmers, in pres
Dennett, 1992; Edelman, 1992; Hofstadter, 1979/1989; Rosenfield, 1992).
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Obviously such proposals are monumental, and therefore success cannot realistic
defined in terms of a final product. Rather, it is theoreticalprogresstowards Turing’s vision
of a program that can pass some variation of an intelligence test that, although provoc
is not an unreasonable goal (Section 13.3).

13.1 The Processes:
 Integration of problem solving, understanding, and learning

This thesis has examined an introspective approach to learning within the conte
a story understanding task. We have also experimented with using the same appro
learning when problem solving given two troubleshooting tasks. The Meta-AQUA sys
was modified to model learners in a LISP programming task and the Meta-TS system
eled human protocols while learning an electronics diagnostic task. Chapter V briefly
cussed the relationship between problem solving, understanding, and learning fr
structural perspective. That is, the section compared and contrasted features of eac
cess and drew parallels between such features. However, the chapter never specifica
claimed how the processes might be integrated into a gestalt or how they might int
Moreover, Section 5.4 claimed that the multistrategy paradigm was a natural one for
grating the performance and learning tasks, but it was not very specific either. This se
considers again this integration question and speculates as to a possible functional m
of problem solving, understanding and introspective learning.

Both Birnbaum (1986) and Wilensky (1983) discuss integration approaches to p
lem solving (in the guise of planning) and understanding. Birnbaum argues convinc
that both planning and understanding processes need to use an early integration of
up and top-down information to constrain the explosion of inferences inherent in both
cesses. Wilensky asserts that knowledge of goals and plans is instrumental in the suc
performance of both planning and understanding tasks. Yet, Wilensky and Birnbaum
discuss planning and understanding as otherwise unrelated tasks. In their writings, th
not attempt to specify an integrated architecture within which both processes could b
fied. The two researchers also view the scope of understanding as being limited to n
language (although Wilensky briefly mentions the possibility of understanding base
video tape images). Finally, they are viewing understanding as the task of comprehe
other agents or characters in a story, rather than understanding the actions of the se
major contribution of their work is the recognition that processes such as these mus
grate many knowledge sources and that many processes need to use the same kno
sources. Processes cannot be insulated from each other by the overly-restrictive mod
of computation. This section furthers the integrative view, arguing that understanding
problem-solving are intimately related in the following ways.

Newell and Simon (1972) postulate an initial problem solving stage that translate
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input problem statement into an internal problem representation and problem spa146

Although Newell and Simon downplay the significance of this stage (p. 850), Greeno
Riley (1987) suggest that it is at this point in the process that much of the potential for
ing the problem is either established or, if the wrong understanding of the proble
obtained, is lost. They argue that better problem solvers have a better problem-under
ing ability, and it is at the early stages that understanding becomes critically engaged
problem-solving process. Furthermore, Greeno (1977) likens the understanding of a
lem statement to the understanding of a sentence. Both include the construction of
resentation that captures the major concepts in either the problem statement or the se
The understanding of the problem creates a representation for the solution that inc
meaningful relations between the solution steps and relations to parts of the problem
ment. Greeno and Riley speculate that this kind of understanding is metacognitive and
sists of strategies for performance.

As with understanding a story, the schematic structures used to interpret a proble
similar to scripts (Schank & Abelson, 1977). The development of a child’s ability to so
problems is related to the acquisition and refinement of these problem-solving sch
(Greeno & Riley, 1987). This result is compatible with the assertions presented in Se
8.5.3, “Learning about higher-order knowledge,” starting on page 201. This sec
asserted that an important learning task in Meta-AQUA was to refine script and other
matic knowledge structures and was not limited to the development of conceptual ca
ries alone.

This section, however, takes the relationship between problem-solving and u
standing a few steps further. The understanding processes involved in problem solv
not limited to making sense of a structured problem statement provided to a learner in
mal setting (e.g., classroom or work environment). In an unconstrained world, a signifi
task component is to identify those situations that require problem solving. That
learner must be able to understand when novel problems exist, must be able to form
an understanding of the circumstances that can lead to a solution, and must be able
eralize the conditions so that similar problems can be recognized in the future.

As will be remembered from Chapter V, we consider reasoning in general to be a
of generate-and-test procedure with an initial interestingness identification phase. I
framework, problem solving, as well as understanding, can be cast in multistrategy t
Understanding involves detecting an interesting input and then choosing or construc
strategy with which to explain the input. Likewise, problem solving requires the reas
first to determine something interesting that constitutes a problem and then to cho

146. For a few more details about their model, see the discussion that opens Section 5.2 on page 10
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problem-solving algorithm or to assemble a problem-solving strategy. Sometimes
problem is as simple as not being able to perform some previous task, so a problem
arises as an impasse (Etzioni et al., 1992; Newell, 1990). At other times, problem-so
goals may arise from role, interpersonal, and life themes (Schank & Abelson, 1977).
most interestingly from a learning point of view, goals may arise because of the lac
knowledge (Ram, 1991). That is, a problem may be formulated when an item is intere
because one does not know much about a subject.147 Ideally and as with learning, the rea
soner might use some method of introspective deliberation to create its reasoning st
in all of these cognitive tasks.

Parallels exist throughout the framework in which these two processes are cas
Figure 101). For both understanding and problem-solving, if no significant or interes
input exists in the environment, the system processes the input in a “mindless” fashion
understander skims the input, whereas the problem solver acts reactively (i.e., just
through the motions” of behavior). Given interesting input, however, the understander
generate an explanation and the problem solver must generate a solution. In both g
tion stages the reasoner can select a method and assemble a reasoning strategy. Fig
shows a few possible example choices. Finally, given an explanation or a solution, th
soner must verify the outcome of reasoning.

In this last stage, the two processes are mutually related to each other. When
to understand an input, the understander often poses a hypothesis that requires vali
To validate the hypothesis the understander might choose to devise a test or create a
falsify the hypothesis. The creation of such a plan requires problem solving. Conve
when attempting to plan for a given goal, the problem solver needs to understand wh
the actions carried out during plan execution are indeed furthering the pursuit of the
A comprehension ability is required to provide feedback to the problem solver during
execution (again, see Figure 101).

Functionally, reasons exist that encourage such a proposed integration.

• The function of understanding is to make an input coherent.When it is not coherent,
either an anomaly exists that need to be explained and learned from, or a pro

147. For example, an agent may be interested in learning about a friend’s artistic ability because
is a novel, and therefore intriguing, behavior. To acquire such skill requires planning and problem
solving activities. As the agent learns more about a subject, the topic may become less interestin
If it becomes a well-practised or habitual behavior, it may actually become boring. Thus, an agen
may not only form goals out of mundane necessities (e.g., career-related goals), but may crea
new goals given a thirst for knowledge and new experience.
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GUnderstanding

- Case-Based Reasoning
- XP Application
- Analogy
- Suspend

Example Strategies:

Example Strategies:
- Question Posing
- Skimming

- Test Hypothesis
- Compare To Input
- Suspend

Example Strategies:

Problem Solving

Problem Identification

Generate Solution/Plan

Evaluate Solution

- Execute Solution
- Simulate Solution
- Suspend

- Means Ends Analysis
- Memory Based Planning
- Constraint Propagation
- Suspend

Example Strategies:

Example Strategies:

Anomaly Identification

Generate Explanation

Verify Hypothesis

Identify

Generate

Test

Example Strategies:
- Problem Formulation
- Going thru the motions

Success or Failure

Figure 101. Relationship between understanding and planning



298 ❖   13.1  The Processes: Integration of problem solving, understanding, and learning

arise

y the
ring a

rea-
f the

t and
leave

eralize
ected

r the
para-
licitly
er the
and-
ch into
on pro-
nsid-
rpose

roblem
y, any
hav-
stions

is
d
y

exists that must be solved (i.e., the plan is not going as intended or opportunities
when going through the motions).

• The function of problem solving is to establish a desired state.When the state is the
validity of a hypothesis posed by the understander, a plan may be devised b
problem solver to achieve that state of confidence. Impasses encountered du
plan mandates a new learning goal.

• The function of learning is to improve the performance task(either understanding or
problem-solving). When understanding detects a gap in the knowledge of the
soner and learning is required, problem solving may be used in the execution o
learning plan.148

The processes of learning, problem solving, and understanding mutually benefi
are share relationships to each other. Thus, the study of one process in isolation may
enough questions unanswered that research results may or may not sufficiently gen
to human behavior or may not scale when engineering intelligent systems that are exp
to operate in unconstrained environments.

Much of the research performed by the AI and cognitive science communities ove
years has concentrated on problem solving and planning in relatively well-developed
digms that possess optimal or provably correct solutions. Problem solvers are exp
given their problems in tangible formats. The reasoner seldom has to consider wheth
problem is worth pursuing, or what other problems might be worth tackling. Underst
ing, on the other hand, has received less attention. Furthermore, much of the resear
understanding (e.g., research into story understanding) has treated the comprehensi
cess in isolation without considering either action or the environment, and without co
ering the supertasks under which the understanding task is situated (i.e., for what pu
do story understanders read?). But research into the alliance of understanding and p
solving comes closer to the locus of intelligence than research into either alone. Surel
unified theory of learning must eventually deal with learning stemming from both be
iors. Although the comments supplied in this section are highly premature, the sugge
fit well into the framework provided by this research.

148. For example, the missing information may be contained in a book, and so a knowledge goal
created to acquire it. The problem solver creates a plan to find a book with such information an
to obtain the book. A story understander may then be used to extract the knowledge required b
the learning plan in support of the learning goal.
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If for no other reason, it is at least an interesting research challenge to begin to
sider what the understanding process has to do with problem solving, and vice vers
moreover, how the integration of each affects learning. Towards this aim, a numb
researchers have appealed for general integrated architecture of intelligence and le
(e.g., Newell, 1990; Plaza, Aamodt, Ram, van de Velde, & van Someren, 1992; Pol
1989a; Ram, Cox, & Narayanan, 1992; Ram & Jones, 1995; VanLehn, 1991a). In su
of this goal, an integration of knowledge sources must be considered as an importan
goal.

13.2 The Knowledge:
Integration of world knowledge, metaknowledge and self-knowledge

One of the most remarkable papers on ontological matters is a four and one half
desiderata by Minsky (1965, 1968a) concerning the mind-body problem and the ass
that human understanding is essentially the process of executing some model of the
Minsky’s thesis is most interesting because it includes the modeling of not only the w
but the self (the modeler) as well. Thus, there is W, the world, and M, the modeler149who
exists in the world. Although Minsky’s models are procedural, Figure 102 depicts
knowledge divisions implicit in his scheme. The model of the world is referred to as
W* is used to understand and answer questions about the world. So to answer que
about oneself in the world, it must also be the case that there exists within the model
world, W*, a model of the modeler, termed M*. One should conceive of W* simply as
agent’s knowledge of the world, and likewise, M* as the agent’s knowledge of itself in
world. Furthermore, as Minsky notes, one must have a model of one’s model of the w
or W**, in order to reason about and answer questions concerning its own world kn
edge. Although Minsky does not label it as such, the kind of knowledge embodied in
model is typically referred to as metaknowledge. Finally, M** represents the age
knowledge of its self-knowledge and its own behavior, including its own thinking. Wit
M** one might include most metacognitive knowledge of person variables (see Wellm
theory of metacognitive variables on page 273), at least concerning the self. It would
a semantic component like “I am good at general memory tasks,” as well as episodic
ponents such as knowledge gained through monitoring (e.g, “I just solved a proble
remembering a similar past solution.”). Again, although Minsky does not refer to it a s
M** represents introspective knowledge.

This taxonomy can be extended into a framework that supports introspective lea
when viewing not only oneself in the world, but others (O) as well. Wellman (1985) cla

149. In the language of the times, M actually stood for “man.”
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W

M

W*
M*

W**

M**

W M

M**

M*W*

W**

= Modeler

= Self (Reflective) Knowledge

= Introspective Knowledge

= World

= World Knowledge

= Meta-Knowledge

Figure 102. A taxonomy of knowledge

(Adapted from Cox, 1992).
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that children come to develop an understanding of themselves and the workings of
mind by observing other agents in the world. By observing others, children first learn
distinction of internal versus external reality. A naïve theory of mind first emerges fro
theory shift from a simple desire-psychology to a belief-desire psychology (Wellm
1992). This shift occurs when children observe that the actions of others do not always
form to the simpler theory. For example, two agents may have the same desires, ye
form different actions. The simple concept of desire is not sufficient to explain
anomaly. The conflict can be explained, however, if agents have opposing beliefs. I
people are hungry (desire food), they may look for food in different places because
believes the food to be in the cupboard, whereas another believes it to be in the refrige
Thus, children develop a theory of mind, mental events, and mental states (beliefs). T
fore, the knowledge framework that we propose should contain a modeling of others
world as well as the self, hence O*. The taxonomy is complete by including O**, whic
knowledge of one’s knowledge of and confidence in social interactions.

Additional distinctions exist that must be integrated. One such dimension is the
tinction between internal and external versions of each of the taxonomic categories
example, there is reflective knowledge concerning one’s own actions in the world as
as knowledge of one’s own thinking. These are both reflective knowledge in M*, bu
seems reasonable to distinguish the two kinds since one is usually objective, where
other is often subjective. Moreover, people can learn things about themselves, both
their own external behavior and their own internal workings of reason, via the knowle
of verbal reports of others (that is, via O*). For example, rather than learning from in
spection or self-monitoring, people may gain some insight into their own reasoning a
by listening to lectures in cognitive psychology. It is, an open question, however, as
best to integrate such nuances.

Contrastingly, Chi (1987) develops and utilizes a consistent distinction between
cess and state, emphasizing the representational difference between processes, such
nitive strategies, and mental states, particularly the knowledge states of the individua
her taxonomy, processes are represented procedurally in condition-action rules, wh
knowledge is represented declaratively with semantic, propositional net structures.
analysis further divides process into domain-specific procedures, domain-indepen
goal-based strategies, and meta-strategies, which evaluate the applicability of ord
strategies. Declarative knowledge is likewise subdivided into domain-specific knowle
general knowledge and metaknowledge, that is, knowledge about other propositio
about the self. Furthermore, her analysis argues that a difference exists between me
cedures and ordinary procedures; whereas no significant differences exist between
ative knowledge and meta-declarative knowledge. The former requires a function b
argument to another function, so it is second order rule that requires extra execution
head, while declarative knowledge is uniformly stored as memory nodes in the same
ner as normal knowledge, and is therefore retrieved with no additional overhead. T
differences result in an alternative interpretation of the metacognition literature, whe
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some effects can be explained simply by presence or lack of knowledge, rather than r
ing reference to strategy or metalevel issues at all.

Finally, an additional issue exists as to the role of general versus domain-sp
problem-solving knowledge. Derry (1989) considers general problem-solving knowle
to be metacognitive. It is unlikely, however, that this proposition is unequivocally va
Perhaps it is indeed knowledge about knowledge, but as Chi (1987) suggests, facts th
ply happen to be about the self or about other knowledge are much like ordinary knowl
They are retrieved as any other fact is retrieved, adding no special properties to their c
or overhead to their usage. There seems to be a difference between the way preco
knowledge is obtained and generalized about the self and the way on-line insight of th
is processed. Minsky’s modified taxonomy has nothing to say concerning this orthog
concern. Therefore, while the taxonomy may help to visualize the divisions of knowle
and to avoid category errors in metacognitive research, it alone is not sufficient w
describing all elements that bear on relevant aspects of metacognition. Together with
man’s (1983) and Chi’s (1987) taxonomies of metacognitive knowledge, the taxonom
Figure 102 modified to include O, O* and O** may help draw the line between what is
is not a factor or component when investigating the role of introspection in human pe
mance and learning.

The following section examines what it means to put all of these concepts togethe
speculates on some popular, yet serious, research goals. Although it considers
thought provoking questions, the tone to be set is one of suspended judgement. Th
cluding section of this thesis is the one section that deliberately provides no ex
answers or strong opinions; instead, it requests that the reader decide.

13.3  The “Turing Test”

Many papers have discussed Turing’s (1950/1963) famous test of computer in
gence. In his essay, he poses the question “Can machines think?” and subsequently
forms it into a more operational question. Turing’sImitation Gameis designed to test
whether or not a computer can perform as well at imitating a woman as another man,
a human judge and the cloak of video-terminal output. If by posing questions to both a
the judge cannot distinguish on an above average basis the man’s responses from t
gram’s responses, then the computer is considered intelligent and capable of though

A number of researchers have interpreted this test in various ways, including re
ing the requirement of gender association. In recent years, Hugh Loebner, Presid
Crown Industries, established a $100,000 cash award for anyone who can design a pr
that passes the Turing test in a limited domain (Loebner, 1994; Zeichick, 1992). Inste
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an open-ended question/answer session between judge and contestants, the pr
answer questions in a specific knowledge domain chosen by the programmer. Even g
these concessions, the Loebner Prize remains unclaimed. The programs seem to be
close enough to winning, however, that Loebner is making more strict demands on the
test rules. Thus for the next five years, the contest will be conducted without domain
itations (Loebner, 1994). Despite Turing’s belief that sufficient programs could be bui
the end of the century, research must cross significant hurdles to pass the unconstraine

A number of problems exist even with restricted tests. Perhaps the foremost wea
of this test as a measure of intelligence is that it evaluates output alone, with no reg
how the output was obtained. If a performance task’s output constitutes the only me
by which one can conclude that a program possesses intelligence or a capacity for th
then one must conclude that successful chess-playing programs that win by brute
search of board positions must also possess thought. But certainly human chess cha
do not win through search alone. So to improve the Turing Test, the programs shou
required to agree with known human limitations and to conform to accepted psycholo
theories. This makes it less likely that a system can pass the test by simply brute force
putation.

Schank (1986, and Searle, 1980, 1990) also notes the weakness of output as a
uation metric in the Turing Test. Schank claims, however, that language is the only p
cal method of judging intelligence because judges can open the heads of neither peo
machines. Moreover, he asserts that explanation is the ultimate criterium of intellige
To improve Turing’s Imitation Game, then, Schank proposes theExplanation Game. In this
test, an agent’s ability to explain its own reasoning is the focus of evaluation. Both
human and the machine are given mental tasks to perform. The judge then can as
they actually performed the mental behavior or how they produced the constructed
comes. Furthermore, answers are not absolutely correct or incorrect in the Explan
Game. For a contestant to explainwhatit does is passing the test at the level of onlymaking
sense. To explainwhyit reasons as it does is to pass at the level ofcognitive understanding.
The upshot of the test is that someone who is intelligent and insightful can not only per
intelligent activities, but can explain how and why they think as they do.

Although IML theory represents a prolegomenon toward competition in the Expla
tion Game, Meta-AQUA can currently play the Explanation Game to only a limited ext
Because the first-order performance tasks (explanation and understanding) is at the p
ery of concern, the game is not entertained with any serious intent at this time. Noneth
the focus has been on second-order performance (introspection) that constitutes t
component for any system that must explain its own reasoning or must understand its
any meaningful way. But, to truly qualify for the competition requires more research
can be finished in a reasonable time. The intelligence game is more complex than wh
have described so far.
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Descartes had a much more skeptical opinion on the possibility of playing th
games than either Turing or Schank. Although Descartes was convinced that replic
intelligence was impossible, he was intrigued by the thought of simulating animal
human behavior and thereby increasing the understanding of their mechanics. Inde
formulated the first version of the test more than 300 years before Turing reinvente
game.

And this will not seem strange to those, who, knowing how many different
automata or moving machines can be made by the industry of man, without
employing in doing so more than a very few parts in comparison with the
great multitude of bones, muscles, nerves, arteries, veins, or other parts that
are found in the body of each animal.... On the other hand, if there were
machines which bore a resemblance to our body and imitated our actions as
far as it was morally possible to do so, we should always have two very cer-
tain tests by which to recognize that, for all that, they were not real men.
The first is, that they could never use speech or other signs as we do when
placing our thoughts on record for the benefit of others.... And the second
difference is, that although machines can perform certain things as well as
or perhaps better than any of us can do, they infallibly fall short in others,
by the which means we may discover that they did not act from knowledge,
but only from the disposition of their organs. For while reason is a univer-
sal instrument which can serve for all contingencies, these organs have the
need of some special adaptation for every particular action. From this it
follows that it is morally impossible that there should be sufficient diversity
in any machine to allow it to act in all the events of life in the same way our
reason causes us to act.

Descartes (1637/1955), pp. 115-116.

Descartes’ claim is that language, reasoning and knowledge are all integral to in
gence when separating man from machines. The use of knowledge includes all parts
taxonomy discussed in Section 13.2, including self-knowledge, an especially human
ture. Reasoning includes all of the processes discussed in Section 13.1 including intro
tion. Furthermore, Crockett (1994) claims that learning is critical for any machin
attempt to pass the Turing Test. The program must learn more than rote memorizat
the prior pieces of the dialogue during the test. Even given a limited domain, if the ju
adds new or hypothetical information relevant to the domain, the program must be a
incorporate this information with what it already knows and make a reasoned comme
the implications of the information (Crockett, 1994). This unfortunately places us in
untenable position of replicating most of human cognition in order to administer a fair t
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Despite the specifics of the test, it appears that a machine must master both le
and introspection in order for it to successfully compete in either Turing’s or Scha
exams. Knowledge of the world or specific domains is not enough. Knowledge of the
in context with the world is equally important. Neisser (1993; 1995) argues that hum
measure knowledge with respect to the self when in the context of problems and u
standings of the environment.150An understanding of one’s self would include an acquir
self-evaluation. Like Wellman’s (1985) person variables, the machine should learn th
is gifted (or deficient) at certain tasks and be able to use this information in its strat
and in its explanations of its own performance.

Both Descartes and Searle were overtly pessimistic about the modeling ende
both Turing and Schank are overly optimistic and wish to make operational the conce
intelligence; I tend toward agnosticism. I do not wish to herald the coming of a revolu
that is still far-removed, as have others who have studied the parallel between meta
tion in humans and machines. For example in the concluding paragraph of a chapte
an expert-systems textbook, Lenat, Davis, Doyle, Genesereth, Goldstein and Sc
(1983) proclaim the following:

Once self-description is a reality, the next logical step is self-modification.
Small, self-modifying, automatic programming systems have existed for a
decade; some large programs that modify themselves in very small ways
also exist; and the first large fully self-describing and self-modifying pro-
grams are being built just now. The capability of machines have finally
exceeded human cognitive capabilities in this dimension; it is now worth
supplying and using meta-knowledge in large expert systems. (p. 238)

Which human dimension they believe machines have surpassed is uncertain, b
surely not along the dimension of expert systems knowing themselves, even when giv
limitations of human insight. As for their implied prediction concerning the coming imp
of self-description and self-modification, no momentous changes have appeared in th
dozen years due to this research. Rather, people such as Buchanan and Smith (19
being far more conservative in their statements, claiming that “Expert-systems have
or no self-knowledge” (p. 186). Indeed, many researchers, from Clancey in the AI com
nity to Chi in the psychology community, now tend to avoid altogether the use of wo

150. In a discouraging note, Clancey (1994) points out that much of what is related to a concept o
the self in humans is not very abstract. Rather, the self appears to be closely aligned with perce
tion, the environment, and physiology. Thus, perhaps a model of both the environment and th
physiology of the nervous system is more important to a model of introspection than the researc
here admits. See also Searle (1992) for related arguments on the importance of the neurophys
logical level of understanding the mind and arguments against representation.
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beginning with the prefix “meta” (i.e., the M-words). Rather than run the risk ofthe boy
who cried wolf too often, I see room for quiet progress and methodical evaluation bef
grand predictions can be announced. Knowing fully well the hardships of building ev
modest implementation that incorporates some of the levels necessary to model inte
thought, the goal of concocting a machine of general intelligence is probably beyon
reach, at least in this lifetime.151

Regardless of the pragmatics of passing an intelligence test, the business of A
develop theories of intelligence, while programs are simply one tool for the resear
evaluate these theories (Ram & Jones, 1995). In support of this goal, AI offers the re
the cognitive science community an ability to think about and to test numerous integra
of processes and knowledge (Schank, 1979, p. 221). Thus, just making progress towa
development of a theory of intelligence and learning and being able to try out different
grations are the important goals; the programs are only the means by which we achiev
an end. In the limit, it does not matter whether Descartes or Turing was correct, nor
it matter whether Schank or Searle had the better position. Research into these issu
benefit an understanding of intelligence and learning either way.

151. Of course that is what the pundits said of generally-accessible computing technology just a co
ple of decades ago. So, if a machine unexpectedly requests that you not shut it off (and you ha
not explicitly programmed it to say something of that sort), perhaps you should leave it on and ru
some tests before you conclude that it is just someone’s idea of a joke ;-)
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Pres

1995 Snowolff
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APPENDIX A

THE DEGREES OF FREEDOM IN LEARNING

IML theory contains a preference for failed experiences, rather than successful
The detection of a failure in an input stream is equivalent to self-selection of training ex
ples. Although by filtering examples of successful performance the reasoner may
some opportunities (and thus bias what can be learned), the input bias trade-off focus
learner on examples that may require less inference and that guarantee something
learning exists.152 That is, failure allows the reasoner to limit search to the space of pr
lems thatdo occur, rather than the much larger space of problems thatmayoccur (Ham-
mond, Converse, Marks, & Seifert, 1993). If the reasoner has perfect knowledge, no fa
can ever occur (oracles by definition do not fail); thus, failure implies a flaw in knowled
whereas successful examples may or may not contain any useful lessons.

For failure to occur, the learning system must be associated with some perform
task. In the simplest case, the task may be attribute prediction or classification. For e
ple, when a decision tree misclassifies an instance, ID3 (Quinlan, 1986) uses the in
for learning. In general, a failure-driven approach to learning and reasoning concen
on contradictions, impasses, false expectations, surprises, and unexpected succes
ing the performance task to indicate when attention is warranted.

Many systems invest too much computational overhead in evaluating examples
in ordinary performance situations, provide few or no useful opportunities to learn.
example, PRODIGY (Minton, 1990) has no input bias. As a consequence, it learns
every input and then must delete useless knowledge. Alternatively, desJardins’ (1
PAGODA uses a given input’s expected utility of predicting features in the environme
filter input examples. Like Meta-AQUA, the system uses a goal-directed learning appr
to formulate a set of learning goals that direct and guide the system’s learning. How
Meta-AQUA uses an explanation of the system’s own failure to generate these goals,

152. If the reasoner mistakenly believes that there was a failure, but actually there was not, then th
itself constitutes a failure from which to learn. The challenge in such a case is to detect the actu
failure.
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PAGODA uses the expected utility of the input. But it is more tractable to let failure fe
back from the environment filter the input for useful candidates for goal formulation, ra
than calculating the utility of all instances, because fewer instances exist on which to
form computation. Moreover, learning will be simpler in the remaining examples beca
as will be shown below, fewer degrees of freedom generally exist for blame assign
when learning from failure than for credit assignment when learning from success.

To illustrate the utility of failure-driven bias, consider the following. During the Pe
sian Gulf oil embargo of Iran, a tragic event occurred that resulted in the death of inno
civilians.153TheUSS Vincennesshot down an Iranian commercial airliner after an engag
ment with Iranian gunboats on July 3, 1988. On the basis of conflicting information
captain of theVincennesmistook the airliner for an enemy F-14 fighter aircraft and order
it shot down. Although the incident was controversial, an official investigation conclu
that the captain acted in a proper manner given the rules of engagement and the c
stances under which the captain made such a decision.

Instead of this incident being simply a negative example of the category F-14, l
propose three classifiers: one represents the concept “friendly target,” another reco
“neutral targets,” and a third classifies “enemy targets.” Let us also assume for the sa
simplicity that the friendly-target concept returns negative because of no electronic s
ture. The remaining two concepts return a value and a confidence level. The cap
quandary stems from the low confidence returned by the positive identification from
enemy classifier, along with an equally low confidence for the negative classificatio
neutral aircraft. Given no noise in the data and that an unambiguous result occurs (n
sibility of both true or both negative), Table 15 summarizes the possible explanation
answers to the question “Is the reported plane neutral?”

In both failed cases (the shaded cells: false positive and miss), there is only one
sibility. If, as in the actual incident, there is a miss (i.e., the actual answer is positive
the expected outcome is negative), then the concept of neutral plane must be overly s
ized, since it rejects a positive example; whereas the concept of enemy plane must be
general since it accepts a negative example. Blame assignment for the converse ca
of a false positive, is equally unambiguous. If the concept of neutral plane mistakenly
ognizes an example of an enemy target, then it must be overly general; and at the sam
if the classifier of enemy planes rejects the same example, then the concept must be
specialized.

153. Details of this incident are taken from Thagard (1992).
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In successful examples of performance, many more degrees of freedom exist
which to do credit assignment. In positive identifications of neutral aircraft, in which
neutral classifier returns true and the enemy classifier returns false, both classifiers m
be incorrect in general. That is, although a neutral classifier may be overly general,
still return true on all positive examples. Likewise, the enemy classifier can be overly
cialized and still reject all negative examples. Simply because a particular target is
rectly identified, we do not have much information as to the classifier’s ove
performance. In the case of correct rejection, an overly specialized neutral classifie
still reject a particular enemy aircraft, and even though the enemy classifier may pro
accept a particular enemy example, it may still be overly general and succeed. Su
gives little information as opposed to failure.

Failure-driven input bias is limited, however. Although failure may constrain lea
ing, some systems may not be able to use this fact because a particular inductive polic
strategy used to make bias choices based on the underlying assumptions of the do
may influence a learning system toward certain results (Provost & Buchanan, 1992).
vost and Buchanan show that inductive policies can bias a learner toward speed of ac
tion rather than accuracy (when time is a limited resource, for example) or toward acc
instead of speed (when safety is a high priority). Likewise, in theVincennesscenario, even
though failure may facilitate learning, life-critical tasks require that the performance
tem not choose a course that results in failed examples. The approach of LEX (Mitc
Utgoff, & Banerji, 1983), which generates learning examples on the basis of their expe
utility, irrespective of any inductive policy, is unacceptable. The crew of theVincennes
strove for hits and correct rejections despite the fact that much could be learned from e
ples like the unfortunate incident (miss) that did occur. The consequences of both fals
itives and misses require an inductive policy that biases the performance system t
accuracy and away from learning optimization.

Table 15: Is the plane neutral? Possible causesa

Neg Pos

Pos

False Positive

N ∧ E

(crew dies)

Hit
N ∧ E
N ∧ E
N ∧ E
N ∧ E

Neg

Correct Rejection
N ∧ E
N ∧ E
N ∧ E
N ∧ E

Miss

N ∧ E

(innocents die)

a. N= Neutral target; E = Enemy target; Overscore = overly general;
Underscore = overly specialized; Light shading = failed prediction.
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APPENDIX B

META-AQUA OUTPUT IN STORY UNDERSTANDING MODE

Recreate story T6585 by calling (re-run-story ‘T6585)

One day Elvis was bored.Elvis pushed cupboard-door away from the
cupboard1. The cupboard1 was open. He took the pipe1 from the cupboard1.
He had the pipe1. The cupboard1 didn’t have the pipe1. He pushed
cupboard-door to the cupboard1. The cupboard1 wasn’t open. He pushed
fridge-door away from the fridge1. The fridge1 was open. He took the
ganja1 from the fridge1. He had the ganja1. The fridge1 didn’t have the
ganja1. He pushed fridge-door to the fridge1. The fridge1 wasn’t open.
He poured the ganja1 into the pipe1. The pipe1 was filled with the
ganja1. He took the lighter1 from the table2. He had the lighter1. The
table2 didn’t have the lighter1. He pushed the lighter1. The lighter1
was on. He moved the lighter1 to the ganja1. The ganja1 was burning. He
pushed the lighter1. The lighter1 wasn’t on. He smoked the ganja1. The
pipe1 wasn’t filled with the ganja1. The pipe1 was dirty. He exhaled the
smoke1 into the air1. He pushed hot-faucet-handle away from the hot-
faucet. The hot-faucet was flowing. He moved the pipe1 to the hot-
faucet. The pipe1 wasn’t dirty. He pushed hot-faucet-handle to the hot-
faucet. The hot-faucet wasn’t flowing. He smoked the ganja1 because he
didn’t want to be drug-withdrawing.
                              --- The End ---

Converting Tale-Spin cds into Meta-AQUA frames.

Initialize Memory.

Number concepts to examine for goal generation: 46.

Spawn goal #1 #2 #3 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #18 #19 #20 #21
#26 #27 #28 #29 #30 #35 #36 #37 #38 #39 #44 #45 #46.
Number of sentences to understand: 31.

Begin Meta-AQUA.
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Input Structure: PROPEL.6586

  “Elvis pushed cupboard-door away from the cupboard1.“

Current Sub-Goal:

 Identify interesting concepts in PROPEL.6586

PROPEL.6586 is not a very interesting concept.

 Skimming . . .

Checking for match...
Input Structure: OPEN.6593

“The cupboard1 was open.”

Current Sub-Goal:

  Identify interesting concepts in OPEN.6593

OPEN.6593 is not a very interesting concept.

  Skimming . . .

Checking for match...
Input Structure: ATRANS.6596

  “He took the pipe1 from the cupboard1.”

Current Sub-Goal:

  Identify interesting concepts in ATRANS.6596

ATRANS.6596 is not a very interesting concept.

  Skimming . . .

Checking for match...
Input Structure: PROPEL.6616
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  “He pushed cupboard-door to the cupboard1.”

Current Sub-Goal:

  Identify interesting concepts in PROPEL.6616

PROPEL.6616 is not a very interesting concept.

  Skimming . . .

Checking for match...
Instantiating script SMOKING-SCRIPT.2546!!
(PROPEL.2645 ATRANS.2633 PROPEL.2650)
(PROPEL.6586 OPEN.6593 ATRANS.6596 PROPEL.6616)
Unify story concept PROPEL.6586 with scene PROPEL.2645.

(ATRANS.2633 PROPEL.2650)
(ATRANS.6596 PROPEL.6616)
Unify story concept ATRANS.6596 with scene ATRANS.2633.

(PROPEL.2650)
(PROPEL.6616)
Unify story concept PROPEL.6616 with scene PROPEL.2650.

NIL
Input Structure: OPEN.6623

  “The cupboard1 wasn’t open.”

Current Sub-Goal:

  Identify interesting concepts in OPEN.6623

OPEN.6623 is not a very interesting concept.

  Skimming . . .

Input Structure: PROPEL.6626

  “He pushed fridge-door away from the fridge1.”

Current Sub-Goal:
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  Identify interesting concepts in PROPEL.6626

PROPEL.6626 is not a very interesting concept.

  Skimming . . .

Matched story concept PROPEL.6626 with scene PROPEL.9023.

Unify story concept PROPEL.6626 with scene PROPEL.9023.

Lazy unification replacing CUPBOARD.1011 with sibling FRIDGE.1013.
Lazy unification replacing CUPBOARD.1011 with sibling FRIDGE.1013.

Will try to understand script inference OPEN-CONTAINER.9003.

Inferred Structure: OPEN-CONTAINER.9003

  “The actor opens the container.”

Current Sub-Goal:

  Identify interesting concepts in OPEN-CONTAINER.9003

OPEN-CONTAINER.9003 is not a very interesting concept.

  Skimming . . .

Lazy unification replacing FRIDGE.1013 with sibling CUPBOARD.1011.
Matched story concept OPEN-CONTAINER.9003 with scene OPEN-
CONTAINER.9369.

Unify story concept OPEN-CONTAINER.9003 with scene OPEN-CONTAINER.9369.

Will try to understand script inference GAIN-CONTROL-OF-CONTAINED-
OBJECT.9317.

Inferred Structure: GAIN-CONTROL-OF-CONTAINED-OBJECT.9317

  NIL

Current Sub-Goal:

  Identify interesting concepts in GAIN-CONTROL-OF-CONTAINED-OBJECT.9317
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GAIN-CONTROL-OF-CONTAINED-OBJECT.9317 is not a very interesting concept.

  Skimming . . .

Matched story concept GAIN-CONTROL-OF-CONTAINED-OBJECT.9317 with scene
GAIN-CONTROL-OF-CONTAINED-OBJECT.9855.

Unify story concept GAIN-CONTROL-OF-CONTAINED-OBJECT.9317 with scene
GAIN-CONTROL-OF-CONTAINED-OBJECT.9855.

Will try to understand script inference SMOKING-SCRIPT.2546.

Inferred Structure: SMOKING-SCRIPT.2546

  NIL

Current Sub-Goal:

  Identify interesting concepts in SMOKING-SCRIPT.2546

SMOKING-SCRIPT.2546 is not a very interesting concept.

  Skimming . . .

Matched story concept SMOKING-SCRIPT.2546 with scene SMOKING-
SCRIPT.2546.

Unify story concept SMOKING-SCRIPT.2546 with scene SMOKING-SCRIPT.2546.

Input Structure: OPEN.6633

  “The fridge1 was open.”

Current Sub-Goal:

  Identify interesting concepts in OPEN.6633

OPEN.6633 is not a very interesting concept.

  Skimming . . .

Input Structure: ATRANS.6636



320
  “He took the ganja1 from the fridge1.”

Current Sub-Goal:

  Identify interesting concepts in ATRANS.6636

ATRANS.6636 is not a very interesting concept.

  Skimming . . .

Input Structure: PROPEL.6656

  “He pushed fridge-door to the fridge1.”

Current Sub-Goal:

  Identify interesting concepts in PROPEL.6656

PROPEL.6656 is not a very interesting concept.

  Skimming . . .

Matched story concept PROPEL.6656 with scene PROPEL.11624.

Unify story concept PROPEL.6656 with scene PROPEL.11624.

Will try to understand script inference OPEN-CONTAINER.11604.

Inferred Structure: OPEN-CONTAINER.11604

  “The actor opens the container.”

Current Sub-Goal:

  Identify interesting concepts in OPEN-CONTAINER.11604

OPEN-CONTAINER.11604 is not a very interesting concept.

  Skimming . . .
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Matched story concept OPEN-CONTAINER.11604 with scene OPEN-
CONTAINER.11985.

Unify story concept OPEN-CONTAINER.11604 with scene OPEN-
CONTAINER.11985.

Will try to understand script inference GAIN-CONTROL-OF-CONTAINED-
OBJECT.11933.

Inferred Structure: GAIN-CONTROL-OF-CONTAINED-OBJECT.11933

  NIL

Current Sub-Goal:

  Identify interesting concepts in GAIN-CONTROL-OF-CONTAINED-
OBJECT.11933

GAIN-CONTROL-OF-CONTAINED-OBJECT.11933 is not a very interesting
concept.

  Skimming . . .

Matched story concept GAIN-CONTROL-OF-CONTAINED-OBJECT.11933 with scene
GAIN-CONTROL-OF-CONTAINED-OBJECT.12482.

Unify story concept GAIN-CONTROL-OF-CONTAINED-OBJECT.11933 with scene
GAIN-CONTROL-OF-CONTAINED-OBJECT.12482.

Will try to understand script inference SMOKING-SCRIPT.2546.

Inferred Structure: SMOKING-SCRIPT.2546

  NIL

Current Sub-Goal:

  Identify interesting concepts in SMOKING-SCRIPT.2546

SMOKING-SCRIPT.2546 is not a very interesting concept.

  Skimming . . .
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Matched story concept SMOKING-SCRIPT.2546 with scene SMOKING-
SCRIPT.2546.

Unify story concept SMOKING-SCRIPT.2546 with scene SMOKING-SCRIPT.2546.

Input Structure: OPEN.6663

  “The fridge1 wasn’t open.”

Current Sub-Goal:

  Identify interesting concepts in OPEN.6663

OPEN.6663 is not a very interesting concept.

  Skimming . . .

Input Structure: TILT.6666

  “He poured the ganja1 into the pipe1.”

Current Sub-Goal:

  Identify interesting concepts in TILT.6666

TILT.6666 is not a very interesting concept.

  Skimming . . .

Matched story concept TILT.6666 with scene TILT.13992.

Unify story concept TILT.6666 with scene TILT.13992.

Will try to understand script inference FILL-PIPE.13917.

Inferred Structure: FILL-PIPE.13917

  “Actor fills the pipe.”

Current Sub-Goal:

  Identify interesting concepts in FILL-PIPE.13917
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FILL-PIPE.13917 is not a very interesting concept.

  Skimming . . .

Matched story concept FILL-PIPE.13917 with scene FILL-PIPE.14279.

Unify story concept FILL-PIPE.13917 with scene FILL-PIPE.14279.

Will try to understand script inference SMOKING-SCRIPT.2546.

Inferred Structure: SMOKING-SCRIPT.2546

  NIL

Current Sub-Goal:

  Identify interesting concepts in SMOKING-SCRIPT.2546

SMOKING-SCRIPT.2546 is not a very interesting concept.

  Skimming . . .

Matched story concept SMOKING-SCRIPT.2546 with scene SMOKING-
SCRIPT.2546.

Unify story concept SMOKING-SCRIPT.2546 with scene SMOKING-SCRIPT.2546.

Input Structure: FILLED.6674

  “The pipe1 was filled with the ganja1.”

Current Sub-Goal:

  Identify interesting concepts in FILLED.6674

FILLED.6674 is not a very interesting concept.

  Skimming . . .

Input Structure: ATRANS.6677

  “He took the lighter1 from the table2.”
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Current Sub-Goal:

  Identify interesting concepts in ATRANS.6677

ATRANS.6677 is not a very interesting concept.

  Skimming . . .

Input Structure: PROPEL.6697

  “He pushed the lighter1.”

Current Sub-Goal:

  Identify interesting concepts in PROPEL.6697

PROPEL.6697 is not a very interesting concept.

  Skimming . . .

Matched story concept PROPEL.6697 with scene PROPEL.16098.

Unify story concept PROPEL.6697 with scene PROPEL.16098.

Will try to understand script inference TURN-ON.16085.

Inferred Structure: TURN-ON.16085

  NIL

Current Sub-Goal:

  Identify interesting concepts in TURN-ON.16085

TURN-ON.16085 is not a very interesting concept.

  Skimming . . .

Matched story concept TURN-ON.16085 with scene TURN-ON.16478.
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Unify story concept TURN-ON.16085 with scene TURN-ON.16478.

Will try to understand script inference LIGHT-OBJECT.16457.

Inferred Structure: LIGHT-OBJECT.16457

  NIL

Current Sub-Goal:

  Identify interesting concepts in LIGHT-OBJECT.16457

LIGHT-OBJECT.16457 is not a very interesting concept.

  Skimming . . .

Matched story concept LIGHT-OBJECT.16457 with scene LIGHT-OBJECT.16929.

Unify story concept LIGHT-OBJECT.16457 with scene LIGHT-OBJECT.16929.

Will try to understand script inference SMOKE-PIPE.16857.

Inferred Structure: SMOKE-PIPE.16857

  “Actor smokes a pipe.”

Current Sub-Goal:

  Identify interesting concepts in SMOKE-PIPE.16857

SMOKE-PIPE.16857 is not a very interesting concept.

  Skimming . . .

Matched story concept SMOKE-PIPE.16857 with scene SMOKE-PIPE.17424.

Unify story concept SMOKE-PIPE.16857 with scene SMOKE-PIPE.17424.

Will try to understand script inference SMOKING-SCRIPT.2546.

Inferred Structure: SMOKING-SCRIPT.2546
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  NIL

Current Sub-Goal:

  Identify interesting concepts in SMOKING-SCRIPT.2546

SMOKING-SCRIPT.2546 is not a very interesting concept.

  Skimming . . .

Matched story concept SMOKING-SCRIPT.2546 with scene SMOKING-
SCRIPT.2546.

Unify story concept SMOKING-SCRIPT.2546 with scene SMOKING-SCRIPT.2546.

Input Structure: TURNED-ON.6702

  “The lighter1 was on.”

Current Sub-Goal:

  Identify interesting concepts in TURNED-ON.6702

TURNED-ON.6702 is not a very interesting concept.

  Skimming . . .

Input Structure: PTRANS.6705

  “He moved the lighter1 to the ganja1. ”

Current Sub-Goal:

  Identify interesting concepts in PTRANS.6705

PTRANS.6705 is not a very interesting concept.

  Skimming . . .

Matched story concept PTRANS.6705 with scene PTRANS.19013.

Unify story concept PTRANS.6705 with scene PTRANS.19013.
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Lazy unification replacing TOBACCO.18918 with sibling MARIJUANA.966.

Will try to understand script inference LIGHT-OBJECT.18988.

Inferred Structure: LIGHT-OBJECT.18988

  NIL

Current Sub-Goal:

  Identify interesting concepts in LIGHT-OBJECT.18988

LIGHT-OBJECT.18988 is not a very interesting concept.

  Skimming . . .

Lazy unification replacing TOBACCO.19401 with sibling MARIJUANA.966.
Matched story concept LIGHT-OBJECT.18988 with scene LIGHT-OBJECT.19471.

Lazy unification replacing TOBACCO.19401 with sibling MARIJUANA.966.
Unify story concept LIGHT-OBJECT.18988 with scene LIGHT-OBJECT.19471.

Will try to understand script inference SMOKE-PIPE.19399.

Inferred Structure: SMOKE-PIPE.19399

  “Actor smokes a pipe.”

Current Sub-Goal:

  Identify interesting concepts in SMOKE-PIPE.19399

SMOKE-PIPE.19399 is not a very interesting concept.

  Skimming . . .

Matched story concept SMOKE-PIPE.19399 with scene SMOKE-PIPE.19964.

Unify story concept SMOKE-PIPE.19399 with scene SMOKE-PIPE.19964.

Will try to understand script inference SMOKING-SCRIPT.2546.
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Inferred Structure: SMOKING-SCRIPT.2546

  NIL

Current Sub-Goal:

  Identify interesting concepts in SMOKING-SCRIPT.2546

SMOKING-SCRIPT.2546 is not a very interesting concept.

  Skimming . . .

Matched story concept SMOKING-SCRIPT.2546 with scene SMOKING-
SCRIPT.2546.

Unify story concept SMOKING-SCRIPT.2546 with scene SMOKING-SCRIPT.2546.

Input Structure: BURNING.6712

  “The ganja1 was burning. ”

Current Sub-Goal:

  Identify interesting concepts in BURNING.6712

BURNING.6712 is not a very interesting concept.

  Skimming . . .

Lazy unification replacing TOBACCO.21193 with sibling MARIJUANA.966.
Input Structure: PROPEL.6723

  “He pushed the lighter1.”

Current Sub-Goal:

  Identify interesting concepts in PROPEL.6723

PROPEL.6723 is not a very interesting concept.

  Skimming . . .
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Lazy unification replacing TOBACCO.21457 with sibling MARIJUANA.966.
Matched story concept PROPEL.6723 with scene PROPEL.21561.

Lazy unification replacing TOBACCO.21457 with sibling MARIJUANA.966.
Unify story concept PROPEL.6723 with scene PROPEL.21561.

Will try to understand script inference TURN-ON.21548.

Inferred Structure: TURN-ON.21548

  NIL

Current Sub-Goal:

  Identify interesting concepts in TURN-ON.21548

TURN-ON.21548 is not a very interesting concept.

  Skimming . . .

Lazy unification replacing TOBACCO.21847 with sibling MARIJUANA.966.
Matched story concept TURN-ON.21548 with scene TURN-ON.21938.

Lazy unification replacing TOBACCO.21847 with sibling MARIJUANA.966.
Unify story concept TURN-ON.21548 with scene TURN-ON.21938.

Will try to understand script inference LIGHT-OBJECT.21917.

Inferred Structure: LIGHT-OBJECT.21917

  NIL

Current Sub-Goal:

  Identify interesting concepts in LIGHT-OBJECT.21917

LIGHT-OBJECT.21917 is not a very interesting concept.

  Skimming . . .

Lazy unification replacing TOBACCO.22315 with sibling MARIJUANA.966.
Matched story concept LIGHT-OBJECT.21917 with scene LIGHT-OBJECT.22385.
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Lazy unification replacing TOBACCO.22315 with sibling MARIJUANA.966.
Unify story concept LIGHT-OBJECT.21917 with scene LIGHT-OBJECT.22385.

Will try to understand script inference SMOKE-PIPE.22313.

Inferred Structure: SMOKE-PIPE.22313

  “Actor smokes a pipe.”

Current Sub-Goal:

  Identify interesting concepts in SMOKE-PIPE.22313

SMOKE-PIPE.22313 is not a very interesting concept.

  Skimming . . .

Matched story concept SMOKE-PIPE.22313 with scene SMOKE-PIPE.22878.

Unify story concept SMOKE-PIPE.22313 with scene SMOKE-PIPE.22878.

Will try to understand script inference SMOKING-SCRIPT.2546.

Inferred Structure: SMOKING-SCRIPT.2546

  NIL

Current Sub-Goal:

  Identify interesting concepts in SMOKING-SCRIPT.2546

SMOKING-SCRIPT.2546 is not a very interesting concept.

  Skimming . . .

Matched story concept SMOKING-SCRIPT.2546 with scene SMOKING-
SCRIPT.2546.

Unify story concept SMOKING-SCRIPT.2546 with scene SMOKING-SCRIPT.2546.

Input Structure: TURNED-ON.6728

  “The lighter1 wasn’t on.”
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Current Sub-Goal:

  Identify interesting concepts in TURNED-ON.6728

TURNED-ON.6728 is not a very interesting concept.

  Skimming . . .

Lazy unification replacing TOBACCO.24107 with sibling MARIJUANA.966.
Input Structure: INGEST.6731

  “He smoked the ganja1.”

Current Sub-Goal:

  Identify interesting concepts in INGEST.6731

INGEST.6731 is not a very interesting concept.

  Skimming . . .

Lazy unification replacing TOBACCO.24376 with sibling MARIJUANA.966.
Matched story concept INGEST.6731 with scene INGEST.24456.

Lazy unification replacing TOBACCO.24376 with sibling MARIJUANA.966.
Unify story concept INGEST.6731 with scene INGEST.24456.

Lazy unification replacing TOBACCO.24376 with sibling MARIJUANA.966.
Lazy unification replacing TOBACCO.24376 with sibling MARIJUANA.966.
Lazy unification replacing TOBACCO.24376 with sibling MARIJUANA.966.
Lazy unification replacing TOBACCO.24376 with sibling MARIJUANA.966.

Will try to understand script inference SMOKE-PIPE.24374.

Inferred Structure: SMOKE-PIPE.24374

  “Actor smokes a pipe.”

Current Sub-Goal:

  Identify interesting concepts in SMOKE-PIPE.24374
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Anomaly detected: Odd for a MARIJUANA

  to be in path (GOAL-SCENE OBJECT) of a SMOKE-PIPE.

Anomaly detected: Odd for a MARIJUANA

  to be in path (GOAL-SCENE FROM DOMAIN) of a SMOKE-PIPE.

Anomaly detected: Odd for a MARIJUANA

  to be in path (GOAL-SCENE FROM CO-DOMAIN DOMAIN) of a SMOKE-PIPE.

Anomaly detected: Odd for a MARIJUANA

  to be in path (GOAL-SCENE TO DOMAIN) of a SMOKE-PIPE.

Posing Question: ACTOR.9965

  Why did the ADULT ADULT.24375 perform the SMOKE-PIPE?

Current Sub-Goal:

  Generate explanation for why ADULT.24375 decides to perform SMOKE-
PIPE.24374

Found explanation(s)

  (XP-GOAL-OF-OUTCOME->ACTOR.100).

Explaining concept ACTOR.9965.

Trying explanation XP-GOAL-OF-OUTCOME->ACTOR.25104

  on instance role ACTOR.9965.

Explained node ACTOR.9965 successfully

  unified with instance.
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Asserted node STATE.25108 already known

Explanation is “Actor does action because it achieves a goal the agent
desires.”.

XP: XP-GOAL-OF-OUTCOME->ACTOR.25104.

Current Sub-Goal:

  Verify hypothesis XP-GOAL-OF-OUTCOME->ACTOR.25104

Cannot achieve GOAL.25651 at this time.

  Suspend TEST task . . .

Input Structure: FILLED.6737

  “The pipe1 wasn’t filled with the ganja1.”

Current Sub-Goal:

  Identify interesting concepts in FILLED.6737

FILLED.6737 is not a very interesting concept.

  Skimming . . .

Lazy unification replacing MARIJUANA.966 with sibling TOBACCO.25838.
Lazy unification replacing MARIJUANA.966 with sibling TOBACCO.25838.
Lazy unification replacing TOBACCO.25838 with sibling MARIJUANA.966.
Lazy unification replacing MARIJUANA.966 with sibling TOBACCO.25838.
Lazy unification replacing TOBACCO.25838 with sibling MARIJUANA.966.
Input Structure: DIRTY.6740

  “The pipe1 was dirty.”

Current Sub-Goal:

  Identify interesting concepts in DIRTY.6740

DIRTY.6740 is not a very interesting concept.

  Skimming . . .
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Lazy unification replacing TOBACCO.26091 with sibling MARIJUANA.966.
Lazy unification replacing TOBACCO.26091 with sibling MARIJUANA.966.
Input Structure: EXPEL.6743

  “He exhaled the smoke1 into the air1.”

Current Sub-Goal:

  Identify interesting concepts in EXPEL.6743

EXPEL.6743 is not a very interesting concept.

  Skimming . . .

Lazy unification replacing TOBACCO.26356 with sibling MARIJUANA.966.
Lazy unification replacing TOBACCO.26356 with sibling MARIJUANA.966.
Matched story concept EXPEL.6743 with scene EXPEL.26440.

Lazy unification replacing TOBACCO.26356 with sibling MARIJUANA.966.
Lazy unification replacing TOBACCO.26356 with sibling MARIJUANA.966.
Unify story concept EXPEL.6743 with scene EXPEL.26440.

Will try to understand script inference SMOKE-PIPE.26354.

Inferred Structure: SMOKE-PIPE.26354

  “Actor smokes a pipe.”

Current Sub-Goal:

  Identify interesting concepts in SMOKE-PIPE.26354

Anomaly detected: Odd for a MARIJUANA

  to be in path (GOAL-SCENE FROM CO-DOMAIN DOMAIN) of a SMOKE-PIPE.

Repeating Old Question: ACTOR.9965

  Why did the ADULT ADULT.26355 perform the SMOKE-PIPE?



       335
Current Sub-Goal:

  Generate explanation for why ADULT.26355 decides to perform SMOKE-
PIPE.26354

Found explanation(s)

  (XP-GOAL-OF-OUTCOME->ACTOR.100).

Explaining concept ACTOR.9965.

Trying explanation XP-GOAL-OF-OUTCOME->ACTOR.27061

  on instance role ACTOR.9965.

Unification of truth values IN.0 and HYPOTHESIZED.0

Explained node ACTOR.9965 successfully

  unified with instance.

Explanation is “Actor does action because it achieves a goal the agent
desires.”.

XP: XP-GOAL-OF-OUTCOME->ACTOR.27061.

Current Sub-Goal:

  Verify hypothesis XP-GOAL-OF-OUTCOME->ACTOR.27061

Cannot achieve GOAL.27849 at this time.

  Suspend TEST task . . .

Input Structure: PROPEL.6749

  “He pushed hot-faucet-handle away from the hot-faucet.”

Current Sub-Goal:

  Identify interesting concepts in PROPEL.6749
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PROPEL.6749 is not a very interesting concept.

  Skimming . . .

Lazy unification replacing TOBACCO.28068 with sibling MARIJUANA.966.
Lazy unification replacing TOBACCO.28068 with sibling MARIJUANA.966.
Matched story concept PROPEL.6749 with scene PROPEL.28182.

Lazy unification replacing TOBACCO.28068 with sibling MARIJUANA.966.
Lazy unification replacing TOBACCO.28068 with sibling MARIJUANA.966.
Unify story concept PROPEL.6749 with scene PROPEL.28182.

Will try to understand script inference WASH-ITEM.28086.

Inferred Structure: WASH-ITEM.28086

  NIL

Current Sub-Goal:

  Identify interesting concepts in WASH-ITEM.28086

WASH-ITEM.28086 is not a very interesting concept.

  Skimming . . .

Lazy unification replacing TOBACCO.28710 with sibling MARIJUANA.966.
Lazy unification replacing TOBACCO.28710 with sibling MARIJUANA.966.
Matched story concept WASH-ITEM.28086 with scene WASH-ITEM.28728.

Lazy unification replacing TOBACCO.28710 with sibling MARIJUANA.966.
Lazy unification replacing TOBACCO.28710 with sibling MARIJUANA.966.
Unify story concept WASH-ITEM.28086 with scene WASH-ITEM.28728.

Will try to understand script inference SMOKING-SCRIPT.2546.

Inferred Structure: SMOKING-SCRIPT.2546

  NIL

Input triggers reminding of old question:
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  (ACTOR.27070)

New input does not help answer old question.

Current Sub-Goal:

  Identify interesting concepts in SMOKING-SCRIPT.2546

Anomaly detected: Odd for a MARIJUANA

  to be in path (GOAL-SCENE FROM CO-DOMAIN DOMAIN) of a SMOKE-PIPE.

Posing Question: ACTOR.9932

  Why did the ADULT ADULT.28709 perform the SMOKING-SCRIPT?

Current Sub-Goal:

  Generate explanation for why ADULT.28709 decides to perform SMOKING-
SCRIPT.2546

No explanation found.

No case found.

Cannot achieve GOAL.30021 at this time.

  Suspend GENERATE task . . .

Input Structure: FLOWING.6756

  “The hot-faucet was flowing.”

Current Sub-Goal:

  Identify interesting concepts in FLOWING.6756

FLOWING.6756 is not a very interesting concept.
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  Skimming . . .

Lazy unification replacing TOBACCO.30212 with sibling MARIJUANA.966.
Lazy unification replacing TOBACCO.30212 with sibling MARIJUANA.966.
Input Structure: PTRANS.6759

  “He moved the pipe1 to the hot-faucet.”

Current Sub-Goal:

  Identify interesting concepts in PTRANS.6759

PTRANS.6759 is not a very interesting concept.

  Skimming . . .

Lazy unification replacing TOBACCO.30488 with sibling MARIJUANA.966.
Lazy unification replacing TOBACCO.30488 with sibling MARIJUANA.966.
Matched story concept PTRANS.6759 with scene PTRANS.30607.

Lazy unification replacing TOBACCO.30488 with sibling MARIJUANA.966.
Lazy unification replacing TOBACCO.30488 with sibling MARIJUANA.966.
Unify story concept PTRANS.6759 with scene PTRANS.30607.

Will try to understand script inference WASH-ITEM.30506.

Inferred Structure: WASH-ITEM.30506

  NIL

Current Sub-Goal:

  Identify interesting concepts in WASH-ITEM.30506

WASH-ITEM.30506 is not a very interesting concept.

  Skimming . . .

Lazy unification replacing TOBACCO.31129 with sibling MARIJUANA.966.
Lazy unification replacing TOBACCO.31129 with sibling MARIJUANA.966.
Matched story concept WASH-ITEM.30506 with scene WASH-ITEM.31147.
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Lazy unification replacing TOBACCO.31129 with sibling MARIJUANA.966.
Lazy unification replacing TOBACCO.31129 with sibling MARIJUANA.966.
Unify story concept WASH-ITEM.30506 with scene WASH-ITEM.31147.

Will try to understand script inference SMOKING-SCRIPT.2546.

Inferred Structure: SMOKING-SCRIPT.2546

  NIL

Current Sub-Goal:

  Identify interesting concepts in SMOKING-SCRIPT.2546

Anomaly detected: Odd for a MARIJUANA

  to be in path (GOAL-SCENE FROM CO-DOMAIN DOMAIN) of a SMOKE-PIPE.

Repeating Old Question: ACTOR.9932

  Why did the ADULT ADULT.31128 perform the SMOKING-SCRIPT?

Current Sub-Goal:

  Generate explanation for why ADULT.31128 decides to perform SMOKING-
SCRIPT.2546

No explanation found.

No case found.

Cannot achieve GOAL.32426 at this time.

  Suspend GENERATE task . . .

Input Structure: DIRTY.6766

  “The pipe1 wasn’t dirty.”

Current Sub-Goal:
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  Identify interesting concepts in DIRTY.6766

DIRTY.6766 is not a very interesting concept.

  Skimming . . .

Lazy unification replacing TOBACCO.32612 with sibling MARIJUANA.966.
Lazy unification replacing TOBACCO.32612 with sibling MARIJUANA.966.
Input Structure: PROPEL.6777

  “He pushed hot-faucet-handle to the hot-faucet.”

Current Sub-Goal:

  Identify interesting concepts in PROPEL.6777

PROPEL.6777 is not a very interesting concept.

  Skimming . . .

Lazy unification replacing TOBACCO.32902 with sibling MARIJUANA.966.
Lazy unification replacing TOBACCO.32902 with sibling MARIJUANA.966.
Matched story concept PROPEL.6777 with scene PROPEL.33016.

Lazy unification replacing TOBACCO.32902 with sibling MARIJUANA.966.
Lazy unification replacing TOBACCO.32902 with sibling MARIJUANA.966.
Unify story concept PROPEL.6777 with scene PROPEL.33016.

Will try to understand script inference WASH-ITEM.32920.

Inferred Structure: WASH-ITEM.32920

  NIL

Current Sub-Goal:

  Identify interesting concepts in WASH-ITEM.32920

WASH-ITEM.32920 is not a very interesting concept.

  Skimming . . .
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Lazy unification replacing TOBACCO.33555 with sibling MARIJUANA.966.
Lazy unification replacing TOBACCO.33555 with sibling MARIJUANA.966.
Matched story concept WASH-ITEM.32920 with scene WASH-ITEM.33573.

Lazy unification replacing TOBACCO.33555 with sibling MARIJUANA.966.
Lazy unification replacing TOBACCO.33555 with sibling MARIJUANA.966.
Unify story concept WASH-ITEM.32920 with scene WASH-ITEM.33573.

Will try to understand script inference SMOKING-SCRIPT.2546.

Inferred Structure: SMOKING-SCRIPT.2546

  NIL

Current Sub-Goal:

  Identify interesting concepts in SMOKING-SCRIPT.2546

Anomaly detected: Odd for a MARIJUANA

  to be in path (GOAL-SCENE FROM CO-DOMAIN DOMAIN) of a SMOKE-PIPE.

Repeating Old Question: ACTOR.9932

  Why did the ADULT ADULT.33554 perform the SMOKING-SCRIPT?

Current Sub-Goal:

  Generate explanation for why ADULT.33554 decides to perform SMOKING-
SCRIPT.2546

No explanation found.

No case found.

Cannot achieve GOAL.34869 at this time.

  Suspend GENERATE task . . .

Input Structure: FLOWING.6784
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  “The hot-faucet wasn’t flowing.”

Current Sub-Goal:

  Identify interesting concepts in FLOWING.6784

FLOWING.6784 is not a very interesting concept.

  Skimming . . .

Lazy unification replacing TOBACCO.35060 with sibling MARIJUANA.966.
Lazy unification replacing TOBACCO.35060 with sibling MARIJUANA.966.
Input Structure: XP-GOAL-OF-OUTCOME->ACTOR.6787

  “He smoked the ganja1 because he didn’t want to be withdrawing.”

Input triggers reminding of old question:

  (ACTOR.27070 ACTOR.27070 ACTOR.27070)

Lazy unification replacing SMOKE-PIPE.35058 with sibling INGEST.6802.
Lazy unification replacing SMOKE-PIPE.35058 with sibling INGEST.6802.
Lazy unification replacing SMOKE-PIPE.35058 with sibling INGEST.6802.
Lazy unification replacing SMOKE-PIPE.35058 with sibling INGEST.6802.
Lazy unification replacing SMOKE-PIPE.35058 with sibling INGEST.6802.
Lazy unification replacing SMOKE-PIPE.35058 with sibling INGEST.6802.
Lazy unification replacing SMOKE-PIPE.35058 with sibling INGEST.6802.
Lazy unification replacing SMOKE-PIPE.35058 with sibling INGEST.6802.
Question ACTOR.27070 successfully answered

  with matching input.

Found relevant input for verifying hypothesis: XP-GOAL-OF-OUTCOME-
>ACTOR.6787

Comparison strategy selected

Compare strategy applied to evidence XP-GOAL-OF-OUTCOME->ACTOR.6787 for
hypothesis XP-GOAL-OF-OUTCOME->ACTOR.6787

Current Sub-Goal:

  Review reasoning trace TRACE-META-XP.35229
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LEARNING PHASE . . .

Found explanation(s)

  (IMXP-ANOMALY-EXPLAINED.351).

Explaining concept SUCCESSFUL-PREDICTION.35207.

Trying explanation IMXP-ANOMALY-EXPLAINED.35281

  on instance role SUCCESSFUL-PREDICTION.35207.

XP IMXP-ANOMALY-EXPLAINED.35281 does not apply to

  instance SUCCESSFUL-PREDICTION.35467 because missing knowledge

  (INCORPORATION-FAILURE.35424 ANOMALY.35303)

Explanation IMXP-ANOMALY-EXPLAINED.35281 does not apply to SUCCESSFUL-
PREDICTION.35207.

“No name”

Explanation is “No name”.

XP: IMXP-ANOMALY-EXPLAINED.35281.

(MODEL (FRAME-LIST (VALUE (GOAL.35214))))
(MODEL (FRAME-LIST (VALUE (GOAL.35894))))

Blame assignment has produced explanation of reasoning failure:

  IMXP-ANOMALY-EXPLAINED.35281

Deciding what to learn.

Posting the following learning goals:
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  (KNOWLEDGE-RECONCILIATION-GOAL.36472)

  with priorities (EIGHT.0)

Selecting learning strategies.

The following algorithms are selected:

  (LEARNING-PROCESS.36467)

Executing strategies.

Perform abstraction to (TOBACCO)

  on conceptual definition of SMOKE-PIPE.

Done.

Time to completion: 25.683332 minutes.
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APPENDIX C

STORY LISTINGS FOR RUN NUMBER FOUR

Story number 1 . . .

One day ...MOM was BORED. Mom asked Karen, “Would you push the balloon3
to me away from you?” She asked her, “Would I take the balloon3 from
me?” She pushed cupboard-door away from the cupboard1. The cupboard1 was
open. She took the balloon3 from the cupboard1. She had the balloon3.
The cupboard1 didn’t have the balloon3. She pushed cupboard-door to the
cupboard1. The cupboard1 wasn’t open. She pushed light-switch1. The
light1 was on. She exhaled the air2 into the balloon3. The balloon3 was
inflated. She tied the balloon3. The balloon3 was sealed. The phone1 was
ringing. Dad picked up phone-receiver1. The phone1 wasn’t ringing. He
had phone-receiver1. He let go of phone-receiver1. He didn’t have phone-
receiver1. She took the balloon3 from her. She had the balloon3. She
didn’t have the balloon3. She went to outside. Karen went to outside.
Mom played with the balloon3. Karen pushed the balloon3 to Mom away from
her. Mom had the balloon3. Karen didn’t have the balloon3. Mom pushed
the balloon3 to the window1. Karen picked up the balloon3. She had the
balloon3. She pushed the balloon3 to Mom away from her. Mom had the
balloon3. Karen didn’t have the balloon3. Mom played with the balloon3
because she didn’t want to be bored.

 --- The End ---

 Story number 2 . . .

One day ...MOM was BORED. Mom asked Karen, “Would you push the ball1 to
me away from you?” Karen went to the garage. She picked up the ball1.
She had the ball1. She went to outside. Mom went to outside. She played
with the ball1. Karen pushed the ball1 to the rose-bush2. Mom picked up
the ball1. She had the ball1. She hit the ball1. She hit the ball1
because she wanted to move the ball1 to Karen. Karen hit the ball1. She
hit the ball1 because she wanted to move the ball1 to Mom. Mom pushed
the ball1 to the grass away from her. She didn’t have the ball1. She
picked up the ball1. She had the ball1. She pushed the ball1 to the
rose-bush1. Karen picked up the ball1. She had the ball1. She pushed the
ball1 to the calla-lilly1. Mom picked up the ball1. She had the ball1.
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She played with the ball1 because she didn’t want to be bored.

--- The End ---

Story number 3 . . .

One day ...ELVIS was JONESING. Elvis pushed cupboard-door away from the
cupboard1. The cupboard1 was open. He took the pipe2 from the cupboard1.
He had the pipe2. The cupboard1 didn’t have the pipe2. He pushed
cupboard-door to the cupboard1. The cupboard1 wasn’t open. He took the
ganja1 from the rug1. He had the ganja1. The rug1 didn’t have the
ganja1. The phone1 was ringing. Dad picked up phone-receiver1. The
phone1 wasn’t ringing. He had phone-receiver1. He let go of phone-
receiver1. He didn’t have phone-receiver1. Elvis poured the ganja1 into
the pipe2. The pipe2 was filled with the ganja1. He took the lighter1
from the table2. He had the lighter1. The table2 didn’t have the
lighter1. He pushed the lighter1. The lighter1 was on. Police-and-dogs
arrived. Officer1 went to outside. The police-dog1 went to outside. He
pushed door-bell-switch1. The door-bell1 was ringing. He didn’t push
door-bell-switch1. The door-bell1 wasn’t ringing. He went to the
kitchen. The police-dog1 went to the kitchen. The police-dog1 went to
Elvis. The police-dog1 sniffed Elvis. The police-dog1 barked at Elvis.
The police-dog1 was barking. He went to Elvis. He took the ganja1 from
Elvis. He had the ganja1. Elvis didn’t have the ganja1. Officer1
arrested Elvis. He controlled Elvis. He arrested Elvis because he wanted
to control Elvis. He went to outside. Elvis went to outside. The police-
dog1 went to outside. The police-dog1 barked at him because the police-
dog1 detected the ganja1. He had the lighter1. The ganja1 couldn’t be
burning. Officer1 controlled Elvis. Elvis couldn’t get near the pipe1.
He couldn’t get the pipe1. The ganja1 couldn’t fill the pipe1. He was
still jonesing.

--- The End ---

 Story number 4 . . .

One day ...DAD was JONESING. Dad pushed cupboard-door away from the
cupboard1. The cupboard1 was open. He took the pipe2 from the cupboard1.
He had the pipe2. The cupboard1 didn’t have the pipe2. He pushed
cupboard-door to the cupboard1. The cupboard1 wasn’t open. He took the
pipe-tobacco1 from the table1. He had the pipe-tobacco1. The table1
didn’t have the pipe-tobacco1. The cat1 pushed the vase2 to the floor1.
The vase2 was broken. He poured the pipe-tobacco1 into the pipe2. The
pipe2 was filled with the pipe-tobacco1. He took the lighter1 from the
table2. He had the lighter1. The table2 didn’t have the lighter1. He
pushed the lighter1. The lighter1 was on. He moved the lighter1 to the
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pipe-tobacco1. The pipe-tobacco1 was burning. The police arrived.
Officer1 went to outside1. The dog1 barked. The dog1 was barking. He
pushed door-bell-switch1. The door-bell1 was ringing. He didn’t push
door-bell-switch1. The door-bell1 wasn’t ringing. Mom pushed light-
switch1. The light1 was on. He went to the kitchen. He asked Elvis
whether Elvis would give him the ganja1. Elvis took the ganja1 from the
rug1. He had the ganja1. The rug1 didn’t have the ganja1. He gave
officer1 the ganja1. Officer1 had the ganja1. Elvis didn’t have the
ganja1. Officer1 arrested Elvis. He controlled Elvis. He went to
outside. Elvis went to outside. Officer1 arrested Elvis because he
wanted to control Elvis. Dad pushed the lighter1. The lighter1 wasn’t
on. The phone1 was ringing. She picked up phone-receiver1. The phone1
wasn’t ringing. She had phone-receiver1. She let go of phone-receiver1.
She didn’t have phone-receiver1. He smoked the pipe-tobacco1. The pipe2
wasn’t filled with the pipe-tobacco1. The pipe2 was dirty. He exhaled
the smoke1 into the air1. He pushed hot-faucet-handle away from the hot-
faucet. The hot-faucet was flowing. He moved the pipe2 to the hot-
faucet. The pipe2 wasn’t dirty. He pushed hot-faucet-handle to the hot-
faucet. The hot-faucet wasn’t flowing. He smoked the pipe-tobacco1
because he didn’t want to be withdrawing.

--- The End ---

 Story number 5 . . .

One day ...MOM was BORED. Mom asked Karen, “Would you push the ball2 to
me away from you?” She pushed light-switch1. The light1 was on. Karen
went to the garage. The phone1 was ringing. Dad picked up phone-
receiver1. The phone1 wasn’t ringing. He had phone-receiver1. He let go
of phone-receiver1. He didn’t have phone-receiver1. She picked up the
ball2. She had the ball2. She went to outside. Mom went to outside. She
played with the ball2. Karen pushed the ball2 to the window1. The
window1 was sharp. The window1 was shattered. The cat1 pushed the vase2
to the floor1. The vase2 was broken. Mom picked up the ball2. She had
the ball2. She pushed the ball2 to the calla-lilly2. Karen picked up the
ball2. She had the ball2. Mom played with the ball2 because she didn’t
want to be bored.

--- The End ---

 Story number 6 . . .
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One day ...OFFICER1 was CONCERNED. Officer1 went to the kitchen. He
asked Elvis whether Elvis would give him the ganja1. Elvis took the
ganja1 from the vase3. He had the ganja1. The vase3 didn’t have the
ganja1. He gave officer1 the ganja1. Officer1 had the ganja1. Elvis
didn’t have the ganja1. Officer1 arrested Elvis. He controlled Elvis. He
went to outside. The cat1 pushed the vase2 to the floor1. The vase2 was
broken. Mom pushed light-switch1. The light1 was on. Elvis went to
outside. Officer1 arrested Elvis because he wanted to control Elvis.

--- The End ---

 Story number 7 . . .

One day ...DAD was BORED. Dad asked Karen, “Would you push the ball1 to
me away from you?” Karen went to the garage. She picked up the ball1.
She had the ball1. She went to outside. He went to outside. He played
with the ball1. She pushed the ball1 to the calla-lilly1. He picked up
the ball1. He had the ball1. He pushed the ball1 to the window1. The
window1 was sharp. The window1 was shattered. She picked up the ball1.
She had the ball1. H
--- The End ---

 Story number 8 . . .

One day ...DAD was THIRSTY. Dad pushed cupboard-door away from the
cupboard1. The cupboard1 was open. He took the glass2 from the
cupboard1. He had the glass2. The cupboard1 didn’t have the glass2. He
pushed cupboard-door to the cupboard1. The cupboard1 wasn’t open. He
pushed cold-faucet-handle away from the cold-faucet. The cold-faucet was
flowing. He moved the glass2 to the cold-faucet. The glass2 was filled
with the cold-water2. He pushed cold-faucet-handle to the cold-faucet.
The cold-faucet wasn’t flowing. He drank the cold-water2. The glass2
wasn’t filled with the cold-water2. The glass2 was dirty. He pushed hot-
faucet-handle away from the hot-faucet. The hot-faucet was flowing. He
moved the glass2 to the hot-faucet. The glass2 wasn’t dirty. He pushed
hot-faucet-handle to the hot-faucet. The hot-faucet wasn’t flowing. He
drank the cold-water2 because he didn’t want to be thirsty.

--- The End ---

 Story number 9 . . .
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One day ...DAD was THIRSTY. Dad pushed cupboard-door away from the
cupboard1. The cupboard1 was open. He took the glass4 from the
cupboard1. He had the glass4. The cupboard1 didn’t have the glass4. He
pushed cupboard-door to the cupboard1. The cupboard1 wasn’t open. He
pushed fridge-door away from the fridge1. The fridge1 was open. He took
the cold-water1 from the fridge1. He had the cold-water1. The fridge1
didn’t have the cold-water1. He pushed fridge-door to the fridge1. The
fridge1 wasn’t open. He poured the cold-water1 into the glass4. The
glass4 was filled with the cold-water1. He drank the cold-water1. The
glass4 wasn’t filled with the cold-water1. The glass4 was dirty. He
pushed hot-faucet-handle away from the hot-faucet. The hot-faucet was
flowing. He moved the glass4 to the hot-faucet. The glass4 wasn’t dirty.
Police-and-dogs arrived. Officer1 went to outside. The police-dog1 went
to outside. He pushed door-bell-switch1. The door-bell1 was ringing. He
didn’t push door-bell-switch1. The door-bell1 wasn’t ringing. He went to
the kitchen. The police-dog1 went to the kitchen. The police-dog1 went
to the vase2. The police-dog1 sniffed the vase2. The police-dog1 barked
at the vase2. The police-dog1 was barking. He went to the vase2. He took
the ganja1 from the vase2. He had the ganja1. The vase2 didn’t have the
ganja1. He arrested Elvis. He controlled Elvis. He arrested Elvis
because he wanted to control Elvis. He went to outside. Elvis went to
outside. The police-dog1 went to outside. The police-dog1 barked at the
vase2 because the police-dog1 detected the ganja1. Dad pushed hot-
faucet-handle to the hot-faucet. The hot-faucet wasn’t flowing. He drank
the cold-water1 because he didn’t want to be thirsty.

--- The End ---

 Story number 10 . . .

One day ...DAD was BORED. Dad asked Karen, “Would you push the balloon2
to me away from you?” He asked him, “Would I take the balloon2 from me?”
He pushed cupboard-door away from the cupboard1. The cupboard1 was open.
Police-and-dogs arrived. Officer1 went to outside. The police-dog1 went
to outside. He pushed door-bell-switch1. The door-bell1 was ringing. He
didn’t push door-bell-switch1. The door-bell1 wasn’t ringing. The phone1
was ringing. Mom picked up phone-receiver1. The phone1 wasn’t ringing.
She had phone-receiver1. She let go of phone-receiver1. She didn’t have
phone-receiver1. He went to the kitchen. The police-dog1 went to the
kitchen. The police-dog1 went to the rug1. The police-dog1 barked at the
rug1. The police-dog1 was barking. He went to outside. The police-dog1
went to outside. He went to the kitchen. He asked Elvis whether Elvis
would give him the ganja1. Elvis took the ganja1 from the vase1. He had
the ganja1. The vase1 didn’t have the ganja1. He gave officer1 the
ganja1. Officer1 had the ganja1. Elvis didn’t have the ganja1. Officer1
arrested Elvis. He controlled Elvis. He went to outside. Elvis went to
outside. Officer1 arrested Elvis because he wanted to control Elvis. Dad
took the balloon2 from the cupboard1. He had the balloon2. The cupboard1
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didn’t have the balloon2. She pushed light-switch1. The light1 was on.
He pushed cupboard-door to the cupboard1. The cupboard1 wasn’t open. He
exhaled the air2 into the balloon2. The balloon2 was inflated. He tied
the balloon2. The balloon2 was sealed. He took the balloon2 from him. He
had the balloon2. He didn’t have the balloon2. He went to outside. Karen
went to outside. He played with the balloon2. She pushed the balloon2 to
the calla-lilly1. He picked up the balloon2. He had the balloon2. He
pushed the balloon2 to the calla-lilly2. She picked up the balloon2. She
had the balloon2. The cat1 pushed the vase2 to the floor1. The vase2 was
broken. He played with the balloon2 because he didn’t want to be bored.

--- The End ---

 Story number 11 . . .

One day ...LYNN was BORED. Lynn asked Karen, “Would you push the ball2
to me away from you?” Karen went to the garage. She picked up the ball2.
She had the ball2. She went to outside. Lynn went to outside. She played
with the ball2. Karen hit the ball2. She hit the ball2 because she
wanted to move the ball2 to Lynn. Lynn pushed the ball2 to the calla-
lilly2. Karen picked up the ball2. She had the ball2. Lynn played with
the ball2 because she didn’t want to be bored.

--- The End ---

 Story number 12 . . .

One day ...OFFICER1 was CONCERNED. Officer1 went to the kitchen. He
asked Elvis whether Elvis would give him the ganja1. He went to outside.
He couldn’t get Elvis.

--- The End ---

 Story number 13 . . .

One day ...MOM was THIRSTY. Mom pushed cupboard-door away from the
cupboard1. The cupboard1 was open. She took the cup1 from the cupboard1.
She had the cup1. The cupboard1 didn’t have the cup1. She pushed
cupboard-door to the cupboard1. The cupboard1 wasn’t open. She pushed
fridge-door away from the fridge1. The fridge1 was open. She took the
cold-water1 from the fridge1. She had the cold-water1. The fridge1
didn’t have the cold-water1. The police arrived. Officer1 went to
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outside1. The dog1 barked. The dog1 was barking. He pushed door-bell-
switch1. The door-bell1 was ringing. He didn’t push door-bell-switch1.
The door-bell1 wasn’t ringing. The cat1 pushed the vase2 to the floor1.
The vase2 was broken. He went to the kitchen. He asked Elvis whether
Elvis would give him the ganja1. Elvis took the ganja1 from the vase2.
He had the ganja1. The vase2 didn’t have the ganja1. He gave officer1
the ganja1. Officer1 had the ganja1. Elvis didn’t have the ganja1.
Officer1 arrested Elvis. He controlled Elvis. He went to outside. Elvis
went to outside. Officer1 arrested Elvis because he wanted to control
Elvis. She pushed fridge-door to the fridge1. The fridge1 wasn’t open.
She pushed light-switch1. The light1 was on. The phone1 was ringing. Dad
picked up phone-receiver1. The phone1 wasn’t ringing. He had phone-
receiver1. He let go of phone-receiver1. He didn’t have phone-receiver1.
She poured the cold-water1 into the cup1. The cup1 was filled with the
cold-water1. She drank the cold-water1. The cup1 wasn’t filled with the
cold-water1. The cup1 was dirty. She pushed hot-faucet-handle away from
the hot-faucet. The hot-faucet was flowing. She moved the cup1 to the
hot-faucet. The cup1 wasn’t dirty. She pushed hot-faucet-handle to the
hot-faucet. The hot-faucet wasn’t flowing. She drank the cold-water1
because she didn’t want to be thirsty.

--- The End ---

 Story number 14 . . .

One day ...MOM was BORED. Mom asked Karen, “Would you push the ball3 to
me away from you?” Karen went to the garage. She picked up the ball3.
She had the ball3. She went to outside. Mom went to outside. She played
with the ball3. Karen hit the ball3. She hit the ball3 because she
wanted to move the ball3 to Mom. Mom hit the ball3. She hit the ball3
because she wanted to move the ball3 to Karen. Karen hit the ball3. She
hit the ball3 because she wanted to move the ball3 to Mom. Mom pushed
the ball3 to the grass away from her. She didn’t have the ball3. She
picked up the ball3. She had the ball3. She played with the ball3
because she didn’t want to be bored.

--- The End ---

 Story number 15 . . .

One day ...LYNN was JONESING. Lynn pushed cupboard-door away from the
cupboard1. The cupboard1 was open. She took the pipe2 from the
cupboard1. She had the pipe2. The cupboard1 didn’t have the pipe2. She
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pushed cupboard-door to the cupboard1. The cupboard1 wasn’t open. Mom
pushed light-switch1. The light1 was on. Lynn took the pipe-tobacco1
from the table1. She had the pipe-tobacco1. The table1 didn’t have the
pipe-tobacco1. She poured the pipe-tobacco1 into the pipe2. The pipe2
was filled with the pipe-tobacco1. She pushed the pipe2 to the floor1.
The pipe2 wasn’t filled with the pipe-tobacco1. She pushed cupboard-door
away from the cupboard1. The cupboard1 was open. The cat1 pushed the
vase2 to the floor1. The vase2 was broken. She took the pipe1 from the
cupboard1. She had the pipe1. The cupboard1 didn’t have the pipe1. She
pushed cupboard-door to the cupboard1. The cupboard1 wasn’t open. She
poured the pipe-tobacco1 into the pipe1. The pipe1 was filled with the
pipe-tobacco1. The phone1 was ringing. Mom picked up phone-receiver1.
The phone1 wasn’t ringing. She had phone-receiver1. She let go of phone-
receiver1. She didn’t have phone-receiver1. Lynn pushed the pipe1 to the
floor1. The pipe1 wasn’t filled with the pipe-tobacco1. The pipe1 was
broken. She was still jonesing.

--- The End ---

 Story number 16 . . .

One day ...DAD was JONESING. Dad pushed cupboard-door away from the
cupboard1. The cupboard1 was open. He took the pipe2 from the cupboard1.
He had the pipe2. The cupboard1 didn’t have the pipe2. He pushed
cupboard-door to the cupboard1. The cupboard1 wasn’t open. Police-and-
dogs arrived. Officer1 went to outside. The police-dog1 went to outside.
He pushed door-bell-switch1. The door-bell1 was ringing. He didn’t push
door-bell-switch1. The door-bell1 wasn’t ringing. He went to the
kitchen. The police-dog1 went to the kitchen. The police-dog1 went to
the vase1. The police-dog1 sniffed the vase1. The police-dog1 barked at
the vase1. The police-dog1 was barking. He went to the vase1. He took
the ganja1 from the vase1. He had the ganja1. The vase1 didn’t have the
ganja1. He arrested Elvis. He controlled Elvis. He arrested Elvis
because he wanted to control Elvis. He went to outside. Elvis went to
outside. The police-dog1 went to outside. The police-dog1 barked at the
vase1 because the police-dog1 detected the ganja1. Dad took the pipe-
tobacco1 from the table1. He had the pipe-tobacco1. The table1 didn’t
have the pipe-tobacco1. He poured the pipe-tobacco1 into the pipe2. The
pipe2 was filled with the pipe-tobacco1. He pushed the pipe2 to the
floor1. The pipe2 wasn’t filled with the pipe-tobacco1. He pushed
cupboard-door away from the cupboard1. The cupboard1 was open. He took
the pipe1 from the cupboard1. He had the pipe1. The cupboard1 didn’t
have the pipe1. He pushed cupboard-door to the cupboard1. The cupboard1
wasn’t open. He poured the pipe-tobacco1 into the pipe1. The pipe1 was
filled with the pipe-tobacco1. He pushed the pipe1 to the floor1. The
pipe1 wasn’t filled with the pipe-tobacco1. The pipe1 was broken. He was
still jonesing.
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--- The End ---

 Story number 17 . . .

One day ...ELVIS was JONESING. Elvis pushed cupboard-door away from the
cupboard1. The cupboard1 was open. He took the pipe1 from the cupboard1.
He had the pipe1. The cupboard1 didn’t have the pipe1. He pushed
cupboard-door to the cupboard1. The cupboard1 wasn’t open. Mom pushed
light-switch1. The light1 was on. He pushed cupboard-door away from the
cupboard1. The cupboard1 was open. He took the ganja1 from the
cupboard1. He had the ganja1. The cupboard1 didn’t have the ganja1. He
pushed cupboard-door to the cupboard1. The cupboard1 wasn’t open. The
phone1 was ringing. Dad picked up phone-receiver1. The phone1 wasn’t
ringing. He had phone-receiver1. He let go of phone-receiver1. He didn’t
have phone-receiver1. Elvis poured the ganja1 into the pipe1. The pipe1
was filled with the ganja1. He took the lighter1 from the table2. He had
the lighter1. The table2 didn’t have the lighter1. The police arrived.
Officer1 went to outside1. The dog1 barked. The dog1 was barking. He
pushed door-bell-switch1. The door-bell1 was ringing. He didn’t push
door-bell-switch1. The door-bell1 wasn’t ringing. He went to the
kitchen. He asked Elvis whether Elvis would give him the ganja1. He went
to the vase1. He knew, “ The ganja1 isn’t with the vase1.” He went to
the rug1. The cat1 pushed the vase2 to the floor1. The vase2 was broken.
He knew, “ The ganja1 isn’t with the rug1.” He went to Elvis. He knew,
“The ganja1 is with Elvis.” He arrested Elvis. He controlled Elvis. He
went to outside. Elvis went to outside. Officer1 arrested Elvis because
he wanted to control Elvis. Elvis pushed the lighter1. The lighter1 was
on. He had the lighter1. The ganja1 couldn’t be burning. Officer1
controlled Elvis. Elvis couldn’t get near the pipe2. He couldn’t get the
pipe2. The ganja1 couldn’t fill the pipe2. He was still jonesing.

--- The End ---

 Story number 18 . . .

One day ...OFFICER1 was CONCERNED. Officer1 went to the kitchen. The
police-dog1 went to the kitchen. The police-dog1 went to the vase3. The
phone1 was ringing. Dad picked up phone-receiver1. The phone1 wasn’t
ringing. He had phone-receiver1. He let go of phone-receiver1. He didn’t
have phone-receiver1. Mom pushed light-switch1. The light1 was on. The
police-dog1 sniffed the vase3. The police-dog1 barked at the vase3. The
police-dog1 was barking. Officer1 went to the vase3. He took the ganja1
from the vase3. He had the ganja1. The vase3 didn’t have the ganja1. He
arrested Elvis. He controlled Elvis. He arrested Elvis because he wanted
to control Elvis. He went to outside. Elvis went to outside. The police-
dog1 went to outside. The police-dog1 barked at the vase3 because the
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police-dog1 detected the ganja1.

--- The End ---

 Story number 19 . . .

One day ...DAD was JONESING. Dad pushed cupboard-door away from the
cupboard1. The cupboard1 was open. He took the pipe1 from the cupboard1.
He had the pipe1. The cupboard1 didn’t have the pipe1. He pushed
cupboard-door to the cupboard1. The cupboard1 wasn’t open. He took the
pipe-tobacco1 from the table1. He had the pipe-tobacco1. The table1
didn’t have the pipe-tobacco1. He poured the pipe-tobacco1 into the
pipe1. The pipe1 was filled with the pipe-tobacco1. He pushed the pipe1
to the floor1. The pipe1 wasn’t filled with the pipe-tobacco1. The pipe1
was broken. He pushed cupboard-door away from the cupboard1. The
cupboard1 was open. He took the pipe2 from the cupboard1. He had the
pipe2. The cupboard1 didn’t have the pipe2. He pushed cupboard-door to
the cupboard1. The cupboard1 wasn’t open. He poured the pipe-tobacco1
into the pipe2. The pipe2 was filled with the pipe-tobacco1. He pushed
the pipe2 to the floor1. The pipe2 wasn’t filled with the pipe-tobacco1.
He was still jonesing.

--- The End ---
Story number 20 . . .

One day ...DAD was BORED. Dad asked Karen, “Would you push the balloon3
to me away from you?” He asked Mom, “Would you give me the balloon3?”
Mom pushed cupboard-door away from the cupboard1. The cupboard1 was
open. She took the balloon3 from the cupboard1. She had the balloon3.
The cupboard1 didn’t have the balloon3. She pushed cupboard-door to the
cupboard1. The cupboard1 wasn’t open. She exhaled the air2 into the
balloon3. The balloon3 was inflated. She let go of the balloon3. She
didn’t have the balloon3. The balloon3 was flying. The balloon3 wasn’t
inflated. She picked up the balloon3. She had the balloon3. She exhaled
the air2 into the balloon3. The balloon3 was inflated. She let go of the
balloon3. She didn’t have the balloon3. The balloon3 was flying. The
balloon3 wasn’t inflated. She picked up the balloon3. She had the
balloon3. She exhaled the air2 into the balloon3. The balloon3 was
inflated. She tied the balloon3. The balloon3 was sealed. She gave him
the balloon3. He had the balloon3. She didn’t have the balloon3. He went
to outside. Karen went to outside. He played with the balloon3. She
pushed the balloon3 to him away from her. He had the balloon3. She
didn’t have the balloon3. The police arrived. Officer1 went to outside1.
The dog1 barked. The dog1 was barking. He pushed door-bell-switch1. The
door-bell1 was ringing. He didn’t push door-bell-switch1. The door-bell1
wasn’t ringing. He went to the kitchen. He asked Elvis whether Elvis
would give him the ganja1. The phone1 was ringing. Mom picked up phone-
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receiver1. The phone1 wasn’t ringing. She had phone-receiver1. She let
go of phone-receiver1. She didn’t have phone-receiver1. The cat1 pushed
the vase2 to the floor1. The vase2 was broken. She pushed light-switch1.
The light1 was on. Elvis took the ganja1 from the rug1. He had the
ganja1. The rug1 didn’t have the ganja1. He gave officer1 the ganja1.
Officer1 had the ganja1. Elvis didn’t have the ganja1. Officer1 went to
outside. He couldn’t get Elvis. Dad pushed the balloon3 to Karen away
from him. Karen had the balloon3. He didn’t have the balloon3. She
pushed the balloon3 to him away from her. He had the balloon3. She
didn’t have the balloon3. He played with the balloon3 because he didn’t
want to be bored.

--- The End ---

 Story number 21 . . .

One day ...LYNN was JONESING. Lynn pushed cupboard-door away from the
cupboard1. The cupboard1 was open. She took the pipe2 from the
cupboard1. She had the pipe2. The cupboard1 didn’t have the pipe2. She
pushed cupboard-door to the cupboard1. The cupboard1 wasn’t open. She
took the pipe-tobacco1 from the table1. She had the pipe-tobacco1. The
table1 didn’t have the pipe-tobacco1. The police arrived. Officer1 went
to outside1. The dog1 barked. The dog1 was barking. He pushed door-bell-
switch1. The door-bell1 was ringing. He didn’t push door-bell-switch1.
The door-bell1 wasn’t ringing. He went to the kitchen. He asked Elvis
whether Elvis would give him the ganja1. Elvis took the ganja1 from the
rug1. He had the ganja1. The rug1 didn’t have the ganja1. He gave
officer1 the ganja1. Officer1 had the ganja1. Elvis didn’t have the
ganja1. Officer1 went to outside. He couldn’t get Elvis. She poured the
pipe-tobacco1 into the pipe2. The pipe2 was filled with the pipe-
tobacco1. She took the lighter1 from the table2. She had the lighter1.
The table2 didn’t have the lighter1. She pushed the lighter1. The
lighter1 was on. She moved the lighter1 to the pipe-tobacco1. The pipe-
tobacco1 was burning. She pushed the lighter1. The lighter1 wasn’t on.
She smoked the pipe-tobacco1. The pipe2 wasn’t filled with the pipe-
tobacco1. The pipe2 was dirty. She exhaled the smoke1 into the air1. She
pushed hot-faucet-handle away from the hot-faucet. The hot-faucet was
flowing. She moved the pipe2 to the hot-faucet. The pipe2 wasn’t dirty.
She pushed hot-faucet-handle to the hot-faucet. The hot-faucet wasn’t
flowing. She smoked the pipe-tobacco1 because she didn’t want to be
withdrawing.

--- The End ---
 Story number 22 . . .

One day ...DAD was BORED. Dad asked Karen, “Would you push the ball2 to
me away from you?” Karen went to the garage. She picked up the ball2.
She had the ball2. She went to outside. He went to outside. He played
with the ball2. She pushed the ball2 to the window1. The window1 was
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sharp. The window1 was shattered. He picked up the ball2. He had the
ball2. He pushed the ball2 to the rose-bush1. She picked up the ball2.
She had the ball2. The cat1 pushed the vase2 to the floor1. The vase2
was broken. She hit the ball2. She hit the ball2 because she wanted to
move the ball2 to him. He played with the ball2 because he didn’t want
to be bored.

--- The End ---

 Story number 23 . . .

One day ...ELVIS was THIRSTY. Elvis pushed cupboard-door away from the
cupboard1. The cupboard1 was open. He took the glass1 from the
cupboard1. He had the glass1. The cupboard1 didn’t have the glass1. He
pushed cupboard-door to the cupboard1. The cupboard1 wasn’t open. He
pushed cold-faucet-handle away from the cold-faucet. The cold-faucet was
flowing. He moved the glass1 to the cold-faucet. The glass1 was filled
with the cold-water2. He pushed cold-faucet-handle to the cold-faucet.
The cold-faucet wasn’t flowing. He drank the cold-water2. The glass1
wasn’t filled with the cold-water2. The glass1 was dirty. Mom pushed
light-switch1. The light1 was on. Police-and-dogs arrived. Officer1 went
to outside. The police-dog1 went to outside. He pushed door-bell-
switch1. The door-bell1 was ringing. He didn’t push door-bell-switch1.
The door-bell1 wasn’t ringing. He went to the kitchen. The police-dog1
went to the kitchen. The police-dog1 went to the laundry-pile1. The
police-dog1 sniffed the laundry-pile1. The police-dog1 barked at the
laundry-pile1. The police-dog1 was barking. He went to the laundry-
pile1. He took the ganja1 from the laundry-pile1. He had the ganja1. The
laundry-pile1 didn’t have the ganja1. He arrested Elvis. He controlled
Elvis. He arrested Elvis because he wanted to control Elvis. He went to
outside. Elvis went to outside. The police-dog1 went to outside. The
police-dog1 barked at the laundry-pile1 because the police-dog1 detected
the ganja1. He pushed hot-faucet-handle away from the hot-faucet. The
hot-faucet was flowing. He had the glass1.

--- The End ---

 Story number 24 . . .

One day ...MOM was BORED. Mom asked Karen, “Would you push the ball3 to
me away from you?” Karen went to the garage. She picked up the ball3.
She had the ball3. The police arrived. Officer1 went to outside1. The
dog1 barked. The dog1 was barking. He pushed door-bell-switch1. The
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door-bell1 was ringing. He didn’t push door-bell-switch1. The door-bell1
wasn’t ringing. The phone1 was ringing. Dad picked up phone-receiver1.
The phone1 wasn’t ringing. He had phone-receiver1. He let go of phone-
receiver1. He didn’t have phone-receiver1. Officer1 went to the kitchen.
The cat1 pushed the vase2 to the floor1. The vase2 was broken. He asked
Elvis whether Elvis would give him the ganja1. Elvis pushed cupboard-
door away from the cupboard1. The cupboard1 was open. He took the ganja1
from the cupboard1. He had the ganja1. The cupboard1 didn’t have the
ganja1. He pushed cupboard-door to the cupboard1. The cupboard1 wasn’t
open. He gave officer1 the ganja1. Officer1 had the ganja1. Elvis didn’t
have the ganja1. Officer1 went to outside. Mom pushed light-switch1. The
light1 was on. He couldn’t get Elvis. Karen went to outside. Mom went to
outside. She played with the ball3. Karen pushed the ball3 to the
window1. The window1 was sharp. The window1 was shattered. Mom picked up
the ball3. She had the ball3. She pushed the ball3 to the rose-bush2.
Karen picked up the ball3. She had the ball3. Mom played with the ball3
because she didn’t want to be bored.

--- The End ---
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APPENDIX D

META-AQUA OUTPUT IN LISP PROGRAMMING MODE

Begin Meta-AQUA.

Continue ? (Y or N) Yes.
Input Structure: EACH-ONE-GREATER.241

NIL

Continue ? (Y or N) Yes.
Input Structure: EACH-ONE-GREATER.241

NIL

Continue ? (Y or N) Yes.

Retrieving plan for concept EACH-ONE-GREATER.241

Produced plan: RECURSIVE-PROGRAMMING-PLAN.462.

Continue ? (Y or N) Yes.
Actor PERSON.0 performs act WRITE-DEFUN.229

and expects result NIL

Continue ? (Y or N) Yes.
Input Structure: WRITE-DEFUN.229

NIL

Continue ? (Y or N) Yes.
WRITE-DEFUN.229 is not a very interesting concept.

Skimming . . .
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Continue ? (Y or N) Yes.
Actor PERSON.0 performs act WRITE-NAME.230

and expects result NIL

Continue ? (Y or N) Yes.
Input Structure: WRITE-NAME.230

NIL

Continue ? (Y or N) Yes.
WRITE-NAME.230 is not a very interesting concept.

Skimming . . .

Continue ? (Y or N) Yes.
Actor PERSON.0 performs act ADD-PARAMETERS.231

and expects result NIL

Continue ? (Y or N) Yes.
Input Structure: ADD-PARAMETERS.231

NIL

Continue ? (Y or N) Yes.
ADD-PARAMETERS.231 is not a very interesting concept.

Skimming . . .

Continue ? (Y or N) Yes.
Actor PERSON.0 performs act WRITE-BODY.232

and expects result NEWLY-LEARNED-ADD1NUMS-DEFUN.228

LISP simulator provides alternative solution
RECURSIVE-ADD1NUMS-DEFUN.1110

Continue ? (Y or N) Yes.
Input Structure: WRITE-BODY.232

NIL
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Continue ? (Y or N) Yes.
;Now the following should actually be interesting to the program.
WRITE-BODY.232 is not a very interesting concept.

Skimming . . .

Continue ? (Y or N) Yes.

Continue ? (Y or N) Yes.
Input Structure: EACH-ONE-GREATER.226

NIL

Continue ? (Y or N) Yes.
EACH-ONE-GREATER.226 is not a very interesting concept.

Skimming . . .

Continue ? (Y or N) No.
Done.
LISP-PROGRAMMING
Command:

;The following would be the result of the rough comparison.
;It creates the expectation-failure knowledge structure.
Command: (compare 'NEWLY-LEARNED-ADD1NUMS-DEFUN.2280
                  'RECURSIVE-ADD1NUMS-DEFUN.1110
                  'goal.524)

MENTALLY-INITIATES.1632

;Pretty print it two levels deep.
Command: (f.pprint 'mentally-initiates.1632 2)

Frame MENTALLY-INITIATES.1632 has the following value:

(INITIATES
   (DOMAIN NOT-EQUAL-RELATION.1633)
   (CO-DOMAIN EXPECTATION-FAILURE.1634)
)

Frame NOT-EQUAL-RELATION.1633 has the following value:
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(RELATION
   (DOMAIN NEWLY-LEARNED-ADD1NUMS-DEFUN.228)
   (CO-DOMAIN RECURSIVE-ADD1NUMS-DEFUN.1110)
)

Frame EXPECTATION-FAILURE.1634 has the following value:

(COMMISSION-ERROR
   (INITIATES- NOT-EQUAL-RELATION.1633)
   (EXPECTED-OUTCOME RECURSIVE-ADD1NUMS-DEFUN.1110)
   (ACTUAL-OUTCOME NEWLY-LEARNED-ADD1NUMS-DEFUN.228)
)

NIL

;The following would represent the fine level comparison
;from the reflect on error strategy. Note that it actually
;localizes the specific difference that caused the failure:
;The subject did not make a recursive call to the add1nums function.
Command: (f.unify 'NEWLY-LEARNED-ADD1NUMS-DEFUN.228
                  'RECURSIVE-ADD1NUMS-DEFUN.1110)

Unification fails.

Attempt to merge LIST-OP.501 and RECURSIVE-ADD1NUMS-DEFUN.1121

  along path (BODY SCENES ACTION-CLAUSES OLD-LIST)

  during unify call on NEWLY-LEARNED-ADD1NUMS-DEFUN.228
                      and RECURSIVE-ADD1NUMS-DEFUN.1110.

Do you wish to BREAK ? (Y or N) No.
NIL
(LIST-OP.501 RECURSIVE-ADD1NUMS-DEFUN.1121)
(BODY SCENES ACTION-CLAUSES OLD-LIST)

Command:

;The following is a trace of goals in the priority queue.
Goal Queue  --> (GOAL.245)
Next Goal   --> GOAL.245

Frame GOAL.245 has the following value:

(MENTAL-STATE
   (GOAL-ACTOR PERSON.0)
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   (GOAL-OBJECT WANTS.244)
   (GOAL-TYPE ACHIEVEMENT-GOAL.0)
   (PRIORITY SIX.0)
   (ACHIEVED FALSE.0)
   (DOMAIN PERSON.0)
   (CO-DOMAIN WANTS.244)
   (SUPERGOAL NIL.0)
   (GOAL-VALUE AMOUNT-VALUE.256)
   (BACKPTR PLAN.257)
   (MXP TRACE-META-XP.258)
)

Goal-State  --> PERSON.0 WANTS EACH-ONE-GRE
ATER.241
-------------------------------------------

Goal Queue  --> (GOAL.319 GOAL.245)
Next Goal   --> GOAL.319

Frame GOAL.319 has the following value:

(MENTAL-STATE
   (GOAL-ACTOR PERSON.0)
   (GOAL-OBJECT ID.318)
   (GOAL-TYPE ACHIEVEMENT-GOAL.320)
   (PRIORITY SEVEN.0)
   (ACHIEVED FALSE.0)
   (DOMAIN PERSON.0)
   (CO-DOMAIN ID.318)
   (SUPERGOAL NIL.0)
   (GOAL-VALUE AMOUNT-VALUE.332)
   (BACKPTR PLAN.333)
   (MXP TRACE-META-XP.334)
)

Goal-State  --> PERSON.0 ID EACH-ONE-GREATE
R.241
-------------------------------------------

Goal Queue  --> (GOAL.402 GOAL.319
                 GOAL.245)
Next Goal   --> GOAL.402

Frame GOAL.402 has the following value:

(MENTAL-STATE
   (GOAL-ACTOR PERSON.0)
   (GOAL-OBJECT GENERATE.401)
   (GOAL-TYPE ACHIEVEMENT-GOAL.403)
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   (PRIORITY SEVEN.0)
   (ACHIEVED FALSE.0)
   (DOMAIN PERSON.0)
   (CO-DOMAIN GENERATE.401)
   (SUPERGOAL GOAL.319)
   (GOAL-VALUE AMOUNT-VALUE.415)
   (BACKPTR PLAN.416)
   (MXP TRACE-META-XP.417)
)

Goal-State  --> PERSON.0 GENERATE EACH-ONE-
GREATER.241
-------------------------------------------

Goal Queue  --> (GOAL.524 GOAL.402
                 GOAL.319 GOAL.245)
Next Goal   --> GOAL.524

Frame GOAL.524 has the following value:

(MENTAL-STATE
   (GOAL-ACTOR PERSON.0)
   (GOAL-OBJECT TEST.523)
   (GOAL-TYPE ACHIEVEMENT-GOAL.525)
   (PRIORITY SEVEN.0)
   (ACHIEVED FALSE.0)
   (DOMAIN PERSON.0)
   (CO-DOMAIN TEST.523)
   (SUPERGOAL GOAL.402)
   (GOAL-VALUE AMOUNT-VALUE.537)
   (BACKPTR PLAN.538)
   (MXP TRACE-META-XP.539)
)

Goal-State  --> PERSON.0 TEST RECURSIVE-PRO
GRAMMING-PLAN.462
-------------------------------------------

Goal Queue  --> (GOAL.582 GOAL.524
                 GOAL.402 GOAL.319
                 GOAL.245)
Next Goal   --> GOAL.582

Frame GOAL.582 has the following value:

(MENTAL-STATE
   (GOAL-ACTOR PERSON.0)
   (GOAL-OBJECT UNDERSTANDS.581)
   (GOAL-TYPE KNOWLEDGE-ACQUISITION-GOAL.58
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3)
   (PRIORITY SEVEN.0)
   (ACHIEVED FALSE.0)
   (DOMAIN PERSON.0)
   (CO-DOMAIN UNDERSTANDS.581)
   (SUPERGOAL NIL.0)
   (GOAL-VALUE AMOUNT-VALUE.595)
   (BACKPTR RECURSIVE-PROGRAMMING-PLAN.462)
   (MXP NIL.0)
)

Goal-State  --> PERSON.0 UNDERSTANDS WRITE-
DEFUN.229
-------------------------------------------

Goal Queue  --> (GOAL.658 GOAL.582
                 GOAL.524 GOAL.402
                 GOAL.319 GOAL.245)
Next Goal   --> GOAL.658

Frame GOAL.658 has the following value:

(MENTAL-STATE
   (GOAL-ACTOR PERSON.0)
   (GOAL-OBJECT ID.657)
   (GOAL-TYPE KNOWLEDGE-ACQUISITION-GOAL.65
9)
   (PRIORITY SEVEN.0)
   (ACHIEVED FALSE.0)
   (DOMAIN PERSON.0)
   (CO-DOMAIN ID.657)
   (SUPERGOAL GOAL.582)
   (GOAL-VALUE AMOUNT-VALUE.671)
   (BACKPTR PLAN.672)
   (MXP TRACE-META-XP.673)
)

Goal-State  --> PERSON.0 ID WRITE-DEFUN.229
-------------------------------------------

Goal Queue  --> (GOAL.524 GOAL.402
                 GOAL.319 GOAL.245)
Next Goal   --> GOAL.524

Frame GOAL.524 has the following value:

(MENTAL-STATE
   (GOAL-ACTOR PERSON.0)
   (GOAL-OBJECT TEST.523)



366
   (GOAL-TYPE ACHIEVEMENT-GOAL.525)
   (PRIORITY SEVEN.0)
   (ACHIEVED FALSE.0)
   (DOMAIN PERSON.0)
   (CO-DOMAIN TEST.523)
   (SUPERGOAL GOAL.402)
   (GOAL-VALUE AMOUNT-VALUE.537)
   (BACKPTR PLAN.538)
   (MXP TRACE-META-XP.539)
)

Goal-State  --> PERSON.0 TEST RECURSIVE-PRO
GRAMMING-PLAN.462
-------------------------------------------

Goal Queue  --> (GOAL.759 GOAL.524
                 GOAL.402 GOAL.319
                 GOAL.245)
Next Goal   --> GOAL.759

Frame GOAL.759 has the following value:

(MENTAL-STATE
   (GOAL-ACTOR PERSON.0)
   (GOAL-OBJECT UNDERSTANDS.758)
   (GOAL-TYPE KNOWLEDGE-ACQUISITION-GOAL.76
0)
   (PRIORITY SEVEN.0)
   (ACHIEVED FALSE.0)
   (DOMAIN PERSON.0)
   (CO-DOMAIN UNDERSTANDS.758)
   (SUPERGOAL NIL.0)
   (GOAL-VALUE AMOUNT-VALUE.772)
   (BACKPTR RECURSIVE-PROGRAMMING-PLAN.462)
   (MXP NIL.0)
)

Goal-State  --> PERSON.0 UNDERSTANDS WRITE-
NAME.230
-------------------------------------------

Goal Queue  --> (GOAL.834 GOAL.759
                 GOAL.524 GOAL.402
                 GOAL.319 GOAL.245)
Next Goal   --> GOAL.834

Frame GOAL.834 has the following value:

(MENTAL-STATE
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   (GOAL-ACTOR PERSON.0)
   (GOAL-OBJECT ID.833)
   (GOAL-TYPE KNOWLEDGE-ACQUISITION-GOAL.83
5)
   (PRIORITY SEVEN.0)
   (ACHIEVED FALSE.0)
   (DOMAIN PERSON.0)
   (CO-DOMAIN ID.833)
   (SUPERGOAL GOAL.759)
   (GOAL-VALUE AMOUNT-VALUE.847)
   (BACKPTR PLAN.848)
   (MXP TRACE-META-XP.849)
)

Goal-State  --> PERSON.0 ID WRITE-NAME.230
-------------------------------------------

Goal Queue  --> (GOAL.524 GOAL.402
                 GOAL.319 GOAL.245)
Next Goal   --> GOAL.524

Frame GOAL.524 has the following value:

(MENTAL-STATE
   (GOAL-ACTOR PERSON.0)
   (GOAL-OBJECT TEST.523)
   (GOAL-TYPE ACHIEVEMENT-GOAL.525)
   (PRIORITY SEVEN.0)
   (ACHIEVED FALSE.0)
   (DOMAIN PERSON.0)
   (CO-DOMAIN TEST.523)
   (SUPERGOAL GOAL.402)
   (GOAL-VALUE AMOUNT-VALUE.537)
   (BACKPTR PLAN.538)
   (MXP TRACE-META-XP.539)
)

Goal-State  --> PERSON.0 TEST RECURSIVE-PRO
GRAMMING-PLAN.462
-------------------------------------------

Goal Queue  --> (GOAL.935 GOAL.524
                 GOAL.402 GOAL.319
                 GOAL.245)
Next Goal   --> GOAL.935

Frame GOAL.935 has the following value:

(MENTAL-STATE



368
   (GOAL-ACTOR PERSON.0)
   (GOAL-OBJECT UNDERSTANDS.934)
   (GOAL-TYPE KNOWLEDGE-ACQUISITION-GOAL.93
6)
   (PRIORITY SEVEN.0)
   (ACHIEVED FALSE.0)
   (DOMAIN PERSON.0)
   (CO-DOMAIN UNDERSTANDS.934)
   (SUPERGOAL NIL.0)
   (GOAL-VALUE AMOUNT-VALUE.948)
   (BACKPTR RECURSIVE-PROGRAMMING-PLAN.462)
   (MXP NIL.0)
)

Goal-State  --> PERSON.0 UNDERSTANDS ADD-PA
RAMETERS.231
-------------------------------------------

Goal Queue  --> (GOAL.1010 GOAL.935
                 GOAL.524 GOAL.402
                 GOAL.319 GOAL.245)
Next Goal   --> GOAL.1010

Frame GOAL.1010 has the following value:

(MENTAL-STATE
   (GOAL-ACTOR PERSON.0)
   (GOAL-OBJECT ID.1009)
   (GOAL-TYPE KNOWLEDGE-ACQUISITION-GOAL.10
11)
   (PRIORITY SEVEN.0)
   (ACHIEVED FALSE.0)
   (DOMAIN PERSON.0)
   (CO-DOMAIN ID.1009)
   (SUPERGOAL GOAL.935)
   (GOAL-VALUE AMOUNT-VALUE.1023)
   (BACKPTR PLAN.1024)
   (MXP TRACE-META-XP.1025)
)

Goal-State  --> PERSON.0 ID ADD-PARAMETERS.
231
-------------------------------------------

Goal Queue  --> (GOAL.524 GOAL.402
                 GOAL.319 GOAL.245)
Next Goal   --> GOAL.524

Frame GOAL.524 has the following value:
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(MENTAL-STATE
   (GOAL-ACTOR PERSON.0)
   (GOAL-OBJECT TEST.523)
   (GOAL-TYPE ACHIEVEMENT-GOAL.525)
   (PRIORITY SEVEN.0)
   (ACHIEVED FALSE.0)
   (DOMAIN PERSON.0)
   (CO-DOMAIN TEST.523)
   (SUPERGOAL GOAL.402)
   (GOAL-VALUE AMOUNT-VALUE.537)
   (BACKPTR PLAN.538)
   (MXP TRACE-META-XP.539)
)

Goal-State  --> PERSON.0 TEST RECURSIVE-PRO
GRAMMING-PLAN.462
-------------------------------------------

Goal Queue  --> (GOAL.1124 GOAL.524
                 GOAL.402 GOAL.319
                 GOAL.245)
Next Goal   --> GOAL.1124

Frame GOAL.1124 has the following value:

(MENTAL-STATE
   (GOAL-ACTOR PERSON.0)
   (GOAL-OBJECT UNDERSTANDS.1123)
   (GOAL-TYPE KNOWLEDGE-ACQUISITION-GOAL.11
25)
   (PRIORITY SEVEN.0)
   (ACHIEVED FALSE.0)
   (DOMAIN PERSON.0)
   (CO-DOMAIN UNDERSTANDS.1123)
   (SUPERGOAL NIL.0)
   (GOAL-VALUE AMOUNT-VALUE.1137)
   (BACKPTR RECURSIVE-PROGRAMMING-PLAN.462)
   (MXP NIL.0)
)

Goal-State  --> PERSON.0 UNDERSTANDS WRITE-
BODY.232
-------------------------------------------

Goal Queue  --> (GOAL.1200 GOAL.1124
                 GOAL.524 GOAL.402
                 GOAL.319 GOAL.245)
Next Goal   --> GOAL.1200
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Frame GOAL.1200 has the following value:

(MENTAL-STATE
   (GOAL-ACTOR PERSON.0)
   (GOAL-OBJECT ID.1199)
   (GOAL-TYPE KNOWLEDGE-ACQUISITION-GOAL.12
01)
   (PRIORITY SEVEN.0)
   (ACHIEVED FALSE.0)
   (DOMAIN PERSON.0)
   (CO-DOMAIN ID.1199)
   (SUPERGOAL GOAL.1124)
   (GOAL-VALUE AMOUNT-VALUE.1213)
   (BACKPTR PLAN.1214)
   (MXP TRACE-META-XP.1215)
)

Goal-State  --> PERSON.0 ID WRITE-BODY.232
-------------------------------------------

Goal Queue  --> (GOAL.524 GOAL.402
                 GOAL.319 GOAL.245)
Next Goal   --> GOAL.524

Frame GOAL.524 has the following value:

(MENTAL-STATE
   (GOAL-ACTOR PERSON.0)
   (GOAL-OBJECT TEST.523)
   (GOAL-TYPE ACHIEVEMENT-GOAL.525)
   (PRIORITY SEVEN.0)
   (ACHIEVED FALSE.0)
   (DOMAIN PERSON.0)
   (CO-DOMAIN TEST.523)
   (SUPERGOAL GOAL.402)
   (GOAL-VALUE AMOUNT-VALUE.537)
   (BACKPTR PLAN.538)
   (MXP TRACE-META-XP.539)
)

Goal-State  --> PERSON.0 TEST RECURSIVE-PRO
GRAMMING-PLAN.462
-------------------------------------------

Goal Queue  --> (GOAL.1302 GOAL.524
                 GOAL.402 GOAL.319
                 GOAL.245)
Next Goal   --> GOAL.1302
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Frame GOAL.1302 has the following value:

(MENTAL-STATE
   (GOAL-ACTOR PERSON.0)
   (GOAL-OBJECT UNDERSTANDS.1301)
   (GOAL-TYPE KNOWLEDGE-ACQUISITION-GOAL.13
03)
   (PRIORITY SEVEN.0)
   (ACHIEVED FALSE.0)
   (DOMAIN PERSON.0)
   (CO-DOMAIN UNDERSTANDS.1301)
   (SUPERGOAL NIL.0)
   (GOAL-VALUE AMOUNT-VALUE.1315)
   (BACKPTR RECURSIVE-PROGRAMMING-PLAN.462)
   (MXP NIL.0)
)

Goal-State  --> PERSON.0 UNDERSTANDS EACH-O
NE-GREATER.226
-------------------------------------------

Goal Queue  --> (GOAL.1376 GOAL.1302
                 GOAL.524 GOAL.402
                 GOAL.319 GOAL.245)
Next Goal   --> GOAL.1376

Frame GOAL.1376 has the following value:

(MENTAL-STATE
   (GOAL-ACTOR PERSON.0)
   (GOAL-OBJECT ID.1375)
   (GOAL-TYPE KNOWLEDGE-ACQUISITION-GOAL.13
77)
   (PRIORITY SEVEN.0)
   (ACHIEVED FALSE.0)
   (DOMAIN PERSON.0)
   (CO-DOMAIN ID.1375)
   (SUPERGOAL GOAL.1302)
   (GOAL-VALUE AMOUNT-VALUE.1389)
   (BACKPTR PLAN.1390)
   (MXP TRACE-META-XP.1391)
)

Goal-State  --> PERSON.0 ID EACH-ONE-GREATE
R.226
-------------------------------------------

Goal Queue  --> (GOAL.524 GOAL.402
                 GOAL.319 GOAL.245)
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Next Goal   --> GOAL.524

Frame GOAL.524 has the following value:

(MENTAL-STATE
   (GOAL-ACTOR PERSON.0)
   (GOAL-OBJECT TEST.523)
   (GOAL-TYPE ACHIEVEMENT-GOAL.525)
   (PRIORITY SEVEN.0)
   (ACHIEVED FALSE.0)
   (DOMAIN PERSON.0)
   (CO-DOMAIN TEST.523)
   (SUPERGOAL GOAL.402)
   (GOAL-VALUE AMOUNT-VALUE.537)
   (BACKPTR PLAN.538)
   (MXP TRACE-META-XP.539)
)

Goal-State  --> PERSON.0 TEST RECURSIVE-PRO
GRAMMING-PLAN.462
-------------------------------------------

Goal Queue  --> (GOAL.1479 GOAL.524
                 GOAL.402 GOAL.319
                 GOAL.245)
Next Goal   --> GOAL.1479

Frame GOAL.1479 has the following value:

(MENTAL-STATE
   (GOAL-ACTOR PERSON.0)
   (GOAL-OBJECT UNDERSTANDS.1478)
   (GOAL-TYPE KNOWLEDGE-ACQUISITION-GOAL.14
80)
   (PRIORITY SEVEN.0)
   (ACHIEVED FALSE.0)
   (DOMAIN PERSON.0)
   (CO-DOMAIN UNDERSTANDS.1478)
   (SUPERGOAL NIL.0)
   (GOAL-VALUE AMOUNT-VALUE.1492)
   (BACKPTR RECURSIVE-PROGRAMMING-PLAN.462)
   (MXP NIL.0)
)

Goal-State  --> PERSON.0 UNDERSTANDS EACH-O
NE-GREATER.226
-------------------------------------------

Goal Queue  --> (GOAL.1553 GOAL.1479
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                 GOAL.524 GOAL.402
                 GOAL.319 GOAL.245)
Next Goal   --> GOAL.1553

Frame GOAL.1553 has the following value:

(MENTAL-STATE
   (GOAL-ACTOR PERSON.0)
   (GOAL-OBJECT ID.1552)
   (GOAL-TYPE KNOWLEDGE-ACQUISITION-GOAL.15
54)
   (PRIORITY SEVEN.0)
   (ACHIEVED FALSE.0)
   (DOMAIN PERSON.0)
   (CO-DOMAIN ID.1552)
   (SUPERGOAL GOAL.1479)
   (GOAL-VALUE AMOUNT-VALUE.1566)
   (BACKPTR PLAN.1567)
   (MXP TRACE-META-XP.1568)
)

Goal-State  --> PERSON.0 ID EACH-ONE-GREATE
R.226
-------------------------------------------

Goal Queue  --> (GOAL.524 GOAL.402
                 GOAL.319 GOAL.245)
Next Goal   --> GOAL.524

Frame GOAL.524 has the following value:

(MENTAL-STATE
   (GOAL-ACTOR PERSON.0)
   (GOAL-OBJECT TEST.523)
   (GOAL-TYPE ACHIEVEMENT-GOAL.525)
   (PRIORITY SEVEN.0)
   (ACHIEVED FALSE.0)
   (DOMAIN PERSON.0)
   (CO-DOMAIN TEST.523)
   (SUPERGOAL GOAL.402)
   (GOAL-VALUE AMOUNT-VALUE.537)
   (BACKPTR PLAN.538)
   (MXP TRACE-META-XP.539)
)

Goal-State  --> PERSON.0 TEST RECURSIVE-PRO
GRAMMING-PLAN.462
-------------------------------------------
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WORLD MODEL
-> WRITE-DEFUN.229
-> WRITE-NAME.230
-> ADD-PARAMETERS.231
-> WRITE-BODY.232
-> NEWLY-LEARNED-ADD1NUMS-DEFUN.228
-> RECURSIVE-ADD1NUMS-DEFUN.1110
-> EACH-ONE-GREATER.226

REASONING MODEL
-> TRACE-META-XP.258
-> TRACE-META-XP.539
-> NIL.0
-> NIL.0
-> NIL.0
-> NIL.0
-> NIL.0
-> NIL.0

Print IMXP ? (Y or N) No.

Command: (f.pprint 'goal.524)

Frame GOAL.524 has the following value:

(MENTAL-STATE
   (GOAL-ACTOR PERSON.0)
   (GOAL-OBJECT TEST.523)
   (GOAL-TYPE ACHIEVEMENT-GOAL.525)
   (PRIORITY SEVEN.0)
   (ACHIEVED FALSE.0)
   (DOMAIN PERSON.0)
   (CO-DOMAIN TEST.523)
   (SUPERGOAL GOAL.402)
   (GOAL-VALUE AMOUNT-VALUE.537)
   (BACKPTR PLAN.538)
   (MXP TRACE-META-XP.539)
)

NIL
Command:
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