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Abstract We develop a factoring (partitioning) algorithm for enumerating near-
minimum-weight s-t cuts in directed and undirected graphs, with appli-
cation to network interdiction. “Near-minimum” means within a factor
of 1+ of the minimum for some ≥ 0. The algorithm requires only
polynomial work per cut enumerated provided that is sufficiently (not
trivially) small, or G has special structure, e.g., G is a complete graph.
Computational results demonstrate good empirical efficiency even for
large values of and for general graph topologies.
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Introduction

Researchers have studied various classes of cuts in graphs and devised
efficient algorithms for enumerating these cuts. This paper addresses
a particular class of cuts that has not received the same attention as
others, specifically, near-minimum-weight minimal s-t cuts. We develop,
implement and test an algorithm to enumerate these cuts in directed or
undirected graphs.
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We focus on directed graphs G = (V,E), with positive integer edge
weights and two special vertices, a source s and a sink t. An s-t cut C
is a minimal set of edges whose removal breaks all directed s-t paths; if
removal of C breaks all paths but C is non-minimal, it is a non-minimal
s-t cut. Non-minimal s-t cuts do not interest us in this paper, except in
the way that they interfere with our identification of minimal s-t cuts.
All cuts discussed are minimal s-t cuts unless otherwise specified; note
that a minimum-weight cut must be minimal because all edge weights
are positive.
The problem of finding an s-t cut of minimum weight among all

possible s-t cuts in G is the minimum s-t cut problem (MCP). This
paper studies two extensions of MCP, the problem of enumerating all
minimum-weight s-t cuts in G (AMCP) and the problem of enumer-
ating all near-minimum s-t cuts (ANMCP) whose weight is within a
factor of 1 + 6 of the minimum for some 6 ≥ 0. The main contribution
of this paper is an efficient procedure for the latter extension, when 6 is
small, or for certain graph topologies. Even when not provably efficient,
the algorithm shows good empirical efficiency on our test problems. A
cut-enumeration algorithm is “efficient” if the amount of work per cut
enumerated is polynomial in the size of G.
The analogs of AMCP and ANMCP in undirected graphs G can also

be solved using our techniques. An s-t cut C in an undirected graph is
defined just as in a directed graph, the only difference being that the
paths broken by C consist of undirected edges. However, if we make the
standard transformation that replaces each undirected edge in G by two
directed, anti-parallel edges, each with the weight of the original undi-
rected edge, then each s-t cut in the resulting directed graph corresponds
directly to an s-t cut in the original graph. Thus, an efficient technique
to enumerate s-t cuts in directed graphs will efficiently enumerate s-t
cuts in undirected graphs.
Another type of cut can be defined in an undirected graphG. A discon-

necting set (DS) is a minimal set of edges whose deletion disconnects G.
(Often called a “cut,” we use “DS” to avoid confusion.) The problems of
finding and enumerating certain DSs are related to our problems and will
be discussed briefly, so: (a) The problem of finding a minimum-weight
DS is denoted MDSP, (b) the problem of enumerating all minimum-
weight DSs is denoted AMDSP, and (c) the problem of enumerating all
near-minimum-weight DSs is denoted ANMDSP.
In the remainder of this paper, we denote a minimum-weight s-t cut

as C 0 and a near-minimum-weight (minimal) s-t cut as C6. C0(G)
and C6(G) denote the set of minimum and near-minimum cuts in G,
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respectively. We will often substitute “max” and “min” for “maximum”
and “minimum,” respectively.
A military application, namely network interdiction, first brought AN-

MCP to our attention; see Wood (1993) and references therein, Boyle
(1998) and Gibbons (2000). A “network user” attempts to communicate
between vertices s and t in a directed network while an “interdictor,”
using limited resources (aerial sorties, cruise missiles, etc.), tries to in-
terdict (break, destroy) all s-t paths to prevent communication between
s and t. By treating the amount of resource required to interdict an edge
as its weight or capacity, the interdictor can solve a max-flow problem
and identify a min-weight s-t cut, i.e., min-resource s-t cut, to prevent
that communication. It is clear from this application why we are only
interested in minimal s-t cuts.
But, there may be secondary criteria, e.g., collateral damage, risk to

attacking forces, etc., that the interdictor wishes to consider when de-
termining the best interdiction plan. In this case, near-optimal solutions
with respect to the primary criterion can be obtained by solving AN-
MCP; then those solutions can be evaluated against the secondary crite-
ria for suitability. One of those near-optimal “good solutions” might pro-
duce more desirable results than an “optimal solution” obtained by solv-
ing MCP or AMCP (Boyle 1998, Gibbons 2000). Integer-programming
techniques could substitute for this enumeration approach, but the em-
pirical efficiency of our methods bodes well for enumeration. In fact,
the secondary criteria could be incorporated into our recursive cut-
enumeration algorithm to force peremptory backtracking, i.e., to help
trim the “enumeration tree.” This might result in an even more efficient
interdiction algorithm.
Another application of ANMCP arises in assessing the reliability and

connectivity of networks; see Provan and Ball (1983) and Colbourn
(1987).
AMCP and AMDSP have been intensively studied, but ANMCP has

not received the same attention. One brute-force approach for ANMCP
is to enumerate all s-t cuts, i.e., solve AMCP, and then discard the cuts
that do not have near-minimum weight. All s-t cuts can be enumerated
efficiently (Tsukiyama et al. 1980, Abel and Bicker 1982, Karzanov and
Timofeev 1986, Shier and Whited 1986, Ahmad 1990, Sung and Yoo
1992, Prasad et al. 1992, Nahman 1995, Patvardhan et al. 1995, and
Fard and Lee 1999). Unfortunately, this fact cannot lead to an efficient
general approach for AMCP or ANMCP because the number of minimal
s-t cuts in a graph may be exponential in the size of that graph while
the number of minimum and near-minimum cuts may be polynomial.
For instance, if G is a complete directed graph with edge weights of 1,
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the total number of minimal s-t cuts is 2(|V |−2), the number of minimum
cuts is 2 and the number of cuts of the next largest size is 2(|V |− 2).
All minimum s-t cuts can be enumerated efficiently, that is, AMCP

can be solved efficiently. Picard and Queyranne (1980) find a max flow in
a weighted directed graph G, create the corresponding residual graph,
and then demonstrate the one-to-one correspondence of minimum s-
t cuts in G to closures in the residual graph. (A closure is a set of
vertices with no edges directed out of the set.) They go on to present an
algorithm, not necessarily an efficient one, to enumerate these closures
and thus all min cuts. Provan and Ball (1983) use the concept of “s-
directed minimum cuts” to enumerate minimum s-t cuts in both directed
and undirected graphs. However, neither their algorithm nor Picard
and Queyranne’s may be efficient for directed graphs (Provan and Shier
1996). Gusfield and Naor (1993), Provan and Shier (1996) and Curet et
al. (2002) all give efficient algorithms for AMCP based on results from
Picard and Queyranne. Provan and Shier’s work is related to Kanevsky
(1993) who finds all minimum-cardinality “separating vertex sets” as
opposed to separating edge sets.
Ramanathan and Colbourn (1987) enumerate “almost-minimum car-

dinality s-t cuts.” They bound the number of cuts enumerated, and the
complexity of their algorithm, by O(mknk+2), where n = |V |, m = |E|
and where k ≥ 1 is a constant by which the cardinality of an almost-min
cut exceeds the cardinality of a min cut. This algorithm applies only to
undirected graphs and has polynomial complexity only if k is fixed.
Karger and Stein (1996) introduce a randomized algorithm for solv-

ing ANMDSP by repeated applications of edge contraction: Identify an
edge that is probably not part of a near-min-weight DS and merge its
endpoints into a single new vertex such that the new graph still contains
a near-min DS with high probability. With high probability, their algo-
rithm enumerates all DSs whose weight is within a factor α of the mini-
mum in O(n2α log2 n) expected time. They also derive an upper bound
O(n2α) on the number of these DSs. Karger (2000) later improves this
upper bound to O(nu2αJ). Nagamochi et al. (1997) give a deterministic
algorithm for solving ANMDSP based on Karger and Stein’s techniques.
They show that all near-min DSs can be enumerated in O(m2n+n2αm)
time. Unfortunately, it is unlikely that this approach can be extended
to enumeration problems involving s-t cuts (Karger and Stein 1996).
Vazirani and Yannakakis (1992) propose an algorithm for solving AN-

MCP and ANMDSP. Their extended abstract claims that the algorithm
has polynomial complexity, but that claim is based on this unproven
assertion: “Fact: Given a partially specified cut, we can find with one
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max-flow computation a minimum weight s-t cut consistent with it.”
That is, they believe that this problem has polynomial complexity:

P0: Find a min cut C in G = (V,E) containing required edges Ê ⊂ E.
In general, their algorithm will need to find cuts that exclude certain
edges and include others, but it must efficiently solve the special case of
P0, too. In another paper, (Carlyle and Wood 2002), we show P0 to be
an NP-complete problem, so the claim of Vazarani and Yannakakis is
false. This does not prove that their algorithm is inefficient–they may
be able to identify efficiently partially specified cuts that arise within
their algorithm according to some special sequence–but, their proofs
are incorrect.
Boyle’s algorithm (Boyle 1998) for solving constrained network-inter-

diction problems on undirected planar graphs can be modified to enumer-
ate near-minimum cuts, but generalization to the non-planar case seems
unlikely. Gibbons (2000) describes an algorithm for solving ANMCP in
directed or undirected graphs, but that algorithm may enumerate a cut
more than once. Empirically, the running time and number of cuts enu-
merated in his algorithm grow rapidly as the size of graph and 6 increase,
so that algorithm is impractical except for small problems.
There is a connection between the problems of enumerating near-min

s-t cuts in graphs and enumerating extreme points of polytopes (e.g.,
Avis and Fukuda 1996, Bussieck, and Lübbecke 1998), because a mod-
ified dual of the max-flow linear program can be guaranteed to possess
0-1 extreme-point solutions that identify cuts (e.g., Wood 1993). But
the literature on extreme-point enumeration is silent on efficient enumer-
ation of near-optimal extreme points which is analogous to enumerating
near-min minimal and non-minimal cuts. Nor does this literature ad-
dress the enumeration of near-optimal extreme points possessing special
properties, which might be analogous to enumerating near-min minimal
cuts. Further research on extreme-point enumeration may lead to results
applicable to enumerating near-min minimal s-t cuts, but is beyond the
scope of this paper.
The discussion above shows the need for additional work on AN-

MCP, so this paper proposes a new algorithm to solve the problem,
and provides theoretical and empirical results on its efficiency. The al-
gorithm first identifies a min-weight s-t cut C0, and then recursively
partitions (“factors”) the space of possible cuts, possibly including some
non-minimal ones, by forcing inclusion and/or exclusion of edges e ∈ C0
in subsequent cuts.
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1. Preliminaries

Let G = (V,E) be an edge-weighted directed graph with a finite set
of vertices V and a set of ordered pairs of vertices, E ⊆ V × V , called
edges. An undirected graph is defined similarly, except that its edges are
unordered pairs from V × V . We typically use e or (u, v) to denote an
edge e = (u, v), and we let n = |V | and m = |E|. We distinguish two
vertices s and t in V as the source and sink, respectively. Edge weights
are specified by a weight function w : E → Z+\{0}. We denote the
weight of edge e = (u, v) as we or w(u, v) and the vector of edge weights
as w = (we1 , we2 , . . . , wem).
A directed s-t path in G is a sequence of vertices and edges of the

form s, (s, v1), v1, (v1, v2), v2, . . . , vk−1, (vk−1, t), t. A minimal s-t cut in
G is a minimal set of edges C whose removal disconnects s from t in G,
i.e., breaks all directed s-t paths. If C is a proper superset of some s-t
cut, it is a non-minimal s-t cut. When no confusion will result, we use
“s-t cut” and “cut” interchangeably with “minimal s-t cut.” The value
w(C) = e∈C we is the weight of cut C.
A minimum cut C0 is an s-t cut whose weight, w0 = w(C0), is min-

imum among all s-t cuts. All minimum cuts are minimal because edge
weights are positive. A near-minimum minimal cut C6 is a minimal s-t
cut whose weight is at most w̄6 = (1 + 6)w0 for some 6 ≥ 0. C0(G) and
C6(G) denote the set of minimum and near-minimum (minimal) cuts,
respectively.
An s-t flow f in a directed graph G is a function f : E → Z+ where 0 ≤

f(e) ≤ we for all e ∈ E and (u,v)∈E f(u, v) = (v,u)∈E f(v, u) for all
u ∈ V \{s, t}. The value of the flow from s to t is F = (s,u)∈E f(s, u)−
(u,s)∈E f(u, s). In the maximum-flow problem, we wish to find a flow

f∗ that yields a maximum value for F , denoted F ∗.
As a result of the max-flow min-cut theorem and its proof (e.g., Ahuja

et al. 1993, pp. 184-185), we know that w(C0) = F
∗. It is also well known

that, given any maximum flow f∗, we can identify a minimum cut C0 in
O(m) time.
A rooted tree T is a connected, acyclic, undirected graph in which one

node (vertex), called the “root” and denoted by r, is distinguished from
the others. A rooted tree, called an enumeration tree, will describe the
enumeration process used for solving AMCP and ANMCP on a graph
G. To avoid confusion with “vertices” in G, we use the term “node” to
mean a vertex in an enumeration tree. A node i in tree T with root r
is said to be at level (depth) l if the length of the unique path from r
to i is of the form Pi = r, (r, i1), i1, . . . , il−1, (il−1, i), i. Every node along
path Pi, except node i, is an ancestor of i, and if i is ancestor of j, then
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j is a descendant of i. For any path Pi, ik−1 is the parent of ik, and ik
is the child of ik−1.

2. Theoretical Results

This section develops our algorithm for ANMCP through two inter-
mediate stages.

2.1 Basic Algorithm

Algorithm 1 below outlines an approach to solving ANMCP. Some
steps may be difficult to implement, but it illustrates the general ap-
proach our final algorithm will use.

Algorithm A1
DESCRIPTION: A generic partitioning algorithm for enumerating
near-min, minimal s-t cuts.
INPUT: A directed graph G = (V,E), distinct source and sink
vertices s, t ∈ V , edge-weight vector w of positive integers, and
tolerance 6 ≥ 0.
OUTPUT: All minimal s-t cuts C6 such that w(C6) ≤ (1+ 6)w(C0)
where C0 is a min-weight cut of G.
begin
Find a min-weight s-t cut C0 in G;
w̄6 ← u(1 + 6)w(C0)J;
E+ ← Ø; /* set of edges to be included */
E− ← Ø; /* set of edges to be excluded */
EnumerateA1 (G,s,t,w,E+,E−, w̄6);

end

Procedure EnumerateA1 (G,s,t,w,E+,E−,w̄6)
begin
Step A: Let C I be min-weight minimal cut in G such that
E+ ⊆ C I and E− ∩ C I = Ø;

if ( no such cut exists ) return;
if ( w(C I) > w̄6 ) return;
Step B: print( C I );
for ( each edge e ∈ C I\E+ ) begin;
E− ← E− ∪ {e};
EnumerateA1 (G, s, t, w, E+, E−, w̄6);
E− ← E−\{e};
E+ ← E+ ∪ {e};

endfor;
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return;
end.

Algorithm A1 begins by finding an initial min-weight cut C0 and its
weight w(C0). The algorithm then calls the procedure EnumerateA1
which attempts to find a new min cut by processing the edges of the
initial cut such that the edges are forced into (included in) or out of (ex-
cluded from) any new near-min cuts. Suppose that C0 = {e1, e2, . . . , ek}
is the initial minimum cut. Based on this cut, the set of near-min cuts,
C6(G), is partitioned as

C6(G) = [C6(G) ∩ ē1)] ∪ [C6(G) ∩ e1 ∩ ē2)]
∪[C6(G) ∩ e1 ∩ e2 ∩ ē3]
∪ · · · ∪ [C6(G) ∩ e1 ∩ e2 ∩ · · · ∩ ek−1 ∩ ēk]
∪[C6(G) ∩ e1 ∩ · · · ∩ ek], (2.1)

where C6(G) ∩ e1 ∩ e2 ∩ · · · ∩ ek −1 ∩ ēk is shorthand notation for a set
that contains all near-min cuts incorporating e1 through ek −1 but not
ek . The cuts in this partition, except for the unique cut of the last
term which has already been found as C0, are identified by recursively
calling EnumerateA1 with the argument sets E+ and E−, where E+
denotes included edges and E− denotes excluded edges. The procedure
calls itself recursively for every edge of the locally minimum cut that has
not already been forced into that cut at higher level in the enumeration.
(“Local” and “locally” refer to flows and cuts defined on graphs within
the enumeration tree.) The procedure backtracks when it determines
that no acceptable cuts remain below a given node.

Figure 2.1. Sample graph. Numbers represent edge weights.

s t 

e1, 3 

e2, 1 

e3, 2 

e4, 1 

e5, 1 
e7, 2 

e6, 1 

e8, 1 
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To illustrate how this enumeration works, suppose we wish to solve
ANMCP on the graph of Figure 2.1 for 6 = 0.4. The associated enumera-
tion tree (an instance of a rooted tree) for this problem is given in Figure
2.2. The enumeration algorithm first finds a minimum cut {e2, e4, e8}
at the root node (level 0), and then recursively partitions the solution
space via {ē2}, {e2, ē4} and {e2, e4, ē8}. Once an edge of a cut at some
node k has been processed, it will never be processed again at any de-
scendant node of k, because its status as “included” or “excluded” with
respect to the current cut has been fixed at node k. The branches with
{ē2},{e2, ē4} and {e2, e4, ē8} correspond to searches for a new min cut
by processing the edges as described. If a search is successful, it defines
a productive node where a new near-min cut is identified and that cut’s
unprocessed edges are recursively processed. Otherwise, the search leads
to a terminal node, where the algorithm backtracks. The procedure is
correct because it implements inclusion-exclusion (Equation 2.1) in a
straightforward, recursive manner. The actual implementation of the
algorithm could be difficult, and efficiency poor however, because edge
inclusion may be difficult to ensure (although edge exclusion is easy).
This topic is explored further in Section 2.2.
A “relaxed” version of Algorithm A1, denoted “Algorithm A2,” can

be defined by modifying Steps A and B to:

Step A: Let C I be min-weight minimal or non-minimal s-t cut in
G such that E+ ⊆ C I and E− ∩ C I = Ø;
Step B: if ( C I is non-minimal ) print( C I );

Algorithm A2 may waste time working with non-minimal cuts because
it partitions the space consisting of all minimal cuts and possibly some
non-minimal ones, It does solve ANMCP, however, because it prints
only the minimal cuts. Our final implementable algorithm, Algorithm
B, closely mimics Algorithm A2.
Note that Algorithm A2 will not necessarily identify all non-minimal

cuts C I satisfying w(C I) ≤ w̄6, which is good because their identification
wastes computational effort. Consider, for instance, the last term of
equation (2.1), C6(G)∩e1∩· · ·∩ek when C0 = {e1, . . . , ek}. This subset of
the partition includes all non-minimal cuts containing C0 = {e1, . . . , ek}.
However, Algorithm A2 does not partition C6(G)∩ e1 ∩ · · ·∩ ek further,
because any cut it might contain other than C0 is a superset of C0 and
must therefore be non-minimal.

2.2 An Implementable Algorithm

Algorithm B, below, implements a variant of Algorithm A2. We quasi-
exclude an edge e from every cut in a subtree of the enumeration tree
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Figure 2.2. Enumeration tree for the graph of Figure 2 with = 0.4. The enu-
meration scheme is represented from top to bottom and left to right. Each filled-in
node corresponds to a cut whose weight is no larger than w̄ = u(1 + 0.4)w(C0)J =
u(1+0.4)3J = 4. The edges of the cut are listed next to the node. Numbers with bars
over them represent the number of the edge excluded from a cut; numbers without
bars represents edges to be included. Unfilled nodes are terminal nodes where the
algorithm backtracks.

e2e4e8

2 2,4 2,4,8

e2e3e4e1e2e4e5e6e8

e5e7e8
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by simply setting we =∞, represented by a suitably large integer. Ev-
ery near-min cut in G must have a finite weight, so setting we = ∞
effectively eliminates cuts containing e. This means that quasi-exclusion
implements true exclusion. The graph G with edge e quasi-excluded is
denoted G− e.
We quasi-include e = (u, v) by effectively adding two edges to G,

(s, u) and (v, t), both with infinite weights. The graph G with edge e
quasi-included is denoted G+ e. Now, any cut of a graph must contain
at least one edge from every path, so any cut of G+emust contain (s, u),
(u, v) or (v, t), and any finite-weight cut of G+e must contain e = (u, v).
(We can omit (s, u) if u = s, and omit (v, t) if v = t.) In reality, we
implement quasi-inclusion of e = (u, v) by temporarily treating u as
an additional source and v as an additional sink. Unfortunately, quasi-
inclusion can create modified graphs with minimal cuts that correspond
to non-minimal cuts in the original graph G. (See the example below.)
Thus, Algorithm B must screen for non-minimal cuts, just as Algorithm
A2 does.
Figure 2.3 illustrates the quasi-inclusion and -exclusion of edges. G+

E+ − E− denotes G with E+ quasi-included and E− quasi-excluded.
The caption describes an example of how quasi-inclusion of an edge in
the depicted graph can create a modified graph in which a minimal cut
is non-minimal in the original graph G.
Note that Algorithm B calls a subroutine MaxFlow which is assumed

to return a min cut C I in the current graph GI along with the weight of
that cut w(C I), which equals the value of the max flow. Also note that,
in order to keep the notation similar to the earlier algorithms, Algorithm
B repeatedly modifies a copy of the original graph G, rather than recur-
sively modifying and “unmodifying” a single copy of G. The actual Java
implementation of Algorithm B uses the latter, more efficient approach.

Algorithm B
DESCRIPTION: An implementable version of Algorithm A2 to
solve ANMCP;
INPUT:A directed graph G = (V,E), s, t, w, and 6.
OUTPUT: All minimal s-t cuts C6 in G with

w(C6) ≤ (1 + 6)w(C0).
begin
[w0, C0] ← MaxFlow(G, s, t,w);
w̄6 ← u(1 + 6)w0J;
E+ ← Ø; /* set of edges to be included */
E− ← Ø; /* set of edges to be excluded */
EnumerateB(G, s, t,w, E+, E−, w̄6) ;
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Figure 2.3. Quasi-inclusion and -exclusion of an edge from cuts in a graph G. (a)
Edge e4 is quasi-excluded from every cut by setting w4 = ∞. (b) Edge e4 is quasi-
included in every cut by, in effect, adding infinite-weight edges (s, u) and (v, t) to
G. Quasi-inclusion can create difficulties (not indicated explicitly in the figures):
{e1, e2, e8} forms a minimal cut of G + e8 (G with edge e8 quasi-included), but
{e1, e2, e8} is not a minimal cut of G.
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end.

Procedure EnumerateB(G, s, t,w, E+, E−, w̄6)
begin
wI ← w; GI ← G;
for ( each edge e = (u, v) ∈ E−) wI(u, v)←∞;
for ( each edge e = (u, v) ∈ E+ ) begin
add artificial edge (s, u) to GI and let wI(s, u)←∞;
add artificial edge (v, t) to GI and let wI(v, t)←∞;

endfor;
/* GI and wI are now interpreted to include artificial edges */

[wI, C I]← MaxFlow(GI, s, t,wI);
if ( wI > w̄6 ) return;
if ( C I is minimal in G ) print (C I);
for ( each edge e ∈ C I\E+ ) begin
E− ← E− ∪ {e};
EnumerateB(G, s, t,w, E+, E−, w̄6);
E− ← E−\{e} ;
E+ ← E+ ∪ {e};

endfor;
return;

end.

2.3 Correctness of Algorithm B

We assume the correctness of Algorithm A2. Algorithm B begins by
finding a min cut in G and determining w̄6 using a max-flow algorithm,
all in an obviously correct manner. That is, the main routine of Algo-
rithm B correctly implements the main routine of Algorithm A2. Then,
where Algorithm A2 finds a minimal or non-minimal, min-weight cut
that includes edges in E+ and excludes edges in E−, Algorithm B solves
a max-flow problem and finds a min cut C I in G+E+−E−. C I may or
may not be a minimal cut in the original graph G, but its deletion from
G does disconnect s from t in G, because (a) C I ⊆ E because artificial
edges have infinite weight and thus cannot be contained in C I, and (b)
every s-t path in G + E+ − E− is disconnected by deleting C I, and (c)
every path in G is also a path in G+E+−E− by construction; thus, all
paths in G are disconnected by deleting C I from that graph. Algorithm
B is clearly finite and will be correct as long as it correctly partitions
the space of all minimal cuts in G (along with some non-minimal cuts
perhaps).
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The partitioning will be correct if no non-minimal cuts that Algo-
rithm A2 might identify are lost in the calls to EnumerateB and no
non-minimal cuts are repeated. The following two lemmas suffice to
prove this.

Lemma 1 Let C be a finite-weight set of edges in G and let E+ and E−
be quasi-inclusion and quasi-exclusion sets, respectively, produced while
running Algorithm B. Suppose that C ∩ E+ = E+ and C ∩ E− = Ø.
Then C is a minimal cut of G only if C is also a finite-weight minimal
cut of G+ E+ − E−.
Proof : Since C ∩E− = Ø, C has finite weight in G+E+−E−. G+E+
has the same topological structure as G+E+−E−, so we need only be
concerned with the former. Now, C is clearly a cut in G+ E+ because
the fact that C ∩E+ = E+ means that no edges crossing from the s side
of the cut in G to the t side have been added; only edges from the t side
of the cut to t or from s to some vertex on the s side of C could have
been added through quasi-inclusion of E+. So, C is a cut in G+E+, and
it must be minimal because every path in G is also a path in G+E+.

Lemma 2 Let C be a set of edges in G and let E+ and E− be, respec-
tively, quasi-inclusion and quasi-exclusion sets produced while running
Algorithm B. Suppose that C ∩E+ W= E+ or C ∩E− W= Ø. Then, C is a
not a finite-weight minimal cut of G+ E+ − E−.
Proof : We know that quasi-exclusion properly implements edge exclu-
sion. Thus, C cannot be a finite-weight minimal cut of G+E+ −E− if
some edge of C has been excluded, i.e., if C ∩ E− W= Ø. From the dis-
cussion on quasi-inclusion, we know that all finite-weight minimal cuts
of G + E+ must contain E+, i.e., C cannot be a finite-weight minimal
cut of G+ E+ − E− if C ∩ E+ W= E+.
The following theorem results.

Theorem 1 Algorithm B solves ANMCP.

2.4 Complexity of Algorithm B

We show below that Algorithm B has polynomial complexity when G
and/or w satisfy certain conditions. This discussion ignores minimality
testing after the next lemma because it cannot add to Algorithm B’s
worst-case complexity for any problem, assuming that at least O(m)
work must arise at every node of the enumeration tree:

Lemma 3 Testing whether or not a set of edges C in G is a minimal
s-t cut can be accomplished in O(m) time.
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Proof: Assume that C is a minimal or non-minimal cut and mark all
vertices as “unreachable.” Now, perform a breadth-first search starting
at s, trying to reach as many vertices as possible without traversing any
cut edges (u, v) ∈ C. Mark the vertices reached as “reachable from s.”
Conduct a similar search, traversing edges backward from t, marking
the vertices reached as “can reach t.” (If a backward search from t can
reach v, then v can reach t along a directed path.) By definition, C is
minimal if and only if, for all edges (u, v) ∈ C. u is reachable from s
and v can reach t. The amount of work involved in the two searches and
testing the edges in C is clearly O(m).

2.4.1 Complexity Analysis of Min-Cut Enumeration.
We first analyze the complexity of enumerating minimum cuts (6 = 0),
since this is an important special case of near-min cut enumeration. Con-
sider the enumeration tree of Figure 2.2. Every node in that tree is either
productive and defines a new cut (the filled-in nodes), or it is an unpro-
ductive terminal node from which backtracking occurs immediately. In
general, the quasi-inclusion technique can result in unproductive non-
terminal nodes because it can identify a non-minimal cut and be unable
to backtrack immediately. Fortunately, any non-minimal cut encoun-
tered while solving AMCP must correspond to a terminal node and an
efficient procedure results.
We know that the worst-case complexity of solving, “from scratch,”

an initial max-flow problem on G = (V,E ) is O(f(n,m)), where f(n,m)
is a polynomial function of n = |V | and m = |E|. (For instance, the
first polynomial-time algorithm for max flows, a flow-augmenting path
algorithm due to Edmonds and Karp (1972), has worst-case complex-
ity O(nm2); the more modern pre-flow push algorithm due to Goldberg
and Tarjan (1988) has O(nm log(n2/m)) worst-case complexity.) At
each non-root node of the enumeration tree, the local max flow can be
obtained by performing flow augmentations starting with the feasible
flow from the parent node. (A feasible flow f in G must be feasible for
G − E− + E+ because the latter graph is obtained from the former by
increasing the capacity on certain edges, specifically e ∈ E−, and adding
some other edges, specifically e ∈ E+. Neither of these operations re-
duces the capacity on any path in the original graph G.) Each flow
augmentation requires O(m) work using breadth-first search in a stan-
dard fashion, but the total amount of work performed at each node can
be limited to O(m), because (a) if the first search does not find a flow-
augmenting path, a new min cut has been identified (this fact follows
from the standard constructive proof of the max-flow min-cut theorem,
e.g., Ahuja, et al. 1993, pp. 184-185), and (b) if a flow-augmenting path
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is found, the locally maximum flow is at least w0 + 1 and the algorithm
can backtrack immediately. (The algorithm must be modified slightly to
enable this “peremptory backtracking.”) Thus the number of productive
nodes is |C0(G)|.
Now, each non-terminal node can generate at most n child nodes

assuming G has no parallel edges, and thus each productive node can
generate at most n unproductive (terminal) nodes. Therefore, the total
number of nodes generated is bounded by n|C0(G)|. The amount of
work to generate each node except the first is O(m), and the amount of
work to generate the first node is O(f(n,m)) so we have the following
result.

Theorem 2 Algorithm B with 6 = 0 finds all minimum-weight s-t cuts
(solves AMCP) in O(f(n,m) +mn|C0(G)|)) time.
This shows that Algorithm B is theoretically efficient for AMCP since

only a polynomial amount of work is expended for each cut enumerated.
The Algorithm is admittedly less efficient for solving AMCP than are
some other algorithms from the literature: For instance, the algorithm of
Provan and Shier (1996) solves AMCP in O(f(n,m)+(m+n)(|C0(G)|))
time. Nevertheless, our algorithm has several advantages in that (a)
it is easy to implement, (b) its empirical efficiency is quite good (see
Section 3) and, (c) it extends to near-min cut enumeration, i.e., to solving
ANMCP, by simply setting 6 > 0.

2.4.2 Complexity Analysis of Near-Min Cut Enumeration.
The argument of the previous section leads quickly to this corollary:

Corollary 1 If mine∈E we > w(C0)6, then Algorithm B solves ANMCP
in O(nf(n,m)|C0(G)|) time.
Proof: “f(n,m)” is a multiplier on |C0(G)| here because we are unable
to bound the number of flow augmentations required in EnumerateB to
establish a new max flow: We simply resort to the bound implied by
solving each max-flow problem from scratch. As before, the multiplica-
tive factor n will bound the number of terminal nodes emanating from
a productive node.
Just as in Theorem 2, the statement of the Corollary will be true

if Algorithm B can always backtrack when it finds a non-minimal cut,
that is, if every non-minimal cut corresponds to a terminal node. This
is true because any non-minimal cut must have weight at least w(C0) +
mine∈E we > w(C0) + w(C0)6 = w(C0)(1 + 6) = w̄6,

So, Algorithm B is efficient when 6 is sufficiently small. It is also
efficient when G has special topology.
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Theorem 3 Algorithm B solves ANMCP in O(nf(n,m)|C0(G)|) time
whenever G contains an edge of the form (s, u) for each u ∈ V \{s, t}
and an edge of the form (v, t) for each v ∈ V \{s, t}.
Proof: The statement will be true if quasi-inclusion and -exclusion
never change the vertex-to-vertex connectivity of a graph, because then
any minimal cut of G + E+ − E− must be a minimal cut of G. But
quasi-inclusion never changes connectivity irrespective of graph topol-
ogy. Quasi-exclusion for e = (u, v) always adds edges of the form (s, u)
and (v, t), but as specified, G already contains such edges.

Corollary 2 Algorithm B solves ANMCP in O(nf(n,m)|C0(G)|) time
when G is a complete directed graph or complete acyclic graph with s < t
in the acyclic (topological) ordering of the vertices.

Of course, the problem is trivial if s > t.
By the arguments of the preceding section, the number of nodes in

enumeration tree should be bounded by n(|C6(G)| + |CII|), where CII
denotes the set of near-minimum, non-minimal cuts identified as nodes
in Algorithm B’s enumeration tree where immediate backtracking is not
allowed, i.e., the set of unproductive, non-terminal nodes in that tree.
The test for non-minimality takes O(m) time at each node by Lemma

3. The search for a local max flow might require multiple flow aug-
mentations and might be as hard as solving a max-flow problem from
scratch. Therefore, the work expended at every node isO(f(n,m)+m) =
O(f(n,m)).
If we could backtrack whenever a non-minimal cut was identified,

then we could state that CII = Ø and the resulting complexity for
the whole algorithm would be O(nf(n,m)|C6(G)|). But, it is easy to
show by example that backtracking when a non-minimal cut is encoun-
tered can result in the loss of some valid minimal cuts. Thus, Algo-
rithm B must continue partitioning, even on non-minimal cuts, until
it can backtrack based on cut weight. This results in a complexity of
O(nf(n,m)(|C6(G)| + |CII|)), which may not be polynomial if |CII| is
exponentially larger than C6(G). Therefore, the worst-case complexity
of Algorithm B for arbitrary 6 and/or arbitrary graph topology is not
well determined. We leave this complexity issue as a topic for future
research.

3. Computational Results

This section reports on computational experiments with Algorithm
B to demonstrate its empirical efficiency for solving both AMCP and
ANMCP. We test Algorithm B on both weighted and unweighted grid
graphs and on several problem instances from the literature.
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Algorithm B is written and compiled using the Java 1.2.2 program-
ming language (Sun Microsystems 1998). All tests are performed on a
personal computer with a 733 MHz Pentium III processor and 128 MB
of RAM, running under the Windows 98 SE operating system.

3.1 Efficient Implementation of Algorithm B

We have described Algorithm B in a simple form for clarity, but there
are several modifications that improve its performance in practice. As
discussed in Section 2.4.1, the MaxFlow routine of Algorithm B is im-
plemented to solve an “incremental” max-flow problem. Specifically, f∗
in G is a feasible flow in G+E+−E−, so a flow-augmenting path algo-
rithm operating on a graph at some non-root node in the enumeration
tree simply begins with the maximum flow from the parent node, rather
than starting with f = 0. (See Ahuja et al. 1993, pp. 180-184.)
Another issue in an efficient implementation is edge inclusion. In

theory, we quasi-include an edge (u, v) by adding infinite-weight edges
(s, u) and (v, t) to the graph, but in practice we simulate this by simply
treating u as an additional source and v as an additional sink.
Algorithm B also incorporates “peremptory backtracking” from within

theMaxFlow routine. In particular, that routine does not need to solve a
max-flow problem to completion if it augments enough flow to learn that
the local max flow exceeds w̄6, which implies that any locally minimum
cut C I must have w(C I) > w̄6. When this situation occurs, MaxFlow
halts and returns the current feasible flow value F , which causes Enu-
merateB to return immediately.
The rest of the implementation is straightforward. We use forward

and reverse star representation of G as our data structure (Ahuja et
al. 1993, pp. 35-38) and a variant of the shortest flow-augmenting-path
algorithm of Edmonds and Karp (1972) for solving max-flow problems.
(More sophisticated algorithms would speed computations somewhat,
but this algorithm is more than adequate to verify the usefulness of our
methodology.)

3.2 Test Problems

Our literature search has not uncovered any particular problem fam-
ily designed for testing algorithms for AMCP and ANMCP, except for
Grid Graph Families (GGFs) (Curet et al. 2002, Gibbons 2000), which
we will explore. Additionally, we have modified some DIMACS prob-
lems (The Center for Discrete Mathematics and Theoretical Computer
Science, DIMACS 1991) and several problem classes from Levine (1997)
to test Algorithm B.
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We have coded a GGF generator (GGFGEN) in Java to generate grid
graphs. The height H of the grid measured in nodes, and its length L in
nodes, determine the size of the generated graph. One other parameter
is q, which indicates whether the graph is weighted (q = 1) or unweighted
(q = 0). “Unweighted” simply means that all edge weights are 1 or ∞:
For both weighted and unweighted graphs, the edges beginning at s and
ending at t have infinite weights. Every vertex u ∈ V \{s, t} is connected
to each adjacent vertex v (vertically and horizontally, assuming such
adjacent vertices exist) with two directed edges, (u, v) and (v, u). Edge
weights for weighted graphs are pseudo-random, uniformly distributed
integer weights in the range [1,10]. GGFGEN produces a directed graph
with HL + 2 vertices and 4HL − 2L edges. Figure 7 shows a graph
generated by GGFGEN with inputs H = 3, L = 4, q = 0. Table 2.1
specifies the problems instances that are tested.

Figure 2.4. An unweighted, directed grid graph Generated by GGFGEN with inputs
H = 3, L = 4, and q = 0. Edges incident to s and t have infinite weights. Other
weights are all 1. Bi-directional edges between u and v represent two directed edges,
(u,v) and (v,u).
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Table 2.1. Problem groups for GGF. This table shows the GGF input graphs and
parameter settings with which we test Algorithm B. “q = 0” indicates unweighted
graphs, and “q = 1” indicates weighted ones.

Problem Name H L q

GGF-square 5,10,15,20,25, 5,10,15,20,25, 0.0, 0.05 0, 1
30,40,. . ., 90 30,40,. . .,90 .10, .15

GGF-long 25 100,125, . . .,250 0.0 0
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Table 2.2. Problem types for DBLCYCLEGEN and AD. Graphs of type DBLCYC-I
are generated with DBLCYCLEGEN and have n = 500 vertices and 1000 undirected
edges on two interleaved cycles; the undirected edges are converted to m = 2000
directed edges. Graphs of type AD are fully dense, directed acyclic graphs with
n = 50 and m = 1225 unweighted edges.

Problem Name n q

DBLCYC-I (Levine 1997) 500 0.00, 0.10, 1.25, 1.50, 1.75, 2.00 0, 1

AD (DIMACS 1991) 50 0.10, 0.20, . . . , 0.70 0

We have also chosen two other graph generators from the literature,
implemented in the C programming language and available via Internet
for research use. The first is the Double-Cycle Generator (DBLCYCLE-
GEN) (Levine 1997), which generates undirected graphs that we convert
to directed graphs. The single input parameter for DBLCYCLEGEN is
n = |V |. DBLCYCLEGEN generates two interleaved cycles on n ver-
tices: The outer cycle includes all n vertices with edge weights of 1000
and 997, and the inner cycle connects every third vertex of the outer
cycle with the edges of weights 1 or 4. Vertices s and t are chosen to
be as distant from each other as possible. A minimum cut lies in the
middle of the graph with a weight of 2000 and there are many near-min
cuts with weight 2006.
The second generator is the Acyclic Dense (AD) graph generator from

DIMACS (1991). AD takes n as its input parameter and generates a fully
dense, directed acyclic graph with n vertices and m = n(n− 1)/2 edges.
We replace the pseudo-randomly generated edge weights in AD with
unit weights to observe the behavior of our algorithm on the underlying
topological structure. In all cases, s = 1 and t = n in the acyclic
ordering of the vertices. Table 2.2 gives the generated problem types for
DBLCYCLEGEN and AD.

3.3 Experiments on Unweighted Graphs

Table 2.3 presents run times of Algorithm B on GGF instances for
solving AMCP. It takes less than 1 second for Algorithm B to identify
all minimum cuts in grid graphs with up to 402 vertices and 1,560 edges.
The number of calls to MaxFlow–this corresponds to the number of
nodes in the enumeration tree–increases roughly linearly with n.
Table 2.4 summarizes the results for ANMCP on GGF-square in-

stances with 6 = 0.05, 0.10, and 0.15. Solution times are expected to
increase as 6 increases because the number of cuts in any graph might
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Table 2.3. Run times (in CPU seconds) for Algorithm B solving AMCP on un-
weighted instances of GGF-square and GGF-long graphs. GGFH×L denotes a GGF
graph with an H×L grid of vertices. “Non-min’l cuts” denotes the number of non-
minimal cuts encountered at non-terminal nodes of the enumeration tree. As predicted
by Theorem 2, this number is 0 for AMCP. “Calls to MF” indicates the number of
calls to MaxFlow and thus the total number of nodes in the enumeration tree.

Problem Non- Calls Run
Name n m |C0| |C0(G)| min’l to Time

Cuts MF (sec.)

GGF10×10 102 380 10 9 0 92 0.1
GGF20×20 402 1560 20 19 0 382 0.1
GGF30×30 902 3540 30 29 0 872 0.1
GGF40×40 1602 6320 40 39 0 1562 0.2
GGF50×50 2502 9900 50 49 0 2452 0.3
GGF60×60 3602 14280 60 59 0 3542 0.5
GGF70×70 4902 19460 70 69 0 4832 2.1
GGF80×80 6402 25440 80 79 0 6322 5.8

GGF25×100 2502 9800 25 99 0 2477 0.2
GGF25×125 3127 12250 25 124 0 3102 1.2
GGF25×150 3752 14700 25 149 0 3727 3.0
GGF25×175 4377 17150 25 174 0 4352 5.7
GGF25×200 5002 19600 25 199 0 4977 9.0
GGF25×225 5627 22050 25 224 0 5602 13.0
GGF25×250 6252 24500 25 249 0 6227 17.6
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Table 2.4. Computational results for Algorithm B solving ANMCP on instances of
unweighted GGF-square graphs with = 0.05, 0.10, 0.15. |C+| denotes the cardinality
of the largest acceptable cut.

Problem Non- Calls Run
Name n m |C0| |C+| |C (G)| min’l to Time

Cuts MF (sec.)

= 0.05
GGF5×5 27 90 5 5 4 0 22 0.1
GGF10×10 102 380 10 10 9 0 92 0.1
GGF15×15 227 870 15 15 14 0 212 0.1
GGF20×20 402 1560 20 21 703 0 7906 1.5
GGF25×25 627 2450 25 26 1128 0 15506 3.9
GGF30×30 902 3540 30 31 1653 0 26856 12.0

= 0.10
GGF5×5 27 90 5 5 4 0 22 0.1
GGF10×10 102 380 10 11 153 0 956 0.1
GGF15×15 227 870 15 16 378 0 3306 0.5
GGF20×20 402 1560 20 22 13319 0 113090 20.1
GGF25×25 627 2450 25 27 27014 0 274550 74.4
GGF30×30 902 3540 30 33 924723 378 8911698 4535.1

= 0.15
GGF5×5 27 90 5 5 4 0 22 0.1
GGF10×10 102 380 10 11 153 0 956 0.2
GGF15×15 227 870 15 17 5264 0 35905 4.9
GGF20×20 402 1560 20 23 168283 153 1202033 215.3
GGF25×25 627 2450 25 28 431728 253 3621978 973.3
GGF30×30 902 3540 30 34 13465371 21843 113463496 46395.8

be exponential in the size of the graph. The algorithm is quite efficient
for modest-size grid graphs with modest values of 6. Compared with
Gibbons’ results for ANMCP (Gibbons 2000), our results show a vast
reduction in calls to MaxFlow and in run times.
Table 2.5 presents results for an unweighted AD graph. Corollary 2

requires that Algorithm B not generate any unproductive non-terminal
nodes for the AD topology, and results displayed in the table provide
empirical verification of this.

3.4 Experiments on Weighted Graphs

Here we use the GGF-square problems with edge weights being pseudo-
randomly generated integers in the range [1,10]. Results for minimum
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Table 2.5. Computational results on an unweighted, acyclic dense graph(AD) with
various threshold levels . This is a fully dense graph with 50 vertices and 1225 edges.
As predicted by Corollary 2, no non-minimal cuts are generated at non-terminal
nodes, irrespective of .

Non- Calls Run
|C0| |C (G)| min’l to Time

Cuts MF (sec.)

0.00 49 49 0 1275 0.3
0.10 49 544 0 13650 3.1
0.20 49 4063 0 101625 25.7
0.30 49 19798 0 495000 134.9
0.40 49 75893 0 1897375 542.9
0.50 49 249270 0 6231800 1861.6
0.60 49 730603 0 18265125 5544.8
0.70 49 1962849 0 49071275 15126.6

Table 2.6. Computational results for min-cut enumeration (AMCP) on weighted,
GGF-square problems. As in the unweighted case, no non-minimal cuts are encoun-
tered. All min cuts are identified in less than one second for these instances.

Non- Calls Run
Problem Name n m w0 |C0(G)| min’l to Time

Cuts MF (sec.)

GGF5×5w 27 90 17 1 0 7 0.1
GGF10×10w 102 380 42 2 0 92 0.1
GGF15×15w 227 870 45 1 0 19 0.1
GGF20×20w 402 1560 69 1 0 32 0.1
GGF25×25w 627 2450 87 1 0 33 0.1
GGF30×30w 902 3540 108 6 0 217 0.3

and near-minimum cut enumeration are summarized in Tables 2.6 and
Table 2.7, respectively.
Finally, we test Algorithm B on the DBLCYC-I problems with 6 rang-

ing from 0.0 to 2.0. These are the only problems where Algorithm B en-
counters substantial numbers of non-minimal cuts from which immediate
backtracking would be incorrect. At 6 = 1.25, the ratio of the number of
near-min non-minimal cuts (encountered at non-terminal nodes) to the
number of near-min minimal cuts jumps dramatically; see Table 2.8.
In summary, computational results above show that Algorithm B per-

forms quite well on a variety of graph types. However, non-minimal cuts
defining unproductive, non-terminal nodes in the enumeration tree can
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Table 2.7. Computational results for near-minimum cut enumeration (ANMCP) on
weighted GGF-square problems. w0 is the minimum cut weight and w̄ is the weight
of the largest acceptable cut.

Problem Non- Calls Run
Name |V | |E| w0 w̄ |C (G)| min’l to Time

Cuts MF (sec.)

= 0.05
GGF5×5 27 90 5 5 4 0 22 0.1
GGF10×10 102 380 10 10 9 0 92 0.1
GGF15×15 227 870 15 15 14 0 212 0.1
GGF20×20 402 1560 20 21 703 0 7906 1.5
GGF25×25 627 2450 25 26 1128 0 15506 3.9
GGF30×30 902 3540 30 31 1653 0 26856 12.0

= 0.10
GGF5×5 27 90 5 5 22 0 22 0.1
GGF10×10 102 380 10 11 956 0 956 0.1
GGF15×15 227 870 15 16 3306 0 3306 0.5
GGF20×20 402 1560 20 22 113090 0 113090 20.1
GGF25×25 627 2450 25 27 274550 0 274550 74.4
GGF30×30 902 3540 30 33 8911698 378 8911698 ∼4.5k
= 0.15
GGF5×5 27 90 5 5 22 0 22 0.1
GGF10×10 102 380 10 11 956 0 956 0.2
GGF15×15 227 870 15 17 35905 0 35905 4.9
GGF20×20 402 1560 20 23 1202033 153 1202033 215.3
GGF25×25 627 2450 25 28 3621978 253 3621978 973.3
GGF30×30 902 3540 30 34 13465371 21843 113463496 ∼46k

Table 2.8. Computational results for near-min cut enumeration (ANMCP) on
weighted DBLCYC-I problems with n = 500 (and m = 2000). The number of
non-minimal cuts encountered at non-terminal nodes increases substantially when
becomes sufficiently large.

Non- Calls Run
w0 w̄ |C0(G)| min’l to Time

Cuts MF (sec.)

0.00 1000 1000 2 0 10 0.1
0.10 1000 1100 499 0 1976 0.5
1.00 1000 2000 511 8 2032 0.6
1.25 1000 2250 2479 237411 957178 207.8
1.50 1000 2500 2479 237411 957178 208.7
1.75 1000 2750 2479 237411 957178 207.4
2.00 1000 3000 2509 238041 959683 213.4
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slow computations when the threshold parameter 6 becomes large, at
least for certain graph topologies. For dense acyclic graphs, the behav-
ior of Algorithm B verifies Corollary 2: No non-minimal cuts are en-
countered at non-terminal nodes. However, for the double-cycle graphs
DBLCYC-I, the number of non-minimal cuts generated can outnumber
the minimal cuts by a large margin, at least when 6 becomes large.

4. Conclusions and Recommendations

In this paper, we have developed an algorithm for ANMCP, defined as
the problem of enumerating all near-minimum-weight, minimal s-t cuts
C6 in a directed graph G = (V,E) with positive integer edge weights
we ∀ e ∈ E. The users specifies a value 6 ≥ 0, and the algorithm finds
all minimal s-t cuts C6 such that w(C6) ≤ (1 + 6)w(C0), where w(C)
denotes the weight of cut C, and C0 is a min-weight cut. The algorithm
first finds a min-weight cut C0 in the input graph via a maximum-flow
algorithm, and then recursively partitions the space of near-min cuts.
Given a cut C, this partitioning is carried out by forcing inclusion and
exclusion of edges from subsequent cuts. An edge (u, v) is quasi-excluded
by simply setting its weight to infinity and quasi-included by implicitly
introducing two infinite-weight edges in G, one extending from s to u
and the other from v to t. The algorithm solves a max-flow min-cut
problem for each modified graph that is obtained in the enumeration
tree.
We have implemented our algorithm using the following enhancements

to improve computational speed: (a) The algorithm solves a complete
max-flow problem at the root node of enumeration tree but solves only
“incremental” max-flow problems at the all other nodes (the max flow at
a parent node is feasible for all child nodes and thus provides an advanced
start for maximizing flows at those child nodes), and (b) quasi-inclusion
of an edge (u, v) is simulated by treating u as an additional source and
v as an additional sink, and (c) the algorithm backtracks directly from
the max-flow subroutine, without identifying a locally minimum cut, if
a feasible flow is found that exceeds the backtrack threshold. (That flow
is a lower bound on the weight of the min cut.)
Unfortunately, the quasi-inclusion technique can lead to the enu-

meration of non-minimal cuts at non-terminal nodes of the enumera-
tion tree. Non-minimal cuts are easily identified (and ignored), but
they can increase the computational workload and stop us from deriv-
ing a polynomial-time bound for the worst-case complexity of the gen-
eral algorithm: The algorithm cannot always backtrack when it finds
a non-minimal cut. We do obtain, however, a polynomial bound of
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O(f(n,m)+nm|C6(G)|) when mine∈E we > w(C0)6; here C6(G) denotes
the set of near-min cuts and O(f(n,m)) is the worst-case complexity of
the max-flow algorithm being used. Thus, the algorithm has polyno-
mial complexity, per cut enumerated, for the important special case of
ANMCP when 6 = 0, i.e., AMCP: Enumerate all min-weight s-t cuts in
G. We also determine the polynomial bound of O(nf(n,m)|C6(G)|) for
certain graph topologies such as complete graphs and complete acyclic
graphs.
Computational results for 6 > 0 show that Algorithm B has good

empirical efficiency as long as 6 is not too large. Unfortunately, large
6 can lead to the identification of many non-minimal cuts where the
algorithm cannot immediately backtrack. Thus, many “unproductive”
non-terminal nodes can be encountered in the enumeration tree, and it
is only these nodes that stop us from proving polynomial complexity.
To improve the algorithm, one might try to improve the quasi-inclusion

technique or develop a completely different technique for edge inclusion.
For instance, we have not tried simply setting to 0 the capacity of an arc
to be included. If “true edge inclusion” (as opposed to quasi-inclusion)
can be efficiently implemented, this should yield a provably polynomial-
time algorithm for near-min cut enumeration. However, it can be proven
that the problem of finding a min cut that includes a specific set of edges
is actually NP-complete.
If the current quasi-inclusion technique is retained, another approach

might be used to avoid enumerating non-minimal cuts. In particular,
edges that cannot occur in any minimal cut given those that are already
included might be identified and marked as “forbidden for inclusion.”
These edges would be excluded, as usual, by setting their weights to
infinity. An edge (u, v) can be forbidden from inclusion if (a) every s-u
or v-t path contains at least one included edge, or (b) some included
edge (uI, vI) must contain (u, v) in every s-uI path or in every vI-t path.
This list is not all-inclusive, however.
Another practical improvement might result from this: The algorithm

can backtrack whenever the set of quasi-included edges forms a cut in
the original graph.
Computation times on some large graphs would be improved by solv-

ing the initial maximum-flow problem using a more efficient algorithm,
e.g., Goldberg and Rao (1998). It may also be possible to show that the
worst-case complexity of the algorithm is actually better than reported
by amortizing the work involved in augmenting flows over the course of
running the algorithm.
We have shown that Algorithm B will not enumerate any non-minimal

cuts if every vertex v ∈ V \{s, t} has incident edges (s, v) and (v, t). It
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would be interesting to determine if the algorithm will enumerate only
minimal cuts for other graph topologies, too. For instance, using the
dual of a planar graph and shortest-path techniques, it is possible to
enumerate near-min cuts in an undirected s-t planar graph in polynomial
time per cut. Thus, it is natural to wonder if Algorithm B can too.
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