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A Modified Baum–Welch Algorithm for Hidden
Markov Models with Multiple Observation Spaces

Paul M. Baggenstoss, Member, IEEE

Abstract—In this paper, we derive an algorithm similar to the
well-known Baum–Welch algorithm for estimating the parameters
of a hidden Markov model (HMM). The new algorithm allows the
observation PDF of each state to be defined and estimated using a
different feature set. We show that estimating parameters in this
manner is equivalent to maximizing the likelihood function for the
standard parameterization of the HMM defined on the input data
space. The processor becomes optimal if the state-dependent fea-
ture sets are sufficient statistics to distinguish each state individu-
ally from a common state.

Index Terms—Baum–Welch algorithm, class-specific, EM
algorithm, expectation-maximization, Gaussian mixtures, hidden
Markov model (HMM), parameter estimation, sufficient statistics.

I. INTRODUCTION

T HE class-specific method was recently developed as a
method of dimensionality reduction in classification [1],

[2]. Unlike other methods of dimension reduction, it is based
on sufficient statistics and results in notheoretical loss of
performance. Performance is always lost going from theory
to practice due to (1) loss of information when reducing data
to features, and (2) approximation of the theoretical feature
PDFs. There is always a tradeoff between the desire to retain
as much information as possible (by increasing the feature
dimension) and the desire to obtain better PDF estimates (by
decreasing the dimension). The class-specific method obtains a
better compromise by allowing more information to be kept for
a given maximum feature dimension. It does this by assigning
a separate feature set to each class. Now we extend the idea
further to the problem of HMM modeling when each state of
the HMM may have its own approximate sufficient statistic.

II. M ATHEMATICAL RESULTS

We show in this section that the class-specific HMM is
merely a different way to parameterize the likelihood function
of the conventional HMM. Let be the likelihood
function defined for the input data . A special class-spe-
cific likelihood function, is defined using the
class-specific (state-specific) statistics. It is shown below that
maximizing over is equivalent to maximizing

over with special constraints. While it is not nec-
essary for to be sufficient for this to be true, the processor
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constructed from class-specific sufficient statistics will be
optimal, provided there is no PDF estimation error.

A. Standard Parameterization and Notation

We consider a set of state occurrences where
. The sequence is a realization of the Markov

chain with state priors and state
transition matrix . Rather than observing the states

directly, we observe the stochastic outputs
which are realizations from a set of state PDFs

where is the condition that state is true. We assume the
observations are independent, thus

The complete set of parameters defining the HMM are

where , . The likelihood function
is the joint density of the observation sequence given the model
parameters and is written (see [3, Eq. 17])

(1)

where is a summation over all possible state sequences of
length . The maximum likelihood (ML) estimate of is de-
fined as

(2)

We use notation similar to Rabiner [3] with the exception that
we represent state PDFs as , and observations as. In the
paper, functions beginning with the letters “” and “ ,” always
denote PDFs. The letter “” is reserved for components of mix-
ture PDFs and “” is used for all other PDFs. The exception is
any function carrying the superscript “” which is not a PDF.
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B. Class-Specific Parameterization

Define

where

The complete class-specific parameterization is written

where are identical to the corresponding compo-
nents of , and have the same constraints. The state-dependent
PDFs are modeled as Gaussian mixture densities

(3)

where and are the joint Gaussian
densities

and is the dimension of . The relationship between and
will be established shortly.
1) Noise-Only Condition : To apply the class-specific

method in its simplest form [see note following (11)], we need
to define a condition that iscommonto all states. One way
to do this is to let represent the “noise-only” condition. For
example, assume the PDF ofin each state is dependent on a
“signal amplitude” parameter . Under , the PDF of is
marginalized over the distribution of , thus

Let there exist a common noise-only condition defined by

We assume are independent under . Thus,

(4)

One further requirement is that

for all (5)

where is the allowable range of . Note that this requirement
is met if is Gaussian.

While this structure does not seem to fit many problems of
interest, any problem can be modified to include an amplitude
parameter even if the amplitude parameter is never zero in prac-
tice. Furthermore, the noise-only condition can have an arbi-
trarily small assumed variance becauseis only a theoretical
tool and does not need to approximate any realistic situation.
We will explain how the choice of , affects the choice of the
state-dependent statistics.

2) Sufficiency of and Relationship to : We will show
that if meets a special sufficiency requirement, the class-spe-
cific method becomes optimum. To understand the implications
of the sufficiency of , we must consider a conventional fea-
ture-based approach in which a common feature set replaces the
raw data. Let and define the HMM
based on the state-dependent distributions

. This is the conventional HMM approach which has been
very successful [3]. An example of is a set of cepstrum-de-
rived features. For optimality of the resulting processor,must
be a sufficient statistic for the classification of thestates. One
way to express the sufficiency requirement is through the like-
lihood ratios, which are invariant when written as a function of
a sufficient statistic [4], [5]. More precicely

(6)

Clearly, must contain all information necessary to distinguish
any two states. This can be a very difficult requirement to meet
in practice because a significant amount of information can be
lost when reducing the data to features. In practice, the tradeoff
consists of the contradictory goals of makingas close tosuf-
ficient as possible (by making larger), while at the same time
making the PDF estimation problem as tractable as possible (by
making smaller).

For optimality of the class-specific method, however, we re-
quire that be a sufficient statistic for the binary
hypothesis test between and . Specifically, if is suffi-
cient, we have

(7)

Clearly, must containall information which helps distin-
guish from . In contrast to the conventional method which
places all information in , the class-specific method distributes
the information among the class-specific statistics. For a fixed
feature set dimension, more information is allowed.

Clearly, the selection of affects the selection of the feature
transformations . For optimality to hold, no information
which can help distinguish from can be discarded. An
example is background noise. If contains background noise
inconsistent with , then should contain information about
the background noise. To reduce the complexity of the feature
sets, it may be necessary to whiten and normalize the data in
such a way that the background noise resembles. On the
other hand, it may be acceptable to discard the information and
suffer a slight performance loss. This is especially true a high
signal-to-noise ratio (SNR).
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3) Class-Specific Likelihood Function:Define the class-
specific likelihood function as

(8)

The maximum likelihood (ML) estimate of is defined as

(9)

The objective is to derive an algorithm to solve (2) by solving
(9).

4) Relationship to the Standard Parameterization and Opti-
mality: It is not clear yet that (8) is related to (1), however in
fact we can solve (2) by solving (9). To demonstrate this, we
need to convert any class-specific parameter setinto a valid
conventional parameter set. This requires that the PDF param-
eters can be converted into PDFs defined
on . For this, we need Theorems 1 and 2.

To introduce the theorems, we define a feature set .
Because is many-to-one, there is no way to reconstruct the
PDF of unambiguously given the PDF of. However, Theo-
rems 1 and 2 show that given an arbitrary PDF , and ar-
bitrary feature transformation , it is possible to construct
a PDF such that when is drawn from , the distri-
bution of will be . We will also mention other desirable
properties that can be attributed to .

Theorem 1: Let the PDF be defined on and let
for all . Let the r.v. be related to by

the many-to-one feature transformation where
is any measurable function of. Let be the image of under
transformation . Let be the PDF of when is
drawn from the PDF . Thus, for all

. Let be any PDF defined on . Then the function
defined by

(10)

is a PDF defined on .
Proof:

The equivalence of the expected values in lines one and two
is an application of the change of variables theorem [6]. For
example, let be any function defined on . If ,
then E E . This can be seen when the
expected values are written as the limiting form of the sample
mean of a size- sample set as , i.e., Theorem 2.

Theorem 2: Let be drawn from the distribution as
defined in (10). Then if , the PDF of is .

Proof: Let be the joint moment generating func-
tion (MGF) of . By definition,

from which we may conclude that the PDF ofis .
The PDF has the following properties.

1) Let be some arbitrary hypothesis with PDF defined on
. Then, when is a sufficient statistic for the binary

test of versus , then as , we have
.

2) Let be a point in . Then

for all such that

Thus, has the property that all pointssuch that
areequally distinguishablefrom .

3) Although Theorems 1 and 2 do not impose any suffi-
ciency requirements on, it results that are sufficient
statistics for the constructed PDF. More precicely,is an
exact sufficient statistic for the binary hypothesis test of

versus .
We now show that we can solve (2) by solving (9). Sup-

pose that given , one constructed a standard parameterization
, written , by constructing the PDFs

for (11)

Note that, in general, the reference hypothesis can be a func-
tion of , written . For simplicity, we have chosen to use a
common reference . That are indeed
PDFs can be seen from Theorem 1. Furthermore, from Theorem
2, it may be seen that these densities are such that they induce
the densities on . Next, from (1), (4), (8), and (11),
we see that

(12)

Therefore, if we define , we have

Thus, we can claim that maximizes over all which
satisfy for some . Furthermore, when the class-
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specific statistics are sufficient, (7) holds and it follows from
(7), (11) that if , then

. Thus, one is able to construct the true HMM parame-
ters from the class-specifc parameter estimates. Furthermore,

and the class-specific classifier becomes the optimal
Neyman–Pearson classifier for comparing competing HMM
hypotheses.

C. Class-Specific Baum–Welch Algorithm

An iterative algorithm for solving (2) based on the EM
method, and due to Baum [7] is available. Formulas for
updating the parameters at each iteration are called the
reestimation formulas [3]. The derivation by Juang [8] is well
known for the case when are Gaussian mixtures. We need
to modify the derivation of Juang to solve (9). We may write

(13)

where

(14)

This may then be rewritten as (see Juang [8, Eqs. 8–11])

(15)

where and

(16)

We wish to maximize the function over . To this
end, we seek an algorithm that given a parameter value, we
can always find a new such that .

1) Auxiliary Function:
Theorem 3: Define

(17)
If , then .

Proof: is strictly concave for . Hence, see (18),
shown at the bottom of the page.

The inequality is strict unless
. Note that this proof differs in no mean-

ingful way from Baum’s [7] or Juang’s [8]. One important
difference is that is not a PDF. But the proof
relies on Jenssen’s inequality which is based on expected values
using the probability measure ,
which is a discrete PDF due to (15).

2) Reestimation Algorithm:The problem now is to solve for

(19)

We have

(20)

We then may follow the proof of Juang, provided the necessary
requirements of are met. Notice that de-
pends on only through the multivariate Gaussian density, the
data may be considered fixed. Thus, meets the
necessary log-concavity and elliptical symmetry requirements
necessary for the reestimation formulas that follow. We can pro-
ceed in the proof of Juang, until it is necessary to differentiate

with respect to . At that point, the additional terms
in (14), not dependent on , do not affect the solution of the

(18)
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maximization; we only need to let take the place of . The
resulting algorithm is provided below.

3) Class-Specific Forward Procedure:The joint probability
(1) may be calculated with theforward procedure[3], [8] by
recursively computing the quantities

Similarly, the class-specific likelihood function (8) may be cal-
culated recursively by recursively computing the quantities

1) Initialization:

(21)

2) Induction:

(22)

3) Termination:

(23)

4) Class-Specific Backward Procedure:The backward pa-
rameters are similarly defined.

1) Initialization:

(24)

2) Induction:

(25)

5) HMM Reestimation Formulas:Define as
. We have

(26)

Let [see (27), shown at the bottom of the page]. The updated
state priors are

(28)

The updated state transition matrix is

(29)

Keep in mind that , , , and will be identical to
those estimated by the conventional approach if (7) is true or if

.
6) Gaussian Mixture Reestimation Formulas:Let

(30)

(31)

(32)

and

(33)

III. A PPLYING THE METHOD

Since truly sufficient statistics can never be found in practice,
the practitioner must be satisfied with approximate sufficiency.
Partially sufficiency of the features poses no theoretical prob-
lems because the class-specific Baum–Welch algorithm maxi-
mizes the true likelihood function without requiring sufficiency,
albeit subject to the constraint that the state PDFs are of the form
(11). As theory guides the practice, the sufficiency of the form
(6) which is required for the optimality of the standard approach
tells practitioners to look for features which discriminate be-
tween the states. In contrast, the sufficiency (7) required for the
optimality of the class-specific approach tells practitioners to
look for features which discriminate states from and whose
exact PDF can be derived under .

Approximations of may also be used as long
as these approximations are valid in the tails. Tail behavior is
important because as samples diverge from, the denomina-
tors in (8) approach zero. Approximations with accurate tail be-
havior are available for a wide range of important feature sets
in signal processing including autocorrelation and cepstrum es-
timates [9].

A. Example

The following conceptual example illustrates the selection
of class-specific features. Consider a Markov process in which
there are three states characterized by

• : a low-order autoregressive process (such as a whistle)
of unknown variance;

• : a pure tone of unknown frequency, amplitude, and
phase in additive Gaussian noise of unknown variance;

• : a positive-valued impulse of duration 1 sample in ad-
ditive Gaussian noise of unknown variance.

(27)
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Let be independent zero-mean Gaussian noise of variance 1.
At each time step, a length- time-series
is generated according to the state in effect.

1) Feature Selection:Desirable features are those that are
approximately sufficient to distinguish the given hypothesis
from and have a distribution known under . Consider the
following feature sets.

• : We use a second-order set of autocorrelation estimates

• : Let be the length- FFT of .
We use the index and squared value of the largest FFT bin
( ), and the average power

• : We use the time index and value of the largest input
sample ( ), and the average power

These feature sets are approximately sufficient to discriminate
the corresponding state from , while being low in dimension.

2) Feature Dependence on : Notice that is included in
each feature set because the variance for each state is unknown,
while it is fixed under . Thus, the variance estimate has infor-
mation that can discriminate against . If had an unknown
variance, itself would be irrelevant in distinguishing the input
data from and could be discarded, however, it would be nec-
essary to first normalize the other features.

3) Obtaining Exact PDF under : For each of feature sets
shown above, the exact joint PDF of the statistics can be derived
under the assumption.

• : For , it is necessary to use a specific autocorrelation
function (ACF) estimator whose distribution is known.
The PDF of the FFT-method ACF estimates is known ex-
actly [10], [11] and approximations are available with ac-
curate tail behavior for other ACF estimators [9].

• : The FFT bins are Gaussian, independent, and identi-
cally distributed under . However, notice that is not
statistically independent of . The statistic

however, is independent of when is specified.
Thus, if

we have

(34)
Each term in (34) has a known PDF. Notice that except
for a scale factor, the first term in (34) is distributed

(exponential), and the second is , and the last
term is a uniform distribution. It is then possible to obtain

from the pair . The PDF of is then easily
found by a change of variables.

• : We obtain in essentially the same manner
as , however the time dimension takes the place
of the frequency index and is Gaussian.

IV. CONCLUSION

In this paper, we have demonstrated that it is possible to pa-
rameterize a HMM using different features for each state. This
parameterization requires that the exact densities of the state-de-
pendent feature sets be known for some fixed “common” hy-
pothesis and that these densities are nonzero for the allow-
able range of the random variables. The method can lead to
an optimal classifier if these feature sets are sufficient statistics
for discrimination of the corresponding state from the common
state . In practice, this means that more information can be
extracted from the raw data for a given maximum PDF dimen-
sion. In principle, the reference hypothesis does not need to be
common and can be a function of the state; however, we have
not explored this possibility in this paper.
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