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A Modified Baum—-Welch Algorithm for Hidden
Markov Models with Multiple Observation Spaces

Paul M. Baggenstosslember, IEEE

Abstract—In this paper, we derive an algorithm similar to the constructed from class-specific sufficient statistics will be

well-known Baum—-Welch algorithm for estimating the parameters  gptimal, provided there is no PDF estimation error.
of a hidden Markov model (HMM). The new algorithm allows the

observation PDF of each state to be defined and estimated using a . .
different feature set. We show that estimating parameters in this A. Standard Parameterization and Notation
manner is equivalent to maximizing the likelihood function for the We consider a set of state occurrenges {a1...qr} where

standard parameterization of the HMM defined on the input data ) o
space. The processor becomes optimal if the state-dependent fea-1 < ¢ < N.The sequencé is a realization of the Markov

ture sets are sufficient statistics to distinguish each state individu- chain with state priorgr;,j = 1,2... N} and N x N state
ally from a common state. transition matrix4 = {a;; }. Rather than observing the states
Index Terms—Baum-Welch algorithm, class-specific, EM directly, we observe the stochastic outpKf&A {x1,%X2...%X1}

algorithm, expectation-maximization, Gaussian mixtures, hidden \yhich are realizations from a set of state PDFs
Markov model (HMM), parameter estimation, sufficient statistics.

A .
pi(x)=px|H;), j=1,2...N
I. INTRODUCTION

HE class-specific method was recently developed as" ere H; is the condition that statg is true. We assume the
servations are independent, thus

method of dimensionality reduction in classification [1],0
[2]. Unlike other methods of dimension reduction, it is based
on sufficient statistics and results in rtheoretical loss of
performance. Performance is always lost going from theory
to practice due to (1) loss of information when reducing data
to features, and (2) approximation of the theoretical featurde complete set of parameters defining the HMM are
PDFs. There is always a tradeoff between the desire to retain
as much information as possible (by increasing the feature \ 2 b {ass b A O]
dimension) and the desire to obtain better PDF estimates (by 3 5P
decreasing the <.j|men3|on).lThe clasg—specm(; method Obtamv%/r?erez{\il S— Z{\Ll a,; = 1. The likelihood function
better compromise by allowing more information to be kept for = ; J= : .
. : . . : 1S the joint density of the observation sequence given the model
a given maximum feature dimension. It does this by assignin ; .
parameters and is written (see [3, Eqg. 17])
a separate feature set to each class. Now we extend the g%
further to the problem of HMM modeling when each state of

A
the HMM may have its own approximate sufficient statistic. L(X;}) = p(X;A) =Y p(x,6;0)
0

p(X18) = [ [ pa. (x0)-

Il. MATHEMATICAL RESULTS

We show in this section that the class-specific HMM is
merely a different way to parameterize the likelihood function 1)
of the conventional HMM. LetL(X;\) be the likelihood
function defined for the input datX. A special class-spe-
cific likelihood function, L*(Z;\*) is defined using the
class-specific (state-specific) statisti€slt is shown below that
maximizing L*(Z; A\*) over A* is equivalent to maximizing
L(X;A) over A with special constraints. While it is not nec-
essary forZ to be sufficient for this to be true, the processor

T
= Z Tq1Pqy (X153 A) H Oq,_1q:Pq. (Xt; A)
0 =2

where} g is a summation over all possible state sequences of
length’I". The maximum likelihood (ML) estimate of is de-
fined as

T A
A= arg max L(X; A). (2)

. . . _ We use notation similar to Rabiner [3] with the exception that
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B. Class-Specific Parameterization While this structure does not seem to fit many problems of
Define interest, any problem can be modified to include an amplitude
parameter even if the amplitude parameter is never zero in prac-
7 A (Zro- 2x ol 211 2na], - [Bog . Zn 2]} tice'. Furthermore, the noi;e-only conditiﬁf@ can have an a}rbi—
’ ’ ’ ’ ’ ’ trarily small assumed variance becaufgis only a theoretical
where tool and does not need to approximate any realistic situation.

We will explain how the choice offy, affects the choice of the
state-dependent statistics.

2) Sufficiency oz and Relationship tdH,: We will show
that if Z meets a special sufficiency requirement, the class-spe-
cific method becomes optimum. To understand the implications

A i i i of the sufficiency ofZ, we must consider a conventional fea-
X = [{msd e (e (UG ()] ture-based approach in which a common feature set replaces the
) ) ] raw data. Let{z, = T'(x;), 1 < ¢ < T’} and define the HMM

where {r;},{a;;} are identical to the corresponding COMPOR4sed on the state-dependent distributipgz), 1 < j <

nents ofA, and have the samg con;traints. Thg .state-dependmt_ This is the conventional HMM approach which has been
PDFs are modeled as Gaussian mixture densities very successful [3]. An example afis a set of cepstrum-de-
M rived features. For optimality of the resulting procesaanust
pj(zj; A7) 2 Z cjk/\/(zj, W Ufk) (3) beasufficient statistic f(.)r.the classification of tivestates. Ong
k=1 way to express the sufficiency requirement is through the like-
lihood ratios, which are invariant when written as a function of
where}’,; ¢5;, = 1 andN(z;, p*, U?) are the joint Gaussian a sufficient statistic [4], [5]. More precicely
densities
p(x|H;) _ p(z|H;)

o A D JBree - L 1<j k<N, j#k (6
Nz U7 2(20) D2 U712 p(xHy) = play) S i#k 0

Zj,téTj(Xt)a j=1...N, t=1...T.

The complete class-specific parameterization is written

X exp {—%(zj — ) (U H(z; - ;f)} Clearly,z must contain all information necessary to distinguish
any two states. This can be a very difficult requirement to meet
andP; is the dimension of,. The relationship betweexr and in practice beca_use a significant amount of info_rmation can be
\ will be established shortly. lost when reducing the data to features. In practice, the tradeoff
1) Noise-Only ConditionH,: To apply the class-specific c_o_nsists of the_ contradicto_ry goals of ma_kimgts close t(su_f-

method in its simplest form [see note following (11)], we neefcientas possible (by making larger), while at the same time
to define a conditiorH, that iscommorto all states. One way making the PDF estimation problem as tractable as possible (by
to do this is to letH, represent the “noise-only” condition. Formakingz smaller).
example, assume the PDF»fin each state is dependent on a For optimality of the class-specific method, however, we re-

“signal amplitude” parametes;. Under H;, the PDF ofx is quire thatz; = T;(x) be a sufficient statistic for the binary

marginalized over the distribution @f, thus hypothesis test betwedti; and H,. Specifically, ifz; is suffi-
cient, we have
p(x|H;) = L_p(XIpJ,Hj)p(plej)v 1<j<N. p(xH;) _ p(zilHy) j < N. )
’ p(x|Ho)  p(z;|Ho)’ T

Let there exist a common noise-only conditiflg defined by Clearly, z; must containall information which helps distin-

guishH; from Hy. In contrast to the conventional method which

p(x|Ho) =p(x|p1 = 0, H1) = p(x|p> = 0, H2) places all information iz, the class-specific method distributes

= =p(xlpy =0,Hy). the information among the class-specific statistics. For a fixed
feature set dimension, more information is allowed.
We assumex, are independent undéf,. Thus, Clearly, the selection dff, affects the selection of the feature
r transformationsZ;( ). For optimality to hold, no information
o which can help distinguist; from H, can be discarded. An
p(X|Ho) = tl;[lp(xtlHo)- “) example is background noise.Af; contains background noise
inconsistent withHy, thenz; should contain information about
One further requirement is that the background noise. To reduce the complexity of the feature
sets, it may be necessary to whiten and normalize the data in
p(x|Hy) >0, forall xed& (5) such a way that the background noise resemilgsOn the

other hand, it may be acceptable to discard the information and
wherelX’ is the allowable range of;. Note that this requirement suffer a slight performance loss. This is especially true a high
is met if p(x|Hp) is Gaussian. signal-to-noise ratio (SNR).
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3) Class-Specific Likelihood FunctiorDefine the class- Theorem 2:Let x be drawn from the distributiorf, (x) as

specific likelihood function as defined in (10). Then itk = T(x), the PDF ofz is f.(z).
A P (2, 13 V) Proof: Let M.(y) be the joint moment generating func-
LA (Z; ) =2 7y, %} tion (MGF) of z. By definition,
( ) zo: q |: P(Zq1,1|H0) ( ) y ,
A%) M.(y) =E.{e"*}
05, (Zq, 4 - "T(x)
X H |:a’1t 19t ’I(Z . |tH ) :| (8) _Em{ey }
e :/ 100 L) ()i
The maximum likelihood (ML) estimate of* is defined as xEX p=(T'(x)|Ho)
G2 e (7 )\ _ T _J((x)
The objective is to derive an algorithm to solve (2) by solving _E { vz J2(2) }
- ZlHO €
(). p-(z|Ho)
4) Relationship to the Standard Parameterization and Opti- [ vz f=(2) Hod
mality: It is not clear yet that (8) is related to (1), however in —/ZCZ p—Z(Z|H0)pZ(Z| 0)dz

fact we can solve (2) by solving (9). To demonstrate this, we ,

need to convert any class-specific parameteisento a valid =/ e *f.(z)dz

conventional parameter setThis requires that the PDF param- “ez

eters[{u7,. }, {U%.}, {c, }] can be converted into PDFs definedrom which we may conclude that the PDFIs f. (z).

on &. For this, we need Theorems 1 and 2. The PDFf.(x) has the following properties.

To introduce the theorems, we define a featurezset7'(x). 1) LetH; be some arbitrary hypothesis with PDF defined on
Becausd(x) is many-to-one, there is no way to reconstructthe &' Then, wherf’(x) is a sufficient statistic for the binary
PDF ofx unambiguously given the PDF af However, Theo- test of H, versusHy, then asf.(z) — p(z|H1), we have
rems 1 and 2 show that given an arbitrary PPRFz), and ar- fo(x) — p(x[Hy).
bitrary feature transformatio®(x), it is possible to construct ~ 2) Letz* be a pointinZ. Then
a PDFf,(x) such that whex is drawn fromf,(x), the distri- fo(x) £.(z%)

bution ofz will be .(z). We will also mention other desirable " iy = -0 17703 for all x such thafl’(x) = z".
properties that can be attributed fo(x). )

Theorem 1: Let the PDFp,,(x|Hy) be defined ont and let Thus, f.(x) has the property that all points such that
po(x|Ho) > 0 forall z € X. Let the r.v.z be related tax by T(x) = =" areequally distinguishablérom Hy. _
the many-to-one feature transformatime= 7'(x) where'(x) 3) Although Theorems 1 and 2 do not impose any suffi-
is any measurable function &f Let Z be the image oft’ under ciency requirements o, it results thatz are sufficient

transformatiorl’(x). Let p.(z|Ho) be the PDF o whenx is statistics for the constructed PDF. More precicelis an
drawn from the PDFp,(x|Ho). Thus,p.(z|Hy) > 0 for all exact sufficient statistic for the binary hypothesis test of
z € Z. Let f.(z) be any PDF defined of. Then the function fa(x) versusp,(xHo). _
defined by We now show that we can solve (2) by solving (9). Sup-
I pose that given\*, one constructed a standard parameterization
fx(x) = %Jg (T(x)) (10) A* — A, written A = G()\*), by constructing the PDFs
Pz X 0
S L x|H 3 3
is a PDF defined ot pixs GO 2 | 2O L3y,
oot p(L;(x)|Ho)
’ forl1 <5 < N. (12)
(X[ H (T . .
/ %JQ(T(X)) =E. 1, {%} Note that, in general, the reference hypothesis can be a func-
A = tion of 7, written Hy ;. For simplicity, we have chosen to use a
xcx P 0 P 0 f Ho,.F ! have ch
=E. 1z, {ﬂ common referencél, ; = Hy. Thatp;(x; G(A\*)) are indeed
p-(z|Ho) PDFs can be seen from Theorem 1. Furthermore, from Theorem

|
:/ f:(2) p.(z|Ho)dz 2, it may be seen that these densities are such that they induce
ez Po(z[Ho) =0 the densitieg?(z;; \) onz,. Next, from (1), (4), (8), and (11),
we see that

LX; G(A%))

LB = = Xy

12)

The equivalence of the expected values in lines one and tﬁz . LS A Lt
is an application of the change of variables theorem [6]. F Flerefore, if we defin? = G()*), we have

example, leti(z) be any function defined of. If z = T'(x), N = arg max L(X; G(X¥)).

then E{h(z)} = E.{h(T(x))}. This can be seen when the i

expected values are written as the limiting form of the sampléus, we can claim that maximizesL(X; A) over allA which
mean of a sizd{ sample set a& — oo, i.e., Theorem 2. satisfy A = G(\*) for some)\*. Furthermore, when the class-
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specific statistics are sufficient, (7) holds and it follows from 1) Auxiliary Function:

(7), (11) that ifp?(z;; A*) — p(z;]H;), thenp;(x; G(V*)) —

p(x|H,). Thus, one is able to construct the true HMM parame-
ters from the class-specifc parameter estimates. Furthermore,

P(X|Ho)
and the class-specific classifier

becomes the optimal

Theorem 3: Define

2 yvay A * z * Z
QN XY 233" p*(2,0, K; X)) log p*(Z,0, K; \).

9 K
17

If QO A*) > Q(A%, A7), thenL*(Z; \*') > L*(Z; \*).
Proof: log z is strictly concave fox > 0. Hence, see (18),

Neyman—Pearson classifier for comparing competing HM®10Wn at the bottom of the page.

hypotheses.

C. Class-Specific Baum—Welch Algorithm

An iterative algorithm for solving (2) based on the E

method, and due to Baum [7] is available. Formulas

updating the parameters at each iteration are called the
reestimation formulas [3]. The derivation by Juang [8] is well’
known for the case whem; (x) are Gaussian mixtures. We need
to modify the derivation of Juang to solve (9). We may write

M
LZ(Z;)\Z) :ZW(II [Z C;lkb217k(qu7l;)\z)‘|
0 k=1

<11

t=2

M
[GQt—IQt Z C;tkb;t,k(z(h,t; AZ)] (13)
k=1

where

A N(Zjallrfkank)
p(z;|Ho)

This may then be rewritten as (see Juang [8, Egs. 8-11])

(255 XY) (14)

LH(Z; ) =Y p*(Z,0,K;\) (15)
0 K
where) g 2 2214:1 Zﬁfﬂ T Z;:i:l and
p*(zv 07 K; )‘Z) é7r(11 b:;l,kl (Z(Il,l; )‘Z) C;I,kl
T
X H Agqy 1qs bzt,kt (Z(If,t; )‘Z)c;,kt -
= (16)

We wish to maximize the functioh*(Z; A*) over A\*. To this
end, we seek an algorithm that given a parameter vatueve
can always find a new* such thatL*(Z; \*') > L*(Z; \*).

The inequality is strict unlessp*(Z,0,K; *)
p*(Z,0,.K; ) *). Note that this proof differs in no mean-
ingful way from Baum’s [7] or Juang’s [8]. One important

Npifference is thap*(Z, ©,K; )\*) is not a PDF. But the proof
fc;relies on Jenssen’s inequality which is based on expected values
using the probability measure*(Z,@,K;\*)/L*(Z; \*),
hich is a discrete PDF due to (15).

2) Reestimation AlgorithmThe problem now is to solve for

max QO A, (29)
We have

Q()\Z,)\Z/)

p* (2,0, K|\*) logp*(Z,0, K; \*)

K
§ : * z

|:7r(I1 bql,kl (Z(Il:l)c(Il:kl
K

2
0

b3
0

T
+ z
X H a/(]t—l(hbqt,kt (Z(Ityt)cqt,kt:|
t=2
T
! !
’ {logu41+§ :IOg a(lt—l(lt

t=2
T T
+) log byl 1 (7g,1)+Y _log cg;kt}. (20)
t=1 t=1

We then may follow the proof of Juang, provided the necessary
requirements ob}, (x; A*) are met. Notice thal}, (z;; A*) de-
pends om* only through the multivariate Gaussian density, the
dataz; may be considered fixed. Thus;, (z;; A*) meets the
necessary log-concavity and elliptical symmetry requirements
necessary for the reestimation formulas that follow. We can pro-
ceed in the proof of Juang, until it is necessary to differentiate
b (253 A7) with respect to\*. Atthat point, the additional terms

in (14), not dependent o&®, do not affect the solution of the

LA(Z; X*)
L(Z; \*)

(555

[

—

]
02

(x

al\d

p*(Z7 67 K; AZ/)
LA(Z; \*)

BV N—

p*(Z,0,K;\*) .

i
h
~~
N
L~ A
|
—
)
—~
S
. W
>
W
~—
[
)
—~
>
bS
>
bS
=
v
e}

Zp*(Z,Q,K;X‘) “(Z,0,K; \*)
< LAZx) p(Z2,6,K; ¥
p*(Z,0,K; \)
p*(Z,0,K; \*)

(18)
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maximization; we only need to let; , take the place ak,. The
resulting algorithm is provided below.

3) Class-Specific Forward Procedurethe joint probability
(1) may be calculated with thiorward procedurg3], [8] by
recursively computing the quantities

(i) 2

p(xl X, = i§)\)-

Similarly, the class-specific likelihood function (8) may be cal-

culated recursively by recursively computing the quantities

Oéc('l,) é p(xl Xt G = 7’7 )‘Z)
t p(X1...x¢|Ho)
1) Initialization:
. P; (2,15 A%) .
of(iy =m—~+t—""—2-  1<i<N. 21
i) p(zi,1|Ho) 1)
2) Induction:
Pi(Z50415 A7)
Oé Oé —_—
1l [Z ' ] P(zj.e41]Ho) '
1<t<T—1, 1<j<N. (22)
3) Termination:
N
e oy LG GO®)
LAZX) = = Ry Z (23)

4) Class-Specific Backward Procedur@he backward pa-
rameterss; (¢) are similarly defined.
1) Initialization:

(i) = (24)
2) Induction:
N
. P5 (251415 27)
Be(i) =
t() Jzz:l J p(ZJt+1|H0) t+1( )
t=T-1,T-2,...1
1<i<N. (25)

5) HMM Reestimation FormulasDefine +;(j) asp(g:
J|IX). We have

() = _CEWDBEG) 26
= SN ) .

MODELS 415

Keep in mind thaty.(5), £:(¢, 1), ©;, anda,; will be identical to
those estimated by the conventional approach if (7) is true or if

A= GO#).
6) Gaussian Mixture Reestimation Formulaket
e/ A . cfrnN(Zj,t?p’fnm Ujrn)
7,m) =v:(7 - , 30
v (G, m) Sn(d) P;(Zj.:A°) (30)
Az — Ef 1 r}/f (Ja ) (31)
“ Et 121 1%(17)
~z =1 Ye\J, M )Z 4,
o :Zt% t(c , ) Jst (32)
Et:l Tt (jv m)
and
e~ T W) @ = i) (@i = i) oy
jm T ol :
Et:l ¥ (4, m)

Since truly sufficient statistics can never be found in practice,
the practitioner must be satisfied with approximate sufficiency.
Partially sufficiency of the features poses no theoretical prob-
lems because the class-specific Baum—Welch algorithm maxi-
mizes the true likelihood function without requiring sufficiency,
albeit subject to the constraint that the state PDFs are of the form
(11). As theory guides the practice, the sufficiency of the form
(6) which is required for the optimality of the standard approach
tells practitioners to look for features which discriminate be-
tween the states. In contrast, the sufficiency (7) required for the
optimality of the class-specific approach tells practitioners to
look for features which discriminate states frdifig and whose
exact PDF can be derived und&p.

Approximations of{p;(z;|Ho)} may also be used as long
as these approximations are valid in the tails. Tail behavior is
important because as samples diverge fildgn the denomina-
torsin (8) approach zero. Approximations with accurate tail be-
havior are available for a wide range of important feature sets
in signal processing including autocorrelation and cepstrum es-
timates [9].

A PPLYING THE METHOD

A. Example
The following conceptual example illustrates the selection

Let [see (27), shown at the bottom of the page]. The updateticlass-specific features. Consider a Markov process in which

state priors are

there are three states characterized by
e Hy:alow-order autoregressive process (such as a whistle)

4y = 7.(2)- (28) of unknown variance;
The updated state transition matrix is * Hy: a pure tone of unknown frequency, amplitude, and
S phase in additive Gaussian noise of unknown variance;
NI D, St( 7). 29) « H,: apositive-valued impulse of duration 1 sample in ad-
K Et 1 " (4) ditive Gaussian noise of unknown variance.
ad(a;; (pi(z; a1, N zi a1 | Ho)) B (4
i) )0 95 (3415 0°) (841 | Ho)) B () o

N N .
Ek:l E'rn,:l ag(k)a’k"n (p'fn (an7t—|—1 5

A2/ P(Zm 41 [Ho)) B (M)
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Let H, be independent zero-mean Gaussian noise of variance 1. (exponential), and the secondyi$(2K — 2), and the last

At each time step, a length# time-seriex; = [z 1 ... %t x|’ term is a uniform distribution. It is then possible to obtain

is generated according to the state in effect. o from the pair(7), a2 ..). The PDF ofz, is then easily
1) Feature SelectionDesirable features are those that are  found by a change of variables.

approximately sufficient to distinguish the given hypothesis « Hj: We obtainp(zs|Hy) in essentially the same manner

from Hy and have a distribution known und&g. Consider the asp(z2|Hyp), however the time dimension takes the place

following feature sets. of the frequency index angl,,,, is Gaussian.

* H,:We use asecond-order set of autocorrelation estimates
IV. CONCLUSION

21 = [fo, 71, 72]- In this paper, we have demonstrated that it is possible to pa-

rameterize a HMM using different features for each state. This
&%rameterization requires that the exact densities of the state-de-
pendent feature sets be known for some fixed “common” hy-
pothesisH, and that these densities are nonzero for the allow-
able range of the random variables. The method can lead to
an optimal classifier if these feature sets are sufficient statistics
* Hj: We use the time index and value of the largest inplﬁir discrimination. of the_ corresponding state_ from th_e common
sample §,.., = maxy 7 ), and the average power stateH,. In practice, this means thgt more ||_1format|on cgn be
’ extracted from the raw data for a given maximum PDF dimen-
sion. In principle, the reference hypothesis does not need to be
common and can be a function of the state; however, we have

. - ... not explored this possibility in this paper.
These feature sets are approximately sufficient to discriminate P P y pap

the corresponding state froffy, while being low in dimension.

2) Feature Dependence diyy: Notice that? is included in
each feature set because the variance for each state is unknowi]
while itis fixed underH,. Thus, the variance estimate has infor- 2]
mation that can discriminate agaidgg. If Ho had an unknown
variancefy itself would be irrelevant in distinguishing the input  [3]
data fromH, and could be discarded, however, it would be nec-

o Hy:Let{X;}, 1 < i < K be the lengthK” FFT of x;.
We use the index and squared value of the largest FFT
(a2, = max; |X;|?), and the average power

P 2 o
Zy; = [Lma.xv Amax> 70]'

zZ3 = [kmaxv Tmax 7)0]-
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