
Haskell�style Overloading is NP�hard

Dennis M� Volpano y

Department of Computer Science

Naval Postgraduate School

Monterey� California� �����

volpano�cs�nps�navy�mil

Abstract

Extensions of the ML type system� based on con�
strained type schemes� have been proposed for lan�
guages with overloading� Type inference in these sys�
tems requires solving the following satis�ability prob�
lem� Given a set of type assumptions C over �nite
types and a type basis A� is there is a substitution S
that satis�es C in that A � CS is derivable� Un�
der arbitrary overloading� the problem is undecidable�
Haskell limits overloading to a form similar to that
proposed by Kaes called parametric overloading� We
formally characterize parametric overloading in terms
of a regular tree language and prove that although de�
cidable� satis�ability is NP�hard when overloading is
parametric�

� Introduction

A practical limitation of the ML type system is that
it prohibits global overloading in a programming lan�
guage by restricting to at most one the number of as�
sumptions per identi�er in a type context� a limitation
noted by Milner himself �Mil���	 Suppose we wish to
assert that a free identi�er� say
� has precisely �nite
types int � int � int and real � real � real 	 Any
context in which
 has one of the two desired �nite
types precludes a derivation that it has the other	 On
the other hand� any context that assigns type scheme
���� � � � � to
 is one from which too many
types can be derived for
	 There is no type context
in system ML from which we can derive all and only
the desired �nite types for
	 Even system ML with
subtypes is inadequate	 From type context

A � fint � real �
 � real � real � realg

yAppeared in Proc� ���� Int�l Conference on Computer Lan�

guages� Toulouse� France� pp�		
��� ��
�� May �����

one could derive A �
 � int � int � real but not
A �
 � int � int � int 	

Several type disciplines have emerged for pro�
gramming languages with overloading	 Among them
are those based on intersection types �CoD��� Sal���
CDV�� and those based on constrained type schemes�
the latter being inspired by the design of Haskell
�WaB��� CDO��� Smi��� Kae��� CHO��� Jon���	 The
type system of Forsythe� an explicitly�typed descen�
dant of Algol� is based on an intersection type disci�
pline� namely �� �Rey���	 Though useful� �� remains
limited in that it has no type schemes and all inter�
sections are �nite �Lie�� Pie���	

A more �exible type discipline for languages with
overloading is an extension of the ML type system
with constrained type schemes �Kae��� Smi���	 Using
the notation of �Smi���� a constrained type scheme has
the general form

���� � � � � �n with x� � ��� � � � � xm � �m � �

where � is a �nite type	 Finite types are de�ned in
the usual way	 Every type variable � is a �nite type�
and if ��� � � � � �n are �nite types then so are �� � ��
and ����� � � � � �n� where � is a type constructor of arity
n	 The x� � ��� � � � � xm � �m are constraints on over�
loaded free identi�ers x�� � � � � xm	 Quanti�er � is omit�
ted if there are no quanti�ed variables and the with
clause is omitted if there are no constraints� in which
case we have an ordinary ML type scheme	 Unlike the
ML type system� a free identi�er may be overloaded�
that is� have multiple assumptions in an initial type
context� so we refer to this extension as system MLo	

The fact that a free identi�er is permitted to have
more than one assumption in a type context immedi�
ately raises the issue of semantic ambiguity in terms	
Care must be taken to ensure that terms with over�
loaded identi�ers have unambiguous meaning	 Con�
sider� for instance� type context�

 � real � real � real�

 � ���set���� set���� set���

�
���

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
01 MAY 1994

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Haskell-style Overloading is NP-hard

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Department of Computer Science Naval Postgraduate School Monterey,
CA 93943

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

7

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

where
 denotes real addition and set union	 If one
can derive from this context that term �x� x
 x has
type real � real and ���set ��� � set��� then the
term can be interpreted in one of two di�erent ways	
Its meaning then must be determined by a process
called overloading resolution whose outcome depends
on the type of x	 Thus we say that the overload�
ing of
 above is incoherent 	 Surprisingly� incoherent
overloading is pervasive among languages despite its
potential for semantic ambiguity	 For example� �	� is
often overloaded� as in Ada� to stand for integer and
�oating�point division	

Coherent overloading� on the other hand� gives rise
to discrete polymorphism where the meaning of a term
does not depend on overloading resolution	 In this set�
ting� a semantics for an operator� say f � is postulated
as a set of sentences� or axioms� � say in �rst�order
logic	 A model of � is any interpretation that satis�
�es it	 So if for a type basis A� one is able to derive
A � f �
� and A � f �
�� then the overloading of f
within A is coherent if
� and
� are each models of �	
If so� then we may regard f as belonging to the inter�
section of
� and
�	 Coherent overloading then allows
the meaning of every term to be uniquely determined
by simply appealing to the axioms for the operators
in question which� after all� is where semantics should
be prescribed	

For instance� suppose � � f�x� x
x � xg	 Both an
interpretation of
 as set union and logical disjunction
satisfy �� so sets and truth values are models of �	
But � is false under a real number interpretation	 So
we would regard the sentence in � as an axiom of set
theory and boolean algebra� but not the �rst�order
theory of reals with addition	 The overloading of

then in set ��� is incoherent if we adopt the sentence
as an axiom of our intended meaning of
	 However
if the �rst assumption for
 in ��� is replaced by
 �
bool � bool � bool then the overloading is coherent	
So although we may be able to derive from ��� that
�x� x
x has type bool � bool and ���set��� � set����
we know the function belongs to the intersection of the
two types and its meaning� given uniquely by �� is a
function that behaves as the identity function	

��� Satis�ability

Two new type assignment rules� ���intro� and ���
elim� given in Figure �� accompany constrained types	
For a constraint set C� the notation A � C means
that for each constraint x � � in C� A � x � � is deriv�
able	 The notation ��� �� �� � denotes a substitution�
the application of which is written in post�x form	
Observe that when C is empty the two rules reduce

���intro� A �C �M � � ��
A � C��� �� �� �� �� not free in A
A �M � ��� with C � � �

���elim� A �M � ��� with C � � ��
A � C��� �� �� �
A �M � � ���� �� �� �

Figure �� Generalization and specialization in MLo

respectively to type generalization and instantiation
in system ML �Mil��� DaM���	

The antecedent of ���intro� requires C be satis��
able with respect to A	 That is� for some �nite types
�� � A � C��� �� �� � must be derivable	 Operators that
are constrained in C and interact share a type vari�
able which in essence hypothesizes a model common
to their semantics	 Satis�ability of C then ensures the
existence of such a model assuming overloading is co�
herent	 If a model exists �there may be more than
one�� then the meaning of M is uniquely determined
by the axioms of the operators� otherwise M has no
meaning and consequently should be and is untypable	
For example� suppose

�

 � bool � bool � bool �

 � ���set���� set���� set���

�
���

is a coherent overloading with respect to semantics
�� � f�x� x
 x � xg and suppose

�
� � int � int � bool �
� � ���set���� set���� bool

�
���

is a coherent overloading relative to an axiomatization�
say ��� of a partial order	 We can derive from �������
that �x� �x
 x� � x has type ���set��� � bool since
�� and �� have sets as a common model	 So the
meaning of the term is given by �� and �� and is
a constant function mapping sets into true	 If there
were no common model then the axioms could not be
applied and the term would be meaningless	

So rules ���intro� and ���elim� give rise to the fol�
lowing satis�ability problem	

De�nition ��� The problem of constraint�set satis��
ability CS�SAT is deciding for a given set of type as�
sumptions C� involving only �nite types �constraints��
and an assumption set A� whether there is a substitu�
tion S such that A � CS is derivable�

Without any restrictions on the kind of overload�
ing inA� CS�SAT is undecidable �Smi���	 Constrained
type schemes permit recursive overloadings where an

 � real � real � real

 � �� with
 � �� �� � �

matrix���� matrix���� matrix���
� � int � int � int
� � real � real � real
� � �� with
 � �� �� �� � � �� �� � �

matrix���� matrix���� matrix���

Figure �� A recursive overloading

assumption for an overloaded identi�er has a con�
straint whose satis�ability may depend on the as�
sumption itself	 This permits type assumptions to
be very expressive	 For example�
 and � are over�
loaded recursively in Figure � due to constraints on

 and �	 Eliminating recursion altogether makes
CS�SAT decidable but this is unacceptable because it
arises naturally in practice as Figure � shows	 Smith
gives a restriction called overloading by constructors
that allows CS�SAT to be solved in polynomial time
�Smi���	 But it prohibits the kind of recursion given
in Figure �	 The functional language Haskell adopts
another restriction similar to that proposed by Kaes
called parametric overloading �Kae���	

� Parametric Overloading

Assumption sets that arise in practice often fol�
low a very simple pattern of overloading called para�
metric overloading �Kae���	 This form of overload�
ing allows natural recursive overloadings and makes
CS�SAT decidable	 To de�ne it� we introduce the
notion of the least common generalization �LCG� of
a set of �nite types which captures common struc�
ture among type assumptions for overloaded identi�
�ers �Rey�� McC���	

De�nition ��� A �nite type � is a common general�
ization of �nite types ��� � � � � �n if there are n substi�
tutions S�� � � � � Sn such that �Si � �i for all i	 � is the
least common generalization of these types if in addi�
tion there is a substitution S such that � �S � � for
any other generalization � ��

It is useful to extend this de�nition to identi�ers	
If identi�er x is overloaded with constrained type
schemes ���� with C� � ��� � � � � ���n with Cn � �n� such
that ��� � � � � �n has � as LCG with free variables ���
then ���� � is the LCG of x	

For example� if
 is overloaded with assumptions

 � int � real � real and
 � real � complex �
complex then its LCG is ��� �� �� � � �	

f� g � ��
f � �� with g � � � �����
g � �� with f � � � �����

Figure �� A mutually�recursive overloading

De�nition ��� Parametric assumption sets are de�
�ned inductively�

The empty set is parametric	
If A is parametric with no assumption for x and
 is

a constrained type scheme �� with C � � such that for
each z � � � C� z is overloaded in A and � is a generic
instance of its LCG then A � fx �
g is parametric	

If A is parametric with no assumption for x and B
is the set

���
��

x � ���� with C� � � �� �� ��������
			

x � ���n with Cn � � �� �� �n���n��

���
�	

such that

	 x has LCG ��� � �

	 �i
� �j for i
� j� and

	 z � � � Ci implies that z has LCG �� �� for some
 � ��i� and either z is overloaded in A or z � x�

then A �B is parametric	

Examples of parametric assumption sets are given
below and in Figure �	

����
���

� � int � int � bool
� � ��� � with �� �� �� bool �

pair��� ��� pair��� ��� bool
� � ��� ref ���� ref ���� bool

����
��	

The last assumption above speci�es a polymorphic in�
stance for �� re�ecting that equality is meaningful for
references �pointers�	

Parametric assumption sets allow a limited form of
recursion	 If we de�ne a dependency relation among
identi�ers in a type assumption set that says identi�
�er f depends on g if and only if f has an assumption
with a constraint on g� then we see that parametricity
ensures that the transitive closure of the relation is
antisymmetric and consequently mutual recursion is
prohibited	 For instance� the set in Figure � is mutu�
ally recursive and therefore is not parametric	 Neither
the assumptions for f nor g can be introduced because
each requires the introduction of the other	

��� Regular Tree Languages

Problem CS�SAT has two inputs� A and C	 In
practice A usually varies little if at all across di�er�
ent instances of type inference	 Thus we can bene�t
from suitably representing A and reusing its represen�
tation for di�erent inputs C	 A realistic measure of
CS�SAT �s complexity should not ignore this fact	 So
although A is an assumption set� we assume that as
an instance of CS�SAT� it is suitably represented	 If A
is parametric then every overloaded identi�er x has an
LCG of the form ��� � and the set of �nite types to
which � can be instantiated� meaning one can derive
A � x � � �� �� �� form a regular tree language	

Given an alphabet A� an A�valued tree t is spec�
i�ed by its set of nodes� or domain� dom�t�� and a
valuation of the nodes in A	 Formally� a k�ary� A�
valued tree is a mapping t � dom�t� � A where
dom�t� � f� � � � � k��g� is a nonempty set and closed
under pre�xes	 The frontier of t is the set of nodes
fw � dom�t� j �i�wi � dom�t�g	 We assume that A
is partitioned into a ranked alphabet �� and a frontier
alphabet X	 For any � and X� we denote the set of all
�nite �X�trees by F��X�	

Regular tree languages� or forests� can be charac�
terized in di�erent ways using tree recognizers �au�
tomata� �GeS��� or familiar operations of regular sets�
like concatenation and closure� extended to �nite sets
of trees �Tho��	 To simplify our proofs� we choose
to characterize them as forests generated by a class of
context�free grammars called the regular tree gram�
mars �GeS���	

De�nition ��� A regular �X�grammar G consists of

	 a �nite nonempty set N of nonterminal symbols�

	 a �nite set P of productions A� r where A � N
and r � F��N �X�� and

	 an initial symbol S � N �

De�nition ��� If G � �N��� X� P� S� is a regular
�X�grammar then the �X�forest generated by G is
T �G� � ft � F��X� j S ��

G tg�

From a given parametric assumption set A� the
idea is to construct for each overloaded identi�er x
a regular tree grammar Gx such that if x has LCG
��� � then for any closed �variable�free� �nite type �
A � x � � �� �� � is derivable if and only if � T �Gx�	
So determining whether constraint x � � �� �� � is sat�
is�able with respect to A amounts to parsing 	 Gx

always has a nonempty ranked alphabet of type con�
structors ��� � � � � �n and an empty frontier alphabet	

So we drop the frontier alphabet from discussion and
speak of just ��trees from now on� the collection of
which is F� for a given �	

Critical to our representation of a parametric over�
loading is the property that regular forests are e�ec�
tively closed under intersection	 This implies they are
properly contained within the context�free languages
since the latter are not closed under intersection	

Theorem ��� If G� and G� are regular tree gram�
mars then T �G�� � T �G�� is generated by a regular
tree grammar�

Proof� Suppose G� � �N���� P�� S�� and G� �
�N���� P�� S�� are regular ��grammars	 Let ��
grammar G � �N� �N���� P� �S�� S��� where

�A�B�� a��Y�� Z��� � � � � �Yn� Zn�� � P� for n �

if and only if A � a�Y�� � � � � Yn� � P�� B �
a�Z�� � � � � Zn� � P�� and a � �	 Then T �G� �
T �G�� � T �G��	

Suppose x is overloaded in an initial parametric as�
sumption set A with LCG ��� � and that � contains
all type constructors of A	 We construct Gx as follows	
Since the overloading for x may be recursive� we �rst
factor all assumptions on x into two sets� one contain�
ing its assumptions without any constraints on x and
the other having its assumptions with only constraints
on x if any	 Gx then is the intersection of the regular
��grammars representing the two sets	 These two tree
grammars cannot depend on Gx since the transitive
closure of the dependency relation is antisymmetric	

A regular ��grammar is constructed for each set as
follows	 For each assumption

x � ���� � � � � �n with C � � �� �� ����� � � � � �n��

introduce n nonterminalsA�� � � � � An and create a pro�
duction S � ��A�� � � � � An� such that Ai derives ex�
actly

Tm

k�� T �Gzk� if �i appears in constraints on
z�� � � � � zm in C and derives F� otherwise	 By The�
orem �	�� the intersection can be described by a regu�
lar ��grammar	 Nonterminal S is the start symbol of
the grammar	 The �nite types derivable from Ai cor�
respond precisely to those types that satisfy all con�
straints in C involving �i	

For example� we construct regular ��grammars G�

and G� for the parametric assumption set in Figure �	
Let �� � fint � realg and �� � fmatrixg	 Due to the
constraint on
 needed to assert that � may stand
for matrix multiplication� construction of G� depends
on G�	 So we begin by factoring the assumptions for

� leading to two regular tree grammars G� and G�

where G� is

S� � real j matrix �U �
U � int j real j matrix�U �

and G� is

S� � real j matrix �S��

G� arises from the assumptions for
 with the lone
constraint on
 deleted	 Therefore U derives F�	 G�

on the other hand is constructed from the assumptions
with only constraints on
 which in this example is
the same as the original set	 The regular ��grammar
G� for T �G�� � T �G�� becomes

�S�� S��� real j matrix ��U� S���

�U� S��� real j matrix ��U� S���

Next we construct G�	 Corresponding to assump�
tions for � without any constraints on � is the grammar

S� � int j real j matrix��S�� S���

and to the assumptions with only constraints on ��

S� � int j real j matrix�S��

G� then represents their intersection and is given by

�S�� S��� int j real j matrix���S�� S��� S���

��S�� S��� S��� real j matrix���U� S��� S���

��U� S��� S��� real j matrix���U� S��� S���

Now if A denotes the set of Figure �� then for any
closed �nite type � � A �
 � � � � � � is derivable if
and only if � � T �G��� likewise for T �G��	 This actu�
ally follows from the next theorem which establishes
the correctness of the representation	

Theorem ��� If A is parametric and x is overloaded
in A with LCG ��� � and regular ��grammar Gx �
�N��� P� S� then A � x � � �� �� � i
 � T �Gx��

Proof� We use a normalized version of MLo� replacing
���elim� with rule ���elim���

x � ��� with C � � � � A� A � C��� �� �� �
A � x � � ���� �� �� �

The normalized version and MLo are proved equiva�
lent in �Smi���	 We prove � T �Gx� implies A � x �
� �� �� � by induction on the structure of �

� � ��	 If � � T �Gx� then S � � � P which

implies x � � �� �� �� � A	 By rule �hypoth� then
A � x � � �� �� ��	

� � ���� ��	 If ���� � � T �Gx� then S � ����� �
P � �i � T �Gi�� where Gi � �N��� P� �i�� and x �
��� with C � � �� �� ������ � A	 Suppose z�� � � � � zm
are all identi�ers constrained in C by �i	 Since A
is parametric� zk � �k � C implies zk has LCG ��i� �k
and zk is overloaded in A	 By the construction of Gx

we have T �Gi� �
Tm

k�� T �Gzk� so �i � T �Gzk� for
k � �� � � � �m	 By the inductive hypothesis� A � zk �
�k��i �� �i�	 So by rule ���elim��� A � x � � �� �� ���� ��	

Next we prove that A � x � � �� �� � implies �
T �Gx� by induction on the length of the derivation
of A � x � � �� �� �	 The derivation ends with an
application of rule �hypoth� or rule ���elim���

�hypoth�	 If x � � �� �� �� � A then S � � � P which
implies � � T �Gx�	

���elim��	 The derivation ends with

x � ��� with C � � �� �� ������ � A�
A � C��� �� ��
A � x � � �� �� �����

Suppose z�� � � � � zm are all identi�ers constrained in C
by �i	 Since A is parametric� zk � �k � C implies zk
has LCG ��i� �k and zk is overloaded in A	 Then A �
C��� �� �� impliesA � zk � �k��i �� i� so by the induc�
tive hypothesis i � T �Gzk� for k � �� � � � �m� or i �Tm

k�� T �Gzk�	 Now x � ��� with C � � �� �� ������ � A
implies S � ����� � P 	 By virtue of the con�
struction of Gx� we have i � T �Gi� and therefore
���� � T �Gx�	

� CS�SAT is NP�hard for Parametric

Overloading

The NP lower bound is proved by factoring a re�
duction from �CNF�SAT through the problem of com�
puting the intersection of a sequence of regular forests	
Though this is unnecessary and a simpler proof is pos�
sible� it is done in order to isolate the source of the
hardness which lies in computing this intersection	

Theorem ��� Given a parametric assumption set A
with overloaded identi�ers x�� � � � � xn whose assump�
tions are represented by regular tree grammars and a
constraint set C over x�� � � � � xn such that x � � � C
implies � is a generic instance of the LCG of x in A�
deciding whether C is satis�able under A is NP�hard�

Proof� We give a P�time reduction from �CNF�SAT	
Given a �CNF formula E� consisting of clauses

d�� � � � � dn� we construct a parametric assumption set
AE � with all overloadings represented by regular tree
grammars� and a constraint set C such that C is sat�
is�able under AE if and only if E is satis�able	

Suppose E has m distinct variables x�� � � � � xm and
let the ranked terminal alphabet � � �� � �� where
�� � f�g and �� � fT� Fg	 Construct a regular ��
grammar Gdi for each clause di so that
 � T �Gdi � if
and only if

 � B��B��� � �Bm��� � � ���

and the assignment of truth values B�� � � � � Bm to
x�� � � � � xm respectively satis�es di	 If di contains vari�
ables xj� xk� and xl� with j � k � l� and xj � Bj �
xk � Bk� and xl � Bl is a truth assignment satisfy�
ing di� then construct a regular ��grammar with start
symbol x� and productions

xj � Bj�xj��� xk � Bk�xk��� xl � Bl�xl���

and for � � i � m with i
� j� i
� k� and i
� l�

xi � T �xi��� j F �xi���

and �nally xm�� � �	 There is one such regular ��
grammar for each of the � truth assignments satisfying
di� call them G�� � � � � G		 Then let

T �Gdi � �
	

k��

T �Gk�

Gdi can be constructed in O�m� steps so that for each
nonterminal Y and truth value B� there is at most one
production of the form Y � B�Z�	 For � � i � n�
add to AE assumption Xi � � if X � � is a production
of Gdi and assumption

Yi � �� with Zi � � � B���

if Y � B�Z� is a production of Gdi 	 If Gdi has start
symbol Si� then with

C � fS� � �� � � � � Sn � �g

E is satis�able if and only if
Tn

i�� T �Gdi� is nonempty�
or if and only if C is satis�able under AE 	

As is the case for deciding whether a sequence of ��
nite automata accept a common string� the source for
the hardness of CS�SAT lies not in deciding emptiness
but rather in computing the intersection� in this case�
of a sequence of regular forests T �G��� � � � � T �Gm�	
The emptiness of T �G� for a regular tree grammar
G is decidable in time O�j G j�� in the usual way	

From the proof of Theorem �	� then every problem
in NP is P�time Turing reducible to the problem of
constructing the intersection of a sequence of regular
tree grammars� so the construction is NP�hard	 This
helps to explain why the worst�case time complexity of
an improved algorithm for computing the intersection
of regular forests is still exponential �AiM���	 Actu�
ally computing the intersection is much harder	 A
weak PSPACE�hard lower bound follows immediately
from the �nite automaton intersection problem� treat�
ing strings as unary trees	 A tighter exponential time
lower bound follows from the complexity of the in�
tersection problem for tree automata �FSV���	 For a
�xed m� it can be computed in polynomial time	

� Conclusion

Some might argue that given that ML typability
is complete for DEXPTIME �KTU��� the fact that
CS�SAT is NP�hard is insigni�cant	 If we were con�
cerned only about the worst�case time complexities
of type inference algorithms then this might be true	
But experience has shown that the DEXPTIME lower
bound is not an issue in practice and type inference
algorithms whose worst�case time complexities are ex�
ponential perform quite well on pratical programs	 In
fact it was folklore for many years that ML typability
could be decided in polynomial time	 So the complex�
ity of CS�SAT could very well be the dominating com�
plexity in practice	 More experience is needed though
in using systems like MLo to determine whether the
NP lower bound for CS�SAT is a practical limitation	

References

�AiM��� Aiken� A	 and Murphy� B	� �Implement�
ing Regular Tree Expressions�� Proc� �th Conf�
on Functional Programming Languages and Com�
puter Architecture� LNCS ���� Springer�Verlag�
pp	 �������� ����	

�CHO��� Chen� K	� Hudak� P	 and Odersky� M	�
�Parametric Type Classes�� Proc� th ACM Conf�
on Lisp and Functional Programming� pp	 ���
���� ����	

�CDO��� Cormack� G	 Duggan� D	 and Ophel� J	�
�Decidable Type Reconstruction with Recursive
Overloading�� Extended Abstract� Department of
Computer Science� University of Waterloo� ����	

�CoD��� Coppo� M	 and Dezani�Ciancaglini M	� �A
New Type Assignment for � Terms�� Archi� Math�
Logik� Vol	 ��� pp	 �������� ����	

�CDV�� Coppo� M	� Dezani�Ciancaglini M	 and Ven�
neri� B	� �Principal Type Schemes and Lambda
Calculus Semantics�� In To H�B� Curry� Essays
on Combinatory Logic� Lambda Calculus� and For�
malism� Academic Press� pp	 ������� ���	

�DaM��� Damas� L	 and Milner� R	� �Principal Type
Schemes for Functional Programs�� Proc� �th
ACM Symposium on Principles of Programming
Languages� pp	 ������� ����	

�FSV��� Fr uhwirth� T	� Shapiro� E	� Vardi� M	 and
Yardeni�E	� �Logic Programs as Types for Logic
Programs�� Proc� �th Annual Symp� on Logic in
Computer Science� pp	 ����� ����	

�GeS��� Gecseg� F	 and Steinby M	� Tree Automata�
Akademiai Kiado� Budapest Hungary� ����	

�Jon��� Jones� M	� �A theory of quali�ed types�� Proc�
�th European Symposium on Programming� LNCS
���� Springer�Verlag� pp	 ������� ����	

�Kae��� Kaes� S	� �Parametric Overloading in Poly�
morphic Programming Languages�� Proc� �nd Eu�
ropean Symposium on Programming� LNCS ��
Springer�Verlag� pp	 �������� ����	

�Kae��� Kaes� S	� �Type Inference in the Presence
of Overloading� Subtyping� and Recursive Types��
Proc� th ACM Conf� on Lisp and Functional Pro�
gramming� pp	 ������� ����	

�KTU�� Kfoury� A	� Tiuryn� J	 and Urzyczyn� P	�
�An Analysis of ML Typability�� Proc� ��th Col�
loquium on Trees in Algebra and Programming�
LNCS ���� Springer�Verlag� pp	 ������ ���	

�Lie�� Lievant� D	� �Discrete Polymorphism�� Proc�
���� ACM Conf� on Lisp and Functional Program�
ming� pp	 �������� ���	

�McC��� McCracken� N	� �The Typechecking of Pro�
grams with Implicit Type Structure�� Semantics
of Data Types LNCS ���� pp	 ������� ����	

�Mil��� Milner� R	� �A Theory of Type Polymorphism
in Programming�� J� of Computer and System Sci�
ences� Vol	 ��� pp	 �������� ����	

�Pie��� Pierce� B	� �Programming with Intersection
Types and Bounded Polymorphism�� Ph	D	 The�
sis� Department of Computer Science� Carnegie

Mellon University� Technical Report CMU�CS����
��� ����	

�Rey�� Reynolds� J	C	� �Transformational Systems
and the Algebraic Structure of Atomic Formulas��
Machine Intelligence� Vol	 �� pp	 �������� ���	

�Rey��� Reynolds� J	C	� �Preliminary Design of the
Programming Language Forsythe�� Report CMU�
CS�������� Carnegie Mellon University� ����

�Sal��� Sall!e P	� �Une Extension de la Th!eorie des
Types en ��calculi�� LNCS ��� Springer�Verlag pp	
������� ����	

�Smi��� Smith� G	S	� �Polymorphic Type Inference
for Languages with Overloading and Subtyping��
Ph	D	 Thesis� Department of Computer Science�
Cornell University� Technical Report �������
����	

�Smi��� Smith� G	S	� �Polymorphic Type Inference
with Overloading and Subtyping�� Proc� TAP�
SOFT ���� LNCS ���� Springer�Verlag� pp	 ����
���� ����	

�Tho�� Thomas�W	� �Automata on In�nite Trees��
Handbook of Theoretical Computer Science� Vol�
ume B� Formal Methods and Semantics� J	 van�
Leeuwen� Ed	 pp	 �������� ���	

�WaB��� Wadler� P	 and Blott� S	� �How to make ad�
hoc polymorphism less ad�hoc�� Proc� ��th ACM
Symposium on Principles of Programming Lan�
guages� pp	 ����� ����	

