Electronic Notes in Theoretical Computer Science 20 (1999)
URL: http://www.elsevier.nl/locate/entcs/volume20.html 11 pages

Confinement Properties for Multi-Threaded
Programs

Geoffrey Smith !

School of Computer Science
Florida International University
Miami, FL 33199, USA
smithg@cs.fiu.edu

Dennis Volpano !

Computer Science Department
Naval Postgraduate School
Monterey, CA 93943, USA

volpano@cs.nps.navy.mil

Abstract

Given a program that has access to some private information, how can we ensure
that it does not improperly leak the information? We formalize the desired security
property as a property called noninterference. We discuss versions of noninterference
appropriate for multi-threaded programs with probabilistic scheduling and describe
rules for ensuring noninterference.

1 Introduction

Ensuring the privacy of information is a major problem today, made both
more pressing and more difficult by the enormous growth of the Internet. In
this paper, we address one aspect of this problem: given a program P that has
access to some private information, how can we prevent P from leaking the
information? (This problem was called the confinement problem by Lampson
(6], who first raised the issue in the early 1970s.) We will focus in particular
on the case when P is multi-threaded.

The difficulty of preventing a program P from leaking private information
depends greatly on what kinds of observations of P are possible. If we can

1 This material is based upon activities supported by the National Science Foundation
under Agreements Number CCR-9612176 and CCR-9612345.

(©1999 Published by Elsevier Science B. V.



Report Documentation Page

Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,

including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it

does not display a currently valid OMB control number.

1. REPORT DATE
01 NOV 1999

2. REPORT TYPE
N/A

3. DATES COVERED

4. TITLEAND SUBTITLE

Confinement Propertiesfor Multi-Threaded Programs

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Computer Science Department Naval Postgraduate School Monterey, CA

93943, USA

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT
unclassified unclassified

c. THISPAGE
unclassified

17. LIMITATION OF
ABSTRACT

uu

18. NUMBER | 19a NAME OF
OF PAGES RESPONSIBLE PERSON

11

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18



SMITH AND VOLPANO

tax applet
(signed?)

A

My machine TrustMe site
billing info .
(encrypted)

tax return (encrypted)

IRS

Fig. 1. A Tax Return Applet

make external observations of P’s running time, memory usage, and so forth,
then preventing leaks becomes very difficult. For example, P could modulate
its running time in order to encode the private information. Furthermore,
these modulations might depend on low-level implementation details, such as
paging and caching behavior. But this means that it is insufficient to prove
confinement with respect to an abstract semantics—every implementation de-
tail that affects running time must be addressed in the proof of confinement.
For this reason, we will not consider such external observations further.

If, instead, we can only make internal observations of P’s behavior, the
confinement problem becomes more tractable. Internal observations include
the values of program variables, together with any system-provided functions
that can be called by P. Of course, if the system provides a real-time clock,
then running time is observable internally, and we are no better off than before.
But in this case we can design the system with confinement in mind, excluding
features (like real-time clocks) that are problematic. This situation is relevant
to the case of mobile code, which runs under the control of a host machine
that can limit what the code can observe.

When only internal observations are possible, we can formulate the con-
finement problem as follows [1,2]: if each program variable is classified as L
(low, public) or H (high, private), then we wish to ensure that information
cannot flow from H variables to L variables.

For example, Figure 1 suggests the behavior of a tax return applet which
could be downloaded from a site called TrustMe. The applet runs on my
machine, allowing me to complete my tax return. When I finish, the applet
sends the completed tax return to the IRS and sends billing information back
to TrustMe, using encryption to protect the privacy of these communications.

2



SMITH AND VOLPANO

But how do I know that my private financial information is not somehow
encoded in the billing information sent back to TrustMe? If I classify the tax
return as H and the billing information as L, then I would like to know that
no information can flow from H variables to L variables.

2 Possibilistic Noninterference

Formally, we want programs to satisfy a property called noninterference [10],
which says that the final values of L variables don’t depend on the initial
values of H variables. In the case when programs are multi-threaded, and
hence nondeterministic, we need a possibilistic noninterference property [8],
which says that changing the initial values of H variables cannot change the
set of possible final values of L variables.

Here’s a non-example, similar to one in [8]. Suppose = is H, with value
0 or 1, and y is L. Also, assume that ¢ is initially 0. Consider the following
program, which consists of two threads:

Thread «: if £ =1 then

while ¢t = 0 do skip;
y =1
t:=1

Thread f: if r =0 then
while ¢ = 0 do skip;
y = 0;
t:=1

Note that thread « always assigns 1 to y, and thread (3 always assigns 0 to y,
but the order in which these assignments are done depends on the value of x.
As a result, with any fair scheduler the value of x is copied to y.

Suppose that we adopt a formal semantics for our multi-threaded language
that specifies a purely nondeterministic scheduler. Such a scheduler is charac-
terized by the simple rule:

At each step, any thread can be selected to run for a step.

Suppose that we prove that a program P satisfies possibilistic noninterference
with respect to this scheduler. Can we conclude that P remains secure if we
implement something more deterministic, such as round-robin time slicing?

The answer is no. For suppose that x is H, with value 0 or 1, y is L, and
¢ is a command that doesn’t alter x or y, but that takes longer than a time
slice. Consider the following program:

Thread a: if z =1 then (c¢;¢);
y:i=1

Thread 3: c;
y:=0



SMITH AND VOLPANO

With respect to the purely nondeterministic scheduler, this program satisfies
possibilistic noninterference: regardless of the initial value of z, the final value
of y can be either 0 or 1. But under round-robin time slicing, the value of
x is always copied to y. Thus we see that noninterference is not a safety
property—it is not closed under trace subsetting.

3 Probabilistic Noninterference

A purely nondeterministic scheduler is convenient in a formal semantics, but
it is unclear how such a scheduler might be implemented; it seems to require
an “erratic daemon”.?

We might consider a probabilistic implementation that flips coins to select
the thread to run in the next step. But note that this moves us from a nonde-
terministic semantics, in which events are either possible or impossible, to a
probabilistic semantics, in which events have a probability of occurring. Still,
we can say that this gives an implementation of the purely nondeterministic
scheduler, if we are willing to equate “possible” with “occurs with nonzero
probability”.

But now suppose that x is H, with value between 1 and 100, and y is
L. Suppose that random(100) returns a random number between 1 and 100.
Consider the following program:

Thread a: yi=x

Thread 3: y := random(100)

This program satisfies possibilistic noninterference: regardless of the initial
value of z, the final value of y can be any number between 1 and 100. But
with a probabilistic semantics, this is not good enough, because the final values
of y are not equally likely. In particular, if we can run the program repeatedly,
we expect the final values of y to look something like

75,22,12,22,22,93, 4,22, ...

allowing us to conclude (in this case) that x is probably 22. Thus we see that
possibilistic noninterference is not sufficient to prevent probabilistic informa-
tion flows.® Instead, we now need a probabilistic noninterference property,
which says that changing the initial values of H variables cannot change the
joint distribution of possible final values of L variables [9]. In the next section,
we develop this idea more formally.

2 The term is due to Dijkstra [3].
3 This observation can be credited to McLean [7] and Wittbold and Johnson [11].

4



SMITH AND VOLPANO

4 Multi-Threaded Programs as Markov Chains

We assume that threads are written in a simple imperative language:
¢ = skip
| z:=e
| e
| if e then ¢; else ¢,
|  while e do ¢

Integers are the only values; we use 0 for false and nonzero for true. We assume
that all expressions are pure and total, and that expressions are executed
atomically.

Programs are executed with respect to a single shared memory g, which is
a map from identifiers to integers. We extend this to a map from expressions
to integers, writing u(e) to denote the value of expression e in memory .

The semantics of commands is given by a standard transition semantics
— on configurations (¢, ) or p. The rules are given in Figure 2.

A multi-threaded program is modeled by an object map O that maps
thread identifiers («, 3, ...) to commands. The semantics of multi-threaded
programs is given via global transitions == on global configurations (O, ).
The three rules are

(croBaL) O(a) =¢
(¢, p)—pt
p=1/]0]
(0, ))==(0 — a, )

O(a) =c

(¢, ) —(c, 1)
p=1/|0]

(0, W)==(Ola == ¢], )

{ hw={}.n

The first and second rules deal with a nonempty set of threads; the third deals
with an empty set of threads. Note that we are assuming a uniform scheduler,
that selects each thread in O with equal probability.

With these definitions, a program O executing in memory p is a Markov
chain [4]. The states of the Markov chain are all the global configurations
reachable from the initial state (O, ) under ==, and the transition matrix 7’

5



SMITH AND VOLPANO
(Noor) (skip, 1) —>p

(UPDATE) x € dom(p)

(z := e, p)—rplz = p(e)]

(SEQUENCE) (e1, p)—p

(Cl; C2, /'L)—>(627 /'L,)

(e1, ) — (e, 1)

(15 ¢, p1)—(cy5 co, ")

(BRANCH) p(e) #0

(if e then ¢ else ¢y, ) —(cq, 1)

pu(e) =0

(if e then ¢ else ¢y, 1) —(ca, 1)

(Loop) p(e) =0

(while e do ¢, u)—p

(e) nonzero

(while e do ¢, u)—(c; while e do c, u)

Fig. 2. Sequential Transition Semantics

is given by

T((O1, 1), (O, p2)) = p, if (O1, 11)==(02, i)

0, otherwise

It is now useful to define a probabilistic state u to be a (discrete) probability
distribution on the set of global configurations [5]. Concretely, u is a row vector
with unit sum. With this viewpoint, we can model the execution of O under
memory p as a deterministic sequence of probabilistic states:

Ug, Uy, U, U3,y - - -

where ug is the distribution that assigns probability 1 to (O, u) and 0 to
all other configurations, and ug,; = uxT. We can now write a very simple
expression for the kth probabilistic state: uy = uoT*.

6



SMITH AND VOLPANO

For example, consider the program

« : while [ =0 do skip
G:1l:=1

executed in a memory that sets [ to O initially. There are a total of five
reachable states in the Markov chain:

« : while [ =0 do skip
q: , [1:=10]
B:(l:=1)

¢2 : ({a: while [ =0 do skip}, [l :=1])

« : skip;while [ = 0 do skip
B:(l:=1)
q1: ({o : skip;while [ =0 do skip}, [l :=1])

g5 ({ }, [[:=1])

The transition matrix 7" for this program is as follows:

@1 92 43 G4 Qs
q1| O 1/2 1/2 0 0
gl 0 0 0 0 1

¢|1/2 0 0 1/20
@/ 0 1 0 0 0
G0 0 0 01

For instance, we get the first row of 1" by noting that running thread « from
state ¢ takes us to state ¢3, and running thread [ takes us to state ¢;. Thus,
under our uniform scheduling assumption, we go from ¢; either to ¢y or to g¢s,
each with probability 1/2.



SMITH AND VOLPANO

In terms of probabilistic states, the initial distribution ug is (1 0 0 0 0).
And we can trace the probabilistic states that O passes through:

a 42 43 4 ds
uyg | 1 0 0 0 0
wl| 0 1/2 1/2 0 0
upT?| 1/4 0 0 1/4 1/2
upT? 0 3/8 1/8 0 1/2
upT*|1/16 0 0 1/16 7/8
ugT® 0 3/321/32 0 7/8
upT8|1/64 0 0 1/6431/32

Of course, O will converge to the probabilistic state (0 0 0 0 1).

Now, to formalize the probabilistic noninterference property, we need to
define a notion of equivalence on probabilistic states. To this end, we say
that probabilistic states u and u’ are equivalent, written u ~ o', if they are
equal after H variables are projected out. Intuitively, u and u’ agree about

everything except the values of H variables. For example, if z is H and y is
L, then

(O,[x:=0,y:=0]):1/2,

(O, [x:=1,y:=0)) : 1/2
is equivalent to

[(O,fr = 2,y:=0)) : 1},
since in both cases the result of projecting out x is

{(O,y:=0]) : 1}.

Finally, we can give the formal definition of probabilistic noninterference:

Definition 4.1 Program O satisfies probabilistic noninterference if for all
probabilistic states v and u', u ~ «' implies uT ~ u'T.

This definition gives us what we want, for suppose that we execute a pro-

gram O under two memories p and g’ that agree on the values of L variables.
Then

{(O,p) : 1} ~{(O, 1) : 1}
and hence
{(O,p) : JT* ~ {(O, 1) : 13T*
for all k. That is, the two executions proceed in probabilistic lockstep.

8



SMITH AND VOLPANO

5 Ensuring Probabilistic Noninterference

We can perform a static analysis that ensures that a program O satisfies
probabilistic noninterference. The analysis is described formally (as a type
system) in [9]; here we give an intuitive presentation as a set of rules. The
rules impose constraints on assignments, while loops, and if statements:

e For an assignment, y := e, the rule is that if y is L, then ¢ must contain no
H variables.

e For a while loop, while e do ¢, the rule is that e must contain no H
variables.
e For an if statement, if e then c else ¢/, the rule is that if e contains any
H variables, then
(i) ¢ and ¢ must contain no assignments to L variables,
(ii) ¢ and ¢ must contain no while loops, and
(iii) the entire if statement must be protected, so that it executes atomically.

For the last rule, we introduce a new command, protect ¢, whose seman-
tics is given by

(aTomricity) (c, p)—* '

(protect ¢, u)—p'

That is, if (¢, 1) can reach p' in one or more steps, then (protect ¢, i) can
reach 4/ in exactly one step.

Applying these rules to the first program of Section 2, we see that the
program is illegal, because both threads have while loops within the bodies of
if statements whose guards are H. And for the second program of Section 2 to
be legal, the if statement of thread a needs to be protected; this will mask the
amount of time needed to execute it, thereby eliminating the timing channel.
Of course, our rules are necessarily conservative. More experience is needed
to determine how burdensome they are in practice.

It can be shown that any program O that satisfies the above rules satisfies
probabilistic noninterference. Details can be found in [9]; here we sketch part
of the argument.

First, we can show probabilistic noninterference for point masses; that is,
for distributions in which some configuration has probability 1 and all others
have probability 0:

Theorem 5.1 If O satisfies the above rules and v ~ ', where v and ' are
point masses, then (T ~ 'T.

Then we can extend the result to arbitrary distributions by exploiting the
linearity of T"

Lemma 5.2 If u; ~ ul, for all i, then
a1y + og + -+~ aguy + aguh + - -

9



SMITH AND VOLPANO

Lemma 5.3 If u ~ o, then there exist coefficients ci,ca,c3,... and point
MASSES L1, Lo, L3,y ... and ty, th, 15, ... with t; ~ 1, for all i, such that

U =cil; + cotyg +c3t3 + -+
and
! ! ! !
U = Cily + Coly + C3lz + -+ -

Corollary 5.4 If O satisfies the above rules and u ~ u', then uT ~ u'T.

Proof. Since T is a continuous linear transformation,
uT = (c1t1 + catg +cgt3 + - )T
=c1(uT) + ca(2T) + c3(e3T) + - - -
~ ey (UT) + c(hT) + es(e5T) + - -
= (et} + cathy + c305)T
=u'T

6 Conclusion

To develop secure computer systems, it is first necessary to identify the precise
security properties of interest. We have presented one such property, proba-
bilistic noninterference, aimed at protecting information privacy and we have
described rules sufficient to guarantee it; our hope is that such rules provide
a basis for constructing provably-secure systems in practice.

References

[1] Dorothy Denning. Secure Information Flow in Computer Systems. PhD thesis,
Purdue University, West Lafayette, IN, May 1975.

[2] Dorothy Denning and Peter Denning. Certification of programs for secure
information flow. Communications of the ACM, 20(7):504-513, 1977.

[3] Edsger Dijkstra. A Discipline of Programming. Prentice Hall, 1976.

[4] William Feller. An Introduction to Probability Theory and Its Applications,
volume I. John Wiley & Sons, Inc., third edition, 1968.

[5] Dexter Kozen. Semantics of probabilistic programs. Journal of Computer and
System Sciences, 22:328-350, 1981.

[6] Butler W. Lampson. A note on the confinement problem. Communications of
the ACM, 16(10):613-615, 1973.

[7] John McLean. Security models and information flow. In Proceedings 1990 IEEE
Symposium on Security and Privacy, pages 180-187, Oakland, CA, 1990.

10



SMITH AND VOLPANO

[8] Geoffrey Smith and Dennis Volpano. Secure information flow in a multi-
threaded imperative language. In Proceedings 25th Symposium on Principles
of Programming Languages, pages 355-364, San Diego, CA, January 1998.

[9] Dennis Volpano and Geoffrey Smith. Probabilistic noninterference in a
concurrent language. Journal of Computer Security, 1999. To appear.

[10] Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. A sound type system for
secure flow analysis. Journal of Computer Security, 4(2,3):167-187, 1996.

[11] J. Todd Wittbold and Dale M. Johnson. Information flow in nondeterministic

systems. In Proceedings 1990 IEEE Symposium on Security and Privacy, pages
144-161, Oakland, CA, May 1990.

11



