
REPORT DOCUMENTATION PAGE
AFRL-SR-AR-TR-09-0036

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 121
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply wnn a collection ot intormanon it it does not display a currently
valid OMB control number PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
05-02-2009

2. REPORT TYPE
Final Report

3. DATES COVERED (From - To)
April 1, 2006- Nov 30, 2008

4. TITLE AND SUBTITLE

Implicit high order strong stability preserving Runge--Kutta
time discretizations

5a. CONTRACT NUMBER

5b. GRANT NUMBER
FA9550-06-1-0255
5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Sigal Gottlieb

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U of Massachusetts Dartmouth
285 Old Westport Road
North Dartmouth MA 02747

8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
AFOSR/NL
875 N Randolph St
Arlington, VA 22203
Dr Fariba Fahroo

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

Distribution A: Approved for Public Release

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This research involved the investigation, development, and testing of diagonally split Runge-
Kutta (DSRK) methods and implicit Runge—Kutta methods with reference to their strong
stability preserving (SSP) properties for large time-steps.
The research found that DSRK methods which are unconditionally SSP reduce to first order
for the stepsizes of interest, and the PI introduced an analysis which explains this
phenomenon and shows that it is unavoidable. The PI and her students developed a methodology
for finding optimal implicit SSP Runge--Kutta methods up to order six
(which is the maximal possible order for these methods) and eleven stages, and found that
the effective SSP coefficient can be no more than two, making these methods not competitive
with explicit methods for most applications, but useful in a carefully chosen subset of
problems. The results of this grant are a complete analysis of implicit SSP Runge--Kutta
methods and the SSP properties, which demonstrate the need for the SSP property in solutions

15. SUBJECT TERMS
strong stability preserving, Runge—Kutta methods, time-discretizations, hyperbolic problems
with shocks.

16. SECURITY CLASSIFICATION OF:

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

17. LIMITATION
OF ABSTRACT

UU

18. NUMBER
OF PAGES

41

19a. NAME OF RESPONSIBLE PERSON
Sigal Gottlieb
19b. TELEPHONE NUMBER (include area
code)

401-751-9416

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

IMPLICIT HIGH ORDER STRONG STABILITY PRESERVING RUNGE-KUTTA TIME

DISCRETIZATIONS

AFOSR GRANT NUMBER FA9550-06-1-0255 Sigal Gottlieb
Mathematics Department

University of Massachusetts - Dartmouth

Abstract
We investigated diagonally split Runge-Kutta (DSRK) methods to identify and test
unconditionally strong stability preserving (SSP) methods, and implicit SSP time-
stopping methods to find methods with a large SSP coefficient. We found that DSRK
methods which are unconditionally SSP reduce to first order for the stepsizes of
interest, and introduced an analysis which explains this phenomenon and shows that it
is unavoidable. We found optima; implicit SSP Runge-Kutta methods up to order six
(which is the maximal possible order for these methods) and eleven stages, and found
that the effective SSP coefficient can be no more than two, making these methods
not competitive with explicit methods for most applications, but useful in a carefully
chosen subset of problems. We now have a complete analysis of implicit SSP Runge-
Kutta methods and demonstrations of the need for the SSP property in solutions of
hyperbolic PDEs with shocks.

1 Summary of Aims and Results

Strong stability preserving (SSP) high order time discretizations were developed to
ensure nonlinear stability properties necessary in the numerical solution of hyperbolic
partial differential equations with discontinuous solutions. SSP methods preserve the
strong stability properties - in any norm, seminorm or convex functional - of the spa-
tial discretization coupled with first order Euler time stepping, when the timestep is
suitably restricted. Explicit strong stability preserving (SSP) Runge-Kutta methods
([17], [18], [19], [20], [4], [5], [6]) have been successfully used with a wide range of spatial
discretizations, including spectral, discontinuous Galerkin, and weighted essentially
non-oscillatory (WENO) methods. These high order methods preserve any nonlinear
stability properties satisfied by the spatial discretization coupled with the forward
Euler time-stepping. However, all general linear methods suffer from a SSP time-step
restriction. This motivates the search for high order implicit time-stepping methods
with SSP properties and a large allowable time-step, which is the overarching goal of
this project.

The connections between the SSP property and the theory of contractivity have
provided efficient tools for the study of SSP multistep and Runge-Kutta methods,
which we utilized in the search for optimal implicit SSP Runge-Kutta methods. Fur-
thermore, contractivity theory allowed us to determine order barriers on SSP methods.

20090319174

to establish bounds on the SSP coefficient, and to conclude that the SSP coefficient
is not only sufficient but necessary for strong stability preservation in an arbitrary
norm for an arbitrary semi-discretization that satisfies a strong stability condition
under forward Euler integration.

This work described below was performed in collaboration with David Ketcheson.
a doctoral candidate at University of Washington in Seattle (advised by Dr. R. LeV-
eque), and Colin Macdonald, then a doctoral candidate at Simon Fraser University
(advised by Dr. S. Ruuth) and now a postdoctoral fellow at UCLA (working with
Dr. S. Osher).

The aims of AFOSR grant number FA9550-06-1-0255 were to

• Use results and formulations from contractivity and monotonicity theory to find
optimal class of higher order implicit SSP Runge-Kutta methods.

• Find higher order implicit diagonally split Runge-Kutta methods (DSRK) which
are SSP methods with no stepsize restriction.

•

•

Test the optimal implicit SSP Runge-Kutta methods for use with flux-implicit
WENO spatial discretizations.

Test the DSRK with no time-step restriction with spectral and WENO spatial
discretizations.

In the grant period we have gone further than we proposed or anticipated. The
following are the accomplishments under this grant:

1. We conducted a thorough numerical study of second and third order diagonally
split Runge-Kutta methods on a variety of problems. These methods have
proved disappointing, due to severe reduction of order which renders them no
better than backward Euler, which is unconditionally SSP [16]. We analyzed
the cause of this order reduction and found a way to avoid it, however this
renders the SSP coefficient as small as for implicit Runge-Kutta methods.

2. The connections between the SSP property and the theory of contractivity
optimal have provided efficient tools for the study of SSP multistep and Runge-
Kutta methods. Methods of these types have been thoroughly investigated, and
their development seems to be essentially complete. Furthermore, contractiv-
ity theory allowed us to determine order barriers on SSP methods, to establish
bounds on the SSP coefficient, and to conclude that the SSP coefficient is not
only sufficient but necessary for strong stability preservation in an arbitrary
norm for an arbitrary semi-discretization that satisfies a strong stability condi-
tion under forward Euler integration.

3. We found optimal implicit SSP Runge-Kutta methods up to order six and up
to eleven stages. These methods are diagonally implicit or singly diagonally
implicit and have sparse, efficient representations. Furthermore, the implicit
solutions at each stage of a SSP Runge-Kutta method have provable existence
and uniqueness properties.

4. Our work demonstrated that implicit SSP methods are unlikely to be efficient
enough to out-perform the explicit methods. We define the effective SSP co-
efficient of a method ce// = — to normalize the step-size coefficient c relative
to the number of stages rn in a method. The very restrictive bound ceff < 2
has been proven for implicit multistep methods [15, 10] and conjectured for im-
plicit Runge-Kutta methods [12]. In contrast, explicit methods have a bound

5. In the wider class of explicit general linear methods (which includes both Runge
Kutta and multistep methods as a subset) the bound ceff < 1 was proved [7].

6. Although the focus of this grant was implicit Runge-Kutta methods, the tools
developed for this grant allowed David Ketcheson to independently perform a
more thorough study of explicit low-storage Runge-Kutta methods [13] as well
as implicit and explicit multi-step methods [7]. We found that the SSP Runge-
Kutta methods tend to have a variety of nice properties, such as small error
constants and large regions of absolute stability.

7. We showed that spectral deferred correction methods can be written as Runge-
Kutta method, and are thus amenable to the techniques for efficient optimiza-
tion found using the connections to contractivity theory. Using these connec-
tions, we also conclude that these methods suffer from the same order barriers
and bounds on the SSP coefficient.

8. David Ketcheson further studied the SSP properties of the Runge-KuttaChebyshev
methods. Verwers second order methods all have negative Butcher coe?cients,
so they are not SSP under any positive timestep. We have found first and second
order SSP methods up to 10 stages that have the theoretically optimal time-
step. These are promising for fully explicit integration of convection-di?usion
equations without operator splitting. Unlike IMEX, exponential di?erencing,
etc., they apply the same integration method to the sti? and non-sti? parts)

1.1 Publications:

Publications resulting from this grant are:

1. "A numerical study of diagonally split Runge-Kutta methods for PDEs with
discontinuities" by C.B. Macdonald, S. Gottlieb, and S. Ruuth. Journal of
Scientific Computing, 36(1):89-112, (2008).

2. "Optimal implicit strong stability preserving Runge-Kutta methods" by D.
Ketcheson, C. Macdonald, and S. Gottlieb. Applied Numerical Mathematics
(to appear).

3. "Highly E?cient Strong Stability Preserving Runge-Kutta Methods with Low-
Storage Implementations" by D. Ketcheson. SI AM Journal on Scientic Com-
puting, 30 (4): 2113-2136 (2008). Winner of the SIAM student paper prize.

4. "Computation of optimal monotonicity preserving general linear methods" by
David I. Ketcheson. Math, of Comp. (2008)

5. "High Order Strong Stability Preserving Time Discretizations" by S. Gottlieb.
D.I. Ketcheson and C.-W. Shu. Journal of Scientific Computing 38:251-289
(2009).

1.2 Dissemination

Other dissemination efforts related to this grant:

1. We set up a web-site devoted to SSP methods, to collect all the latest results and
most useful information about strong stability preserving time discretizations.
http://www.cfm.brown.edu/people/sg/ssp.html

2. We organized a minisymposium at the 2006 annual SIAM conference which
brought together Rong Wang (who presented his joint work with Ray Spiteri).
Inma Higueras, Steven Ruuth and his student Colin Macdonald. This minisym-
posia led to productive discussions with Adrian Sandu and his student on the
topic of SSP multirate time-stepping.

(a) Positivity and Monotonicity for IMEX Methods by Inmaculada Higueras.
Universidad Pblica de Navarra, Spain.

(b) Variable Step-Size IMplicit-EXplicit Linear Multistep Methods by Steve
Ruuth, Simon Fraser University, Canada; Dong Wang, University of Illi-
nois at Urbana-Champaign.

(c) In Search of Implicit High-Order Strong Stability Preserving Methods with
Relaxed Time-Step Restrictions Sigal Gottlieb, University of Massachusetts:
Colin Macdonald, Simon Fraser University; Steve Ruuth, Simon Fraser
University, Canada.

(d) Comments on Linear Instability of Time Integration Methods with the
Fifth-Order WENO Spatial Discretization Raymond J. Spiteri and Rong
Wang, University of Saskatchewan, Canada.

3. We have organized a minisymposium which will take place at the 2008 SIAM
annual meeting, which will feature the following:

(a) Strong Stability Preserving Time-Stepping Methods by Sigal Gottlieb.
University of Massachusetts, Dartmouth; David Ketcheson, University of
Washington; Colin Macdonald, Simon Fraser University

(b) Optimal Explicit and Implicit SSP Runge-Kutta Methods by David I.
Ketcheson, University of Washington; Colin Macdonald, Simon Fraser
University; Sigal Gottlieb, University of Massachusetts, Dartmouth;

(c) Practical considerations for IMEX SSP Runge-Kutta methods by Inmac-
ulada Higueras, Universidad Pblica de Navarra, Spain; Teo Roldan.

(d) Generalizations of Positivity and Strong Stability Preservation by Zoltan
Horvath, Szchenyi Istvan University, Gyr, Hungary.

(e) High Order Discretizations of Kinetic Equations by Lorenzo Pareschi.
University of Ferrara, Italy.

(f) Multirate SSP Methods for Hyperbolic PDEs by Emil Constantinescu
and Adrian Sandu, Virginia Polytechnic Institute & State University.

(g) Do We Know WENO? by Raymond J. Spiteri and Rong Wang, Uni-
versity of Saskatchewan, Canada.

(h) Stage-exceeding Order SSP Time-stepping for Runge-Kutta Discontinuous
Galerkin Methods by Clint Dawson, University of Texas, Austin; Ethan
Kubatko, University of Texas at Austin.

4. Seminar presentation "Strong Stability Preserving time discretizations with op-
timal time-step restrictions" at UMass Amherst on October 30, 2007.

5. Workshop presentation "Strong Stability Preserving Time Discretizations" at
the Statistical and Applied Mathematical Sciences Institute's (SAMSI) 2007-
2008 Program on Random Media Interface Problems Workshop in North Car-
olina on November 15, 2007.

6. Seminar presentation "On Strong Stability Preserving Runge-Kutta and Multi-
step Time Discretizations" at the (NYU) Courant Institute's Numerical Anal-
ysis and Scientific Computing seminar on November 30, 2007.

7. Seminar presentation "Time stepping methods for numerical solution of hy-
perbolic PDEs with shocks" in MIT's Mathematics Department's Numerical
Methods for Partial Differential Equations seminar on November 12, 2008.

8. Seminar presentation "Time stepping methods for numerical solution of hyper-
bolic PDEs with shocks" Mathematics Department Colloquium in The Univer-
sity of Connecticut - Storrs on November 13, 2008.

9. Book contract with for World Scientific Publishing for a monograph on SSP
time-discretization methods (together with C.-W. Shu).

These minisymposia, seminars, workshops, and website have caused the topic of time-
stepping to be more widely discussed and studied, and has inspired collaborations and
other research on the topic.

2 Detailed Progress By Year:

Year 1: We studied the class of diagonally split Runge-Kutta methods to find high
order, unconditionally SSP methods. Diagonally split Runge-Kutta (DSRK) ([1.
2, 8, 9]) time discretization methods are a class of implicit time-stepping schemes
which offer both (formal) high-order convergence and a form of nonlinear stability
known as unconditional contractivity. This combination is not possible within the
classes of Runge-Kutta or linear multistep methods and therefore appears promising
for the strong stability preserving (SSP) time-stepping community which is generally
concerned with computing oscillation-free numerical solutions of PDEs.

We conducted a thorough numerical study of second and third order diagonally
split Runge-Kutta methods on a variety of of archetypal test cases including linear
advection, Burgers' equation, a diffusion equation with discontinuous initial data,
and the Black-Scholes equation. The numerical tests verified the asymptotic order
of the schemes as well as the unconditional contractivity property. However, in ev-
ery numerical experiment, diagonally split Runge-Kutta methods suffer from order
reduction at large step-sizes. Indeed, for time-steps larger than those typically cho-
sen for explicit methods, these diagonally split Runge-Kutta methods behave like
first-order implicit methods. In every numerical experiment, the unconditionally con-
tractive diagonally split Runge-Kutta methods were out-performed by the first-order
backward Euler scheme when At > 2AtpE, and by explicit Runge-Kutta methods or
Crank-Nicolson when At < 2AtpE- At larger time-steps, the unconditionally con-
tractive diagonally split Runge-Kutta schemes are strong stability preserving (SSP)
but suffer from order reduction, making backward Euler a better choice. At small
step-sizes, Crank-Nicolson and explicit SSP Runge-Kutta methods are SSP, and pro-
duce far more accurate results at a smaller computational cost. Indeed, for time-steps
larger than those typically chosen for explicit methods, these DSRK methods behave
like first-order implicit methods. This is unfortunate, because it is precisely to al-
low a large time-step that we choose to use implicit methods. We studied this order
reduction phenomenon analytically, and showed that higher stage order of the un-
derlying Runge-Kutta schemes was insufficient to avoid order reduction. We then
derived DSRK stage order conditions and constructed DSRK schemes with higher
stage which do not suffer from order reduction. However, because of the high stage
order, these schemes cannot be unconditionally contractive, and the resulting SSP
coefficient are comparable to implicit Runge-Kutta [16].

Year 2: In the second year of the project we surveyed the literature on contrac-

tive methods and extracted results which are applicable to SSP methods, identified
efficient techniques to find the radius of absolute monotonicity, and found optimal
implicit SSP Runge—Kutta methods of order up to six.

Using the results from contractivity theory, we were able to identify the following
order barriers and bounds on the SSP coefficient of Runge-Kutta, multistep, and
general linear methods:

Runge-Kutta Methods

1. An SSP Runge-Kutta method with can be no more than fourth order
accurate if it is explicit and no more than sixth order accurate if it is
implicit [14].

2. Implicit Runge-Kutta methods that are unconditionally SSP must have
order at most one. This result is in contrast with linear stability and In-
stability, where some high-order implicit methods (i.e., the A-stable meth-
ods and the algebraically stable methods, respectively) are unconditionally
stable.

3. The implicit SSP Runge-Kutta of order p > 1 have an SSP coefficient that
is not dramatically larger than those for explicit methods [15, 3, 12].

4. Any SSP method must have stage order p < 2, and explicit Runge-Kutta
method must have stage order p < 1. The stage order p is a lower bound on
the order of convergence when a method is applied to arbitrarily stiff prob-
lems. Low stage order may lead to order reduction, i.e. slow convergence,
when computing solutions of stiff ODEs.

5. All m-stage diagonally implicit methods have order at most m + 1.

6. All SSP m-stage singly diagonally implicit methods have order at most
rn + 1.

7. SSP singly diagonally implicit methods, which are both singly implicit
and diagonally implicit, have the same order barrier (p < 4) as explicit
methods.

Multistep Methods

1. For explicit s-step methods of order p, the SSP coefficient is bounded by
c < *=£ for s > 1 — s — 1

2. for implicit methods of order p > 1, the SSP coefficient is bounded by
c<2.

3. While there appears to be no limit to the order of accuracy of SSP linear
multistep methods, high order accurate methods of this type are subject
to very small timestep restrictions and require very many steps.

• General Linear Methods
Any explicit m-stage, s-step general linear method of order p, has SSP coefficient
bounded by the number of its stages, c < m.

Although no unconditionally SSP method can have order greater than one [21], we
explored the possibility that implicit methods may have SSP coefficients significantly
larger than those of explicit methods with the same order and number of stages.
The question we wished to answer was whether the allowable step-size can be large
enough to offset the extra computational effort required in the implicit solution of
the resulting system at each iteration.

Using the efficient formulation of the problem of finding the radius of contractivity
of a method, it was possible to use MATLAB to perform a search for optimal implicit
SSP Runge-Kutta methods. These results gave us optimal methods of order up to
six, which is the maximal order for implicit SSP Runge-Kutta methods. In fact, only
existence of methods of order up to five was previously established [14]. Our search
successfully found methods of order six, establishing that this is indeed possible and
that the order barrier is sharp.

Recently, Ferracina and Spijker investigated optimal singly diagonally implicit
Runge-Kutta methods [3]. They showed that such methods have order at most four,
and found optimal methods (by numerical optimization) of up to order four and up
to eight stages. They also conjectured the form of optimal second and third order
methods with any number of stages. Using numerical optimization techniques, we
performed an extensive search among the much larger class of fully implicit SSP
Runge-Kutta methods [12]. Remarkably, searching among the class of fully implicit
methods, the optimal methods of second and third order were found to be singly
diagonally implicit; in fact, they were the very methods found already in [3]. The
optimal methods of fourth through sixth order were found to be diagonally implicit.
Many of these implicit methods have representations that allow for very efficient
implementation in terms of storage. In order to accurately measure the efficiency
of these methods, we define the effective SSP coefficient of a method as cejf = —:
this normalization enables us to compare the cost of integration up to a given time
using diagonally implicit schemes of order p > 1. Unfortunately, the optimal implicit
SSP methods have effective SSP coefficient less than or equal to two, making them
probably too inefficient for practical use. We list effective SSP coefficients of the
numerically optimal methods in Table 2.1. The coefficients of the most efficient
representations of SSP implicit Runge-Kutta methods are available online [11].

The SSP condition provides a guarantee of other necessary properties. When
considering implicit Runge-Kutta methods, it is important to determine whether
there exists a unique solution of the stage equations. The strong stability preserving
timestep restriction turns out to be sufficient for this as well [14, Theorem 7.1].
Furthermore, the SSP condition serves to guarantee that the errors introduced in the

8

Implicit Methods
m / p 2 3 4 5 6

1 2 - - - -
2 2 1.37 - - -
3 2 1.61 0.68 - -
4 2 1.72 1.11 0.29
5 2 1.78 1.21 0.64
6 2 1.82 1.30 0.83 0.030
7 2 1.85 1.31 0.89 0.038
8 2 1.87 1.33 0.94 0.28
9 2 1.89 1.34 0.99 0.63
10 2 1.90 1.36 1.01 0.81
11 2 1.91 l.3(s 1.03 0.80

Table 2.1: Effective SSP coefficients of best known implicit methods. A dash indicates
that SSP methods of this type cannot exist. A blank space indicates that no SSP
methods of this type were found.

solution of the stage equations due to numerical roundoff and (for implicit methods)
errors in the implicit solve are not unduly amplified [14. Theorem 7.2].

In summary, we have gone further than we proposed or anticipated possible in
the study of SSP implicit Runge-Kutta methods. We have found optimal methods of
order up to six and up to eleven stages, which are diagonally implicit and which have
sparse representations, thus making them more efficient for implementation. We also
have enough information to conjecture that the optimal effective SSP coefficient over
this class of methods is bounded by ce// < 2.

In addition to our results, the methodology we adopted in this search also led to
work that is beyond the scope of this grant. David Ketcheson has used the ideas
and techniques developed in the process of this research to find low storage optimal
explicit SSP Runge-Kutta methods of order up to four and of many stages [13].

Year 3: The next step in our research involved the preliminary testing of implicit
and explicit SSP methods on a variety of problems. We carried out many numerical
experiments which showed the need for, and benefit of SSP methods.

Using a nonlinear example, we showed that even when the spatial discretization
is total variation diminishing (TVD) when coupled with forward Euler integration,
this is not sufficient to guarantee that it will be TVD when combined with a higher
order time-discretization. We considered Burgers' equation with a sine wave initial
condition and periodic boundary conditions. The solution is right-travelling and over
time steepens into a shock. We discretize using a first order conservative upwind
approximation which is TVD for At < Ax when coupled with forward Euler. Using
this fact we can conclude that if we integrate, instead, using backward Euler, the

solution will be TVD for all values of At. However, when coupled with second-order
A-stable implicit trapezoidal rule or the A-stable, L-stable, and B-stable implicit
midpoint rule, this is not TVD for At > 2A.x.

Using a non-SSP explicit Runge-Kutta with a second order TVD flux-differencing
method with the superbee slope limiter, we further demonstrated that the timestep
restriction associated with the linear SSP property does not suffice to give reasonably
good behavior in the nonlinear case.

We also performed experiments of SSP methods coupled with the weighted essen-
tially non-oscillatory method. We observe advantages to the use of SSP methods for
WENO methods on linear and nonlinear problems. The time-step at which the total
variation begins to rise by more than 10"13 is much higher for the SSP methods than
for the corresponding non-SSP methods. We observe that in each case the timestep
restriction for L2 linear stability is larger than that required for the TVD property,
and that the non-SSP method is less efficient than the SSP methods.

For SSP Runge-Kutta methods, it is desirable that the internal stages also be
strongly stable. This means requiring not only that ||ura+1|| < ||un||, but also that
each stage u^ for i = 1, ...,ra satisfy ||u^|| < ||u^_1^||. Since the SSP argument relies
on convexity, which is satisfied at the intermediate stages as well, SSP Runge-Kutta
methods have intermediate stage SSP properties. The SSP guarantee of provable
stability even for the intermediate stages is given with no additional cost. This
condition is frequently necessary in the approximate solution of hyperbolic PDEs.
For example, in the numerical solution of the Euler equations of gas dynamics, it is
important that negative pressure or density values be avoided even in the intermediate
stages. Violations of these bounds are more than theoretically problematic, as they
lead to non-physical states and typically to failure of the solution algorithm. We
considered the Riemann problem for the Euler equations with fifth-order WEXO
used for the spatial-discretization. When we determined the largest CFL number a
for which the density and pressure values remain positive at all Runge-Kutta stages,
we find that we see that the SSP methods allow a more efficient time-step than the
non-SSP methods.

We examined the class of spectral deferred correction methods methods, and
demonstrated that they can be written as explicit Runge-Kutta methods. Using this
fact, we can immediately establish bounds on the SSP coefficient of spectral deferred
correction methods and also conclude that downwind operators will be required in
order for explicit spectral DC methods to be SSP if they are of order greater than
four. Similarly, implicit spectral DC methods cannot be SSP without downwinding
if their order exceeds six.

Finally, David Ketcheson independently studied the SSP properties of the Runge-
Kutta Chebyshev methods. Verwers second order methods all have negative Butcher
coe?cients, so they are not SSP under any positive timestep. He found first and second

10

order SSP methods up to 10 stages that have the theoretically optimal time-step.
These are promising for fully explicit integration of convection-di?usion equations
without operator splitting. Unlike IMEX, exponential di?erencing, etc., they apply
the same integration method to the sti? and non-sti? parts)

3 Transitions

Guowei Wei (Michigan State University) and Shan Zhao have implemented our SSP
methods in their matched interface and boundary method to obtain high order schemes
in both space and time for hyperbolic equations. They report that "Your SSP meth-
ods work great!".

Zhilin Li at North Carolina State University requested the coefficients of the sec-
ond order tow-stage implicit SSP scheme to use these with free boundary/moving
interface problems for which stability is always an issue. I was able to advise him on
how to apply this most efficiently

Marsha Berger (NYU) and Uri Shumlak (University of Washington) requested the
SSP review paper. Additionally, Marsha Berger requested that I recommend specific
SSP methods from the paper.

Francis X. Giraldo (Naval Postgraduate School in Monterey, CA) contacted me
asking about the theoretical limits on the order of SSP explicit methods.

4 Acknowledgement/Disclaimer

This work was sponsored (in part) by the Air Force Office of Scientific Research,
USAF, under grant/contract number FA9550-06-1-0255. The views and conclusions
contained herein are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, cither expressed or implied, of the
Air Force Office of Scientific Research or the U.S. Government.

11

References

[1] A. Bellen, Z. Jackiewicz, and M. Zennaro, Contractivity of waveform relaxation
Runge-Kutta iterations and related limit methods for dissipative systems in the
maximum norm. SIAM J. Num. Anal, 31(2): 499-523, 1994.

[2] A. Bellen and L. Torelli. Unconditional contractivity in the maximum norm of
diagonally split Runge-Kutta methods. SIAM J. Num. Anal. 34(2):528-543, 1997.

[3] L. Ferracina and M.N. Spijker. Strong stability of singly-diagonally-
implicit Runge-Kutta methods. Applied Numerical Mathematics, 2008. doi:
10.1016/j.apnum.2007.10.004

[4] S. Gottlieb and C.-W. Shu, Total variation diminishing Runge-Kutta schemes.
Mathematics of Computation, 67, 1998, pp.73-85.

[5] S. Gottlieb, C.-W. Shu and E. Tadmor, Strong Stability Preserving High-Order
Time Discretization Methods, SIAM Review, 43, 2001, pp.89-112.

[6] S. Gottlieb, On High Order Strong Stability Preserving Runge-Kutta and Multi
Step Time Discretizations. Journal of Scientific Computing vol. 25 (2005), pp.
105-128.

[7] S. Gottlieb, D.I. Ketcheson and C.-W. Shu. High Order Strong Stability Pre-
serving Time Discretizations. Journal of Scientific Computing 38:251-289 (2009).

[8] Z. Horvath. Positivity of Runge-Kutta and diagonally split Runge-Kutta methods.
Appl. Numer. Math. 28:309-326.

[9] K.J. In'T Hout, A note on unconditional maximum norm contractivity of diag-
onally split Runge-Kutta methods. SIAM J. on Num. Anal. 33:1125-1134, 1996.

[10] W. Hundsdorfer, S.J. Ruuth and R.J. Spiteri. Monotonicity-preserving linear
multistep methods. SIAM Journal on Numerical Analysis, 41:605-623, 2003.

[11] D.I. Ketcheson, C.B. Macdonald, S. Gottlieb. Strong Stability Preserving Meth-
ods (website). http://www.cfm.brown.edu/people/sg/ssp.html (2007).

[12] D.I. Ketcheson, C.B. Macdonald and S. Gottlieb. Optimal implicit strong sta-
bility preserving Runge-Kutta methods. To appear in Applied Numerical Math-
ematics, doi: 10.1016/j.apnum.2008.03.034.

[13] D.I. Ketcheson. Highly efficient strong stability preserving Runge-Kutta methods
with low-storage implementations. SIAM Journal on Scientic Computing, 30 (4):
2113-2136 (2008).

[14] J.F.B.M. Kraaijevanger. Contractivity of Runge-Kutta methods. BIT, 31:482-
528, 1991.

12

[15] H.W.J. Lenferink. Contractivity-preserving implicit linear multistep methods.
Mathematics of Computation, 56:177-199, 1991.

[16] C.B. Macdonald, S. Gottlieb, and S. Ruuth. A numerical study of diagonally
split Runge-Kutta methods for PDEs with discontinuities. Journal of Scientific
Computing, 36(1):89-112, (2008).

[17] C.-W. Shu, Total-variation-diminishing time discretizations, SIAM Journal on
Scientific and Statistical Computing, 9, 1988, pp. 1073-1084.

[18] C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory
shock-capturing schemes, Journal of Computational Physics, 77, 1988, pp.439-
471.

[19] C.-W. Shu, A survey of strong stability preserving high order time discretizations,
in Collected Lectures on the Preservation of Stability under Discretiza-
tion, D. Estep and S. Tavener, editors, SIAM, 2002, pp.51-65.

[20] R.J. Spiteri and S.J. Ruuth, A new class of optimal high-order strong-stability-
preserving time discretization methods, SIAM Journal on Numerical Analysis.
40, 2002, pp.469-491.

[21] M.N. Spijker. Conductivity in the numerical solution of initial value problems.
Numerische Mathematik, 42:271-290, 1983.

13

5 Appendix I

The optimal implicit Runge—Kutta methods found under this grant

Shu-Osher Coefficients for Second Order methods: The optimal s-stage second
order implicit SSP Runge-Kutta method has SSP coefficient 2s and Shu-Osher form

0
i 0

1 /'

2s
1

2s
J_
2.s

J_
Is

2s

2s

Shu-Osher Coefficients for Third Order methods: The optimal s-stage third
order implicit SSP Runge-Kutta method has SSP coefficient s — 1 + y/s2 — 1 and
Shu-Osher form

where

/'

Mil

M21

Mil
, A =

M21 Mil

Ms+l,s_

Mn = 5 V

Ms+l,s
8+1

s-l\ 1

JTil' m" 2

0
1 0

Aj+l,s.

s(s + 1 + v^3!)'

8 + 1
-1 ,

Vl+l,S

s- 1

(s + l)(s - 1 + y/sZ^l)

s(s + 1 + \/s2 - 1)

Shu-Osher Coefficients for Fourth Order methods:

1. Optimal 3-stage, 4th-order method:

MH = 0.157330905682085 M21 = 0.342491639470766
M22 = 0.047573123554705 //32 = 0.338136048168635
M33 = 0.157021682372699 M4i = 0.081822264233578
M42 = 0.079106848361263 fi43 = 0.267698531248384
A2i = 0.703541497995214 A32 = 0.694594303739345
A4i = 0.168078141811591 A42 = 0.162500172803529
A43 = 0.549902549377947

1 1

2. Optimal 4-stage, 4th-order method:

fiu = 0.119309657880174
/i2i = 0.226141632153728 /t22
fi32 = 0.180764254304414 /;33
/i43 = 0.212545672537219 //44
/i6i = 0.010888081702583 /i52
//54 = 0.181099440898861 A21
A32 = 0.799340893504885 A43
A5i = 0.048147179264990 A52
A54 = 0.800823091149145

0.070605579799433
0.070606483961727
0.119309875536981
0.034154109552284
1
0.939878564212065
0.151029729585865

3. Optimal 5-stage, 4th-order method:

j*u = 0.072154507748981 y/2i
/x22 = 0.071232036614272 M32
/x33 = 0.063186062090477 fUa
/i44 = 0.077017601068238 A*54
Ai55 = 0.106426690493882 /z65
A*52 = 0.007472809894781 /i62
A2i = 1 A32

A43 = 0.934991917505507 A54
A65 = 0.894472670673021 A52
A62 = 0.105527329326976

0.165562779595956
0.130035287184462
0.154799860761964
0.158089969701175
0.148091381629243
0.017471397966712
0.785413771753555
0.954864191619538
0.045135808380468

4. Optimal 6-stage, 4th-order method:

/*ii = 0.077219435861458 /i2i
/i22 = 0.063842903854499 /i32
/X33 = 0.058359965096908 /i41
/z43 = 0.103230521234296 //44
/i54 = 0.128204308556197 /i55
M63 = 0.008043763906343 /i65
//66 = 0.077016336936138 /i73
//76 = 0.114400114184912 A21
A32 = 1 A41
A43 = 0.805203213502341 A54
A63 = 0.062741759593964 A65
A73 = 0.107673404480272 A76

0.128204308556198
0.128204308556197
0.008458154338733
0.058105933032597
0.064105484788524
0.120160544649854
0.013804194371285
1
0.065974025631326
1
0.937258240406037
0.892326595519728

L5

5. Optimal 7-stage, 4th-order method:

/in = 0.081324471088377 /i2i
/i22 = 0.051065224656204 /i32

/i33 = 0.036491713577701 /i43

/i44 = 0.037028821732794 /*54

/x55 = 0.040474271914787 /x65

/i66 = 0.061352000212100 /i73

/i76 = 0.088170205242212 /i77

/i83 = 0.001561606596621 /x87

-^21 = 1 A32

A43 = 0.865661994183934 A54

AQ5 = 1 A73

A76 = 0.810375930105481 A83
A87 = 0.985647210475246

0.108801609187400

0.108801609187400

0.094185417979586

0.108801609187400

0.108801609187400

0.020631403945188

0.080145231879588

0.107240002590779

1

1

0.189624069894518
0.014352789524754

6. Optimal 8-stage, 4th-order method:

/in = 0

/*22 = 0

m = 0
flu = 0
/i54 = 0

M65 = 0

/i76 = 0

/i84 = 0

/'88 = 0

A21 = 1
A43 = l
A54 = 0

A7e = 1
A87 = 0

.080355939553359 /t2i

.054617345411549 /i32

.039438131644116 //43

.032427875074076 /i5i

.083174746150582 /i55

.093742212796061 /i66

.093742212796061 /i77

.021977226754808 /i87

.055606577879005 //98

A32

A51

887270992114641 A65

A84
.765556774271797 A98

0.093742212796061

0.093742212796061

0.093742212796061

0.004426522032754

0.030116385482588

0.038334326442344

0.058861620081910

0.071764986041253

0.093742212796061

1

0.047220157287989
1
0.234443225728203
1

16

7. Optimal 9-stage, 4th-order method:

Mil =

M22 =

M33 =

/U44 =

M55 =

M62 =

M66 =

M77 =

M88 =

M98 =

Mio,9

A32 =

A54 =

^62 =

A76 =

A95 =

Al0,9

0.068605696784244 /i21
0.048685583036902 /x32
0.039925150083662 /v,43
0.031928917146492 ^54
0.029618614941264 /i61
0.001326570052113 /J65
0.029699905991308 /x76
0.035642110881905 /i87
0.050978240433952 ^95

= 0.065270626421385 /x99
= 0.083046524401968 A21
0.936520713898770 A43
1 A61
0.015973817828813
1
0.214047464461523
= 1

-^65

^87

A<J8

0.082269487560004
0.077774790319743
0.083046524401968
0.083046524401968
0.008747971137402
0.072971983212453
0.083046524401968
0.083046524401969
0.017775897980583
0.057552171403649
0.990643355064403
1
0.105338196876962
0.878687985294225
1
0.785952535538477

8. Optimal 10-stage, 4th-order method:

Mil =

M22 =

M33 =

M44 =

M55 =

M66 =

M76 =

M87 =

M98 =

M'10,6 :

Ml0,10

A21 =

A43 =

-^65 =

-^76 =

A98 =

^10,9 :

0.053637857412307
0.042472343576273
0.039816143518898
0.034233821696022
0.030626774272464
0.029485772863308
0.064406146499568
0.073302847899924
0.073302847899924
= 0.012892211367605
= 0.053275700719583
1
0.990280128291965
1
0.878630890132646
1
= 0.824124004224143

M21 =

M32 =

M43 =

M54 =

A*65 =

M72 =

M77 =

M88 =

M99 =

Ml0,9 :

Mil,10

A32 =

A54 =

A72 =

^87 =

Al0,6 :

All,10

0.073302847899924
0.063734820131903
0.072590353622503
0.073302847899924
0.073302847899924
0.008896701400356
0.033369849008191
0.037227578299133
0.046126339053885
= 0.060410636532319
= 0.073302847899924
0.869472632481021
1
0.121369109867354
1

= 0.175875995775857
= 1

17

9. Optimal 11-stage, 4th-order method:

Mn =
M22 =

/'•33 =

M43 =

M54 =

M65 =

M76 =

A*83 =

M88 =

M99 =

MlO.10

Mil, 10

Ml2,ll

A32 —

A43 =

^65 =

As3 =

A98 =

All,7 =

^12,11

0.056977945207836

0.043484869703481

0.035790792116714

0.061212831485396

0.065880156369595

0.065880156369595

0.065880156369595

0.009935800759662

0.027887296332663

0.033340440672342

= 0.042024506703707

= 0.053858428791080

= 0.065880156369595

1

0.929154313811668
1

0.150816289869158

1

= 0.182478734735714

= 1

A*21 =

^32 =

/'41 =

/X44 =

M55 =

M66 =

M77 =

A<87 =

M98 =

Ml0,9 :

Mll,7 =

Mil,11

A2I =

A41 =

A54 =

A76 =

^87 =

Al0,9 :

All,10

0.065880156369595

0.065880156369595

0.000026595081404

0.029306212740362

0.028274789742965

0.025442782369057

0.029602951078198

0.055944355609932

0.065880156369595

= 0.065880156369595

= 0.012021727578515

= 0.045164424313434

1

0.000403688802047
1
1
0.849183710130842

= 1
= 0.817521265264286

Shu-Osher Coefficients for Fifth Order methods:

1. Optimal 4-stage, 5th-order method:

M21 = 0.125534208080981
AI32 = 0.350653119567098
/i4i = 0.097766579224131
/143 = 0.404181556145118
Msi = 0.022869941925234
M53 = 0.157510964003014
A2i = 0.143502249669229
A41 = 0.111760167014216
A43 = 0.462033126016285
A52 = 0.157867252871240
A54 = 0.317003054133379

M22

M33

M42

M44

M52

M54

A32

A42

A5I

-^53

0.125534208080983

0.048181647388277

0.000000005345013

0.133639210602434

0.138100556728488

0.277310825799681

0.400843023432714

0.000000006110058

0.026143376902960

0.180055922824003

18

2. Optimal 5-stage, 5th-order method:

M2,l
M2,2
/'(3,2
M4,l
M4.3
M(5,l
/i(5,3
//(5,5
M(6,4
A(2,l
A(3,2
A(4,2
A(5,l
A(5,3
A(6,3
A(6,5

0.107733237609082
0.107733237609079 //(3,1
0.205965878618791 /i(3,3
0.010993335656900 /i(4,2
0.245761367350216 //(4,4
0.040294985548405 /z(5,2
0.024232322953809 /x(5, 4
0.098999612937858 //(6, 3
0.023678103998428 /x(6,5
0.344663606249694 A(3,1
0.658932601159987 A(4, 1
0.000000100208717 A(4, 3
0.128913001605754 A(5, 2
0.077524819660326 A(5,4
0.255260385110718 A(6,4
0.623567413728619

0.000009733684024
0.041505157180052
0.000000031322743
0.079032059834967
0.011356303341111
0.220980752503271
0.079788022937926
0.194911604040485
0.000031140312055
0.035170229692428
0.786247596634378
0.036331447472278
0.706968664080396
0.075751744720289

3. Optimal 6-stage, 5th-order method:

M2,1
/i(3,2
M4.3
M(5,1
M(5, 5
/'(6,3
/i(6,6
M(7,4
A(2,l
A(4,3
A(5,4
A(6,3
A(7,3
A(7,6

0.084842972180459 //(2, 2
0.149945333907731 ^(3,3
0.175767531234932 ^(4,4
0.024709139041008 /i(5,4
0.054767418942828 /z(6, 2
0.026804592504486 //(6, 5
0.085074359110886 /x(7,3
0.042600565019890 /x(7,6
0.422021261021445 A(3,2
0.874293218071360 A(5,1
0.861728690085026 A(6,2
0.133329934574294 A(6,5
0.024117294382203 A(7,4
0.752865185365536

0.084842972180464
0.063973483119994
0.055745328618053
0.173241563951140
0.014574431645716
0.159145416202648
0.004848530454093
0.151355691945479
0.745849859731775
0.122906844831659
0.072495338903420
0.791612404723054
0.211901395105308

19

4. Optimal 7-stage, 5th-order method:

fi2l = 0.077756487471956 //22
/i32 = 0.126469010941083 /i33
//.43 = 0.143639250502198 //,44
/i5i = 0.011999093244164 //54
/i55 = 0.047108760907057 //62
/i63 = 0.027138257330487 /i65
/zee = 0.037306165750735 fi73

/i7G = 0.140855998083160 ^
/i84 = 0.009653207936821 /i85
//86 = 0.000177781270869 ^87
A2I = 0.482857811904546 A32
A43 = 0.891981318293413 A5i
A54 = 0.900717090387559 AG2
A63 = 0.168525096484428 A65
A73 = 0.125302322168346 A7G
A84 = 0.059945182887979 A85
A80 = 0.001103998884730 A87

0.077756487471823
0.058945597921853
0.044443238891736
0.145046006148787
0.011454172434127
0.122441492758580
0.020177924440034
0.077972159279168
0.025430639631870
0.124996366168017
0.785356333370487
0.074512829695468
0.071128941372444
0.760345962143127
0.874697677831654
0.157921009644458
0.776211398253764

5. Optimal 8-stage, 5th-order method:

fi2i = 0.068228425119547 fj,22

^32 = 0.105785458668142 j/33
H43 = 0.119135238085849 ^44
/i5i = 0.009164078944895 /J54
fi55 = 0.039406904101415 //62
/i63 = 0.019703233696280 /x65
Ai66 = 0.045239659320409 ^73
H76 = 0.116977452926909 ^77
^x84 = 0.011255581082016 /z85
/i87 = 0.114515518273119 /;88
/X95 = 0.002607774587593 /z90
/i98 = 0.104666894951906 A21
A32 = 0.799508082567950 A43
A5i = 0.069260513476804 A54
A62 = 0.056144626483417 A63
A65 = 0.794939486396848 A73
A76 = 0.884095226988328 A84
A85 = 0.049438833770315 A87
A95 = 0.019709106398420 A96
A98 = 0.791054172708715

0.068228425081188
0.049168429086829
0.040919294063196
0.120257079939301
0.007428674198294
0.105180973170163
0.015335646668415
0.050447703819928
0.006541409424671
0.060382824328534
0.024666705635997
0.515658560550227
0.900403391614526
0.908882077064212
0.148913610539984
0.115904148048060
0.085067722561958
0.865488353423280
0.186426667470161

20

6. Optimal 9-stage, 5th-order method:

A*21

M32

/'•43

M51

M55

^65

VTA

A«76

/^84

A*88

/^98

^10,6

A*10,9

A32

A51

-^62

^73

^76

-^87

^98

^10,7

0.057541273792734

0.089687860942851

0.101622955619526

0.009276188714858

0.040815264589441

0.101125244372555

0.003606182878823

0.090586614534056

0.011070977346914

0.046669302312152

0.102117191974435

0.000157554758807

0.088454624345414

0.797947256574797

0.082529667434119

0.100295062538531

0.032083982209117

0.805943410735452

0.901502211016037

0.908530232837680

0.210035759124536

M22

M33

/'44

M54

A*62

M66

^74

A*77

M87

A*95

M99

Ml0,7

^21

^43

•*54

^65

A74

^84

^95

^10,6

-^10,9

0.057541282875429

0.041684970395150

0.040743690263377

0.101958242208571

0.011272987717036

0.040395338505384

0.018205434656765

0.042925976445877

0.101327254746568

0.010281040119047

0.050500143250113

0.023607648002010

0.511941093031398

0.904133043080300

0.907116066770269

0.899704937426848

0.161972606843345

0.098497788983963

0.091469767162319

0.001401754777391

0.786975228149903

21

7. Optimal 10-stage, 5th-order method:

M21

A*32

/'43

M51

M55

A*65

A*73

^76

A*84

M88

^98

Ml0,6

A*10,9

Mnj

Mn.io

A32

A51

^62

^73

^76

^87

^98

-^10,7

^11,7

^11,10

0.052445615058994

0.079936220395519

0.089893189589075

0.007606429497294

0.035536573874530

0.089447242753894

0.003271387942850

0.080215515252923

0.009638972523544

0.040785658461768

0.089540979697808

0.005634796609556

0.086547180546464

0.001872759401284

0.079160150775900

0.809542670828687

0.077033029836054

0.094135396158718
0.033130514796271

0.812371189661489

0.902382678155958

0.906813500744962

0.066440169285130

0.018966103726616

0.801683136446066

M22

M33

/'44

M54

^62

M66

A*74

^77

/^87

M95

^99

Ml0,7

MlO.10

/'11,8

^21

^43

-^54

^65

A74

-^84

A95

•^10,6

^10,9

^11,8

0.052445635165954

0.038724845476313

0.037676214671832

0.090180506502554

0.009295158915663

0.036490114423762

0.015255382390056

0.035768398609662

0.089103469454345

0.009201462517982

0.042414168555682

0.006560464576444

0.043749770437420

0.017616881402665

0.531135486241871

0.910380456183399

0.913290217244921

0.905864193215084

0.154496709294644

0.097617319434729

0.093186499255038

0.057065598977612

0.876494226842443

0.178412453726484

22

8. Optimal 11-stage, 5th-order method:

A*21

M32

A*43

M51

M55

M63

Af66

A*74

M77

A*87

^95

^99

^10,7

/'<10,10

^11,8

A*ii,n

Ml2,9

•^21

^43

^54

^63

A73

^76

^87

^98

^10,7

All,7

-^11,10

^12,9

0.048856948431570

0.072383163641108

0.080721632683704

0.006438090160799

0.032672027896742

0.000719846382100

0.033437798720082

0.012192534706212

0.033377699686911

0.079986775597087

0.008095394925904

0.036372965664654

0.005394911565057

0.032282094274356

0.008920593887617

0.042478561828713

0.011637432775226

0.553696439876870

0.914819326070196

0.918370981510030

0.008158028526592

0.034327672500586

0.827494171134198

0.906491181031666

0.908254782302260

0.061140603801867

0.040471104837131

0.858431687176596

0.131887178872293

A*22

A*33

/'•44

fJ-54

^62

fJ-65

A*73

M76

A<84

A*88

M98

/^10,6

^10,9

f'nj

A*n,io

^12,8

^12,11

A32

A51

-^62

^65

A74

^84

A95

^10,6

^10,9

All,8

^12,8

^12,11

0.048856861697775

0.035920513887793

0.034009594943671

0.081035022899306

0.007591099341932

0.079926841108108

0.003028997848550

0.073016254277378

0.008251011235053

0.035640440183022

0.080142391870059

0.005907318148947

0.076935557118137

0.003571080721480

0.075746112223043

0.004170617993886

0.072377330912325

0.820319346617409

0.072962960562995

0.086030028794504

0.905811942678904

0.138178156365216

0.093508818968334

0.091745217287743

0.066947714363965

0.871911681834169

0.101097207986272

0.047265668639449

0.820253244225314

23

Shu-Osher Coefficients for sixth Order methods:

1. The optimal sixth-order, six-stage method (c = 0.18):

H21 = 0.306709397198437 ^22
/u3i = 0.100402778173265 //32
/X33 = 0.100402700098726 /z41
/i42 = 0.000708584139276 ^43
//44 = 0.028228318307509 /y5i
M52 = 0.000026687930165 /X53
^54 = 0.331296656179688 //55
yuei = 0.000033015066992 /z62
^63 = 0.395057247524893 //64
/x65 = 0.421912313467517 /u66
Hn = 0.054129307323559 ^72
/x73 = 0.233976271277479 /x74
/z75 = 0.303060566272042 /z76
A2i = 0.055928810359256 A31
A32 = 0.000000002666388 A41
A42 = 0.000129211130507 A43
A5i = 0.018587746937629 A52
A53 = 0.024929494718837 A54
A61 = 0.000006020335333 A62
A63 = 0.072039142196788 A64
A65 = 0.076936194272824 A71
A72 = 0.000379944400556 A73
A74 = 0.033716209818106 A75
A76 = 0.024795346049276

0.306709397198281
0.000000014622272
0.000015431349319
0.383195003696784
0.101933808745384
0.136711477475771
0.107322255666019
0.000000017576816
0.014536993458566
0.049194928995335
0.002083586568620
0.184897163424393
0.135975816243004
0.018308561756789
0.000002813924247
0.069876048429340
0.000004866574675
0.060412325234826
0.000000003205153
0.002650837430364
0.009870541274021
0.042665841426363
0.055263441854804

21

2. The optimal sixth-order, seven-stage method (c = 0.26):

//,21 = 0.090485932570398
/i22 = 0.090485932570397
/i32 = 0.346199513509666
M33 = 0.056955495796615 A2i
/i4i = 0.089183260058590 A32
^42 = 0.122181527536711 A4i
M43 = 0.340520235772773 A42
//44 = 0.086699362107543 A43
/i5i = 0.214371998459638 A51
M52 = 0.046209156887254 A52
//53 = 0.215162143673919 A53
//54 = 0.000000362542364 A54
/x55 = 0.209813410800754 A61
Hei = 0.000000591802702 A62
^62 = 0.390556634551239 A63
Hes = 0.000000491944026 A64
/i64 = 0.330590135449081 A65
(i65 = 0.007410530577593 A71
Hm = 0.070407008959133 A72
/i71 = 0.000000021842570 A73
^x72 = 0.325421794191472 A74
^73 = 0.069025907032937 A75
//,74 = 0.373360315300742 A76
fi75 = 0.007542750523234 A81
/i76 = 0.005465714557738 A82
fi77 = 0.063240270982556 A83
H&i = 0.044161355044152 A84
M82 = 0.204837996136028 A85
M83 = 0.191269829083813 A86
/i84 = 0.255834644704751 A87
^85 = 0.015984178241749
Mae = 0.016124165979879
/i87 = 0.151145768228502

0.023787133610744
0.091009661390427
0.023444684301672
0.032119338749362
0.089516680829776
0.056354565012571
0.012147561037311
0.056562280060094
0.000000095305905
0.000000155574348
0.102670355321862
0.000000129323288
0.086906235023916
0.001948095974350
0.000000005742021
0.085547570527144
0.018145676643359
0.098149750494075
0.001982854233713
0.001436838619770
0.011609230551384
0.053848246287940
0.050281417794762
0.067254353278777
0.004201954631994
0.004238754905099
0.039733519691061

25

3. The optimal sixth-order, eight-stage method (c = 2.25):

//2i = 0.078064586430339
/x22 = 0.078064586430334
/i3i = 0.000000000128683
/i32 = 0.207887720440412
/z33 = 0.051491724905522
M4! = 0.039407945831803
M43 = 0.256652317630585
yu44 = 0.062490509654886
/xsi = 0.009678931461971
fi52 = 0.113739188386853
H54 = 0.227795405648863
//55 = 0.076375614721986
//62 = 0.010220279377975
/i63 = 0.135083590682973
/z65 = 0.235156310567507
/u66 = 0.033370798931382
H72 = 0.000000009428737
fi73 = 0.112827524882246
tj.74 = 0.001997541632150
/i75 = 0.177750742549303
fi76 = 0.099344022703332
tm = 0.025183595544641
fisl = 0.122181071065616
A*82 = 0.000859535946343
fi83 = 0.008253954430873
/i84 = 0.230190271515289
/x85 = 0.046429529676480
/x86 = 0.017457063072040
fiS7 = 0.017932893410781
M88 = 0.322331010725841
H9i = 0.011069087473717
//g2 = 0.010971589676607
//93 = 0.068827453812950
//,94 = 0.048864283062331
/i95 = 0.137398274895655
Hae = 0.090347431612516
/i97 = 0.029504401738350
/x98 = 0.000167109498102

A2i

A3I

A32

A41

^43

A5I

A 52

^54

^62

^63

^65

A72

A73

A74

A75

A76

A8l

A82

A83

A84

A85

A86

A87

A91

A92

A93

A94

A95

A96

A97

A98

0.175964293749273

0.000000000290062

0.468596806556916

0.088828900190110

0.578516403866171

0.021817144198582

0.256377915663045

0.513470441684846

0.023037388973687

0.304490034708070

0.530062554633790

0.000000021253185

0.254322947692795

0.004502630688369

0.400665465691124

0.223929973789109

0.275406645480353

0.001937467969363

0.018605123379003

0.518868675379274

0.104656154246370

0.039349722004217

0.040422284523661

0.024950675444873

0.024730907022402

0.155143002154553

0.110144297841125

0.309707532056893

0.203650883489192

0.066505459796630

0.000376679185235

26

4. The optimal sixth-

M21 =

M22 =

M31 =

M32 =

/^33 =

M42 =

M43 =

^44 =

/'51 =

M52 =

M53 =

M54 =

^55 =

A*61 =

A*62 =

^63 =

M64 =

M(S5 —

M71 =

/*72 =

M73 =

^74 =

^75 =

M76 =

^77 =

/'81 =

^82 =

^83 =

A*84 =

A*85 =

M8G =

^87 =

^88 =

M91 =

M92 =

/•*93 =

I'm =
M95 =

^96 =

M97 =

M98 =

^99 =

^10,1 =

Ml0,2 =

^10,3 =

^10,4 =

Ml0,5 =

Ml0,6 =

order, nine-stage method (c

0.060383920365295

0.060383920365140

0.000000016362287

0.119393671070984

0.047601859039825

0.000000124502898

0.144150297305350

0.016490678866732

0.014942049029658

0.033143125204828

0.020040368468312

0.095855615754989

0.053193337903908

0.000006536159050

0.000805531139166

0.015191136635430

0.054834245267704

0.089706774214904

0.000006097150226

0.018675155382709

0.025989306353490

0.000224116890218

0.000125522781582

0.125570620920810

0.019840674620006

0.000000149127775

0.000000015972341

0.034242827620807

0.017165973521939

0.000000000381532

0.001237807078917

0.119875131948576

0.056749019092783

0.000000072610411

0.000000387168511

0.000400376164405

0.000109472445726

0.012817181286633

0.011531979169562

0.000028859233948

0.143963789161172

0.060174596046625

0.001577092080021

0.000008909587678

0.000003226074427

0.000000062166^0

0.009112668630420

0.008694079174358

= 5.80):

A21

A31

A32

A42

A43

A51

A52

A53

A54

Aei

^62

^63

^64

^65

A71

A72

A73

A74

A75

A76

Asi

A82

A83

A84

A85

A86

A87

A91

A92

A93

A94

A95

A96

A97

A98

Aio,i

Al0,2

Al0,3

Al0,4

Al0,5

Al0,6

Al0,7

Al0,8

Al0,9

0.350007201986739

0.000000094841777

0.692049215977999

0.000000721664155

0.835547641163090

0.086609559981880

0.192109628653810

0.116161276908552

0.555614071795216

0.000037885959162

0.004669151960107

0.088053362494510

0.317839263219390

0.519973146034093

0.000035341304071

0.108248004479122

0.150643488255346

0.001299063147749

0.000727575773504

0.727853067743022

0.000000864398917

0.000000092581509

0.198483904509141

0.099500236576982

0.000000002211499

0.007174780797111

0.694839938634174

0.000000420876394

0.000002244169749

0.002320726117116

0.000634542179300

0.074293052394615

0.066843552689032

0.000167278634186

0.834466572009306

0.009141400274516

0.000051643216195

0.000018699502726

0.000000360342058

0.052820347381733

0.050394050390558

0.103597678603687

0.159007699664781

0.624187175011814

yr\n'-rc\t rnt on

5. The optimal sixth-order, ten-stage method (c = 8.10):

M21

M22

M32

M33

M43

/i44

M51

M52

^54

A*55

M62

/'63

A*64

M65

M66

M73

M74

M76

M77

M84

M85

Mse

M87

A*88

M94

M95

M96

y"98

/'<99

Ml0,l

Ml0,2

Ml0,6

Ml0,7

/''10,8

Ml0,9

MlO.lO

Mll,3

Mll,7

Mll,8

/'•11,9

Mil,10

0.054638144097621

0.054638144097609

0.094708145223810

0.044846931722606

0.108958403164940

0.031071352647397

0.004498251069701

0.005530448043688

0.107851443619437

0.018486380725450

0.015328210231111

0.014873940010974

0.000000013999299

0.093285690103096

0.031019852663844

0.023345108682580

0.000000462051194

0.100142283610706

0.037191650574052

0.020931607249912

0.007491225374492

0.000000004705702

0.094887152674486

0.041052752299292

0.000000000437894

0.013484714992727

0.012301077330264

0.097178530400423

0.039273658398104

0.000987065715240

0.000000347467847

0.004337021151393

0.011460261685365

0.002121689510807

0.104338127248348

0.042268075457472

0.000656941338471

0.015039465910057

0.004816543620956

0.031302441038151

0.071672462436845

A21

A32

A43

A51

A52

A54

AG2

^63

-^64

^65

A73
A74

A76

^84

^85

As6

^87

A94

A95

A96

^98

Aio,i

Al0,2

Al0,6

Aioj

Al0,8

Al0,9

All,3

All,7

All,8

All,9

An,10

0.442457635916190

0.766942997969774

0.882341050812911

0.036426667979449

0.044785360253007

0.873376934047102

0.124127269944714

0.120448606787528

0.000000113365798

0.755424009901960

0.189047812082446

0.000003741673193

0.810948446244362

0.169503368254511

0.060663661331375

0.000000038106595

0.768392593572726

0.000000003546047

0.109198714839684

0.099613661566658

0.786948084216732

0.007993221037648

0.000002813781560

0.035121034164983

0.092804768098049

0.017181361859997

0.844926230212794

0.005319886250823

0.121789029292733

0.039004189088262

0.253485990215933

0.580400905152248

28

6 Appendix 2

This appendix contains MATLAB scripts which we created as part of this project.

• Evaluate the Radius of absolute monotonicity from the Butcher array:

function r = am_radius(A,b)
%By David Ketcheson
7»Evaluates the Radius of absolute monotonicity
°/0of a Runge-Kutta method, given the Butcher array.
7.
7oFor an m-stage method, A should be an m x m matrix
7.and b should be a column vector of length m.
'/.
7oAccuracy can be changed by modifying the value of eps.
7.Methods with very large radii of a.m. (>50) will require
7»rmax to be increased.

rmax=50; eps=l.e-12;

m=length(b); e=ones(m,l);
K=[A;b'];
rlo=0; rhi=rmax;

while rhi-rlo>eps 7tuse bisection

r=0.5*(rhi+rlo);

X=eye(m)+r*A; beta=K/X; ech=r*K*(X\e);

if (min(beta(:))<-3.e-16 II max(ech(:))>1.+3.e-16)

rhi=r;

else

rlo=r;

end

end

if rhi==rmax '/, r>=rmax

error('Error: increase value of rmax in am_radius.m');

else

r=rlo;

end

• Butcher array from the Shu Osher array:

function [A,b,c]=shuosher2butcher(alpha,beta);

29

"/.function [A,b,c]=shuosher2butcher(lambda,mu) ;

7.
"/.By David Ketcheson

7.
"/.Generate Butcher form of a Runge-Kutta method,

"/.given its Shu-Osher or modified Shu-Qsher form

%
°/0For an m-stage method, alpha and beta (or lambda and mu) should be
"/.matrices of dimension (m+1) x m
"/.
"/.Note that MATLAB indexes from 1, while the Shu-Qsher coefficients

"/.are usually indexed from zero.

s=size(alpha,2);

X=eye(s)-alpha(l:end-l, :) ;

A=X\beta(l:end-l, :) ;

b=beta(end,:)+alpha(end,:)*A; b=b';

c=sum(A,2);

• Butcher to modified Shu-Osher: This function generates the modified Shu-Osher
form of a Runge-Kutta method, given its Butcher form and radius of absolute
monotonicity

function [lambda,mul]=butcher2modshuosher(A,b,r);
°/0By David Ketcheson
"/.Generate modified Shu-Osher form of a Runge-Kutta method,
"/.given its Butcher form and radius of absolute monotonicity
•/.
"/.For an m-stage method, A should be an m x m matrix

"/.and b should be a column vector of length m.

'/.
"/.Note that MATLAB indexes from 1, while the Shu-Osher coefficients

'/.are usually indexed from zero.

Aup=triu(A);

if max(abs(Aup))>0 mclass='implicit'; else mclass='explicit'; end

if nargin<3 r = am_radius(A,b); end

s=size(A,1);

K=[A;b'];

G=eye(s)+r*A;

mul=K/G;

lambda=r*mul;

for i=l:s+l

if strcmp(mclass, ' implicit') 7.0 stage is u_n

alpha(i)=l-sum(lambda(i,1:s));

30

end

end

'/.Eliminate diagonal terms of lambda array (for implicit methods)

lambda=lambda; mul=mul;

for i=l:s

if lambda(i,i)~=l

fac=l/(l-lambda(i,i));

mul(i,:)=fac*mul(i,:);

lambda(i,:)=fac*lambda(i,:);

lambda(i,i)=0.;

end

end

Butcher to Shu-Osher:

function [alpha,beta]=butcher2shuosher(A,b,r);

'/.By David Ketcheson

7.
'/.Generate Shu-Osher form of an explicit Runge-Kutta method,

'/.given its Butcher form and radius of absolute monotonicity

'/.
°/,For an m-stage method, A should be an m x m matrix

°/,and b should be a column vector of length m.

7.
'/.Note that MATLAB indexes from 1, while the Shu-Osher coefficients

'/.are usually indexed from zero.

if nargin<3 r = am_radius(A,b); end

s=size(A,l);

K=[A;b'];

G=eye(s)+r*A;

beta=K/G;

alpha=r*beta;

for i=2:s+l

alpha(i,l)=l-sum(alpha(i,2:s));

end

Radius of circle contractivity of a Runge-Kutta method, given the Butcher array:

function [r] = cc_radius(A,b)

'/.By David Ketcheson

7.

31

^Evaluates the Radius of circle contractivity

%of a Runge-Kutta method, given the Butcher array

y.
70For an m-stage method, A should be an m x m matrix

°/0and b should be a column vector of length m.

%
YoAccuracy can be changed by modifying the value of eps.
'/.Methods with very large radii of a.m. (>1000) will require
0/,rmax to be increased.

rmax=1000; eps=l.e-13;

if min(b)<=0
r=0;

else
m=length(b);
B=diag(b);
M=B*A+A'*B-b*b';
rlo=0; rhi=rmax;
while rhi-rlo>eps

r=0.5*(rhi+rlo);
X=M+B/r;
if min(eig(X))<-3.e-16

rhi=r;
else

rlo=r;

end

end

end

if rhi==rmax "/, r>=rmax

error('Error: increase value of rmax in cc_radius.m');

else

r=rlo;

end

• Make the Butcher arrays for different methods:

function [A,b,c,r]=makebutcher(name,s)
°/0By David Ketcheson
'/.
°/,Set up Butcher arrays A,b,c for various methods

°/oAlso returns SSP coefficient r
0/,For families of methods, optional input s is the number of stages

if nargin<2 8=1; end

32

switch name

SSP Methods

°/.========== —Explicit

case 'FE11'

70Forward Euler

s=l; r=l;

A=[0];

b=[l]'; c = [0]' *

case 'SSP22'
s=2; r=l;
A= [0 0; 10];
b=[l/2 1/2]'; c=sum(A,2);

case 'SSP42'

s=4; r=3;

A=[0 0 0 0; 1/3 0 0 0; 1/3 1/3 0 0; 1/3 1/3 1/3 0];

b=l/4*ones(m,1); c=sum(A,2);

case 'SSP33'

s=3; r=l;

A=[0 0 0; 10 0; 1/4 1/4 0];

b=[l/6 1/6 2/3]'; c=sum(A,2);

case 'SSP43'

s=4; r=2;

A=[0 0 0 0; 1/2 0 0 0; 1/2 1/2 0 0; 1/6 1/6 1/6 0];

b=[l/6 1/6 1/6 1/2]'; c=sum(A,2);

case 'SSP104'

s=10; r=6;

alphaO=diag(ones(l,s-l),-1);

alpha0(6,5)=2/5; alpha0(6,l)=3/5;

betaO =l/6*diag(ones(l,s-l),-1);

beta0(6,5)=l/15;

A=(eye(s)-alphaO)\betaO;

b=l/10*ones(s,1); c=sum(A,2);

case 'rSSPs2'

"/.Rational (optimal, low-storage) s-stage 2nd order SSP

if s<2 error('Explicit second order SSP family requires s>=2'); end

r=s-l;

alpha= [zeros(l,s);eye(s);];

33

alpha(s+l,s)=(s-l)/s;

beta=alpha/r;

alpha(s+l,l)=l/s;

A=(eye(s)-alpha(1:s, :))\beta(l:s,:);

b=beta(s+l,:)+alpha(s+l,:)*A; b=b';

c=sum(A,2);

case 'rSSPs3'

70Rational (optimal, low-storage) s~2-stage 3rd order SSP

if round(sqrt(s))~=sqrt(s) I I s<4

error('Explicit third order SSP family requires s=n~2, n>l');

end

n=s"2; r=n-s;

alpha=[zeros(1,n);eye(n);];
alpha(s*(s+l)/2+l,s*(s+l)/2)=(s-l)/(2*s-l);
beta=alpha/r;
alpha(s*(s+l)/2+l,(s-l)*(s-2)/2+l)=s/(2*s-l);
A=(eye(n)-alpha(l:n,:))\beta(l:n,:);
b=beta(n+l,:)+alpha(n+l,:)*A; b=b';
c=sum(A,2);

°/0=================Implicit Methods=========================
case 'BE11'

"/.Backward Euler

s=l; r=l.elO;

A=[l];

b=[l]'; c=[l]>;

case 'SDIRK34' 7.3-stage, 4th order singly diagonally implicit (SSP)

s=3; r=1.7588;

g=0.5*(l-cos(pi/18)/sqrt(3)-sin(pi/18));

q=(0.5-g)"2;

A=[g 0 0

0.5-g g 0

2*g l-4*g g];

b=[l/(24*q) l-l/(12*q) l/(24*q)]';

c=sum(A,2);

case 'ISSPm2'
"/.Optimal DIRK SSP schemes of order 2
r=2*s;
i=repmat((l:s)',l,s); j=repmat(l:s,s,l);
A=l/s*(j<i) + l/(2*s)*(i==j);
b=l/s*ones(s,l);

31

c=sum(A,2);

case 'ISSPs3'

"/.Optimal DIRK SSP schemes of order 3

if s<2 error('Implicit third order SSP schemes require s>=2'); end

r=s-l+sqrt(s"2-l);

i=repmat((1:s)',1,s); j=repmat(l:s,s,1);
A=l/sqrt(s~2-l)*(j<i) + 0.5*(l-sqrt((s-l)/(s+D))*(i==j) ;
b=l/s*ones(s,1);
c=sum(A,2);

7,=================Classical Methods=

°/,Gauss-Legendre methods — order 2s
case 'GL1'

r=2; A=l/2; b=l; c=l/2;
case 'GL2'

r=0;
A=[l/4 l/4-sqrt(3)/6

l/4+sqrt(3)/6 1/4];

b=[l/2 1/2]';
c=[l/2-sqrt(3)/6 l/2+sqrt(3)/6]';

case 'GL3'

r=0;

A=[5/36 (80-24*sqrt(15))/360 (50-12*sqrt(15))/360
(50+15*sqrt(15))/360 2/9 (50-15*sqrt(15))/360
(50+12*sqrt(15))/360 (80+24*sqrt(15))/360 5/36]

b=[5/18 4/9 5/18]';
c=[(5-sqrt(15))/10 1/2 (5+sqrt(15))/10]';

%Radau IA methods — order 2s-l

case 'RIA1'

r=l;

A=l; b=l; c=0;

case 'RIA2'

r=0;

A=[l/4 -1/4

1/4 5/12];

b=[l/4 3/4]';

c=[0 2/3]';

case 'RIA3'

r=0;

A=[l/9 (-l-sqrt(6))/18 (-l+sqrt(6))/18

1/9 (88+7*sqrt(6))/360 (88-43*sqrt(6))/360

35

1/9 (88+43*sqrt(6))/360 (88-7*sqrt(6))/360];
b=[l/9 (16+sqrt(6))/36 (16-sqrt(6))/36]';
c=[0 (6-sqrt(6))/10 (6+sqrt(6))/10] ';

70Radau IIA methods — order 2s-1
case 'RIIA1'

r=l;
A=l; b=l; c=l;

case 'RIIA2'
r=0;
A=[5/12 -1/12

3/4 1/4];

b=[3/4 1/4]';

c=[l/3 1]';

case 'RIIA3'

r=0;

A=[(88-7*sqrt(6))/360 (296-169*sqrt(6))/1800 (-2+3*sqrt(6))/225

(296+169*sqrt(6))/1800 (88+7*sqrt(6))/360 (-2-3*sqrt(6))/225

(16-sqrt(6))/36 (16+sqrt(6))/36 1/9];

b=[(16-sqrt(6))/36 (16+sqrt(6))/36 1/9]';

c=[(4-sqrt(6))/10 (4+sqrt(6))/10 1];

%Lobatto IIIA methods — order 2s-2

case 'LIIIA2'

r=0;

A=[0 0

1/2 1/2];

b=[l/2 1/2]';

c=[0 1]';

case 'LIIIA3'

r=0;

A=[0 0 0

5/24 1/3 -1/24

1/6 2/3 1/6];

b=[l/6 2/3 1/6]';

c=[0 12 1] ;

^Miscellaneous Methods=

case 'Mid22'

7,Midpoint 22 method
s=2; r=0.5;
A=[0 0

1/2 0];
b=[0 1]'; c=[0 1/2]';

36

case 'MTE22'

'/Minimal truncation error 22 method (Heun)

s=2; r=0.5;

A=[0 0

2/3 0];

b=[l/4 3/4]'; c=[0 2/3]';

case 'CN22'

7cCrank-Nicholson

s=2; r=2;

A=[0 0
1/2 1/2];

b=[l/2 1/2]'; c=[0 1]';

case 'Heun33'

s=3; r=0;

A=[0 0 0; 1/3 0 0; 0 2/3 0];

b=[l/4 0 3/4]'; c=sum(A,2);

case 'RK44' "/.Classical fourth order

s=4; r=0;

A=[0 0 0 0; 1/2 0 0 0; 0 1/2 0 0; 0 0 10];

b=[l/6 1/3 1/3 1/6]'; c=sum(A,2);

=DSRK Methods=

case 'DSso2'

'/.CBM'S DSRKso2

s=2; isdsrk=l;

A=[3/4 -1/4

1 0];

W=[l/2 0

1 0];

b=[l 0]'; c=[l/2 1]';

case 'DSRK2'

'/.CBM's DSRK2

s=2; isdsrk=l;

A=[l/2 -1/2

1/2 1/2];

W=[0 0
1/2 1/2];

b=[l/2 1/2]'; c=[0 1] '

37

case 'DSRK3'
'/.Zennaro's DSRK3
s=3; isdsrk=l;
A=[5/2 -2 -1/2

-1 2 -1/2
1/6 2/3 1/6];

W=[0 0 0
7/24 1/6 1/24
1/6 2/3 1/6];

b=[l/6 2/3 1/6]'; c=[0 1/2 1] ';
'/.==================== "Non-SSP" Methods of Wong & Spiteri=
case 'NSSP21'

m=2; r=0;
A=[0 0

3/4 0];
b=[0 1]'; c=[0 3/4]';

case 'NSSP32'
m=3; r=0;
A=[0 0 0

1/3 0 0
0 10];

b=[l/2 0 1/2]'; c=[0 1/3 1]';

case 'NSSP33'
m=3; r=0;
A=[0 0 0

-4/9 0 0
7/6 -1/2 0];

b=[l/4 0 3/4]'; c=[0 -4/9 2/3]';

case 'NSSP53'
m=5; r=0;
A=[0 0 0 0 0

1/70000
0 3/16 0 0 0
0 0 1/300
0 0 0 2/30];

b=[l/4 0 0 0 3/4]'; c=[0 1/7 3/16 1/3 2/3]';
end

Order of a Runge-Kutta method:

function p=rk_order(A,b,c)
°/0By David Ketcheson

38

°/0Determine order of a RK method, up to sixth order
°/00rder conditions from text of Hairer, Norsett, & Wanner
'/.
°/0For an m-stage method, input A should be a m x m matrix;

7,b and c should be column vectors of length m

eps=l.e-14;

m=length(b); '/, # of stages

em=ones(m,1);

P=0;

if sum(b)-l<eps

p=i;
end

z(l)=sum(A'*b)-l/2;

if (p==l kk abs(z(l))<eps) p=2; end

z(l)=c'.~2*b-l/3;

z(2)=b'*A"2*em-l/6;

if(max(abs(z))<eps kk p==2) p=3; end

z(l)=b'*c."3-1/4;

z(2)=(b.*c);*A~2*ones(m,l)-l/8;

z(3)=b'*A*c."2-1/12;

z(4)=b'*A~2*c-l/24;

if(max(abs(z))<eps && p==3) p=4; end

z(l)=c'."4*b-l/5;

z(2)=(b.*c.~2)'*A*c-l/10;

z(3)=b'*(A*c)."2-1/20;
z(4)=(b.*c)'*A*c.~2-l/15;

z(5)=b'*A*c."3-1/20;

z(6)=(b.*c)'*A"2*c-l/30;

z(7)=b'*A*diag(c)*A*c-l/40;

z(8)=b'*A"2*c."2-1/60;

z(9)=b'*A~3*c-l/120;

if(max(abs(z))<eps && p==4) p=5; end

if p==5

z(l)=c'.~5*b-l/6;

z(2)=b'*diag(c)."3*A*c-l/12;

z(3)=b'*diag(c)*(A*c)."2-1/24;

z(4)=b'*diag(c).~2*A*c."2-1/18;

39

z(5)=b'*((A*c.-2).*(A*c))-l/36;
z(6)=b'*diag(c)*A*c."3-1/24;
z(7)=b'*A*c."4-1/30;
z(8)=b'*diag(c)."2*A~2*c-l/36;
z(9)=b'*((A~2*c).*(A*c))-l/72;
z(10)=b'*diag(c)*A*diag(c)*A*c-l/48;
z(ll)=b'*A*diag(c).~2*A*c-l/60;
z(12)=b'*A*(A*c)."2-1/120;
z(13)=b'*diag(c)*A"2*c."2-1/72;
z(14)=b'*A*diag(c)*A*c."2-1/90;
z(15)=b'*A~2*c."3-1/120;
z(16)=b'*diag(c)*A"3*c-l/144;
z(17)=b'*A*diag(c)*A~2*c-l/180;
z(18)=b'*A"2*diag(c)*A*c-l/240;
z(19)=b,*A"3*c."2-1/360;
z(20)=b'*A~4*c-l/720;
if(max(abs(z))<eps) p=6; print('This method has order at least six'); end

end

• Absolute monotonic polynomials:

function [gamma,R]=Rsp(s,p)
°/0By David Ketcheson
'/.
'/.Returns the optimal absolutely monotonic polynomial of degree s

'/and order of accuracy p

'/.gamma contains the coefficients of the Taylor series about z=-r

°/„To construct the polynomial, use:

°/0> syms z phi

°/0> phi=simplify(sum((l .+z/R) . "(0:s) . * gamma));

'/.
°/0Uses the MATLAB optimization toolbox

'/.Set options for linprog

opts=optimset('TolX',l.e-15,'TolFun',l.e-15,'Maxlter',10000000,...

'LargeScale','on','Simplex','off,'Display','off');

acc=l.e-15; °/0Accuracy of bisection search
I ==

if p==s °/0In this case, the optimal polynomial is just the Taylor polynomial

R=l;

for i=0:p

d(i+l)=R~i;

for j=0:s

10

B(i+l,j+l)=prod(j-(0:i-l));

end

end

gamma=(B\ones(s+l,l))';

else

M=s+1;

rmax=s-p+1.0001;

rmin=0;

r=rmax; '/.Initial guess

c=zeros(M,1);

clear B d;

while (rmax-rmin>acc) %Find R by bisection

70Set up and improve conditioning of equality constraints

for i=0:p

rescale=r~i; d(i+l)=r"i/rescale;

for j=0:s

B(i+l,j+l)=prod(j-(0:i-l))/rescale;

end

end

70Test feasibility for this value of r

[x,lambda,exitflag]=linprog(c,[] ,[],B,d,zeros(M,1),zeros(M,1)+1.e6,c,opts);

if exitflag==l;

rmin=r; r=(r+rmax)/2;

else

rmax=r; r=(rmin+r)/2;

end

end

°/0Now get a feasible solution so we have the coefficients of the method

R=rmin;

for i=0:p

rescale=R~i;

d(i+l)=R~i/rescale;

for j=0:s

B(i+1,j+l)=prod(j-(0:i-l))/rescale;

end

end

[gamma,lambda,exitflag]=linprog(c,[],[],B,d,zeros(M,1),zeros(M,1)+1.e6,c,opts)
end

11

