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IMPLICIT HIGH ORDER STRONG STABILITY PRESERVING RUNGE- KUTTA TIME
DISCRETIZATIONS
AFOSR GRANT NUMBER FA9550-06-1-0255 Sigal Gottlieb
Mathemnatics Department
University of Massachusetts — Dartmouth

Abstract

We investigated diagonally split Runge-Kutta (DSRK) methods to identify and test
unconditionally strong stability preserving (SSP) methods, and linplicit SSP time-
stepping methods to find methods with a large SSP coeflicient. We found that DSRK
methods which are unconditionally SSP reduce to first order for the stepsizes of
interest, and introduced an analysis which explains this phenomenon and shows that it
is unavoidable. We found optima; implicit SSP Runge Kutta methods up to order six
(which is the maximal possible order for these methods) and eleven stages, and found
that the effective SSP coefficient can be 1o more than two, making these methods
not competitive with explicit methods for most applications, but useful in a carefully
chosen subset of problems. We now have a complete analysis of implicit SSP Runge-

Kutta methods and dermonstrations of the need for the SSP property in solutions of
hyperbolic PDEs with shocks.

1 Summary of Aims and Results

Strong stability preserving (SSP) high order time discretizations were developed to
ensure nonlinear stability properties necessary in the mumerical solution of hyperbolic
partial differential equations with discontinuous solutions. SSP inethods preserve the
strong stability properties — in any norin, seminorm or convex functional - of the spa-
tial discretization coupled with first order Euler time stepping, when the timestep is
suitably restricted. Explicit strong stability preserving (SSP) Runge-Kutta methods
([17], [18],[19], [20], [4],[5], [6]) have been successfully used with a wide range of spatial
discretizations, including spectral, discontinuous Galerkin, and weighted essentially
non-oscillatory (WENO) methods. These high order methods preserve any nonlinear
stability properties satisfied by the spatial discretization coupled with the forward
Euler time-stepping. However, all general linear methods suffer from a SSP tinie-step
restriction. This motivates the search for high order implicit time-stepping methods
with SSP properties and a large allowable time-step, which is the overarching goal of
this project.

The connections between the SSP property and the theory of contractivity have
provided efficient tools for the study of SSP multistep and Runge-Kutta methods.
which we utilized in the search for optimal implicit SSP Runge-Kutta methods. Fur-
thermore, contractivity theory allowed us to determine order barriers on SSP methods.
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to establish bounds on the SSP coefficient, and to conclude that the SSP coefhicient
is not only sufficient but necessary for stroug stability preservation in an arbitrary
norm for an arbitrary semi-discretization that satisfies a strong stability condition
under forward Euler integration.

This work described below was performed in collaboration with David Ketcheson,
a doctoral candidate at University of Washington in Seattle (advised by Dr. R. LeV-
eque), and Colin Macdonald, then a doctoral candidate at Simon Fraser University
(advised by Dr. S. Ruuth) and now a postdoctoral fellow at UCLA (working with
Dr. S. Osher).

The aims of AFOSR grant number FA9550-06-1-0255 were to

e Use results and formulations from contractivity and monotonicity theory to find
optimal class of higher order implicit SSP Runge-Kutta methods.

e Find higher order implicit diagonally split Runge-Kutta methods (DSRK) which
are SSP methods with 1o stepsize restriction.

e Test the optimal implicit SSP Ruuge-Kutta methods for use with flux-immplicit
WENO spatial discretizations.

e Test the DSRK with no time-step restriction with spectral and WENQO spatial
discretizations.

In the grant period we have gone further than we proposed or anticipated. The
following are the accomplishments under this grant:

1. We conducted a thorough numerical study of second and third order diagonally
split Runge-Kutta methods on a variety of problems. These methods have
proved disappointing, due to severe reduction of order which renders them no
better than backward Euler, which is unconditionally SSP [16]. We analyzed
the cause of this order reduction and found a way to avoid it, however this
renders the SSP coefficient as small as for implicit Runge-Kutta methods.

2. The counections between the SSP property and the theory of contractivity
optimal have provided efficient tools for the study of SSP multistep and Runge-
Kutta methods. Methods of these types have been thoroughly investigated, and
their development seems to be essentially comiplete. Furthermore, contractiv-
ity theory allowed us to determine order barriers on SSP methods, to establish
bounds on the SSP coeflicient, and to conclude that the SSP coefficient is not
only sufficient but necessary for strong stability preservation in an arbitrary
norm for an arbitrary semi-discretization that satisfies a strong stability condi-
tion under forward Euler integration.




3. We found optimal implicit SSP Runge-Kutta methods up to order six and up
to eleven stages. These methods are diagonally implicit or singly diagonally
implicit and have sparse, efficient representations. Furthermore, the implicit
solutions at each stage of a SSP Runge-Kutta method have provable existence
and uniqueness properties.

4. Our work demonstrated that implicit SSP methods are unlikely to be efficient
enough to out-perform the explicit methods. We define the effective SSP co-
efficient of a method cesy = = to normalize the step-size coefficient c relative
to the number of stages m in a method. The very restrictive bound c.s; < 2
lias been proven for implicit multistep methods [15, 10] and conjectured for im-
plicit Runge-Kutta methods [12]. In contrast, explicit methods have a bound
G =Sl

5. In the wider class of explicit general linear methods (which includes both Runge-
Kutta and multistep methods as a subset) the bound c.ff < 1 was proved [7].

6. Although the focus of this grant was implicit Runge-Kutta methods, the tools
developed for this grant allowed David Ketcheson to independently perform a
more thorough study of explicit low-storage Runge-Kutta methods [13] as well
as implicit and explicit multi-step methods [7]. We found that the SSP Runge-
Kutta methods tend to have a variety of nice properties, such as small error
constants and large regions of absolute stability.

7. We showed that spectral deferred correction methods can be written as Runge
Kutta method, and are thus amenable to the techniques for efficient optimiza-
tion found using the connections to contractivity theory. Using these connec-
tions, we also conclude that these methods suffer from the same order barriers
and bounds on the SSP coeflicient.

8. David Ketchesou further studied the SSP properties of the Runge-KuttaChebyshev
metliods. Verwers second order methods all have negative Butcher coe?cients,
so they are not SSP under any positive timestep. We have found first and second
order SSP methods up to 10 stages that have the tlieoretically optimal time-
step. These are promising for fully explicit integration of convection-di?usion
equations without operator splitting. Unlike IMEX, exponential di?erencing,
etc., they apply the same integration method to the sti? and non-sti? parts)

1.1 Publications:

Publications resulting from this grant are:

1. “A numerical study of diagonally split Runge-Kutta methods for PDEs with
discontinuities” by C.B. Macdonald, S. Gottlieb, and S. Ruuth. Journal of
Scientific Computing, 36(1):89-112, (2008).
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. “Optimal implicit strong stability preserving Runge-Kutta methods” by D.
Ketcheson, C. Macdonald, and S. Gottlieb. Applied Numerical Mathematics
(to appear).

3. “Highly E?cient Strong Stability Preserving Runge-Kutta Methods with Low
Storage Implementations” by D. Ketcheson. SIAM Journal on Scientic Com-
puting, 30 (4): 2113-2136 (2008). Winner of the SIAM student paper prize.

4. “Computation of optimal monotonicity preserving general linear mmethods” by
David I. Ketcheson. Math. of Comp. (2008)

5. “High Order Strong Stability Preserving Time Discretizations” by S. Gottlieb,
D.I. Ketcheson and C.-W. Shu. Journal of Scientific Computing 38:251-289
(2009).

1.2 Dissemination

Other dissemination efforts related to this grant:

1. We set up a web-site devoted to SSP methods, to collect all the latest results and
most useful information about strong stability preserving tine discretizations.
http://www.cfm.brown.edu/people/sg/ssp.htinl

2. We organized a minisymposiumm at the 2006 annual SIAM couference which
brought together Rong Wang (who presented his joint work with Ray Spiteri),
Inma Higueras, Steven Ruuth and his student Colin Macdonald. This minisyin-
posia led to productive discussions with Adrian Sandu and his student on the
topic of SSP multirate time-stepping.

(a) Positwity and Monotonicity for IMEX Methods by Inmaculada Higueras,
Universidad Pblica de Navarra, Spaiu.

(b) Variable Step-Size IMplicit-EXplicit Linear Multistep Methods by Steve
Ruuth, Simon Fraser University, Canada; Dong Wang, University of Illi-
nois at Urbana-Champaign.

(¢) In Search of Implicit High-Order Strong Stability Preserving Methods with
Relazed Time-Step Restrictions Sigal Gottlieb, University of Massachusetts;

Colin Macdonald, Simon Fraser University; Steve Ruuth, Simon Fraser
University, Canada.

(d) Comments on Linear Instability of Time Integration Methods with the
Fifth-Order WENO Spatial Discretization Raymond J. Spiteri and Rong
Wang, University of Saskatchewan, Canada.

3. We have organized a minisymposiuin which will take place at the 2008 SIAM
annual meeting, which will feature the following:
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(a) Strong Stability Preserving Time-Stepping Methods by Sigal Gottlieb.
University of Massachusetts, Dartmouth; David Ketcheson, University of
Washington; Colin Macdonald, Simon Fraser University

(b) Optimal Ezplicit and Implicit SSP Runge-Kutta Methods by David 1.
Ketcheson, University of Washington; Colin Macdonald, Simon Fraser
University; Sigal Gottlieb, University of Massachusetts, Dartimouth;

(¢) Practical considerations for IMEX SSP Runge-Kutta methods by Inmac-
ulada Higueras, Universidad Pblica de Navarra, Spain; Teo Roldan.

(d) Generalizations of Positivity and Strong Stability Preservation by Zoltan
Horvath, Szchenyi Istvan University, Gyr, Hungary.

(e) High Order Discretizations of Kinetic Equations by Lorenzo Pareschi,
University of Ferrara, Italy.

(f) Multirate SSP Methods for Hyperbolic PDEs by Emil Constantinescu
and Adrian Sandu, Virginia Polytechnic Institute & State University.

(g) Do We Know WENO? by Raymond J. Spiteri and Rong Wang, Uni-
versity of Saskatchewan, Canada.
(h) Stage-exceeding Order SSP Time-stepping for Runge-Kutta Discontinuous

Galerkin Methods by Clint Dawson, University of Texas, Austin; Ethan
Kubatko, University of Texas at Austin.

. Serninar presentation ”Strong Stability Preserving timme discretizations with op-

timal time-step restrictions” at UMass Amherst on October 30, 2007.

. Workshop presentation ”Strong Stability Preserving Time Discretizations” at

the Statistical and Applied Mathematical Sciences Institute’s (SAMSI) 2007-
2008 Program on Random Media Interface Problems Workshop in North Car-
olina on November 15, 2007.

. Seminar presentation ”On Strong Stability Preserving Runge-Kutta and Multi-

step Time Discretizations” at the (NYU) Courant Institute’s Numerical Anal-
ysis and Scientific Computing seminar on November 30, 2007.

. Sewminar presentation “Time stepping methods for numerical solution of hy-

perbolic PDEs with shocks” in MIT’s Mathematics Department’s Numerical
Methods for Partial Differential Equations seminar on November 12, 2008.

. Seminar presentation “Time stepping methods for nuinerical solution of hyper-

bolic PDEs with shocks” Matheinatics Departient Colloquium in The Univer-
sity of Connecticut — Storrs on November 13, 2008.

. Book contract with for World Scientific Publishing for a monograph on SSP

time-discretization methods (together with C.-W. Shu).




These minisyniposia, seminars, workshops, and website have caused the topic of time-
stepping to be more widely discussed and studied, and has inspired collaborations and
other research on the topic.

2 Detailed Progress By Year:

Year 1: We studied the class of diagonally split Runge-Kutta methods to find high
order, unconditionally SSP methods. Diagonally split Runge-Kutta (DSRK) ([1,
2, 8, 9]) time discretization methods are a class of implicit time-stepping schemes
which offer both (formal) high-order convergence and a form of nonlinear stability
known as unconditional contractivity. This conibination is not possible within tle
classes of Runge-Kutta or linear multistep niethods and therefore appears promising
for the strong stability preserving (SSP) time-stepping comununity which is generally
concerned with computing oscillation-free numerical solutions of PDEs.

We conducted a thorough numerical study of second and third order diagonally
split Runge-Kutta methods on a variety of of archetypal test cases including linear
advection, Burgers’ equation, a diffusion equation with discontinuous initial data.
and the Black-Scholes equation. The numerical tests verified the asymptotic order
of the schemes as well as the unconditional contractivity property. However, in ev-
erv numerical experiment, diagonally split Runge-Kutta methods suffer from order
reduction at large step-sizes. Indeed, for time-steps larger than those typically cho-
sen for explicit methods, these diagonally split Runge-Kutta methods behave like
first-order implicit methods. In every numerical experiment, the unconditionally con-
tractive diagonally split Runge-Kutta methods were out-performed by the first-order
backward Euler scheme when At > 2Atgg, and by explicit Runge-Kutta methods or
Crank—Nicolson when At < 2Atpg. At larger time-steps, the unconditionally con-
tractive diagonally split Runge-Kutta schemes are strong stability preserving (SSP)
but suffer from order reduction, making backward Euler a better choice. At small
step-sizes, Crank-Nicolson and explicit SSP Runge-Kutta methods are SSP, and pro-
duce far more accurate results at a smaller computational cost. Indeed, for time-steps
larger than those typically chosen for explicit methods, these DSRK methods behave
like first-order implicit methods. This is unfortunate, because it is precisely to al-
low a large time-step that we choose to use implicit methods. We studied this order
reduction phenomenon analytically, and showed that higher stage order of the un-
derlying Runge-Kutta schemes was insufficient to avoid order reduction. We then
derived DSRK stage order conditions and constructed DSRK schemes with higher
stage which do not suffer from order reduction. However, because of the high stage
order, these schemnes cannot be unconditionally contractive, and the resulting SSP
coefficient are comparable to implicit Runge-Kutta [16].

Year 2: In the second year of the project we surveyed the literature on contrac-




tive methods and extracted results which are applicable to SSP methods, identified
efficient techniques to find the radius of absolute monotonicity, and found optimal
implicit SSP Runge-Kutta methods of order up to six.

Using the results froin contractivity theory, we were able to identify the following
order barriers and bounds on the SSP cocflicient of Runge-Kutta, multistep, and
general linear methods:

e Runge-Kutta Methods

i

An SSP Runge-Kutta method with can be no more than fourth order
accurate if it is explicit and no more than sixth order accurate if it is
implicit [14].

. Imiplicit Runge- Kutta methods that are uncounditionally SSP must have

order at most one. This result is in contrast with linear stability and B-
stability, where some high-order implicit methods (i.e., the A-stable meth-
ods and the algebraically stable methods, respectively) are unconditionally
stable.

. The implicit SSP Runge-Kutta of order p > 1 have an SSP coeflicient that

is not dramatically larger than those for explicit methods (15, 3, 12].

. Any SSP method must have stage order p < 2, and explicit Runge-Kutta

method mmust have stage order p < 1. The stage order p is a lower bound on
the order of convergence when a method is applied to arbitrarily stiff prob-
lems. Low stage ordcr may lead to order reduction, i.e. slow convergence,
when computing solutions of stiff ODEs.

. All m-stage diagonally implicit methods have order at most m + 1.

6. All SSP m-stage singly diagonally implicit methods have order at most

m + 1.

. SSP singly diagonally implicit methods, which are both singly implicit

and diagonally implicit, have the same order barrier (p < 4) as explicit
methods.

o Multistep Methods

1.

For explicit s-step methods of order p, the SSP coefficient is bounded by
e S T fma® 1

for implicit methods of order p > 1, the SSP coeflicient is bounded by
c<2.

. While there appears to be no limit to the order of accuracy of SSP linear

multistep methods, high order accurate methods of this type are subject
to very small timestep restrictions and require very mnany steps.



e General Linear Methods
Any explicit m-stage, s-step general linear method of order p, has SSP coefficient
bounded by the number of its stages, ¢ < m.

Although no unconditionally SSP method can have order greater than one [21], we
explored the possibility that implicit inethods may have SSP coefficients significantly
larger than those of explicit inethods with the same order and number of stages.
The question we wished to answer was whether the allowable step-size can be large
enough to offset the extra computational effort required in the implicit solution of
the resulting system at each iteration.

Using the effictent formulation of the problem of finding the radius of contractivity
of a method, it was possible to use MATLAB to perform a search for optimal implcit
SSP Runge-Kutta methods. These results gave us optimal methods of order up to
six, which is the maximal order for implicit SSP Runge-Kutta methods. In fact, only
existence of methods of order up to five was previously established [14]. Our search
successfully found methods of order six, establishing that this is indeed possible and
that the order barrier is sharp.

Recently, Ferracina and Spijker investigated optimal singly diagonally implicit
Runge-Kutta mecthods [3]. They showed that such methods have order at most four,
and found optimal methods (by numerical optimization) of up to order four and up
to eight stages. They also conjcctured the form of optimal second and third order
methods with any number of stages. Using nuinerical optimization techniques, we
perfornied an extensive search among the much larger class of fully implicit SSP
Runge-Kutta methods [12]. Remarkably, searching among the class of fully implicit
methods, the optimal methods of second and third order were found to be singly
diagonally implicit; in fact, they were the very methods found already in [3]. The
optimal methods of fourth through sixth order were found to be diagonally implicit.
Many of these implicit methods have representations that allow for very efficient
imiplementation in terms of storage. In order to accurately measure the efficicney
of these methods. we define the effective SSP coefficient of a method as c.;; = =
this normalization enables us to compare the cost of integration up to a given time
using diagonally implicit schemes of order p > 1. Unfortunately, the optimal implicit
SSP methods have effective SSP coefficient less than or equal to two, making them
probably too inefficient for practical use. We list effective SSP coefficients of the
numerically optimal methods in Table 2.1. The coefficients of the most efhcient
representations of SSP implicit Runge-Kutta methods are available online [11].

The SSP condition provides a guarantee of other necessary properties. When
considering implicit Runge-Kutta iethods, it is important to determine whether
there exists a unique solution of the stage equations. The strong stability presecrving
timestep restriction turns out to be sufficient for this as well [14, Theorem 7.1].
Furthermore, the SSP condition serves to guarantee that the errors introduced in the



Implicit Methods |

o2 3 4 5 6

1 2 - - - -

2 2 137 - - -

3 2 161 068 - G

4 2 1.72 111 0.29

D 2 1.78 121 0.64

6 2 182 130 0.83 0.030

7 2 1.85 1.31 0.89 0.038

8 2 1.87 1.33 094 0.28

9 2 1.89 1.34 0.99 0.63

10 2 180 136 101 051

11 2 191 138 1.03 0.80

Table 2.1: Effective SSP coefficients of best known implicit methods. A dash indicates
that SSP mecthods of this type cannot exist. A blank space indicates that no SSP
mcthods of this type were found.

solution of the stage equations due to numerical roundoff and (for implicit methods)
errors in the implicit solve are not unduly amplified [14, Theorem 7.2].

In summary, we have gone further than we proposed or anticipated possible in
the study of SSP implicit Runge-Kutta methods. We have found optimal methods of
order up to six and up to eleven stages, which are diagonally implicit and which have
sparse representations,; thus making themn more efficient for implementation. We also
have enough information to conjecture that the optimal effective SSP coefficient over
this class of methods is bounded by c.f; < 2.

In addition to our results, the methodology we adopted in this search also led to
work that is beyond the scope of this grant. David Ketcheson has used the idecas
and techniques developed in the process of this research to find low storage optimal
explicit SSP Runge-Kutta methods of order up to four and of many stages [13].

Year 3: The next step in our research involved the prelimminary testing of implicit
and explicit SSP methods on a variety of problems. We carricd out many numerical
experiments which showed the need for, and benefit of SSP methods.

Using a nonlinear examnple, we showed that even when the spatial discretization
is total variation diminishing (TVD) when coupled with forward Euler integration,
this is not sufficient to guarantee that it will be TVD when combined with a higher
order time-discretization. We considered Burgers’ equation with a sine wave initial
condition and periodic boundary conditions. The solution is right-travelling and over
time steepens into a shock. We discretize using a first order conservative upwind
approximation which is TVD for At < Az when coupled with forward Euler. Using
this fact we can conclude that if we integrate, instead, using backward Euler, the




solution will be TVD for all values of At. However, when coupled with second-order
A-stable nnplicit trapezoidal rule or the A-stable, L-stable, and B-stable implicit
midpoint rule, this is not TVD for At > 2Ax.

Using a non-SSP explieit Runge-Kutta with a second order TVD flux-differencing
mcthod with the superbee slope limiter, we further demonstrated that the timestep
restrietion associated with the linear SSP property does not suffice to give reasonably
good behavior i the nonlinear ease.

We also perforined experiments of SSP methods eoupled with the weighted essen-
tially non-oscillatory method. We observe advantages to the use of SSP methods for
WENO mcthods on linear and nonlinear problems. The time-step at which the total
variation begins to rise by more than 107! is mueh higher for the SSP methods than
for the eorresponding nou-SSP methods. We observe that in each case the tiinestep
restriction for L, linear stability is larger than that required for the TVD property,
and that the non-SSP method is less efficient than the SSP methods.

For SSP Runge-Kutta mcthods, it is desirable that the internal stages also be
strongly stable. This means requiring not only that ||u™*!|| < ||u™||, but also that
each stage u® for i = 1,..., m satisfy ||[u®|| < [|[u®"Y||. Sinee the SSP argument relies
on convexity, which is satisfied at the intermediate stages as well, SSP Runge-Kutta
methods have intermediate stage SSP properties. The SSP guarantee of provable
stability even for the interinediate stages is given with no additional cost. This
condition is frequently neeessary in the approximate solution of hyperbolic PDEs.
For example, in the nuinerieal solution of the Euler cquations of gas dynamics, it is
Immportant that negative pressurc or density values be avoided even in the intermediate
stages. Violations of these bounds are morc than theoretieally problematic, as they
lcad to non-physical statcs and typically to failure of the solution algorithm. We
eonsidered the Riemann problem for the Euler equations with fifth-order WENQ
uscd for the spatial-discrctization. When we determined the largest CFL nuinber o
for whieh the density and pressure values remain positive at all Runge-Kutta stages,
we find that we see that the SSP methods allow a more cfficient time-step than the
non-SSP methods.

We examined the elass of speetral deferred eorreetion methods methods, and
demonstrated that they can be written as explicit Runge-Kutta methods. Using this
fact, we can immediately establish bounds on the SSP coeflicient of speetral deferred
correction methods and also eonelude that downwind operators will be requircd in
order for explicit spcctral DC methods to be SSP if they are of order greater than
four. Similarly, iniplicit spectral DC methods cannot be SSP without downwinding
if their order exeeeds six.

Finally, David Ketcheson independently studied the SSP properties of thc Runge-

Kutta Chebyshev methods. Verwers second order mmethods all have negative Butcher
eoe’eients. so they are not SSP under any positive timestcp. He found first and second
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order SSP methods up to 10 stages that have the theoretically optimal time-step.
These are promising for fully explicit integration of convection-di?usion equations
without operator splitting. Unlike IMEX, exponential di?erencing, etc., thcy apply
the same integration method to the sti? and non-sti? parts)

3 Transitions

Guowei Wei (Michigan State University) and Shan Zhao have implemented our SSP
methods in their matched interface and boundary method to obtain high order schemes
in both space and time for hyperbolic equations. They report that “Your SSP meth-
ods work great!”.

Zhilin Li at North Carolina State University requested the coeflicients of the sec-
ond order tow-stage implicit SSP scheme to use these with free boundary/moving
interface problems for which stability is always an issue. I was able to advise him on
how to apply this most efficiently.

Marsha Berger (NYU) and Uri Shummlak (University of Washington) requested the
SSP review paper. Additionally, Marsha Berger requested that I recommend specific
SSP methods from the paper.

Francis X. Giraldo (Naval Postgraduate School in Monterey, CA) contacted e
asking about the theoretical limits on the order of SSP explicit inethods.

4 Acknowledgement/Disclaimer

This work was sponsored (in part) by the Air Force Office of Scientific Research,
USAF, under grant/contract number FA9550-06-1-0255. The views and conclusions
contained herein are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of the
Air Force Office of Scientific Research or the U.S. Government.
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5 Appendix I

The optimal implicit Runge-Kutta methods found under this grant

Shu-Osher Coeflicients for Second Order methods: The optimal s-stage second
order implicit SSP Runge-Kutta method has SSP coefficient 2s and Shu-Osher form

0 - -
10
1

Shu-Osher Coeflicients for Third Order methods: The optimal s-stage third
order implicit SSP Runge-Kutta method has SSP coefficient $ — 1 + v/s2 — 1 and
Shu-Osher form

[ 111 i [0
Ha1 - 1
/l' == /J'll ? /\ = g
21 pn I 0
L Hs41s ] L )‘s+1734
where
1 ] s—1 1 s+1 ]
Hn = 2 e L H2r = 2 —] )
s+1 (s+1){(s—1++vs?2—1)
/\s+l,s = .

el s(s+14+vVs2=1) s(s+14+vs?2-1)

Shu-Osher Coeflicients for Fourth Order methods:

1. Optimal 3-stage, 4th-order method:

p11 = 0.157330905682085
jto2 = 0.047573123554705

po21 = 0.342491639470766
32 = 0.338136048168635

u33 = 0.157021682372699
a2 = 0.079106848361263
A1 = 0.703541497995214
An = 0.168078141811591
Aq3 = 0.549902549377947

14

g = 0.081822264233578
ta3 = 0.267698531248384
Azz = 0.694594303739345
Ag2 = 0.162500172803529



2. Optimal 4-stage, 4th-order method:

w11 = 0.119309657880174
o1 = 0.226141632153728
1z = 0.180764254304414
143 = 0.212545672537219
is1 = 0.010888081702583
sy = 0.181099440898861
Aszz = 0.799340893504885
As1 = 0.048147179264990
Asg = 0.800823091149145

3. Optimal 5-stage, 4th-order method:

p11 = 0.072154507748981
oo = 0.071232036614272
paz = 0.063186062090477
44 = 0.077017601068238
55 = 0.106426690493882
ps2 = 0.007472809894781
A =1

Ag3 = 0.934991917505507
Aes = 0.894472670673021
As2 = 0.105527329326976

4. Optimal 6-stage, 4th-order method:

py = 0.077219435861458
112 = 0.063842903854499
pi33 = 0.058359965096908
1143 = 0.103230521234296
1151 = 0.128204308556197
f163 = 0.008043763906343
1166 = 0.077016336936138
piz6 = 0.114400114184912
Ay =1

Az = 0.805203213502341
Ags = 0.062741759593964
Az = 0.107673404480272

15

fi22 = 0.070605579799433
jiz3 = 0.070606483961727
tias = 0.119309875536981
1152 = 0.034154109552284
Aoy = 1

Ag3 = 0.939878564212065
As2 = 0.151029729585865

pi21 = 0.165562779595956
32 = 0.130035287184462
paz = 0.154799860761964
psq = 0.158089969701175
tes = 0.148091381629243
pez = 0.017471397966712
Az = 0.785413771753555
Asq4 = 0.954864191619538
As2 = 0.045135808380468

p21 = 0.128204308556198
w32 = 0.128204308556197
pa1 = 0.008458154338733
taa = 0.058105933032597
pss = 0.064105484788524
pes = 0.120160544649854
p73 = 0.013804194371285
/\21 = Il

A1 = 0.065974025631326
/\54 =1

Aes = 0.937258240406037
Az = 0.892326595519728




5. Optimal 7-stage, 4th-order method:

11, = 0.081324471088377
1125 = 0.051065224656204
1133 = 0.036491713577701
1140 = 0.037028821732794
1155 = 0.040474271914787
p166 = 0.061352000212100
pi7e = 0.088170205242212
ps3 = 0.001561606596621
Ay =1

Mg = 0.865661994183934
e = 1

Arg = 0.810375930105481
Ag7 = 0.985647210475246

6. Optimal 8-stage, 4th-order method:

p11 = 0.080355939553359
1122 = 0.054617345411549
pi33 = 0.039438131644116
1144 = 0.032427875074076
psq = 0.083174746150582
1165 = 0.093742212796061
176 = 0.003742212796061
psa = 0.021977226754808
p1ss = 0.055606577879005
)\21 = I

)\43 = 1
Asy = 0.887270992114641
)‘76 = L.

Ag7 = 0.765556774271797

16

ft21 = 0.108801609187400
1132 = 0.108801609187400
ja3 = 0.094185417979586
1154 = 0.108801609187400
1165 = 0.108801609187400
pi73 = 0.020631403945188
p77 = 0.080145231879588
ps7 = 0.107240002590779
S = 1

Ase =1

Ars = 0.180624069894518
As3 = 0.014352789524754

po1 = 0.093742212796061
32 = 0.093742212796061
ta3 = 0.093742212796061
ps1 = 0.004426522032754
tss = 0.030116385482588
Hee = 0.038334326442344
prr = 0.058861620081910
psy = 0.071764986041253
tos = 0.093742212796061
)\32 = 1

As1 = 0.047220157287989
)‘65 = 1

Asqa = 0.234443225728203
)‘98 = 1



7. Optimal 9-stage, 4th-order method:

111 = 0.068605696784244
1122 = 0.048685583036902
1133 = 0.039925150083662
j140 = 0.031928917146492
1155 = 0.029618614941264
1162 = 0.001326570052113
1165 = 0.029699905991308
p7r = 0.035642110881905
j1gs = 0.050978240433952
fios = 0.065270626421385

Lo, = 0.083046524401968

Az2 = 0.936520713898770

)\54 = ].
A2 = 0.015973817828813
Azg =1

Aos = 0.214047464461523
)\10,9 =

8. Optimal 10-stage, 4th-order method:

p111 = 0.053637857412307
1122 = 0.042472343576273
fi33 = 0.039816143518898
120 = 0.034233821696022
1155 = 0.030626774272464
1166 = 0.029485772863308
1176 = 0.064406146499568
j1e7 = 0.073302847899924
11es = 0.073302847899924
f110,5 = 0.012892211367605

1010 = 0.053275700719583

/\21 =3k
Ag3 = 0.990280128291965
)‘65 =l
A7 = 0.878630890132646
/\93 =]l

A0,0 = 0.824124004224143

17

p21 = 0.082269487560004
p3z = 0.077774790319743
j143 = 0.083046524401968
psq = 0.083046524401968
te1 = 0.008747971137402
tes = 0.072971983212453
p7e = 0.083046524401968
pg7 = 0.083046524401969
o5 = 0.017775897980583
Hog = 0.057552171403649
A21 = 0.990643355064403
)\43 =i 1

As1 = 0.105338196876962
Aes = 0.878687985294225
Agz =1

Agg = 0.785952535538477

o1 = 0.073302847899924
p32 = 0.063734820131903
a3 = 0.072590353622503
tsq = 0.073302847899924
pes = 0.073302847899924
72 = 0.008896701400356
prr = 0.033369849008191
pnss = 0.037227578299133
o9 = 0.046126339053885
H10,9 = 0.060410636532319
t11,10 = 0.073302847899924
Az2 = 0.869472632481021
/\54 = 1

A72 = 0.121369109867354
Ag7 =1

Ao, = 0.175875995775857
)\11,10 =1



9. Optimal 11-stage, 4th-order method:

11, = 0.056977945207836
1122 = 0.043484869703481
1133 = 0.035790792116714
1143 = 0.061212831485396
154 = 0.065880156369595
1165 = 0.065880156369595
pi76 = 0.065880156369595
1153 = 0.009935800759662
1155 = 0.027887296332663
L9 = 0.033340440672342

p21 = 0.065880156369595
p32 = 0.065880156369595
141 = 0.000026595081404
14a = 0.029306212740362
uss = 0.028274789742965
pes = 0.025442782369057
prr = 0.029602951078198
ps7 = 0.055944355609932
tos = 0.065880156369595
Hi10,0 = 0.065880156369595

10,10 = 0.042024506703707
11,10 = 0.053858428791080

pi11.7 = 0.012021727578515
1111 = 0.045164424313434

H1211 = 0.065880156369595 /\21 =l

Azg =1 Ay = 0.000403688802047
Ay = 0.920154313811668  Agy = 1

Ass =1 Are =1

Agz = 0.150816289869158 Agr = 0.849183710130842
Agg =1 Ao =1

A,z = 0.182478734735714  Aq110 = 0.817521265264286
Az =1

Shu-Osher Coeflicients for Fifth Order methods:

1. Optinal 4-stage, 5th-order method:

p21 = 0.125534208080981
p32 = 0.350653119567098
p41 = 0.097766579224131
143 = 0.404181556145118
ps1 = 0.022869941925234
Hs3 = 0.157510964003014
Az21 = 0.143502249669229
Aq = 0.111760167014216
Ag3 = 0.462033126016285
As2 = 0.157867252871240
As4 = 0.317003054133379

18

fi22 = 0.125534208080983
{133 = 0.048181647388277
1142 = 0.000000005345013
p1a4 = 0.133639210602434
1152 = 0.138100556728488
p1s4 = 0.277310825799681
A2 = 0.400843023432714
Az = 0.000000006110058
As1 = 0.026143376902960
As3 = 0.180055922824003



2. Optimal 5-

stage, S5th-order method:

0.107733237609082
0.107733237609079
0.205965878618791
0.010993335656900
0.245761367350216
0.040294985548405
0.024232322953809
0.098999612937858
0.023678103998428
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3. Optimal 6-stage, 5th-order method:

2,1) = 0.084842972180459
3,2) = 0.149945333907731
4,3) = 0.175767531234932
5,1) = 0.024709139041008
5,5) = 0.054767418942828
6,3) = 0.026804592504486
6,6) = 0.085074359110886
7,4) = 0.042600565019890
2,1) = 0.422021261021445
4,3) = 0.874293218071360
5,4) = 0.861728690085026
6,3) = 0.13332993457429%4
7,3) = 0.024117294382203
7,6) = 0.752865185365536

19
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4. Optimal 7-stage, 5th-order method:

piz1 = 0.077756487471956
1132 = 0.126469010941083
1143 = 0.143639250502198
151 = 0.011999093244164
1155 = 0.047108760907057
1153 = 0.027138257330487
1165 = 0.037306165750735
1175 = 0.140855998083160
1151 = 0.009653207936821
1155 = 0.000177781270869
Aoy = 0.482857811904546
A3 = 0.891081318293413
Ass = 0.900717090387559
o3 = 0.168525096484428
Ay = 0.125302322168346
Asa = 0.059945182887979
Ags = 0.001103998884730

5. Optimal 8-stage, Sth-order method:

f21 = 0.068228425119547
p132 = 0.105785458668142
143 = 0.119135238085849
1151 = 0.009164078944895
1155 = 0.039406004101415
1163 = 0.019703233696280
1166 = 0.045239659320409
pt7e = 0.116977452926909
ps; = 0.011255581082016
p1s7 = 0.114515518273119
1195 = 0.002607774587593
pos = 0.104666894951906
A2 = 0.799508082567950
As1 = 0.069260513476804
A2 = 0.056144626483417
Ags = 0.794939486396848
Ars = 0.884095226988328
Ass = 0.049438833770315
Aos = 0.019709106398420
Aoy = 0.791054172708715

20

li22 = 0.077756487471823
ji33 = 0.058945597921853
f1a1 = 0.044443238891736
pis1 = 0.145046006148787
fi62 = 0.011454172434127
ligs = 0.122441492758580
f173 = 0.020177924440034
pirr = 0.077972159279168
11gs = 0.025430639631870
ps7 = 0.124996366168017
A2 = 0.785356333370487
As1 = 0.074512829695468
A2 = 0.071128941372444
Aes = 0.760345962143127
Are = 0.874697677831654
Ags = 0.157921009644458
A = 0.776211398253764

1122 = 0.068228425081188
1133 = 0.049168429086829
141 = 0.040919294063196
1151 = 0.120257079939301
li62 = 0.007428674198294
1165 = 0.105180973170163
t73 = 0.015335646668415
pi77 = 0.050447703819928
1igs = 0.006541409424671
j1ss = 0.060382824328534
1105 = 0.024666705635997
A1 = 0.515658560550227
A3 = 0.900403391614526
Ass = 0.908882077064212
A3 = 0.148913610539984
Arz = 0.115904148048060
Asq = 0.085067722561958
As7 = 0.865488353423280
Xog = 0.186426667470161



6. Optimal 9-stage, Sth-order method:

pz1 = 0.057541273792734
(132 = 0.089687860942851
pig3 = 0.101622955619526
ps; = 0.009276188714858
155 = 0.040815264589441
fes = 0.101125244372555
u73 = 0.003606182878823
fi76 = 0.090586614534056
ps4 = 0.011070977346914
uss = 0.046669302312152
f1os = 0.102117191974435
f1106 = 0.000157554758807
f100 = 0.088454624345414
Az = 0.797947256574797
As: = 0.082529667434119
Ag2 = 0.100295062538531
Az = 0.032083982209117
Arg = 0.805943410735452
Agr = 0.901502211016037
Agg = 0.908530232837680
Aoz = 0.210035759124536

21

w22 = 0.057541282875429
i3z = 0.041684970395150
taq = 0.040743690263377
usa = 0.101958242208571
w2 = 0.011272987717036
tee = 0.040395338505384
p7a = 0.018205434656765
pr7 = 0.042925976445877
ps7 = 0.101327254746568
o5 = 0.010281040119047
o9 = 0.050500143250113
t10,7 = 0.023607648002010
Ag1 = 0.511941093031398
Ag3 = 0.904133043080300
Asq = 0.907116066770269
Aes = 0.899704937426848
A7q4 = 0.161972606843345
Agq = 0.098497788983963
Ags = 0.091469767162319
A6 = 0.001401754777391
A10,0 = 0.786975228149903



7. Optimal 10-stage, Sth-order method:

w1 = 0.052445615058994
u32 = 0.079936220395519
143 = 0.089893189589075
s = 0.007606429497294
wss = 0.035536573874530
pes = 0.089447242753894
w7y = 0.003271387942850
e = 0.080215515252923
ugs = 0.009638972523544
pss = 0.040785658461768
pos = 0.089540979697808
106 = 0.005634796609556
109 = 0.086547180546464
p11.7 = 0.001872759401284
11,10 = 0.079160150775900
A3z = 0.809542670828687
As51 = 0.077033029836054
Ag2 = 0.094135396158718
A7z = 0.033130514796271
g7 = 0.902382678155958
Agg = 0.906813500744962
A10.7 = 0.066440169285130
A117 = 0.018966103726616
A11,10 = 0.801683136446066

22

Jtoo = 0.052445635165954
133 = 0.038724845476313
jtag = 0.037676214671832
154 = 0.090180506502554
ez = 0.009295158915663
tes = 0.036490114423762
14 = 0.015255382390056
7 = 0.035768398609662
1gr = 0.089103469454345
1os = 0.009201462517982
Jtog = 0.042414168555682
t107 = 0.006560464576444

t1o,10 = 0.043749770437420

ft11,8 = 0.017616881402665
Az1 = 0.531135486241871
As3 = 0.910380456183399
Asq = 0.913290217244921
Aes = 0.905864193215084
A74 = 0.154496709294644
Asq = 0.097617319434729
Ags = 0.093186499255038

Mo = 0.057065598977612

A0 = 0.876494226842443

Mg = 0.178412453726484



8. Optimal 11-stage, Sth-order method:

H21 = 0.048856948431570
p3z = 0.072383163641108
ftaz = 0.080721632683704
ps1 = 0.006438090160799
wss = 0.032672027896742
te3 = 0.000719846382100
tes = 0.033437798720082
p7q = 0.012192534706212
p77 = 0.033377699686911
ps7 = 0.079986775597087
o5 = 0.008095394925904
g9 = 0.036372965664654
t1o,7 = 0.005394911565057

p22 = 0.048856861697775
i3z = 0.035920513887793
taa = 0.034009594943671
tse = 0.081035022899306
te2 = 0.007591099341932
tes = 0.079926841108108
p73 = 0.003028997848550
e = 0.073016254277378
pss = 0.008251011235053
uss = 0.035640440183022
tos = 0.080142391870059
s = 0.005907318148947
Mo = 0.076935557118137

fi10,10 = 0.032282094274356 11317 = 0.003571080721480
f118 = 0.008920593887617 1110 = 0.075746112223043
pr1,n = 0.042478561828713  fu1z5 = 0.004170617993886
{129 = 0.011637432775226 1511 = 0.072377330912325

Az1 = 0.553696439876870
Agz = 0.914819326070196
Ass = 0.918370981510030
Asz = 0.008158028526592
A7z = 0.034327672500586
Az¢ = 0.827494171134198
Ag7 = 0.906491181031666
Aoz = 0.908254782302260
A10,7 = 0.061140603801867
A7 = 0.040471104837131
A11,10 = 0.858431687176596
A1z = 0.131887178872293

23

Az2 = 0.820319346617409
As1 = 0.072962960562995
As2 = 0.086030028794504
Ass = 0.905811942678904
A7y = 0.138178156365216
Agy = 0.093508818968334
Ags = 0.091745217287743
A10,6 = 0.066947714363965
A10,0 = 0.871911681834169
A11,s = 0.101097207986272
Aizg = 0.047265668639449

A1211 = 0.820253244225314



piar = 0.306709397198437
p3; = 0.100402778173265
1133 = 0.100402700098726
1142 = 0.000708584139276
jas = 0.028228318307509
1152 = 0.000026687930165
1151 = 0.331296656179688
1161 = 0.000033015066992
pt63 = 0.395057247524893
ptes = 0.421912313467517
g7 = 0.054129307323559
pi73 = 0.233976271277479
pi75 = 0.303060566272042
a1 = 0.055928810359256
As2 = 0.000000002666388
Agz = 0.000129211130507
As; = 0.018587746937629
As3 = 0.024020494718837
A1 = 0.000006020335333
Ag3 = 0.072039142196788
Ass = 0.076936194272824
Az = 0.000379944400556
A7y = 0.033716209818106
Azg = 0.024795346049276
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Shu-Osher Coefficients for sixth Order methods:

1. The optimal sixth-order, six-stage method (¢ = 0.18):

p22 = 0.306709397198281
p32 = 0.000000014622272
141 = 0.000015431349319
paz = 0.383195003696784
i51 = 0.101933808745384
ps3 = 0.136711477475771
uss = 0.107322255666019
o2 = 0.000000017576816
tea = 0.014536993458566
tes = 0.049194928995335
72 = 0.002083586568620
p7a = 0.184897163424393
p7e = 0.135975816243004
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