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IMPLICIT HIGH ORDER STRONG STABILITY PRESERVING RUNGE-KUTTA TIME 

DISCRETIZATIONS 

AFOSR GRANT NUMBER FA9550-06-1-0255 Sigal Gottlieb 
Mathematics Department 

University of Massachusetts - Dartmouth 

Abstract 
We investigated diagonally split Runge-Kutta (DSRK) methods to identify and test 
unconditionally strong stability preserving (SSP) methods, and implicit SSP time- 
stopping methods to find methods with a large SSP coefficient. We found that DSRK 
methods which are unconditionally SSP reduce to first order for the stepsizes of 
interest, and introduced an analysis which explains this phenomenon and shows that it 
is unavoidable. We found optima; implicit SSP Runge-Kutta methods up to order six 
(which is the maximal possible order for these methods) and eleven stages, and found 
that the effective SSP coefficient can be no more than two, making these methods 
not competitive with explicit methods for most applications, but useful in a carefully 
chosen subset of problems. We now have a complete analysis of implicit SSP Runge- 
Kutta methods and demonstrations of the need for the SSP property in solutions of 
hyperbolic PDEs with shocks. 

1    Summary of Aims and Results 

Strong stability preserving (SSP) high order time discretizations were developed to 
ensure nonlinear stability properties necessary in the numerical solution of hyperbolic 
partial differential equations with discontinuous solutions. SSP methods preserve the 
strong stability properties - in any norm, seminorm or convex functional - of the spa- 
tial discretization coupled with first order Euler time stepping, when the timestep is 
suitably restricted. Explicit strong stability preserving (SSP) Runge-Kutta methods 
([17], [18], [19], [20], [4], [5], [6]) have been successfully used with a wide range of spatial 
discretizations, including spectral, discontinuous Galerkin, and weighted essentially 
non-oscillatory (WENO) methods. These high order methods preserve any nonlinear 
stability properties satisfied by the spatial discretization coupled with the forward 
Euler time-stepping. However, all general linear methods suffer from a SSP time-step 
restriction. This motivates the search for high order implicit time-stepping methods 
with SSP properties and a large allowable time-step, which is the overarching goal of 
this project. 

The connections between the SSP property and the theory of contractivity have 
provided efficient tools for the study of SSP multistep and Runge-Kutta methods, 
which we utilized in the search for optimal implicit SSP Runge-Kutta methods. Fur- 
thermore, contractivity theory allowed us to determine order barriers on SSP methods. 
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to establish bounds on the SSP coefficient, and to conclude that the SSP coefficient 
is not only sufficient but necessary for strong stability preservation in an arbitrary 
norm for an arbitrary semi-discretization that satisfies a strong stability condition 
under forward Euler integration. 

This work described below was performed in collaboration with David Ketcheson. 
a doctoral candidate at University of Washington in Seattle (advised by Dr. R. LeV- 
eque), and Colin Macdonald, then a doctoral candidate at Simon Fraser University 
(advised by Dr. S. Ruuth) and now a postdoctoral fellow at UCLA (working with 
Dr. S. Osher). 

The aims of AFOSR grant number FA9550-06-1-0255 were to 

• Use results and formulations from contractivity and monotonicity theory to find 
optimal class of higher order implicit SSP Runge-Kutta methods. 

• Find higher order implicit diagonally split Runge-Kutta methods (DSRK) which 
are SSP methods with no stepsize restriction. 

• 

• 

Test the optimal implicit SSP Runge-Kutta methods for use with flux-implicit 
WENO spatial discretizations. 

Test the DSRK with no time-step restriction with spectral and WENO spatial 
discretizations. 

In the grant period we have gone further than we proposed or anticipated.  The 
following are the accomplishments under this grant: 

1. We conducted a thorough numerical study of second and third order diagonally 
split Runge-Kutta methods on a variety of problems. These methods have 
proved disappointing, due to severe reduction of order which renders them no 
better than backward Euler, which is unconditionally SSP [16]. We analyzed 
the cause of this order reduction and found a way to avoid it, however this 
renders the SSP coefficient as small as for implicit Runge-Kutta methods. 

2. The connections between the SSP property and the theory of contractivity 
optimal have provided efficient tools for the study of SSP multistep and Runge- 
Kutta methods. Methods of these types have been thoroughly investigated, and 
their development seems to be essentially complete. Furthermore, contractiv- 
ity theory allowed us to determine order barriers on SSP methods, to establish 
bounds on the SSP coefficient, and to conclude that the SSP coefficient is not 
only sufficient but necessary for strong stability preservation in an arbitrary 
norm for an arbitrary semi-discretization that satisfies a strong stability condi- 
tion under forward Euler integration. 



3. We found optimal implicit SSP Runge-Kutta methods up to order six and up 
to eleven stages. These methods are diagonally implicit or singly diagonally 
implicit and have sparse, efficient representations. Furthermore, the implicit 
solutions at each stage of a SSP Runge-Kutta method have provable existence 
and uniqueness properties. 

4. Our work demonstrated that implicit SSP methods are unlikely to be efficient 
enough to out-perform the explicit methods. We define the effective SSP co- 
efficient of a method ce// = — to normalize the step-size coefficient c relative 
to the number of stages rn in a method. The very restrictive bound ceff < 2 
has been proven for implicit multistep methods [15, 10] and conjectured for im- 
plicit Runge-Kutta methods [12].  In contrast, explicit methods have a bound 

5. In the wider class of explicit general linear methods (which includes both Runge 
Kutta and multistep methods as a subset) the bound ceff < 1 was proved [7]. 

6. Although the focus of this grant was implicit Runge-Kutta methods, the tools 
developed for this grant allowed David Ketcheson to independently perform a 
more thorough study of explicit low-storage Runge-Kutta methods [13] as well 
as implicit and explicit multi-step methods [7]. We found that the SSP Runge- 
Kutta methods tend to have a variety of nice properties, such as small error 
constants and large regions of absolute stability. 

7. We showed that spectral deferred correction methods can be written as Runge- 
Kutta method, and are thus amenable to the techniques for efficient optimiza- 
tion found using the connections to contractivity theory. Using these connec- 
tions, we also conclude that these methods suffer from the same order barriers 
and bounds on the SSP coefficient. 

8. David Ketcheson further studied the SSP properties of the Runge-KuttaChebyshev 
methods. Verwers second order methods all have negative Butcher coe?cients, 
so they are not SSP under any positive timestep. We have found first and second 
order SSP methods up to 10 stages that have the theoretically optimal time- 
step. These are promising for fully explicit integration of convection-di?usion 
equations without operator splitting. Unlike IMEX, exponential di?erencing, 
etc., they apply the same integration method to the sti? and non-sti? parts) 

1.1     Publications: 

Publications resulting from this grant are: 

1. "A numerical study of diagonally split Runge-Kutta methods for PDEs with 
discontinuities" by C.B. Macdonald, S. Gottlieb, and S. Ruuth. Journal of 
Scientific Computing, 36(1):89-112, (2008). 



2. "Optimal implicit strong stability preserving Runge-Kutta methods" by D. 
Ketcheson, C. Macdonald, and S. Gottlieb. Applied Numerical Mathematics 
(to appear). 

3. "Highly E?cient Strong Stability Preserving Runge-Kutta Methods with Low- 
Storage Implementations" by D. Ketcheson. SI AM Journal on Scientic Com- 
puting, 30 (4): 2113-2136 (2008). Winner of the SIAM student paper prize. 

4. "Computation of optimal monotonicity preserving general linear methods" by 
David I. Ketcheson. Math, of Comp. (2008) 

5. "High Order Strong Stability Preserving Time Discretizations" by S. Gottlieb. 
D.I. Ketcheson and C.-W. Shu. Journal of Scientific Computing 38:251-289 
(2009). 

1.2    Dissemination 

Other dissemination efforts related to this grant: 

1. We set up a web-site devoted to SSP methods, to collect all the latest results and 
most useful information about strong stability preserving time discretizations. 
http://www.cfm.brown.edu/people/sg/ssp.html 

2. We organized a minisymposium at the 2006 annual SIAM conference which 
brought together Rong Wang (who presented his joint work with Ray Spiteri). 
Inma Higueras, Steven Ruuth and his student Colin Macdonald. This minisym- 
posia led to productive discussions with Adrian Sandu and his student on the 
topic of SSP multirate time-stepping. 

(a) Positivity and Monotonicity for IMEX Methods by Inmaculada Higueras. 
Universidad Pblica de Navarra, Spain. 

(b) Variable Step-Size IMplicit-EXplicit Linear Multistep Methods by Steve 
Ruuth, Simon Fraser University, Canada; Dong Wang, University of Illi- 
nois at Urbana-Champaign. 

(c) In Search of Implicit High-Order Strong Stability Preserving Methods with 
Relaxed Time-Step Restrictions Sigal Gottlieb, University of Massachusetts: 
Colin Macdonald, Simon Fraser University; Steve Ruuth, Simon Fraser 
University, Canada. 

(d) Comments on Linear Instability of Time Integration Methods with the 
Fifth-Order WENO Spatial Discretization Raymond J. Spiteri and Rong 
Wang, University of Saskatchewan, Canada. 

3. We have organized a minisymposium which will take place at the 2008 SIAM 
annual meeting, which will feature the following: 



(a) Strong Stability Preserving Time-Stepping Methods by Sigal Gottlieb. 
University of Massachusetts, Dartmouth; David Ketcheson, University of 
Washington; Colin Macdonald, Simon Fraser University 

(b) Optimal Explicit and Implicit SSP Runge-Kutta Methods by David I. 
Ketcheson, University of Washington; Colin Macdonald, Simon Fraser 
University; Sigal Gottlieb, University of Massachusetts, Dartmouth; 

(c) Practical considerations for IMEX SSP Runge-Kutta methods by Inmac- 
ulada Higueras, Universidad Pblica de Navarra, Spain; Teo Roldan. 

(d) Generalizations of Positivity and Strong Stability Preservation by Zoltan 
Horvath, Szchenyi Istvan University, Gyr, Hungary. 

(e) High Order Discretizations of Kinetic Equations by Lorenzo Pareschi. 
University of Ferrara, Italy. 

(f) Multirate SSP Methods for Hyperbolic PDEs by Emil Constantinescu 
and Adrian Sandu, Virginia Polytechnic Institute & State University. 

(g) Do We Know WENO? by Raymond J. Spiteri and Rong Wang, Uni- 
versity of Saskatchewan, Canada. 

(h) Stage-exceeding Order SSP Time-stepping for Runge-Kutta Discontinuous 
Galerkin Methods by Clint Dawson, University of Texas, Austin; Ethan 
Kubatko, University of Texas at Austin. 

4. Seminar presentation "Strong Stability Preserving time discretizations with op- 
timal time-step restrictions" at UMass Amherst on October 30, 2007. 

5. Workshop presentation "Strong Stability Preserving Time Discretizations" at 
the Statistical and Applied Mathematical Sciences Institute's (SAMSI) 2007- 
2008 Program on Random Media Interface Problems Workshop in North Car- 
olina on November 15, 2007. 

6. Seminar presentation "On Strong Stability Preserving Runge-Kutta and Multi- 
step Time Discretizations" at the (NYU) Courant Institute's Numerical Anal- 
ysis and Scientific Computing seminar on November 30, 2007. 

7. Seminar presentation "Time stepping methods for numerical solution of hy- 
perbolic PDEs with shocks" in MIT's Mathematics Department's Numerical 
Methods for Partial Differential Equations seminar on November 12, 2008. 

8. Seminar presentation "Time stepping methods for numerical solution of hyper- 
bolic PDEs with shocks" Mathematics Department Colloquium in The Univer- 
sity of Connecticut - Storrs on November 13, 2008. 

9. Book contract with for World Scientific Publishing for a monograph on SSP 
time-discretization methods (together with C.-W. Shu). 



These minisymposia, seminars, workshops, and website have caused the topic of time- 
stepping to be more widely discussed and studied, and has inspired collaborations and 
other research on the topic. 

2    Detailed Progress By Year: 

Year 1: We studied the class of diagonally split Runge-Kutta methods to find high 
order, unconditionally SSP methods. Diagonally split Runge-Kutta (DSRK) ([1. 
2, 8, 9]) time discretization methods are a class of implicit time-stepping schemes 
which offer both (formal) high-order convergence and a form of nonlinear stability 
known as unconditional contractivity. This combination is not possible within the 
classes of Runge-Kutta or linear multistep methods and therefore appears promising 
for the strong stability preserving (SSP) time-stepping community which is generally 
concerned with computing oscillation-free numerical solutions of PDEs. 

We conducted a thorough numerical study of second and third order diagonally 
split Runge-Kutta methods on a variety of of archetypal test cases including linear 
advection, Burgers' equation, a diffusion equation with discontinuous initial data, 
and the Black-Scholes equation. The numerical tests verified the asymptotic order 
of the schemes as well as the unconditional contractivity property. However, in ev- 
ery numerical experiment, diagonally split Runge-Kutta methods suffer from order 
reduction at large step-sizes. Indeed, for time-steps larger than those typically cho- 
sen for explicit methods, these diagonally split Runge-Kutta methods behave like 
first-order implicit methods. In every numerical experiment, the unconditionally con- 
tractive diagonally split Runge-Kutta methods were out-performed by the first-order 
backward Euler scheme when At > 2AtpE, and by explicit Runge-Kutta methods or 
Crank-Nicolson when At < 2AtpE- At larger time-steps, the unconditionally con- 
tractive diagonally split Runge-Kutta schemes are strong stability preserving (SSP) 
but suffer from order reduction, making backward Euler a better choice. At small 
step-sizes, Crank-Nicolson and explicit SSP Runge-Kutta methods are SSP, and pro- 
duce far more accurate results at a smaller computational cost. Indeed, for time-steps 
larger than those typically chosen for explicit methods, these DSRK methods behave 
like first-order implicit methods. This is unfortunate, because it is precisely to al- 
low a large time-step that we choose to use implicit methods. We studied this order 
reduction phenomenon analytically, and showed that higher stage order of the un- 
derlying Runge-Kutta schemes was insufficient to avoid order reduction. We then 
derived DSRK stage order conditions and constructed DSRK schemes with higher 
stage which do not suffer from order reduction. However, because of the high stage 
order, these schemes cannot be unconditionally contractive, and the resulting SSP 
coefficient are comparable to implicit Runge-Kutta [16]. 

Year 2:   In the second year of the project we surveyed the literature on contrac- 



tive methods and extracted results which are applicable to SSP methods, identified 
efficient techniques to find the radius of absolute monotonicity, and found optimal 
implicit SSP Runge—Kutta methods of order up to six. 

Using the results from contractivity theory, we were able to identify the following 
order barriers and bounds on the SSP coefficient of Runge-Kutta, multistep, and 
general linear methods: 

Runge-Kutta Methods 

1. An SSP Runge-Kutta method with can be no more than fourth order 
accurate if it is explicit and no more than sixth order accurate if it is 
implicit [14]. 

2. Implicit Runge-Kutta methods that are unconditionally SSP must have 
order at most one. This result is in contrast with linear stability and In- 
stability, where some high-order implicit methods (i.e., the A-stable meth- 
ods and the algebraically stable methods, respectively) are unconditionally 
stable. 

3. The implicit SSP Runge-Kutta of order p > 1 have an SSP coefficient that 
is not dramatically larger than those for explicit methods [15, 3, 12]. 

4. Any SSP method must have stage order p < 2, and explicit Runge-Kutta 
method must have stage order p < 1. The stage order p is a lower bound on 
the order of convergence when a method is applied to arbitrarily stiff prob- 
lems. Low stage order may lead to order reduction, i.e. slow convergence, 
when computing solutions of stiff ODEs. 

5. All m-stage diagonally implicit methods have order at most m + 1. 

6. All SSP m-stage singly diagonally implicit methods have order at most 
rn + 1. 

7. SSP singly diagonally implicit methods, which are both singly implicit 
and diagonally implicit, have the same order barrier (p < 4) as explicit 
methods. 

Multistep Methods 

1. For explicit s-step methods of order p, the SSP coefficient is bounded by 
c < *=£ for s > 1 —   s — 1 

2. for implicit methods of order p > 1, the SSP coefficient is bounded by 
c<2. 

3. While there appears to be no limit to the order of accuracy of SSP linear 
multistep methods, high order accurate methods of this type are subject 
to very small timestep restrictions and require very many steps. 



• General Linear Methods 
Any explicit m-stage, s-step general linear method of order p, has SSP coefficient 
bounded by the number of its stages, c < m. 

Although no unconditionally SSP method can have order greater than one [21], we 
explored the possibility that implicit methods may have SSP coefficients significantly 
larger than those of explicit methods with the same order and number of stages. 
The question we wished to answer was whether the allowable step-size can be large 
enough to offset the extra computational effort required in the implicit solution of 
the resulting system at each iteration. 

Using the efficient formulation of the problem of finding the radius of contractivity 
of a method, it was possible to use MATLAB to perform a search for optimal implicit 
SSP Runge-Kutta methods. These results gave us optimal methods of order up to 
six, which is the maximal order for implicit SSP Runge-Kutta methods. In fact, only 
existence of methods of order up to five was previously established [14]. Our search 
successfully found methods of order six, establishing that this is indeed possible and 
that the order barrier is sharp. 

Recently, Ferracina and Spijker investigated optimal singly diagonally implicit 
Runge-Kutta methods [3]. They showed that such methods have order at most four, 
and found optimal methods (by numerical optimization) of up to order four and up 
to eight stages. They also conjectured the form of optimal second and third order 
methods with any number of stages. Using numerical optimization techniques, we 
performed an extensive search among the much larger class of fully implicit SSP 
Runge-Kutta methods [12]. Remarkably, searching among the class of fully implicit 
methods, the optimal methods of second and third order were found to be singly 
diagonally implicit; in fact, they were the very methods found already in [3]. The 
optimal methods of fourth through sixth order were found to be diagonally implicit. 
Many of these implicit methods have representations that allow for very efficient 
implementation in terms of storage. In order to accurately measure the efficiency 
of these methods, we define the effective SSP coefficient of a method as cejf = —: 
this normalization enables us to compare the cost of integration up to a given time 
using diagonally implicit schemes of order p > 1. Unfortunately, the optimal implicit 
SSP methods have effective SSP coefficient less than or equal to two, making them 
probably too inefficient for practical use. We list effective SSP coefficients of the 
numerically optimal methods in Table 2.1. The coefficients of the most efficient 
representations of SSP implicit Runge-Kutta methods are available online [11]. 

The SSP condition provides a guarantee of other necessary properties. When 
considering implicit Runge-Kutta methods, it is important to determine whether 
there exists a unique solution of the stage equations. The strong stability preserving 
timestep restriction turns out to be sufficient for this as well [14, Theorem 7.1]. 
Furthermore, the SSP condition serves to guarantee that the errors introduced in the 
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Implicit Methods 
m / p 2 3 4 5 6 

1 2 - - - - 
2 2 1.37 - - - 
3 2 1.61 0.68 - - 
4 2 1.72 1.11 0.29 
5 2 1.78 1.21 0.64 
6 2 1.82 1.30 0.83 0.030 
7 2 1.85 1.31 0.89 0.038 
8 2 1.87 1.33 0.94 0.28 
9 2 1.89 1.34 0.99 0.63 
10 2 1.90 1.36 1.01 0.81 
11 2 1.91 l.3(s 1.03 0.80 

Table 2.1: Effective SSP coefficients of best known implicit methods. A dash indicates 
that SSP methods of this type cannot exist. A blank space indicates that no SSP 
methods of this type were found. 

solution of the stage equations due to numerical roundoff and (for implicit methods) 
errors in the implicit solve are not unduly amplified [14. Theorem 7.2]. 

In summary, we have gone further than we proposed or anticipated possible in 
the study of SSP implicit Runge-Kutta methods. We have found optimal methods of 
order up to six and up to eleven stages, which are diagonally implicit and which have 
sparse representations, thus making them more efficient for implementation. We also 
have enough information to conjecture that the optimal effective SSP coefficient over 
this class of methods is bounded by ce// < 2. 

In addition to our results, the methodology we adopted in this search also led to 
work that is beyond the scope of this grant. David Ketcheson has used the ideas 
and techniques developed in the process of this research to find low storage optimal 
explicit SSP Runge-Kutta methods of order up to four and of many stages [13]. 

Year 3: The next step in our research involved the preliminary testing of implicit 
and explicit SSP methods on a variety of problems. We carried out many numerical 
experiments which showed the need for, and benefit of SSP methods. 

Using a nonlinear example, we showed that even when the spatial discretization 
is total variation diminishing (TVD) when coupled with forward Euler integration, 
this is not sufficient to guarantee that it will be TVD when combined with a higher 
order time-discretization. We considered Burgers' equation with a sine wave initial 
condition and periodic boundary conditions. The solution is right-travelling and over 
time steepens into a shock. We discretize using a first order conservative upwind 
approximation which is TVD for At < Ax when coupled with forward Euler. Using 
this fact we can conclude that if we integrate, instead, using backward Euler, the 



solution will be TVD for all values of At. However, when coupled with second-order 
A-stable implicit trapezoidal rule or the A-stable, L-stable, and B-stable implicit 
midpoint rule, this is not TVD for At > 2A.x. 

Using a non-SSP explicit Runge-Kutta with a second order TVD flux-differencing 
method with the superbee slope limiter, we further demonstrated that the timestep 
restriction associated with the linear SSP property does not suffice to give reasonably 
good behavior in the nonlinear case. 

We also performed experiments of SSP methods coupled with the weighted essen- 
tially non-oscillatory method. We observe advantages to the use of SSP methods for 
WENO methods on linear and nonlinear problems. The time-step at which the total 
variation begins to rise by more than 10"13 is much higher for the SSP methods than 
for the corresponding non-SSP methods. We observe that in each case the timestep 
restriction for L2 linear stability is larger than that required for the TVD property, 
and that the non-SSP method is less efficient than the SSP methods. 

For SSP Runge-Kutta methods, it is desirable that the internal stages also be 
strongly stable. This means requiring not only that ||ura+1|| < ||un||, but also that 
each stage u^ for i = 1, ...,ra satisfy ||u^|| < ||u^_1^||. Since the SSP argument relies 
on convexity, which is satisfied at the intermediate stages as well, SSP Runge-Kutta 
methods have intermediate stage SSP properties. The SSP guarantee of provable 
stability even for the intermediate stages is given with no additional cost. This 
condition is frequently necessary in the approximate solution of hyperbolic PDEs. 
For example, in the numerical solution of the Euler equations of gas dynamics, it is 
important that negative pressure or density values be avoided even in the intermediate 
stages. Violations of these bounds are more than theoretically problematic, as they 
lead to non-physical states and typically to failure of the solution algorithm. We 
considered the Riemann problem for the Euler equations with fifth-order WEXO 
used for the spatial-discretization. When we determined the largest CFL number a 
for which the density and pressure values remain positive at all Runge-Kutta stages, 
we find that we see that the SSP methods allow a more efficient time-step than the 
non-SSP methods. 

We examined the class of spectral deferred correction methods methods, and 
demonstrated that they can be written as explicit Runge-Kutta methods. Using this 
fact, we can immediately establish bounds on the SSP coefficient of spectral deferred 
correction methods and also conclude that downwind operators will be required in 
order for explicit spectral DC methods to be SSP if they are of order greater than 
four. Similarly, implicit spectral DC methods cannot be SSP without downwinding 
if their order exceeds six. 

Finally, David Ketcheson independently studied the SSP properties of the Runge- 
Kutta Chebyshev methods. Verwers second order methods all have negative Butcher 
coe?cients, so they are not SSP under any positive timestep. He found first and second 
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order SSP methods up to 10 stages that have the theoretically optimal time-step. 
These are promising for fully explicit integration of convection-di?usion equations 
without operator splitting. Unlike IMEX, exponential di?erencing, etc., they apply 
the same integration method to the sti? and non-sti? parts) 

3    Transitions 

Guowei Wei (Michigan State University) and Shan Zhao have implemented our SSP 
methods in their matched interface and boundary method to obtain high order schemes 
in both space and time for hyperbolic equations. They report that "Your SSP meth- 
ods work great!". 

Zhilin Li at North Carolina State University requested the coefficients of the sec- 
ond order tow-stage implicit SSP scheme to use these with free boundary/moving 
interface problems for which stability is always an issue. I was able to advise him on 
how to apply this most efficiently 

Marsha Berger (NYU) and Uri Shumlak (University of Washington) requested the 
SSP review paper. Additionally, Marsha Berger requested that I recommend specific 
SSP methods from the paper. 

Francis X. Giraldo (Naval Postgraduate School in Monterey, CA) contacted me 
asking about the theoretical limits on the order of SSP explicit methods. 

4    Acknowledgement/Disclaimer 

This work was sponsored (in part) by the Air Force Office of Scientific Research, 
USAF, under grant/contract number FA9550-06-1-0255. The views and conclusions 
contained herein are those of the authors and should not be interpreted as necessarily 
representing the official policies or endorsements, cither expressed or implied, of the 
Air Force Office of Scientific Research or the U.S. Government. 
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5    Appendix I 

The optimal implicit Runge—Kutta methods found under this grant 

Shu-Osher Coefficients for Second Order methods: The optimal s-stage second 
order implicit SSP Runge-Kutta method has SSP coefficient 2s and Shu-Osher form 

0 
i    0 

1 /' 

2s 
1 

2s 
J_ 
2.s 

J_ 
Is 

2s 

2s 

Shu-Osher Coefficients for Third Order methods: The optimal s-stage third 
order implicit SSP Runge-Kutta method has SSP coefficient s — 1 + y/s2 — 1 and 
Shu-Osher form 

where 

/' 

Mil 

M21 

Mil 
,    A = 

M21 Mil 

Ms+l,s_ 

Mn = 5 V 

Ms+l,s 
8+1 

s-l\ 1 

JTil'    m" 2 

0 
1       0 

Aj+l,s. 

s(s + 1 + v^3!)' 

8 + 1 
-1 , 

Vl+l,S 

s- 1 

(s + l)(s - 1 + y/sZ^l) 

s(s + 1 + \/s2 - 1) 

Shu-Osher Coefficients for Fourth Order methods: 

1. Optimal 3-stage, 4th-order method: 

MH = 0.157330905682085 M21 = 0.342491639470766 
M22 = 0.047573123554705 //32 = 0.338136048168635 
M33 = 0.157021682372699 M4i = 0.081822264233578 
M42 = 0.079106848361263 fi43 = 0.267698531248384 
A2i = 0.703541497995214 A32 = 0.694594303739345 
A4i = 0.168078141811591 A42 = 0.162500172803529 
A43 = 0.549902549377947 

1 1 



2. Optimal 4-stage, 4th-order method: 

fiu = 0.119309657880174 
/i2i = 0.226141632153728 /t22 
fi32 = 0.180764254304414 /;33 
/i43 = 0.212545672537219 //44 
/i6i = 0.010888081702583 /i52 
//54 = 0.181099440898861 A21 
A32 = 0.799340893504885 A43 
A5i = 0.048147179264990 A52 
A54 = 0.800823091149145 

0.070605579799433 
0.070606483961727 
0.119309875536981 
0.034154109552284 
1 
0.939878564212065 
0.151029729585865 

3. Optimal 5-stage, 4th-order method: 

j*u = 0.072154507748981 y/2i 
/x22 = 0.071232036614272 M32 
/x33 = 0.063186062090477 fUa 
/i44 = 0.077017601068238 A*54 
Ai55 = 0.106426690493882 /z65 
A*52 = 0.007472809894781 /i62 
A2i = 1 A32 

A43 = 0.934991917505507 A54 
A65 = 0.894472670673021 A52 
A62 = 0.105527329326976 

0.165562779595956 
0.130035287184462 
0.154799860761964 
0.158089969701175 
0.148091381629243 
0.017471397966712 
0.785413771753555 
0.954864191619538 
0.045135808380468 

4. Optimal 6-stage, 4th-order method: 

/*ii = 0.077219435861458 /i2i 
/i22 = 0.063842903854499 /i32 
/X33 = 0.058359965096908 /i41 
/z43 = 0.103230521234296 //44 
/i54 = 0.128204308556197 /i55 
M63 = 0.008043763906343 /i65 
//66 = 0.077016336936138 /i73 
//76 = 0.114400114184912 A21 
A32 = 1 A41 
A43 = 0.805203213502341 A54 
A63 = 0.062741759593964 A65 
A73 = 0.107673404480272 A76 

0.128204308556198 
0.128204308556197 
0.008458154338733 
0.058105933032597 
0.064105484788524 
0.120160544649854 
0.013804194371285 
1 
0.065974025631326 
1 
0.937258240406037 
0.892326595519728 
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5. Optimal 7-stage, 4th-order method: 

/in = 0.081324471088377 /i2i 
/i22 = 0.051065224656204 /i32 

/i33 = 0.036491713577701 /i43 

/i44 = 0.037028821732794 /*54 

/x55 = 0.040474271914787 /x65 

/i66 = 0.061352000212100 /i73 

/i76 = 0.088170205242212 /i77 

/i83 = 0.001561606596621 /x87 

-^21  = 1 A32 

A43 = 0.865661994183934 A54 

AQ5 =  1 A73 

A76 = 0.810375930105481 A83 
A87 = 0.985647210475246 

0.108801609187400 

0.108801609187400 

0.094185417979586 

0.108801609187400 

0.108801609187400 

0.020631403945188 

0.080145231879588 

0.107240002590779 

1 

1 

0.189624069894518 
0.014352789524754 

6. Optimal 8-stage, 4th-order method: 

/in = 0 

/*22 = 0 

m = 0 
flu = 0 
/i54 = 0 

M65 = 0 

/i76 = 0 

/i84 = 0 

/'88 = 0 

A21   =  1 
A43 = l 
A54 = 0 

A7e = 1 
A87 = 0 

.080355939553359 /t2i 

.054617345411549 /i32 

.039438131644116 //43 

.032427875074076 /i5i 

.083174746150582 /i55 

.093742212796061 /i66 

.093742212796061 /i77 

.021977226754808 /i87 

.055606577879005 //98 

A32 

A51 

887270992114641 A65 

A84 
.765556774271797 A98 

0.093742212796061 

0.093742212796061 

0.093742212796061 

0.004426522032754 

0.030116385482588 

0.038334326442344 

0.058861620081910 

0.071764986041253 

0.093742212796061 

1 

0.047220157287989 
1 
0.234443225728203 
1 
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7. Optimal 9-stage, 4th-order method: 

Mil = 

M22 = 

M33 = 

/U44 = 

M55 = 

M62 = 

M66 = 

M77 = 

M88 = 

M98 = 

Mio,9 

A32 = 

A54 = 

^62 = 

A76 = 

A95 = 

Al0,9 

0.068605696784244 /i21 
0.048685583036902 /x32 
0.039925150083662 /v,43 
0.031928917146492 ^54 
0.029618614941264 /i61 
0.001326570052113 /J65 
0.029699905991308 /x76 
0.035642110881905 /i87 
0.050978240433952 ^95 

= 0.065270626421385 /x99 
= 0.083046524401968 A21 
0.936520713898770 A43 
1 A61 
0.015973817828813 
1 
0.214047464461523 
= 1 

-^65 

^87 

A<J8 

0.082269487560004 
0.077774790319743 
0.083046524401968 
0.083046524401968 
0.008747971137402 
0.072971983212453 
0.083046524401968 
0.083046524401969 
0.017775897980583 
0.057552171403649 
0.990643355064403 
1 
0.105338196876962 
0.878687985294225 
1 
0.785952535538477 

8.  Optimal 10-stage, 4th-order method: 

Mil = 

M22 = 

M33 = 

M44 = 

M55 = 

M66 = 

M76 = 

M87 = 

M98 = 

M'10,6 : 

Ml0,10 

A21 = 

A43 = 

-^65 = 

-^76 = 

A98 = 

^10,9 : 

0.053637857412307 
0.042472343576273 
0.039816143518898 
0.034233821696022 
0.030626774272464 
0.029485772863308 
0.064406146499568 
0.073302847899924 
0.073302847899924 
= 0.012892211367605 
= 0.053275700719583 
1 
0.990280128291965 
1 
0.878630890132646 
1 
= 0.824124004224143 

M21 = 

M32 = 

M43 = 

M54 = 

A*65 = 

M72 = 

M77 = 

M88 = 

M99 = 

Ml0,9 : 

Mil,10 

A32 = 

A54 = 

A72 = 

^87 = 

Al0,6 : 

All,10 

0.073302847899924 
0.063734820131903 
0.072590353622503 
0.073302847899924 
0.073302847899924 
0.008896701400356 
0.033369849008191 
0.037227578299133 
0.046126339053885 
= 0.060410636532319 
= 0.073302847899924 
0.869472632481021 
1 
0.121369109867354 
1 

= 0.175875995775857 
= 1 

17 



9. Optimal 11-stage, 4th-order method: 

Mn = 
M22 = 

/'•33 = 

M43 = 

M54 = 

M65 = 

M76 = 

A*83 = 

M88 = 

M99 = 

MlO.10 

Mil, 10 

Ml2,ll 

A32 — 

A43 = 

^65 = 

As3 = 

A98 = 

All,7 = 

^12,11 

0.056977945207836 

0.043484869703481 

0.035790792116714 

0.061212831485396 

0.065880156369595 

0.065880156369595 

0.065880156369595 

0.009935800759662 

0.027887296332663 

0.033340440672342 

= 0.042024506703707 

= 0.053858428791080 

= 0.065880156369595 

1 

0.929154313811668 
1 

0.150816289869158 

1 

= 0.182478734735714 

= 1 

A*21 = 

^32 = 

/'41 = 

/X44 = 

M55 = 

M66 = 

M77 = 

A<87 = 

M98 = 

Ml0,9 : 

Mll,7 = 

Mil,11 

A2I = 

A41  = 

A54 = 

A76 = 

^87 = 

Al0,9 : 

All,10 

0.065880156369595 

0.065880156369595 

0.000026595081404 

0.029306212740362 

0.028274789742965 

0.025442782369057 

0.029602951078198 

0.055944355609932 

0.065880156369595 

= 0.065880156369595 

= 0.012021727578515 

= 0.045164424313434 

1 

0.000403688802047 
1 
1 
0.849183710130842 

= 1 
= 0.817521265264286 

Shu-Osher Coefficients for Fifth Order methods: 

1. Optimal 4-stage, 5th-order method: 

M21 = 0.125534208080981 
AI32 = 0.350653119567098 
/i4i = 0.097766579224131 
/143 = 0.404181556145118 
Msi = 0.022869941925234 
M53 = 0.157510964003014 
A2i = 0.143502249669229 
A41 = 0.111760167014216 
A43 = 0.462033126016285 
A52 = 0.157867252871240 
A54 = 0.317003054133379 

M22 

M33 

M42 

M44 

M52 

M54 

A32 

A42 

A5I 

-^53 

0.125534208080983 

0.048181647388277 

0.000000005345013 

0.133639210602434 

0.138100556728488 

0.277310825799681 

0.400843023432714 

0.000000006110058 

0.026143376902960 

0.180055922824003 
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2. Optimal 5-stage, 5th-order method: 

M2,l 
M2,2 
/'(3,2 
M4,l 
M4.3 
M(5,l 
/i(5,3 
//(5,5 
M(6,4 
A(2,l 
A(3,2 
A(4,2 
A(5,l 
A(5,3 
A(6,3 
A(6,5 

0.107733237609082 
0.107733237609079 //(3,1 
0.205965878618791 /i(3,3 
0.010993335656900 /i(4,2 
0.245761367350216 //(4,4 
0.040294985548405 /z(5,2 
0.024232322953809 /x(5, 4 
0.098999612937858 //(6, 3 
0.023678103998428 /x(6,5 
0.344663606249694 A(3,1 
0.658932601159987 A(4, 1 
0.000000100208717 A(4, 3 
0.128913001605754 A(5, 2 
0.077524819660326 A(5,4 
0.255260385110718 A(6,4 
0.623567413728619 

0.000009733684024 
0.041505157180052 
0.000000031322743 
0.079032059834967 
0.011356303341111 
0.220980752503271 
0.079788022937926 
0.194911604040485 
0.000031140312055 
0.035170229692428 
0.786247596634378 
0.036331447472278 
0.706968664080396 
0.075751744720289 

3. Optimal 6-stage, 5th-order method: 

M2,1 
/i(3,2 
M4.3 
M(5,1 
M(5, 5 
/'(6,3 
/i(6,6 
M(7,4 
A(2,l 
A(4,3 
A(5,4 
A(6,3 
A(7,3 
A(7,6 

0.084842972180459 //(2, 2 
0.149945333907731 ^(3,3 
0.175767531234932 ^(4,4 
0.024709139041008 /i(5,4 
0.054767418942828 /z(6, 2 
0.026804592504486 //(6, 5 
0.085074359110886 /x(7,3 
0.042600565019890 /x(7,6 
0.422021261021445 A(3,2 
0.874293218071360 A(5,1 
0.861728690085026 A(6,2 
0.133329934574294 A(6,5 
0.024117294382203 A(7,4 
0.752865185365536 

0.084842972180464 
0.063973483119994 
0.055745328618053 
0.173241563951140 
0.014574431645716 
0.159145416202648 
0.004848530454093 
0.151355691945479 
0.745849859731775 
0.122906844831659 
0.072495338903420 
0.791612404723054 
0.211901395105308 
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4. Optimal 7-stage, 5th-order method: 

fi2l = 0.077756487471956 //22 
/i32 = 0.126469010941083 /i33 
//.43 = 0.143639250502198 //,44 
/i5i = 0.011999093244164 //54 
/i55 = 0.047108760907057 //62 
/i63 = 0.027138257330487 /i65 
/zee = 0.037306165750735 fi73 

/i7G = 0.140855998083160 ^ 
/i84 = 0.009653207936821 /i85 
//86 = 0.000177781270869 ^87 
A2I = 0.482857811904546 A32 
A43 = 0.891981318293413 A5i 
A54 = 0.900717090387559 AG2 
A63 = 0.168525096484428 A65 
A73 = 0.125302322168346 A7G 
A84 = 0.059945182887979 A85 
A80 = 0.001103998884730 A87 

0.077756487471823 
0.058945597921853 
0.044443238891736 
0.145046006148787 
0.011454172434127 
0.122441492758580 
0.020177924440034 
0.077972159279168 
0.025430639631870 
0.124996366168017 
0.785356333370487 
0.074512829695468 
0.071128941372444 
0.760345962143127 
0.874697677831654 
0.157921009644458 
0.776211398253764 

5. Optimal 8-stage, 5th-order method: 

fi2i = 0.068228425119547 fj,22 

^32 = 0.105785458668142 j/33 
H43 = 0.119135238085849 ^44 
/i5i = 0.009164078944895 /J54 
fi55 = 0.039406904101415 //62 
/i63 = 0.019703233696280 /x65 
Ai66 = 0.045239659320409 ^73 
H76 = 0.116977452926909 ^77 
^x84 = 0.011255581082016 /z85 
/i87 = 0.114515518273119 /;88 
/X95 = 0.002607774587593 /z90 
/i98 = 0.104666894951906 A21 
A32 = 0.799508082567950 A43 
A5i = 0.069260513476804 A54 
A62 = 0.056144626483417 A63 
A65 = 0.794939486396848 A73 
A76 = 0.884095226988328 A84 
A85 = 0.049438833770315 A87 
A95 = 0.019709106398420 A96 
A98 = 0.791054172708715 

0.068228425081188 
0.049168429086829 
0.040919294063196 
0.120257079939301 
0.007428674198294 
0.105180973170163 
0.015335646668415 
0.050447703819928 
0.006541409424671 
0.060382824328534 
0.024666705635997 
0.515658560550227 
0.900403391614526 
0.908882077064212 
0.148913610539984 
0.115904148048060 
0.085067722561958 
0.865488353423280 
0.186426667470161 
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6. Optimal 9-stage, 5th-order method: 

A*21 

M32 

/'•43 

M51 

M55 

^65 

VTA 

A«76 

/^84 

A*88 

/^98 

^10,6 

A*10,9 

A32 

A51 

-^62 

^73 

^76 

-^87 

^98 

^10,7 

0.057541273792734 

0.089687860942851 

0.101622955619526 

0.009276188714858 

0.040815264589441 

0.101125244372555 

0.003606182878823 

0.090586614534056 

0.011070977346914 

0.046669302312152 

0.102117191974435 

0.000157554758807 

0.088454624345414 

0.797947256574797 

0.082529667434119 

0.100295062538531 

0.032083982209117 

0.805943410735452 

0.901502211016037 

0.908530232837680 

0.210035759124536 

M22 

M33 

/'44 

M54 

A*62 

M66 

^74 

A*77 

M87 

A*95 

M99 

Ml0,7 

^21 

^43 

•*54 

^65 

A74 

^84 

^95 

^10,6 

-^10,9 

0.057541282875429 

0.041684970395150 

0.040743690263377 

0.101958242208571 

0.011272987717036 

0.040395338505384 

0.018205434656765 

0.042925976445877 

0.101327254746568 

0.010281040119047 

0.050500143250113 

0.023607648002010 

0.511941093031398 

0.904133043080300 

0.907116066770269 

0.899704937426848 

0.161972606843345 

0.098497788983963 

0.091469767162319 

0.001401754777391 

0.786975228149903 
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7. Optimal 10-stage, 5th-order method: 

M21 

A*32 

/'43 

M51 

M55 

A*65 

A*73 

^76 

A*84 

M88 

^98 

Ml0,6 

A*10,9 

Mnj 

Mn.io 

A32 

A51 

^62 

^73 

^76 

^87 

^98 

-^10,7 

^11,7 

^11,10 

0.052445615058994 

0.079936220395519 

0.089893189589075 

0.007606429497294 

0.035536573874530 

0.089447242753894 

0.003271387942850 

0.080215515252923 

0.009638972523544 

0.040785658461768 

0.089540979697808 

0.005634796609556 

0.086547180546464 

0.001872759401284 

0.079160150775900 

0.809542670828687 

0.077033029836054 

0.094135396158718 
0.033130514796271 

0.812371189661489 

0.902382678155958 

0.906813500744962 

0.066440169285130 

0.018966103726616 

0.801683136446066 

M22 

M33 

/'44 

M54 

^62 

M66 

A*74 

^77 

/^87 

M95 

^99 

Ml0,7 

MlO.10 

/'11,8 

^21 

^43 

-^54 

^65 

A74 

-^84 

A95 

•^10,6 

^10,9 

^11,8 

0.052445635165954 

0.038724845476313 

0.037676214671832 

0.090180506502554 

0.009295158915663 

0.036490114423762 

0.015255382390056 

0.035768398609662 

0.089103469454345 

0.009201462517982 

0.042414168555682 

0.006560464576444 

0.043749770437420 

0.017616881402665 

0.531135486241871 

0.910380456183399 

0.913290217244921 

0.905864193215084 

0.154496709294644 

0.097617319434729 

0.093186499255038 

0.057065598977612 

0.876494226842443 

0.178412453726484 
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8. Optimal 11-stage, 5th-order method: 

A*21 

M32 

A*43 

M51 

M55 

M63 

Af66 

A*74 

M77 

A*87 

^95 

^99 

^10,7 

/'<10,10 

^11,8 

A*ii,n 

Ml2,9 

•^21 

^43 

^54 

^63 

A73 

^76 

^87 

^98 

^10,7 

All,7 

-^11,10 

^12,9 

0.048856948431570 

0.072383163641108 

0.080721632683704 

0.006438090160799 

0.032672027896742 

0.000719846382100 

0.033437798720082 

0.012192534706212 

0.033377699686911 

0.079986775597087 

0.008095394925904 

0.036372965664654 

0.005394911565057 

0.032282094274356 

0.008920593887617 

0.042478561828713 

0.011637432775226 

0.553696439876870 

0.914819326070196 

0.918370981510030 

0.008158028526592 

0.034327672500586 

0.827494171134198 

0.906491181031666 

0.908254782302260 

0.061140603801867 

0.040471104837131 

0.858431687176596 

0.131887178872293 

A*22 

A*33 

/'•44 

fJ-54 

^62 

fJ-65 

A*73 

M76 

A<84 

A*88 

M98 

/^10,6 

^10,9 

f'nj 

A*n,io 

^12,8 

^12,11 

A32 

A51 

-^62 

^65 

A74 

^84 

A95 

^10,6 

^10,9 

All,8 

^12,8 

^12,11 

0.048856861697775 

0.035920513887793 

0.034009594943671 

0.081035022899306 

0.007591099341932 

0.079926841108108 

0.003028997848550 

0.073016254277378 

0.008251011235053 

0.035640440183022 

0.080142391870059 

0.005907318148947 

0.076935557118137 

0.003571080721480 

0.075746112223043 

0.004170617993886 

0.072377330912325 

0.820319346617409 

0.072962960562995 

0.086030028794504 

0.905811942678904 

0.138178156365216 

0.093508818968334 

0.091745217287743 

0.066947714363965 

0.871911681834169 

0.101097207986272 

0.047265668639449 

0.820253244225314 
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Shu-Osher Coefficients for sixth Order methods: 

1. The optimal sixth-order, six-stage method (c = 0.18): 

H21 = 0.306709397198437 ^22 
/u3i = 0.100402778173265 //32 
/X33 = 0.100402700098726 /z41 
/i42 = 0.000708584139276 ^43 
//44 = 0.028228318307509 /y5i 
M52 = 0.000026687930165 /X53 
^54 = 0.331296656179688 //55 
yuei = 0.000033015066992 /z62 
^63 = 0.395057247524893 //64 
/x65 = 0.421912313467517 /u66 
Hn = 0.054129307323559 ^72 
/x73 = 0.233976271277479 /x74 
/z75 = 0.303060566272042 /z76 
A2i = 0.055928810359256 A31 
A32 = 0.000000002666388 A41 
A42 = 0.000129211130507 A43 
A5i = 0.018587746937629 A52 
A53 = 0.024929494718837 A54 
A61 = 0.000006020335333 A62 
A63 = 0.072039142196788 A64 
A65 = 0.076936194272824 A71 
A72 = 0.000379944400556 A73 
A74 = 0.033716209818106 A75 
A76 = 0.024795346049276 

0.306709397198281 
0.000000014622272 
0.000015431349319 
0.383195003696784 
0.101933808745384 
0.136711477475771 
0.107322255666019 
0.000000017576816 
0.014536993458566 
0.049194928995335 
0.002083586568620 
0.184897163424393 
0.135975816243004 
0.018308561756789 
0.000002813924247 
0.069876048429340 
0.000004866574675 
0.060412325234826 
0.000000003205153 
0.002650837430364 
0.009870541274021 
0.042665841426363 
0.055263441854804 
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2. The optimal sixth-order, seven-stage method (c = 0.26): 

//,21 = 0.090485932570398 
/i22 = 0.090485932570397 
/i32 = 0.346199513509666 
M33 = 0.056955495796615 A2i 
/i4i = 0.089183260058590 A32 
^42 = 0.122181527536711 A4i 
M43 = 0.340520235772773 A42 
//44 = 0.086699362107543 A43 
/i5i = 0.214371998459638 A51 
M52 = 0.046209156887254 A52 
//53 = 0.215162143673919 A53 
//54 = 0.000000362542364 A54 
/x55 = 0.209813410800754 A61 
Hei = 0.000000591802702 A62 
^62 = 0.390556634551239 A63 
Hes = 0.000000491944026 A64 
/i64 = 0.330590135449081 A65 
(i65 = 0.007410530577593 A71 
Hm = 0.070407008959133 A72 
/i71 = 0.000000021842570 A73 
^x72 = 0.325421794191472 A74 
^73 = 0.069025907032937 A75 
//,74 = 0.373360315300742 A76 
fi75 = 0.007542750523234 A81 
/i76 = 0.005465714557738 A82 
fi77 = 0.063240270982556 A83 
H&i = 0.044161355044152 A84 
M82 = 0.204837996136028 A85 
M83 = 0.191269829083813 A86 
/i84 = 0.255834644704751 A87 
^85 = 0.015984178241749 
Mae = 0.016124165979879 
/i87 = 0.151145768228502 

0.023787133610744 
0.091009661390427 
0.023444684301672 
0.032119338749362 
0.089516680829776 
0.056354565012571 
0.012147561037311 
0.056562280060094 
0.000000095305905 
0.000000155574348 
0.102670355321862 
0.000000129323288 
0.086906235023916 
0.001948095974350 
0.000000005742021 
0.085547570527144 
0.018145676643359 
0.098149750494075 
0.001982854233713 
0.001436838619770 
0.011609230551384 
0.053848246287940 
0.050281417794762 
0.067254353278777 
0.004201954631994 
0.004238754905099 
0.039733519691061 
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3. The optimal sixth-order, eight-stage method (c = 2.25): 

//2i = 0.078064586430339 
/x22 = 0.078064586430334 
/i3i = 0.000000000128683 
/i32 = 0.207887720440412 
/z33 = 0.051491724905522 
M4! = 0.039407945831803 
M43 = 0.256652317630585 
yu44 = 0.062490509654886 
/xsi = 0.009678931461971 
fi52 = 0.113739188386853 
H54 = 0.227795405648863 
//55 = 0.076375614721986 
//62 = 0.010220279377975 
/i63 = 0.135083590682973 
/z65 = 0.235156310567507 
/u66 = 0.033370798931382 
H72 = 0.000000009428737 
fi73 = 0.112827524882246 
tj.74 = 0.001997541632150 
/i75 = 0.177750742549303 
fi76 = 0.099344022703332 
tm = 0.025183595544641 
fisl = 0.122181071065616 
A*82 = 0.000859535946343 
fi83 = 0.008253954430873 
/i84 = 0.230190271515289 
/x85 = 0.046429529676480 
/x86 = 0.017457063072040 
fiS7 = 0.017932893410781 
M88 = 0.322331010725841 
H9i = 0.011069087473717 
//g2 = 0.010971589676607 
//93 = 0.068827453812950 
//,94 = 0.048864283062331 
/i95 = 0.137398274895655 
Hae = 0.090347431612516 
/i97 = 0.029504401738350 
/x98 = 0.000167109498102 

A2i 

A3I 

A32 

A41 

^43 

A5I 

A 52 

^54 

^62 

^63 

^65 

A72 

A73 

A74 

A75 

A76 

A8l 

A82 

A83 

A84 

A85 

A86 

A87 

A91 

A92 

A93 

A94 

A95 

A96 

A97 

A98 

0.175964293749273 

0.000000000290062 

0.468596806556916 

0.088828900190110 

0.578516403866171 

0.021817144198582 

0.256377915663045 

0.513470441684846 

0.023037388973687 

0.304490034708070 

0.530062554633790 

0.000000021253185 

0.254322947692795 

0.004502630688369 

0.400665465691124 

0.223929973789109 

0.275406645480353 

0.001937467969363 

0.018605123379003 

0.518868675379274 

0.104656154246370 

0.039349722004217 

0.040422284523661 

0.024950675444873 

0.024730907022402 

0.155143002154553 

0.110144297841125 

0.309707532056893 

0.203650883489192 

0.066505459796630 

0.000376679185235 
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4. The optimal sixth- 

M21 = 

M22 = 

M31 = 

M32 = 

/^33 = 

M42 = 

M43 = 

^44 = 

/'51 = 

M52 = 

M53 = 

M54 = 

^55 = 

A*61 = 

A*62 = 

^63 = 

M64 = 

M(S5 — 

M71 = 

/*72 = 

M73 = 

^74 = 

^75 = 

M76 = 

^77 = 

/'81 = 

^82 = 

^83 = 

A*84 = 

A*85 = 

M8G = 

^87 = 

^88 = 

M91 = 

M92 = 

/•*93 = 

I'm = 
M95 = 

^96 = 

M97 = 

M98 = 

^99 = 

^10,1  = 

Ml0,2 = 

^10,3 = 

^10,4 = 

Ml0,5 = 

Ml0,6 = 

order, nine-stage method (c 

0.060383920365295 

0.060383920365140 

0.000000016362287 

0.119393671070984 

0.047601859039825 

0.000000124502898 

0.144150297305350 

0.016490678866732 

0.014942049029658 

0.033143125204828 

0.020040368468312 

0.095855615754989 

0.053193337903908 

0.000006536159050 

0.000805531139166 

0.015191136635430 

0.054834245267704 

0.089706774214904 

0.000006097150226 

0.018675155382709 

0.025989306353490 

0.000224116890218 

0.000125522781582 

0.125570620920810 

0.019840674620006 

0.000000149127775 

0.000000015972341 

0.034242827620807 

0.017165973521939 

0.000000000381532 

0.001237807078917 

0.119875131948576 

0.056749019092783 

0.000000072610411 

0.000000387168511 

0.000400376164405 

0.000109472445726 

0.012817181286633 

0.011531979169562 

0.000028859233948 

0.143963789161172 

0.060174596046625 

0.001577092080021 

0.000008909587678 

0.000003226074427 

0.000000062166^0 

0.009112668630420 

0.008694079174358 

= 5.80): 

A21 

A31 

A32 

A42 

A43 

A51 

A52 

A53 

A54 

Aei 

^62 

^63 

^64 

^65 

A71 

A72 

A73 

A74 

A75 

A76 

Asi 

A82 

A83 

A84 

A85 

A86 

A87 

A91 

A92 

A93 

A94 

A95 

A96 

A97 

A98 

Aio,i 

Al0,2 

Al0,3 

Al0,4 

Al0,5 

Al0,6 

Al0,7 

Al0,8 

Al0,9 

0.350007201986739 

0.000000094841777 

0.692049215977999 

0.000000721664155 

0.835547641163090 

0.086609559981880 

0.192109628653810 

0.116161276908552 

0.555614071795216 

0.000037885959162 

0.004669151960107 

0.088053362494510 

0.317839263219390 

0.519973146034093 

0.000035341304071 

0.108248004479122 

0.150643488255346 

0.001299063147749 

0.000727575773504 

0.727853067743022 

0.000000864398917 

0.000000092581509 

0.198483904509141 

0.099500236576982 

0.000000002211499 

0.007174780797111 

0.694839938634174 

0.000000420876394 

0.000002244169749 

0.002320726117116 

0.000634542179300 

0.074293052394615 

0.066843552689032 

0.000167278634186 

0.834466572009306 

0.009141400274516 

0.000051643216195 

0.000018699502726 

0.000000360342058 

0.052820347381733 

0.050394050390558 

0.103597678603687 

0.159007699664781 

0.624187175011814 

yr\n'-rc\t rnt on 



5. The optimal sixth-order, ten-stage method (c = 8.10): 

M21 

M22 

M32 

M33 

M43 

/i44 

M51 

M52 

^54 

A*55 

M62 

/'63 

A*64 

M65 

M66 

M73 

M74 

M76 

M77 

M84 

M85 

Mse 

M87 

A*88 

M94 

M95 

M96 

y"98 

/'<99 

Ml0,l 

Ml0,2 

Ml0,6 

Ml0,7 

/''10,8 

Ml0,9 

MlO.lO 

Mll,3 

Mll,7 

Mll,8 

/'•11,9 

Mil,10 

0.054638144097621 

0.054638144097609 

0.094708145223810 

0.044846931722606 

0.108958403164940 

0.031071352647397 

0.004498251069701 

0.005530448043688 

0.107851443619437 

0.018486380725450 

0.015328210231111 

0.014873940010974 

0.000000013999299 

0.093285690103096 

0.031019852663844 

0.023345108682580 

0.000000462051194 

0.100142283610706 

0.037191650574052 

0.020931607249912 

0.007491225374492 

0.000000004705702 

0.094887152674486 

0.041052752299292 

0.000000000437894 

0.013484714992727 

0.012301077330264 

0.097178530400423 

0.039273658398104 

0.000987065715240 

0.000000347467847 

0.004337021151393 

0.011460261685365 

0.002121689510807 

0.104338127248348 

0.042268075457472 

0.000656941338471 

0.015039465910057 

0.004816543620956 

0.031302441038151 

0.071672462436845 

A21 

A32 

A43 

A51 

A52 

A54 

AG2 

^63 

-^64 

^65 

A73 
A74 

A76 

^84 

^85 

As6 

^87 

A94 

A95 

A96 

^98 

Aio,i 

Al0,2 

Al0,6 

Aioj 

Al0,8 

Al0,9 

All,3 

All,7 

All,8 

All,9 

An,10 

0.442457635916190 

0.766942997969774 

0.882341050812911 

0.036426667979449 

0.044785360253007 

0.873376934047102 

0.124127269944714 

0.120448606787528 

0.000000113365798 

0.755424009901960 

0.189047812082446 

0.000003741673193 

0.810948446244362 

0.169503368254511 

0.060663661331375 

0.000000038106595 

0.768392593572726 

0.000000003546047 

0.109198714839684 

0.099613661566658 

0.786948084216732 

0.007993221037648 

0.000002813781560 

0.035121034164983 

0.092804768098049 

0.017181361859997 

0.844926230212794 

0.005319886250823 

0.121789029292733 

0.039004189088262 

0.253485990215933 

0.580400905152248 
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6    Appendix 2 

This appendix contains MATLAB scripts which we created as part of this project. 

• Evaluate the Radius of absolute monotonicity from the Butcher array: 

function r = am_radius(A,b) 
%By David Ketcheson 
7»Evaluates the Radius of  absolute monotonicity 
°/0of  a Runge-Kutta method,  given the Butcher  array. 
7. 
7oFor an m-stage method,   A should be an m x m matrix 
7.and b  should be a column vector  of  length m. 
'/. 
7oAccuracy can be changed by modifying the value of eps. 
7.Methods with very large radii of  a.m.   (>50)   will require 
7»rmax to be  increased. 

rmax=50;   eps=l.e-12; 

m=length(b);   e=ones(m,l); 
K=[A;b']; 
rlo=0;   rhi=rmax; 

while rhi-rlo>eps 7tuse bisection 

r=0.5*(rhi+rlo); 

X=eye(m)+r*A; beta=K/X; ech=r*K*(X\e); 

if (min(beta(:))<-3.e-16 II max(ech(:))>1.+3.e-16) 

rhi=r; 

else 

rlo=r; 

end 

end 

if rhi==rmax '/, r>=rmax 

error('Error: increase value of rmax in am_radius.m'); 

else 

r=rlo; 

end 

• Butcher array from the Shu Osher array: 

function   [A,b,c]=shuosher2butcher(alpha,beta); 
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"/.function [A,b,c]=shuosher2butcher(lambda,mu) ; 

7. 
"/.By David Ketcheson 

7. 
"/.Generate Butcher form of a Runge-Kutta method, 

"/.given its Shu-Osher or modified Shu-Qsher form 

% 
°/0For an m-stage method,   alpha and beta  (or lambda and mu)   should be 
"/.matrices  of  dimension  (m+1)   x m 
"/. 
"/.Note that MATLAB indexes from 1, while the Shu-Qsher coefficients 

"/.are usually indexed from zero. 

s=size(alpha,2); 

X=eye(s)-alpha(l:end-l, :) ; 

A=X\beta(l:end-l, :) ; 

b=beta(end,:)+alpha(end,:)*A; b=b'; 

c=sum(A,2); 

• Butcher to modified Shu-Osher: This function generates the modified Shu-Osher 
form of a Runge-Kutta method, given its Butcher form and radius of absolute 
monotonicity 

function   [lambda,mul]=butcher2modshuosher(A,b,r); 
°/0By David Ketcheson 
"/.Generate modified Shu-Osher form of  a Runge-Kutta method, 
"/.given  its Butcher form and radius  of  absolute monotonicity 
•/. 
"/.For an m-stage method, A should be an m x m matrix 

"/.and b should be a column vector of length m. 

'/. 
"/.Note that MATLAB indexes from 1, while the Shu-Osher coefficients 

'/.are usually indexed from zero. 

Aup=triu(A); 

if max(abs(Aup))>0 mclass='implicit'; else mclass='explicit'; end 

if nargin<3 r = am_radius(A,b); end 

s=size(A,1); 

K=[A;b']; 

G=eye(s)+r*A; 

mul=K/G; 

lambda=r*mul; 

for i=l:s+l 

if strcmp(mclass, ' implicit') 7.0 stage is u_n 

alpha(i)=l-sum(lambda(i,1:s)); 
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end 

end 

'/.Eliminate diagonal terms of lambda array (for implicit methods) 

lambda=lambda; mul=mul; 

for i=l:s 

if lambda(i,i)~=l 

fac=l/(l-lambda(i,i)); 

mul(i,:)=fac*mul(i,:); 

lambda(i,:)=fac*lambda(i,:); 

lambda(i,i)=0.; 

end 

end 

Butcher to Shu-Osher: 

function [alpha,beta]=butcher2shuosher(A,b,r); 

'/.By David Ketcheson 

7. 
'/.Generate Shu-Osher form of an explicit Runge-Kutta method, 

'/.given its Butcher form and radius of absolute monotonicity 

'/. 
°/,For an m-stage method, A should be an m x m matrix 

°/,and b should be a column vector of length m. 

7. 
'/.Note that MATLAB indexes from 1, while the Shu-Osher coefficients 

'/.are usually indexed from zero. 

if nargin<3 r = am_radius(A,b); end 

s=size(A,l); 

K=[A;b']; 

G=eye(s)+r*A; 

beta=K/G; 

alpha=r*beta; 

for i=2:s+l 

alpha(i,l)=l-sum(alpha(i,2:s)); 

end 

Radius of circle contractivity of a Runge-Kutta method, given the Butcher array: 

function [r] = cc_radius(A,b) 

'/.By David Ketcheson 

7. 
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^Evaluates the Radius of circle contractivity 

%of a Runge-Kutta method, given the Butcher array 

y. 
70For an m-stage method, A should be an m x m matrix 

°/0and b should be a column vector of length m. 

% 
YoAccuracy can be changed by modifying the value  of  eps. 
'/.Methods with very large radii of  a.m.   (>1000)   will require 
0/,rmax to be  increased. 

rmax=1000;   eps=l.e-13; 

if min(b)<=0 
r=0; 

else 
m=length(b); 
B=diag(b); 
M=B*A+A'*B-b*b'; 
rlo=0;   rhi=rmax; 
while rhi-rlo>eps 

r=0.5*(rhi+rlo); 
X=M+B/r; 
if min(eig(X))<-3.e-16 

rhi=r; 
else 

rlo=r; 

end 

end 

end 

if rhi==rmax "/, r>=rmax 

error('Error: increase value of rmax in cc_radius.m'); 

else 

r=rlo; 

end 

• Make the Butcher arrays for different methods: 

function   [A,b,c,r]=makebutcher(name,s) 
°/0By David Ketcheson 
'/. 
°/,Set up Butcher arrays A,b,c for various methods 

°/oAlso returns SSP coefficient r 
0/,For families of methods, optional input s is the number of stages 

if nargin<2 8=1; end 
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switch name 

SSP Methods 

°/.========== —Explicit 

case 'FE11' 

70Forward Euler 

s=l; r=l; 

A=[0]; 

b=[l]'; c = [0]' * 

case   'SSP22' 
s=2;   r=l; 
A= [0  0;   10]; 
b=[l/2  1/2]';   c=sum(A,2); 

case 'SSP42' 

s=4; r=3; 

A=[0 0 0 0; 1/3 0 0 0; 1/3 1/3 0 0; 1/3 1/3 1/3 0]; 

b=l/4*ones(m,1); c=sum(A,2); 

case 'SSP33' 

s=3; r=l; 

A=[0 0 0; 10 0; 1/4 1/4 0]; 

b=[l/6 1/6 2/3]'; c=sum(A,2); 

case 'SSP43' 

s=4; r=2; 

A=[0 0 0 0; 1/2 0 0 0; 1/2 1/2 0 0; 1/6 1/6 1/6 0]; 

b=[l/6 1/6 1/6 1/2]'; c=sum(A,2); 

case 'SSP104' 

s=10; r=6; 

alphaO=diag(ones(l,s-l),-1); 

alpha0(6,5)=2/5; alpha0(6,l)=3/5; 

betaO =l/6*diag(ones(l,s-l),-1); 

beta0(6,5)=l/15; 

A=(eye(s)-alphaO)\betaO; 

b=l/10*ones(s,1); c=sum(A,2); 

case 'rSSPs2' 

"/.Rational (optimal, low-storage) s-stage 2nd order SSP 

if s<2 error('Explicit second order SSP family requires s>=2'); end 

r=s-l; 

alpha= [zeros(l,s);eye(s);]; 
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alpha(s+l,s)=(s-l)/s; 

beta=alpha/r; 

alpha(s+l,l)=l/s; 

A=(eye(s)-alpha(1:s, :))\beta(l:s,:); 

b=beta(s+l,:)+alpha(s+l,:)*A; b=b'; 

c=sum(A,2); 

case 'rSSPs3' 

70Rational (optimal, low-storage) s~2-stage 3rd order SSP 

if round(sqrt(s))~=sqrt(s) I I s<4 

error('Explicit third order SSP family requires s=n~2, n>l'); 

end 

n=s"2; r=n-s; 

alpha=[zeros(1,n);eye(n);]; 
alpha(s*(s+l)/2+l,s*(s+l)/2)=(s-l)/(2*s-l); 
beta=alpha/r; 
alpha(s*(s+l)/2+l,(s-l)*(s-2)/2+l)=s/(2*s-l); 
A=(eye(n)-alpha(l:n,:))\beta(l:n,:); 
b=beta(n+l,:)+alpha(n+l,:)*A;   b=b'; 
c=sum(A,2); 

°/0=================Implicit  Methods========================= 
case   'BE11' 

"/.Backward Euler 

s=l; r=l.elO; 

A=[l]; 

b=[l]'; c=[l]>; 

case 'SDIRK34' 7.3-stage, 4th order singly diagonally implicit (SSP) 

s=3; r=1.7588; 

g=0.5*(l-cos(pi/18)/sqrt(3)-sin(pi/18)); 

q=(0.5-g)"2; 

A=[g    0   0 

0.5-g g   0 

2*g l-4*g g]; 

b=[l/(24*q) l-l/(12*q) l/(24*q)]'; 

c=sum(A,2); 

case   'ISSPm2' 
"/.Optimal  DIRK SSP  schemes  of  order 2 
r=2*s; 
i=repmat((l:s)',l,s);   j=repmat(l:s,s,l); 
A=l/s*(j<i)   +  l/(2*s)*(i==j); 
b=l/s*ones(s,l); 
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c=sum(A,2); 

case 'ISSPs3' 

"/.Optimal DIRK SSP schemes of order 3 

if s<2 error('Implicit third order SSP schemes require s>=2'); end 

r=s-l+sqrt(s"2-l); 

i=repmat((1:s)',1,s);   j=repmat(l:s,s,1); 
A=l/sqrt(s~2-l)*(j<i)   + 0.5*(l-sqrt((s-l)/(s+D) )*(i==j) ; 
b=l/s*ones(s,1); 
c=sum(A,2); 

7,=================Classical Methods= 

°/,Gauss-Legendre methods — order 2s 
case   'GL1' 

r=2;   A=l/2;   b=l;   c=l/2; 
case   'GL2' 

r=0; 
A=[l/4 l/4-sqrt(3)/6 

l/4+sqrt(3)/6 1/4]; 

b=[l/2 1/2]'; 
c=[l/2-sqrt(3)/6 l/2+sqrt(3)/6]'; 

case 'GL3' 

r=0; 

A=[5/36 (80-24*sqrt(15))/360 (50-12*sqrt(15))/360 
(50+15*sqrt(15))/360 2/9 (50-15*sqrt(15))/360 
(50+12*sqrt(15))/360   (80+24*sqrt(15))/360  5/36] 

b=[5/18 4/9 5/18]'; 
c=[(5-sqrt(15))/10   1/2   (5+sqrt(15))/10]'; 

%Radau IA methods — order 2s-l 

case 'RIA1' 

r=l; 

A=l; b=l; c=0; 

case 'RIA2' 

r=0; 

A=[l/4 -1/4 

1/4 5/12]; 

b=[l/4 3/4]'; 

c=[0 2/3]'; 

case 'RIA3' 

r=0; 

A=[l/9 (-l-sqrt(6))/18 (-l+sqrt(6))/18 

1/9 (88+7*sqrt(6))/360 (88-43*sqrt(6))/360 
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1/9   (88+43*sqrt(6))/360   (88-7*sqrt(6))/360]; 
b=[l/9   (16+sqrt(6))/36   (16-sqrt(6))/36]'; 
c=[0   (6-sqrt(6))/10   (6+sqrt(6))/10] '; 

70Radau  IIA methods — order 2s-1 
case   'RIIA1' 

r=l; 
A=l;  b=l;   c=l; 

case   'RIIA2' 
r=0; 
A=[5/12 -1/12 

3/4 1/4]; 

b=[3/4 1/4]'; 

c=[l/3 1]'; 

case 'RIIA3' 

r=0; 

A=[(88-7*sqrt(6))/360 (296-169*sqrt(6))/1800 (-2+3*sqrt(6))/225 

(296+169*sqrt(6))/1800 (88+7*sqrt(6))/360 (-2-3*sqrt(6))/225 

(16-sqrt(6))/36 (16+sqrt(6))/36 1/9]; 

b=[(16-sqrt(6))/36 (16+sqrt(6))/36 1/9 ]'; 

c=[(4-sqrt(6))/10 (4+sqrt(6))/10 1]; 

%Lobatto IIIA methods — order 2s-2 

case 'LIIIA2' 

r=0; 

A=[0 0 

1/2 1/2]; 

b=[l/2 1/2]'; 

c=[0 1]'; 

case 'LIIIA3' 

r=0; 

A=[0 0 0 

5/24 1/3 -1/24 

1/6 2/3 1/6]; 

b=[l/6 2/3 1/6]'; 

c=[0 12 1] ; 

^Miscellaneous Methods= 

case 'Mid22' 

7,Midpoint  22 method 
s=2;   r=0.5; 
A=[0    0 

1/2 0]; 
b=[0  1]';   c=[0  1/2]'; 
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case 'MTE22' 

'/Minimal truncation error 22 method (Heun) 

s=2; r=0.5; 

A=[0 0 

2/3 0]; 

b=[l/4 3/4]'; c=[0 2/3]'; 

case 'CN22' 

7cCrank-Nicholson 

s=2; r=2; 

A=[0 0 
1/2 1/2]; 

b=[l/2 1/2]'; c=[0 1]'; 

case 'Heun33' 

s=3; r=0; 

A=[0 0 0; 1/3 0 0; 0 2/3 0]; 

b=[l/4 0 3/4]'; c=sum(A,2); 

case 'RK44'  "/.Classical fourth order 

s=4; r=0; 

A=[0 0 0 0; 1/2 0 0 0; 0 1/2 0 0; 0 0 10]; 

b=[l/6 1/3 1/3 1/6]'; c=sum(A,2); 

=DSRK Methods= 

case 'DSso2' 

'/.CBM'S DSRKso2 

s=2; isdsrk=l; 

A=[3/4 -1/4 

1   0]; 

W=[l/2  0 

1    0]; 

b=[l 0]'; c=[l/2 1]'; 

case 'DSRK2' 

'/.CBM's DSRK2 

s=2; isdsrk=l; 

A=[l/2 -1/2 

1/2  1/2]; 

W=[ 0   0 
1/2     1/2]; 

b=[l/2   1/2]';   c=[0  1] ' 
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case 'DSRK3' 
'/.Zennaro's DSRK3 
s=3; isdsrk=l; 
A=[5/2 -2 -1/2 

-1 2 -1/2 
1/6 2/3 1/6]; 

W=[ 0 0 0 
7/24 1/6 1/24 
1/6 2/3 1/6]; 

b=[l/6 2/3 1/6]'; c=[0 1/2 1] '; 
'/.==================== "Non-SSP" Methods of Wong & Spiteri= 
case 'NSSP21' 

m=2; r=0; 
A=[0  0 

3/4 0]; 
b=[0 1]'; c=[0 3/4]'; 

case 'NSSP32' 
m=3; r=0; 
A=[0  0 0 

1/3 0 0 
0       10]; 

b=[l/2  0  1/2]';   c=[0  1/3  1]'; 

case   'NSSP33' 
m=3;   r=0; 
A=[0        0        0 

-4/9  0 0 
7/6    -1/2 0]; 

b=[l/4 0 3/4]';   c=[0 -4/9 2/3]'; 

case   'NSSP53' 
m=5;   r=0; 
A=[0 0 0 0 0 

1/70000 
0 3/16 0 0 0 
0 0  1/300 
0 0 0 2/30]; 

b=[l/4 0 0 0 3/4]';   c=[0  1/7 3/16  1/3 2/3]'; 
end 

Order of a Runge-Kutta method: 

function p=rk_order(A,b,c) 
°/0By David Ketcheson 
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°/0Determine  order of  a RK method,   up to  sixth order 
°/00rder conditions  from text  of Hairer,   Norsett,   & Wanner 
'/. 
°/0For an m-stage method, input A should be a m x m matrix; 

7,b and c should be column vectors of length m 

eps=l.e-14; 

m=length(b); '/, # of stages 

em=ones(m,1); 

P=0; 

if sum(b)-l<eps 

p=i; 
end 

z(l)=sum(A'*b)-l/2; 

if (p==l kk  abs(z(l))<eps) p=2; end 

z(l)=c'.~2*b-l/3; 

z(2)=b'*A"2*em-l/6; 

if(max(abs(z))<eps kk  p==2) p=3; end 

z(l)=b'*c."3-1/4; 

z(2)=(b.*c);*A~2*ones(m,l)-l/8; 

z(3)=b'*A*c."2-1/12; 

z(4)=b'*A~2*c-l/24; 

if(max(abs(z))<eps && p==3) p=4; end 

z(l)=c'."4*b-l/5; 

z(2)=(b.*c.~2)'*A*c-l/10; 

z(3)=b'*(A*c)."2-1/20; 
z(4)=(b.*c)'*A*c.~2-l/15; 

z(5)=b'*A*c."3-1/20; 

z(6)=(b.*c)'*A"2*c-l/30; 

z(7)=b'*A*diag(c)*A*c-l/40; 

z(8)=b'*A"2*c."2-1/60; 

z(9)=b'*A~3*c-l/120; 

if(max(abs(z))<eps && p==4) p=5; end 

if p==5 

z(l)=c'.~5*b-l/6; 

z(2)=b'*diag(c)."3*A*c-l/12; 

z(3)=b'*diag(c)*(A*c)."2-1/24; 

z(4)=b'*diag(c).~2*A*c."2-1/18; 
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z(5)=b'*((A*c.-2).*(A*c))-l/36; 
z(6)=b'*diag(c)*A*c."3-1/24; 
z(7)=b'*A*c."4-1/30; 
z(8)=b'*diag(c)."2*A~2*c-l/36; 
z(9)=b'*((A~2*c).*(A*c))-l/72; 
z(10)=b'*diag(c)*A*diag(c)*A*c-l/48; 
z(ll)=b'*A*diag(c).~2*A*c-l/60; 
z(12)=b'*A*(A*c)."2-1/120; 
z(13)=b'*diag(c)*A"2*c."2-1/72; 
z(14)=b'*A*diag(c)*A*c."2-1/90; 
z(15)=b'*A~2*c."3-1/120; 
z(16)=b'*diag(c)*A"3*c-l/144; 
z(17)=b'*A*diag(c)*A~2*c-l/180; 
z(18)=b'*A"2*diag(c)*A*c-l/240; 
z(19)=b,*A"3*c."2-1/360; 
z(20)=b'*A~4*c-l/720; 
if(max(abs(z))<eps)   p=6;  print('This method has order at  least  six');   end 

end 

• Absolute monotonic polynomials: 

function   [gamma,R]=Rsp(s,p) 
°/0By David Ketcheson 
'/. 
'/.Returns the optimal absolutely monotonic polynomial of degree s 

'/and order of accuracy p 

'/.gamma contains the coefficients of the Taylor series about z=-r 

°/„To construct the polynomial, use: 

°/0> syms z phi 

°/0> phi=simplify(sum((l .+z/R) . "(0:s) . * gamma)); 

'/. 
°/0Uses the MATLAB optimization toolbox 

'/.Set options for linprog 

opts=optimset('TolX',l.e-15,'TolFun',l.e-15,'Maxlter',10000000,... 

'LargeScale','on','Simplex','off,'Display','off'); 

acc=l.e-15;   °/0Accuracy of bisection search 
I ====================================================== 

if p==s °/0In this case, the optimal polynomial is just the Taylor polynomial 

R=l; 

for i=0:p 

d(i+l)=R~i; 

for j=0:s 
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B(i+l,j+l)=prod(j-(0:i-l)); 

end 

end 

gamma=(B\ones(s+l,l))'; 

else 

M=s+1; 

rmax=s-p+1.0001; 

rmin=0; 

r=rmax;  '/.Initial guess 

c=zeros(M,1); 

clear B d; 

while (rmax-rmin>acc) %Find R by bisection 

70Set up and improve conditioning of equality constraints 

for i=0:p 

rescale=r~i; d(i+l)=r"i/rescale; 

for j=0:s 

B(i+l,j+l)=prod(j-(0:i-l))/rescale; 

end 

end 

70Test feasibility for this value of r 

[x,lambda,exitflag]=linprog(c,[] ,[],B,d,zeros(M,1),zeros(M,1)+1.e6,c,opts); 

if exitflag==l; 

rmin=r; r=(r+rmax)/2; 

else 

rmax=r; r=(rmin+r)/2; 

end 

end 

°/0Now get a feasible solution so we have the coefficients of the method 

R=rmin; 

for i=0:p 

rescale=R~i; 

d(i+l)=R~i/rescale; 

for j=0:s 

B(i+1,j+l)=prod(j-(0:i-l))/rescale; 

end 

end 

[gamma,lambda,exitflag]=linprog(c,[],[],B,d,zeros(M,1),zeros(M,1)+1.e6,c,opts) 
end 
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