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ABSTRACT 

In this 10 month funded effort, we report progress on the development of methods in 
a number of specific areas: stochastic and deterministic models for complex networks and 
development of inverse problem methodologies (generalized sensitivity functions). These ef- 
forts are part of our continuing fundamental research program in a modeling, estimation and 
control methodology (theoretical, statistical and computational) for systems in the presence 
of major model and observation uncertainties. 

1     Brief Overview Summary 

Motivated by examples in viscoelasticity and biomedicine such as in [P5,P6,P7], we consider 
in [P2] the problem of estimating a modeling parameter 9 using a least squares criterion 

Jd(y, 0) = Sr=i (y(^»)~~ /(*»' ^)) • We take an optimal design perspective in [P2]. Our general 
premise (illustrated via examples in [P2]) is that in any data collected, the information 
content with respect to estimating 6 may vary considerably from one time measurement to 
another, and in this regard some measurements may be much more informative than others. 
We propose mathematical tools which can be used to collect data in an almost optimal way, 
by specifying the duration and distribution of time sampling in the measurements to be 
taken, consequently improving the accuracy (i.e., reduce the uncertainty in estimates) of the 
parameters to be estimated. 

We recall the concepts of traditional and generalized sensitivity functions and use these 
to develop a strategy to determine the "optimal" duration time T for an experiment; this 
is based on the time evolution of the sensitivity functions and of the condition number of 
the Fisher information matrix. We illustrate the role of the sensitivity functions as tools 
in optimal design of experiments, in particular in finding "best" sampling distributions. 
We also present a new optimal design criterion which is based on the idea of finding the 
time distribution which gives the best discrete approximation for the integral version of the 
Fisher information matrix. Numerical examples are presented throughout [P2] to motivate 
and illustrate the ideas. Theoretical foundations are presented in an appendix of [P2]. 

Alternative but related methods for optimal design of experiments are presented and 
explored in [P4]. 

Stochastic differential equation (SDE) models offer one formulation for introducing un- 
certainty in human interactions in a dynamic social network model based on static and/or 
deterministic ordinary differential equation (ODE) models. A coupled SDE system for agent 
characteristics and connectivities was developed and investigated in [7]. This SDE model 
(which tacitly assumed instantaneous influence between agents with connectivity) may be 
improved by including delays in an SDE model or in an equivalent Fokker-Planck (FP) 
model if such exists.  The coupled model of [7] involved discontinuities and did not yield a 



Markov diffusion process (for which an equivalent Fokker-Planck formulation is possible). 
In this effort we formulate a new smooth vector SDE system and demonstrate that it gen- 
erates a Markov diffusion process and provides computational results equivalent to those of 
the earlier model of [7]. The new model is compared to the earlier model via simulations. 
We derive an equivalent Fokker-Planck formulation to this new SDE system. Numerical 
methods to implement the FP model are being formulated and tested. Versions of these 
equivalent models will be modified first to include deterministic delays and then delays with 
some stochasticiity/uncertainty. 
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to optimal design problems, CRSC-TR08-12, September, 2008; Inverse Problems, submitted. 

[P3] H.T. Banks, J.E. Banks and S. L. Joyner, Estimation in time-delay modeling of 
insecticide-induced mortality, CRSC-TR08-15, October, 2008; J. Inverse and Ill-posed Prob- 
lems, submitted. 
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[P7] H.T. Banks, Kathleen Holm, Nathan C. Wanner. Ariel Cintron-Arias, Grace M. 
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3    Relevance of Research to DOD/AF Missions 

The development of general classes of nonlinear complex nodal network models with in- 
herent uncertainties is directly relevant to several recently announced "Discovery Challenge 
Thrusts" in AFOSR-BAA-2007-08. In particular, our efforts will address basic research is- 
sues that will be related to the programs announced on " Robust Decision Making" and 
"Complex Networked Systems" which are concerned with operational environments where 
"unexpected events, attacks on and degradations of the network centric system and sud- 
den changes in goals and objectives " must be accommodated. The need for new modeling 
paradigms which include robustness in estimation and control in models with uncertainty is 
well recognized. 

We expect the developed methodologies to be of direct interest to scientists and engineers 
in the Information Directorate at AFRL, Rome, NY, in their ongoing efforts on information 
nodal network systems, security and information warfare. 

4    Detailed Research Summaries 

4.1     Generalized Sensitivity and Optimal Design 

We consider first a parameter estimation problem for the general nonlinear dynamical system 

x(t)=g(t,x(t),9) 

with discrete time observations 

Vj = f{tj,e) + t, = Cx(tj, 0) + tj,    j = l,...,n (4.2) 

where x, g G M.N, /, t3 € MM and 9 6lp. The matrix C is an M x iV matrix which gives the 
observation data in terms of the components of the state variable x. 

Generalized sensitivity functions (GSFs) were introduced recently by Thomaseth and Co- 
belli [26] as a new tool in identification studies to analyze the distribution of the information 
content (with respect to the model parameters) of the output variables of a system for a 



given set of observations. More precisely, the generalized sensitivity functions describe the 
sensitivity of the parameter estimates obtained from an inverse problem with respect to the 
data measurements used in the inverse problem. 

For a scalar observation model with discrete time measurements (i.e., when M = 1 and 
C is a 1 x iV array in (4.2)), the generalized sensitivity functions (GSFs) are defined as 

'       1 
Ss^) = E^TTT^"1 x V*/(*i,0o)] • VJfoA), (4-3) 

i=l   a  ^ l> 

where {ti}, I = 1,... , n, is the time distribution where the measurements are taken, 

F = E -Tfr-^ofihM^ofih. e0)
T (4.4) 

j=i a w'J 

is the corresponding Fisher information matrix, and d0 is the usual "true" parameter value 
tacitly assumed to exist in standard statistical theories. The symbol "•" represents element- 
by-element vector multiplication. For the motivation and details which led to the definition 
above, the reader should consult [26] and [11]. The Fisher information matrix measures the 
information content of the data corresponding to the model parameters. In (4.3) we see that 
this information is transferred to the GSFs, making them appropriate tools to indicate the 
relevance of the measurements to the estimates obtained in parameter estimation problems. 

We note that the generalized sensitivity functions (4.3) are vector-valued functions having 
the same dimension as the parameter 9 being estimated. The A;-th component of the vector 
function gs represents the generalized sensitivity function with respect to 9k- The GSFs 
are defined only at the discrete time points {tj,j = l,...,n} and they are cumulative 
functions, at each time point ti taking into account only the contributions to estimates of 
the measurements up to £/. thus indicating the influence of measurements up to that time 
on the parameter estimates obtained. 

From (4.3) it is readily observed that all the components of gs are one at the end of 
the total time interval, i.e., gs(i^) = 1- If one defines gs(i) = 0 for t < t\ (gs is zero 
when no measurement is collected), then each component of gs varies from 0 to 1 during 
the experiment. As developed in [26], the time subinterval during which this transition 
has the sharpest increase corresponds to measurements which provide the most information 
on possible variations in the corresponding estimated model parameters. The amount of 
information with respect to a parameter 9k is directly related to the rate of change of the 
corresponding GSF; thus sharp increases in gsfc indicate a high rate in additional information 
about 9k being provided by the new measurements in that time period. 

For finite dimensional systems (N < oo) with a finite number (p < oo) of parameters, 
the numerical implementation of the generalized sensitivity functions (4.3) is straightforward, 
since the gradient of / with respect to 0 (or x0) is simply the Jacobian of x with respect to 
9 (or XQ) multiplied by C. These Jacobian matrices can be obtained by numerically solving 
sensitivity ODE systems coupled with the system (4.1). 



We have effectively used GSFs in several problems [10, 4] with finite dimensional pa- 
rameters in ordinary differential equation systems. The primary contribution of generalized 
sensitivity functions is that they can indicate regions of high information content where, if 
additional data points are taken, one can generally improve the existing parameter estimates. 
This has rather obvious applications to experimental design. Moreover, by visually investi- 
gating the dynamics of GSF curves, one can potentially identify subsets of parameters which 
are highly correlated. While there are still some heuristics underlying the development of 
GSFs (the presentation in the appendices of [5, 11] offers the most rigorous presentation to 
date), it is clear that some version of the GSF theory should become a valuable tool for sci- 
entific and engineering investigators needing to estimate parameters in dynamical systems. 
Although the GSF theory provides useful information in parameter estimation, the most 
insight can be gained when the GSFs are used in conjunction with traditional sensitivity 
functions. 

In order to illustrate our ideas, we changed the traditional order of the steps, and we 
assume that we need to estimate the parameter 0 from a set of observations of the output 
variable y = Cx which are not known a priori. Indeed, let us assume that the only things we 
know for the moment are the physical problem and the mathematical model (4.1)-(4.2) used 
to model it, but we have the freedom to instruct the experimentalists as to the number of 
observations to take, and more importantly at what times to take them. We also assume that 
the underlying model (4.1)-(4.2) is a good representation of the physical problem (i.e., there 
is agreement between the observed data and the corresponding values generated by (4.1)- 
(4.2) with an appropriate choice of 0), and that we have a criterion to ascertain the quality 
of the estimates obtained (for instance, the standard errors). Given these assumptions, it 
makes sense, once we have a mathematical model and an algorithm to perform the inversion 
(least squares for example), to look for a strategy for collecting experimental data in the 
best possible way. We want to take maximum advantage of the mathematical structure of 
the model in order to indicate the optimal number of observations to take, as well as their 
optimal temporal distribution, thus obtaining better accuracy for the estimates. 

Some of the most important questions in parameter estimation problems when considering 
the dynamical system (4.1)-(4.2) are: 

1. How do we choose the duration T of the experiment, or the interval [0, T] from where 
to sample data, in order to obtain the best estimates for 01 

2. Once the duration T is established, what is the optimal sampling distribution of an a 
priori given number of measurements in the interval [0, T], in order to obtain the most 
accurate estimates? 

The first question hints to the minimum time interval which contains most of the relevant 
information with respect to the estimation of 0. The second question constitutes the main 
topic of the optimal experimental design literature, and the traditional way to answer it is 
to find time distributions which optimize some specific "design" functions. In general, an 
optimal design minimizes or maximizes a given function of the Fisher information matrix. 



However, this matrix depends on the true parameter 9Q, which in practice is unknown. In 
order to overcome this difficulty one usually substitutes an initial guess 9* for 0O. The 
resulting designs are called locally optimal designs. Of the numerous design strategies found 
in the literature (for example, see [12, 17. 18. 24]) we briefly enumerate here the most popular, 
which are: 

a) the D-optimal design, which arguably maximizes the determinant detF(9*) of the 
Fisher information matrix. It is largely accepted in the literature because of its ap- 
pealing geometrical interpretation: the asymptotic confidence regions for the maximum 
likelihood estimate of 9 are ellipsoids. One can show that an optimal design with re- 
spect to this criterion yields approximately a minimal value for the volume of the 
tolerance ellipsoid of the estimates; 

b) the c-optimal design, which minimizes the variance of a linear combination g(6) = cJ8 
of the parameters to be estimated. Up to a multiplicative constant, the asymptotic 
covariance of the maximum likelihood of g is given by cTF~1(9*)c, and an optimal 
design with respect to this criterion minimizes this variance. In the particular case 
when c is the i-th unit vector, i.e., c = e^, the c-optimal design minimizes the variance 
of the least squares estimate for the i-th. parameter 6i\ 

c) the E-optimal design, which maximizes the smallest eigenvalue X„u„(F(9*)) of the 
Fisher information matrix. This is equivalent to minimizing the maximum eigenvalue 
^max(F~l(0*)) of the inverse F"1 (the covariance matrix), or to minimizing the worst 
variance among all estimates cT8 for the linear combinations cT8 with a given norm 
cTc = 1. Geometrically, the £'-optimal design minimizes the maximum diameter of the 
asymptotic confidence ellipsoids for 6. 

The practical importance of the issues addressed by the previous two questions is obvious 
for those experiments where the cost of measurements (invasive procedures, expensive tech- 
nology, necessity of highly qualified personnel, etc.) is high and where one wants to avoid 
running the experiments longer than necessary. These questions suggest that we investigate 
the temporal distribution of the information content with respect to parameters we want to 
estimate, the sensitivity of the model output and of the parameter estimates with respect to 
model parameters, and lead us to introduce mathematical tools which to describe them. 

Our strategy in answering the previous questions is to assume that we have continuous 
time measurements in [0, T] and develop tools to quantify the information content with 
respect to 9 (imbedded in rj) throughout the interval [0, T]. In order to carry this out, we 
reformulate the estimation problem by using an integral form of the least squares, integral 
optimality conditions, and integral version of the Fisher information matrix (its integral form 
on the interval [0, T]). First we show that the traditional and generalized sensitivity functions 
(GSF) can indicate regions of high information content, where if additional data points are 
sampled, the corresponding parameter estimates are improved (as we have rioted GSF were 
introduced first, to our knowledge, by Thomaseth and Cobelli, see [4, 11, 26]). Therefore 
we advocate their utilization as new tools in experimental design. In [5] we propose a new 



optimal design strategy which is based on the idea of finding a discrete sampling distribution 
on [0, T], which best approximates the integral version of the Fisher information matrix with 
a discretized version. To carry this out, we formulate in [5] a new continuous GSF based 
on probability distributions representing the sampling which can then be optimized over the 
metric space of probability measures formulated with the Prohorov metric [2, 23]. 

4.2    Nodal Networks with Uncertainty 

Networks with uncertainty are ubiquitous in science and engineering, but especially in com- 
plex nonlinear systems of interest to DOD. In particular, nodal networks with uncertainty are 
fundamental to the understanding of problems involving dynamic resource management and 
allocation. Examples range from service scheduling and material supply chains to produc- 
tion systems and modern high speed communication networks where information is routed 
between nodes in a distributed information system with a global grid. 

Social network structures can be represented by graphs in which individuals, or agents, 
are represented by vertices and the connections between agents are represented by edges. 
Agents are defined by measurable characteristics, and the connections between agents can be 
defined as either unidirectional, thus creating a directed graph, or bidirectional, thus creating 
an undirected graph. In social network graphs, the relationship between two agents, or a 
pairwise relationship, is considered to be the most basic structure used in constructing the 
graph. More complicated social models, even triads including three agents, are created from 
using multiple pairwise relationships. Research on social networks may be applied to many 
areas, including social group structure, information sharing, and disease outbreak. 

Interactions between agents often have uncertain and unpredictable results, and many 
static and deterministic social network models fail to consider variability and delay. Complex 
nonlinear systems are more suited for modeling the uncertainty found in human interactions. 
A dynamic social network model that includes delay and accounts for variability could allow 
governmental organizations to predict the propagation of information through a terrorist net- 
work [2], allow local officials to examine how a communicable disease would spread through 
their community [20], or enable corporations to simulate scenarios in which their supply 
chain operates under strained conditions or with perturbations [10]. 

One area of current research in social networks is dynamics of connections and agents 
over a time. The model first proposed by [7] utilizes a coupled system of stochastic dif- 
ferential equations (SDE's). Agents are defined by quantitatively described characteristics 
and the strength of the pairwise relationship, or degree of connectivity, joining two agents 
is determined by these characteristics. It is assumed that agents participate in homophilic 
relationships and that two agents are more likely to have a positive degree of connectivity 
if their characteristics are similar. The proposed model accounts for changes in agents and 
relationships through both observable interactions and unobservable events represented as 
noise. 

Another factor in social network dynamics that can be considered is delay. The effect 
one agent has on another often is not instantaneous; like diseases in a body, new ideas and 



opinions are subject to a propagation time in an agent's mind before the agent accepts or 
rejects the new concept. An agent does not pass on ideas, objects, and diseases immediately 
after they have come in contact with or possession of them. Consider a conversation between 
two people of differing religious views. It is unlikely that one will immediately convert to 
the other's faith; however, after repeated contact and reflection by each individual, the two 
may become more understanding of each others' religions. Adding constant and stochastic 
delays to the proposed model will result in a more realistic simulation of agent interactions 
and internal changes in the agents. 

The proposed model is built from the model created by [7]. The model is used with the 
assumption that time, degrees of connectivity, and agent characteristics are continuous. The 
coupled SDE model proposed in [7] was revisited and used to reproduce previous results. 
The SDE's were then changed so that the coefficients used in the model are smooth, allowing 
the model to satisfy the conditions of a diffusion process, and the results of the model with 
smooth coefficients are compared to the results of the original model to verify that the change 
in coefficients does not affect the visible behavior of the model. These equations are then 
converted to an equivalent Fokker-Planck (FP) model. Numerical implementation of the FP 
model as an alternative modeling and numerical approach, with attention to ability to add 
delays to the system, is under investigation. 

4.2.1     Basic Stochastic Differential Equation Model 

Denote the vector of characteristics of agent i, i G Af = 1,..., N at time t by C,(t) G 
K C Wn, where K is a compact constraint set for the values of characteristics and m is the 
number of characteristics. Refer to the degree of connectivity between agent i and agent i' 
at time t by e(i, i', t) € E such that an agent's connectivity to itself e(i, i, t) = 0 Vi, t and an 
edge between i and i' exists if and only if e(i,i',t) > 0. The strength of the link between 
agent i and agent i' is not bidirectional, so it is possible that e(i,i',t) ^ e(i',i,t). Define 
Ai(t) = {i! G N : e(i, i', t) > 0} to be the set of all agents to which agent i is linked at time 
t, and let |A(0l be the number of elements in Ai(t). 

The system of coupled stochastic differential equations as defined by [7] used as the 
starting point in this model are 

dCi(t)   =   -r^f—  £   [C(t)-Q(t) dt + (T<IWY(t) (4.5) 

de(i,i',t)   =   /(||Ci-Ci<||2)dt + 7dW?i,(*). (4.6) 

In (4.5), the constant /?* is an agent-specific value that represents the desire of agent i 
to be more like agents to which it is linked and aWp(-) is a Wiener process with variance 
a2. In (4.6), /(£) = 2e~b(- - 1 where the constant b > 0 controls the rate at which edges are 

formed and || • || denotes the square of the vector norm in Rm, and 7tfWt
e
i,(-) is a Wiener 

process with variance 7
2. 

8 



4.2.2     Stochastic Differential Equation with Smooth Coefficients 

The model described by (4.5) does not fit the definition of a usual diffusion process because 
the values of | Ai(t) | change discontinuously. An alternative model is proposed in [7]: 

dCi(t) 
A 

-VVM',*) Ci,{t)-Ci(t) dt + adW?(t) 
l^i'^ieKh* ,t) .,#. L J 

(4.7) 

The sum Yli'+i e(*> *'> 0 *s defined for all sums of all possibles values of e(i, i', t) and thus 
is continuous. While it has smooth coefficients, this model fails to follow the assumption of 
homophily and enables agents who have a non-positive connectivity to a particular agent 
to influence the characteristics of that particular agent. This in turn causes the degrees of 
connectivity e(i,i',t(n)) —• oo as n —> oo, resulting in single cluster scenarios for any value 
of b in the deterministic case, as illustrated by Figure   1. 

12 
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Figure 1: Degree of connectivity e(10, i', t), i' ^ 10 of agent 10 with other agents for b 
using smooth model proposed in [7]. 

0.02 

Consider the agents i',i' ^ 2, 7 and agent 2 in the case study used in [7] in which 
Cj/(0) = (10,10) and C2(0) = (—10, —10). Assume that these agents' characteristics remain 
the same for several time steps in the simulation while the degrees of connectivity e(i', 2, t) 
and e(2,i',t) become negative numbers so that e(2, «',£„) = —1.5 at some time tn. Ignoring 
agent 7, (4.7) would reduce in the deterministic case to 



dC2{tn)   = 

dC2\tni 

dC2{tn)   = 

+<rrfW,c(t„) 

LV-1.5 
19 ^ 

cfl 

-12 

20 

20 

i'^2 

(It 

10 

10 

-10 

10 
dt + 0dWp(*„) 

As noted before, agents to which agent 2 has a negative degree of connectivity should not 
alter the characteristic values of agent 2, but this rule is clearly violated by this proposed 
smooth model. 

To avoid agents affecting each other at values of e(i,i',t) < 0, several augmentations to 
the sum Yli'& e(*> *'> *) were considered. One proposed change that enabled the model to 
produce results similar to those produced by (4.5) was 

dd(t) 0i 
E  ,v.   e(i,i',t) 

J]  e(i,*,
lt)[Q/(t) -Ci(t)ld« + t7dWp(t) 4.8) 

Like in (4.5), A,(i) is the set of agents i' ^ i that have connectivity e(i,i',t) > 0. As 
the creation of Al(t) requires additional calculations and computer resources, this method is 
less efficient than the ideal method. Imposing the additional condition on the sum may also 
have unwanted effects when this equation is converted to a Fokker-Planck equation. The 
SDE system with smooth coefficients containing an equivalent method of expressing (4.8) is 

dCz(t)   =   ^J^-YvlCeW-C^dt + adWfit) 

de(i,i',t)   =   /(||Ci-Q||2)dt + 7dW£i,(t). 

(4.9) 

(4.10) 

In (4.8), v? = |(e(i,i\i) + \e(i,i',t)\) As no agents i' are to affect agent i ]fe(i,i',t) < 0. 
it is assumed that v

ft      = 0 if ^,,, • if = 0.  Thus this model will not fail if single-agent 

clusters arise during a simulation. This model maintains the requirement of homophily 
between agents and prevents agents with non-positive degrees of connectivity affecting other 
agents. When used to run simulations of the test cases first run with (4.5), results similar 
to those of the earlier model are produced. 

4.2.3    Numerical Scheme for Stochastic Models 

We continued to use the stochastic analogue of the classical fourth-order Runge-Kutta 
method to solve the system of differential equations as implemented by [7]. Approximating 
dC{(t) remains nearly the same: 

10 



d{tn) = Ci^-O + PoF0h + PlFift + p2F2/i + P3F3/1 + <TAW^( 111 

where 

g Un-l, Ci(fn_i) J 

-.(1)/ CT^-i)   =   C^t^ + ^Foh+^aAWg 

Fi    =   g(tn_1 + i/i,Ci1)(t„_1)) 

Cf(t„-i) 

F, 

C?>(« 
F, 

Q^O + iFa/i + ^AWS 

g^x + ifc.Cf&.-i)) 

C^tn-O + Fafc + aAW^ 

g(t„-l + /l,CJ3) (*„_!)), 

6 3 
1(1)/ -.(2), i(3) The value of a was added to the calculation of C) (i„_i), C^ (£„_i), and C) (£n-i) 

to scale the value of AW^ so that it reflected the value of oAWj^ used in (4.11). The 
definition of g(i, Cj(£)) is depedent upon the model. For approximation of the basic SDE , 

g(«,Cj(0) = pj§j)f Ei<eMt) ICeW-dit)], and for the smooth coefficient SDE, g(t,C<(t)) = 
J, C^(t)-Q(«) 
Equation (4.6) may be solved using a simplified manner since its result is not dependent 

upon the value of the degree of connectivity e(i, i', t). This can be expressed as 

e(i,i',tn)   =   e(i,i',tn) + Po/(j|Q(r.n_1) - Ci>(tn-i)\\2)h 

+ {Pl +ft)/(||Q(*n-l + \h) ~ Cj/(t»-l +  l-h)f 

+p3/(||Q(tf,)-Ci,(tw)||2)/» + 7AWS1. (4.12) 

Here AW'TI = W^,(£„) — W^,(£„_i) are standard Wiener increments with the distribu- 
tion N(0, h) where h = Atn. We assume that the value of Cj(£n) + \h can be approximated 
linearly from Cj(tn_i) to Cj(in) when Atn is sufficiently small and therefore Cj(£n_i + |/i) 
may be approximated by    " "~^+  l( n). 
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4.2.4 Numerical Simulations 

We use the same case study concerning 10 agents as in [7] over a time interval of t £ [0,10]. 

To avoid , A'0)| being undefined, we calculate e(i,i',0) = /(||C,(0) — C,'(0)|| )//. This will 

cause all connectivities to start with a nonzero value that is also indicative of the sign of the 
degree of connectivity between two agents as determined by their characteristics. 

4.2.5 Deterministic Case 

The reproduction of the existing model performs similarly to that of the paper [7] in the 
deterministic case (when a = 0 and 8 = 0). By properly implementing (4.6), the values of 
b that determined the number of clusters created after the same time as used in [7] were 
found to be different. One cluster formed when b £ (0,0.00155); two clusters formed when 
b £ [0.00155,0.01390); and three clusters formed when b £ [0.01390,oo). Two agents are 
members of different clusters if their connectivities e(i,i',t) < 0 and e(i',i,t) < 0. The 
clusters are identical to those described in [7]: the one cluster scenarios had a result of one 
cluster of all 10 agents; the two cluster scenarios had a result of one cluster of agents 2 and 
7 and a second cluster of all other agents; and the three cluster scenario had a result of one 
cluster of only agent 2, one cluster of only agent 7, and one cluster of all other agents, and 
the degrees of connectivity between agents changed at a rate identical to the rates found in 

[7]- 

Degree of connectivity e(10.i',t) for b=0.02 

Figure 2: Degrees of connectivity e(10, i', t),i' / 10 of agent 10 with other agents for /; = 0.02 
(three cluster scenario). 
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Degree of connectivity e(10.i',t) for b=0.005 

Figure 3: Degree of connectivity e(10, i', t),i' ^ 10 of agent 10 with other agents for b = 0.005 
(two cluster scenario). 

Degree of connectivity e(10,i'.t) for b=0.000775 

Figure 4:  Degree of connectivity e(10, i',t),i' ^ 10 of agent 10 with other agents for b 
0.000775 (one cluster scenario). 

L3 



Noise Enriched Situations 

Sigma 

Figure 5: The (0,7) noise-enriched surface along a £ [0,40], 7 £ [0,12] plotted as a number 
out of 100 simulations. 

4.2.6    Stochastic Case 

Four regimes arc defined in [7] into which the results of a simulated trial may be organized. 
These four regimes are labeled essentially deterministic, noise enriched, noise enlarged (with 
two- and three-cluster possibilities), and noise dominated. 

To investigate the occurrence of the regimes defined in [7] using a constant b and variable 
a and 7 we ran simulations, with time step h = Atn = 0.05, for selected values of a € [0.40] 
and 7 6 [0,12] with fixed b = 0.000775. We carried out 100 simulations for each pair (<7fc. 7;) 
in a partition with values ak = k = 0,1,..., 40; 7; = 0.25/, / = 0,1,..., 48. To further 
investigate the relationship between a, S, and the number of trials that produced essentially 
deterministic results, we also carried out 100 simulations for each pair (cfc,7/) in a partition 
with values ak = k = 0,1,..., 40; 7; = 0.0025/, / = 0,1,..., 48. The trends exhibited in [7] 
Figures 10 - 13 are also present in the charts produced by the proposed model albeit on a 
larger domain of a and 7. Again, the surface of the noise-dominated regime is almost the 
complement of the surface of the noise-enriched regime with the exception of the occurrence 
of some essentially deterministic cases at low values of a and 7. This indicates that it is 
highly unlikely that the inclusion of noise in the model will cause the simulation to reach a 
two- or three-clustered scenario if a b in the range of values that will produce a one-clustered 
scenario is selected. 
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Noise Dominated Situations 

E 
Z    40 

WKSW** 

Gamma 0     0 
Sigma 

Figure 6: The (a, 7) noise-dominated surface along a E [0, 40], 7 G [0,12] plotted as a number 
out of 100 simulations. 

Deterministic Situations 

0.12     40 Sigma 

Figure 7:  The (a,-y) essentially deterministic surface along a € [0,40], 7 G [0,0.12] plotted 
as a number out of 100 simulations. 
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Noise Enriched Situations 

0      0 
Sigma 

Figure 8: The (a, 7) noise enriched surface along a G [0,40], 7 € [0,0.12] plotted as a number 
out of 100 simulations. 

L6 



4.2.7    Stochastic Model with Smooth Coefficients 

The coupled SDE model with smooth coefficients were also used to simulate the case denoted 
above and produced visually identical results. In the deterministic case, the values of b that 
control clustering behavior are identical to those found in the deterministic case of the 
basic SDE system; that is, one cluster formed when b G (0,0.00155); two clusters formed 
when b G [0.00155,0.01390); and three clusters formed when b G [0.01390, oo). The sample 
distributions of regimes also appear to be very similar to those established in [7]. Instead 
of using agent 10 to represent all agents j with Cj(0) = (10,10), agent 1 was used with no 
impact of the behavior of the model. 

To verify that the model exhibited random behavior when a ^ 0 and -7 ^ 0, a simulation 
of the one-cluster scenario was run using the parameters a = 5 and 7 = 1. The general 
behavior exhibited by the deterministic case is also evident in this stochastic case. Note that 
the trend of increasing connectivities in a one-cluster deterministic case, pictured in Figure 
4.2.7, is also reflected in the one-cluster stochastic case pictured in Figure 4.2.7. Also, the 
tendency for characteristic values in the one-cluster deterministic case to approach a certain 
value between all the characteristic values, shown in Figure 4.2.7, is also present in the 
one-cluster stochastic case, as illustrated by Figure 4.2.7. 

Degree of connectivity e(1 ,i'.t) for b=0.000775 

A2 
A3 
A4 
A5 

— A6 
A7 
A8 
A9 

 A10 

/yy 

Figure 9: Degree of connectivity e(l, i', t), i' 7^ 1 of agent 1 with other agents for b = 0.000775, 
a = 0, and 7 = 0 using the smooth coefficient model (one cluster scenario, deterministic 
case). 
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Characteristics of agents 1, 2, and 7 over time 

Characteristic 1 -10     0 
Time 

Figure 10: Characteristic values of agents 1, 2, and 7 over t G [0,10] for b = 0.000775, a = 0, 
and 7 = 0 (one cluster scenario, deterministic case). 

Noise Enriched Situations 

**£*. 
atom • 

Sigma 
0     12 

Figure 11: The (a, 7) noise enriched surface along a G [0,40], 7 G [0,12] plotted as a number 
out of 10 simulations using the smooth coefficient model. 
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Noise Dominated Situations 

0      0 
Sigma 

Figure 12:   The (a,7) noise dominated surface along a G [0,40],7 G [0,12] plotted as a 
number out of 10 simulations using the smooth coefficient model. 

Degree of connectivity e(1 ,i'.t} for b=0.000775 

Figure 13: Degree of connectivity e(l,i',t),i' / 1 of agent 1 with other agents for one trial 
using the parameters b — 0.000775, a = 5, and 7=1 using the smooth coefficient model 
(one cluster scenario, stochastic case). 
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Characteristics of agents 1,2, and 7 over time 

Characteristic 1 -10     o 

Figure 14: Characteristic values of agents 1, 2, and 7 over t E [0, 10] for one trial using the 
parameters b = 0.000775, a = 5, and 7 = 1 (one cluster scenario, stochastic case). 
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4.2.8    Fokker-Planck Equivalent Formulation 

With the establishment of the smooth SDE model and its faithfulness to the SDE model 
first proposed by [7], the development of an equivalent FP model may proceed. Let {X(r)} 
be a stochastic process, with t G [to, oo), and X{t) a random variable continuous in time and 
state, X(t) E (-00, op). Let X(t) satisfy the Ito SDE 

dX(t) = a(X(t), t)dt + 0{X(t), t)dW(t), (4.13) 

where dW(t) represents an infinitesimal Wiener increment, and W(t) is the standard Wiener 
process. The mean and variance of X(t) is then a(X(t),t) and p2(X(t),t), respectively. 
Conditions (4.14) - (4.16) 

1    f00 

lim — /     \y-x\dp(y,t + At;x,t)dy = 0, 6>2 (4.14) 
Af-o At J_0o 

1    f°° 
lim-—/     (y-x)p(y,t +At;x,t)dy = a(x,t), (4.15) 

LAI J-00 

1       f°° 
At^oAtJ     (y-x)My,t + ^x,t)dy = P2(x,t), (4.16) 

establish the smoothness of coefficients a(X(t),t) and (3(X(t),t). Should these conditions 
be satisfied, it can be shown via the application of the Chapman-Kolmogorov equation and 
Taylor expansion of a test function, that X(t) is a diffusion process. Equivalently, this means 
that X(t) satisfies the Kolmogorov equations with drift coefficient a and diffusion coefficient 
P2. The corresponding forward Kolmogorov (or Fokker-Planck) equation is then 

dp        d(a(x,t)p)      ld2(P2(x,t)p) 

dt " dx 2        dx2        ' { ^    ' 
In equation (4.17), p is the pdf of the stochastic process X(t), and the transition from 

state x at time t to state y at time s is then p(y, s; x, t). 
Generalizing (4.17) to M dimensions as in [22], we find the forward Kolmogorov/Fokkei- 

Planck is given by 

where X = (Xu ..., XM) is a stochastic process such that 

Si=limQ±iE[AXi(t)\Xi(t) = xi], 

and 

Sij = ^^[AXMAXMXiit) = Xi,Xj(t) = Xj] 
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If we let Cf (£) represent the A;th element of Ci(t), and apply (4.18), the forward Kol- 
mogorov formulation corresponding to model (4.9) - (4.10) is then 

.Y 
dp _     ^   d 

di 
i=l 

N 

ft 

T — 
i=i 

dC2 
E*c(M'i*) 

_^e(i,i',i)[^(i)-C/(«)]jp 

— ^e(»,i',()[C?(0-C?(t)]U 

i=l 

AT      W 

9 
dc? 

A 
E& e(^ *'. *) 

_^e(z,i',t)[Cr(i)-CT(t)]   p 

a 
+ EETTM/(IIC^)-C^)II2)P] 

.V 

I 

i=l i'=l 

N 
32(0)     v- d2{a2p) ^ d2{a2p) 

N      N 
V^ V^ fl 

2tr^)2  tr5^ 2^2 + ...+ E a(cr)2 
i=l  t'=l 

d2(7
2p) 

Here p is the joint transition probability density function of p(Ci(t),e(i,i',t),t).  Summing 
the drift of C* (t) and the variances of the Wiener processes for each characteristic results in 

o N     m       r. 
Op _       \^ST^    V 
di 

t=l fc=l 

N      N 

dCf 

d 

jZ^X«<<Mcto-(*m)p 

+ EEF
L

-WII
C

-'W-
C

-(
(

»II
2
»P] 

i=i i'=i 

-    N     m 

nEE d
2{a2p) 

2tttid^y 'tax dei 
N      N 

EE WP) (4.19) 

4.2.9     Finite Difference Scheme for Fokker-Planck Model 

The finite difference approximation formulated by [14] preserves the properties of the FP 
model. This numerical scheme yields a non-negative solution for all values of x, conserves 
the area of the p.d.f. p, and is known to be relatively stable. Additionally, this method 
allows mesh points to be more widely spaced than in some competing methods. Define the 
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following functions 

G(x,t) 
N     m 

-P 
t=i fc=i ^<t>t *•' '' 0, 

iv    jv 

+ ^5]2[exp(-6||Q(t)-C,(0||2)-l] 
i=l i>=\ 

N      m 
Op 

N      N 

m» = ft+VEEa^+iEZ 9p 
2&fe**G)      2fefe5e(M',t) 

(4.20) 

(4.21) 

For any x G x, let Ax = (xmax — xmin)/R, where xmax and xmin are the upper and lower 
boundaries of the domain of x G x and R is the number of intervals into which the domain 
of x shall be divided. Let At = T/S, where S is the number of time steps. The mesh points 
shall be given by xr = xm;n + rAx, r = 0,1,2,...,R and ts = sAt, s = 0,1,2,... ,S. The 
midpoint between two mesh points in x can be interpolated linearly by xr+\ = |r+1. The 
approximation (4.21) may be utilized to obtain 

V, ,«+! 
Pr 

ps+1     17"*+1 
r+i r-i 2 

At Ax 
(4.22) 

where p*+1 — p*T denotes the change of the p.d.f. p w.r.t. the change in x G x from one mesh 
point to the proceeding mesh point. Letting A = a if x G C and A = 7 if x G e, -Fs*j may 

be defined as 

77S+1    _   s~is+i „«+] 
r+^ 

\2    s+1 _    s+1 
^   £V+1        Pr 

2        Ax 
T   r> T    +- (4.23) 

A2 

yprti -p 
s+1 

Ax 

6'r
+1G'+\ + 

2Ax 
„s+i p"li + i-sr)Gi+

+\ 2Ax Pt+l 

where   ^+1 = -^ , i+i,  ., 
' Tr exp(Tr        ) —1 

T„        = 

Gy\Ax 

A2 

To preserve the zero-flux boundary conditions of F(x|xmi„ G x,is+i) = 0 and F(x|xm„, G 
x,ts+i) = 0, let F!|: = 0 and Fs+l = 0. Equation (4.22) can be solved using the system 

r+i 

1 S+1      S+1 iS+l„S+l 
S°l,r Pr+l T <Po,r Pr <P-l,rPr-l  ~ P ( 1.21) 
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where 

K1 

<PQ,r 

«£ 

At 
Ax 

1 + 

At 

Ax 

A2 

4Ax 

At l\ 
Ax 

S+l/^S+1 (1 - srx)Gs
r
+

+\ - 6£\G i 
' 2 J 

(i-<rl)G::i + r+ 4Ax 

+ X2At 

2Ax ~2 

4.2.10 Conclusions to Date 

The results found in [7] were successfully duplicated using a modified version of the model. 
The coupled SDE model proposed in [7] can be converted to an SDE model with smooth 
coefficients. Equation (4.6) orginally possessed smooth coefficients, and to change (4.5) 
to be composed of only smooth coefficients involved scaling the difference in two agents' 
characteristic values by the connectivity between those two agents if the connectivity is 
positive. Other methods of smoothing the coefficients were considered but did not fulfill the 
requirement of homophily between agents. Changing the system (4.5)-(4.6) to (4.9)-(4.10) 
we found no discernable change in model behavior in both deterministic and stochastic cases 
and no change in the effect of parameters ft and b or variables a and 7 on the system. 

With smooth coefficients, the SDE fulfills the definition of a diffusion process, thus al- 
lowing an equivalent multidimensional Fokker-Planck (FP) model to be formulated from the 
coupled SDE system (4.9) - (4.10). Usage of the FP model is nearly ubiquitous in many 
scientific fields, and current research is being performed to further develop and understand 
the FP equation [3]. The FP formulation possesses drift coefficients as described in (4.20) 
and diffusion coefficients equal to a in Mra dimensions of the process and 7 in an additional 
N(N — 1) dimensions. It is possible to approximate the FP model by a Finite Difference 
Scheme; however, the ability and computational efficiency of such a method, while still under 
investigation, are less than promising. In response to the conclusions of these investigations, 
it was decided that additional model complexity will be incorporated and delays will be 
added directly to the SDE model. 

4.2.11 Social Network Model with Delay 

In a first step, the version of the stochastic social network model discussed above and in [8] 
can be generalized with a single discrete delay is 

Q(t) Pi 
——    J2    «(.V-T)[C,(i-T)-Ci(t-r)] A.21 

e(i,z',t) = f(\\Cl(t)-Cl,(tW 

2 1 



where /(£) = 2e~b(- — 1 and <j> = e(i,i',t — r). This system is for i = l,...,m where m is 
the number of agents considered, Ci(t) denotes the value(s) of the k characteristics of the 
agents, and e(i, i', t) the strength of the connections between the agents. 

We are currently using delay equation numerical approximation techniques [1, 6] devel- 
oped under previous AFOSR support to explore features of these models with delays. We 
note the dimension of the approximating ODE system is then n = km + m2 = m(k + in). 
Results will be reported in [9]. 
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