
Probabilistic Noninterference in a Concurrent Language y

Dennis Volpano

Computer Science Department

Naval Postgraduate School

Monterey� CA ������ USA

volpano�cs�nps�navy�mil

Geo�rey Smith

School of Computer Science

Florida International University

Miami� FL ������ USA

smithg�cs�fiu�edu

August ��� ����

Abstract

In previous work ����� we give a type system that guarantees that well�typed multi�
threaded programs are possibilistically noninterfering� If thread scheduling is proba�
bilistic� however� then well�typed programs may have probabilistic timing channels� We
describe how they can be eliminated without making the type system more restrictive�
We show that well�typed concurrent programs are probabilistically noninterfering if
every total command with a guard containing high variables executes atomically� The
proof uses the notion of a probabilistic state of a computation from Kozen	s work in
the denotational semantics of probabilistic programs ������

� Introduction

This work is motivated by applications of mobile code where programs are downloaded�
as needed� and executed on a trusted host� Here a host may have sensitive data that
downloaded code may need� and we want assurance that they are not leaked by the code�
In some cases� the best approach may simply be to forbid any access to the sensitive data�
using some access control mechanism� But often the code will legitimately need to access
the data to be useful� and in this case� we must be sure the code does not leak it�

Speci�cally� this paper is concerned with identifying conditions under which concurrent
programs� involving high �private� and low �public� variables� can be proved free of infor�
mation �ows from high variables to low variables� In previous work 	
��� we developed
a type system that ensures that well�typed multi�threaded programs have a possibilistic
noninterference property� Possibilistic noninterference asserts that the set of possible �nal
values of low variables is independent of the initial values of high variables� Hence� if we
run such a program and observe some �nal values for its low variables� then we cannot

yThis is an expanded version of a paper that appeared in the Proceedings of the ��th IEEE Computer

Security Foundations Workshop� pages ������ June ����	 Appears in Journal of Computer Security� Vol
�

No ��� pp	 ������	
�This material is based upon activities supported by DARPA and by the National Science Foundation

under Agreement Nos	 CCR������
� and CCR�������	

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
01 NOV 1999

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Probabilistic Noninterference in a Concurrent Language

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Computer Science Department Naval Postgraduate School Monterey, CA
93943, USA

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

22

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

conclude anything about the initial values of its high variables� However� that work re�
lies on a purely nondeterministic thread scheduler� whose implementation requires what
Dijkstra calls an erratic daemon� 	��� More realistically� we would expect a mechanically�
implemented scheduler to be probabilistic� But with a probabilistic scheduler� a possibilistic
noninterference property is no longer su�cient�indeed� it now becomes easy to construct
well�typed programs with probabilistic timing channels�

We illustrate this point with an example� Suppose that x is a high variable whose
value is either � or
� y is a low variable� and c is a command that does not assign to y�
Also assume that c takes many steps to complete� Consider the following multi�threaded
program�

� Thread ��

if x �
 then �c� c��
y ��

� Thread ��

c�
y �� �

Assuming that thread scheduling is purely nondeterministic� this program satis�es possi�
bilistic noninterference�we can see by inspection that the �nal value of y can be either �
or
� regardless of the initial value of x�

But suppose the two threads are actually scheduled probabilistically� by �ipping a coin
at each step to decide which thread to run� Then the threads run at roughly the same rate
and� as a result� the value of x ends up being copied into y with high probability� That is�
a change in the initial value of x changes the probability distribution of the �nal values of
y� Hence this program exhibits a probabilistic timing channel�

Note that with c suitably chosen� the program is well typed in the type system of 	
���
and hence that system cannot guard against such channels� One approach would be to
modify the type system so that all guards of conditionals are low� In this case� the program
is no longer well typed� But such a restriction is likely too burdensome in practice�

Instead� our strategy is to allow the use of high variables in guards� but to require that
the resulting timing variations be masked� We accomplish this by imposing a simple syn�
tactic restriction� every conditional whose guard contains high variables must be executed
atomically� This is accomplished by wrapping such a conditional with a new command�
called protect 	
��� that guarantees that the conditional will be executed atomically in a
multi�threaded environment� the result is that timing variations �based on which branch
of the conditional is selected� will not be observable internally�� In general� we require
that any total guarded command be protected if its guard contains high variables� In the
remainder of the paper� we formally establish the soundness of our restriction by proving
that protected well�typed programs satisfy a probabilistic noninterference property� which
says that the joint probability distribution of �nal values of low variables is independent of
the initial values of high variables�

�Later� in Sections � and �� we make some remarks about external observations	

�

� Syntax and semantics

Threads are commands in the following deterministic imperative language�

�phrases� p ��� e j c

�expressions� e ��� x j n j e� � e� j e� � e� j e� � e�

�commands � c ��� x �� e j c�� c� j skip j
if e then c� else c� j
while e do c j
for e do c j
protect c

Metavariable x ranges over identi�ers and n over integer literals� Integers are the only
values� we use � for false and nonzero for true� Note that expressions do not have side
e�ects� nor do they contain partial operations like division� The command for e do c is
executed by evaluating e� yielding an integer� and then executing c that many times�

A structural operational semantics for our language is given in Figure
� Programs
are executed with respect to a memory �� which is a mapping from identi�ers to integers�
Because of our restrictions on expressions� we know that an expression e is always well
de�ned in a memory � provided that every free variable of e is in dom���� this will always
be the case if e is well typed� Also� we assume for simplicity that expressions are evaluated
atomically�� Thus we simply extend a memory � in the obvious way to map expressions to
integers� writing ��e� to denote the value of expression e in memory ��

The semantics de�nes a sequential transition relation �� on con�gurations� A con�g�

uration w is either a pair �c� �� or simply a memory �� In the �rst case� c is the command
yet to be executed� in the second case� the command has terminated� yielding �nal memory
�� We de�ne the re�exive transitive closure ��� in the usual way� First � ��� �� for
any con�guration �� and � ��k ���� for k � �� if there is a con�guration �� such that
� ��k�� �� and �� �� ���� Then � ��� �� if � ��k �� for some k � ��

Protected sections have a noninterleaving semantics� expressed by rule atomicity� The
rule says that a protected section can execute in one sequential step even though the
command being protected may take more than one step to terminate successfully� In e�ect�
this captures the idea of disabling scheduling events �interrupts� while a protected section
executes and guarantees that at most one thread will be in a protected section at any time�
For this reason� we prohibit while loops in protected sections� This eliminates any risk of a
thread failing to terminate while in a protected section� causing all other threads to freeze�
and also simpli�es the semantics� Of course for loops can be protected and� in fact� must
be protected in some situations as we shall see� We also assume that protected sections are
not nested� This is not a practical limitation and it simpli�es our proofs�

An interleaving semantics for multi�threaded programs is given by the global rules in
Figure
� As in 	
��� we take a concurrent program to be a set O of commands that run
concurrently� The set O is called the thread pool and it does not grow during execution� We
represent O as a mapping from thread identi�ers ��� �� � � � � to commands� We assume that

�The noninterference property we prove does not depend on atomicity here unless the time it takes to

evaluate an expression depends on the values of high variables	

�

�update� x � dom���

�x �� e� �� �� �	x �� ��e��

�sequence� �c�� �� �� ��

�c�� c�� �� �� �c�� �
��

�c�� �� �� �c��� �
��

�c�� c�� �� �� �c��� c�� �
��

�no�op� �skip� �� �� �

�branch� ��e� �� �

�if e then c� else c�� �� �� �c�� ��

��e� � �

�if e then c� else c�� �� �� �c�� ��

�loop� ��e� � �

�while e do c� �� �� �

��e� �� �

�while e do c� �� �� �c�while e do c� ��

�iterate� ��e� � �

�for e do c� �� �� �

��e� � �

�for e do c� �� �� �c� for ��e��
 do c� ��

�atomicity� �c� �� ��� ��

�protect c� �� �� ��

�global� O��� � c
�c� �� �� ��

p �
�jOj

�O���
p

���O � �� ���

O��� � c
�c� �� �� �c�� ���
p �
�jOj

�O���
p

���O	� �� c��� ���

�f g� ��
�

���f g� ��

Figure
� Sequential and concurrent transition semantics

�

all threads share a single global memory �� through which the treads can communicate� A
pair �O���� consisting of a thread pool and a shared memory� is called a global con�guration�

The global rules let us prove judgments of the form

�O���
p

���O�� ���	

This asserts that the probability of going from �O��� to �O�� ��� is p� The �rst two global
rules specify the global transitions that can be made by a nonempty thread pool� A
scheduling event occurs after a single sequential step of execution� This coupled with the
atomicity rule ensures atomic execution of protected sections� Note that O � � denotes
the thread pool obtained by removing thread � from O� and O	� �� c�� denotes the thread
pool obtained by updating the command associated with � to c�� Note that the rules pre�
scribe a uniform probability distribution for the scheduling of threads� �Actually� we could
use any �xed distribution for thread scheduling� we use a uniform distribution simply for
simplicity�� The third global rule� which deals with an empty thread pool� is introduced
to accommodate our concurrent program execution model in which a concurrent program
is represented by a discrete Markov chain 	��� The states of the Markov chain are global

con�gurations and the transition matrix is governed by
p

���

� The type system

The types of the system are strati�ed into data and phrase types�

�data types�
 ��� L j H
�phrase types� � ���
 j
 var j
 cmd

For simplicity� we limit the security classes here to just L �low� and H �high�� it is possible
to generalize to an arbitrary partial order of security classes�

The rules of the type system are given in Figure �� They extend the system of 	
��
with rules for protect and for� The rules allow us to prove typing judgments of the
form � 	 p � � as well as subtyping judgments of the form ��
 ��� Here � denotes a
variable typing � mapping variables to phrase types of the form
 var � Note that guards of
conditionals and for loops may contain high variables� unlike the guards of while loops�

The e�ect of these typing rules is to impose constraints on the various constructs of the
language� these constraints can be summarized as follows�

� In an assignment x �� e� if x is low� then e must contain no high variables�

� The guard of a while loop must contain no high variables�

� In a conditional if e then c else c�� if the guard e contains any high variables� then
the branches c and c� must not contain any while loops or assignments to low vari�
ables� A similar constraint applies to for loops�

De�nition ��� We say that p is well typed under � if � 	 p � � for some �� Also� O is well

typed under � if O��� is well typed under � for every � � dom�O��

�

�int� � 	 n � L

�r�val� ��x� �
 var

� 	 x �

�sum� � 	 e� �
� � 	 e� �

� 	 e� � e� �

�assign� ��x� �
 var � � 	 e �

� 	 x �� e �
 cmd

�compose� � 	 c� �
 cmd � � 	 c� �
 cmd

� 	 c�� c� �
 cmd

�skip� � 	 skip � H cmd

�if� � 	 e �
� � 	 c� �
 cmd � � 	 c� �
 cmd

� 	 if e then c� else c� �
 cmd

�while� � 	 e � L� � 	 c � L cmd

� 	 while e do c � L cmd

�for� � 	 e �
� � 	 c �
 cmd

� 	 for e do c �
 cmd

�protect� � 	 c �
 cmd

� 	 protect c �
 cmd

�base� L
 H

�reflex� �
 �

�cmd��
�

�

� cmd

� cmd

�subtype� � 	 p � ��� ��
 ��
� 	 p � ��

Figure �� Typing and subtyping rules

�

� �f� �� while l � � do skip� � �� �l ��
�g� 	l �� ���
�� �f� �� while l � � do skipg� 	l ��
��
�� �f� �� skip�while l � � do skip� � �� �l ��
�g� 	l �� ���
�� �f� �� skip�while l � � do skipg� 	l ��
��
�� �f g� 	l ��
��

Figure �� States of Markov chain

� Probabilistic states

Informally� our formulation of probabilistic noninterference is a sort of probabilistic lock
step execution statement� Under two memories that may di�er on high variables� we want to
know that the probability that a concurrent program can reach some global con�guration
under one of the memories is the same as the probability that it reaches an equivalent
con�guration under the other�

A concurrent program O executing in a memory � can be viewed as a discrete Markov
chain 	��� The states of the Markov chain are all the global con�gurations reachable from the

initial state �O��� under
p

��� and the transition matrix T �sometimes called the stochastic
matrix� is given by

T ��O�� ���� �O�� ���� �

�
p� if �O�� ���

p
���O�� ���

�� otherwise

For example� consider the following program�

O � f� �� while l � � do skip� � �� �l ��
�g

Starting with memory 	l �� ��� the program can get into at most �ve di�erent con�gurations�
and so its Markov chain has �ve states� given in Figure �� For instance� starting in state

 we might run thread � for a step� taking us to state �� �This follows from the second
global rule and the second loop rule of Figure
�� Alternatively� from state
 we might
run thread � for a step� taking us to state �� �This follows from the �rst global rule and
the update rule of Figure
�� Furthermore� the global rules specify that the probability
of each of these transitions is
�� since there are two threads in the thread pool� No other
transitions are possible from state
�

In this way� we can determine the probability of going from each of the �ve states to any
other state� These probabilities are collected in the transition matrix T given in Figure ��
Note that from state � we go to state � with probability
 because of the third global rule
of Figure
� Since no other state is reachable from state �� it is called an absorbing state

	���
The set of Markov states may be countably in�nite�a simple example is a nonterminat�

ing loop that increments a variable� In this case� the transition matrix is also countably in��
nite� In general� if T is a transition matrix and T ��O���� �O�� ���� � �� for some global con�
�gurations �O��� and �O�� ���� then either O is nonempty and T ��O���� �O�� ���� �
�jOj�
or else O and O� are empty� � � ��� and T ��O���� �O�� ���� �
�

�

 � � � �

 �
��
�� � �
� � � � �

�
�� � �
�� �
� �
 � � �
� � � � �

Figure �� Transition matrix

Kozen gives a denotational semantics of probabilistic programs whereby a program de�
notes a mapping from one probability distribution to another 	

�� The idea of transforming
distributions is also useful in an operational setting such as ours� Using the Markov chain�
we model the execution of a concurrent program deterministically as a sequence of proba�
bilistic states�

De�nition ��� A probabilistic state is a probability measure on the set of global con�gu�

rations�

A probabilistic state can be represented as a row vector whose components must sum
to
� So if T is a transition matrix and s is a probabilistic state� then the next probabilistic
state in the sequence of such states modeling a concurrent computation is simply the vector�
matrix product sT � For instance� the initial probabilistic state for the program O in our
preceding example is �
 � � � ��� It indicates that the Markov chain begins in state
 with
certainty� The next state is given by taking the product of this state with the transition
matrix of Figure �� giving ��
��
�� � ��� This state indicates the Markov chain can be
in states � and �� each with a probability of
��� Multiplying this vector by T � we get the
third probabilistic state� �
�� � �
��
���� we can determine the complete execution
in this way� The �rst �ve probabilistic states in the sequence are depicted in Figure ��
The �fth probabilistic state tells us that the probability that O terminates under memory
	l �� �� in at most four steps is ����

We remark that �O� 	l �� ��� is an example of a concurrent program that is proba�
bilistically total� since it halts with probability
� But it is not nondeterministically total�
because it has an in�nite computation path�

Note that although there may be in�nitely many states in the Markov chains corre�
sponding to our programs� the probabilistic states that arise in our program executions
will assign nonzero probability to only �nitely many of them� This is because we begin
execution in a single global con�guration �O���� and we branch by at most a factor of k
at each step� where k is the number of threads in O� If� however� we were to extend our
language with a random number generator� which returns an arbitrary integer with respect
to some probability distribution� then we would have to consider probabilistic states that
give nonzero probabilities to an in�nite number of global con�gurations�

With probabilistic states� we can now see how probability distributions can be sensitive
to initial values of high variables� even for programs that have types in the system of
Figure �� Consider the example from Section
� where c is instantiated to skip��

� �� �if x �
 then skip� skip�� y ��
�
� �� �skip� y �� ��

�

�

f�f� �� while l � � do skip� � �� �l ��
�g� 	l �� ��� �
g
��

�f� �� while l � � do skipg� 	l ��
�� �
���
�f� �� skip�while l � � do skip� � �� �l ��
�g� 	l �� ��� �
��

�

����
��

�f g� 	l ��
�� �
���
�f� �� while l � � do skip� � �� �l ��
�g� 	l �� ��� �
���
�f� �� skip�while l � � do skipg� 	l ��
�� �
��

���
�	

����
��

�f g� 	l ��
�� �
���
�f� �� skip�while l � � do skip� � �� �l ��
�g� 	l �� ��� �
���
�f� �� while l � � do skipg� 	l ��
�� � ���

���
�	

����
��

�f g� 	l ��
�� � ����
�f� �� while l � � do skip� � �� �l ��
�g� 	l �� ��� �
�
��
�f� �� skip�while l � � do skipg� 	l ��
�� �
�
�

���
�	

Figure �� A probabilistic state sequence

Each thread is well typed� We give two sequences of state transitions� assuming the obvious
transition semantics for if e then c� One begins with x equal to � �Figure �� and the other
with x equal to
 �Figure ��� Notice the change in distribution for the �nal values of y when
the initial value of the high variable x changes� For instance� the probability that y has �nal
value
 when x equals
 is
��
�� and falls to
�� when x equals �� What is going on here
is that the initial value of x a�ects the amount of time required to execute the conditional�
this in turn a�ects the likely order in which the two assignments to y are executed� Now
suppose that we protect the conditional in this example� Then the conditional �in e�ect�
executes in one step� regardless of the value of x� and so the sequence of transitions for
x � � is equivalent� state by state� to the sequence of transitions for x �
 �Figures � and
���

� Probabilistic noninterference

Now we establish the main result� that a well�typed concurrent program is probabilistically
noninterfering if every total command with a guard containing a high variable executes
atomically� But �rst we need some properties of our deterministic thread language� The
key property needed in the noninterference proof is a lockstep execution property for well�
typed threads executed under equivalent memories �Lemma ����� This property in turn de�
pends on other properties of well�typed threads in our system� speci�cally� Simple Security�
Con�nement and Mutual Termination� Together these properties assert that well�typed
threads respect the privacy of high variables in the deterministic language�

First we need a notion of memory equivalence which basically requires agreement on

�

f�f� �� �if x �
 then skip� skip�� y ��
� � �� �skip� y �� ��g� 	x �� �� y �� ��� �
g
��

�f� �� �if x �
 then skip� skip�� y ��
� � �� y �� �g� 	x �� �� y �� ��� �
���
�f� �� y ��
� � �� �skip� y �� ��g� 	x �� �� y �� ��� �
��

�

����
��

�f� �� �if x �
 then skip� skip�� y ��
g� 	x �� �� y �� ��� �
���
�f� �� y ��
� � �� y �� �g� 	x �� �� y �� ��� �
���
�f� �� �skip� y �� ��g� 	x �� �� y ��
�� �
��

���
�	

��
�f� �� y ��
g� 	x �� �� y �� ��� �
���
�f� �� y �� �g� 	x �� �� y ��
�� �
��

�

��
�f g� 	x �� �� y ��
�� �
���
�f g� 	x �� �� y �� ��� �
��

�

Figure �� Probabilistic state sequence when x � �

f�f� �� �if x �
 then skip� skip�� y ��
� � �� �skip� y �� ��g� 	x ��
� y �� ��� �
g
��

�f� �� �if x �
 then skip� skip�� y ��
� � �� y �� �g� 	x ��
� y �� ��� �
���
�f� �� �skip� skip�� y ��
� � �� �skip� y �� ��g� 	x ��
� y �� ��� �
��

�

����
��

�f� �� �if x �
 then skip� skip�� y ��
g� 	x ��
� y �� ��� �
���
�f� �� �skip� skip�� y ��
� � �� y �� �g� 	x ��
� y �� ��� �
���
�f� �� skip� y ��
� � �� �skip� y �� ��g� 	x ��
� y �� ��� �
��

���
�	

����
��

�f� �� �skip� skip�� y ��
g� 	x ��
� y �� ��� �
���
�f� �� skip� y ��
� � �� y �� �g� 	x ��
� y �� ��� � ����
�f� �� y ��
� � �� �skip� y �� ��g� 	x ��
� y �� ��� �
��

���
�	

����
��

�f� �� skip� y ��
g� 	x ��
� y �� ��� �

�
��
�f� �� y ��
� � �� y �� �g� 	x ��
� y �� ��� �
���
�f� �� �skip� y �� ��g� 	x ��
� y ��
�� �
�
�

���
�	

��
�f� �� y ��
g� 	x ��
� y �� ��� �
��
��
�f� �� y �� �g� 	x ��
� y ��
�� � ��
�

�

��
�f g� 	x ��
� y ��
�� �
��
��
�f g� 	x ��
� y �� ��� � ��
�

�

Figure �� Probabilistic state sequence when x �

�

�
�
� �� �protect if x �
 then skip� skip�� y ��
�
� �� �skip� y �� ��

�
� 	x �� �� y �� ��

�
�

�

����
��

�

� �� �protect if x �
 then skip� skip�� y ��
�
� �� y �� �

�
� 	x �� �� y �� ��

�
�
���

�f� �� y ��
� � �� �skip� y �� ��g� 	x �� �� y �� ��� �
��

���
�	

����
��

�f� �� �protect if x �
 then skip� skip�� y ��
g� 	x �� �� y �� ��� �
���
�f� �� y ��
� � �� y �� �g� 	x �� �� y �� ��� �
���
�f� �� �skip� y �� ��g� 	x �� �� y ��
�� �
��

���
�	

��
�f� �� y ��
g� 	x �� �� y �� ��� �
���
�f� �� y �� �g� 	x �� �� y ��
�� �
��

�

��
�f g� 	x �� �� y ��
�� �
���
�f g� 	x �� �� y �� ��� �
��

�

Figure �� Probabilistic state sequence when x � �

�
�
� �� �protect if x �
 then skip� skip�� y ��
�
� �� �skip� y �� ��

�
� 	x ��
� y �� ��

�
�

�

����
��

�

� �� �protect if x �
 then skip� skip�� y ��
�
� �� y �� �

�
� 	x ��
� y �� ��

�
�
���

�f� �� y ��
� � �� �skip� y �� ��g� 	x ��
� y �� ��� �
��

���
�	

����
��

�f� �� �protect if x �
 then skip� skip�� y ��
g� 	x ��
� y �� ��� �
���
�f� �� y ��
� � �� y �� �g� 	x ��
� y �� ��� �
���
�f� �� �skip� y �� ��g� 	x ��
� y ��
�� �
��

���
�	

��
�f� �� y ��
g� 	x ��
� y �� ��� �
���
�f� �� y �� �g� 	x ��
� y ��
�� �
��

�

��
�f g� 	x ��
� y ��
�� �
���
�f g� 	x ��
� y �� ��� �
��

�

Figure �� Probabilistic state sequence when x �

contents of low variables�

De�nition ��� Memories � and are equivalent with respect to variable typing �� written
���� if dom��� � dom�� � dom��� and ��x� � �x� for all x such that ��x� � L var�

The proofs of Simple Security and Con�nement �Lemmas ��
 and ���� are complicated
somewhat by subtyping� We shall assume� without loss of generality� that all typing deriva�
tions end with a single �perhaps trivial� application of the subsumption rule subtype�

Lemma ��� �Simple Security	 If � 	 e � L then ��x� � L var for every variable x in e�

Proof� By induction on the structure of e� Since H �
 L� the derivation of � 	 e � L ends
with a trivial application of rule subtype�

� Case x� By rule r�val� we have ��x� � L var �

�� Case n� The result holds vacuously�

�� Case e� � e�� By rule sum� we have � 	 e� � L and � 	 e� � L� By induction�
��x� � L var for every variable x in e� and in e�� The remaining binary operators
are handled similarly�

Next we consider Con�nement� Its proof depends on the next three lemmas� The �rst
two treat the behavior of sequential composition�� and the third is a lemma about the
termination of for loops�

Lemma ��
 If �c�� c�� �� ��
j ��� then there exist k and ��� such that � � k � j� �c�� �� ��

k

���� and �c�� �
��� ��j�k ���

Proof� By induction on j� If the derivation begins with an application of the �rst sequence
rule� then there exists ��� such that �c�� �� �� ��� and �c�� c�� �� �� �c�� �

��� ��j�� ��� So
we can let k �
� And� since j �
 �
� we have k � j�

If the derivation begins with an application of the second sequence rule� then there
exists c�� and �� such that �c�� �� �� �c��� ��� and �c�� c�� �� �� �c��� c�� ��� ��

j�� ���
By induction� there exists k and ��� such that � � k � j �
� �c��� ��� ��k ���� and
�c�� �

��� ��j���k ��� Hence �c�� �� ��
k�� ��� and �c�� �

��� ��j��k��� ��� And � � k�
 � j�

Lemma ��� If �c�� �� ��
j �� and �c�� �

�� ��k ���� then �c�� c�� �� ��
j�k ����

�Lemmas 	� and 	� are necessitated by our use of a small�step transition semantics for threads	 They

would be unnecessary in an operational semantics that talks about complete evaluations as in� say� a natural

semantics	 But a natural semantics does not meet our needs� because we model concurrent program execu�

tion as a sequence of probabilistic states where con�gurations represent intermediate steps of an execution	

�

Proof� By induction on j� If j �
 then by the �rst sequence rule� �c�� c�� �� ��
�c�� �

�� ��k ���� Hence �c�� c�� �� ��
��k ����

If j �
 then there exist c�� and �� such that �c�� �� �� �c��� ��� ��
j�� ��� By induction�

�c��� c�� ��� ��
j���k ���� And� by the second sequence rule� �c�� c�� �� �� �c��� c�� ����

Hence �c�� c�� �� ��
j�k ����

De�nition ��
 A command c is total under � if for all � such that dom��� � dom����
there exists �� such that �c� �� ��� ���

Lemma ��� Suppose ��e� is de�ned and dom��� � dom���� If c is total under � then

there exists �� such that �for e do c� �� ��� ���

Proof� Induction on ��e�� If ��e� � � then �for e do c� �� �� � so let �� � �� Now
suppose ��e� � �� Since c is total under � and dom��� � dom���� there exists ���

such that �c� �� ��� ���� Further� dom����� � dom��� � dom��� and ����e� �
� is
trivially de�ned since ��e� �
 is an integer� So by induction� there exists �� such that
�for ��e��
 do c� ���� ��� ��� Then �c� for ��e��
 do c� �� ��� �� by Lemma ���� And
�for e do c� �� �� �c� for ��e��
 do c� �� by the second iterate rule since ��e� � ��
Hence �for e do c� �� ��� ���

Lemma ��� �Con�nement	 If � 	 c � H cmd � then ��x� � H var � for every variable x
assigned to in c� and c is total under ��

Proof� By induction on the structure of c� Since L cmd �
 H cmd � the derivation of � 	 c �
H cmd ends with a trivial application of rule subtype�

� Case x �� e� By rule assign� ��x� � H var � If dom��� � dom��� then x � dom����
and ��e� is de�ned since e is well typed under � by rule assign� So by rule update�
we have �x �� e� �� �� �	x �� ��e���

�� Case skip� The result follows immediately from rule no�op�

�� Case c�� c�� By rule compose� we have � 	 c� � H cmd and � 	 c� � H cmd � By
induction� we have ��x� � H var for every variable x assigned to in c� and in c�� and
c� and c� are total under �� So if dom��� � dom��� then there exists ��� such that
�c�� �� ��

� ���� Now dom����� � dom���� so there exists �� such that �c�� �
��� ��� ���

Hence �c�� c�� �� ��
� �� by Lemma ����

�� Case if e then c� else c�� By rule if� we have � 	 c� � H cmd and � 	 c� � H cmd �
By induction� we have ��x� � H var for every variable x assigned to in c� and in c��
and c� and c� are total under �� If dom��� � dom��� then ��e� is de�ned since e
is well typed under �� If ��e� �� � then �if e then c� else c�� �� �� �c�� �� by rule
branch� And since c� is total under �� there exists �� such that �c�� �� ��

� ��� So
�if e then c� else c�� �� ��

� ��� The case when ��e� � � is similar�

�� Case for e do c�� By rule for� we have � 	 c� � H cmd � By induction� ��x� � H var

for every variable x assigned to in c�� and c� is total under �� If dom��� � dom���
then ��e� is de�ned since e is well typed under �� Then there exists �� such that
�for e do c�� �� ��

� �� by Lemma ����

�

�� Case protect c�� By rule protect� we have � 	 c� � H cmd � By induction� ��x� �
H var for every variable x assigned to in c�� and c� is total under �� So if dom��� �
dom��� then there exists �� such that �c�� �� ��

� ��� Hence �protect c�� �� �� ��

by rule atomicity�

The Con�nement Lemma says that any thread that can be given type H cmd under a
typing �� terminates successfully when run in a memory � having the same domain as �
and does not change the contents of any low variables of ��

Now we establish the Mutual Termination property� It states that it is impossible for
a well�typed thread to terminate under one memory and run forever under an equivalent
memory�

Lemma ��� �Mutual Termination	 Suppose c is well typed under � and protect free�

and that ���� If �c� �� ��
� �� then there is a � such that �c� � ��� � and ����

��

Proof� By induction on the length of the derivation of �c� �� ��� ��� We consider the
di�erent forms of c�

� Case x �� e� Since c is well typed� we have x � dom���� Since dom��� � dom�� �
dom���� we have �c� �� �� �	x �� ��e�� and �c� � �� 	x �� �e��� If ��x� � L var

then by rule assign� we have � 	 e � L� So by Simple Security� ��y� � L var for every
variable y in e� Hence ��e� � �e�� and so �	x �� ��e����	x �� �e��� If� instead�
��x� � H var then trivially �	x �� ��e����	x �� �e���

�� Case skip� The result follows immediately from rule no�op�

�� Case c�� c�� If �c�� c�� �� ��
j �� then by Lemma ��� there exist k and ��� such that

� � k � j� �c�� �� ��
k ��� and �c�� �

��� ��j�k ��� By induction� there exists �� such
that �c�� � ��

� �� and �����
��� So by induction again� there exists � such that

�c��
��� ��� � and ����

�� Finally� �c�� c�� � ��
� � by Lemma ����

�� Case while e do c�� Since � 	 e � L� we know by Simple Security that ��e� � �e��
Suppose ��e� � �� Then �while e do c�� �� �� � and also �while e do c�� � �� �
since ��e� � �e��

If ��e� �� � then �while e do c�� �� �� �c��while e do c�� �� ��
� ��� By induction�

there exists � such that �c��while e do c�� � ��
� � and ����

�� And since �e� ��
�� �while e do c�� � �� �c��while e do c�� � ��

� ��

�� Case if e then c� else c�� If � 	 e � L then ��e� � �e� by Simple Security� If ��e� ��
� then �if e then c� else c�� �� �� �c�� �� ��

� ��� By induction� there exists � such
that �c�� � ��

� � and ����
�� Since �e� �� �� we have �if e then c� else c�� � ��

�c�� � ��
� �� The case when ��e� � � is similar�

If instead � �	 e � L then by rule if� and the fact that c is well typed� we have
� 	 if e then c� else c� � H cmd � Then by Con�nement� ����� and there exists �

such that �if e then c� else c�� � ��
� � and ���� So ����

��

�

�� Case for e do c�� If � 	 e � L then ��e� � �e� by Simple Security� So if ��e� � �
then �for e do c�� �� �� � and since ��e� � �e�� �for e do c�� � �� � If instead
��e� � �� then �for e do c�� �� �� �c�� for ��e� �
 do c�� �� ��

� ��� By induction�
there exists � such that �c�� for ��e��
 do c�� � ��

� � and ����
�� And since

��e� � �e�� �for e do c�� � �� �c�� for �e��
 do c�� � ��
� ��

If instead � �	 e � L then since c is well typed� we have � 	 for e do c� � H cmd

by rule for� By Con�nement� there exists � such that �for e do c�� � ��
� � and

 ���� Also� ����� by Con�nement� so ����
��

De�nition ��� A command is protected under � if every conditional and for loop is en�

closed by a protect whenever the guard contains a variable x such that ��x� � H var�

Also� O is protected under � if O��� is protected under � for every � � dom�O��

Now we can show that if we execute a well�typed� protected command c in two equivalent
memories then the two executions proceed in lock step�

Lemma ��� �Lock Step Execution	 Suppose c is well typed under � and protected� and

that ���� If �c� �� �� �c�� ���� then there exists � such that �c� � �� �c�� �� and ����
��

And if �c� �� �� ��� then there exists � such that �c� � �� � and ����
��

Proof� By induction on the structure of c�

� Case x �� e� Since c is well typed� x � dom���� Since dom��� � dom�� � dom����
we have �c� �� �� �	x �� ��e�� and �c� � �� 	x �� �e��� If ��x� � L var then
by rule assign� we have � 	 e � L� So by Simple Security� ��y� � L var for every
variable y in e� Hence ��e� � �e�� and so �	x �� ��e����	x �� �e��� If� instead�
��x� � H var then trivially �	x �� ��e����	x �� �e���

�� Case skip� The result follows immediately from rule no�op�

�� Case c�� c�� If �c�� c�� �� �� �c�� �
�� then by the �rst sequence rule� we have

�c�� �� �� ��� By induction� there exists � such that �c�� � �� � and ����
��

And therefore �c�� c�� � �� �c��
�� by the �rst sequence rule�

If� instead� �c�� c�� �� �� �c��� c�� �
�� then �c�� �� �� �c��� �

�� by the second sequence

rule� By induction� there exists � such that �c�� � �� �c���
�� and ����

�� Hence
�c�� c�� � �� �c��� c��

�� by the second sequence rule�

�� Case while e do c�� Since � 	 e � L� we know by Simple Security that ��e� � �e��
Suppose ��e� � �� Then �while e do c�� �� �� � and so �while e do c�� � ��
since ��e� � �e�� If ��e� �� � then �while e do c�� �� �� �c��while e do c�� ���
And since �e� �� �� �while e do c�� � �� �c��while e do c�� ��

�� Case if e then c� else c�� Since c is protected� we have � 	 e � L� Therefore� ��e� �
�e� by Simple Security� So if ��e� �� � then �if e then c� else c�� �� �� �c�� ���
And since �e� �� �� we have �if e then c� else c�� � �� �c�� �� The case when
��e� � � is similar�

�

�� Case for e do c�� Since c is protected� � 	 e � L� and as above ��e� � �e�� So if
��e� � � then �for e do c�� �� �� � and since ��e� � �e�� �for e do c�� � �� � If
��e� � �� then �for e do c�� �� �� �c�� for ��e��
 do c�� ��� And since �e� � ��
�for e do c�� � �� �c�� for �e��
 do c�� ��

�� Case protect c�� By rule atomicity� �c�� �� ��
� ��� Since protect blocks are not

nested� c� is protect free� Further� it is well typed under � by rule protect since c is
well typed� So by Mutual Termination� there is a memory � such that �c�� � ��

� �

and ����
�� Thus� �protect c�� � �� � by rule atomicity�

Now we wish to extend the Lock Step Execution Lemma to probabilistic states� First�
we need a notion of equivalence among probabilistic states� The basic idea is that two
probabilistic states are equivalent under � if they are the same after any high variables are
projected out� Suppose� for example� that x � H and y � L� Then���

��
�O� 	x �� �� y �� ��� �
���
�O� 	x ��
� y �� ��� �
���
�O�� 	x �� �� y ��
�� �
��

���
�	

is equivalent to

f�O� 	x �� �� y �� ��� � ���� �O�� 	x �� �� y ��
�� �
��g�

because in each case the result of projecting out the high variable x is

f�O� 	y �� ��� � ���� �O�� 	y ��
�� �
��g	

Notice that projecting out high variables can cause several con�gurations to collapse into
one� requiring summation of their probabilities� More formally� we de�ne equivalence as
follows�

De�nition ��� Given variable typing � and memory �� let �� denote the result of erasing

all high variables from �� And given probabilistic state s� let the projection of s onto the

low variables of �� denoted s�� be de�ned by

s��O���� �
X

����

s�O� �

Finally� we say that probabilistic states s and s� are equivalent under �� written s��s
�� if

s� � s���

A probabilistic state s is well typed and protected under � if for every global con�g�
uration �O��� where s�O��� � �� O is well typed and protected under �� and dom��� �
dom����

For any global con�guration �O���� the point mass on �O���� denoted ��O���� is the
probabilistic state that gives probability
 to �O��� and probability � to all other global
con�gurations�

Now we can show� as a corollary to the Lock Step Execution Lemma� that �� is a
congruence with respect to the transition matrix T on well�typed� protected point masses�

�

Lemma �� �Congruence on Point Masses	 If � and �� are well�typed� protected point

masses such that ����
�� then �T���

�T �

Proof� Since ����
�� there must exist a thread pool O and memories � and such that

� � ��O���� �
� � ��O���� and ����

If O � f g� then by third �global� rule� we see that �T � � and ��T � ��� So �T���
�T �

Now suppose that O is nonempty� We show that for every �O�� ��� where ��T ��O�� ��� � ��
there is a � such that ����

� and ��T ��O�� ��� � ���T ��O�� ��� So suppose �O�� ��� is a global
con�guration and ��T ��O�� ��� � �� Since � is a point mass�

��T ��O�� ��� � T ��O���� �O�� ����

Therefore� T ��O���� �O�� ���� � �� By the de�nition of T � then� T ��O���� �O�� ���� �
�jOj
and there is a thread � and command c such that O��� � c and either

� �c� �� �� �c�� ��� and O� � O	� �� c��� or else

�� �c� �� �� �� and O� � O � ��

In the �rst case� we have� by the Lock Step Execution Lemma� that there exists � such

that �c� � �� �c�� �� and ����
�� Then� by rule �global�� �O� �

��jOj
���O	� �� c��� ��� so

by de�nition of T �
T ��O� �� �O�� ��� �
�jOj

But �� is also a point mass� therefore

���T ��O�� �� � T ��O� �� �O�� ���

Thus� ��T ��O�� ��� �
�jOj � ���T ��O�� ��� The second case above is similar�
So for a given con�guration �O���� if ��� and ��T ��O� � � �� then there exists �

such that ��� and ���T ��O� �� � ��T ��O� � from above� Since ����� ��
�T ��O� �� must

be in the sum ���T ���O����� Therefore� ��T ���O���� � ���T ���O����� Symmetrically� we
have ��T ���O���� � ���T ���O���� and so ��T �� � ���T �� � or �T���

�T �

Now we wish to generalize the above Congruence Lemma from point masses to arbitrary
probabilistic states� this generalization is a direct consequence of the linearity of T � More
precisely� the set of all measures forms a vector space if we de�ne

� �s� s���O��� � s�O��� � s��O���� for measures s and s�� and

� �as��O��� � a�s�O����� for real a and measure s�

With respect to this vector space� T is a linear transformation� Furthermore� �� is a
congruence with respect to the vector space operations�

Lemma ��� If si��s
�
i for all i� then

a�s� � a�s� � a�s� � �� a�s
�
� � a�s

�
� � a�s

�
� �

�

Proof� First� we have that projections are homomorphic�

�a�s� � a�s� � �� � �a�s��� � �a�s��� �

since for all �O����

�a�s� � a�s� � ���O���� �
X

����

a�s��O� � � a�s��O� � �

�
X

�����

a�s��O� �� �
X

�����

a�s��O� �� �

� �a�s����O���� � �a�s����O���� �

� ��a�s��� � �a�s��� � ��O����

Further� �as�� � as� since for all �O����

�as���O���� �
X

����

�as��O� � �
X

����

a�s�O� �� � a
X

����

s�O� � � as��O����

Finally� we have
�a�s� � a�s� � �� � �a�s��� � �a�s��� �

� a�s�� � a�s�� �

� a�s
�
�� � a�s

�
�� �

� �a�s
�
��� � �a�s

�
��� �

� �a�s
�
� � a�s

�
� � ��

So a�s� � a�s� � �� a�s
�
� � a�s

�
� � �

Theorem ���� �Probabilistic Noninterference	 If s and s� are well�typed� protected

probabilistic states such that s��s
�� then sT��s

�T �

Proof� To begin with� we argue that s and s� can be expressed as �possibly countably
in�nite� linear combinations of �not necessarily distinct� point masses such that the corre�
sponding coe�cients are the same� and the corresponding point masses are equivalent�

Now� we know that we can express s and s� as linear combinations of point masses�

s � a��� � a��� � a��� �

and
s� � b��

�
� � b��

�
� � b��

�
� �

Assume� for now� that s� �and s��� is a point mass� That is� �i �� �j �� ��i �� ��j for all i
and j�

Note that the ai�s and bi�s both sum to
� hence they both can be understood as
partitioning the unit interval 	��
��

b� b� b� b�

a� a� a�

�

�

To unify the coe�cients in the two linear combinations� we must take the union of the two
partitions� splitting up any terms that cross partition boundaries� For example� based on
the picture above we would split the term a��� of s into b��� � �a� � b����� And we would
split the term b��

�
� of s� into �a�� b���

�
� � �b� � �a�� b����

�
�� Continuing in this way� we can

unify the coe�cients of s and s��
We can describe the splitting process more precisely as follows� We simultaneously

traverse s and s�� splitting terms as we go� Let a� and b�� be the next terms to be uni�ed�
If a � b� then keep both these terms unchanged� If a � b� then keep term a� in s� but split
b�� into a�� and �b � a��� in s�� Handle the case a � b symmetrically� If one or both of the
sums are in�nite� then of course the algorithm gives an in�nite sum� But each term of s
and of s� is split only �nitely often �otherwise the ai�s and bi�s would not have the same
sum� with one exception�if s is a �nite sum and s� is an in�nite sum� then the last term
of s is split into an in�nite sum�

So far� we have shown how to unify the coe�cients of s and s� in the case where s�
�and s��� is a point mass� In the general case� s and s� must �rst be rearranged into sums
of sums of equivalent point masses�

s � �a����� � a����� � � � �a����� � a����� � � �

and
s� � �b���

�
�� � b���

�
�� � � � �b���

�
�� � b���

�
�� � � �

where �ij �� �ik �� ��ij �� ��ik for all i� j� and k� Also� for each i�
P

j aij �
P

j bij� Hence
we can apply the algorithm above to unify the a�j �s with the b�j �s� the a�j �s with the b�j �s�
and so forth� Then we can form a single sum for s and for s� by interleaving these sums in
a standard way�

The �nal result of all this e�ort is that we can express s and s� as

s � c��
��
� � c��

��
� � c��

��
� �

and
s� � c��

���
� � c��

���
� � c��

���
� �

where ���i �� ����i for all i� Now� since T is a linear transformation� we have

sT � c���
��
�T � � c���

��
�T � � c���

��
�T � �

and
s�T � c���

���
� T � � c���

���
� T � � c���

���
� T � �

By the Congruence on Point Masses Lemma� we have ���i T �� ����i T � for all i� So� by
Lemma ���� sT �� s�T �

� Discussion

The need for a probabilistic view of security in nondeterministic computer systems has
been understood for some time 	
��
��� Security properties �models� to treat probabilistic
channels in nondeterministic systems have been formulated by McLean	
�� and Gray 	�� ���

�

It is important� however� to recognize that these e�orts address a di�erent problem than
what we consider in this paper� They consider a computer system with a number of users�
classi�ed as high or low� who send inputs to and receive outputs from the system� The
problem is to prevent high users� who have access to high information� from communicating
with low users� who should have access only to low information� What makes treating
privacy in this setting especially di�cult is that users need not be processes under control
of the system�they may be people� who are external to the system and who can observe the
system�s behavior from the outside� As a result� a high user may be able to communicate
covertly by modulating system performance to encode high information that a low user in
turn decodes using a real�time clock outside the system� Furthermore� because the low user
is measuring real time� the modulations can depend on low�level system implementation
details� such as the paging and caching behavior of the underlying hardware� This implies
that it is not enough to prove privacy with respect to a high�level� abstract system semantics
�like the semantics of Figure
�� To guarantee privacy� it is necessary for the system model
to address all the implementation details�

In a mobile�code framework� where hosts are trusted� ensuring privacy is more tractable�
A key assumption here is that any attempt to compromise privacy must arise from within
the mobile code� which is internal to the system� As a result� the system can control what
the mobile code can do and what it can observe� For example� if mobile�code threads are
not allowed to see a real�time clock� then they can measure the timing of other threads only
by observing variations in thread interleavings� Hence� assuming a correct implementation
of our semantics� threads will not be able to detect any variations in the running time
of a protected command� nor will they be able to detect timing variations due to low�
level implementation details� Consequently� timing attacks are impossible in well�typed�
protected programs in our language� For instance� Kocher describes a timing attack on RSA
	
��� Basically� he argues that an attacker can discover a private key x by observing the
amount of time required by several modular exponentiations yx mod n� In our framework�
one would use a protected for loop to implement modular exponentiation� which means that
no useful timing information about exponentiation would be available to other threads�it
would always appear to execute in exactly one step�

� Other related research

Other work in secure information �ow� in a parallel setting� includes that of Andrews and
Reitman 	
�� Melliar�Smith and Moser 	
��� Focardi and Gorrieri 	�� ��� and Banatre and
Bryce 	��� Melliar�Smith and Moser consider covert channels in Ada� They describe a data
dependency analysis to �nd places where Ada programs depend on the relative timing of
operations within a system� Andrews and Reitman give an axiomatic �ow logic for treating
information �ow in the presence of process synchronization� They also sketch how one might
treat timing channels in the logic� Banatre and Bryce give an axiomatic �ow logic for CSP
processes� also treating information �ow arising from synchronization� None of these e�orts�
though� gives a satisfactory account of the security properties that they guarantee� Focardi
and Gorrieri identify trace�based and bisimulation�based security properties for systems
expressed in an extension of Milner�s CCS� which they call the Security Process Algebra�
These properties� however� are possibilistic in nature �e�g� a system is SNNI 	�� if the set of

��

traces that a low observer can see of a system is possible regardless of whether high�level
actions are enabled or disabled in the system��

� Conclusion

So what is the signi�cance of our result It depends on what can be observed� With
respect to internal program behavior� our Probabilistic Noninterference result rules out
all covert �ows from high variables to low variables� But if external observation of the
running program is allowed� then of course covert channels of the kind discussed in Section �
remain possible� Note� however� that the mobile code setting a�ords us more control over
external observations than would normally be possible� When we execute some mobile
code on our machine� we can limit communication with the outside world� preventing
precise observations of a program�s behavior such as its running time� Depending on the
application� one can build enough noise into the mobile code�s interface with the outside in
various ways to signi�cantly reduce the capacity of an externally�observable timing channel�
See� for example� the NRL Pump for secure acknowledgment 	���

References

	
� G� Andrews and R� Reitman� An axiomatic approach to information �ow in programs�
ACM Transactions on Programming Languages and Systems� ��
����!���
����

	�� J� Ban"atre and C� Bryce� Information �ow control in a parallel language framework� In
Proceedings �th IEEE Computer Security Foundations Workshop� pages ��!��� June

����

	�� Edsger Dijkstra� A Discipline of Programming� Prentice Hall�
����

	�� William Feller� An Introduction to Probability Theory and Its Applications� volume I�
John Wiley # Sons� Inc�� third edition�
����

	�� R� Focardi and R� Gorrieri� A classi�cation of security properties for process algebras�
Journal of Computer Security� ��
���!���
����
����

	�� R� Focardi and R� Gorrieri� The compositional security checker� A tool for the veri��
cation of information �ow security properties� IEEE Transactions on Software Engi�

neering� ���������!��
�
����

	�� James W� Gray� III� Probabilistic interference� In Proceedings ���	 IEEE Symposium

on Security and Privacy� pages
��!
��� Oakland� CA� May
����

	�� James W� Gray� III� Toward a mathematical foundation for information �ow security�
In Proceedings ���� IEEE Symposium on Security and Privacy� pages �
!��� Oakland�
CA� May
��
�

	�� Myong H� Kang and Ira S� Moskowitz� A pump for rapid� reliable secure communi�
cation� In Proceedings of the �st ACM Conference on Computer
 Communications

Security� pages

�!
��� November
����

�

	
�� Paul Kocher� Timing attacks on implementations of Di�e�Hellman� RSA� DSS and
other systems� In Proceedings ��th Annual Crypto Conference� August
����

	

� Dexter Kozen� Semantics of probabilistic programs� Journal of Computer and System

Sciences� ������!����
��
�

	
�� John McLean� Security models and information �ow� In Proceedings ���	 IEEE

Symposium on Security and Privacy� pages
��!
��� Oakland� CA�
����

	
�� John McLean� Security models� In John Marciniak� editor� Encyclopedia of Software

Engineering� Wiley Press�
����

	
�� P�M� Melliar�Smith and L� Moser� Protection against covert storage and timing chan�
nels� In Proceedings �th IEEE Computer Security Foundations Workshop� pages ���!
�
�� June
��
�

	
�� Hanne Riis Nielson and Flemming Nielson� Semantics with Applications� A Formal

Introduction� Wiley�
����

	
�� Geo�rey Smith and Dennis Volpano� Secure information �ow in a multi�threaded
imperative language� In Proceedings �th Symposium on Principles of Programming

Languages� pages ���!���� San Diego� CA� January
����

	
�� J� Todd Wittbold and Dale M� Johnson� Information �ow in nondeterministic sys�
tems� In Proceedings ���	 IEEE Symposium on Security and Privacy� pages
��!
�
�
Oakland� CA� May
����

��

