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Abstract

In previous work ����� we give a type system that guarantees that well�typed multi�
threaded programs are possibilistically noninterfering� If thread scheduling is proba�
bilistic� however� then well�typed programs may have probabilistic timing channels� We
describe how they can be eliminated without making the type system more restrictive�
We show that well�typed concurrent programs are probabilistically noninterfering if
every total command with a guard containing high variables executes atomically� The
proof uses the notion of a probabilistic state of a computation from Kozen	s work in
the denotational semantics of probabilistic programs ������

� Introduction

This work is motivated by applications of mobile code where programs are downloaded�
as needed� and executed on a trusted host� Here a host may have sensitive data that
downloaded code may need� and we want assurance that they are not leaked by the code�
In some cases� the best approach may simply be to forbid any access to the sensitive data�
using some access control mechanism� But often the code will legitimately need to access
the data to be useful� and in this case� we must be sure the code does not leak it�

Speci�cally� this paper is concerned with identifying conditions under which concurrent
programs� involving high �private� and low �public� variables� can be proved free of infor�
mation �ows from high variables to low variables� In previous work 	
��� we developed
a type system that ensures that well�typed multi�threaded programs have a possibilistic
noninterference property� Possibilistic noninterference asserts that the set of possible �nal
values of low variables is independent of the initial values of high variables� Hence� if we
run such a program and observe some �nal values for its low variables� then we cannot
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conclude anything about the initial values of its high variables� However� that work re�
lies on a purely nondeterministic thread scheduler� whose implementation requires what
Dijkstra calls an 
erratic daemon� 	��� More realistically� we would expect a mechanically�
implemented scheduler to be probabilistic� But with a probabilistic scheduler� a possibilistic
noninterference property is no longer su�cient�indeed� it now becomes easy to construct
well�typed programs with probabilistic timing channels�

We illustrate this point with an example� Suppose that x is a high variable whose
value is either � or 
� y is a low variable� and c is a command that does not assign to y�
Also assume that c takes many steps to complete� Consider the following multi�threaded
program�

� Thread ��

if x � 
 then �c� c��
y �� 


� Thread ��

c�
y �� �

Assuming that thread scheduling is purely nondeterministic� this program satis�es possi�
bilistic noninterference�we can see by inspection that the �nal value of y can be either �
or 
� regardless of the initial value of x�

But suppose the two threads are actually scheduled probabilistically� by �ipping a coin
at each step to decide which thread to run� Then the threads run at roughly the same rate
and� as a result� the value of x ends up being copied into y with high probability� That is�
a change in the initial value of x changes the probability distribution of the �nal values of
y� Hence this program exhibits a probabilistic timing channel�

Note that with c suitably chosen� the program is well typed in the type system of 	
���
and hence that system cannot guard against such channels� One approach would be to
modify the type system so that all guards of conditionals are low� In this case� the program
is no longer well typed� But such a restriction is likely too burdensome in practice�

Instead� our strategy is to allow the use of high variables in guards� but to require that
the resulting timing variations be masked� We accomplish this by imposing a simple syn�
tactic restriction� every conditional whose guard contains high variables must be executed
atomically� This is accomplished by wrapping such a conditional with a new command�
called protect 	
��� that guarantees that the conditional will be executed atomically in a
multi�threaded environment� the result is that timing variations �based on which branch
of the conditional is selected� will not be observable internally�� In general� we require
that any total guarded command be protected if its guard contains high variables� In the
remainder of the paper� we formally establish the soundness of our restriction by proving
that protected well�typed programs satisfy a probabilistic noninterference property� which
says that the joint probability distribution of �nal values of low variables is independent of
the initial values of high variables�

�Later� in Sections � and �� we make some remarks about external observations	
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� Syntax and semantics

Threads are commands in the following deterministic imperative language�

�phrases� p ��� e j c

�expressions� e ��� x j n j e� � e� j e� � e� j e� � e�

�commands � c ��� x �� e j c�� c� j skip j
if e then c� else c� j
while e do c j
for e do c j
protect c

Metavariable x ranges over identi�ers and n over integer literals� Integers are the only
values� we use � for false and nonzero for true� Note that expressions do not have side
e�ects� nor do they contain partial operations like division� The command for e do c is
executed by evaluating e� yielding an integer� and then executing c that many times�

A structural operational semantics for our language is given in Figure 
� Programs
are executed with respect to a memory �� which is a mapping from identi�ers to integers�
Because of our restrictions on expressions� we know that an expression e is always well
de�ned in a memory � provided that every free variable of e is in dom���� this will always
be the case if e is well typed� Also� we assume for simplicity that expressions are evaluated
atomically�� Thus we simply extend a memory � in the obvious way to map expressions to
integers� writing ��e� to denote the value of expression e in memory ��

The semantics de�nes a sequential transition relation �� on con�gurations� A con�g�

uration w is either a pair �c� �� or simply a memory �� In the �rst case� c is the command
yet to be executed� in the second case� the command has terminated� yielding �nal memory
�� We de�ne the re�exive transitive closure ��� in the usual way� First � ��� �� for
any con�guration �� and � ��k ���� for k � �� if there is a con�guration �� such that
� ��k�� �� and �� �� ���� Then � ��� �� if � ��k �� for some k � ��

Protected sections have a noninterleaving semantics� expressed by rule atomicity� The
rule says that a protected section can execute in one sequential step even though the
command being protected may take more than one step to terminate successfully� In e�ect�
this captures the idea of disabling scheduling events �interrupts� while a protected section
executes and guarantees that at most one thread will be in a protected section at any time�
For this reason� we prohibit while loops in protected sections� This eliminates any risk of a
thread failing to terminate while in a protected section� causing all other threads to freeze�
and also simpli�es the semantics� Of course for loops can be protected and� in fact� must
be protected in some situations as we shall see� We also assume that protected sections are
not nested� This is not a practical limitation and it simpli�es our proofs�

An interleaving semantics for multi�threaded programs is given by the global rules in
Figure 
� As in 	
��� we take a concurrent program to be a set O of commands that run
concurrently� The set O is called the thread pool and it does not grow during execution� We
represent O as a mapping from thread identi�ers ��� �� � � � � to commands� We assume that

�The noninterference property we prove does not depend on atomicity here unless the time it takes to

evaluate an expression depends on the values of high variables	
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�update� x � dom���

�x �� e� �� �� �	x �� ��e��

�sequence� �c�� �� �� ��

�c�� c�� �� �� �c�� �
��

�c�� �� �� �c��� �
��

�c�� c�� �� �� �c��� c�� �
��

�no�op� �skip� �� �� �

�branch� ��e� �� �

�if e then c� else c�� �� �� �c�� ��

��e� � �

�if e then c� else c�� �� �� �c�� ��

�loop� ��e� � �

�while e do c� �� �� �

��e� �� �

�while e do c� �� �� �c�while e do c� ��

�iterate� ��e� � �

�for e do c� �� �� �

��e� � �

�for e do c� �� �� �c� for ��e�� 
 do c� ��

�atomicity� �c� �� ��� ��

�protect c� �� �� ��

�global� O��� � c
�c� �� �� ��

p � 
�jOj

�O���
p

���O � �� ���

O��� � c
�c� �� �� �c�� ���
p � 
�jOj

�O���
p

���O	� �� c��� ���

�f g� ��
�

���f g� ��

Figure 
� Sequential and concurrent transition semantics
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all threads share a single global memory �� through which the treads can communicate� A
pair �O���� consisting of a thread pool and a shared memory� is called a global con�guration�

The global rules let us prove judgments of the form

�O���
p

���O�� ���	

This asserts that the probability of going from �O��� to �O�� ��� is p� The �rst two global
rules specify the global transitions that can be made by a nonempty thread pool� A
scheduling event occurs after a single sequential step of execution� This coupled with the
atomicity rule ensures atomic execution of protected sections� Note that O � � denotes
the thread pool obtained by removing thread � from O� and O	� �� c�� denotes the thread
pool obtained by updating the command associated with � to c�� Note that the rules pre�
scribe a uniform probability distribution for the scheduling of threads� �Actually� we could
use any �xed distribution for thread scheduling� we use a uniform distribution simply for
simplicity�� The third global rule� which deals with an empty thread pool� is introduced
to accommodate our concurrent program execution model in which a concurrent program
is represented by a discrete Markov chain 	��� The states of the Markov chain are global

con�gurations and the transition matrix is governed by
p

���

� The type system

The types of the system are strati�ed into data and phrase types�

�data types� 
 ��� L j H
�phrase types� � ��� 
 j 
 var j 
 cmd

For simplicity� we limit the security classes here to just L �low� and H �high�� it is possible
to generalize to an arbitrary partial order of security classes�

The rules of the type system are given in Figure �� They extend the system of 	
��
with rules for protect and for� The rules allow us to prove typing judgments of the
form � 	 p � � as well as subtyping judgments of the form �� 
 ��� Here � denotes a
variable typing � mapping variables to phrase types of the form 
 var � Note that guards of
conditionals and for loops may contain high variables� unlike the guards of while loops�

The e�ect of these typing rules is to impose constraints on the various constructs of the
language� these constraints can be summarized as follows�

� In an assignment x �� e� if x is low� then e must contain no high variables�

� The guard of a while loop must contain no high variables�

� In a conditional if e then c else c�� if the guard e contains any high variables� then
the branches c and c� must not contain any while loops or assignments to low vari�
ables� A similar constraint applies to for loops�

De�nition ��� We say that p is well typed under � if � 	 p � � for some �� Also� O is well

typed under � if O��� is well typed under � for every � � dom�O��

�



�int� � 	 n � L

�r�val� ��x� � 
 var

� 	 x � 


�sum� � 	 e� � 
� � 	 e� � 


� 	 e� � e� � 


�assign� ��x� � 
 var � � 	 e � 


� 	 x �� e � 
 cmd

�compose� � 	 c� � 
 cmd � � 	 c� � 
 cmd

� 	 c�� c� � 
 cmd

�skip� � 	 skip � H cmd

�if� � 	 e � 
� � 	 c� � 
 cmd � � 	 c� � 
 cmd

� 	 if e then c� else c� � 
 cmd

�while� � 	 e � L� � 	 c � L cmd

� 	 while e do c � L cmd

�for� � 	 e � 
� � 	 c � 
 cmd

� 	 for e do c � 
 cmd

�protect� � 	 c � 
 cmd

� 	 protect c � 
 cmd

�base� L 
 H

�reflex� � 
 �

�cmd�� 
� 
 
�

� cmd 
 
� cmd

�subtype� � 	 p � ��� �� 
 ��
� 	 p � ��

Figure �� Typing and subtyping rules
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� �f� �� while l � � do skip� � �� �l �� 
�g� 	l �� ���
�� �f� �� while l � � do skipg� 	l �� 
��
�� �f� �� skip�while l � � do skip� � �� �l �� 
�g� 	l �� ���
�� �f� �� skip�while l � � do skipg� 	l �� 
��
�� �f g� 	l �� 
��

Figure �� States of Markov chain

� Probabilistic states

Informally� our formulation of probabilistic noninterference is a sort of probabilistic lock
step execution statement� Under two memories that may di�er on high variables� we want to
know that the probability that a concurrent program can reach some global con�guration
under one of the memories is the same as the probability that it reaches an equivalent
con�guration under the other�

A concurrent program O executing in a memory � can be viewed as a discrete Markov
chain 	��� The states of the Markov chain are all the global con�gurations reachable from the

initial state �O��� under
p

��� and the transition matrix T �sometimes called the stochastic
matrix� is given by

T ��O�� ���� �O�� ���� �

�
p� if �O�� ���

p
���O�� ���

�� otherwise

For example� consider the following program�

O � f� �� while l � � do skip� � �� �l �� 
�g

Starting with memory 	l �� ��� the program can get into at most �ve di�erent con�gurations�
and so its Markov chain has �ve states� given in Figure �� For instance� starting in state

 we might run thread � for a step� taking us to state �� �This follows from the second
global rule and the second loop rule of Figure 
�� Alternatively� from state 
 we might
run thread � for a step� taking us to state �� �This follows from the �rst global rule and
the update rule of Figure 
�� Furthermore� the global rules specify that the probability
of each of these transitions is 
�� since there are two threads in the thread pool� No other
transitions are possible from state 
�

In this way� we can determine the probability of going from each of the �ve states to any
other state� These probabilities are collected in the transition matrix T given in Figure ��
Note that from state � we go to state � with probability 
 because of the third global rule
of Figure 
� Since no other state is reachable from state �� it is called an absorbing state

	���
The set of Markov states may be countably in�nite�a simple example is a nonterminat�

ing loop that increments a variable� In this case� the transition matrix is also countably in��
nite� In general� if T is a transition matrix and T ��O���� �O�� ���� � �� for some global con�
�gurations �O��� and �O�� ���� then either O is nonempty and T ��O���� �O�� ���� � 
�jOj�
or else O and O� are empty� � � ��� and T ��O���� �O�� ���� � 
�

�




 � � � �


 � 
�� 
�� � �
� � � � � 

� 
�� � � 
�� �
� � 
 � � �
� � � � � 


Figure �� Transition matrix

Kozen gives a denotational semantics of probabilistic programs whereby a program de�
notes a mapping from one probability distribution to another 	

�� The idea of transforming
distributions is also useful in an operational setting such as ours� Using the Markov chain�
we model the execution of a concurrent program deterministically as a sequence of proba�
bilistic states�

De�nition ��� A probabilistic state is a probability measure on the set of global con�gu�

rations�

A probabilistic state can be represented as a row vector whose components must sum
to 
� So if T is a transition matrix and s is a probabilistic state� then the next probabilistic
state in the sequence of such states modeling a concurrent computation is simply the vector�
matrix product sT � For instance� the initial probabilistic state for the program O in our
preceding example is �
 � � � ��� It indicates that the Markov chain begins in state 
 with
certainty� The next state is given by taking the product of this state with the transition
matrix of Figure �� giving �� 
�� 
�� � ��� This state indicates the Markov chain can be
in states � and �� each with a probability of 
��� Multiplying this vector by T � we get the
third probabilistic state� �
�� � � 
�� 
���� we can determine the complete execution
in this way� The �rst �ve probabilistic states in the sequence are depicted in Figure ��
The �fth probabilistic state tells us that the probability that O terminates under memory
	l �� �� in at most four steps is ����

We remark that �O� 	l �� ��� is an example of a concurrent program that is proba�
bilistically total� since it halts with probability 
� But it is not nondeterministically total�
because it has an in�nite computation path�

Note that although there may be in�nitely many states in the Markov chains corre�
sponding to our programs� the probabilistic states that arise in our program executions
will assign nonzero probability to only �nitely many of them� This is because we begin
execution in a single global con�guration �O���� and we branch by at most a factor of k
at each step� where k is the number of threads in O� If� however� we were to extend our
language with a random number generator� which returns an arbitrary integer with respect
to some probability distribution� then we would have to consider probabilistic states that
give nonzero probabilities to an in�nite number of global con�gurations�

With probabilistic states� we can now see how probability distributions can be sensitive
to initial values of high variables� even for programs that have types in the system of
Figure �� Consider the example from Section 
� where c is instantiated to skip��

� �� �if x � 
 then skip� skip�� y �� 
�
� �� �skip� y �� ��

�

�



f�f� �� while l � � do skip� � �� �l �� 
�g� 	l �� ��� � 
g
��

�f� �� while l � � do skipg� 	l �� 
�� � 
���
�f� �� skip�while l � � do skip� � �� �l �� 
�g� 	l �� ��� � 
��

�

����
��

�f g� 	l �� 
�� � 
���
�f� �� while l � � do skip� � �� �l �� 
�g� 	l �� ��� � 
���
�f� �� skip�while l � � do skipg� 	l �� 
�� � 
��

���
�	

����
��

�f g� 	l �� 
�� � 
���
�f� �� skip�while l � � do skip� � �� �l �� 
�g� 	l �� ��� � 
���
�f� �� while l � � do skipg� 	l �� 
�� � ���

���
�	

����
��

�f g� 	l �� 
�� � ����
�f� �� while l � � do skip� � �� �l �� 
�g� 	l �� ��� � 
�
��
�f� �� skip�while l � � do skipg� 	l �� 
�� � 
�
�

���
�	

Figure �� A probabilistic state sequence

Each thread is well typed� We give two sequences of state transitions� assuming the obvious
transition semantics for if e then c� One begins with x equal to � �Figure �� and the other
with x equal to 
 �Figure ��� Notice the change in distribution for the �nal values of y when
the initial value of the high variable x changes� For instance� the probability that y has �nal
value 
 when x equals 
 is 
��
�� and falls to 
�� when x equals �� What is going on here
is that the initial value of x a�ects the amount of time required to execute the conditional�
this in turn a�ects the likely order in which the two assignments to y are executed� Now
suppose that we protect the conditional in this example� Then the conditional �in e�ect�
executes in one step� regardless of the value of x� and so the sequence of transitions for
x � � is equivalent� state by state� to the sequence of transitions for x � 
 �Figures � and
���

� Probabilistic noninterference

Now we establish the main result� that a well�typed concurrent program is probabilistically
noninterfering if every total command with a guard containing a high variable executes
atomically� But �rst we need some properties of our deterministic thread language� The
key property needed in the noninterference proof is a lockstep execution property for well�
typed threads executed under equivalent memories �Lemma ����� This property in turn de�
pends on other properties of well�typed threads in our system� speci�cally� Simple Security�
Con�nement and Mutual Termination� Together these properties assert that well�typed
threads respect the privacy of high variables in the deterministic language�

First we need a notion of memory equivalence which basically requires agreement on

�



f�f� �� �if x � 
 then skip� skip�� y �� 
� � �� �skip� y �� ��g� 	x �� �� y �� ��� � 
g
��

�f� �� �if x � 
 then skip� skip�� y �� 
� � �� y �� �g� 	x �� �� y �� ��� � 
���
�f� �� y �� 
� � �� �skip� y �� ��g� 	x �� �� y �� ��� � 
��

�

����
��

�f� �� �if x � 
 then skip� skip�� y �� 
g� 	x �� �� y �� ��� � 
���
�f� �� y �� 
� � �� y �� �g� 	x �� �� y �� ��� � 
���
�f� �� �skip� y �� ��g� 	x �� �� y �� 
�� � 
��

���
�	

��
�f� �� y �� 
g� 	x �� �� y �� ��� � 
���
�f� �� y �� �g� 	x �� �� y �� 
�� � 
��

�

��
�f g� 	x �� �� y �� 
�� � 
���
�f g� 	x �� �� y �� ��� � 
��

�

Figure �� Probabilistic state sequence when x � �

f�f� �� �if x � 
 then skip� skip�� y �� 
� � �� �skip� y �� ��g� 	x �� 
� y �� ��� � 
g
��

�f� �� �if x � 
 then skip� skip�� y �� 
� � �� y �� �g� 	x �� 
� y �� ��� � 
���
�f� �� �skip� skip�� y �� 
� � �� �skip� y �� ��g� 	x �� 
� y �� ��� � 
��

�

����
��

�f� �� �if x � 
 then skip� skip�� y �� 
g� 	x �� 
� y �� ��� � 
���
�f� �� �skip� skip�� y �� 
� � �� y �� �g� 	x �� 
� y �� ��� � 
���
�f� �� skip� y �� 
� � �� �skip� y �� ��g� 	x �� 
� y �� ��� � 
��

���
�	

����
��

�f� �� �skip� skip�� y �� 
g� 	x �� 
� y �� ��� � 
���
�f� �� skip� y �� 
� � �� y �� �g� 	x �� 
� y �� ��� � ����
�f� �� y �� 
� � �� �skip� y �� ��g� 	x �� 
� y �� ��� � 
��

���
�	

����
��

�f� �� skip� y �� 
g� 	x �� 
� y �� ��� � 

�
��
�f� �� y �� 
� � �� y �� �g� 	x �� 
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contents of low variables�

De�nition ��� Memories � and 
 are equivalent with respect to variable typing �� written
���
� if dom��� � dom�
� � dom��� and ��x� � 
�x� for all x such that ��x� � L var�

The proofs of Simple Security and Con�nement �Lemmas ��
 and ���� are complicated
somewhat by subtyping� We shall assume� without loss of generality� that all typing deriva�
tions end with a single �perhaps trivial� application of the subsumption rule subtype�

Lemma ��� �Simple Security	 If � 	 e � L then ��x� � L var for every variable x in e�

Proof� By induction on the structure of e� Since H �
 L� the derivation of � 	 e � L ends
with a trivial application of rule subtype�


� Case x� By rule r�val� we have ��x� � L var �

�� Case n� The result holds vacuously�

�� Case e� � e�� By rule sum� we have � 	 e� � L and � 	 e� � L� By induction�
��x� � L var for every variable x in e� and in e�� The remaining binary operators
are handled similarly�

Next we consider Con�nement� Its proof depends on the next three lemmas� The �rst
two treat the behavior of sequential composition�� and the third is a lemma about the
termination of for loops�

Lemma ��
 If �c�� c�� �� ��
j ��� then there exist k and ��� such that � � k � j� �c�� �� ��

k

���� and �c�� �
��� ��j�k ���

Proof� By induction on j� If the derivation begins with an application of the �rst sequence
rule� then there exists ��� such that �c�� �� �� ��� and �c�� c�� �� �� �c�� �

��� ��j�� ��� So
we can let k � 
� And� since j � 
 � 
� we have k � j�

If the derivation begins with an application of the second sequence rule� then there
exists c�� and �� such that �c�� �� �� �c��� ��� and �c�� c�� �� �� �c��� c�� ��� ��

j�� ���
By induction� there exists k and ��� such that � � k � j � 
� �c��� ��� ��k ���� and
�c�� �

��� ��j���k ��� Hence �c�� �� ��
k�� ��� and �c�� �

��� ��j��k��� ��� And � � k�
 � j�

Lemma ��� If �c�� �� ��
j �� and �c�� �

�� ��k ���� then �c�� c�� �� ��
j�k ����

�Lemmas 
	� and 
	� are necessitated by our use of a small�step transition semantics for threads	 They

would be unnecessary in an operational semantics that talks about complete evaluations as in� say� a natural

semantics	 But a natural semantics does not meet our needs� because we model concurrent program execu�

tion as a sequence of probabilistic states where con�gurations represent intermediate steps of an execution	


�



Proof� By induction on j� If j � 
 then by the �rst sequence rule� �c�� c�� �� ��
�c�� �

�� ��k ���� Hence �c�� c�� �� ��
��k ����

If j � 
 then there exist c�� and �� such that �c�� �� �� �c��� ��� ��
j�� ��� By induction�

�c��� c�� ��� ��
j���k ���� And� by the second sequence rule� �c�� c�� �� �� �c��� c�� ����

Hence �c�� c�� �� ��
j�k ����

De�nition ��
 A command c is total under � if for all � such that dom��� � dom����
there exists �� such that �c� �� ��� ���

Lemma ��� Suppose ��e� is de�ned and dom��� � dom���� If c is total under � then

there exists �� such that �for e do c� �� ��� ���

Proof� Induction on ��e�� If ��e� � � then �for e do c� �� �� � so let �� � �� Now
suppose ��e� � �� Since c is total under � and dom��� � dom���� there exists ���

such that �c� �� ��� ���� Further� dom����� � dom��� � dom��� and ����e� � 
� is
trivially de�ned since ��e� � 
 is an integer� So by induction� there exists �� such that
�for ��e�� 
 do c� ���� ��� ��� Then �c� for ��e�� 
 do c� �� ��� �� by Lemma ���� And
�for e do c� �� �� �c� for ��e�� 
 do c� �� by the second iterate rule since ��e� � ��
Hence �for e do c� �� ��� ���

Lemma ��� �Con�nement	 If � 	 c � H cmd � then ��x� � H var � for every variable x
assigned to in c� and c is total under ��

Proof� By induction on the structure of c� Since L cmd �
 H cmd � the derivation of � 	 c �
H cmd ends with a trivial application of rule subtype�


� Case x �� e� By rule assign� ��x� � H var � If dom��� � dom��� then x � dom����
and ��e� is de�ned since e is well typed under � by rule assign� So by rule update�
we have �x �� e� �� �� �	x �� ��e���

�� Case skip� The result follows immediately from rule no�op�

�� Case c�� c�� By rule compose� we have � 	 c� � H cmd and � 	 c� � H cmd � By
induction� we have ��x� � H var for every variable x assigned to in c� and in c�� and
c� and c� are total under �� So if dom��� � dom��� then there exists ��� such that
�c�� �� ��

� ���� Now dom����� � dom���� so there exists �� such that �c�� �
��� ��� ���

Hence �c�� c�� �� ��
� �� by Lemma ����

�� Case if e then c� else c�� By rule if� we have � 	 c� � H cmd and � 	 c� � H cmd �
By induction� we have ��x� � H var for every variable x assigned to in c� and in c��
and c� and c� are total under �� If dom��� � dom��� then ��e� is de�ned since e
is well typed under �� If ��e� �� � then �if e then c� else c�� �� �� �c�� �� by rule
branch� And since c� is total under �� there exists �� such that �c�� �� ��

� ��� So
�if e then c� else c�� �� ��

� ��� The case when ��e� � � is similar�

�� Case for e do c�� By rule for� we have � 	 c� � H cmd � By induction� ��x� � H var

for every variable x assigned to in c�� and c� is total under �� If dom��� � dom���
then ��e� is de�ned since e is well typed under �� Then there exists �� such that
�for e do c�� �� ��

� �� by Lemma ����


�



�� Case protect c�� By rule protect� we have � 	 c� � H cmd � By induction� ��x� �
H var for every variable x assigned to in c�� and c� is total under �� So if dom��� �
dom��� then there exists �� such that �c�� �� ��

� ��� Hence �protect c�� �� �� ��

by rule atomicity�

The Con�nement Lemma says that any thread that can be given type H cmd under a
typing �� terminates successfully when run in a memory � having the same domain as �
and does not change the contents of any low variables of ��

Now we establish the Mutual Termination property� It states that it is impossible for
a well�typed thread to terminate under one memory and run forever under an equivalent
memory�

Lemma ��� �Mutual Termination	 Suppose c is well typed under � and protect free�

and that ���
� If �c� �� ��
� �� then there is a 
 � such that �c� 
� ��� 
 � and ����


��

Proof� By induction on the length of the derivation of �c� �� ��� ��� We consider the
di�erent forms of c�


� Case x �� e� Since c is well typed� we have x � dom���� Since dom��� � dom�
� �
dom���� we have �c� �� �� �	x �� ��e�� and �c� 
� �� 
	x �� 
�e��� If ��x� � L var

then by rule assign� we have � 	 e � L� So by Simple Security� ��y� � L var for every
variable y in e� Hence ��e� � 
�e�� and so �	x �� ��e����
	x �� 
�e��� If� instead�
��x� � H var then trivially �	x �� ��e����
	x �� 
�e���

�� Case skip� The result follows immediately from rule no�op�

�� Case c�� c�� If �c�� c�� �� ��
j �� then by Lemma ��� there exist k and ��� such that

� � k � j� �c�� �� ��
k ��� and �c�� �

��� ��j�k ��� By induction� there exists 
 �� such
that �c�� 
� ��

� 
 �� and �����

��� So by induction again� there exists 
 � such that

�c�� 

��� ��� 
 � and ����


�� Finally� �c�� c�� 
� ��
� 
 � by Lemma ����

�� Case while e do c�� Since � 	 e � L� we know by Simple Security that ��e� � 
�e��
Suppose ��e� � �� Then �while e do c�� �� �� � and also �while e do c�� 
� �� 
�
since ��e� � 
�e��

If ��e� �� � then �while e do c�� �� �� �c��while e do c�� �� ��
� ��� By induction�

there exists 
 � such that �c��while e do c�� 
� ��
� 
 � and ����


�� And since 
�e� ��
�� �while e do c�� 
� �� �c��while e do c�� 
� ��

� 
 ��

�� Case if e then c� else c�� If � 	 e � L then ��e� � 
�e� by Simple Security� If ��e� ��
� then �if e then c� else c�� �� �� �c�� �� ��

� ��� By induction� there exists 
 � such
that �c�� 
� ��

� 
 � and ����

�� Since 
�e� �� �� we have �if e then c� else c�� 
� ��

�c�� 
� ��
� 
 �� The case when ��e� � � is similar�

If instead � �	 e � L then by rule if� and the fact that c is well typed� we have
� 	 if e then c� else c� � H cmd � Then by Con�nement� ����� and there exists 
 �

such that �if e then c� else c�� 
� ��
� 
 � and 
 ���
� So ����


��


�



�� Case for e do c�� If � 	 e � L then ��e� � 
�e� by Simple Security� So if ��e� � �
then �for e do c�� �� �� � and since ��e� � 
�e�� �for e do c�� 
� �� 
� If instead
��e� � �� then �for e do c�� �� �� �c�� for ��e� � 
 do c�� �� ��

� ��� By induction�
there exists 
 � such that �c�� for ��e�� 
 do c�� 
� ��

� 
 � and ����

�� And since

��e� � 
�e�� �for e do c�� 
� �� �c�� for 
�e�� 
 do c�� 
� ��
� 
 ��

If instead � �	 e � L then since c is well typed� we have � 	 for e do c� � H cmd

by rule for� By Con�nement� there exists 
 � such that �for e do c�� 
� ��
� 
 � and


 ���
� Also� ����� by Con�nement� so ����

��

De�nition ��� A command is protected under � if every conditional and for loop is en�

closed by a protect whenever the guard contains a variable x such that ��x� � H var�

Also� O is protected under � if O��� is protected under � for every � � dom�O��

Now we can show that if we execute a well�typed� protected command c in two equivalent
memories then the two executions proceed in lock step�

Lemma ��� �Lock Step Execution	 Suppose c is well typed under � and protected� and

that ���
� If �c� �� �� �c�� ���� then there exists 
 � such that �c� 
� �� �c�� 
 �� and ����

��

And if �c� �� �� ��� then there exists 
 � such that �c� 
� �� 
 � and ����

��

Proof� By induction on the structure of c�


� Case x �� e� Since c is well typed� x � dom���� Since dom��� � dom�
� � dom����
we have �c� �� �� �	x �� ��e�� and �c� 
� �� 
	x �� 
�e��� If ��x� � L var then
by rule assign� we have � 	 e � L� So by Simple Security� ��y� � L var for every
variable y in e� Hence ��e� � 
�e�� and so �	x �� ��e����
	x �� 
�e��� If� instead�
��x� � H var then trivially �	x �� ��e����
	x �� 
�e���

�� Case skip� The result follows immediately from rule no�op�

�� Case c�� c�� If �c�� c�� �� �� �c�� �
�� then by the �rst sequence rule� we have

�c�� �� �� ��� By induction� there exists 
 � such that �c�� 
� �� 
 � and ����

��

And therefore �c�� c�� 
� �� �c�� 

�� by the �rst sequence rule�

If� instead� �c�� c�� �� �� �c��� c�� �
�� then �c�� �� �� �c��� �

�� by the second sequence

rule� By induction� there exists 
 � such that �c�� 
� �� �c��� 

�� and ����


�� Hence
�c�� c�� 
� �� �c��� c�� 


�� by the second sequence rule�

�� Case while e do c�� Since � 	 e � L� we know by Simple Security that ��e� � 
�e��
Suppose ��e� � �� Then �while e do c�� �� �� � and so �while e do c�� 
� �� 

since ��e� � 
�e�� If ��e� �� � then �while e do c�� �� �� �c��while e do c�� ���
And since 
�e� �� �� �while e do c�� 
� �� �c��while e do c�� 
��

�� Case if e then c� else c�� Since c is protected� we have � 	 e � L� Therefore� ��e� �

�e� by Simple Security� So if ��e� �� � then �if e then c� else c�� �� �� �c�� ���
And since 
�e� �� �� we have �if e then c� else c�� 
� �� �c�� 
�� The case when
��e� � � is similar�


�



�� Case for e do c�� Since c is protected� � 	 e � L� and as above ��e� � 
�e�� So if
��e� � � then �for e do c�� �� �� � and since ��e� � 
�e�� �for e do c�� 
� �� 
� If
��e� � �� then �for e do c�� �� �� �c�� for ��e�� 
 do c�� ��� And since 
�e� � ��
�for e do c�� 
� �� �c�� for 
�e�� 
 do c�� 
��

�� Case protect c�� By rule atomicity� �c�� �� ��
� ��� Since protect blocks are not

nested� c� is protect free� Further� it is well typed under � by rule protect since c is
well typed� So by Mutual Termination� there is a memory 
 � such that �c�� 
� ��

� 
 �

and ����

�� Thus� �protect c�� 
� �� 
 � by rule atomicity�

Now we wish to extend the Lock Step Execution Lemma to probabilistic states� First�
we need a notion of equivalence among probabilistic states� The basic idea is that two
probabilistic states are equivalent under � if they are the same after any high variables are
projected out� Suppose� for example� that x � H and y � L� Then���

��
�O� 	x �� �� y �� ��� � 
���
�O� 	x �� 
� y �� ��� � 
���
�O�� 	x �� �� y �� 
�� � 
��

���
�	

is equivalent to

f�O� 	x �� �� y �� ��� � ���� �O�� 	x �� �� y �� 
�� � 
��g�

because in each case the result of projecting out the high variable x is

f�O� 	y �� ��� � ���� �O�� 	y �� 
�� � 
��g	

Notice that projecting out high variables can cause several con�gurations to collapse into
one� requiring summation of their probabilities� More formally� we de�ne equivalence as
follows�

De�nition ��� Given variable typing � and memory �� let �� denote the result of erasing

all high variables from �� And given probabilistic state s� let the projection of s onto the

low variables of �� denoted s�� be de�ned by

s��O���� �
X

����

s�O� 
�

Finally� we say that probabilistic states s and s� are equivalent under �� written s��s
�� if

s� � s���

A probabilistic state s is well typed and protected under � if for every global con�g�
uration �O��� where s�O��� � �� O is well typed and protected under �� and dom��� �
dom����

For any global con�guration �O���� the point mass on �O���� denoted ��O���� is the
probabilistic state that gives probability 
 to �O��� and probability � to all other global
con�gurations�

Now we can show� as a corollary to the Lock Step Execution Lemma� that �� is a
congruence with respect to the transition matrix T on well�typed� protected point masses�


�



Lemma ��
 �Congruence on Point Masses	 If � and �� are well�typed� protected point

masses such that ����
�� then �T���

�T �

Proof� Since ����
�� there must exist a thread pool O and memories � and 
 such that

� � ��O���� �
� � ��O���� and ���
�

If O � f g� then by third �global� rule� we see that �T � � and ��T � ��� So �T���
�T �

Now suppose that O is nonempty� We show that for every �O�� ��� where ��T ��O�� ��� � ��
there is a 
 � such that ����


� and ��T ��O�� ��� � ���T ��O�� 
 ��� So suppose �O�� ��� is a global
con�guration and ��T ��O�� ��� � �� Since � is a point mass�

��T ��O�� ��� � T ��O���� �O�� ����

Therefore� T ��O���� �O�� ���� � �� By the de�nition of T � then� T ��O���� �O�� ���� � 
�jOj
and there is a thread � and command c such that O��� � c and either


� �c� �� �� �c�� ��� and O� � O	� �� c��� or else

�� �c� �� �� �� and O� � O � ��

In the �rst case� we have� by the Lock Step Execution Lemma� that there exists 
 � such

that �c� 
� �� �c�� 
 �� and ����

�� Then� by rule �global�� �O� 
�

��jOj
���O	� �� c��� 
 ��� so

by de�nition of T �
T ��O� 
�� �O�� 
 ��� � 
�jOj

But �� is also a point mass� therefore

���T ��O�� 
 �� � T ��O� 
�� �O�� 
 ���

Thus� ��T ��O�� ��� � 
�jOj � ���T ��O�� 
 ��� The second case above is similar�
So for a given con�guration �O���� if ���
 and ��T ��O� 
� � �� then there exists 
 �

such that 
 ���
 and ���T ��O� 
 �� � ��T ��O� 
� from above� Since 
 ����� ��
�T ��O� 
 �� must

be in the sum ���T ���O����� Therefore� ��T ���O���� � ���T ���O����� Symmetrically� we
have ��T ���O���� � ���T ���O���� and so ��T �� � ���T �� � or �T���

�T �

Now we wish to generalize the above Congruence Lemma from point masses to arbitrary
probabilistic states� this generalization is a direct consequence of the linearity of T � More
precisely� the set of all measures forms a vector space if we de�ne

� �s� s���O��� � s�O��� � s��O���� for measures s and s�� and

� �as��O��� � a�s�O����� for real a and measure s�

With respect to this vector space� T is a linear transformation� Furthermore� �� is a
congruence with respect to the vector space operations�

Lemma ��� If si��s
�
i for all i� then

a�s� � a�s� � a�s� � 
 
 
 �� a�s
�
� � a�s

�
� � a�s

�
� � 
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Proof� First� we have that projections are homomorphic�

�a�s� � a�s� � 
 
 
�� � �a�s��� � �a�s��� � 
 
 


since for all �O����

�a�s� � a�s� � 
 
 
���O���� �
X

����

a�s��O� 
� � a�s��O� 
� � 
 
 


�
X

�����

a�s��O� 
�� �
X

�����

a�s��O� 
�� � 
 
 


� �a�s����O���� � �a�s����O���� � 
 
 


� ��a�s��� � �a�s��� � 
 
 
��O����

Further� �as�� � as� since for all �O����

�as���O���� �
X

����

�as��O� 
� �
X

����

a�s�O� 
�� � a
X

����

s�O� 
� � as��O����

Finally� we have
�a�s� � a�s� � 
 
 
�� � �a�s��� � �a�s��� � 
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�
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�
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So a�s� � a�s� � 
 
 
 �� a�s
�
� � a�s

�
� � 
 
 
�

Theorem ���� �Probabilistic Noninterference	 If s and s� are well�typed� protected

probabilistic states such that s��s
�� then sT��s

�T �

Proof� To begin with� we argue that s and s� can be expressed as �possibly countably
in�nite� linear combinations of �not necessarily distinct� point masses such that the corre�
sponding coe�cients are the same� and the corresponding point masses are equivalent�

Now� we know that we can express s and s� as linear combinations of point masses�

s � a��� � a��� � a��� � 
 
 


and
s� � b��

�
� � b��

�
� � b��

�
� � 
 
 


Assume� for now� that s� �and s��� is a point mass� That is� �i �� �j �� ��i �� ��j for all i
and j�

Note that the ai�s and bi�s both sum to 
� hence they both can be understood as
partitioning the unit interval 	�� 
��

b� b� b� b� 
 
 


a� a� a� 
 
 


� 



�



To unify the coe�cients in the two linear combinations� we must take the union of the two
partitions� splitting up any terms that cross partition boundaries� For example� based on
the picture above we would split the term a��� of s into b��� � �a� � b����� And we would
split the term b��

�
� of s� into �a�� b���

�
� � �b� � �a�� b����

�
�� Continuing in this way� we can

unify the coe�cients of s and s��
We can describe the splitting process more precisely as follows� We simultaneously

traverse s and s�� splitting terms as we go� Let a� and b�� be the next terms to be uni�ed�
If a � b� then keep both these terms unchanged� If a � b� then keep term a� in s� but split
b�� into a�� and �b � a��� in s�� Handle the case a � b symmetrically� If one or both of the
sums are in�nite� then of course the algorithm gives an in�nite sum� But each term of s
and of s� is split only �nitely often �otherwise the ai�s and bi�s would not have the same
sum� with one exception�if s is a �nite sum and s� is an in�nite sum� then the last term
of s is split into an in�nite sum�

So far� we have shown how to unify the coe�cients of s and s� in the case where s�
�and s��� is a point mass� In the general case� s and s� must �rst be rearranged into sums
of sums of equivalent point masses�

s � �a����� � a����� � 
 
 
� � �a����� � a����� � 
 
 
� � 
 
 


and
s� � �b���

�
�� � b���

�
�� � 
 
 
� � �b���

�
�� � b���

�
�� � 
 
 
� � 
 
 


where �ij �� �ik �� ��ij �� ��ik for all i� j� and k� Also� for each i�
P

j aij �
P

j bij� Hence
we can apply the algorithm above to unify the a�j �s with the b�j �s� the a�j �s with the b�j �s�
and so forth� Then we can form a single sum for s and for s� by interleaving these sums in
a standard way�

The �nal result of all this e�ort is that we can express s and s� as

s � c��
��
� � c��

��
� � c��

��
� � 
 
 


and
s� � c��

���
� � c��

���
� � c��

���
� � 
 
 


where ���i �� ����i for all i� Now� since T is a linear transformation� we have

sT � c���
��
�T � � c���

��
�T � � c���

��
�T � � 
 
 


and
s�T � c���

���
� T � � c���

���
� T � � c���

���
� T � � 
 
 


By the Congruence on Point Masses Lemma� we have ���i T �� ����i T � for all i� So� by
Lemma ���� sT �� s�T �

� Discussion

The need for a probabilistic view of security in nondeterministic computer systems has
been understood for some time 	
�� 
��� Security properties �models� to treat probabilistic
channels in nondeterministic systems have been formulated by McLean	
�� and Gray 	�� ���


�



It is important� however� to recognize that these e�orts address a di�erent problem than
what we consider in this paper� They consider a computer system with a number of users�
classi�ed as high or low� who send inputs to and receive outputs from the system� The
problem is to prevent high users� who have access to high information� from communicating
with low users� who should have access only to low information� What makes treating
privacy in this setting especially di�cult is that users need not be processes under control
of the system�they may be people� who are external to the system and who can observe the
system�s behavior from the outside� As a result� a high user may be able to communicate
covertly by modulating system performance to encode high information that a low user in
turn decodes using a real�time clock outside the system� Furthermore� because the low user
is measuring real time� the modulations can depend on low�level system implementation
details� such as the paging and caching behavior of the underlying hardware� This implies
that it is not enough to prove privacy with respect to a high�level� abstract system semantics
�like the semantics of Figure 
�� To guarantee privacy� it is necessary for the system model
to address all the implementation details�

In a mobile�code framework� where hosts are trusted� ensuring privacy is more tractable�
A key assumption here is that any attempt to compromise privacy must arise from within
the mobile code� which is internal to the system� As a result� the system can control what
the mobile code can do and what it can observe� For example� if mobile�code threads are
not allowed to see a real�time clock� then they can measure the timing of other threads only
by observing variations in thread interleavings� Hence� assuming a correct implementation
of our semantics� threads will not be able to detect any variations in the running time
of a protected command� nor will they be able to detect timing variations due to low�
level implementation details� Consequently� timing attacks are impossible in well�typed�
protected programs in our language� For instance� Kocher describes a timing attack on RSA
	
��� Basically� he argues that an attacker can discover a private key x by observing the
amount of time required by several modular exponentiations yx mod n� In our framework�
one would use a protected for loop to implement modular exponentiation� which means that
no useful timing information about exponentiation would be available to other threads�it
would always appear to execute in exactly one step�

� Other related research

Other work in secure information �ow� in a parallel setting� includes that of Andrews and
Reitman 	
�� Melliar�Smith and Moser 	
��� Focardi and Gorrieri 	�� ��� and Banatre and
Bryce 	��� Melliar�Smith and Moser consider covert channels in Ada� They describe a data
dependency analysis to �nd places where Ada programs depend on the relative timing of
operations within a system� Andrews and Reitman give an axiomatic �ow logic for treating
information �ow in the presence of process synchronization� They also sketch how one might
treat timing channels in the logic� Banatre and Bryce give an axiomatic �ow logic for CSP
processes� also treating information �ow arising from synchronization� None of these e�orts�
though� gives a satisfactory account of the security properties that they guarantee� Focardi
and Gorrieri identify trace�based and bisimulation�based security properties for systems
expressed in an extension of Milner�s CCS� which they call the Security Process Algebra�
These properties� however� are possibilistic in nature �e�g� a system is SNNI 	�� if the set of

��



traces that a low observer can see of a system is possible regardless of whether high�level
actions are enabled or disabled in the system��

� Conclusion

So what is the signi�cance of our result It depends on what can be observed� With
respect to internal program behavior� our Probabilistic Noninterference result rules out
all covert �ows from high variables to low variables� But if external observation of the
running program is allowed� then of course covert channels of the kind discussed in Section �
remain possible� Note� however� that the mobile code setting a�ords us more control over
external observations than would normally be possible� When we execute some mobile
code on our machine� we can limit communication with the outside world� preventing
precise observations of a program�s behavior such as its running time� Depending on the
application� one can build enough noise into the mobile code�s interface with the outside in
various ways to signi�cantly reduce the capacity of an externally�observable timing channel�
See� for example� the NRL Pump for secure acknowledgment 	���

References

	
� G� Andrews and R� Reitman� An axiomatic approach to information �ow in programs�
ACM Transactions on Programming Languages and Systems� ��
����!��� 
����

	�� J� Ban"atre and C� Bryce� Information �ow control in a parallel language framework� In
Proceedings �th IEEE Computer Security Foundations Workshop� pages ��!��� June

����

	�� Edsger Dijkstra� A Discipline of Programming� Prentice Hall� 
����

	�� William Feller� An Introduction to Probability Theory and Its Applications� volume I�
John Wiley # Sons� Inc�� third edition� 
����

	�� R� Focardi and R� Gorrieri� A classi�cation of security properties for process algebras�
Journal of Computer Security� ��
���!��� 
����
����

	�� R� Focardi and R� Gorrieri� The compositional security checker� A tool for the veri��
cation of information �ow security properties� IEEE Transactions on Software Engi�

neering� ���������!��
� 
����

	�� James W� Gray� III� Probabilistic interference� In Proceedings ���	 IEEE Symposium

on Security and Privacy� pages 
��!
��� Oakland� CA� May 
����

	�� James W� Gray� III� Toward a mathematical foundation for information �ow security�
In Proceedings ���� IEEE Symposium on Security and Privacy� pages �
!��� Oakland�
CA� May 
��
�

	�� Myong H� Kang and Ira S� Moskowitz� A pump for rapid� reliable secure communi�
cation� In Proceedings of the �st ACM Conference on Computer 
 Communications

Security� pages 

�!
��� November 
����

�




	
�� Paul Kocher� Timing attacks on implementations of Di�e�Hellman� RSA� DSS and
other systems� In Proceedings ��th Annual Crypto Conference� August 
����

	

� Dexter Kozen� Semantics of probabilistic programs� Journal of Computer and System

Sciences� ������!���� 
��
�

	
�� John McLean� Security models and information �ow� In Proceedings ���	 IEEE

Symposium on Security and Privacy� pages 
��!
��� Oakland� CA� 
����

	
�� John McLean� Security models� In John Marciniak� editor� Encyclopedia of Software

Engineering� Wiley Press� 
����

	
�� P�M� Melliar�Smith and L� Moser� Protection against covert storage and timing chan�
nels� In Proceedings �th IEEE Computer Security Foundations Workshop� pages ���!
�
�� June 
��
�

	
�� Hanne Riis Nielson and Flemming Nielson� Semantics with Applications� A Formal

Introduction� Wiley� 
����

	
�� Geo�rey Smith and Dennis Volpano� Secure information �ow in a multi�threaded
imperative language� In Proceedings �
th Symposium on Principles of Programming

Languages� pages ���!���� San Diego� CA� January 
����

	
�� J� Todd Wittbold and Dale M� Johnson� Information �ow in nondeterministic sys�
tems� In Proceedings ���	 IEEE Symposium on Security and Privacy� pages 
��!
�
�
Oakland� CA� May 
����

��


