Fiber optic development for use on the fiber optic
helmet-mounted display

Abstract. The fiber optic helmet-mounted display (FOHMD), developed by
CAE Electronics Ltd. for the U.S. Air Force Human Resources Laboratory,
requires large-format coherent fiber optic cables to support the demanding
full color, high-resolution display requirements plus provide flexibility,
durability, and light weight and be up to 2.1 m in length. Currently, FOHMD
cables are linear arrays of multifibers separated by inactive material spacers
to achieve a lightweight cable with a large cross section. This multifiber
approach, with 5 um diameter individual fibers, delivers high performance
by using chromatic multiplexing to improve resolution and wash out the
inactive spacer structure. Reduced fiber breakage and improved fiber
alignment have also significantly increased the optical performance of the
system. To achieve still higher image quality, a technically more difficult
process is also being explored. Several small experimental cables have
been assembled using leachable, fused multifibers arrayed in a hexagonal
pattern. Improved cable drawing technology will allow for precise assem-
bly of hexagonal components into a full format bundle. This new fiber
optic cable technology has the potential of providing image transmission
capability equal to 10 million pixels. When coupled with chromatic en-
hancement, the FOHMD optics will deliver a resolution equal to 1.5 arcmin
per pixel over a large field of view.
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CONTENTS match the information content of the scene presented with the
1. Introduction pilot’s point of gaze. 12 The rapid reduction on off-axis visual
2. Simulator system description acuity in the human visual system means tha.t only a few channels
3. Fiber optic bundle specifications of imagery are needed to supply each eye with an adeguate scene
4. Optical theory if they are properly formatted and servoed to the point of gaze,
5. Skip-layer-wound multifiber cables—the early work thus providing an area-of-interest (AOI) based simulation.’

6. Skip-layer-wound multifiber cables—the present

7. Leachable bundles—the future 2. SIMULATOR SYSTEM DESCRIPTION

9. Azﬁfn::rllzg;ments The fiber optic helmet-mounted display (FOHMD) was designed
10. References to support Tactical Air Force requirements.4 Light valve pro-

jectors are mounted behind the pilot to provide the imagery for
two fiber optic cables attached to helmet optics. An optical
helmet tracker is used to determine the pilot’s head position and,

1. INTRODUCTION
The bubble canopy on modern tactical aircraft and the larger

visual field available in the new lightweight helmets allow com-
bat pilots unprecedented instantaneous and total fields of view
(FOV). The detail and acuity necessary to supply a pilot with a
simulation of this environment is quite demanding and, in fact,
cost prohibitive if conventional techniques are applied. Project-
ing the hundreds of millions of pixels of information bombarding
a pilot from outside the typical bubble canopy is neither tech-
nically nor economically feasible and, fortunately, not neces-
sary. An excellent technique for reducing simulation costs is to
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hence, the background scene for the computer image generator
to generate. The AOI imagery is then inset into the background
and servoed to match the point of gaze as determined by an eye-
tracker mounted on the helmet. Figure 1 shows how the fiber
optics are used as flexible conduits for the combined imagery.>

This approach yields a full color, high-brightness, high-
resolution composite scene with a large instantaneous FOV. To
completely transmit the composite scenes imaged by the off-
helmet light valve projectors, the fiber cables require a 24 mm
by 19 mm format, containing over four million fibers.

The Phase IV generation of FOHMD, first delivered to the
Air Force Human Resources Lab (AFHRL) at Williams Air
Force Base, Ariz., in 1986, is capable of presenting an 82.5°
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Fig. 1. Detail of the helmet and fiber optics.

horizontal by 67° vertical instantaneous FOV to each of the
pilot’s eyes. Since the 25° horizontal by 19° vertical eye-slaved
AOI is capable of addressing most of this area, the resolution
of the entire fiber optic cable must equal the resolution required
to support the AOL.

The Phase V generation of the FOHMD, delivered to the
AFHRL in Dec. 1988, provides each of the pilot’s eyes with an
enlarged background channel instantaneous FOV of 100° hori-
zontal by 80° vertical while keeping the AOI the same size as
the Phase IV system’s. With a 38° stereoscopic overlap, this
increases the Phase V system’s instantaneous FOV to 160° hor-
izontally by 80° vertically as compared with Phase IV system’s
40° overlap and 126° horizontal by 67° vertical FOV. This en-
largement places even greater resolution and optical quality re-
quirements on the fiber optic cables.

3. FIBER OPTIC BUNDLE SPECIFICATIONS

Supporting an eye-slaved AOI-based system with high brightness
and full color dictates a number of characteristics besides a large
format. The fiber optic cables were required to transmit white
light at 10% efficiency with a blue light (440 to 495 nm) trans-
mission efficiency 70% that of the white light. The numeric
aperture was required to be equal to or greater than 0.66. In the
quality viewing area (within a 30° radius of nasal center) greater
than 0.1% broken or missing fibers and any double or missing
skips would be unacceptable. A fine diffusion grind was to be
applied to the helmet end of each cable and end flatness needed
to be better than 12 wm. Finally, incoherency discontinuities
needed to be less than 25 pm and more than three incoherent
rows of 20 um or greater would be unacceptable in the quality
viewing area.

Another important measure of cable performance is resolving
power. Paul Weissman, optical designer for Marty Shenker Op-
tical Design (an FOHMD program subcontractor), has concluded
that, based on the overall visual requirements of the helmet-
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Fig. 2. Fiber optic cable image of USAF standard resolution test
pattern.
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Fig. 3. Schematic diagram of chromatic multiplexing system. Biue,
yellow, and red rays are indicated by b, y, and r, respectively.

mounted display, the image cable using chromatic enhancement
must have 50% modulation at 100 line pairs/mm. (€p/mm) Using
the optical bench test assembly set up at Schott Fiber Optlcs
(SFO), resolving power of the cable is determined by measuring
the cutoff frequency when imaging a United States Air Force
(USAF) standard resolution test pattern. A typical image is shown
in Fig. 2. This USAF standard resolution test pattern method,

which can be theoretically correlated with modulation transfer,

is felt to be most informative because it is a function of fiber
core size, fiber misalignment (incoherency), chromatic multi-
plexing, and background noise. Cutoff frequency is a key cri-
terion used in evaluating cable performance in development work
at SFO.

4. OPTICAL THEORY

In both FOHMD systems, chromatic multiplexing is used to
smooth out the skip-layer structure and increase resolution. With
chromatic enhancement, zero deviating dispersing prisms are
placed before and after the fiber optics to distribute spectrally
individual pixels over multiple fibers and recombine them after
they exit the fiber optic cable. A schematic diagram of a fiber




FIBER OPTIC DEVELOPMENT FOR USE ON THE FIBER OPTIC HELMET-MOUNTED DISPLAY

TABLE . Theoretical modulation at 100 {p/mm for various fiber sizes and misalignments.

Fiber Core Standard Deviation of Misalignment (Microns)

Core Diameter © 1 2 3 4 5
3 .80 .65 .36 .13 .03 .01
5 .52 .43 .24 .08 .02 .00
7 .26 .21 .12 .04 .01 .00
9 .08 .07 .04 .01 .00 .00
11 .01 .01 .00 .00 .00 .00

TABLE |I. Theoretical cutoff frequency in line pairs per millimeter for various fiber sizes and misalignments.

Fiber Core Standard Deviation of Misalignment (Microns)

Core Diameter (o] 1 2 3 4 5
3 310 240 165 115 90 75
5 185 170 135 105 85 70
7 130 125 110 95 80 65
9 105 100 95 80 70 60
11 85 80 75 70 65 60

optic system using chromatic multiplexing as discussed by Koester®
is shown in Fig. 3. In Fig. 3, Lo, L, L2, and L3 are lenses; P,
and P, are matching ‘‘direct vision’’ prisms.

Based on the experimental results of this initial work, the
empirically derived equations for determining resolving power
(R. P.) of chromatic enhanced fiber optics are

R. P. (p/mm) =~ % ,

R. P. ({p/mm) =~ % ,

where d is the fiber core diameter and D is the fiber diameter,
both measured in micrometers.

The optical transfer properties of perfectly aligned fiber optic
cables have been derived by Drougard, who developed a theo-
retical basis for a dynamic MTF in which both the entry and
exit faces of a fiber cable are moving in a synchronous, random
pattern. 7 A statistical approach used to characterize i image trans-
mission through mlsallgned fiber was later developed by Marhic,
Schacham, and Epstein.® They have proposed that the average
MTF for a fiber optic cable with Gaussian misalignment is

RLdIfDT

TifaP exp(—2[1%#) ,

H{f) =

where H.(f) is the average dynamic MTF, J;(-) is the first-order
Bessel function, d is the fiber core diameter, f is the spatial
frequency, and r is the standard deviation of fiber misalignment.

Even though this model was developed for dynamic enhance-
ment, it is here being applied to chromatic enhancement with
the following qualification: Dynamic enhancement results in a
spatially invariant line spread function. The line spread function
for chromatically enhanced images is spatially invariant only for
test pattern lines that lie perpendicular to the direction of dis-
persion. Because of its directionality, the chromatic enhance-
ment does not fully ‘‘wash out’’ extended image patterns that
lie parallel to the direction of dispersion. Therefore, the resolving
power of chromatically enhanced fiber optic cables is found to
be slightly lower for test pattern lines that are parallel to the
direction of dispersion.

For a better understanding of the MTF equation, we calculate
the modulation for fiber optic cable designs to see how core size
and misalignment affect performance. Table I presents the mod-
ulation at 100 £p/mm for various core sizes and misalignments.
As can be seen, the model predicts very rapid falloff in optical
performance for increases in fiber size and/or misalignment.

The available equipment can now measure the cutoff fre-
quency for fiber cables in a chromatically enhanced imaging
system. The cutoff frequency is the highest spatial frequency
transmitted through the cable that can be visually resolved. Table II
presents the theoretical cutoff frequency for various fiber core
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2J .(IIfd)]
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for chromatically enhanced images is spatially invariant only for
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lie parallel to the direction of dispersion. Therefore, the resolving
power of chromatically enhanced fiber optic cables is found to
be slightly lower for test pattern lines that are parallel to the
direction of dispersion.

For a better understanding of the MTF equation, we calculate
the modulation for fiber optic cable designs to see how core size
and misalignment affect performance. Table I presents the mod-
ulation at 100 €p/mm for various core sizes and misalignments.
As can be seen, the model predicts very rapid falloff in optical
performance for increases in fiber size and/or misalignment.

The available equipment can now measure the cutoff fre-
quency for fiber cables in a chromatically enhanced imaging
system. The cutoff frequency is the highest spatial frequency
transmitted through the cable that can be visually resolved. Table II
presents the theoretical cutoff frequency for various fiber core

OPTICAL ENGINEERING / August 1990 / Vol. 29 No. 8 / 857




-

-

FIBER OPTIC DEVELOPMENT FOR USE ON THE FIBER OPTIC HELMET-MOUNTED DISPLAY

TABLE lil. Summary of kerf loss measurements, spacer material, and resolution test resuits for various cables.

Test Pattern Cutoff Freq.

(line pairs/mm)

Cable No Spacer Material Kerf Loss Vert Horz
Pattern Pattern
1371-1 Glass Fiber ‘ 0.045 80 50-60
2334-1 Glass Fiber 0.017 110 71
2334-2 Glass Fiber 0.019 110 71
1371-4 25 micron 0.017 110 90
resilient
1371-5 20 micron 0.018 110 90

resilient

Note: The cutoff frequency for cable 1371-1 was taken from measurements made at AFHRL. The other cutoff
frequencies were measured at SFO. Cables had a fine grind on the helmet-mounted end for diffusion purposes.

Fig. 6. A 3x7 rectangular multifiber 20 pum high.

properties: (1) provide uniform spacing between rows of multi-
fibers (approximately 25 wm); (2) maintain multifiber alignment
during the format bonding (potting) cycle; (3) maintain stability
during final assembly, polishing, and subsequent use; and (4)
minimize fiber breakage in the bonded region.

- Finding a suitable material proved challenging. Several ma-
terials evaluated had at best three out of four key properties.
Recently, however, a proprietary machined Mylar spacer ma-
terial was developed that has all four properties. This spacer was
used in combination with rhomboid-shaped multifibers to build
a half-size prototype cable with a resolving power that reached
the levels predicted by the theoretical and empirical models.

Figure 8 shows a section of the cable format, illustrating how
the multifibers are arranged in a highly ordered fashion. Figure
9 illustrates the improvements made in the resolving power of
prototype cables delivered over the identified time period.

Fig. 7. A 4x7 element rhomboid multifiber (magnification is 400 x ).

The data for Fig. 9 (listed in Table IV) were taken on MTF
equipment at SFO. Both the entry and exit faces of the cables
were polished. For this data, vertical test patterns lie perpen-
dicular to the direction of dispersion (multiplexing) and hori-
zontal test patterns lie parallel to the direction of dispersion.

It can be seen that a major improvement in optical perfor-
mance resulted when the rhomboid-shaped multifiber was intro-
duced. The second improvement came with the introduction of
the machined Mylar spacer material.

7. LEACHABLE BUNDLES—THE FUTURE

Despite the progress made with skip-layer-wound cables, it was
felt that the limit for this technology was being reached, prin-
cipally because of the remaining fixed-pattern noise. It was de-
cided that an entirely different technology, the leachable ap-
proach, would be needed to achieve further improvements. Small
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FIBER OPTIC DEVELOPMENT FOR USE ON THE FIBER OPTIC HELMET-MOUNTED DISPLAY
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Fig. 10. Skip-layer-wound cable.
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Fig. 11. Fused, leached cable.

TABLE V. Relative standing of factors influencing resolving power of fiber optic image cables.

Approach Fiber Core Fiber Fixed Pattern
Size (Microns) Misalignment Noise

Skip-Layer Wound

Multifiber 5 Low Moderate

Leachable 8 - 10 Near Zero Low

Bundles

Fig. 12. Fiber arrangement in the current fused cable.

of meeting the unique precision fiber drawing needs of the FOHMD
program. Heathway was awarded the contract to design and build
a tower (of approximately 2.1 m in height) that uses a closed-
loop feedback system to maintain bundle and fiber size. For
purposes of this program the tower is required to draw fibers to
within 3 pm of set point. During acceptance test runs at Heath-
way this requirement was met.

Fig. 13. Fiber arrangement in hepta (rosette) design fused cable.

Fiber size and deviation from set point will be measured by
a dual-axis laser micrometer (a custom-designed unit built by
Lasermike Inc.). SFO has developed software for the micrometer
processor that accurately computes the size of hexagonally shaped
multifibers independent of its rotational orientation in the scan-
ning working area of the micrometer.

Previously, leachable cable core size was a limiting factor

OPTICAL ENGINEERING / August 1990 / Vol. 29 No. 8 / 861
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