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Final Report
Coherent Structures and Chaos Control in
High-Power Microwave and Charged-Particle Beam Devices
AFOSR Grant No. FA9550-06-1-0269

This report summarizes research results obtained under the auspiccs of Air Force
Office of Scientific Research, Grant No. F49620-06-1-0269 (Chen, 2006). In particular,
we conducted vigorous theoretical and computational investigations of coherent
structures and chaos in a wide range of intense electron beam plasmas relevant to the
development of high-power microwave and particle-beam devices for directed energy
applications.

The following 1s a brief summary of our research accomplishments in selected areas,
while detailed findings are described in the preprints cited in this report.

1. High-Power Magnetron Research (Zhou and Chen, 2007 and 2008; Davies, Zhou
and Chen, 2007; Davies, Chen and Zhou, 2008)

Under the auspices of the grant (Chen, 2006), we have developed a small-signal
theory of a non-relativistic magnetron using a planar model with a thin electron cloud
(Zhou and Chen, 2007 and 2008). The theory includes both inertial effects and
electromagnetic effects in a Floquet expansion. We have derived an analytical dispersion
rclation of such a planar magnetron, and calculated the growth rate analytically. We have
shown that the magnetron instability involves the resonance between the electron cloud
and the slow waves in the magnetron cavities. We have found good agreement between
the theory and the self-consistent two-dimensional (2D) particle-in-cell (PIC) MAGIC
simulations. We have predicted vortex structures in the equilibrium relativistic electron
flow in magnetrons (Davies, Zhou and Chen, 2007; Davies, Chen and Zhou, 2008). The
vortex structures are induced by the periodic corrugations on the magnetron anode. In the
analysis, we have made the guide-center approximation, which is validate at low electron
densities. We have validated the analysis using test-particle calculations.

1.1 Small-Signal Gain Theory of Non-Relativistic Planar Magnetrons (Zhou and
Chen, 2007 and 2008)

The onset of the unstable oscillations in magnetrons has not been analytically
described to complete satisfaction, although extensive particle-in-cell (PIC) simulations
can make good predictions for the instability characteristics (see, for example, Chan,
Chen and Davidson, 1993; Lemke, Genoni and Spencer, 1999). Previous analytical
studies included various models utilizing linear theories. Earlier work focused on the
diocotron instability in the guiding-center approximation (Davidson, Chan, Chen, et al.,
1991; Ayres, Chen, Stark, et al., 1992), which ignores inertial effects in the electron cloud.
The recent work by Riyopoulos on the basis of a guiding-center model provided new
insight into the magnetron instability in the low-space-charge limit (Riyopoulos, 1998). A
linear theory taking a single rf mode in the Floquet expansion was developed to include
electromagnetic effects (Kaup, 2001, 2004 and 2007). Despite these theoretical and PIC



simulation efforts, quantitative agreement between theory and PIC simulations has not
been reported until our paper (Zhou and Chen, 2007 and 2008).
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Figure 1.1.1 Schematic of a planar magnetron with a thin electron layer (from Zhou and
Chen, 2008).

Assuming a multi-stream thin electron cloud located at a distance of /4 from the
cathode as shown in Fig. 1.1.1, we have obtained the small-signal gain equation or the
loaded dispersion relation (Zhou and Chen, 2008)

Gl = 7§ ‘Sin(kqa/2)|2 cos(qu)+gkq(a))cos[pq(b—h)]
}L oL 2 b ka2 | Slpgb) e (@)snlp, 5]

Ed

0=D(w,k.)= cot[% (d-b)

(1.1.1)

1 2 .
&k, (a))= ﬁ Pq [e Tbj ]Sin(pqh) (1.1.2)

J=1 (“’ & qub/')z Sgith

and p, = ,}a)z/cz —k; . For £, = 0, Eq. (1.1.1) is the vacuum dispersion relation for the

corrugated structure. For £, # 0, on the other hand, Eq. (1.1.1) permits calculations of

where

small-signal gains in magnetrons, which will be discussed in Sec. 1.2.

It should be noted that the simplifying assumption of a thin electron cloud has
enabled us to avoid the difficulties in treating multiple poles in the small-signal gain
equation in general situation. We plan to further study the general small-signal gain
equation.

1.2 Comparison between Small-Signal Gain Theory and Two-Dimensional Particle-
in-Cell Simulations (Zhou and Chen, 2008)




To compare our small-signal gain theory with 2D MAGIC simulations, we havc
restricted to the low-current regime, where the thin-beam equilibrium model is a good
approximation to the thin eleetron eloud in the 2D MAGIC simulations.

As an example, we have considered a system with the parameters: L =0.478cm,
a=0382em, b=0.478em, d =4.25em, h=0.382em, B, =180G, E, =-5.27kV/em,

oy =2.12x 108cm™, and ¥, = 0.098c.

First, we have computed the vacuum dispersion relation from Eq. (1.1.1) with
&, =0, and found good agreement with the 2D MAGIC simulation with the absence of
q

the eleetron eloud, as shown in Fig. 1.2.1.

Second, we have made use of the self-consistent PIC ecode, 2D MAGIC, to simulate
the planar magnetron system. Because 2D MAGIC can handle only a few vancs, a 3-vane
slow-wave corrugated structure with the same parameters as in Fig. 1.2.1 is used in the

simulation. Periodie boundary eonditions are used such that the 27/3 mode is supported
by the 3-vane structure. The uniform crossed electrie and magnetie fields are applied with
B. =180G and E, =-5.27kV/em. The eleetron beam is initialized as a slab infinitc
long in the z direction and with a width of 0.05 em in the x direetion. The eleetron beam
propagates with an initial velocity of ¥, = 0.098¢ . As the beam propagates, the instability
starts to build up which is illustrated by the voltage cross the vane tip of the slow-wave
structure. In Fig. 1.2.2, the amplitude of the oscillating voltage filtered by a filter that
selects the 277/3 mode is plotted. In the early stage of the instability (e.g. for ¢ < 15 ns),
the oscillation has a very small amplitude and exhibits a relatively broad frequency
spectrum which is not shown in Fig. 1.2.2. Starting from ¢ = 10ns, the 27/3 mode grows
exponentially. It saturates at about 7 =26 ns. For this MAGIC simulation, the 27/3
mode is determined to have a frequency of 1.93 GHz and an amplitude growth ratc of
3.12 dB/em, shown as eirele and eross in Fig. 1.2.3, respeectively.

Finally, we have solved the loaded dispersion relation in Eq. (1.1.1) with &, #0to

calculate the real frequency and the instability growth rate. Due to the influence of the
anode corrugation, the electron cloud velocity prior to the linear growth is observed to
vary sinusoidally in the y— direetion with small amplitude around thc averaged flow
velocity in the 2D MAGIC simulation. To model the velocity variation, we have used
three electron cloud streams at the same location x = 0.0384 cm, each with one third of
the total surface charge number oy =0y =03 =0,/3 and a slightly different

velocities, i.e., V; =0.98V,, V3, =V}, and V3 =1.02V,, . The theoretical growth rate is
in good agreement with the 2D MAGIC simulation as shown in Fig. 1.2.3.

1.3 Vortex Structures in Relativistic Magnetrons (Davies, Zhou and Chen, 2007;
Davies, Chen and Zhou, 2008)

The periodic corrugations on the anode have a strong influence on the equilibrium
flow in magnetrons and erossed-field deviees. In particular, we predicted the existenee of
vortex structures induced by the corrugations on the anode in non-relativistic magnetrons
(Chen, 2004; Bhatt and Chen, 2003 and 2004; Davies and Chen, 2006). Until our




prediction, vortex formation had not been discussed in the literature in the context of
magnetrons and crossed field devices. In fact, all conventional treatments of the
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Figure 1.2.1 Vacuum dispersion diagram for a planar magnetron structurc obtained from

the dispersion relation in Eq. (1.1.1) with &, = 0 (solid curve) and 2D MAGIC

simulations (dotted curve). The dashed curve is the beam line f = k./27V, . Here, the
parameters are L = 0.478cm, a = 0.382cm, b =0.478cm, d =4.25cm, and V), = 0.098¢
(from Zhou and Chen, 2008).
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Figure 1.2.2 Plot of the amplitude of oscillating voltage as a function of time as obtained
from the MAGIC simulation. Here, the parameters are L = 0.478cm, a = 0.382 cin,



b=0478cm, d =4.25cm, h=0.382cm, B, =180G, £, =-5.27kV/cm,
oy =2.12x 10%cm?, and 7, = 0.098¢ (from Zhou and Chen, 2008).
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Figure 1.2.3 Plot of the temporal growth rate lm(a)) (solid curve) and the real frequency
Re(w) (dashed curve) as a function of wave number &, for the lowest resonant TM

mode. The solid and dashed curves are obtained from Eq. (1.1.1) using the three electron
cloud streams, whereas the circle and cross are the real frequency and instability grow

rate from the MAGIC simulation, respectively. Here, the parameters are L =0.478cm,
a=0382cm, b=0478cm, d =4.25cm, h=0.382cm, B, =180G, E, =-527kV/em.

Gy =G = =G =TT ATR]0 em?, ¥y, = 0.987, , V3, =V, =0.098¢, and
Vy3 = 1.02V,, (from Zhou and Chen, 2008).

cquilibrium electron flows in magnetrons had ignored effects of the anodc corrugations
(see, for example, Davidson, Chan, Chen, et al., 1991).

By definition, an equilibrium flow corresponds to a state in magnctrons and crossed-
field devices in the absence of rf oscillations. While it is an ideal situation in an actual
device, it is of critical importance in order for us to develop a better understanding of
magnetrons and crossed-field devices.

Since our report of vortex formation (Chen, 2004) at Magnetron/PIC Simulation
Workshop held at AFRL, May 2-3, 2004, several researchers at AFRL (Cartwright, 2007)
and elsewhere (Bosman, et al.,, 2005) have been exploring use of non-axisymmetric
cathodes to improve magnetron performance.

Under the auspices of the grant (Chen, 2006), we have established the theory of
vortex structures in equilibrium electron flows in relativistic magnetrons (Davies, Zhou
and Chen, 2007; Davies, Chen and Zhou, 2008), as a generalization of our earlier work
(Davies and Chen, 2006). The theory employs a planar geometry shown in Fig. 1.3.1 and
the guiding-center approximation which is valid when the electron plasma frequency is




small compared to the cyclotron frequency. Under the guiding-center approximation, the
(nonlinear) equihibrium equations are

V24(x,y)=4dren(x,y), (1.3.1)
y
Electron Vacuum “\

Layer Region A S

}
X=x,(y)

{ X
0 \|D

oB = B_(x,y), RSty

Figure 1.3.1 Electron flow under the influence of anode corrugations in a relativistic
planar magnetron. Here, the y axis is the cathode, the curve x = x,(y) is the electron

layer envelope, and the dashed curve is a representative anode (Davies, Zhou and Chen,
2007).

N T it o ) (1.3.2)
(68

Vix,y)= z (i y)é: < V(x,y), (1.3.3)

where —e is the electron charge, n(x,y) 1s the electron number density, V(x,y) 1s the
electron fluid velocity, and ¢(x,y) is the electric potential. The electric field E(x,y)is
given by E(x,y)=-Vg(x,y).

For a uniform electron layer, the solutions to the nonlinear equilibrium equations
(1.3.1)-(1.3.3) are

#(x. )

- <EX (O,y))x +2mex’ + i L (e"'"" —e™t )cos(t(,,y) (L

= n=1

V,+C,(x=D)+Voe™ P cos{iy)+ > 4, e (e“'"("m —e D) )COS(I\‘")’) (x, <x<x,)

n

o0
n=1

B2( )= { 87en,[p(x, )= glx, () y)l+ B)  (0<x<x,)

(1.3.4)
(1.3.5)

B(;z (xb < x<xa)




where the coefficients are given by analytical expressions. One important result is that the
solution given in Eqgs. (1.3.4) and (1.3.5) supports relativistic vortex structures, as shown
in Figs. 1.3.2 and 1.3.3. The other important result is that the constant magnetic field
contours coincide with the equipotential contours, as seen in Eq. (1.3.5) and Fig. 1.3.3.

As a numerical example, we have considered a system with the following parameters:

V,=512kV , V,=49.049kV , B,=20kG , (E/(0,y))=0 , x=27/L=rxcm"
(corresponding to L =2.0cm), and D =0.5cm. The geometry, magnetic field B,, and
potential ¥ of this example provide a rectangular approximation to a typical cylindrical

L-band relativistic magnetron (see, for example, Lemke, Genoni and Spencer, 1999).
Instead of directly specifying a value of n,, we have chosen w,/w, =1/3, wherc

o, =(4m,e’ /m)'? is the nonrelativistic plasma frequency in the electron layer, and
w, =eB,/mc is the nonrelativistic cyclotron frequency in the vacuum region. From the
values of B, and o, /o, specified above, it follows that n, = 4.3200 x 0™,

Computed contours of constant potential are shown in Fig. 1.3.2, The cathode at

potential ¢ =0 is represented by the line x=0. The equipotential contour at 512 kV

shown by a dashed curve corresponds to the corrugated conducting anode. The electron-
layer boundary is represented by the second dashed curve at 93 kV. The error of £1kV
in its potential of @(x, (y),y)=93kV is due to the neglect of higher order terms than the

first in the perturbation calculation.

Also shown in Fig. 1.3.3 are the test particle trajectories which follow the
equipotential contours. This is a numerical validation of our vortex theory in equilibrium
electron flows of relativistic magnetrons.
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Figure 1.3.2 Contours of constant potential as functions of x and y for a systcm with
parameters V, =512kV, V, =49.049kV, x=xcm”, (E (0,y))=0, B, =20kV,

D=0.5cm, and @, /o, =1/3. The corrugated anode and the electron-layer boundary




(also contours of constant potential) are depicted by the dashed curves at 93 kV and 512
kV, respectively (from Davies, Chen and Zhou, 2008).
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Figure 1.3.3 Detail of the electron-layer region for the system of Fig. 1.3.2. Contours of
constant potential are shown by the solid lines with the electron-layer boundary shown by
the dashed curve at 93 kV. Because these contours are also lines of constant magnetic
field, each contour 1s labeled with both a value of ¢ and of B_. Trajectories of test

particles, each launched from the point marked with an “x”, are shown by circles (from
Davies, Chen and Zhou, 2008).

Our discovery of vortex structures in magnetrons and crossed-field amplifiers
provides new insight into a number of areas in magnetron and CFA research, including

a) Elimination of ion trapping and ion noise,

b) Elimination of turbulence and noise,

c) lmprovement of magnetron efficiency (Cartwright, 2007), and

d) Suppression of mode competition (Bosman, et al, 2005).
We plan further investigate them.

2. Discovery of Adiabatic Thermal Beam Equilibrium in a Periodic Solenoidal
Magnetic Field (Samokhvalova, Zhou and Chen, 2006, 2007a and 2007b; Zhou,
Samokhvalova and Chen, 2006 and 2008; Samokhvalova, 2008)

Many HPM dcvices such as klystrons and TWTs employ a periodic solcnoidal (or
permanent) magnetic focusing field. Under the auspices of the present grant (Chen, 2006),
we have discovered the thermal equilibrium state of an electron beam as it undergoes
adiabatic expansion and compression processes in a periodic or axially varying solenoidal
magnetic ficld. In particular, we have developed paraxial kinetic and warm-fluid
equilibrium thcories for a thermal electron beam (Samokhvalova, Zhou and Chen, 2006,
2007a and 2007b; Zhou, Samokhvalova and Chen, 2006 and 2008). While our kinctic and
warm-fluid beam equilibrium theories are equivalent and applicable to for both the non-
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relativistic and relativistic regimes, to our warm-fluid equilibrium theory, our kinctic
beam equilibrium theory provides detailed information about the electron distribution in
phase space. We have found good agreement between our theories and the rccent
experimental measurements of the electron density profiles at University of Maryland
Electron Ring (UMER) (Bemal, Quinn, Reiser, et al., 2002; Zhou, Samokhvalova and
Chen, 2008). Our discovery of the adiabatic thermal beam equilibrium has filled a major
gap in the understanding of periodically focused beam equilibria.

2.1 Kinetic Beam Equilibrium Theory (Zhou, Samokhvalova and Chen, 2006 and
2008; Samokhvalova, 2008)

In our kinetic beam equilibrium theory (Zhou, Samokhvalova and Chen, 2006 and
2008; Samokhvalova, 2008), we have considered a thin, continuous, axisymmectric
( 0/06=0), single-species charged-particle beam, propagating with constant axial
velocity V.e_ through an applied periodic solenoidal magnetic focusing field. The applicd
periodic solenoidal focusing field inside the beam can be approximated by

Be"(r,s)=—%B;(s)ré,+Bz(.v)é:, (2.0.15

where s =z is thc axial coordinate, r = \/x* + y* is the radial distance from the beam
axis, the prime denotes the derivative with respect to s, and B,(s) is the axial magnetic
field which can be either periodic along the z — axis with periodicity length § or an
arbitrary function of s . In the paraxial approximation, r,, << S is assumed, where 7,
is the rms beam envelope. The transverse kinetic energy of the beam is assumed to bc
, and the Budker parameter

small compared with its axial kinetic energy, i.e., |V:| >> |Vl

of the beam is assumed to be small, i.e., ¢°N, /mc* <<y, B, where g and m are the
particle charge and rest mass, respectively, ¢ is the speed of light in vacuum,

N, :2ﬂjdrrizb(r,s) is the number of particles per unit axial length, and y, is the
0

o TN o 5 5 2 \-1/2 .
relativistic mass factor, which, to leading order, 1s y, =const= (l =l ) with
B,=V,/lc=V, /c.

Because the beam is axisymmetric, the canonical angular momentum £, is a constant

of motion, 1.e.,

dR,

—£=0. 2:1.2

s (2.1.2)
After performing a two-step canonical transformation, we have also found that the scalcd

transverse Hamiltonian for the single-particle motion

E=w!(s),(%.7,P..P,.s) 2.1.3)

iR 4 s

is an approximate invariant (for detailed analyses and definitions of w(s), H , ¥,

E, etc., see Zhou, Samokvalova and Chen, 2008). We have chosen the beam equilibrium
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distribution in the form similar to the Maxwell-Boltzmann distribution (Zhou,
Samokhvalova and Chen, 2008; Samokhvalova, 2008)

fy=Cexpl- BE - o,R,)], (2.14)
where C, £ and @, are constants. C is an integration constant, f 1s related to thc beam
emittance, and @, is the rotation frequency relative to the Larmor frame. The distribution
function f, defined in Eq. (2.1.4) is a Vlasov equilibrium, i.e., &f,/ds = 0. The kinetic

beam equilibrium theory makes the following two important predictions:
1. The thermal beam emittance is a constant.

£; = ?sz(vx - VX)2> = ———AB;;[’(’SH)ZE”C’SS) = const , (2.1.5)
2. The equation of state is adiabatic, i.e., T (s)r,,zrm (s) =const .
The rms envelope equation (2.2.4) is (Zhou, Samokhvalova and Chen, 2008)
2 2
Pinlt) B0, 40 ) s 19
where Q, (s)= w,&, 8,¢/2r,.(s)-Q,(s)/2 and Q_(s)= gB.(s)/y,mc . The beam density
profile is

) P, = S gl Kot L),

rbrmx (S) rb?;m\‘ (S) 4817;1 7 bz kBTJ.
(2.1.7)
where the scalar potential for the self-electric field is determined by the Poisson cquation
1o ag"”
-—| r=t—|=—4mgn,(r,s). (2.1.8)
r or or

It should be pointed out that because the derivation of the theory does not assume
specific magnetic profile as defined in Eq. (2.1.1) it i1s valid not only for the periodic
solenoid magnetic field but also for an arbitrary varying solenoid magnctic field.
Therefore, our results apply for the periodic focusing channel as well as for the matching
section between the electron source and the periodic focusing channel, which is important
in the design of clectron beams for HPM applications and beam experiments such as
University of Maryland Electron Ring (Bernal, Quinn, Reiser, et al., 2002).

2.2 Warm-Fluid Beam Equilibrium Theory (Samokhvalova, Zhou and Chen, 2006,
2007a and 2007b; Samokhvalova, 2008)

We have recovered the results of the macroscopic qualities in the kinetic beam
equilibrium theory [i.e., Eqgs. (2.1.5)-(2.1.8)] by solving the following adiabatic warm-
fluid equilibrium equations (Samokhvalova, Zhou and Chen, 2007b; Samokhvalova,
2008)

n,V-V(y,mv)= an{— Ve + Xx (B”' +B* )} -V.-P(x), (2.2.1)
c

V-(n,V)=0, (2.2.2)
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Vi (r,s)=-dmqn,(r,s), (2.2.3)
p.(r.s)=n,(r.s)k,T,(s), (2.2.4)
o (s)rbz,m (s) = const . @2.2.5)

The detailed analysis is available in our paper (Samokhvalova, Zhou and Chen, 2007b)
and Samokhvalova’s doctoral thesis (Samokhvalova, 2008).

2.3 Comparison between Theory and Experiment (Zhou, Samokhvalova and Chen,
2008; Samokhvalova, 2008)

Using our adiabatic thermal beam equilibrium theories, we have replicated the beam
density profiles at different axial distances in good agreement with the experimental
measurements conducted on the University of Maryland Electron Ring. Our equilibrium
theory 1s applicable to this experiment from the anode aperture to a distance prior to the
wave breaking initiated by high order density distribution fluctuations induced by a
pressurc force at the anode aperture. Wave breaking occurs at about one quarter of
plasma wavelength, which is about 30 cm in this example. Our equilibrium theories do
not explain the density distribution distortion in the present form, but it is possible to
develop a perturbation theory based on the equilibrium in the future.

By solving Egs. (2.1.6)-(2.1.8), we have calculated the beam transverse density
profiles of the UMER 5 keV, 6.5 mA electron beam at three axial distances: s = 6.4cm,
11.2 cm, and 17.2 c¢m, as shown in solid curves in Fig. 2.3.1. The dashed curves are the
equivalent Kapchinskij-Vladirmirskij (KV) beam density profiles (Kapchinskij and
Vladirmirskij, 1959). Compared with the experimental measurements (dotted curves), the
calculated beam density profiles are in good agreement. As the beam radius increases, the
beam density profile approaches to the KV (uniform) beam dcnsity profile, because the

beam temperature must decrease in order to keep 7, (s):2 (s) at a constant. In this

adiabatic process, the Debye length 4, = 72k, T, (s)/47°n,(0,5) = 0.54 mm is constant.

3. Design of High-Brightness Circular Electron Beams (Bemis, Bhatt, Chen and
Zhou, 2007a and 2007b)

An experimental demonstration of the thermal beam equilibrium over long
propagation distances requires a high-brightness circular electron beam which is well
matched into a periodic solenoidal magnetic focusing channel. To gain experiencc in the
design of high-brightness electron beams, we have developed, under the auspices of the
present grant, a method for the design of a high-brightness non-relativistic circular beam
system including a charged-particle emitting diode, a diode aperture, a circular beam
tunnel, and a focusing magnetic field that matches the beam from the emitter to the beam
tunnel. The applied magnetic field has been determined by balancing the forccs
throughout the gun and transport sections of the beam system. The method has been
validated by three-dimensional simulations.

While the detailed method is described in our paper (Bemis, Bhatt, Chen and Zhou,
2007b) and our US patent application (Chen, Bemis, Bhatt and Zhou, 2007), Figs. 3.1-3.4
summarize the results for a high-perveance electron beam at a voltage of 2.3 kV. This
system is scalable to moderately high voltages.
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Figure 3.1 shows the final results of an OMNITRAK simulation for a circular
electron beam which is emitted from an emitter (cathode) with a radius of 1.52 mm, a
current of 0.11 A, a cathode-to-anode distance of 4.11 mm at radius » =1.52 mm. The
diode voltage is 2300 V.

Figure 3.2 shows plots of E, versus z at »=1.0 mm and B,(0,z) versus z from the

OMNITRAK simulation after two iterations. The radial electric field vanishes at the
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Figure 2.3.1 Normalized beam transverse density profiles of a 5 keV, 6.5 mA
(4¢,,,. =30 mm-mrad) electron beam at three axial distances: s =6.4cm, 11.2 cm, and

xrms
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17.2 ¢cm. The solid curves are from theory, the dotted curves are the experimental
measurements, and the dashed lines are the equivalent KV beam density distributions.
The densities are normalized to the equivalent KV beam density (from Zhou,
Samokhvalova and Chen, 2008).

8.0

X (mm)

-8.0 : a

0 z (mm) 10.0

Figure 3.1 OMNITRAK simulation of the dynamics of an electron beam emitted from a
flat circular cathode with a radius of 1.52 mm and a current of 0.1] amperes in an
optimized magnetic field. Here, the cathode-to-anode distance is 4.11 mm at

r =1.52 mm, the circular anode aperture has a radius of 1.8 mm, and the beam tunncl has
a radius of 6.0 mm. The diode voltage is 2300 V (from Bemis, Bhatt, Chen and Zhou,
2007b).




Figure 3.2 Plots of E, versus z at r =1 mm (solid curve) and B, (0,2) versus z (dashed

curve) from the OMNITRAK simulations after two iterations (from Bemis, Bhatt, Chen
and Zhou, 2007b).

-2
-2 -1 0 1 2

x (mm)
Figure 3.3 Plot of the electron distribution at z =8 mm in the phase plane (x,y) (from
Bemis, Bhatt, Chen and Zhou, 2007b).

emitter (i.e., at z=0), achieves a maximum magnitude at z=4.11 mm, and then

approaches to a constant value well inside the beam tunnel. The applied axial magnetic
field at the emitter vanishes, increases to 640 G at the aperture, and then falls to about
160 G well inside the beam tunnel.

Figure 3.3 shows the electron distribution in the phase plane (x, y) at z =8 mm. The

beam distribution maintains transverse uniformity. Indeed, the normalized fourth moment
2
<r4 >/<r2> which is equal to 4/3 for a transversely uniform density distribution, remains

4/3 within +1% . The outer beam radius remains the same as the emitter radius within 1
to 3%. The beam is very bright, and its normalized rms emittance is predicted to be 0.33
mm-mrad, which i1s 1.15 times the intrinsic normalized rms emittance of 0.33 mm-mrad.

Our design method is limited to a nonrelativistic beam matching into a uniform
magnetic field. We plan to extend our design method to include thermal effects and beam
matching into periodic solenoidal (permanent) magnetic focusing field. We will also
extend our design method to relativistic electron beams in which both relativistic cffects
and self-magnetic field effects are important.

4. Development of Elliptic Beam Theory for High-Power Microwave Device

Applications (Bhatt, 2006; Zhou, 2006; Chen and Zhou, 2007; Zhou, Bhatt and
Chen, 2008)
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Existing HPM devices employ either a pencil electron beam or an annular elcctron
beam. One of the main objectives in high-power microwave (HPM) research has been to
develop innovative science and technology which could lead to improve the efficiency,
output power level, and other performance (such as weight reduction) of high-power
microwave (HPM) devices. A promising approach is to use a large-aspect-ratio elliptic
electron beam rather than the conventional pencil or annular electron beam as the energy
source. Compared with a conventional HPM device, a HPM device powered by an
elliptic electron beam has the following attractive features:

a) Power scalesas f~' instead of £ (where f is the frequency), thus more

power;

b) Low eftective beam perveance, thus higher efficiency;

¢) Use of permanent magnets for beam focusing, thus lower energy consumption;

and

d) Low cathode loading, thus longer device lifetime.

In order to experimentally demonstrate high-power elliptic electron beams which can be
employed in HPM and vacuum electron devices, we must advance our understanding of
the generation, compression, focusing and transport of elliptic electron beams.

Building upon our recent work on elliptic electron beam formation (Bhatt and Chen,
2005; Bhatt, Bemis and Chen, 2005 and 2006) and periodically twisting elliptic electron
beams (Zhou, Bhatt and Chen, 2006), we have developed a kinetic theory of periodically
twisting elliptic bcams and both cold-fluid and kinetic theories of non-twisting elliptic
electron beams under the auspices of the grant (Chen, 2006).

4.1 Kinetic Equilibrium Theory of Periodically Twisting Elliptic Electron Beams
(Zhou, 2006; Zhou and Chen, 2006a and 2006b)

We have devcloped our kinetic equilibrium theory to examine effects of beam
temperature on periodically twisting elliptic electron beam. In the kinetic equilibrium
theory (Zhou, 2006; Zhou and Chen, 2006a and 2006b), we have derived a constants of
motion analogous to the Courant-Snyder invariant (Courant and Snyder, 1958). We have
constructed a Vlasov beam equilibrium distribution of the Kapchinskij-Vladimirskij form
using the two constants of motion. We have obtained the generalized envelope equations
which include beam temperature effects. In the cold-fluid limit, the generalizcd envelope
equations recover those in the cold-fluid beam equilibrium theory (Zhou, 2006; Zhou,
Bhatt and Chen, 2006). Detailed results are available in our paper (Zhou and Chen,
2006b) and Zhou’s doctoral thesis (Zhou, 2006).

To 1llustrate the effects of beam temperature, we have considered a relativistic elliptic
beam with V, =198.5 keV , current /, =85.5 A, aspect ratio a/b=5, and non-

axisymmetric periodic permanent magnet focusing with B, =24 kG, §=2.2 cm, and
ky, [k, =1.52. Such a relativistic elliptic beam could be used in a 10 MW L-Band

ribbon-beam klystron (RBK) for the International Linear Collider (ILC).

As shown in Fig. 4.1.1, the solid curves represent the beam semi-axis envelopes and
twist angle with zero temperature which is corresponding to a cold beam, while the
dotted curves represent the beam envelopes and twist angle with 2.5 keV on-axis
temperature. It is evident in Fig. 4.1.1 that the temperature effects on the beam envelopes
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and twist angle are negligibly small. Since an actual relativistic elliptic beam in a well
designed system will have a temperature which will be considerably less than 2.5 keV,

0.6 T

(a) — () eV
e 25keV
T T P

0.4 1
£ a(s)
L
7]
[+4]
Q
o
202 .
c
w

b(s)
0.0 : . . ,
0.0 4.4 8.8 13.2 17.6 22.0
s (cm)
0.4
(b) 0eV
. 2.5 keV

0.2
0.0
i

-0.2

-0.4 .

0.0 4.4 8.8 13.2 17.6 22.0
s (cm)

Figure 4.1.1 Plots of (a) envelopes a(s) and b(s) and (b) twist angle &(s) versus the

axial distance s for the relativistic periodically twisting elliptic electron beam. The solid
curves are the generalized envelope solution for a zero-temperature beam, whereas the
dotted curves are for a 2.5 keV on-axis temperature beam (from Zhou and Chen, 2006b).

the results in Fig. 4.1.1 implies that the temperature effect on the beam envelopes and
twist angle is expected to be negligibly small (Zhou and Chen, 2006b).

4.2 Cold-Fluid Equilibrium Theory of Non-Twisting Elliptic Electron Beams (Bhatt,
2006; Zhou, 2006; Chen and Zhou, 2007; Zhou, Bhatt and Chen, 2008)

For HPM and vacuum electron device applications, non-twisting elliptic electron
beams are desirable. Under auspices of the present grant (Chen, 2006), we have




developed a cold-fluid equilibrium theory of a non-twisting elliptic electron beam (Bhatt,
2006; Chen and Zhou, 2007; Zhou, Bhatt and Chen, 2008), which is a generalization of
our cold-fluid equilibrium theory of a periodically twisting elliptic electron beam (Zhou,
2006; Zhou, Bhatt and Chen, 2006).

We have used the combination of a periodic non-axisymmetric magnetic field and a
quadrupole magnetic field to focus a nearly straight large-aspect-ratio elliptic beam,
whose twist angle vanishes approximately. The (nonlinear) cold-fluid equilibrium
equations are:

ﬂbc%nb +V, (m,V,)=0, @.2.1)
Vigt=pB;'Vidl =-4mn,, (4.2.2)

n,,(ﬁ,, Ziv,v }vl }‘f&[—Lvlgﬁ + B8, x B + \;le;*'(s)e:}m.za)
b b

For the beam dimensions small relative to the characteristic scale of magnetic variations,
i.e., (koox) /6 << 1 and (ko vy)2/6 << 1, the combined magnetic field can be described to
the lowest order in the transverse dimensions as

| dB. (s)| k2 k3, ,
B = B,(s)e, - ds(S){ k‘:‘ e ko },]+Bq(s)[yex +xey], (4.2.4)

where &y =2%/S8, kgx+k§y=k§ , 8 1s the axial periodicity length, and
'(s)= 6B Y
B, (s)= 08! /ayj(s‘o‘o) oBY /6x| ,

(5,0,0)°
We seek solutions to Egs. (2.4.2.1)-( 2.4.2.3) of the form

n(x,,s)= Ny = ¥ = v s
e ,m(s)b(s)®[l ) zf(s)]’ e
Vl(xl,s)= [/1 ( y],Bbce~ l,u y+a lﬂbce (4.2.6)

In Egs. (4.2.5) and (4.2.6), x, =Xe, +ye; is a transverse dlsplacement in the twisted
coordinate system; (s) is the twist angle of the ellipse; ®(x)=1if x>0 and ©(x)=0
if x<0; and the functions a(s), b(s), w (s), ,uy(s), a,(s), a, (s) and 6(s) are to be

determined self-consistently [see Eqs. (4.2.8)-(4.2.12)]. The self-electric and self-
magnetic fields are well known for an elliptical beam with density distribution specified

i By, W42 5 048
3 o
- =_%‘ﬁv_;(%+%) 4.2.7)

Using the expressions in Egs. (4.2.4)-(4.2.7), we have shown that both the
equilibrium continuity equation (4.2.1) and force equation (4.2.3) are satisfied if the

dynamical variables a(s), b(s), u (s)=a'da/ds, ,uy(s)s b~'db/ds , a (s), ay(s) and

O(s) obey the (cold-fluid) generalized beam envelope equations (Chen and Zhou, 2007;
Zhou, Bhatt and Chen, 2008)
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Equations (4.2.8)-(4.2.12) support non-twisting elliptic electron beam solutions in thc
non-relativistic regime which is of interest to vacuum electron device applications, as
wecll as in the relativistic regimes which is of interest to HPM applications.

4.3 Kinetic Equilibrium Theory of Non-Twisting Elliptic Electron Beams (Bhatt,
2006; Chen and Zhou, 2007; Zhou, Bhatt and Chen, 2008)

We have devcloped our kinetic equilibrium theory to examine effects of beam
tcmperature on non-twisting elliptic electron beam. In the kinetic equilibrium thcory
(Bhatt, 2006; Zhou, Bhatt and Chen, 2008), we have derived a constants of motion
analogous to the Courant-Snyder invariant (Courant and Snyder, 1958). We have
constructed a Vlasov beam equilibrium distribution of the Kapchinskij-Vladimirskij form
using the constant of motion. We have obtained the (kinetic) generalized cnvelope
equations which include beam temperature effects. In the cold-fluid limit, the (kinctic)
generalized envelope equations recover the cold-fluid ones (Chen and Zhou, 2007; Zhou,
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Bhatt and Chen, 2008). Detailed results are available in our paper (Zhou, Bhatt and Chen,
2008) and Bhatt’s doctoral thesis (Bhatt, 2006).

4.4 Application and Simulation Validation of Cold-Fluid and Kinetic Equilibrium
Theories (Bhatt, 2006; Chen and Zhou, 2007; Zhou, Bhatt and Chen, 2008)

As an example, we have considered a relativistic elliptic beam that can be used in a
10 MW L-Band ribbon-beam klystron (RBK) for the International Linear Collider (ILC).
The beam has a current of /, =111.1A, a voltage of ¥, =120kV and an aspect ratio of

20:1 . Solving the (cold-fluid) generalized envelope equations (4.2.8)-(4.2.12), the
hybrid magnetic fields are determined to be the form of Eq. (4.2.4) with
B_(s)= -2000sin(kgs) G , B =80.8G/em , § =22 cm , and ko, /ky, =20 . In Fig.
4.4.1, the solid curves are the beam semi-axes a(s) and b(s) calculated from the (cold-
fluid) generalized envelope equations, whereas dotted curves are from the self-consistent
PIC PFB2D simulation. The twist angle vanishes, i.e., 8(s)=0, in this example.

To study the temperature effects in the 111.1 A and 120 kV elliptic electron beam, we
have solved the (kinetic) generalized envelope equations with nonzero initial thermal

emittances, 1.€., g,thx = kBTaz(s = 0)/m}/b ,Bbzc2 and g,zh’y = kBsz(s = 0)/m}/b ,[31,26'2. As
shown in Fig. 4.4.2, the elliptic beam envelopes are calculated for three different
temperature choices: 0 eV, 50 eV and 100 eV. Compared with the cold beam envelopes
shown as solid curves in Fig. 4.4.1, the warm beam envelopes are found to increase

slightly as the beam temperature increases, while the aspect ratio of the beam decreases
from 20:1 to 16.4:1 as the beam temperature increases from 0 eV to 100 eV.
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Figure 4.4.1 Plots of the beam envelopes a(s) and b(s) versus the axial distance s for

the L11.1 A, 120 kV relativistic elliptic electron beam with zero temperature. The solid
curves are the (cold-fluid) generalized envelope solution, whereas the dotted curves are
from the PFB2D simulation (from Zhou, Bhatt and Chen, 2008).
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Figure 4.4.2 Plots of the beam envelopes (a) a(s) and (b) b(s) versus the axial distance

s forthe 111.1 A, 120 kV relativistic elliptic electron beam for three different
tempcrature choices: 0 eV, 50 eV and 100 eV (from Zhou, Bhatt and Chen, 2008).

For a practical HPM device, we have assumed that the elliptic beam is gencrated from
an electron gun with an intrinsic temperature of 0.1 eV and a current density of 1.5 A/cm.
The elliptic beam has to be compressed by a factor of 471.5 in area to achieve a current
density of 707.3 A/cm? in the focusing channel. During the compression, the temperaturc
increases by a factor of 471.5 to 47.2 eV. Therefore, in our calculations, a temperature of
50 eV is a reasonable assumption. As shown in Fig. 4.4.3, the envelopes of the clliptic
beam with a temperature of 50 eV are obtained by solving the (kinetic) generalized
envelope equations (solid curves) and by the PFB2D PIC simulations (dotted curves).
Both results showed a slight increase in the two envelope dimensions and the aspect ratio
of the elliptic beam decreases to 17.8, compared with the cold elliptic beam.
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Figure 4.4.3 Plots of the beam envelopes a(s) and b(s) versus the axial distance s for

the 111.1 A, 120 kV relativistic elliptic electron beam for a temeprature of 50 eV. The
solid curves are the (kinetic) generalized envelope solution, whereas the dotted curves are
from the PFB2D simulation (from Zhou, Bhatt and Chen, 2008).
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