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Final Report 
Coherent Structures and Chaos Control in 

High-Power Microwave and Charged-Particle Beam Devices 
AFOSR Grant No. FA9550-06-1-0269 

This report summarizes research results obtained under the auspices of Air Force 
Office of Scientific Research, Grant No. F49620-06-1-0269 (Chen, 2006). In particular, 
we conducted vigorous theoretical and computational investigations of coherent 
structures and chaos in a wide range of intense electron beam plasmas relevant to the 
development of high-power microwave and particle-beam devices for directed energy 
applications. 

The following is a brief summary of our research accomplishments in selected areas, 
while detailed findings are described in the preprints cited in this report. 

1.   High-Power Magnetron Research (Zhou and Chen, 2007 and 2008; Davies, Zhou 
and Chen, 2007; Davies, Chen and Zhou, 2008) 

Under the auspices of the grant (Chen, 2006), we have developed a small-signal 
theory of a non-relativistic magnetron using a planar model with a thin electron cloud 
(Zhou and Chen, 2007 and 2008). The theory includes both inertial effects and 
electromagnetic effects in a Floquet expansion. We have derived an analytical dispersion 
relation of such a planar magnetron, and calculated the growth rate analytically. We have 
shown that the magnetron instability involves the resonance between the electron cloud 
and the slow waves in the magnetron cavities. We have found good agreement between 
the theory and the self-consistent two-dimensional (2D) particle-in-cell (PIC) MAGIC 
simulations. We have predicted vortex structures in the equilibrium relativistic electron 
flow in magnetrons (Davies, Zhou and Chen, 2007; Davies, Chen and Zhou, 2008). The 
vortex structures are induced by the periodic corrugations on the magnetron anode. In the 
analysis, we have made the guide-center approximation, which is validate at low electron 
densities. We have validated the analysis using test-particle calculations. 

1.1 Small-Signal Gain Theory of Non-Relativistic Planar Magnetrons (Zhou and 
Chen, 2007 and 2008) 

The onset of the unstable oscillations in magnetrons has not been analytically 
described to complete satisfaction, although extensive particle-in-cell (PIC) simulations 
can make good predictions for the instability characteristics (see, for example, Chan, 
Chen and Davidson, 1993; Lemke, Genoni and Spencer, 1999). Previous analytical 
studies included various models utilizing linear theories. Earlier work focused on the 
diocotron instability in the guiding-center approximation (Davidson, Chan, Chen, et al., 
1991; Ayres, Chen, Stark, et al., 1992), which ignores inertial effects in the electron cloud. 
The recent work by Riyopoulos on the basis of a guiding-center model provided new 
insight into the magnetron instability in the low-space-charge limit (Riyopoulos, 1998). A 
linear theory taking a single rf mode in the Floquet expansion was developed to include 
electromagnetic effects (Kaup, 2001, 2004 and 2007). Despite these theoretical and PIC 



simulation efforts, quantitative agreement between theory and PIC simulations has not 
been reported until our paper (Zhou and Chen, 2007 and 2008). 
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Figure 1.1.1 Schematic of a planar magnetron with a thin electron layer (from Zhou and 
Chen, 2008). 

Assuming a multi-stream thin electron cloud located at a distance of h from the 
cathode as shown in Fig. 1.1.1, we have obtained the small-signal gain equation or the 
loaded dispersion relation (Zhou and Chen, 2008) 
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and pq = Jco'/c" -kq . For ek   =0, Eq. (1.1.1) is the vacuum dispersion relation for the 

corrugated structure. For ek  ^0, on the other hand, Eq. (1.1.1) permits calculations of 

small-signal gains in magnetrons, which will be discussed in Sec. 1.2. 
It should be noted that the simplifying assumption of a thin electron cloud has 

enabled us to avoid the difficulties in treating multiple poles in the small-signal gain 
equation in general situation. We plan to further study the general small-signal gain 
equation. 

1.2 Comparison between Small-Signal Gain Theory and Two-Dimensional Particle- 
in-Cell Simulations (Zhou and Chen, 2008) 



To compare our small-signal gain theory with 2D MAGIC simulations, we have 
restricted to the low-current regime, where the thin-beam equilibrium model is a good 
approximation to the thin electron cloud in the 2D MAGIC simulations. 

As an example, we have considered a system with the parameters: L = 0.478 cm, 
a = 0.382 cm, b = 0.478 cm, d = 4.25 cm, h = 0.382 cm, B. = 180G, Ex = -5.27 kV/cm, 

ab = 2.12 x 108 cm"2, and Vb = 0.098c. 

First, we have computed the vacuum dispersion relation from Eq. (1.1.1) with 
sk   = 0, and found good agreement with the 2D MAGIC simulation with the absence of 

the electron cloud, as shown in Fig. 1.2.1. 
Second, we have made use of the self-consistent PIC code, 2D MAGIC, to simulate 

the planar magnetron system. Because 2D MAGIC can handle only a few vanes, a 3-vane 
slow-wave corrugated structure with the same parameters as in Fig. 1.2.1 is used in the 
simulation. Periodic boundary conditions are used such that the 2/r/3 mode is supported 
by the 3-vane structure. The uniform crossed electric and magnetic fields are applied with 
Bz =180G and Ex =-5.27kV/cm. The electron beam is initialized as a slab infinite 

long in the z direction and with a width of 0.05 cm in the x direction. The electron beam 
propagates with an initial velocity of Vb = 0.098c. As the beam propagates, the instability 

starts to build up which is illustrated by the voltage cross the vane tip of the slow-wave 
structure. In Fig. 1.2.2, the amplitude of the oscillating voltage filtered by a filter that 
selects the 2;r/3 mode is plotted. In the early stage of the instability (e.g. for t < 15 ns), 

the oscillation has a very small amplitude and exhibits a relatively broad frequency 
spectrum which is not shown in Fig. 1.2.2. Starting from t = 10 ns, the 2/r/3 mode grows 

exponentially. It saturates at about t = 26 ns. For this MAGIC simulation, the 2;r/3 
mode is determined to have a frequency of 1.93 GHz and an amplitude growth rate of 
3.12 dB/cm, shown as circle and cross in Fig. 1.2.3, respectively. 

Finally, we have solved the loaded dispersion relation in Eq. (1.1.1) with sk  ^ 0 to 

calculate the real frequency and the instability growth rate. Due to the influence of the 
anode corrugation, the electron cloud velocity prior to the linear growth is observed to 
vary sinusoidally in the y- direction with small amplitude around the averaged flow 
velocity in the 2D MAGIC simulation. To model the velocity variation, we have used 
three electron cloud streams at the same location x = 0.0384 cm, each with one third of 
the total surface charge number ab\ = crb2 - &bi ~ ^bl^ an(^ a slightly different 

velocities, i.e., Vbl = 0.98^, Vb2 = Vb, and Fw = \.Q2Vb. The theoretical growth rate is 

in good agreement with the 2D MAGIC simulation as shown in Fig. 1.2.3. 

1.3 Vortex Structures in Relativistic Magnetrons (Davies, Zhou and Chen, 2007; 
Davies, Chen and Zhou, 2008) 

The periodic corrugations on the anode have a strong influence on the equilibrium 
flow in magnetrons and crossed-field devices. In particular, we predicted the existence of 
vortex structures induced by the corrugations on the anode in non-relativistic magnetrons 
(Chen, 2004; Bhatt and Chen, 2003 and 2004; Davies and Chen, 2006). Until our 



prediction, vortex formation had not been discussed in the literature in the context of 
magnetrons and crossed field devices. In fact, all conventional treatments of the 
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Figure 1.2.1 Vacuum dispersion diagram for a planar magnetron structure obtained from 
the dispersion relation in Eq. (1.1.1) with sk  = 0 (solid curve) and 2D MAGIC 

simulations (dotted curve). The dashed curve is the beam line / = k:/2nVh . Here, the 

parameters are L = 0.478cm, a = 0.382 cm, b = 0.478 cm, d = 4.25cm, and Vh = 0.098c 

(from Zhou and Chen, 2008). 
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Figure 1.2.2 Plot of the amplitude of oscillating voltage as a function of time as obtained 
from the MAGIC simulation. Here, the parameters are L = 0.478 cm, a = 0.382 cm, 



b = 0.478 cm, d = 4.25cm, h = 0.382 cm, B. = 180G, £v =-5.27kV/cm, 

o-ft = 2.12 x 108 cm"2, and Vb = 0.098c (from Zhou and Chen, 2008). 
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Figure 1.2.3 Plot of the temporal growth rate \m{(o) (solid curve) and the real frequency 

Re(*y) (dashed curve) as a function of wave number kz for the lowest resonant TM 
mode. The solid and dashed curves are obtained from Eq. (1.1.1) using the three electron 
cloud streams, whereas the circle and cross are the real frequency and instability grow 
rate from the MAGIC simulation, respectively. Here, the parameters are L = 0.478 cm, 
a = 0.382 cm, 6 = 0.478 cm, d = 4.25cm, h = 0.382 cm, B, =180G, Ex = -5.27 kV/cm . 

Oil = CT« = oA3 = <TJ3 = 7.07 x 107 cm2, Vbl = 0.98F6 , Vb2 = Vb = 0.098c , and 

Vb3 = 1 .Q2Vb (from Zhou and Chen, 2008). 

equilibrium electron flows in magnetrons had ignored effects of the anode corrugations 
(see, for example, Davidson, Chan, Chen, et al., 1991). 

By definition, an equilibrium flow corresponds to a state in magnetrons and crossed- 
field devices in the absence of rf oscillations. While it is an ideal situation in an actual 
device, it is of critical importance in order for us to develop a better understanding of 
magnetrons and crossed-field devices. 

Since our report of vortex formation (Chen, 2004) at Magnetron/PIC Simulation 
Workshop held at AFRL, May 2-3, 2004, several researchers at AFRL (Cartwright, 2007) 
and elsewhere (Bosman, et al., 2005) have been exploring use of non-axisymmetric 
cathodes to improve magnetron performance. 

Under the auspices of the grant (Chen, 2006), we have established the theory of 
vortex structures in equilibrium electron flows in relativistic magnetrons (Davies, Zhou 
and Chen, 2007; Davies, Chen and Zhou, 2008), as a generalization of our earlier work 
(Davies and Chen, 2006). The theory employs a planar geometry shown in Fig. 1.3.1 and 
the guiding-center approximation which is valid when the electron plasma frequency is 



small compared to the cyclotron frequency. Under the guiding-center approximation, the 
(nonlinear) equilibrium equations are 

V2t(x,y) = 4nen(x,y), (1.3.1) 

Electron 
Layer 

Vacuum 
Region 

'*=xb(y) 

oB = Bz(x,y)e: 
o B = B0ez 

Figure 1.3.1 Electron flow under the influence of anode corrugations in a relativistic 
planar magnetron. Here, the y axis is the cathode, the curve x = xh(y) is the electron 

layer envelope, and the dashed curve is a representative anode (Davies, Zhou and Chen, 
2007). 

4/re 
e. x VB.(x,y) = n(x,y)v(x,y), 

\(x,y)- •ez xV0(x,y), 

(1.3.2) 

(1.3.3) 

where -e is the electron charge, n(x,y) is the electron number density, V(.v, v) is the 

electron fluid velocity, and <f>(x,y) is the electric potential. The electric field E(.v,r)is 

given by E{x,y)=-V&{x,y). 
For a uniform electron layer, the solutions to the nonlinear equilibrium equations 

(1.3.1)-(1.3.3) are 
#{x,y) 

CO 

- (£, (0,y))x + 2m0ex2 + £ F„ (eK"x - e^x )cos{Kny) (0 < x < xh) 

V0 + C0 (x-D)+ Vpe'K^ cos(^)+ ± Ane*-D (e^D) - e'^-^cos^y)   (xh < x <xa) 

(1.3.4) 

B2 (x v) = I %m% ^*' ^ ~ ^** ^'y^ +B°      (0<x<x^ (1 3 5) 



where the coefficients are given by analytical expressions. One important result is that the 
solution given in Eqs. (1.3.4) and (1.3.5) supports relativistic vortex structures, as shown 
in Figs. 1.3.2 and 1.3.3. The other important result is that the constant magnetic field 
contours coincide with the equipotential contours, as seen in Eq. (1.3.5) and Fig. 1.3.3. 

As a numerical example, we have considered a system with the following parameters: 
K0=512kV  ,   VP= 49.049 kV  ,   50=20kG  ,   (Ex(0,y)) = 0 ,   K = In IL = TT cm'1 

(corresponding to L = 2.0cm), and D = 0.5cm. The geometry, magnetic field Bu, and 

potential V0 of this example provide a rectangular approximation to a typical cylindrical 

L-band relativistic magnetron (see, for example, Lemke, Genoni and Spencer, 1999). 
Instead of directly specifying a value of n0, we have chosen cop/coL = 1/3 , where 

a)p = {4nn0e
21m)x'2 is the nonrelativistic plasma frequency in the electron layer, and 

cot. =eBQ/mc is the nonrelativistic cyclotron frequency in the vacuum region. From the 

values of B0 and a> lcoc specified above, it follows that n0 = 4.3200 x 1012. 

Computed contours of constant potential are shown in Fig. 1.3.2. The cathode at 
potential </>-0 is represented by the line x = 0. The equipotential contour at 512 kV 

shown by a dashed curve corresponds to the corrugated conducting anode. The electron- 
layer boundary is represented by the second dashed curve at 93 kV. The error of ± 1 kV 
in its potential of &(xb(y),y) = 93 kV is due to the neglect of higher order terms than the 

first in the perturbation calculation. 
Also shown in Fig. 1.3.3 are the test particle trajectories which follow the 

equipotential contours. This is a numerical validation of our vortex theory in equilibrium 
electron flows of relativistic magnetrons. 

• 512kV 

0.3 0.4 

x(cm) 
0.5 0.6 

Figure 1.3.2 Contours of constant potential as functions of x and v for a system with 

parameters V0 = 512 kV,   VP = 49.049 kV ,  t^cm'1, (Ex (0, y)) = 0, B0 = 20 kV, 

D = 0.5 cm, and co /eoc = 1/3 . The corrugated anode and the electron-layer boundary 



(also contours of constant potential) are depicted by the dashed curves at 93 kV and 512 
kV, respectively (from Davies, Chen and Zhou, 2008). 
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Figure l .3.3 Detail of the electron-layer region for the system of Fig. 1.3.2. Contours of 
constant potential are shown by the solid lines with the electron-layer boundary shown by 
the dashed curve at 93 kV. Because these contours are also lines of constant magnetic 
field, each contour is labeled with both a value of (f> and of B.. Trajectories of test 
particles, each launched from the point marked with an "x" , are shown by circles (from 
Davies, Chen and Zhou, 2008). 

Our discovery of vortex  structures  in  magnetrons  and  crossed-field  amplifiers 
provides new insight into a number of areas in magnetron and CFA research, including 

a) Elimination of ion trapping and ion noise, 
b) Elimination of turbulence and noise, 
c) Improvement of magnetron efficiency (Cartwright, 2007), and 
d) Suppression of mode competition (Bosman, et al, 2005). 

We plan further investigate them. 

2.   Discovery of Adiabatic Thermal Beam Equilibrium in a Periodic Solenoidal 
Magnetic Field (Samokhvalova, Zhou and Chen, 2006, 2007a and 2007b; Zhou, 
Samokhvalova and Chen, 2006 and 2008; Samokhvalova, 2008) 

Many HPM devices such as klystrons and TWTs employ a periodic solenoidal (or 
permanent) magnetic focusing field. Under the auspices of the present grant (Chen, 2006), 
we have discovered the thermal equilibrium state of an electron beam as it undergoes 
adiabatic expansion and compression processes in a periodic or axially varying solenoidal 
magnetic field. In particular, we have developed paraxial kinetic and warm-fluid 
equilibrium theories for a thermal electron beam (Samokhvalova, Zhou and Chen, 2006, 
2007a and 2007b; Zhou, Samokhvalova and Chen, 2006 and 2008). While our kinetic and 
warm-fluid beam equilibrium theories are equivalent and applicable to for both the non- 
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relativistic and relativistic regimes, to our warm-fluid equilibrium theory, our kinetic- 
beam equilibrium theory provides detailed information about the electron distribution in 
phase space. We have found good agreement between our theories and the recent 
experimental measurements of the electron density profiles at University of Maryland 
Electron Ring (UMER) (Bernal, Quinn, Reiser, et al., 2002; Zhou, Samokhvalova and 
Chen, 2008). Our discovery of the adiabatic thermal beam equilibrium has filled a major 
gap in the understanding of periodically focused beam equilibria. 

2.1 Kinetic Beam Equilibrium Theory (Zhou, Samokhvalova and Chen, 2006 and 
2008; Samokhvalova, 2008) 

In our kinetic beam equilibrium theory (Zhou, Samokhvalova and Chen, 2006 and 
2008; Samokhvalova, 2008), we have considered a thin, continuous, axisymmetric 
(5/30 = 0),  single-species charged-particle beam,  propagating with constant axial 

velocity K.e_ through an applied periodic solenoidal magnetic focusing field. The applied 

periodic solenoidal focusing field inside the beam can be approximated by 

B"'{r,s) = -^B'{s)re,. + B:{s)e:, (2.1.1) 

where s = z is the axial coordinate, r-^jx2+y2 is the radial distance from the beam 

axis, the prime denotes the derivative with respect to s, and B.(s) is the axial magnetic 
field which can be either periodic along the z - axis with periodicity length 5 or an 
arbitrary function of s . In the paraxial approximation, rbma « S is assumed, where rbnm 

is the rms beam envelope. The transverse kinetic energy of the beam is assumed to be 
small compared with its axial kinetic energy, i.e., |K.|»|Kj, and the Budker parameter 

of the beam is assumed to be small, i.e., q2Nh/mc2 «/lPl, where q and m are the 

particle  charge  and  rest  mass,  respectively,  c  is  the  speed  of light  in  vacuum, 
x 

Nh =2K\ drrnh(r,s) is the number of particles per unit axial length, and yb is the 
ii 

relativistic mass factor, which, to leading order, is yh - const = (l - Pi) with 

Pb=VblczVJc. 
Because the beam is axisymmetric, the canonical angular momentum Pg is a constant 

of motion, i.e., 
dP 
^ = 0. (2.1.2) 
ds 

After performing a two-step canonical transformation, we have also found that the scaled 
transverse Hamiltonian for the single-particle motion 

E^w2{s)H±(x,y,Px,Py,s) (2.1.3) 

is an approximate invariant (for detailed analyses and definitions of w(s), HL , x, 

Px, etc., see Zhou, Samokvalova and Chen, 2008). We have chosen the beam equilibrium 



distribution in the form similar to the Maxwell-Boltzmann distribution (Zhou, 
Samokhvalova and Chen, 2008; Samokhvalova, 2008) 

/6 = Cexp[-/?(£-<V>)], (2.1.4) 

where C, /? and (oh are constants. C is an integration constant, /? is related to the beam 

emittance, and coh is the rotation frequency relative to the Larmor frame. The distribution 

function fb defined in Eq. (2.1.4) is a Vlasov equilibrium, i.e., dfh/ds = 0. The kinetic 

beam equilibrium theory makes the following two important predictions: 
1. The thermal beam emittance is a constant. 

i /1\//   „\2\ kBT±{sy-rms{s) 
£„. = (»,-vJ const, 

2. The equation of state is adiabatic, i.e., T±(s)rbrms(s) = const. 

The rms envelope equation (2.2.4) is (Zhou, Samokhvalova and Chen, 2008) 

f^-^[nb(s)+nc(s)hJs)-- 

(2.1.5) 

4r2 

ds1 
Pbc 2rbrn,siS)        ^(s)' 

(2.1.6) 

where £^(5)= coh£T/3hc/2rlms(s)-Qc(s)/2 and Qc.(.s)= qB_(s)/yhmc . The beam density 

profile is 

4/zCf,: 
nh(r,s)= w-\s)\\fdPxdPy = ^f\exp 

K     4s: 

is) 44   rlkBTAs) 
r"(>;s) 

(2.1.7) 
where the scalar potential for the self-electric field is determined by the Poisson equation 

d (  dfelf ^ 
r dr dr 

-4nqnh(r,s). (2.1.8) 

It should be pointed out that because the derivation of the theory does not assume 
specific magnetic profile as defined in Eq. (2.1.1) it is valid not only for the periodic 
solenoid magnetic field but also for an arbitrary varying solenoid magnetic field. 
Therefore, our results apply for the periodic focusing channel as well as for the matching 
section between the electron source and the periodic focusing channel, which is important 
in the design of electron beams for HPM applications and beam experiments such as 
University of Maryland Electron Ring (Bernal, Quinn, Reiser, et al., 2002). 

2.2 Warm-Fluid Beam Equilibrium Theory (Samokhvalova, Zhou and Chen, 2006, 
2007a and 2007b; Samokhvalova, 2008) 

We have recovered the results of the macroscopic qualities in the kinetic beam 
equilibrium theory [i.e., Eqs. (2.1.5)-(2.1.8)] by solving the following adiabatic warm- 
fluid equilibrium equations (Samokhvalova, Zhou and Chen, 2007b; Samokhvalova, 
2008) 

V 
+ —x 

c 

V-KV)=0, (2.2.2) 

nb\-V{ybmV)=nbq -Vfelf+ — x(Bex'+Bse'f) V-P(x),        (2.2.1) 
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Vye//M = -4tf?»*M> (2-2.3) 
Pi{r,s)=nb{r,s)kJ1{s), (2.2.4) 

T±(s>L(s) = •nst. (2.2.5) 

The detailed analysis is available in our paper (Samokhvalova, Zhou and Chen, 2007b) 
and Samokhvalova's doctoral thesis (Samokhvalova, 2008). 

2.3 Comparison between Theory and Experiment (Zhou, Samokhvalova and Chen, 
2008; Samokhvalova, 2008) 

Using our adiabatic thermal beam equilibrium theories, we have replicated the beam 
density profiles at different axial distances in good agreement with the experimental 
measurements conducted on the University of Maryland Electron Ring. Our equilibrium 
theory is applicable to this experiment from the anode aperture to a distance prior to the 
wave breaking initiated by high order density distribution fluctuations induced by a 
pressure force at the anode aperture. Wave breaking occurs at about one quarter of 
plasma wavelength, which is about 30 cm in this example. Our equilibrium theories do 
not explain the density distribution distortion in the present form, but it is possible to 
develop a perturbation theory based on the equilibrium in the future. 

By solving Eqs. (2.1.6)-(2.1.8), we have calculated the beam transverse density 
profiles of the UMER 5 keV, 6.5 mA electron beam at three axial distances: s = 6.4 cm, 
11.2 cm, and 17.2 cm, as shown in solid curves in Fig. 2.3.1. The dashed curves are the 
equivalent Kapchinskij-Vladirmirskij (KV) beam density profiles (Kapchinskij and 
Vladirmirskij, 1959). Compared with the experimental measurements (dotted curves), the 
calculated beam density profiles are in good agreement. As the beam radius increases, the 
beam density profile approaches to the KV (uniform) beam density profile, because the 
beam temperature must decrease in order to keep T^sY^^s) at a constant. In this 

adiabatic process, the Debye length AD = ^ylkBT1(s)/4nq2nh(0,s) = 0.54 mm is constant. 

3.   Design of High-Brightness Circular Electron Beams (Bemis, Bhatt, Chen and 
Zhou, 2007a and 2007b) 

An experimental demonstration of the thermal beam equilibrium over long 
propagation distances requires a high-brightness circular electron beam which is well 
matched into a periodic solenoidal magnetic focusing channel. To gain experience in the 
design of high-brightness electron beams, we have developed, under the auspices of the 
present grant, a method for the design of a high-brightness non-relativistic circular beam 
system including a charged-particle emitting diode, a diode aperture, a circular beam 
tunnel, and a focusing magnetic field that matches the beam from the emitter to the beam 
tunnel. The applied magnetic field has been determined by balancing the forces 
throughout the gun and transport sections of the beam system. The method has been 
validated by three-dimensional simulations. 

While the detailed method is described in our paper (Bemis, Bhatt, Chen and Zhou, 
2007b) and our US patent application (Chen, Bemis, Bhatt and Zhou, 2007), Figs. 3.1-3.4 
summarize the results for a high-perveance electron beam at a voltage of 2.3 kV. This 
system is scalable to moderately high voltages. 
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Figure 3.1 shows the final results of an OMNITRAK simulation for a circular 
electron beam which is emitted from an emitter (cathode) with a radius of 1.52 mm, a 
current of 0.11 A, a cathode-to-anode distance of 4.11 mm at radius r - 1.52 mm. The 
diode voltage is 2300 V. 

Figure 3.2 shows plots of Er versus z at r = 1.0 mm and B,(0,z) versus z from the 
OMNITRAK simulation after two iterations. The radial electric field vanishes at the 
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Figure   2.3.1   Normalized  beam  transverse  density  profiles   of a  5   keV,   6.5   mA 
(4s~     = 30 mm-mrad) electron beam at three axial distances: s - 6.4 cm, 11.2 cm. and 
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17.2 cm. The solid curves are from theory, the dotted curves are the experimental 
measurements, and the dashed lines are the equivalent KV beam density distributions. 
The densities are normalized to the equivalent KV beam density (from Zhou, 
Samokhvalova and Chen, 2008). 

z(mm) 10.0 

Figure 3.1 OMNITRAK. simulation of the dynamics of an electron beam emitted from a 
flat circular cathode with a radius of 1.52 mm and a current of 0.11 amperes in an 
optimized magnetic field. Here, the cathode-to-anode distance is 4.11 mm at 
r - 1.52 mm, the circular anode aperture has a radius of 1.8 mm, and the beam tunnel has 
a radius of 6.0 mm. The diode voltage is 2300 V (from Bemis, Bhatt, Chen and Zhou, 
2007b). 
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Figure 3.2 Plots of Er versus z at r = 1 mm (solid curve) and B:(0,z) versus z (dashed 
curve) from the OMN1TRAK. simulations after two iterations (from Bemis, Bhatt, Chen 
and Zhou, 2007b). 

0 
x (mm) 

Figure 3.3 Plot of the electron distribution at z = 

Bemis, Bhatt, Chen and Zhou, 2007b). 
8 mm in the phase plane (x,y) (from 

emitter (i.e., at z - 0) , achieves a maximum magnitude at z = 4.11 mm, and then 
approaches to a constant value well inside the beam tunnel. The applied axial magnetic 
field at the emitter vanishes, increases to 640 G at the aperture, and then falls to about 
160 G well inside the beam tunnel. 

Figure 3.3 shows the electron distribution in the phase plane (x,y) at z = 8mm. The 

beam distribution maintains transverse uniformity. Indeed, the normalized fourth moment 

which is equal to 4/3 for a transversely uniform density distribution, remains 

4/3 within ± 1%. The outer beam radius remains the same as the emitter radius within 1 
to 3%. The beam is very bright, and its normalized rms emittance is predicted to be 0.33 
mm-mrad, which is 1.15 times the intrinsic normalized rms emittance of 0.33 mm-mrad. 

Our design method is limited to a nonrelativistic beam matching into a uniform 
magnetic field. We plan to extend our design method to include thermal effects and beam 
matching into periodic solenoidal (permanent) magnetic focusing field. We will also 
extend our design method to relativistic electron beams in which both relativistic effects 
and self-magnetic field effects are important. 

4.   Development of Elliptic Beam Theory for High-Power Microwave Device 
Applications (Bhatt, 2006; Zhou, 2006; Chen and Zhou, 2007; Zhou, Bhatt and 
Chen, 2008) 
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Existing HPM devices employ either a pencil electron beam or an annular electron 
beam. One of the main objectives in high-power microwave (HPM) research has been to 
develop innovative science and technology which could lead to improve the efficiency, 
output power level, and other performance (such as weight reduction) of high-power 
microwave (HPM) devices. A promising approach is to use a large-aspect-ratio elliptic 
electron beam rather than the conventional pencil or annular electron beam as the energy 
source. Compared with a conventional HPM device, a HPM device powered by an 
elliptic electron beam has the following attractive features: 

a) Power scales as /"' instead of f~~ (where / is the frequency), thus more 
power; 

b) Low effective beam perveance, thus higher efficiency; 
c) Use of permanent magnets for beam focusing, thus lower energy consumption; 

and 
d) Low cathode loading, thus longer device lifetime. 

In order to experimentally demonstrate high-power elliptic electron beams which can be 
employed in HPM and vacuum electron devices, we must advance our understanding of 
the generation, compression, focusing and transport of elliptic electron beams. 

Building upon our recent work on elliptic electron beam formation (Bhatt and Chen, 
2005; Bhatt, Bemis and Chen, 2005 and 2006) and periodically twisting elliptic electron 
beams (Zhou, Bhatt and Chen, 2006), we have developed a kinetic theory of periodically 
twisting elliptic beams and both cold-fluid and kinetic theories of non-twisting elliptic 
electron beams under the auspices of the grant (Chen, 2006). 

4.1 Kinetic Equilibrium Theory of Periodically Twisting Elliptic Electron Beams 
(Zhou, 2006; Zhou and Chen, 2006a and 2006b) 

We have developed our kinetic equilibrium theory to examine effects of beam 
temperature on periodically twisting elliptic electron beam. In the kinetic equilibrium 
theory (Zhou, 2006; Zhou and Chen, 2006a and 2006b), we have derived a constants of 
motion analogous to the Courant-Snyder invariant (Courant and Snyder, 1958). We have 
constructed a Vlasov beam equilibrium distribution of the Kapchinskij-Vladimirskij form 
using the two constants of motion. We have obtained the generalized envelope equations 
which include beam temperature effects. In the cold-fluid limit, the generalized envelope 
equations recover those in the cold-fluid beam equilibrium theory (Zhou, 2006; Zhou, 
Bhatt and Chen, 2006). Detailed results are available in our paper (Zhou and Chen, 
2006b) and Zhou's doctoral thesis (Zhou, 2006). 

To illustrate the effects of beam temperature, we have considered a relativistic elliptic 
beam  with  ^ = 198.5 keV ,  current  /,,=85.5 A,   aspect  ratio  a/b = 5 ,  and  non- 

axisymmetric periodic permanent magnet focusing with B0 = 2.4 kG , 5 = 2.2 cm, and 

k0 /k0lc =1.52. Such a relativistic elliptic beam could be used in a 10 MW L-Band 

ribbon-beam klystron (RBK) for the International Linear Collider (ILC). 
As shown in Fig. 4.1.1, the solid curves represent the beam semi-axis envelopes and 

twist angle with zero temperature which is corresponding to a cold beam, while the 
dotted curves represent the beam envelopes and twist angle with 2.5 keV on-axis 
temperature. It is evident in Fig. 4.1.1 that the temperature effects on the beam envelopes 
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and twist angle are negligibly small. Since an actual relativistic elliptic beam in a well 
designed system will have a temperature which will be considerably less than 2.5 keV, 
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Figure 4.1.1 Plots of (a) envelopes a(s) and b(s) and (b) twist angle 0(s) versus the 

axial distance 5 for the relativistic periodically twisting elliptic electron beam. The solid 
curves are the generalized envelope solution for a zero-temperature beam, whereas the 
dotted curves are for a 2.5 keV on-axis temperature beam (from Zhou and Chen, 2006b). 

the results in Fig. 4.1.1 implies that the temperature effect on the beam envelopes and 
twist angle is expected to be negligibly small (Zhou and Chen, 2006b). 

4.2 Cold-Fluid Equilibrium Theory of Non-Twisting Elliptic Electron Beams (Bhatt, 
2006; Zhou, 2006; Chen and Zhou, 2007; Zhou, Bhatt and Chen, 2008) 

For HPM and vacuum electron device applications, non-twisting elliptic electron 
beams are desirable.  Under auspices of the present grant (Chen, 2006), we have 



developed a cold-fluid equilibrium theory of a non-twisting elliptic electron beam (Bhatt, 
2006; Chen and Zhou, 2007; Zhou, Bhatt and Chen, 2008), which is a generalization of 
our cold-fluid equilibrium theory of a periodically twisting elliptic electron beam (Zhou, 
2006; Zhou, Bhatt and Chen, 2006). 

We have used the combination of a periodic non-axisymmetric magnetic field and a 
quadrupole magnetic field to focus a nearly straight large-aspect-ratio elliptic beam, 
whose twist angle vanishes approximately. The (nonlinear) cold-fluid equilibrium 
equations are: 

Ac-«4+Vx-(«ftVx) = 0, 
OS 

OS 

q"H 

Yhm 
-VJX + J3he: x Bf + -±x Bf (s)e: 

(4.2.1) 

(4.2.2) 

(4.2.3) 
Yb c 

For the beam dimensions small relative to the characteristic scale of magnetic variations, 

i.e., (^or*) A>« 1 and [k0vyf 6 « 1, the combined magnetic field can be described to 

the lowest order in the transverse dimensions as 

where    kQ 

B' 

2/r/S, 

B.{s)e. 
dBz{s) 

ds 

40.v jcev +• 
*o, 

-J*, + B'(s%*x+xey],    (4.2.4) 

9 9 9 
k0x+kov = k0   ,    S    is   the   axial    periodicity    length,    and 

B'{s)=dBqJdv =dBqJdx 
5,0,0 M,o)' 

We seek solutions to Eqs. (2.4.2. l)-( 2.4.2.3) of the form 

"*(xx^): 
•V,. 

•0 1 
— 2 
y 

a-{s)    b2{s\ 
(4.2.5) 

7m(s)b(s) 

VL(x1,s)=\jix(s)x -ax(s)y]pbce~ +[/jy(s)y + ay(s)x\Bhce,.      (4.2.6) 

In Eqs. (4.2.5) and (4.2.6), x± =xe~ +ye~ is a transverse displacement in the twisted 

coordinate system; 0(s) is the twist angle of the ellipse; &(x) =1 if x > 0 and ©(JC) = 0 

if x<0; and the functions a(s), b(s), /*x{s), /Jv(s), cct{s), aY(s) and 0(s) are to be 

determined self-consistently [see Eqs. (4.2.8)-(4.2.12)]. The self-electric and self- 
magnetic fields are well known for an elliptical beam with density distribution specified 
in Eq. (4.2.5), i.e., 

2qN„ ^=/r^; = a + b 

(x1    y 
— + — 
a      b 

2\ 

(4.2.7) 

Using the expressions in Eqs. (4.2.4)-(4.2.7), we have shown that both the 
equilibrium continuity equation (4.2.1) and force equation (4.2.3) are satisfied if the 
dynamical variables a(s), b(s), /Jx(s) = a'lda/ds, jjv(s) = b~ldb/ds , ay(s), av(s) and 

0(s) obey the (cold-fluid) generalized beam envelope equations (Chen and Zhou, 2007; 
Zhou, Bhatt and Chen, 2008) 
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Equations (4.2.8)-(4.2.12) support non-twisting elliptic electron beam solutions in the 
non-relativistic regime which is of interest to vacuum electron device applications, as 
well as in the relativistic regimes which is of interest to HPM applications. 

4.3 Kinetic Equilibrium Theory of Non-Twisting Elliptic Electron Beams (Bhatt, 
2006; Chen and Zhou, 2007; Zhou, Bhatt and Chen, 2008) 

We have developed our kinetic equilibrium theory to examine effects of beam 
temperature on non-twisting elliptic electron beam. In the kinetic equilibrium theory 
(Bhatt, 2006; Zhou, Bhatt and Chen, 2008), we have derived a constants of motion 
analogous to the Courant-Snyder invariant (Courant and Snyder, 1958). We have 
constructed a Vlasov beam equilibrium distribution of the Kapchinskij-Vladimirskij form 
using the constant of motion. We have obtained the (kinetic) generalized envelope 
equations which include beam temperature effects. In the cold-fluid limit, the (kinetic) 
generalized envelope equations recover the cold-fluid ones (Chen and Zhou, 2007; Zhou, 
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Bhatt and Chen, 2008). Detailed results are available in our paper (Zhou, Bhatt and Chen, 
2008) and Bhatt's doctoral thesis (Bhatt, 2006). 

4.4 Application and Simulation Validation of Cold-Fluid and Kinetic Equilibrium 
Theories (Bhatt, 2006; Chen and Zhou, 2007; Zhou, Bhatt and Chen, 2008) 

As an example, we have considered a relativistic elliptic beam that can be used in a 
10 MW L-Band ribbon-beam klystron (RBK) for the International Linear Collider (ILC). 
The beam has a current of Ib = 111.1 A, a voltage of Vb = 120kV and an aspect ratio of 

20:1 . Solving the (cold-fluid) generalized envelope equations (4.2.8)-(4.2.12), the 
hybrid magnetic fields are determined to be the form of Eq. (4.2.4) with 
B:{s)= -2000sin(V) G , B'q = 80.8G/cm , S = 2.2 cm , and k0y/kQx = 20 . In Fig. 

4.4.1, the solid curves are the beam semi-axes a(s) and b(s) calculated from the (cold- 

fluid) generalized envelope equations, whereas dotted curves are from the self-consistent 
PIC PFB2D simulation. The twist angle vanishes, i.e., 0{s) = 0, in this example. 

To study the temperature effects in the 111.1 A and 120 kV elliptic electron beam, we 
have solved the (kinetic) generalized envelope equations with nonzero initial thermal 

emittances, i.e., sth x = kBTa (s = 0)/myh f5hc   and sth v = kBTb (s = 0)/m/h flhc~ . As 

shown in Fig. 4.4.2, the elliptic beam envelopes are calculated for three different 
temperature choices: 0 eV, 50 eV and 100 eV. Compared with the cold beam envelopes 
shown as solid curves in Fig. 4.4.1, the warm beam envelopes are found to increase 
slightly as the beam temperature increases, while the aspect ratio of the beam decreases 
from 20:1 to 16.4:1 as the beam temperature increases from 0 eV to 100 eV. 
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Figure 4.4.1 Plots of the beam envelopes a(s) and b(s) versus the axial distance s for 
the 111.1 A, 120 kV relativistic elliptic electron beam with zero temperature. The solid 
curves are the (cold-fluid) generalized envelope solution, whereas the dotted curves are 
from the PFB2D simulation (from Zhou, Bhatt and Chen, 2008). 
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Figure 4.4.2 Plots of the beam envelopes (a) a(s) and (b) b(s) versus the axial distance 
^ for the 111.1 A, 120 kV relativistic elliptic electron beam for three different 
temperature choices: 0 eV, 50 eV and 100 eV (from Zhou, Bhatt and Chen, 2008). 

For a practical HPM device, we have assumed that the elliptic beam is generated from 
an electron gun with an intrinsic temperature of 0.1 eV and a current density of 1.5 A/cm. 
The elliptic beam has to be compressed by a factor of 471.5 in area to achieve a current 
density of 707.3 A/cm in the focusing channel. During the compression, the temperature 
increases by a factor of 471.5 to 47.2 eV. Therefore, in our calculations, a temperature of 
50 eV is a reasonable assumption. As shown in Fig. 4.4.3, the envelopes of the elliptic 
beam with a temperature of 50 eV are obtained by solving the (kinetic) generalized 
envelope equations (solid curves) and by the PFB2D PIC simulations (dotted curves). 
Both results showed a slight increase in the two envelope dimensions and the aspect ratio 
of the elliptic beam decreases to 17.8, compared with the cold elliptic beam. 
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Figure 4.4.3 Plots of the beam envelopes a(s) and b(s) versus the axial distance 5 for 

the 111.1 A, 120 kV relativistic elliptic electron beam for a temeprature of 50 eV. The 
solid curves are the (kinetic) generalized envelope solution, whereas the dotted curves are 
from the PFB2D simulation (from Zhou, Bhatt and Chen, 2008). 
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A Vlasov equilibrium of the Kapchinskij-Vladimirskij form is obtained for a periodically twisted 
ellipse-shaped charged-particle beam in a nonaxisymmetric periodic magnetic focusing field. The single- 
particle Hamiltonian dynamics is analyzed self-consistently. A constant of motion analogous to the 
Courant-Snyder invariant is found. The equilibrium distribution function is constructed. The statistical 
properties of the beam equilibrium are studied. In the zero-temperature limit, the generalized envelope 
equations derived from the kinetic equilibrium theory recover the generalized envelope equations obtained 
in the cold-fluid equilibrium theory. Examples of periodically twisted elliptic beam equilibria are 
presented, and potential applications are discussed. For ribbon-beam amplifier and ribbon-beam klystron 
applications, the kinetic equilibrium theory predicts that the effect of beam temperature on the beam 
envelopes is negligibly small. 
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I. INTRODUCTION 

A fundamental understanding of the kinetic equilibrium 
and stability properties of high-intensity electron and ion 
beams in periodic focusing fields is desirable in the design 
and operation of particle accelerators [1-14], such as stor- 
age rings and rf and induction linacs, as well as vacuum 
electron devices, such as klystrons and traveling-wave 
tubes with periodic permanent magnet (PPM) focusing. 
There are two well-known equilibria for periodically 
focused intense beams, including the Kapchinskij- 
Vladmirskij (KV) equilibrium [7-9] in an alternating- 
gradient quadrupole magnetic focusing field and the peri- 
odically focused rigid-rotor Vlasov equilibrium [ 10,11 ] in 
a periodic solenoid magnetic focusing field. In general, for 
linear focusing forces, self-consistent beam distributions 
can be formally constructed using a matrix formulation 
[12,13]. 

It was shown formally in Ref. [12] that self-consistent 
beam distributions can be obtained that allow elliptical 
space-charge beams of arbitrary aspect ratio and with 
arbitrary rotation angle of the ellipse as long as the field 
is linear. However, obtaining concrete equilibria with non- 
upright ellipses is nontrivial. The previous explicitly 
known Vlasov equilibria of KV form [7,9-11] for high- 
intensity, space-charge-dominated charged-particle beams 
propagating in the alternating-gradient quadrupole mag- 
netic focusing field and the periodic solenoid magnetic 
focusing field charged-particle beams are circular on aver- 
age; that is, the averages of the beam envelopes in different 
transverse directions over one period are the same. 

There is considerable interest in the research and devel- 
opment of high-intensity charged-particle beams with a 
large aspect ratio transverse to the direction of propagation. 
First, large-aspect-ratio elliptic beams (or ribbon beams) 
can transport larger amounts of beam currents at reduced 

intrinsic space-charge forces and energies. Second, they 
couple efficiently to planar or rectangular rf structures. The 
combination of the space-charge reduction and efficient 
coupling allows efficient rf generation in vacuum elec- 
tronic devices, and efficient acceleration in particle accel- 
erators. Third, elliptic beams provide an additional 
adjustable parameter (e.g., the aspect ratio) which may 
be useful for better matching a beam into a periodic 
focusing channel [14]. 

One important application of ribbon beams is in the 
development of advanced radiation devices such as 
ribbon-beam amplifiers (RBAs) and ribbon-beam klystrons 
(RBKs), which have advantages over the corresponding 
conventional (circular-beam) devices in terms of efficiency 
and operational parameters. Other applications include the 
development of advanced accelerators capable of generat- 
ing nonconventional beams, e.g., a planar radio-frequency 
(rf) linac producing ribbonlike bunches of charged 
particles. 

Although sheet beams have been discussed in the litera- 
ture for four decades, the Vlasov equilibrium of a high- 
intensity, space-charge-dominated beam with a large-as- 
pect-ratio elliptic cross section has not been discovered 
until this paper. Sturrock [15] first suggested use of a 
periodic magnetic focusing consisting of an array of 
planar-wiggler magnets for rectilinear beams. Zhang et 
al. [16] had some modest success in the experimental 
demonstration of the transport of a low-intensity (10 A, 
500 kV) sheet beam in a planar-wiggler magnetic field, and 
observed considerable beam loss. Researchers made use of 
the multiple-time-scale analysis and the paraxial approx- 
imations to obtain the smooth-beam approximation of 
high-intensity sheet beam equilibria [17,18]. Recently, 
Russell et al. demonstrated the transformation of a circular 
beam into a sheet beam using asymmetric lenses [19]. The 
authors discovered a cold-fluid equilibrium for a high- 

1098-4402/06/9(101/104201(8) 104201-1 © 2006 The American Physical Society 



JING ZHOU AND CHIPING CHEN Phys. Rev. ST Accel. Beams 9, 104201 (2006) 

intensity periodically twisted elliptic beam in a nonasym- 
metric periodic magnetic focusing field [6]. 

In this paper, it is shown that there exists a Vlasov 
equilibrium for a periodically twisted large-aspect-ratio 
intense charged-particle beam with uniform density in 
the transverse plane propagating through a nonaxisymmet- 
ric periodic magnetic focusing field. The single-particle 
Hamiltonian of such a periodically twisted large-aspect- 
ratio elliptic beam is investigated. The constant of motion 
analogous to the Courant-Snyder invariant [20] is found. 
The equilibrium beam distribution is constructed. The 
beam envelope equations and flow velocity equations are 
derived. In the zero-temperature limit, they are consistent 
with the generalized envelope equations derived from cold- 
fluid equilibrium theory [6]. Statistical properties and pos- 
sible applications of the present beam equilibrium are 
discussed. FIG. 1.    Laboratory and twisted coordinate systems. 

II. VLASOV EQUILIBRIUM THEORY 

We consider an ellipse-shaped, continuous, intense 
charged-particle beam propagating with constant axial 
velocity /3hce. through an applied nonaxisymmetric peri- 
odic magnetic focusing field. The applied nonaxisymmet- 
ric periodic magnetic focusing field inside the thin beam 
can be approximated by 

Bext = -B0sin(fc()5)e: + BQcos(k0s) 
2 k2 

Ox i      0? &-xex + -rf-yty 
_k0 

ko     ' 

(I) 

where s = z is the axial coordinate, k0 = 2ir/S, k.QX + 

kg = fcg, and S is the axial periodicity length. The 3D 

magnetic field in Eq. (4) is fully specified by the three 
parameters B0, S, and k0x/k0y. The associated magnetic 
vector potential can be expressed as 

-B„sin(*0.s) 
r    k2 K0\ k2 

ve   + -^i ve 
Ko Ko 

(2) 

To determine the self-electric and self-magnetic fields of 
the beam self-consistently in the present paraxial approxi- 
mation, we assume that the density profile of the beam is 
uniform inside the beam boundary, i.e., 

nh(x, v) = 
A', 

7ra(.?)/?(.v) 
0   1 y 

a2(S)     b2(s)j 
(3) 

In Eq. (3), x = xcos[0(.y)] + ysin[0(.y)] and y = 
-vsin[0(.v)] + y cos[8(s)] represent the twisted coordinate 
as illustrated in Fig. I; 6(s) is the twist angle of the ellipse; 
0(JC) = 1 if x > 0 and 0(A) = 0 if x < 0. The density of 
the elliptic beam with semimajor axis a(s) = a{s + S) 
and semiminor axis b(s) = b(s + S) is uniform in the 
beam interior (x2/cr + y2/b2 ^ 1). The semimajor 
and semiminor axes have the same periodicity as the 

applied magnetic field with S = 2-rr/k^. Nh = 
2TT f• dxdynh(x, y, s) = const is the number of particles 
per unit axial length. In the paraxial approximation, the 
Budker parameter of the beam is assumed to be small, i.e., 
q2Nb/mc2 «. yb, and the transverse kinetic energy of a 
beam particle is assumed to be small compared with its 
axial kinetic energy. Here, c is the speed of light in vacno. 

yh = (1 — fi;;)~'/2 is the relativistic mass factor, and q and 
m are the particle charge and rest mass, respectively. 

From the equilibrium Maxwell equations, we find that 
the self-electric and self-magnetic fields, EJ and B\ arc- 
given by 

Ev(.r, 

p;lBs{x,y,s) 

2qNb x y 

a(s) + b(s)lrt7)e* + Hi)*' 

2qNh 

a(s) + b(s) 

v x 

(4) 

(5) 

in the beam interior (x2/a2 + y2/b2 s 1). It is convenient 
to express the self-fields in terms of the scalar and vector 
potentials defined for x2/a2 + y2/b2 < 1 by 

&(x,y,s) = Pb
lAi(x,y,s) 

2qNb 

a{s) + b(s) 

X" v   1   - 

fl(.v) b(s)j 
(6) 

where A
(

(JC, v, s) = Al(x, y, s)e., Ev(.v, v. s) = 
-(Hi-d/dx + eyd/dy)<t>\        and        BJ = (-e9d/dx + 
e-xd/dy)Ai. 

In the paraxial approximation, the transverse motion for 
an individual particle in the combined self-fields and ap- 
plied magnetic field is described by the normalized per- 
pendicular Hamiltonian Hj_ = Hi/ybpbmc2, 
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Ht(x,y,Px,Py,s) 

K 

a + b 

-2        -2-i 

a      b 
(7) 

nate     (x, y, Px, Py)     to     the     canonical     coordinate 
(JCi, yi, Pxl, Pyl) involves two steps. 

We first transform the Cartesian canonical coordinate 
{x, y, Px, Pv) to a twisted canonical coordinate (x, v, Px, Pv) 
using the generating function 

F2(x, y; Px, Py, s) = Px[xcosd(s) + ysind(s)] 

+ Py[-xsin6(s) + ycosd(s)].   (8) where (JC, PX) and (y, Py) are canonical conjugate pairs, 

V*zM = qB,(s)/2yb/3bmc2,   K = 2q2Nb/y
3

h(3
2

bmc2    is 
the self-field perveance, and the normalized transverse      It follows from Eq. (8) that 
canonical momentum P± = (Pv, Py) is related to the trans- 
verse mechanical momentum p± by Pi = (ybf3bmc)~] X 
(pi + qXf/c). 

It is convenient to transform the Hamiltonian in the 
Cartesian canonical coordinate (x, y, Px, P ) to a new ca- 
nonical coordinate (x{, yu Px], Py]), so that the new 
Hamiltonian assumes a simpler form from which the in- 
variants of motion are easily identified. The transformation The Hamiltonian in the twisted canonical coordinate is 
of the Hamiltonian from the Cartesian canonical coordi-       then expressed as 

Px = P, cos0(.v) - Pv sin0(.v), 

Pv = Px sin0(s) + Py cosd(s), 

x = xcosd(s) + ys\n6(s), 

y = — xsind(s) + ycosd(s). 

(9a) 

(9b) 

(9c) 

(9d) 

H±{x, y, Px, Py, s) = HL(x, y, Px, Pv, s) + dF2/ds 

1 

~ 2 
% 

« 

•k2 

Pxcosd(s) - Pys'\n6(s) + JK.(S)—^-isin0(i) + JK-(s)—tycosd(s 

+ «. :& 
Pvsin0(s) + PyCOS0(j) - JKZ(S)-^XCOS6(S) + Jxz(s)-^-ysin0{s) 

2       ~Z 

a + b\a      b) 

d()(s) 

ds 
(10) 

The equations of motion associated with the Hamiltonian in Eq. (10) are 

x' = ^ = P, + C(s)x + [0'{s) - ax(s)]y, 

f = dJ^ = Py- C{s)y - [0'(s) - ay(s)]x, 
a ry 

dHL         I        k4
xcos2[8(s)] + k4

0sm2[d(s)] 
— = — \K-(S)—•  

dx 

2K 

k4 a(s)[a(s) + b(s)] 

,/*0v-^sin[2g(j)]. 
Kz(s)\—74— —o—y. 

dHx r        k*tsin2[6{S)] + k4 ycos2[8(s)] 
Pv   = ^T- =   HK-(.V)  

2K 

dy 

,(k4
0y ~ k4

0xVm[26(s)] 
K:\s)\ ,4 -, *. 

k4 
b{s)[a(s) + b(s)] 

\x - C(s)Px + [6<(s) - aJs)]Py 

y + C(s)Py - lO'U) - ax(s)]Px 

(Ha) 

(lib) 

(lie) 

(lid) 

where prime denotes derivative with respect to s. 

C(s) - fitf °y„,_7 
to s 

2k\ 
(12) 
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«*(•*) = -yJKz(s] 
ti kL 
fsin2[6(s)] + ^cos2[d(s)] (13)       /7,i(jr,,y,, P,i,P,i, *) = H±{x,y, Px, Py, s) + 

and 

av(s) -fijs) (14) 

The functions ax and a, are related to the variables ax and 
«v in the cold-fluid equilibrium theory [6]. Indeed, by 
adding Eqs. (10) and (II) and subtracting Eq. (10) from 
Eq. (11) in [6], and carrying out the integrations on result- 
ing equations with the initial condition av(0) = av(0) = 
0, it is readily shown that the functions ax and ay in 
Eqs. (13) and (14) correspond to a particular solution to 
Eqs. (10) and (11) in [6]. 

As a second step, we apply another transformation from 
the twisted canonical variables (x, y, Px, Py) to the canoni- 
cal variables (x\,y\, Px\, Py\) using the generating function 

F2(x,y;Pxl,Pyhs) = 
M'v(4') 

- C(s) 

w'yW 
Wy(s) 

+ C(s) 

v/\, xPxX 

WX(S) Wy(s)' 
(15) 

where wx(s) — wx(s + S) and wy(s) = wy(s + S) are pe- 
riodic functions solving the differential equations 

<(*) 
wx(s) 

C'(s) - C2(s) - av 

IK 

a(s)[a(s) + b(s)] 

wx(sY 
(16) 

<(.v) 

»\(.v) 
+ C'(s) - C2(s) - ax 

1 

2K 

b(s)[a(s) + b(s)] 

It follows from Eq. (15) that 

•w'x(s) 

Py = 

_W,0) 
w'y(s) 

wy(s) 

x 

wx(s)' 

y 
Wy(s)' 

- C(s) 

+ C(s) 

x + 

y + 

wx(s) 

Py\ 
wy(s)' 

(17) 

(18a) 

(18b) 

(18c) 

(18d) 

The     Hamiltonian     in     the     canonical     coordinate 
(JCJ, V|, Px\, Py\) is then expressed as 

c7F, 

1 

2 

t 

rx\ Pi VI      +      -V 

ds 
2 

I 
wx(s)     w2,(s)     w2(s) 

y\ 

dtp(s 

ds 
iy\Px\-xxPyi),   (19) 

where we have introduced and demanded 

d<p(s) _, wy(s) <d6(s) 

ds wx{s)\  ds 

wx(s) 

wJs) 

d0(s) 

ds 

(20) 

Following Eq. (20), it can be shown that the twisted angle 
0{s) has to satisfy the differential equation 

d6{s) _ wx(s)ay(s) - wy(s)ax(s) 

ds w2(s) - w2(s) 
(21) 

The motion described by the simplified Hamiltonian in the 
new canonical coordinate (xx, y,, Px], Py\) in Eq. (19) is 
described by the equations 

m ii 

dPx\ 

dfhl 
BP„, 

wl(s) 

wy(s) 

i    , dip(s) 
+  : Vi 

ds 

dtp(s) 

ds 
•x\. 

P[, = -• 
i)H ii 

1'v i 

BHXL 

wx(s) 

V| 

d<p(s) 

ds 

d<p(s) 

dy, w;.(s)        ds 

From Eq. (22), it is readily shown that 

E = A + y\ + PX{ + Pi 

vl 

(22a) 

(22b) 

(22c) 

(22(1) 

(23) 

is an exact single-particle constant of the motion for the 
Hamiltonian in Eq. (19). 

We consider the following trial choice of the Vlasov 
equilibrium distribution function: 

fb{xuyl,Pxl,Pyl,s) =^r-8(x\ + y2 + P2
y] + /* - er), 

TTE 

(24) 

where dfh/ds = 0, ET = const > 0 is an effective emit- 
tance, and 8{x) is the Dirac 8 function. As will be shown in 
Sec. Ill, the density profile of the beam described by the 
distribution function fh is consistent with the uniform- 
density profile within an ellipse, which is the key require- 
ment for the quantity E = x\ + y\ + Px] + P\\ to be a 

constant of motion. Therefore, the distribution function 
defined in Eq. (24) is indeed a Vlasov equilibrium, i.e.. 
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ah 
:ls 

0. (25) 

III. STATISTICAL PROPERTIES 

The distribution function described in Eq. (24) has the 
following statistical properties. First, the distribution is 
consistent with the assumed density profile in Eq. (3), i.e., 

nb{x, y, s) -a \Wy   JJ 
fdPxldPyl 

Nb/(ireTwxwy),    if x]/eT + y}/eT < 1, 
0, otherwise. 

(26) 

The beam has the uniform-density profile given in Eq. (3), 
provided that a = y/erwx 

ar>d b = JerWx 
are satisfied. 

Under these self-consistent conditions, Eqs. (16), (17), and 
(21) can be expressed as 

b2(a2 — 2atav) + ara2. 

ds2 

+ ,[K 
k2   - k2 

.-<> 

IK 

ko 

a + b     a3 ' 

1       1.2 a- — b- 

- cos(A-0.v) sin(20) — 2^/K^ay sin(£0s) 

(27) 

cfb 

ds2 
+ a~(a; — 2axay) + b~a\ 

«- — b- 

 /Co *W)v 
JK^,——  cos(k0s) sin(20) + 2%/l<^>ax sin(&0.s) 

2K   _ e^f- 

a + b     /?3' 
(28) 

do a~ay — b~ax 
(29) 

ds 2       u"1 

a~ — b~ 

Equations (27)-(29) are written in a form similar to the 
generalized envelope equations in the cold-fluid equilib- 
rium theory [6]. They are identical to the generalized 
envelope equations of a(s), b(s), and 8{s) in the cold-fluid 
equilibrium theory, except that the emittance terms appear- 
ing on the right-hand side of Eqs. (27) and (28) are zero in 
the cold-fluid equilibrium theory. Therefore, they are more 
general than the cold-fluid equilibrium theory. 

Second, in the normalized units, the average (macro- 
scopic flow) transverse velocity of the beam equilibrium 
described by Eq. (24) is given in the twisted coordinates by 

Vi = (    N"     V'— (vLfdPxldPyi 

w'x (30) 

The flow velocity in Eq. (30) is identical to the flow 
velocity derived by the cold-fluid equilibrium theory [6) 
provided that the relations nx = a1 /a = wx/wx and /xv = 
b'/b = w'y/wy are satisfied. 

As a third statistical property, the beam equilibrium 
described by Eq. (24) has the effective transverse tempera- 
ture profile (in dimensional units) 

7ittM = (-^M~'^ ((V.-VJW,, \1TETWXW J 2      j 

= mc2yhf32e2
(l + lUg? 

2 U2     b2 \       cr     b2 (31) 

As the fourth property, the rms emittances of the beam in 
the ,v and the y directions are 

eihx 
_1 

-J(x2)((v;-v-j2) = ^.      (3: 
c ' 4 

a) 

S,Hy = -a-yl&XiVy - Vy)
2) 

>-J 

(3CC 
(32b) 

Finally, the Vlasov elliptic beam equilibrium has two 
limiting cases which are well known. It recovers the famil- 
iar periodic (circular) rigid-rotor Vlasov equilibrium [10] 
by setting the major-axis equal to the minor axis of the 
beam ellipse. It also recovers the familiar constant-radius, 
uniform-density rigid-rotor Valsov equilibrium [9J by tak- 
ing the limit of a uniform magnetic field with B. = B = 
const. 

IV. EXAMPLES 

We illustrate examples of periodically twisted Vlasov 
elliptic beam equilibria in a periodic nonaxisymmetric 
magnetic focusing field and the temperature effects with 
numerical calculations. A numerical module in the PFB2D 
code [6,21] has been developed to solve the generalized 
envelope equations (13), (14), and (27)-(29), which deter- 
mines the rotational flow velocity, the outer equilibrium 
major axis a{s) and minor axis b{s) of the beam ellipse, and 
the twisted angle 6{s). 

In particular, we consider a nonrelativistic elliptic beam 
with voltage Vb = 2.29 keV, current lb = 0.11 A, aspect 
ratio a/b = 6, and nonaxisymmetric periodic permanent 
magnet focusing with BQ = 337.5 G, S = 1.912 cm, and 
h)y/h)x 

= 1-6, which is corresponding to a beam design for 
a high-efficiency 200 W RBA under development at 
Massachusetts Institute of Technology (MIT) and beam 
power technology for wireless communication. For such 
a system the matched solution of the generalized envelope 
equations (13), (14), and (27)-(29) is calculated numeri- 
cally as shown in Figs. 2 and 3 for several maximum (on- 
axis) temperature choices and fixed parameters:  klh = 
1.90 cm -i 

<0y 3.03 cm" /c-t) = 1.04 cm" and 
K = 1.52 X 10    . The solutions to the generalized enve- 
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0.6 

s (cm) 

FIG. 2. Plots of (a) envelopes a(s) and b(s) and (b) twist angle 
H(s) versus the axial distance 5 for the nonrelativistic twisted 
elliptic beam. The solid curves are the generalized envelope 
solution for a zero-temperature beam, whereas the dotted curves 
are for a 1 eV on-axis temperature beam. 

lope equations (13), (14), and (27)-(29), displayed as solid 
and dotted curves in Figs. 2 and 3, show that the semiaxes 
of the elliptical beam remain almost constant with small- 
amplitude oscillations, that the orientation of the ellipse 
twists periodically with an amplitude of ten degrees. 

The solid lines in Figs. 2 and 3 represent the beam 
envelopes and twisted angle with zero temperature which 
is corresponding to a cold beam, while the dotted curves 
represent the beam envelopes and twisted angles with 1 eV 
on-axis temperature in Fig. 2 and 10 eV on-axis tempera- 
ture in Fig. 3, respectively. The aspect ratio of the beam 
reduces from 6 to 4 as the on-axis temperature of the beam 
increases from 0 to 10 eV, i.e., the elliptic beam becomes 
more circular. However, the twisted angle is almost un- 
changed as the on-axis temperature increases from 0 to 
10 eV. For the elliptic beam designed for the 200 W ribbon- 
beam amplifier, the temperature of the beam is estimated to 

0.4 

09 ffi 
CL 
o 

§0.2 
c 
HI 

0.0 

a(s) 

(a) OeV 

10 eV 

.  b(s) 
• ••Mlllgl 

12 16 20 

s (cm) 

s (cm) 

FIG. 3. Plots of (a) envelopes a(s) and b(s) and (b) twist angle 
6(s) versus the axial distance s for the nonrelativistic twisted 
elliptic beam. The solid curves are the generalized envelope 
solution for a zero-temperature beam, whereas the dotted curves 
are for a 10 eV on-axis temperature beam. 

be 0.1 eV from simulations [22,23]. In such a case, the 
temperature effect is negligible. 

To further illustrate the effects of beam temperature, wc 
consider a relativistic elliptic beam with Vh = 198.5 keV, 
current lb = 85.5 A, aspect ratio a/b = 5, and nonaxi- 
symmetric periodic permanent magnet focusing with B{) = 
2.4 kG, 5 = 2.2 cm, and k0y/k0x = 1.52. [Such a relativ- 
istic elliptic beam could be used in a 10 MW L-band RBK 
for the International Linear Collider (ILC).] For such a 
system the matched solution of the generalized envelope 
equations (13), (14), and (27)-(29) is calculated numeri- 
cally with the corresponding parameters: ICQX = 
1.57 cm"1, 7^ = 0.732 cm"1, and K = 1.13 X 10~2. 
As shown in Fig. 4, the solid lines represent the beam 
semiaxis envelopes and twist angle with zero temperature 
which is corresponding to a cold beam, while the dotted 
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FIG. 4. Plots of (a) envelopes a(s) and b{s) and (b) twist angle 
9(s) versus the axial distance s for the relativistic twisted elliptic 
beam. The solid curves are the generalized envelope solution for 
a zero-temperature beam, whereas the dotted curves are for a 
2.5 keV on-axis temperature beam. 

curves represent the beam envelopes and twist angle with 
2.5 keV on-axis temperature. It is evident in Fig. 4 that the 
temperature effects on the beam envelopes and twist angle 
are negligibly small. Since an actual relativistic elliptic 
beam in a well designed system will have a temperature 
which will be considerably less than 2.5 keV, the results in 
Fig. 4 imply that the temperature effect on the beam 
envelopes and twist angle is expected to be negligibly 
small. 

V. CONCLUSIONS 

The single-particle Hamiltonian of a periodically 
twisted large-aspect-ratio elliptic beam in a nonaxisym- 
metric periodic magnetic focusing field has been investi- 
gated. A constant of motion analogous to the Courant- 
Snyder  invariant  has  been   found  such  that  the  self- 

consistent beam equilibrium can be constructed as a func- 
tion of the constant of motion. The beam envelope equa- 
tions and flow velocity equations have been derived. They 
are consistent with the generalized envelope equations 
derived from the cold-fluid equilibrium theory [6] when 
the temperature is taken to be zero. Statistical properties of 
the present Vlasov elliptic beam equilibrium have been 
studied. For current applications of interest, namely, the 
RBA and RBK, the temperature effects have been found to 
be negligibly small on periodically twisted large-aspect- 
ratio elliptic beams. 
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A warm-fluid equilibrium theory is presented which describes a new thermal equilibrium of a 
rotating charged-particle beam in a periodic solenoidal focusing field. Warm-fluid equations are 
solved in the paraxial approximation. The nns beam envelope, the density and flow velocity profiles, 
and the self-consistent Poisson equations are derived. Density profiles are calculated numerically for 
high-intensity and low-intensity beams. Temperature effects in such beams are investigated. Radial 
confinement of the beam is discussed. © 2007 American Institute of Physics. 
[DOI: 10.106.V1.2779281] 

I. INTRODUCTION 

Many charged-particle beam experiments and applica- 
tions, such as particle accelerators, spallation neutron 
sources, high-power microwave sources and high-energy 
colliders, use high-intensity beams of charged particles. For 
such systems, beams of high quality (i.e., low emittancc, 
high current, small energy spread, and low beam loss) are 
required. Exploration of equilibrium stales of charged- 
particle beams and their stability properties is critical to the 
advancement of basic particle accelerator physics, as well as 
the design, construction, commissioning, and operation of 
high-brightness particle beams and accelerator systems. 

Of particular concern are emittance growth and beam 
losses which are related to the evolution of particle beams in 
their nonequilibrium stales. To minimize emittance growth 
and control beam losses, it is critical to find equilibrium dis- 
tributions of high-brightness charged-particle beams in accel- 
erators and beam transport systems. 

Several kinetic equilibria have been discovered for peri- 
odically focused intense charged-particle beams, for ex- 
ample, the Kapchinsky-Vladimirsky (KV) self-consistent 
two-dimensional Vlasov equilibrium for an intense charged- 
particle beam in an alternating-gradient quadrupole magnetic 
focusing field and the periodically focused rigid-rotor Vla- 
sov equilibrium in a periodic solenoidal magnetic focusing 
field.'- Both equilibria use a (^-function phase-space distri- 
bution, which is unphysical. Although there is a well-known 
rigid-rotor thermal equilibrium in a uniform magnetic field^ 
periodically focused thermal beam equilibrium has not been 
reported until our present work, which includes both a ki- 
netic treatment presented elsewhere'' and a warm-fluid 
treatment presented in this paper. 

In this paper, we present a warm-fluid equilibrium theory 
of a new thermal charged-particle beam in a periodic sole- 
noidal focusing field. Solving the warm-fluid equations in the 
paraxial approximation, the beam density and flow velocity 
are obtained. The self-consistent rms beam envelope equa- 
tion is derived. The self-consistent Poisson equation, govern- 

ing the beam density and potential distributions, is also de- 
rived. For such thermal beam equilibria, temperature effects 
are found to play an important role. Due to temperature ef- 
fects, the beam density profile has a smooth edge, which is a 
more realistic representation of the beam density than the 
uniform density profile in previous theories (sec. for ex- 
ample, Refs. 1, 2, and X). Finally, we discuss the radial con- 
finement of the beam. 

The organization of this paper is as follows. In Sec. II, 
the basic assumptions in the present model are presented. 
Warm-fluid equilibrium equations are used to derive expres- 
sions for the flow velocity profile and beam density distribu- 
tion, a root-mean-squared (rms) beam envelope equation, 
and a self-consistent Poisson equation. In Sec. III. a numeri- 
cal technique for computing the warm-fluid beam equilibria 
is discussed. Several examples of the thermal beam equilib- 
rium arc presented. The radial confinement of the beam is 
demonstrated. In Sec. IV, the conclusions are presented. 

II. WARM-FLUID BEAM EQUILIBRIUM 

We consider a thin, continuous, axisymmetrie (fllflO 
=0), single-species charged-particle beam, propagating with 
constant axial velocity V.e: through an applied periodic so- 
lenoidal magnetic focusing field. The applied periodic sole- 
noidal focusing field inside the beam can be approximated by 

B"V,.v) = - kB'(s)re, + B.(s)L, (1) 

1 Electronic mail: ksenias@mii.eJu 

where s-z is the axial coordinate. r=\x~+y~ is the radial 
distance from the beam axis, prime denotes the derivative 
with respect to s, and B-(s) = B.(s + S) is the axial magnetic 
field, which is periodic along the --axis with periodicity 
length S. 

In the paraxial approximation. 'bom "^-*> >s assumed, 
where rbrnK is the nns beam envelope. The transverse kinetic 
energy of the beam is assumed to be small compared to its 
axial kinetic energy, i.e., |V.|>|V,|. The Budkcr parameter 
of the beam is assumed to be small, i.e., q2Nb/mc2< yb. 
where q and m are the particle charge and rest mass, respec- 
tively, c is the speed of light in vacua, Nh=2Trf^drnih(r.s) is 
the number of particles per unit axial length, and yb is the 
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relativistic    mass    factor,    which,    to    leading   order,    is 
yfc=const=(i-^)-1/2 with pb=Vb/c = Vz/c. 

It is convenient to express the self-electric and self- 
magnetic fields, produced by the space charge and axial cur- 
rent of the beam, in terms of the scalar and vector potentials, 
i.e., Esdf(/-..v)=-V</>seV,.v) and Bidf(r,j)=VxA'df(r,s), In 
the paraxial approximation, the self-field potentials (/>self and 
Ase" are related by the familiar expression A^sA* ez 

= {lb</>xi((r,.s)e-."  Consequently,  the  self-magnetic  field  is 

In the paraxial approximation, the warm-fluid equilib- 
rium (fHrit = G) equations are 

;;,,V • V(yhm\) = n,,c/ •\'<l>sd(+- X (Bcxl + Bsc") 
c 

-Vp, 

V(nfcV) = 0, 

V2rlV,.v) = -4ir(/»tlr..v), 

p(r,s) = nb(r,s)kBTi (,v), 

7'±('s)''brms(-v) = COnSt- 

(2) 

(3) 

(4) 

(?) 

(6) 

In Eqs. (2)-(6), p{r,s) is the thermal pressure, T (s) is 
the transverse beam temperature which remains constant 
across the cross section of the beam, and 'VmsM is the 
root-mean-square (mis) radius of the beam, defined by 
rl>TmJ,s)=N~h

[2ir$Qdrr'nh(r,s). Equation (6) states that the 
beam motion is adiabatic. Note that for the axisymmetric 
beam in the paraxial approximation, we can approximate 
V2 = (l Ir)(dldr)rSIdr to leading order in the Poisson equa- 
tion (4). 

We seek a solution for the equilibrium beam profile of 
the form 

Vr(r,s) = r 
.(*) 

rbrimU) 

V,ir.s) = rilb(s). 

A/'- (7) 

(8) 

which corresponds to a beam undergoing rotation with the 
angular frequency il/,(s) to be determined self-consistcntly 
later [see Eq. (20)]. 

The radial component of the momentum equation (2) can 
be rewritten as 

,<i 
\n[nb(r.s)] 

^Ur^f|-!W.[(W + nf(s)] 

q        ^sdV„v) 
%kBTL(s)       dr 

(9) 

where use of Eqs. (5), (7), and (8) have been made and 
£lc(s)=qBz(s)/mcyb is the relativistic cyclotron frequency. 
Equation (91 can be integrated to give the density profile 

nb(r,s)=f(s)c\p\- 
W"A>' #v 
2k„T.(s) 

& 

.KJJ). ah(s)-[ah(s) + i\is)} 

{ rbrms(i') 

q<l^H\r,s) 

•foaTM 
10) 

where /(.v) is the peak density at the center of the beam, 
which is an arbitrary function of s to be determined later [see 
Eq. (18)]. Using the density profile given in Eq. 110). we 
obtain a useful expression for the rms beam radius, i.e.. 

'brmsW = 2 
kBTM ~ + fNb 

_ W"A^-2    2ylm(ij,c2 

rlJs)     nb(s)[Clb(S) + il,.(s)] 
rbrms(-v) nic2 

(in 

where we have assumed that the beam density is infinitely 
small at r==°. 

Since kBTt (s)=(myb/2)((y , -V , )2)r=my6<(i;A.-Vr)->r, 
(A-2)i-=/',")rms(.v)/2, we can express the rms thermal emittance 
of the beam as 

4 = (W"V)r(("I-VI)
2>r = 

2m ybplc2 (12) 

where the statistical average of \ 's defined in the usual 
manner by {x)v=N~h f xfbdxd}'dpxdpv with fb being the par- 
ticle distribution function corresponding to the warm-fluid 
beam equilibrium."'' Combining Eqs. (11) and (1 2) yields the 
following rms beam envelope equation 

„        fuy)[n,;iv) + fUQ]     , , 
rbnro',$' ,,:   : 'brmsvV ' 

K 

A''' •W bmis(-s'' 

(13) 

where K = 2Nbq
2lyy

bml^bc
1 is the self-field perveance. 

Substituting Eq. (13) into Eq. (10) we obtain the simpli- 
fied expression for the equilibrium beam density 

nh(r,s)=f(s)c\\-)\ - 
-Kb 

K+    4e5, 
2   >iuJs"i TfraT W 

(14) 

where the scalar potential for the self-electric field satisfies 
the Poisson equation 

rdr 
r—<fFK(r,s) 

ctr 

= - 4rrqf(s)exp\ - —^ 
4<4 

K 
— + - 
2     r 

4e5 

»W 

</(/»"•" (r,.v) 

y},kBT (s) 

(15) 

Note that when B.(.?) = const. the beam density in Eq. (,14) 
recovers the well-known thermal rigid-rotor equilibrium in a 
uniform magnetic field. 

The density profile in the form of Eq. (14) and the ve- 
locity profiles (7) and (8) have to satisfy the continuity Eq. 
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(3). Substituting Eqs. (7), (8), and (14) into Eq. (3), and 
integrating over the cross section of the beam yields 

d 

ds 

~    hrms 

'"bri 

df(s) 

As)  ds 

K   d 

4elds 
ns(-V) M 

qNb 

= 0. (16) 

Note that Eq. (16) is equivalent to the conservation of the 
total number of particles per unit axial length, i.e.. 

dN, 

ds 
0,    or N,= const. 17) 

Setting the sum of the first two terms in Eq. (16) to zero 
gives 

M - c 
.(') 

(18) 

where C is a constant of integration. 
We solve the Poisson equation (15) to determine the 

electric self-field potential, with f(s) satisfying Eq. (18), 
where the electric self-field potential on axis d>x{t(r=Q,s) is 
determined by setting the sum of the third and fourth terms 
in Eq. (16) to zero. A numerical scheme for determining 
^lf(r=0,s) win t>c described in Sec. III. The electric self- 
field potential energy on axis </<£sdt(0..v) is very small com- 
pared to the beam transverse thermal energy, which will be 
demonstrated in Sec. III. 

To gain further insight into the azimuthal motion of the 
beam, we make use of Eqs. (7) and (8) to re-express the 
azimuthal component of the momentum equation (2), i.e., 

nb(r,s) 
rbmJs)     a        a 

rbrms(s)       dr as ilb(s)r2+-ilc(s)>2 = 0. 

(19) 

Consistent with Eq. (8), we find the solution to Eq. (19) as 

il,,(.v) = --I2,.(.v) + - "VM 

^brimM 
(20) 

where wh and rh() are constants. In Eq. (20), the term 
<<V7,(/'bnns^ represents the azimuthal beam rotation relative 
to the Larmor frame, which rotates at the frequency 
-£l,.(s)/2 relative to the laboratory frame. 

Substituting Eq. (20) into Eq. (13), we obtain the follow- 
ing alternative form of the rms beam envelope equation: 

Js) + 
1 4 

K-(s) • 
•W^c2 .(*)• 

K 
2rbnm(.y) 

4«rh 

Is) 
(21 

where \jK.{S) = cjB:(s)/2yhphmc2 is the focusing parameter. 
In the limit R,h=0, Eq. (21) recovers the previous envelope 
equation for the cold-fluid beam equilibrium.8 

Note that the term proportional to w^r/x)//brms(5) in Eq. 
121) plays the role of an effective emittance contribution to 
the envelope equation associated with the average azimuthal 

beam rotation relative to the Larmor frame, and that the rms 
beam envelope equation (2!) agrees with the well-known 
rms envelope equation, ° with the interpretation of the total 
emittance 

5r=16eth + 4 •"//Ml 

fir' 

III. EXAMPLES OF WARM-FLUID 
BEAM EQUILIBRIA 

In this section, we present a numerical technique for 
computing the warm-fluid beam equilibria. We calculate the 
beam density by solving the self-consistent Poisson equation 
and present several examples of warm-fluid beam equilibria. 
We show that thermal beam equilibria exist for a wide range 
of parameters and discuss the radial confinement of the 
beam. 

To determine the warm-fluid beam equilibrium numeri- 
cally, we obtain the matched rms beam envelope by solving 
the rms beam envelope equation (21) with periodic boundary 
conditions." Then, we use the matched rms beam envelope in 
the calculation of the beam density and potential at any given 
s from Eqs. (14) and (15). 

We calculate the scalar potential for the self-electric field 
using the Poisson equation (15). We rewrite the Poisson 
equation (15) as 

i a 

r ar 

a 
r—Ad>(r,s) 

ar 

4nqC 

Js) 

Xexpi 

exp 

r 

</</>""(/• = 0..v) 

K      4*i 

•Kh L 2      '"brmsW 

qAd>(r,s) 

nkBTAs) 
(23) 

where A<A(r,.y) = dyxn(r,s)-d>xU(r=(),s) and use has been 
made of Eq. (18). We solve Eq. (23) with the boundary con- 
ditions 

A</>((U) = 0    and 
^A<A(r,.v) 

ar 
:0. (24) 

We integrate Eq. (23) from r=0 to a few rbrms, paying special 
attention to the singularity at /=0. To avoid the singularity, 
we analytically integrate Eq. (23) with boundary conditions 
(24) near the z-axis from r=0 to r=\r (with Ar<Srhl.mJ, 
treating the beam density as a constant. Then, we approxi- 
mate &.d>(r,s) by the scalar potential of the space-charge- 
dominated beam with SK/F.IU5> 1 as 

A<A(/„v)« 
qNb 

2'bnmW 
-/-,     for r s; v'2rhi (25) 

Using this potential we numerically integrate Eq. (23) out- 
wards from r=Ar. 

For the purposes of numerical calculations, it is useful to 
rewrite Eq. (17) as 
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FIG. I. Normalized beam envelope profiles for S\KAS)=CI0 

+ a, COS(2TO/S), «0=«I = 1.14. coh=0, a warm-fluid (solid curve) beam equi- 

librium with K= 10. and a cold-fluid (dashed curve) beam equilibrium with 

k=*. 

.v f Jo 
<b  i    2imbrdr 

I - C cxp 

\ 

= 0. 

r 
Jo 

«7<Tlf< r = 0,.v) 

ex r4 
7"i(*)   . 

A:     4 

- 2       rbr, 

2 

„(»)J \rdr 

(26) 

In our numerical calculations, an iterative procedure is ap- 
plied to solve Eq. (26), and A is less than l()~4. 

Figure l shows the rms envelope profiles for S\jK.(s) 
=a0+«i COS(2T7.V/5), a0=ai=\.14. d)h=0, a warm-fluid 
(solid curve) beam equilibrium with the "scaled"' normalized 

perveance K=KS/4t:th-\0, and a cold-fluid (dashed curve) 

beam equilibrium with K=^. The rms beam radius ^'^(.v) 
for the cold-fluid beam equilibrium is determined from Eq. 
(21) with the right-hand side equal to zero. In Fig. I, the 
effects of the tinite temperature enlarge the rms beam enve- 
lope by l%. 

In Fig. 2 we plot the on-axis electric self-field potential 
energy relative to the beam transverse thermal energy, 

(/4>x"(Q,x)/rhkBT (.v), as a function of s/S for K=0.\. I, and 
10. The rest of the parameters are the same as in Fig. I. The 
integration constant C is chosen such that </>self(0,574)=0. 
The electric self-field potential on axis is indeed small, 
which is consistent with the paraxial approximation. 

Figure 3 shows the density profiles for the warm-fluid 
(solid curve) and cold-fluid (dashed curve) beam equilibria 
corresponding to the examples discussed in Fig. I. The 
warm-fluid beam density is nearly uniform up to the beam 
edge where it falls rapidly within a few Debye lengths. Here, 
the Debye length is defined as 

0.03 II   I   I   I   |   I   I   I   I   | 

0.02 ~      \ 

0.01 7 

^ 0.00 1 

*?       : 
-0.01 - 

-0.02 - 

-0.03 

I   |   I   I   I   I   |   I   I   I 

••   •   •   •   I i   •   I i   i   i   i   i   i 

— K-o.i : 

— k = I 

— k =io  : 
• i i i i i 

o.o 0.2 0.4 0.6 
s/S 

0.8 1.0 

FIG. 2. Plol of the on-axis electric self-field potential energy relative to the 

beam transverse thermal energy as a function of s/S for A"=0.1, I, and It). 
The other system parameters are the same as in Fig. I. 

\n = 
Y„kBT(s) 

47Tc/2nh(0.s) 
(27) 

For the warm-fluid beam equilibrium, rbrms= 15.4X.D. The 
density of the cold [7"_(i) = 0] beam is (sec, for example, 
Ref. 8) 

«rld(r,5) = 
•Y„ 

2*^(5) farr*ViO*)- (28) 

The effect of the beam temperature on beam density dis- 
tribution is illustrated in Fig. 4. As we increase the beam 

temperature and keep other system parameters the same. K 
decreases, and the density profile makes the transition from a 
step-function profile (for T =0) to a bell-shape profile, as 
shown in Fig. 4. 

There is a wide range of parameters for which the warm- 
fluid beam equilibrium exists in a periodic focusing channel. 
For practical purposes, it is useful to determine the radial 
confinement in an average sense. In Fig. 5, we plot the nor- 

FIG. 3. Plot of the relative beam density vs. r/\D for a warm-fluid beam 
equilibrium (solid curve) and a cold-fluid beam equilibrium (dashed curve) 
at .s=0 for the same parameters as in Fig. I. Here, ''hnn,ra I5.4X0 for the 
warm-fluid beam equilibrium. 
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FIG. 4. Plot of the relative density profiles at .v=0 at several temperatures: 
K=x (cold). 10. 5. and 2. The other system parameters are kept the same as 
in Fig. I. 

FIG. 6. Plot of the critical effective self-field parameter (se) as a function of 
K = KS/4s,h. The shaded region gives the parameter space for radial beam 
confinement. 

malized angular frequency of beam rotation in the Larmor 
frame, (S/avPi,c)((lb{s)+{lc(s)/2), as a function of the ef- 
fective self-field parameter <.ve) = S2(^/,(.v))/2-y^a^^f2 for 

K=0A, 0.2, 1, and 10. The beam propagates in a periodic 
solenoidal focusing field with S\jK-(s)=a0+ai CQS(2ITS/S), 

where «,)=«, = 1.14. The beam current is kept the same while 
the rms thermal emittance eth of the beam decreases. Here, 
(jjph(,s) = (4'rrq1nh{0,s)/yhm)U2 is the plasma frequency, tr„ 
= JQWQ (s)ds is the vacuum phase advance over one axial 
period 5, the amplitude function w0(s) satisfies the following 
equation (see, for example, Rcf. 11): 

H'o(.S') + Kz(s)\V0(s) = 
»l(s) 

(29) 

and (f(s))=S~lftf(s)ds denotes the average of the function 
f(s) over one axial period of the system. 

While Fig. 5 is computed for the specific periodic sole- 
noidal   focusing   field   with   S\JK.(s)=a0+ai cos(2m7S), 

ifolPW 

FIG. 5. Plot of the normalized angular frequency of beam rotation in the 
[..armor frame as a function of the effective self-field parameter for normal- 
ized perveances K=0.\, 0.2, 1, and 10. 

where a()=c<i=1.14, we observe no change in Fig. 4 if wc 
vary the values of «„ and a\, provided that the vacuum phase 
advance CTV of the magnetic field does not change. For a, 
= 0, Fig. 5 recovers the thermal beam equilibrium in a uni- 
form magnetic focusing field (see Ref. 5). 

As shown in Fig. 5, each curve at a particular value of K 
has two branches. For any value of the effective self-field 
parameter (se) below a critical value, a confined beam can 
rotate at two angular frequencies, either positive or negative 

relative to the Larmor frame. For each value of K, the maxi- 
mum (critical) value of the effective self-field parameter for 
a confined beam is reached when the beam does not rotate 
relative to the Larmor frame. In Fig. 6, the critical effective 

self-field parameter (se) is plotted as a function of K 
= KS/4slh. The parameter space for radial beam confinement 
is indicated by the shaded region in Fig. 6. 

IV. CONCLUSIONS 

We presented a warm-fluid equilibrium beam theory of a 
new thermal charged-particle beam propagating through a 
periodic solenoidal focusing field. Wc solved the warm-fluid 
beam equations in the paraxial approximation. We derived 
the rms beam envelope equation and solved it numerically. 
We also derived the self-consistent Poisson equation, govern- 
ing the beam density and potential distributions. We com- 
puted the density profiles numerically for high-intensity and 
low-intensity beams. We investigated the temperature effects 
in such beams. We found that the thermal beam equilibrium 
has a density profile with a smooth edge and a uniform tem- 
perature profile across the beam cross section. Finally, we 
discussed the radial confinement of the beam. 
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A high-brightness circular charged-particle beam system 
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A method is presented for the design of a high-brightness nonrelativistic circular beam system 
including a charged-particle emitting diode, a diode aperture, a circular beam tunnel, and a focusing 
magnetic Held that matches the beam from the emitter to the beam tunnel. The applied magnetic- 
field is determined by balancing the forces throughout the gun and transport sections of the beam 
system. The method is validated by three-dimensional simulations. © 2007 American Institute of 
Physics. [DOI: 10.1063/1.2815938] 

High-brightness, space-charge-dominatcd charged- 
particle beams arc of great interest because of their applica- 
tions in particle accelerators, x-ray sources, vacuum electron 
devices, and material processing such as ion implantation. 
When the beam brightness increases, the beam becomes 
space-charge dominated. In the space-charge-dominated re- 
gime, the beam equilibrium is characterized by a beam core 
with a transversely uniform density distribution and a sharp 
edge where the beam density falls rapidly to zero in a few 
Debye lengths. For particle accelerators, high-brightness, 
space-charge-dominated charged-particle beams provide 
high beam intensities. For medical accelerators and x-ray 
sources, they provide higher and more precise radiation dos- 
age. For ion implantation, they improve deposition unifor- 
mity and speed. For vacuum electron devices, they permit 
high-efficiency, low-noise operation with depressed 
collectors. 

An essential component of charged-particle beam sys- 
tems is the beam generation and acceleration diode, consist- 
ing of a charged-particle emitter and a gap across which one 
or more electrostatic potential differences are maintained. 
Conventionally. Pierce-type diodes1 with or without a grid 
are employed to produce the Child-Langmuir emission."" 
Compression is often used in Pierce-type diodes in order to 
generate the desired beam radius. Scrapers are often used 
also to chop off the nonuniform beam edges. The grid, com- 
pression, and scrapers introduce a mismatch into the beam 
systems and degrade beam brightness. An important aspect 
of charged-particle beam system design is the transition from 
the diode to the beam focusing tunnel. While the rigid-rotor 
equilibrium is well known for a uniform solenoidal focusing 
field."' a perfect matching of a circular beam from a Pierce- 
type diode into the rigid-rotor equilibrium has not been re- 
ported until this letter. 

In this letter, a method is presented for the generation, 
acceleration, focusing, and collection of a high-brightness, 
space-charge-dominated circular charged-particle beam. As 
illustrated in a cross sectional view shown in Fig. 1, the 
beam system comprises" 

(1)   a Hal circular emitter which emits charged particles, 

(2) a diode with one electrode at the emitter and at least one 
additional electrode which accelerates the charged par- 
ticles, 

(3) a beam tunnel which is connected electrically to at least 
one of the additional electrodes, 

(4) an applied axisymmetric magnetic field for charged- 
particle beam focusing, and 

(5) a depressed collector which collects the charged-particle 
beam. 

The emitter consists of a flat, circular disk. A circular 
charged-particle beam is emitted from the emitter with a uni- 
form density. The current emission is space-charge limited, 
obeying the Child-Langmuir law. The electrodes and applied 
axisymmetric magnetic field are designed to preserve the 
beam cross section in the accelerating section. The method 
for designing the required electrodes and applied axisymmet- 
ric magnetic field is described as follows. 

As a first step, the beam dynamics is modeled with a 
three-dimensional OMN1TRAK simulation with no applied 
magnetic field. This provides the electric field database 
which is used to compute iteratively the applied magnetic 
field required to preserve the cross section of the charged- 
particle beam at the accelerating and transport sections. 

As a second step, an estimate of the required applied 
magnetic field is obtained by balancing all of the radial 
forces on the charged particles on a line whose radius corre- 
sponds to the root-mean-square (rms) radius of the emitter. 
The line starts at the cathode disk and continues through the 
anode aperture. 
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FIG. 1. Cross sectional view of a high-brightness circular charged-particle 
beam system. 
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For a thin charged-particle beam, all forces are propor- 
tional to the radial displacement, and an expression for the 
required magnetic field can be derived to achieve the radial 
force balance at any radius in the beam core. An applied 
axisymmetric magnetic field is expressed in terms of the vec- 
tor potential in a cylindrical coordinate system as 

1 '? B = e.---(M„) 
r rir 

e, 
dAg 

In the thin-beam approximation, 

.     1 dBz(0,z) . 
B = ^(0,z)e.--—-—-rer. 

2     * 

Inspection of Eqs. (1) and (2) gives 

/\„(r.z) = V(0.z). 

ID 

(2) 

(3) 

The conservation of canonical angular momentum yields the 
expression for the azimuthal velocity 

y9(r,z) = -^L[fl,(0,z)-B2(0,0)]r, 
2m 

(4) 

where use has been made of i>tf(r,0) = 0 at the emitter, and q 
and in arc the particle charge and rest mass, respectively. The 
radial force balance equation is 

qEr(r,z)        tflr.z) 
-ve{r,z)B7(r.z). 

in i u\ 

Substituting Eq. (4) into Eq. (5) yields 

^^ = ^Wz). 
m 4w~   * 

(5) 

(6) 

where use has been made of the approximation B.(i\z) 
=B.(0,z) and the boundary condition #.(0,0)=0. Equation 
(6) produces a relationship between Erlr and B.(0,z). 

By iterating the second step described above, better es- 
timates of the required magnetic field are obtained. Typically, 
results converge after two or three iterations. As an illustra- 
tive example. Fig. 2 shows the final results of OMNITRAK 

simulations with a grid with A.r=A_v=0.05 mm and 
Az=0.1 mm for a circular electron beam which is emitted 
from an emitter (cathode) with a radius of 1.52 mm, a cur- 
rent of 0.11 A, a cathode-to-anode distance of 4.11 mm at 
radius r=1.52 mm. The diode voltage is 2300 V. In Fig. 2, 
the electrodes at the cathode and the anode arc cquipotential 
surfaces which are analytically computed ~ to yield a Child- 
Langmuir flow" in the absence of the anode aperture. A 
circular aperture at the anode is chosen, and it has a radius of 
1.8 mm. A larger circular beam tunnel with a radius of 
6.0 mm is connected to the anode. The total axial length of 
the system is 10 mm. 

Figure 3 shows plots of Er vs z at r= 1.0 mm and B:(0,z) 
vs z from the OMNITRAK simulations after two iterations. The 
radial electric field vanishes at the emitter (i.e., at z=0), 
achieves a maximum magnitude at 2=4.11 mm, and then ap- 
proaches to a constant value well inside the beam tunnel. The 
applied axial magnetic field at the emitter vanishes, increases 
to 640 G at the aperture, and then falls to about 160 G well 
inside the beam tunnel. In the simulation, Eq. (6) is exactly 
satisfied for all the electrons on the rms beam radius, and 
approximately satisfied for the electrons not at the rms beam 

8.0 
z (mm) 10.0 

FIG. 2. (Color online) OMNITRAK simulation of the dynamics of an electron 
beam emitted from a flat circular cathode with a radius of 1.52 mm and a 
current of 0.11 A in an optimized magnetic field. Here, the cathode-to-anode 
distance is 4.11 mm at r= 1.52 mm. the circular anode aperture has a radius 
of 1.8 mm, and the beam tunnel has a radius of 6.0 mm. The diode voltage 
is 2300 V. 

radius. The difference in the electric and applied magnetic 
forces in Eq. (6) results in less than 2% deviations of the 
electron radii from their initial values. Figure 4 shows the 
electron distribution in the phase plane (x,y) at z = 8 mm. 
The beam distribution maintains transverse uniformity. In- 
deed, the normalized fourth moment (r4)/(r2)2 which is 
equal to 4/3 for a transversely uniform density distribution, 
remains 4/3 within ±1%. The outer beam radius 
remains the same as the emitter radius within l'7c-3%. 
At z=8 mm, the normalized angular rotation velocity 
is o>,,=(.ii:'y)/(_y2) = -0.0244 rad/mm, and the unnormalized 
rms thermal cmittances in the v- and y-direclions 
are e'r

h= ^j{x2)((x'-a>by)2) = 1.96 mm mrad and «','' 

= \j{y2){(y' + <ohx)2)= 1.96, respectively, which correspond to 

a normalized rms thermal emittance of «*— y/,/^//:',' — A>B* 
=0.186 mm mrad. Adding this (numerical) emittance to the 
intrinsic normalized rms emittance of 0.33 mm mrad for a 
thermionic cathode of radius 1.52 mm predicts a normalized 
thermal emittance of e^'""'';S 0.38 mm mrad for the actual 
electron beam. 

Because the beam is in laminar flow, a depressed collec- 
tor is designed using the same geometry as the charged- 
particle emitting diode, where the circular emitting disk is 

z (mm) 

FIG. 3. Plots of Er vs z al r= 1 mm (solid curve) and fl(0.;l vs - (dashed 
curve) from the OMNITRAK simulations after two iterations. 
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IK I. 4, Plot of the electron distribution at c=X mm in the phase plane (v,v). 

the beam collecting surface, and diode voltage is slightly 
lower (i.e.. a traction of a percent lower) than the diode 
voltage but has a negative bias. Such a depressed collector 
yields a collection efficiency of nearly 100%. 

To    summarize,    a    high-brightness,    space-charge- 
dominated circular charged-particle beam system was de- 

scribed. The method was presented for the system, including 
the beam generation, acceleration, focusing, and collection 
processes. The method was validated by three-dimensional 
simulations. 
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An adiabatic equilibrium theory is presented for an intense, axisymmetric charged-particle beam 
propagating through a periodic solcnoidal focusing field. The thermal beam distribution function is 
constructed based on the approximate and exact invariants of motion, i.e.. a scaled transverse 
Hamiltonian and the angular momentum. The approximation of the scaled transverse Hamiltonian 
as an invariant of motion is validated analytically for highly emittance-dominated beams and highly 
space-charge-dominated beams, and numerically tested to be valid for cases in between with 
moderate vacuum phase advances (crv <90°). The beam root-mean-square (rms) envelope equation 
is derived, and the self-consistent nonuniform density profile is determined. Other statistical 
properties such as flow velocity, temperature, total emittance and rms thermal emittance, equation 
of state, and Debye length are discussed. Numerical examples are presented, illustrating the effects 
of the beam perveance, emittance, and rotation on the beam envelope and density distribution. Good 
agreement is found between theory and a recent high-intensity beam experiment performed at the 
University of Maryland Electron Ring [S. Bernal, B. Quinn, M. Reiser, and R G. O'Shea, Phys. Rev. 
ST Accel. Beams 5, 064202 (2002)]. © 2008 American Institute of Physics. 
[DOI: 10.1063/1.2837891] 

I. INTRODUCTION 

A fundamental understanding of the kinetic equilibrium 
and stability properties of high-intensity electron and ion 
beams in periodic focusing fields plays a central role in high 
energy density physics research, in the design and operation 
of particle accelerators, such as storage rings, rf and induc- 
tion linacs. and high-energy colliders, as well as in the design 
and operation of vacuum electron devices, such as klystrons 
and traveling-wave tubes with periodic permanent magnet 
(PPM) focusing. For such systems, beams of high quality 
(i.e., low emittance, high current, small energy spread, and 
low beam loss) are required. Exploration of equilibrium 
states of charged-particle beams and their stability properties 
is critical to the advancement of basic particle accelerator 
physics. 

Several kinetic equilibria have been discovered for peri- 
odically focused intense charged-particle beams. Well-known 
equilibria for periodically focused intense beams include the 
Kapchinskij-Vladmirskij (KV) equilibrium ~ in an 
alternating-gradient quadrupole magnetic focusing field and 
the periodically focused rigid-rotor Vlasov equilibrium in a 
periodic solenoidal magnetic focusing field. Both beam 
equilibria' have a singular (<5-function) distribution in the 
four-dimensional phase space. Such a 5-function distribution 
gives a uniform density profile across the beam in the trans- 
verse directions, and a transverse temperature profile that 
peaks on axis and decreases quadratically to zero on the edge 
of the beam. Because of the singularity in the distribution 
functions, both equilibria are not likely to occur in real 
physical systems and cannot provide realistic models for the- 
oretical and experimental studies and simulations except for 
the zero-temperature limit. For example, the KV equilibrium 

model cannot be used to explain the beam tails in the radial 
distributions observed in recent high-intensity beam 
experiments." 

In general, beams tend to relax to a thermal equilibrium 
in the transverse plane such that the temperature across the 
transverse beam cross section is uniform. A theoretical un- 
derstanding of thermal equilibrium and stable transport is 
desirable. Kinetic and warm-fluid theories of a thermal equi- 
librium in a uniform magnetic focusing field have been stud- 
ied in Ref. 3. A formal multiple scale analysis (a third-order 
averaging technique) has been applied to obtain an approxi- 
mate periodically focused thermal equilibrium in periodic 
solenoidal and periodic quadrupole magnetic fields.1' Such an 
averaging procedure is expected to be valid for sufficiently 
small vacuum phase advances. The concept of adiabatic 
breathing of high-intensity charged-particle beam was pro- 
posed in Ref. 7. Recently, a warm-fluid equilibrium theory of 
a periodically focused intense charge-particle beam" has 
been developed under the assumption of the adiabatic equa- 
tion of state. In this paper, a kinetic thermal equilibrium in a 
periodic magnetic focusing field is developed to provide 
more insight into the equilibrium properties of a periodically 
focused thermal beam. 

We present a kinetic theory describing an adiabatic ther- 
mal equilibrium of an intense charged-particle beam propa- 
gating through a periodic solenoidal magnetic focusing field. 
For continuous beams with long pulses, the longitudinal en- 
ergy spread is small such that the longitudinal motion can be 
treated as "cold" and decoupled from the transverse motion, 
which is kept nonrelativistic. The beam pulsates in transverse 
directions adiabatically like an ideal gas in an adiabatic pro- 
cess, in which the invariant is the product of the transverse 
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temperature and an effective beam area. It differs from the 
usual thermal equilibrium in which the temperature is kept 
constant. ' " In the present work, the Hamiltonian for single- 
particle motion is analyzed to rind the approximate and exact 
invariants of motion, i.e.. a scaled transverse Hamiltonian 
(nonlinear space charge included) and the angular momen- 
tum, from which the beam equilibrium distribution is con- 
structed. The approximation of the scaled transverse Hamil- 
tonian as an invariant of motion is validated analytically for 
highly emitlance-dominated beams and highly space-charge- 
dominated beams, and numerically tested to be valid for 
cases in between with moderate vacuum phase advances 
(<TV<9Q°). The beam envelope and emittances are deter- 
mined self-consistently with the beam equilibrium distribu- 
tion. Because the distribution function has a Maxwell- 
Boltzmarui form, it solves not only the Vlasov equation but 
also the Fokker-Planck equation. It is expected to be stable in 
a similar manner as the beam thermal equilibrium in a 
smooth-focusing approximation. ' 

The paper is organized as follows. In Sec. II, the theo- 
retical model is introduced. Exact and approximate constants 
of motion are found for the single-particle Hamiltonian in the 
paraxtal approximation, and the equilibrium distribution is 
constructed. In Sec. Ill, the statistical properties of the beam 
equilibrium, such as the beam envelope equation, emittances, 
and beam temperature, are discussed. In Sec. IV, the numeri- 
cal calculations of the beam density and potential are pre- 
sented. In Sec. V, the comparison between our theory and a 
recent experiment from University of Maryland Electron 
Ring (UMER) is discussed. Finally, the paper is concluded 
in Sec. VI. 

II. BEAM EQUILIBRIUM DISTRIBUTION 

We consider a continuous, intense chargcd-particlc beam 
propagating with constant axial velocity /3hce- through an 
applied periodic solenoidal magnetic focusing field. The pe- 
riodic solcnoidal magnetic focusing field is described by 

1 dB,{s), 
-Uet + yev), Bext = B.(.s)e.- 

ds 
(1) 

where s=z is the axial coordinate, Bz(s)=B.(s+S) is the axial 
magnetic field, and 5 is the fundamental periodicity length of 
the focusing field. The condition 5§>rbrnls is assumed, where 
rbrllls is the characteristic radius of the rms beam envelope. 

The single-particle Hamiltonian can be written as H 
=[m2c*+(cP-qA)2y !2+q<frieU, where the canonical momen- 
tum P is related to the mechanical momentum p by P=p 
+qA/c, A=Aex,+Aself is the vector potential for the total 
magnetic field, Asc,r is the vector potential for the self- 
magnetic field. \•'(x,y.s)=Bz(s)(-yex+xev)/2 is the vector 
potential for the applied magnetic field, </>scl1 is the scalar 
potential for self-electric field, m and q arc particle rest mass 
and charge, and c is the speed of light in vacuum. 

In the paraxial approximation, we assume vl y'bf$
L

b
<i\, 

where p=q2Nblmc is the Budker parameter of the beam, 
N b=fx n b{x ,y)dxdy=const is the number of particles per unit 
axial length, and yh=(\ -fi2

b)~
U2 is the relativistic 

mass   factor.   The   axial   energy   is   approximately   ybmc2 

= (m2cA+c2P~)1'2. Because vl ybj3rh< 1. the longitudinal par- 
ticle motion can be decoupled from the transverse particle 
motion, and the total Hamiltonian for single-particle motion 
is approximated by H = ybmc2 + HI. Here, the longitudinal 
Hamiltonian H]^=ybmc2 is a constant and the normalized 

transverse Hamiltonian H  -H  I ybmp~bc
2 is expressed as 

HAx,y.Px,Pv,s) = k{[Px + \Kz(s)yf + [P,- \K.(S)X]
2
} 

+ <Asdf, (2) 

where \K.(s) = qB.(s)l2ybmfihc
2 is a measure of the 

strength of periodic solcnoidal magnetic field. P 

= P,/ybmBhc, ^s=q^cttlybmB2
bc

2=K^eWl2qNb, and K 
= 2q2Nbl y^piBy? is the beam perveancc. The scalar 
and vector potentials for the self-electric and self-magnetic 
fields satisfy V\4fM=-A-trqnb(x,y,s), V2 A*e" 
=-4irBbcqnb(x,y,s)ep and Aself=A!elfez=&<£elfe.. The as- 
sociated equations of motion with the Hamiltonian Eq. (2) 
are 

d2x        —-dy    dxK:(s)      <14?M 

—j - 2 \ /c-(.v)— y + = 0, 
ds~ ds ds fix 

d'v 
1+2\KA.S)— + 

as as 

dx     d\K.(s) 

ds dy 
0. 

(3) 

(4) 

In order to simplify the transverse Hamiltonian 

//, ix,y,Px,Py,s), we perform a two-step canonical transfor- 
mation. The first step is to transform from the Cartesian co- 
ordinates into the Larmor frame which rotates with one-half 
of the cyclotron frequency relative to the laboratory frame. 
The second step is a Courant-Snydcr type of transformation. 
The first transformation uses the second type of the generat- 
ing function 

F2(x.y;Px,Pv,s) = [x cos <p(s) - y sin <p(.v)]P, 

+ [jr. sin <p(s) + v cos (/>(.V)JPV. 

where <p(s)=fil)\JKz{s)ds. The transformation is 

x = —^ = x cos <p(s) - v sin <p(s), 
dPx 

JF-, 
y = —^ = x sin <p(.v) + v cos <p{s). 

dP, 

SF-,     - 
Pv = —- = Pv cos <p(.y) + Pv sin ip(s), 

dx 

dF-, 
P.. = —- = - P. sin <p(s) + P., cos tp(s). 

dy 

IS) 

(6) 

(7) 

IS) 

i')) 

The transverse Hamiltonian after the first transformation is 
expressed as 
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Hl(x,y,Px.Py,s)=H1(x,y,Px,Py,s) + 
f)F2 

its 

= -[/>; + />- + K:(S)(X
2
 + f)] + <t>x"(x,y,s). 

(10) 

Note that {a2ldx2 + ci2iay2)4>xW{x,y,s) = (»2ldx2 

+ d2/rly2)<j>xil(x.y.s). The equation of motion associated with 
the transverse Hamiltonian in Eq. (10) is 

ds: + K,(s)x + 
W* 

iix 
= o. 

—'- + K.(S)X + 
ds- dv 

self 

:0. 

(ID 

(12) 

The second canonical trans formation uses the second 
type of the generating function 

F2(x,y;Px,Pv,s) = 
w(s) 

P,+ 
dw(s) 

'.    ds 

w(s) 

\dw(s)_ 
P..+ V 5     2   ds   • 

where vv(.v) satisfies the differential equation 

d2w(s) 

ds2 + KAS)W(S)- 

2»bnnsW 
vr(.v) 

w\sY 

(13) 

(14) 

and 'brms(s' 's tnc rms beam radius. It will be shown in Sec. 
Ill that the function tr(.v) is related to the rms beam radius 
[see Eq. (29)]. The transformation is 

dh\ 

P,= 

P.*- 

8PX  "Cs)' 

r)F2      y 

flF2       1 

<lx      w(s) ds 

AF2 1_ 

fly      iv(.v) 
Pv + y 

dw(s) 

ds 

(15) 

(16) 

(17) 

(18) 

Using Eqs. (15)-(18), tne transverse Hamiltonian is trans- 
formed into 

HL(x,y,Px.Py,s) 
2w-(s) 

K 
+ 

[P2 + P2 + x2 + y2]+^(x,y,s) 

n-2(s)(x2 + f). (19) 
4,brms(*) 

The equations of motion associated with the Hamiltonian in 
Eq. (19) are 

dx   m P, 
ds    apx 

w2(s)' 

dy     SH Py 
ds   apy 

w2(s)' 

dPx           f)H: X d<i>K]t K 

ds          clx w2(s) dx 2rhrms(-0 

dP,        dH^ y 4sdf 
K 

ds          fly w2(s) ffy 2'bnnsV*) 

w (s)x. 

w2(s)y. 

(20) 

(21) 

(22) 

(23) 

In order to construct a beam equilibrium distribution, we 
need to find constants of motion of the system. Two con- 
stants of motion can be found using the transverse Hamil- 
tonian in Eq. (19). It is readily shown that the angular mo- 
mentum P0 is a constant of motion, i.e., 

dP, 

ds 
(24) 

In deriving Eq. (24), we have used Eqs. (20)—(23), and the 
axial symmetry property of the self-field potential, i.e., </>se" 
is only a function of r=xx2+y2 and s. 

We also find that the scaled transverse Hamiltonian for 
single-particle motion, 

E=\^{s)Hx(x,y,Px,Py,s), (25) 

is an approximate invariant. The transverse Hamiltonian is a 
highly oscillating function. We use the periodic function 
w (s) to scale the transverse Hamiltonian and to eliminate 
the oscillations such that the scaled transverse Hamiltonian is 
an approximate invariant with small residual oscillations. As 
will be discussed in Sec. IV, the small residual oscillations 
are numerically estimated to be a few percent. Using Eqs. 
(20)-(23), the derivative of the scaled transverse Hamil- 
tonian can be evaluated, using 

f = Ml-(x* + f + F; + Pl) + w2(s)^{r,s) 
ds     ds    2 

K»\s) _, 
+ —^ ~r~ 

4»ta»(*) 

2/   * 3self/-   x        Kw (-V)  -•» 
4'brmS(*)     . 

(26) 

It is readily shown that dElds is approximately zero in 
two limiting cases: (a) a highly space-charged-dominated 
beam with SKIE^> 1 and (b) a highly emiltance-dominated 
beam with SKIt:lh — Q, where «lh is the thermal beam cmit- 
tance defined later in Eq. (35). For a highly space-charge- 
dominated beam with SK/t:lh> 1, 
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«M r,    tor /• < \2/-brmi 
'brms'-V 

(27) kBTL(s) = t/JtW2^)]"1^ | (v± -\±)2fbdPxJPy 

and dE/ds = 0. For a highly crnittance-dominatcd beam with 

SAVe,,,-^, ^n,i, = 0 and dE/ds=0. For cases in which the 
space-charge effect is comparable to the emittance effect, we 

will demonstrate dElds = () numerically in Sec. IV. 
We choose the beam equilibrium distribution in the form 

similar to the Maxwell-Boltzmann distribution, i.e., 

/ft = CcxpT-/•»(£-«„/»«,)!. (28) 

where C. fr and cob are constants. C is an integration con- 
stant, fi is related to the beam emittance, and u>h is the rota- 
tion frequency relative to the Larmor frame. Note that o)h 

=0 for Brillouin flow and o»h=^0 for general flows in which 

there is magnetic flux on the emitter. Since P0 and E are the 
constants of motion, the distribution function fb defined in 
Eq. (28) is indeed a Vlasov equilibrium, i.e., dfblds=0. 

III. STATISTICAL PROPERTIES 

In this section, we will discuss the statistical properties 
of the thermal equilibrium developed in Sec. II, including the 
mis beam radius, rms emittance and thermal emittance, flow 
velocity, beam temperature, and beam density profile. 

The distribution function described in Eq. (28) has the 
following statistical properties. First, the rms beam radius 

rlrms{s)^(x2+y2)=!VJ,]ff(x2
+y1)fhdxdydPxdP, can be 

evaluated to yield 

brms (*) = 
0(1-05) 

It  \ — F'T   2,   \ 

where we have introduced the concept of the total emittance 
K, = Air\\-(0])'\ Substituting Eq. (29) into Eq. (14), we 
arrive at the rms envelope equation. 

d rbtr" K 
</v + *;(•*) rbn -w, 

(30) 

Second, the rms beam emittance of the beam equilibrium 
described in Eq. (28) is given in the Larmor frame by 

e*rms = U-^X*'2) - (xx'f = B'W4 = const. (31 

Similarly, e^rms=e7-/4=const. Note that Eq. (30) agrees with 
the well-known rms envelope equation in Ref. 10 with the 
interpretation of the total emittance in Eq. (29). As a third 
statistical property, in dimensional units, the average (mac- 
roscopic flow) transverse velocity of the beam equilibrium is 
given in the Larmor frame by 

\L(r.s) = [nbw2(s)]- 
// 

V.fbdPJP, 

rbrms(v) 
/V'-e,.+ 

>'i<->b 

. 2r>;,ms(s') 

JKJS) /3hcret,   (32) 

As the fourth property, the beam equilibrium described by 
Eq. (28) has the transverse temperature profile (in dimen- 
sional units) 

(1 -<ol)inyh0},c2e2
r 

(33) 

where kB is the Boltzmann constant. Note from Eq. (33) that 
the product 7'i(.s)rhnlls(.0 is a conserved quantity (d/ds=0) 
as the beam pulsates transversely; that is, the equation of 
state is 

Ti. frKnmCO- const. (34) 

Since 2irr\rms is a measure of the effective area of the beam, 
Eq. (34) is analogous to the equation of slate for a two- 
dimensional adiabatic plasma. " As the fifth properly, the 
thermal beam emittance in the Larmor frame is 

-jT^ix )((vx -Vx) ) = —  , ,     = consl. 
Pbc~ 2y/,/«^,<- 

(35) 

II   follows   from   Eqs.    (31)   and   (35)   lhat   ej-=16e2
h 

+16a)bex\ms, where the term 16o>2,BXma corresponds to the 
contribution from the average azimuthal motion in ihe Lar- 
mor frame to the total emittance. The rms envelope equation 
(30) can also be expressed as 

 7^  ——[%(•<:) + n,(.v)]rbrms(.v) - — 
ds~ f?ht- 2/hll„J.v) 

rbrmsVy) 

(29)       where     ilb(s) = <obeT^bc/2rlms(s)-ac(s)/2 and 
=qBz(s)/ yi/nc. Finally, the beam density profile is 

nb(r,s) = w-2(s)\ JfdPxdPy 

(36) 

ilJs) 

47i-Cfi ih 
cxp) 

K 4fi 

.(') *£ 

%kBTt{s 
<f>xlf(r,s) (37) 

where the scalar potential for the self-electric field is deter- 
mined by the Poisson equation 

11.    Ml 
/• dr \     dr 

•4irqnb{r,s) (38) 

It is worth noting that in the paraxial approximation, the tolal 
number of particles per unit length is kept constant, i.e., Nh 

= J^nh(r,s)27rrdr. This requires the on-axis self-electric po- 
tential 0sdV=O..v) to vary as a function of the longitudinal 
distance, which will be determined numerically in 
Sec. IV. 

It is readily shown that the thermal equilibrium distribu- 
tion in Eq. (37) recovers the well-known thermal rigid-rotor 
equilibrium in a constant magnetic focusing field'' by set- 
ting d2rbTmJds2=0 in Eq. (36). 

It is worth pointing out that because the derivation of the 
theory does not assume specific magnetic profile as defined 
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FIG. I. Plots of (he normalized axial magnetic Held S\K.{S) (dashed curve) 

and beam rms envelope rhmJ v4s,hS (solid curve) versus the axial propaga- 
tion distance s/S for a periodically focused adiabatic thermal beam equilib- 
rium in an applied magnetic field described by the periodic step-function 
lattice in Eq. (39). Here, the choice of system parameters corresponds to 

SVKT„==2.I2. 7=0.4 (oo=80°), SKI4eih= 10.0, and <ob=0. 

in Eq. (1), it is valid not only for the periodic solenoid mag- 
netic Held but also for arbitrary varying solenoid magnetic 
field. Therefore, our results apply for the periodic focusing 
channel as well as for the matching section between the 
source and the periodic focusing channel. We will discuss 
numerical examples in a periodic focusing channel in Sec. 
IV and compare the theoretical results with the UMER1 ex- 
perimental measurements in a short matching solenoid chan- 
nel in Sec. V. 

IV. NUMERICAL CALCULATIONS 

In this section, we illustrate examples of adiabatic ther- 
mal beam equilibria in a periodic solenoidal focusing field 
and the temperature and beam rotation effects with numerical 

calculations. We also demonstrate numerically that dElds 
= 0. as promised in Sec. II. A numerical module has been 
added to the PFB2D code' to solve the rms envelope equa- 
tion, 136) which determines the rms beam radius given the 
periodic solenoidal magnetic field and beam perveance, and 
Eqs. (37l and (38), which determine the beam density and 
scalar potential for the self-electric field. 

We consider a thermal beam focused by a periodical 
solenoidal focusing magnetic field defined by the ideal peri- 
odic step function K.(S) = K-(S+S) with 

IV/Y-o = const,   - y/2 < s/S < y/2, 

0, TT/2 < s/S < 1 - TJ/2, 
(39) 

where rj is the filling factor of the solenoid magnetic field. In 
Fig. 1. the profile of the normalized axial magnetic field 
S \JKZ(S) is plotted as a dashed curve, and the normalized rms 
beam envelope 'Sbrms~rbnns/ '46^5 for the thermal beam is 
plotted as a solid curve. The system parameters are 

SV'K,(0)=2.12, 77=0.4, £ = S/f74cth=10, and cob=0. The 
vacuum and space-charge-depressed phase advances of the 
particle betatron oscillations over one lattice period are 
evaluated    to    be     rr() = f>/-.r^/s/2/-;;rms()=78.90     and     a 

FIG. 2. Plot of the relative beam density versus r/X/; at j=0 for the same- 
beam and focusing field as in Fig. 1. Here. rhrms= 16.\\n and the beam 
densities are normalized to the peak density. 

= eTJgds/2r^um= 10.7°, respectively. Here. rblms0 is the rms 
equilibrium beam envelope when K=0. 

In Fig. 2, the beam density relative to the peak density 
n(r,s)/n(Q,s) is plotted as a function of the radius relative to 
the Debye length at .v=0 for the same beam as in Fig. 1. 
Here, the Debyc length is defined as X7) 

— VT^s^-i (0)/47T(/2/;fc(0.0). The density has a flat top near 
the center of the beam and drops to zero within a few Debyc 
lengths near the edge of the beam. 

In Fig. 3, thermal beam density profiles arc plotted for 

£=0.1. 1.0, 3.0, and 10.0 with the focusing field in Eq. (39), 
S\/KZ(0) = 2.12, and no beam rotation in the Larmor frame 
(i.e., (oh=0). Here, the beam density is normalized to the 
peak density n0 of the beam with SA74«th= 10. The beam 
density becomes a flat profile near the beam axis as the nor- 

malized perveance K = SK/4elh increases, i.e., as the beam 
current increases or the temperature decreases. 

2.0 

,9 1.5 

o 
to 

1.0 

1—1—1—1— l 1 1 1 1  

\ £=0.1 

\v^ = 1 

\\ \K = 3 \ £ = 10 

. ->^      TS    1  .   V   ' 1 , 

c' 0.5 

0.0 
1 2 3 

FIG. 3. Plot of the relative beam density versus r/ \4nUlS for several beams 
with SK/4elh = 0A, 1.0, 3.0. and 10.0, and other system parameters the same 
as in Fig. 1. Here, the beam densities are normalized to the peak density of 
the beam with SKIAt: = 10.0. 
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1   ,   .  , 

A  — K). 1 
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FIG. 4. Plot of ihc on-axis self-electric potential relative to the beam trans- 
verse thermal energy as a function of the propagation distance s/S for sev- 
eral beams with 5A'/4£„,=0.1, 1.0, 3.0. and 10.0, and other system param- 
eters the same as in Fig. I. 

0.10 

-0.1 

1   I   I   —I   I   I   '   I 

 r=0.5n brms 

K 0.2 0.4 0.6 0.8 1.0 
s/S 

FIG. 6. Plot of the quantity [SI2ir(E))JEIds versus s/S for the lour radial 

displacements of the beam with system parameters S\ K\„=2.I2, ??=().4 
((T0=80°), SK74f:,h=I.O, and «,,=(). 

The on-axis self-electric potential is determined numeri- 
cally, requiring the total number of particles per unit length 
to be constant. For the detailed numerical method, please 
refer to Ref. 8. In Fig. 4, the computed on-axis self-electric 
potential energy relative to the beam transverse thermal en- 
ergy, q<f>sM{Q,s)l yj^ijT (s). is plotted as a function of s/S 
tor SK/4elh=0A, 1.0, 3.0, and 10.0, and other system param- 
eters the same as in Fig. 1. The variation of the on-axis 
self-electric potential, i.e., the axial electric field, is indeed 
small. 

To illustrate the influence of the beam rotation rate in the 
Larmor frame on the periodically focused thermal beam 
equilibrium, we plot the relative beam density profiles for 
three choices of the rotation parameter: o)/,=0, 0.9, and 0.99 

in Fig. 5. The system parameters arc 5y/Cr(0)=2.12 and A' 
= 10. As the beam rotation increases, the beam radius in- 

•/fas 

FIG. 5. Plot of the relative beam density versus rl \4EJ.5 for several beams 
with SA74Elh=10.0, w,,=0, 0.9. and 0.99, and other system parameters the 
same as in Fig. I. Here, the beam densities are normalized to the peak 
density of the beam with wj,=0. 

creases, and the peak density at the beam axis decreases. 
However, the Debye length is intact as the beam rotation rate 
varies. 

Finally, we demonstrate the approximate invariant of the 
scaled transverse Hamiltonian as defined in Eq. (25) for the 

cases SK/s1—»1. Instead of showing dE/ds~{) for each 
single particle, which requires very intensive numerical cal- 
culations, we demonstrate, by numerical calculations, that 

the scaled transverse Hamiltonian E is slowly varying at a 
few radial displacements. In Fig. 6, the quantity 

(S/2ir(E))dE/ds is plotted as a function of s for various 
radial displacements r=0.5rbrms, rbrms, v2rbrms, and 2rbrms 

with other system parameters Oo=80°, A = l, and OJ,,=0. 

Here, (E) - i£' JJ Ef„dPxdPy = {(r+eT/2) + w2{s) <T "(r. s) 
+ [A_H'4(.s')/4rhrms(.s')]r2 is the scaled transverse Hamiltonian 
averaged over the particles located at the same radial dis- 

placement. Indeed, a maximum value of |(.S72TT(£'))</£/</.SJ 

= 0.06, which is achieved at s/S=0.2 and 0.8, assures that 

dElds = Q in the paraxial approximation. 

V. COMPARISON BETWEEN THEORY 
AND EXPERIMENT 

In this section, we compare the present adiabatic thermal 
beam equilibrium theory with experimental measurements. 
The system is a 5 keV electron beam focused by a short 
solenoid magnetic in one of the experiments of UMER/ In 
Ref. 5, the electron beam was generated by a gridded gun 
and exited the gun through an anode aperture at s = (). Bell- 
shaped beam density profiles were imaged by a fluorescent 
screen while the detailed velocity space distribution was not 
accessible. The bell-shaped beam density profile and the 
change of the beam density shape as the beam propagates 
have not been well understood theoretically using previous 
equilibrium theories, such as the KV beam equilibrium. 

Using our adiabatic thermal beam equilibrium theory, we 
replicate the beam density profiles at different axial distances 
in good agreement with the experimental measurements. Our 
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PIG. 7. Plots of calculated beam radius R= \2/hlms (solid curves) for three 
5 keV electron beams with currents (emittances): 43 mA (4e;rm5 

= 71 mm-mrad), 6.5 mA (4K)-rnls = 3[) mm-mrad). and 1.9 mA (4einTls 

= 20 mm-mrad). The dotted curves are the available experimental measure- 
ment for two beams: 43 mA (4Efral, = 71 mm-mrad) and 1.9 mA (4Ej-ms 

= 20 mm-mrad). The on-axis magnetic field is shown as a dashed curve. 

equilibrium theory is applicable to this experiment from the 
anode aperture to a distance prior to wave breaking initiated 
by high-order density distribution fluctuations induced by a 
pressure force at the anode aperture. Wave breaking occurs 
at about one-quarter of plasma wavelength, which is about 
30 cm in this example. Our equilibrium theory cannot ex- 
plain the density distribution distortion in the present form, 
but it will be possible to develop a perturbation theory based 
on the equilibrium in the future. 

The calculated rms beam radii by solving Eq. (30) arc 
shown to agree with the available experimental rms beam 
radius_ measurements/ In Fig. 7, the calculated beam radii 
R= \2rbrms are plotted as solid curves by solving Eq. (30) 
for three 5 keV electron beams with currents (emit- 
tances). 43 mA (4<-:CTms = 71 mm-mrad), 6.5 mA (4e?rms 

= 30 mm-mrad), and 1.9 mA (4efrms=20 mm-mrad). The 
three beams are focused by a short solenoid magnet whose 
on-axis magnetic field is shown as a dashed curve. The cal- 
culated beam radii for the two beams with currents 43 and 
1.9 mA agree with the previous experiment measurements 
(dotted curves) and calculations in Ref. 5. as expected. The 
calculated beam radius for the 6.5 mA beam will be used for 
the following density calculations. 

By solving Eqs. (37) and (38), we calculate the beam 
transverse density profiles of the UMER 5 keV, 6.5 mA 
electron beam at three axial distances: ,v = 6.4, 11.2, and 
17.2 cm, as shown by the solid curves in Fig. 8. The dashed 
curves are the equivalent KV beam density profiles. ' Com- 
pared with the experimental n easurements (dotted curves)," 
the calculated beam density profiles are in good agreement. 
As the beam radius increases, the beam density profile ap- 
proaches the KV (uniform) beam density profile, because the 
beam temperature must decrease in order to keep 
ri(i)r^rms(.v) at a constant. In this adiabatic process, the De- 
bye length \n= \%kBT (s)/4irq2iil,(0.s) = Q.54 mm is con- 
stant. 
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FIG. 8. Normalized transverse beam density profiles of a 5 keV, 6.5 mA 
(4E(TT11S = 30 mm-mrad) electron beam at three a.xial distances: ,s = 6.4. 1 1.2, 
and 17.2 cm. The solid curves are from theory, the dotted curves are the 
experimental measurements, and the dashed lines are the equivalent KV 
beam density distributions. The densities are normalized to the equivalent 
KV beam density at .s=6.4 cm. 

VI. CONCLUSION 

In conclusion, an adiabatic thermal equilibrium was dis- 
covered for an intense, axisymmetric charged-particle beam 
propagating through a periodic solenoidal focusing field. The 
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thermal beam distribution function was constructed. The 
beam rms envelope equation was derived, and the self- 
consistent nonuniform density profile was calculated. Other 
statistic properties such as How velocity, temperature, total 
emittance and rms thermal emittance, equation of state, and 
Dcbye length were studied. Good agreement was found be- 
tween the adiabatic thermal equilibrium theory and recent 
high-intensity beam experimental measurements at the Uni- 
versity of Maryland Electron Ring. 

ACKNOWLEDGMENTS 

This research was supported by the U.S. Department of 
Energy, Office of High-Energy Physics, Grant No. DE- 
FG02-95ER40919, Office of Fusion Energy Sciences, Grant 
No. DE-FG02-05ER54836, and Air Force Office of Scien- 
tific Research. Grant No. FA9550-06-1-0269. 

I, M. Kapchinskij and V. V. Vladimirskij, in Proceedings of the Interna- 
tional Conference on High Energy Accelerators (CERN, Geneva. 1959), 
p. 274. 

F. J. Sacherer. 'Transverse space-charge effects in circular accelera- 

tors." Ph.D. thesis. University of California. Berkeley (1968). 

pp. 15-19. 

"R. C. Davidson, Physics of Nonneutral Plasmas (Addison-Wesley, Read- 

ing, MA, 1990). 
4C. Chen. R. Pakter. and R. C. Davidson, Phys. Rev. Lett 79. 225 

(1997). 
5S. Bernal. B. Quinn, M. Reiser, and P. G. O'Shea. Phys. Rev. ST Accel. 

Beams 5, 064202 (2002). 

*R. Davidson, H. Qin. and P. J. Channell, Phys. Rev. ST Accel. Beams 2. 

074401 (1999). 

M. Reiser. Theory and Design of Charged Particle licains (Wiley. New 

York, 1994), Chap. 5. 

*K. Samokhvalova. J. Zhou, and C. Chen. Phys. Plasmas 14. 103102 

(2007). 

'M. Reiser and N. Brown, Phys. Rev. Lett. 71. 2911 (1993). 
,0R. C. Davidson, Phys. Rev. Lett. 81, 991 (1998). and references [herein. 

"F. J. Sacherer, IEEE Trans. Nucl. Sci.  18, 1105 (1971). 

"G. Schmidt, Physics of High Temperature Plasmas, 2nd ed. (Academic, 
New York, 1979), p. 70. 

13J. Zhou, B. L. Qian, and C. Chen. Phys. Plasmas  10. 4203 (2003), 
l40. A. Anderson, Part. Accel. 21, 197 (19871. 

Downloaded 08 Feb 2008 to 198.12S.179.144. Redistribution subject to AIP license or copyright: see http://pop.aip.org/pop/copyright.jsp 



APPLIED PHYSICS LETTERS 93, 151502 (2008) 

Small-signal gain theory of a nonrelativistic planar magnetron 
Jing Zhoua! and Chiping Chen 
Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, 
Massachusetts 02139, USA 

(Received 16 April 2008; accepted 15 September 2008; published online 16 October 2008) 

A small-signal theory of a nonrelativistic magnetron is developed using a planar model with a thin 
electron cloud. The theory includes both inertial effects and electromagnetic effects in a Floquet 
expansion. An analytical dispersion relation of such a planar magnetron is derived, and the growth 
rate is calculated analytically. The found instability involves the resonance between the electron 
cloud and the magnetron cavity vacuum slow waves. A good agreement is found between the theory 
and the self-consistent particle-in-cell MAGIC simulations. © 2008 American Institute of Physics. 
[DOI: 10.1063/1.2996577] 

Crossed-field devices, such as magnetrons and crossed- 
lield amplifiers (CFA), are of great interest because of their 
low cost, high efficiency, compactness, and robustness. They 
have many civilian, industrial, and military applications. ~" 
Such devices generate high power rf radiation via stimulated 
interactions, as high density electron clouds drift across the 
crossed electric and magnetic fields in periodic cavities. On 
the qualitative level, the generation and operation of such 
high density electron clouds are relatively straightforward 
following electrostatics and magnetostatics. The mechanisms 
of the rf wave generation, however, have yet to be fully 
described due to the complicated processes of the rf interac- 
tion. 

The onset of the unstable oscillations in magnetrons 
has not been analytically described although extensive 
particle-in-cell (PIC) simulations can make good pre- 
dictions for the instability characteristics. ' Previous studies 
included various models utilizing linear theories. Earlier 
work focused on the diocotron instability in the guiding- 
center approximation,'' which ignores inertial effects in the 
electron cloud. The recent work by Riyopoulos, using a 
guiding-center model, provided insight into the magnetron 
instability in the low-space-charge limit. A linear theory tak- 
ing a single rf mode in the Floquet expansion was developed 
to include electromagnetic effects.9 Despite these theoretical 
and PIC simulation efforts, a quantitative agreement between 
theory and PIC simulations has not been reported until this 
letter. 

In this letter, we develop a small-signal (linear) theory 
that includes both inertial and electromagnetic effects in a 
Floquet expansion. We consider a planar magnetron or CFA 
with the geometry as shown in Fig. 1. The A-K gap of the 
cylindrical magnetron is assumed to be small compared with 
the cathode radius. As shown in Fig. 1, the cathode is located 
at v=0 and the anode is a slow-wave structure consisting of 
a periodic array of vanes and slots. The applied magnetic 
field points out of the page, which forces the electron drift 
velocity in the v-direction. In a conventional magnetron or 
CFA, there is an electron sheath that extends out for some 
distance from the cathode. However, such a finite electron 
sheath introduces a problem of multiple poles (singularities) 
in the theoretical computation of the small-signal gain. To 

avoid the singularity problem, we approximate the electron 
sheath as an infinite thin electron cloud stream, which is 
located at x=h. Because of the resonant interaction, our thin 
electron cloud stream model captures the basic gain mecha- 
nism in the realistic shear llow in a magnetron. 

In the small-signal theory, we assume that the system 
starts from an equilibrium (dc) state and a small oscillation 
(rf) builds up as the electron cloud drifts in the A-K gap. The 
general form of any field variable i// is 

i/t=tfo(x,y) + 8tKx,y,t), (I) 

where i//Q(x,y) denotes the equilibrium field variable. Be- 
cause the magnetron is periodic in the y-direction with peri- 
odicity L, all of the perturbations in Eq. (I) must be of the 
Floquet form, 

S^x,y,t) = 2  <Hk{x)e 
q=-x 

i[k„y-oil) (2) 

where kt=kz+2'nqlL. The small-signal theory is valid for 
the initial growth stage of the magnetron interaction. Near or 
after saturation, a nonlinear theory is needed. 

The corrugation on the anode induces a small static pe- 
riodic perturbation on the equilibrium profile of the electron 
sheath, as observed in our two-dimensional (2D) MAGIC 

simulations. In our simplified model, we approximate the 
thin electron sheath by a number of electron cloud streams 
with slightly different flow velocities and express the total 
equilibrium    charge    and    current    densities    as    (>(\) = 

V 1      Vh C>  1 
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FIG. 1. Schematic of a planar magnetron with a thin electron cloud stream. 
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-el^abjS{x-h) and i{x)=-el'jLxabjVbj8(x-h)ex, respec- 
tively, where M is the number of electron cloud streams, -e 
is the electron charge, ab=1j'=](rbj is the total surface number 
density of the electron cloud, and x=h specifies the trans- 
verse displacement of the electron sheath. The equilibrium 
How velocity Vbj is determined by adding a small velocity 
\Vhj from the averaged flow velocity, 

0.04 

b       e0 

1 ll 
- + - 
2 b 

(3) 

where VD is the applied A-K gap voltage, B0 is the applied 
magnetic field strength, s() is the permittivity in vacuum, and 
b is the A-K gap width, as shown in Fig. 1. Typically, AV^ is 

a few percentage of Vb, whose value can be estimated from 
the 2D MAGIC simulations. 

Using the linearized nonrelativistic cold-fluid equations 
and the linearized Maxwell equations, the eigenvalue equa- 
tion for SEvk    is derived to be 

0.00 
1x107      2.5x109     5x109    7.5x109      1x1010 

ab (cm-2) 

FIG. 2. Plot of the maximum temporal growth rate lm(w) as a function of 
the surface density uh for a single thin electron cloud stream with the struc- 
ture parameters of Z.=0.478 cm, (1=0.382 cm. />=0.478 cm. and d 
=4.25 cm in a uniform applied magnetic field of B.= 180 G and a A-K gap 
voltage of V„=2.52 kV. 

dx 
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•SEr. where 

(4) 

where   a>c=eBalm   is   the   electron   cyclotron   frequency, 
io'l(x) = e2abjS{x-h)/E0m is the effective plasma frequency 
squared of the /th electron cloud stream, and 

r 

M 

ek (to) = 2 
" y=i (»- w 

e~<ri,, A sin(p h) 

(7) 

(8) 

Hj),(w,kll) = - 
(»-*,"»/ 

A^r, 
•<% 

"k- J=J 

j*r. 

and   H~.,(<n,kJ   is   the   element   of   the   inverse 
JJ V 

/;; the admittance    is continuous at 

and pq=\u)2/c2-k~ Setting Ek =0, Eq. (7) is the vacuum 
dispersion relation for the corrugated structure. A numerical 
code, named crossed-field amplifier system simulator 
(CFASS), is developed to solve Eq. (7). 

To show the dependence of the growth rate of an un- 
stable mode on the electron density, we plot the maximum 
temporal growth rate as a function of the surface density ab 

in Fig. 2. The parameters of the structure are chosen to be 
L=0.478 cm, a=0.382 cm, 6 = 0.478 cm, and </=4.25 cm in 
a uniform applied magnetic held of B.= 180 G and an A-K 
gap voltage of VD=2.52 kV. The electron cloud is assumed 
to be an infinitely long sheet with the surface density ab, 
which propagates at the velocity given by Eq. (3), i.e.. the 
EXB drift velocity, at the location of /i = 0.382 cm. As the 
surface density is varied, the phase shift of the unstable mode 
is tuned to achieve the maximum temporal growth rate. As 
shown in Fig. 2, the maximum growth rate increases as the 
surface density increases. 

To compare our small-signal gain theory with 2D MAGIC 
simulations, we restrict our discussion to the low-current re- 
gime, where the thin-beam equilibrium model is a good ap- 
proximation to the thin electron cloud in the 2D MAGIC simu- 
lations. At high currents, the electron cloud diffuses due to 
the strong image effects on the corrugated anode, and an 
improved model of electron cloud equilibrium is needed, 
which is beyond the scope of this letter. 

As an example, we consider the same structure as in Fig. 
2. The electron cloud is assumed to be an infinitely long 
sheet with crb=2.12 X 108 cm"2, which propagates at the av- 

eraged velocity Vb=0.09Sc at h = 0.382 cm. The lowest un- 
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matrix 
{u),kq). Here, m is the electron mass and c is the speed of 

light in vacuum. 
The boundary conditions for the electric field SEyk   are 

that the electric field vanishes at the cathode x=Q, and the 
anode wall x=d and is continuous in the y-direction at the 
electron cloud layer x- 
the vane lip x=b and 

f)SE,.L 
 12R 

dx =/i+0 

2i. 

aSEv 

dx =/i-0 

•<••%) 

EQUI c-(o)-k Vbj) 
SEvk (x = h). (6) 

Equation (6) can be derived by integrating Eq. (4) for x=h 
-0   to   ,v=/; + 0   and   making   use   of   \im,_,h Fn.,((o,kq) 

Solving Eq. (4) in the regions 0=s.v=s/!, h^x^b, and 
b^Sx^d and matching the solutions at the boundaries, we 
arrive at the small-signal gain equation or the loaded disper- 
sion relation 



151502-3 J. Zhou and C. Chen 

10 40 20 
t(ns) 

FIG. 3. Plot of the amplitude of oscillating voltage as a function of time 
as obtained from the MAGIC simulation. Here, the parameters are L 
=0.478 cm. a=0.382 cm, 6=0.478 cm, d=4.25 cm, A-0.382 cm, B. 

==180 G, £,=-5.27 kV/cm. <rt=2.12X 10* cm"2, and Pt=0.098c. 

stable transverse mode (TM) is calculated to achieve the 
maximum growth rate at a phase of 2ir/3 and a frequency of 
1.979 GHz. 

The self-consistent PIC code, 2D MAGIC, is used to 
simulate the planar magnetron system. Because 2D MAGIC 

can handle only a few vanes, a three-vane slow-wave corru- 
gated structure with the same parameters as in Fig. 2 is used 
in the simulation. Periodic boundary conditions are used 
such that the 277/3 mode is supported by the three-vane 
structure. The uniform crossed electric and magnetic fields 
are applied with B,= 180 G and £,=-5.27 kV/cm. The elec- 
tron beam is initialized as an infinitely long slab in the z 
direction with a width of 0.05 cm in the x direction. The 

electron beam propagates with an initial velocity of Vh 

=0.098c. 
As the beam propagates, the instability starts to build up, 

which is illustrated by the voltage crossing the vane tip of 
the slow-wave structure. In Fig. 3, the amplitude of the os- 
cillating voltage filtered by a filter that selects the 27r/3 
mode is plotted. In the early stage of the instability (e.g., for 
r<15 ns), the oscillation has a very small amplitude and 
exhibits a relatively broad frequency spectrum. Starting from 
( = 10 ns, the 2TT/3 mode grows exponentially. It saturates at 
about ;=26 ns. For this MAGIC simulation, the 27r/3 mode is 
determined to have a frequency of 1.93 GHz and an ampli- 
tude growth rate of 3.12 dB/cm, shown as a circle and a 
cross in Fig. 4, respectively. 

To compare the MAGIC simulation results with our 
theory, we solve the loaded dispersion relation in Eq. (7) to 
calculate the real frequency and the instability growth rate. 
Due to the influence of the anode corrugation, the electron 
cloud velocity prior to the linear growth is observed to vary 
sinusoidally in the v-direction v/ith a small amplitude around 
the averaged flow velocity in the MAGIC simulation. To 
model the velocity variation, we use three electron cloud 
streams at the same location A = 0.0384 cm. each with one- 
third of the total surface density (Th] = <Th2=<ThT, = <jbl1 and 

slightly different velocities, i.e., 1^=0.98^, Vb2-Vb, and 

Appl. Phys. Lett. 93. 151502 (2008) 
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FIG. 4. Plot of the temporal growth rate lm(uj) (solid curve) and the real 
frequency Rc(oi) (dashed curve) as a function of wave number k. for the 
lowest resonant TM mode. The solid and dashed curves are obtained from 
Eq. (7) using the three electron cloud streams with surface densities fr,,, 

= o-t; = o-M = o-t/3 = 7.07xl07 cm-2 and flow velocities Vt,=0.98Vt, Vw 

= Vh, =0.098e, and Vw= 1.02V7/,, respectively. The circle and cross arc the 
real frequency and instability grow rate from the MAOIC simulation, respec- 
tively. Here, the other parameters are the same as those in Fig. 3. 

Vbi=l.Q2Vb. The theoretical growth rale is in good agree- 
ment with the MAGIC simulation, as shown in Fig. 4. 

In conclusion, a small-signal theory of a nontelativistic 
magnetron was developed using a planar model with a thin 
electron cloud. The theory includes inertial effects and elec- 
tromagnetic effects in a Floquet expansion. The present pla- 
nar model is valid provided that the A-K gap is small com- 
pared with the cathode radius. The thin electron cloud avoids 
the problem of multiple poles (singularities) in the dispersion 
relation. An analytical dispersion relation of such a planar 
magnetron was derived, and the growth rate was calculated 
analytically. 2D MAGIC simulations were performed to verify 
the theory. A good agreement was found between the theory 
and MAGIC simulations. 
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Abstract 

A self-consistent solution is developed for the focusing of coasting, sheet-like, space- 

charge-dominated elliptic beams using a hybrid of non-axisymmetric periodic permanent 

magnets (PPM) and quadrupole magnets. The beam envelope equations and equilibrium 

flow profiles are obtained using a paraxial cold-fluid model. Further, a kinetic theory is 

developed to determine the self-consistent beam distribution and its evolution and to 

study the temperature effects. Both cold-fluid and kinetic equilibrium theories are 

validated by two-dimensional (2D) particle-in-cell (PIC) simulations using the 2D 

Periodically Focused Beam (PFB2D) code, and by three-dimensional (3D) self-consistent 

trajectory simulations using OMNITRAK. The theories and PFB2D and OMNITRAK 

simulations are applied to design such high-space-charge elliptic beams for applications 

in klystrons and vacuum electron devices. Numerical results show that the beam edges in 

both transverse directions are well confined without twisting and the elliptic beam density 

profile is well preserved. For space-charge-dominated elliptic beams used in ribbon-beam 



klystron   applications,   the   temperature   effects   are   studied   using   both   the   kinetic 

equilibrium theory and PFB2D simulations. 

PACS: 29.27.Bd, 52.59.Sa, 47.75.+f, 52.25.Dg 
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1. Introduction 

There are vigorous activities in the research and development of elliptic-beam sources, 

traveling wave amplifiers, klystrons, and accelerator focusing systems. Over 600 high- 

power, high-efficiency klystrons, for example, may be needed to provide rf power for the 

acceleration cavities of the proposed TeV International Linear Collider (ILC). The 

Stanford Linear Accelerator Center (SLAC) has proposed a 10 MW sheet-beam klystron 

to meet this need [1]. Other groups, such as Los Alamos National Laboratory (LANL) 

and Scientific Applications International Corporation (SAIC), are also interested in sheet- 

beam technology for microwave amplifier applications [2, 3]. The LANL team has 

employed a solenoid/quadrupole magnet combination to transform an incident circular 

beam into an emergent elliptic beam [4]. The Massachusetts Institute of Technology 

(MIT) has also initiated an elliptic beam project for communications and accelerator 

applications [5]. Beam Power Technology, Inc. is developing a ribbon-beam amplifier 

based on the elliptic beam technology developed at MIT. 

Elliptic beams have attracted broad interests because they have the following 

remarkable properties. First, they can transport large amounts of beam currents at reduced 

intrinsic space-charge forces and energies. Second, they couple efficiently to rectangular 

or elliptic rf structures. The combination of the space-charge reduction and efficient 

coupling allows efficient rf generation in vacuum electronic devices, and efficient 

acceleration in particle accelerators. Third, elliptic beams provide an additional adjustable 

parameter (e.g., the aspect ratio) which may be useful for better matching a beam into a 

non-axisymmetric periodic focusing channel. 



Transport and focusing of sheet (ribbon) beams has been discussed in the literature for 

four decades. Periodic transverse (wiggler) magnetic focusing [6, 7] has been used for 

free-electron laser applications, but it can lead to excessive centroid motion for space- 

charge-dominated beams [8]. Promising results have been obtained through recent studies 

of period-averaged focusing in the periodic cusp magnetic (PCM) field [8, 9] or the 

hybrid of PCM and the periodic quadrupole magnet (PQM) field [10, 11] for space- 

charge-dominated and emittance-dominated sheet beams, however, significant envelope 

oscillations and emittance growth are sometimes seen. They may be rectified by the 

present thorough treatment which does not employ period-averaging but self-consistently 

includes the effects of beam flow profiles and evolving self-fields neglected in the 

period-averaging approximation. 

Recent efforts in this vein [5, 12] have led to a deeper understanding of high-space- 

charge elliptic beam propagation in a non-axisymmetric periodic permanent magnet 

(PPM) field. Pure non-axisymmetric PPM focusing, however, is unsuited for sheet-like 

elliptic beams with very large aspect-ratio because the twisting of the beam introduces 

instabilities, and because the magnetic field nonlinearities in the wide tails of the beam 

become appreciable. 

In this paper, we develop a self-consistent solution for the focusing of coasting, sheet- 

like, space-charge-dominated elliptic beams using the most general formulation of 

centroid preserving linear fields - a hybrid of non-axisymmetric PPM and quadrupole 

magnets [13]. A paraxial cold-fluid model is employed to derive generalized envelope 

equations that determine the equilibrium flow properties of ellipse-shaped beams with 

negligibly small emittance. Furthermore, a kinetic analysis is developed to determine the 



beam distribution consistent with the equilibrium flow properties of a uniform ellipse- 

shaped beam. In the kinetic model, the emittances are taken into account. A matched 

envelope solution is obtained numerically from the generalized envelope equations, and 

the results show that the beam edges in both transverse directions are well confined 

without twisting. Two dimensional (2D) particle-in-cell (PIC) simulations with our 

Periodic Focused Beam 2D (PFB2D) code and 3D Omnitrak simulations show good 

agreement with the predictions of equilibrium theory as well as beam stability. For space- 

charge-dominated elliptic beams used in ribbon-beam klystron applications, the 

temperature effects are studied using both the kinetic equilibrium theory and PFB2D 

simulations. 

The organization of the present paper is as follows. In Sec. II, the cold-fluid 

equilibrium theory is used to derive the generalized envelope equations for a high-space- 

charge elliptic beam. In Sec. Ill, the kinetic equilibrium theory of a large-aspect-ratio 

ellipse-shaped charged-particle beam is presented following Sacherer's matrix method 

[14], and the generalized envelope equations which include the emittances are derived. In 

Sec. IV, PIC PFB2D simulations are used to verify the theoretical results and examples of 

large-aspect-ratio elliptic beams are discussed. Conclusions are presented in Sec. V. 



II. Cold-fluid equilibrium theory 

We consider a high-intensity, space-charge-dominated beam, in which kinetic 

(thermal emittance) effects are negligibly small. The beam can be adequately described 

by cold-fluid equations. In the paraxial approximation, the steady-state cold-fluid 

equations for time-stationary flow (d/dt = 0) in cgs units are [15, 16] 

Pbc-nh+V1-(nbV1)=0, 
as 

OS 
Vx = 

1nb 

yhm 

(1) 

(2) 

(3) 

where s-z , \± =xev + _yev, V± = dld\±, q and w are the particle charge and rest 

mass,    respectively,    nh    is    the    particle    density,    Vx    is    the    transverse    flow 

velocity, y,, = \l- Pi)       is   the   relativistic   mass   factor,   use   has   been   made   of 

p. -V.I c = fib= const, c is the speed of light in vacuum, and the self-electric field 

Ev and self-magnetic field B1 are determined from the scalar potential <j)s and vector 

potential A"e:, i.e., Es = -VL</>s and B1 - Vx xAs
:e:. 

We use the combination of a periodic non-axisymmetric magnetic field and a 

quadrupole magnetic field to focus a nearly straight large-aspect-ratio elliptic beam, 

whose  twist  angle  is  minimized.   For the  beam dimensions  small  relative  to  the 

characteristic scale of magnetic variations, i.e., {/CQXX) /6«1 and [k0 yf 6« 1, the 

combined  magnetic  field  can be  described to  the  lowest order  in the transverse 

dimensions as 



Bex' =B,{s)e: 
dB.{s) 

ds k0 KQ 

Ov K{s)[vex+xe}]. (4) 

9 7 9 
where   k0 = 2n/S,      kQx+k0y=k0   ,    S    is    the    axial    periodicity    length,    and 

Cs,o,o)' ?w       xl -%,o,o)        v/ 

We seek solutions to Eqs. (l)-(3) of the form 

nb{x1,s) = 
•V„ 

(s]b(s) 
0 

na 
y 

«2(s) *2(*) 

vi(^i^)= I"*(*)* -a,{s)y]pbck~x + [//,. (5)v + a,{s)x\Bbce,. 

(5) 

(6) 

In Eqs. (5) and (6), x± = xe~ +ye~ is a transverse displacement in the twisted coordinate 

system illustrated in Fig. 1; d(s) is the twist angle of the ellipse; ©(x)= 1 if x > 0 and 

©(x) = 0 if x < 0; and the functions a(s), b(s), /Jx(s), /Jr{s), «v(s), av(s) an^ @{s) 

are to be determined self-consistently [see Eqs. (8)-(12)]. We carry the twist angle d(s) 

in our calculation for the purpose of generalization, and we will take 0(s) - 0 later to 

obtain the solution for a nearly straight elliptic beam. 

The self-electric and self-magnetic fields are well known for an elliptical beam with 

density distribution specified in Eq. (5) [17], i.e., 

f=P„K = 
y a       b 

(7) 

Using the expressions in Eqs. (4)-(7), it can be shown that both the equilibrium 

continuity equation (1) and force equation (3) are satisfied if the dynamical variables 

a(s) , b(s), jux(s)=a~lda/ds , /Jv(s) = b~ldb/ds , ax(s), av(s) and d(s) obey the 

generalized beam envelope equations (see Appendix A for the derivation) 
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oB'M) 2q2Nh 

2YbPbmc rbPbmc YbPbmc 

(8) 

(9) 

(10) 

(ID 

(12) 

(13) 

Equations    (8)-(12)    have    "time"    reversal    symmetry    under    the    transformation 

\s,a,b,a',b',ax,a^6)—*\^-s,a,b-a'-b'-ax-aY,6). This implies that the dynamical 

system described by Eqs. (8)-(12) has the hyper symmetry plane \a',b',ax,aY). 



We look for a solution that has negligible twisting, i.e., 0(s) = 0 . In such a case 

equation (12) leads to 

ax{s) _a2{s) 

«v(*)    b2{s)' 

Correspondingly, the generalized envelope equations (8)-( 11) become 

,    +*• (s)a(s)-2^K::(s)av{s)a(s)-ax{s)av{s)a(s)-      . =0, 

(14) 

dsz a(s)+b(s) 

—f±-K (s)b{s)-2^K,{s)ax(s)b{s)-ax{s)av(s)b{s) — 
ds1 a(s)+b{s) 

= 0, 

b{s)       kk ds 

a\S) kr. ds 

(15) 

(16) 

(17) 

(18) 

The cold-fluid equilibrium provides a set of envelope equations, i.e., Eqs. (15)-(18) 

which determines the semi-axes of the elliptic beam and the flow velocity profile. The set 

of envelope equations is convenient to use for design of an elliptic focusing system. 

Normally, for given periodic lattice parameters, we solve Eq. (15)-(18) to obtain the 

matched solution of beam envelopes using periodic boundary conditions, which is a 

forward problem. On the other hand, for given beam envelope dimensions, we can solve 

Eq. (15)-(18) to determine the required lattice parameters, which is an inverse problem. 

As will be discussed in Sec. IV, we use the set of envelope equations to design two 

periodic lattice systems for two examples of elliptic beams given the beam parameters in 

Table 1. However, the cold-fluid theory does not provide detailed information of the 



beam distribution and it dose not take the emittance and temperature effects into account, 

which might be important in practical devices. The kinetic treatment required to address 

the emittance and temperature effects is discussed in Sec. III. 
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III. Kinetic Equilibrium Theory 

In this section, we develop the kinetic equilibrium of the periodic focused large-aspect- 

ratio elliptic beams when the emittance is no longer small and the cold-fluid theory 

presented in Sec. II is no longer valid. Following Sacherer's theory [14, 18] that there 

exits a self-consistent uniformly charged beam in situations where both external forces 

and self forces acting on the charged particles are linear, we can construct the beam 

distribution and find the self-consistent envelope equations for the applied magnetic field 

configuration in Eq. (4). For simplicity, we consider the twist angle 0 = 0 in the 

following calculations. The results recover the cold-fluid theory in the cold-fluid limit. 

We express the transverse single-particle equations of motion in the paraxial 

approximation, 

p = mr—±=imyb0bc—±, (19) 
at as 

and 

at as       \       c 
(20) 

where p is the relativistic particle momentum. Here, E = -V^'v with <f>s given in Eq. (7) 

and B = B* + Bex  with B' = Vx x Ale: and Bev' given in Eq. (4). 

Since all the terms in Eqs. (19) and (20) are linear, we reorganize the equations of 

motion (19) and (20) into a matrix format, 

as 

where 
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'x^ 

X 

y 

\y) 

(22) 

and 

0 F*P, 
0 0       ^ 

F pxx 0 FP,y 
F 

PxPy 

0 0 0 Fwy 

K
FPy* 

F 
PyP, FPfy 0 

(23) 

The prime denotes the derivative with respect to s . For 6 = 0, the elements of F are 

F     = F 1 xpx       J yp 

2K 
»>x    a(sla(s)+b(s)) 

P'y        kl~    ds      ' 

Kq{s), 

FpvPv   =2^.(5), 

P,X 
J<-lxd^Kz{s) 
kl      ds 

F
PyPx =-2V^5)' 

2K 
\ + Kq{s). 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 
*>>     b(sMs)+b(s)] 

For a single charged particle, there exists a transfer matrix T^SQ) that transforms an 

initial location Xo(-9o) >nto a corresponding location at a later time %{s), i.e., 

l(s)=T(s,s0)-x0(s0) (31) 
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and note that the elements of T(.s,s0) satisfy 

^^ = F(s).j(s,s0). (32) 
as 

Since we know the equations of motion for individual charged particles, we can 

determine the evolution of any distribution of charged particles in phase space following 

Sacherer's theory. In particular, the distribution that is consistent with the linear self and 

focusing forces is a hyperellipsoid in the four dimensional phase space that gives a 

uniform density profile in the transverse plane {x,y) . The hyperellipsoid can be 

described by a symmetric matrix M through the equation 

fh{x,x\y,y\s)=fb(z
T(SyM-]{S)-yi{S))=s(xT{syM-]{syx(s)-\), (33) 

where the superscript "T " denotes the transpose operation of a matrix and S(x) is the 

Direc-Delta function. At any position s , the distribution has the elliptical boundary 

Xr(^)M~'(.9)x(.s)= 1. Making use of Eqs. (31) and (33), we have 

M(s) = T(s,s0)-M(s0)-T
r(^0). (34) 

The evolution of the beam distribution is fully characterized by the distribution matrix 

M(.s), which evolves according to 

^^ = F(5)-M(5)+M(5)-F7'(5), (35) 
ds 

where we have used Eqs. (32) and (34). 

We relate the ten independent elements of the matrix M(s) to the physical parameters 

in Appendix B, yielding 

Mn(s) = a2{s), (36.a) 
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M22{s)=]^M + a2{syM (36b) 
a (s) 

M3i{s) = b2{s), (36.C) 

^44(5)^       >7W + 62(5)^(5), (36.d) 
b (s) 

M]2{s) = a2{s)Mx{s), (36.e) 

M13(J) = 0, (36.f) 

M14(j) = fl2(j)ay(s), (36.g) 

M^^-i2^,^), (36.h) 

M24{s) = a2{s)^x{s)ay{s)-b2(s)py(s)ax{s), (36.i) 

M34(s) = Z>2 (.?)//, (*), (36.j) 

where a(s) and £>(s) are the semi axes of the ellipse which bounds the beam distribution 

in the configuration space, £xrms(s) and svrms(s) are the rms emittances in the x- and 

y- directions, respectively. Furthermore, Hx{s), /Jv(s), ax(s), and av(s) are the flow 

velocities as defined in Eq. (6) with 0 = 0. 

We use the evolution equation of the matrix M(s), i.e, Eq. (35), to determine the 

evolution equations for a(s), b(s), Mxis)> My{s), ax(s), ayis)> £xrms(s) and £yrms{s)- 

Substituting Eq. (36) into Eq. (35), the first and third diagonal elements give the 

equations for the flow velocities, 

da{s) 
ays)   ds Mx(s) = ~h^, 07) 
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My{s)- 
1   db(s) 

(38) 
b(s)   ds 

The third element on the first row of Eq. (35) gives a relation for the rotational flow 

velocity, i.e., 

ax{s) _a2(s) 

<*y{s)      b2{S)' 
(39) 

We use the second element on the first row and the fourth element on the third row of Eq. 

(35) to determine the envelope equations for the beam semi-axes, yielding 

-^-- + ic (s]a(s)-2^JKz{s)av{s)a{s) M    ,M = —f 
ds ais)+b(s)      a 

2 
xrm.s 

a(s)+b(s)      a\s)  ' 

^-Kq(sXs)-24^@ax(s)b(sY 
ds 

2K 16ff yrms 

a(s)+b{s)      b\s)   ' 

(40) 

(41) 

where use has been made of Eqs. (37) and (38). Further, the second element of the third 

row and the fourth element on the first row of Eq. (35) determine the evolution of the 

rotational flow velocities ax(s) and av(s) 

dax(s) 

ds 

dav(s) 

ds 

a^) + bis) 

a(s)     b{s) 

4f) + ^y£) 
a(s)     b{s) 

ax(,)+2V^^+2^5Lo, 
b{s)        kk d.s 

-M^^M^f iSH=„. 
ds 

(42) 

(43) 

Finally, we use the second and fourth diagonal elements of Eq. (35) to determine the 

evolution of the rms emittances. After considerable simplification with aid of Eqs. (39)- 

(43), we find that the evolution equations of the rms emittances are two total differential 

equations which is expressed as, after integration, 
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4rmAs) = ^a4(s)ax{s)av{s)+ c,: (44) 

4rms is) = 77b* (JK {s)av{s)+C2, 16 
(45) 

where c, and c2 are integration constants. The constants cx and c2 are related to the rms 

thermal emittances which are defined as 

4h,x={x2w-vxiPbcy a2(s) 
16 

iyS(yA^-vy/^f)=^l 

l-^nnM-b2{s)a2
x(s) 

a [s) 

-a \s)av{s) 
b2{s) 

•l • 

^2 

(46) 

(47) 

where Vx = J3hc\jux(s)x - ax(s)y] and Vv = flbc\juy(s)y + ay(s)x\ are the flow velocities 

in the x- and y- directions, respectively, and the average denotes 

(x) - \ Xfbdxdydx'dy'. It should be stressed that the thermal emittances are kept constant, 

although the rms emittances are not constant and evolve as the beam propagates. In the 

cold-fluid limit, eth,x     £th,y ~ ^ 
£lrms =a4{s)ax(s)av(s)/l6 

evrms = b (s)ax(s)ay(s)/^> an^ Eqs. (40)-(43) recover the cold-fluid results in Eqs. 

(15)-(18) for 0 = 0. 



IV. Examples of intense elliptic beam equilibria 

In this section, we present two examples of periodically focused large-aspect-ratio 

elliptic beam equilibria in a hybrid magnetic field configuration consisting of a periodic 

non-axisymmetric magnetic focusing field and a quadrupole magnetic field. One example 

is a high-space-charge elliptic beam for a high-efficiency 200 W ribbon-beam amplifier 

(RBA) under development at Massachusetts Institute of Technology (MIT) and Beam 

Power Technology for wireless communication. The other is a relativistic elliptic beam 

which can be used in a 10 MW L-Band ribbon-beam klystron (RBK) for the International 

Linear Collider (ILC). 

To aid the design of high-space-charge elliptic beam transport, a numerical module in 

the PFB2D code [5, 12] has been developed to solve the generalized envelope equations 

(40)-(43), which determines the required magnetic field for the desired major-axis a(s) 

and minor-axis b(s) of the beam ellipse. Those information are used in 2D self-consistent 

PIC PFB2D simulations and 3D OMNITRAK self-consistent particle trajectory 

simulations to verify the theory. 

As the first example, we consider a space-charge-dominated 6:1 elliptic electron beam 

with desired beam semi-axes a = 0.373 cm and 6 = 0.062 cm propagating with current 

Ib = 0.11A along a beam tunnel with a constant axial potential of Wb = 2290 V. For this 

beam, we have fih = 0.094 and yh = 1.0045. Based on the discussion in Ref. [19], we can 

take the intrinsic thermal emittance to be zero in this case, i.e., sth x = ethy = 0. We use 

the PFB2D code to solve the set of the generalized envelope equations (15)-(18) [or Eqs. 

(40)-(43)] to determine the required magnetic fields for focusing such a beam. The 

parameters of the hybrid periodic permanent magnet focusing fields are found to be 
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B,(s)=-263sin(kQs) G , B'q = 30.0G/cm , S = 1.912 cm, k0r/k0x=6 (see Table   1, 

Column 2). As seen in Fig. 2, the matched beam semi-axes a(s) and b(s) (solid curves) 

solve the generalized envelope equations (15)-(18). The semi-major axis is almost a 

constant, whereas the semi-minor axis oscillates slightly about a constant value. 

Shown in Fig. 2, the dotted curves are the envelopes of the beam ellipse obtained from 

the PFB2D self-consistent PIC simulation for the example of a nonrelativistic elliptic 

beam  with  voltage  Vh - 2290 eV ,  current  lb - 0.11 A,   aspect  ratio  a/b - 6  and 

Eth,x = £th,r=Q m me hybrid magnetic field with B:(s)=-263s'm(k0s) G , 

B' = 30.0G/cm , S = 1.912 cm, and k0v/kOx = 6. In the simulation, 5x10   particles are 

used. The thermal emittance is negligibly small, and the cold-fluid approximation is valid. 

As shown in Fig. 2, there is excellent agreement between the theoretical envelope 

solution (solid curves) and the self-consistent PIC simulation results (dotted curves). We 

measured the angle of the beam ellipse with respect to the laboratory frame. The angle 

oscillations have a small amplitude of 0.1 degrees, which are due to fluctuations (noise) 

in the simulation. 

The PFB2D simulation also shows that the transverse beam distribution preserves the 

equilibrium profile as it propagates. In Fig. 3, 5,000 particles (a sample of the 

5 x 105 particles in the PFB2D simulation) are plotted in the (x,y) plane and (x,dy/ds) 

plane for five snapshots within one period: s/S - 9.0,9.25,9.5,9.75 and 10.0 for the same 

elliptic beam shown in Fig. 2. The results in Fig. 3 also suggest that the beam equilibrium 

is stable. 



As a separate verification of the theories and PFB2D code, a 3D OMNITRAK [13, 19] 

simulation is performed for the 6:1 nonrelativistic elliptic beam. Since 3D trajectory 

simulations are time-consuming, only a 2-period interval is used for this test, as shown in 

Fig. 4. The beam is sent through a conducting cylindrical beam tunnel (not shown) of 

radius 10.0 mm. In this simulation, 10,000 macroparticle arrays are used. However, only 

a fraction of them (i.e., 64 macropaticle arrays) are shown in Fig. 4(a). Substantially 

parallel, non-twisting transport is achieved, and the simulated beam envelopes agree with 

the theoretical predictions as shown in Fig. 4(b). 

As the second example, we consider a relativistic elliptic beam that can be used in a 10 

MW L-Band ribbon-beam klystron (RBK) for the International Linear Collider (ILC). 

The beam has a current of Ib = 111.1 A, a voltage of Vb = 120 kV and an aspect ratio of 

20:1, which corresponds to fib = 0.094 and yb = 1.0045. The other beam parameters are 

listed in the third column of Table 1. Solving the generalized envelope equations (40)- 

(43) with ethx = ethv =0, the hybrid magnetic fields are determined to be the form of 

Eq. (4) with B,(s) = -2000sin(/t0s) G , B'q = 80.8 G/cm, S = 2.2 cm, and k0y/k0x = 20. 

In Fig. 5, the solid curves are the beam semi-axes a(s) and b(s) calculated from the 

generalized envelope equations (40)-(43) with sthx = ethy =0, whereas dotted curves 

are from the self-consistent PIC PFB2D simulation. 

For practical devices, elliptic beams usually have nonzero temperature due to the 

heating of sources or other effects. To study the temperature effects, we solve the 

generalized envelope equations (40)-(43) with nonzero initial thermal emittances, i.e., 

£th,x = kBTa2{s = 0)1 myb fibc
2 and efh    = kBTb2(s = 0)/myb ^c2 . As shown in Fig. 6, 
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the elliptic beam envelopes are calculated for three different temperature choices: 0 eV, 

50 eV and 100 eV. Compared with the cold beam envelopes shown as solid curves in Fig. 

6, the warm beam envelopes are found to increase slightly as the beam temperature 

increases, while the aspect ratio of the beam decreases from 20:1 to 16.4:1 as the beam 

temperature increases from 0 eV to 100 eV. 

For the second example of elliptic beams, we assume that the elliptic beam is 

generated from an electron gun with an intrinsic temperature of 0.1 eV and a current 

density of 1.5 A/cm* [19]. The elliptic beam has to be compressed by a factor of 471.5 in 

area to achieve a current density of 707.3 A/cm2 in the focusing channel. During the 

compression, the temperature increases by a factor of 471.5 to 47.2 eV. Therefore, in our 

calculations, a temperature of 50 eV is a reasonable assumption. As shown in Fig. 7, the 

envelopes of the elliptic beam with a temperature of 50 eV are obtained by solving the 

envelope equations (40)-(43) (solid curves) and by the PFB2D PIC simulations (dotted 

curves). Both results showed a slight increase in the two envelope dimensions and the 

aspect ratio of the elliptic beam decreases to 17.8, compared with the cold elliptic beam. 
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V. Conclusions 

A self-consistent solution for the focusing of coasting, sheet-like, space-charge- 

dominated elliptic beams using a hybrid of non-axisymmetric periodic permanent 

magnets (PPM) and quadrupole magnets was developed. The beam envelope equation 

and equilibrium flow profiles were obtained using a paraxial cold-fluid model. Further, a 

kinetic theory was developed to determine the self-consistent beam distribution and its 

evolution. Both the cold-fluid and kinetic equilibrium theories were validated by the two- 

dimensional (2D) particle-in-cell (PIC) simulations using the 2D Periodically Focused 

Beam (PFB2D) code, and the three-dimensional (3D) self-consistent trajectory 

simulations using OMNITRAK. The theories and PFB2D and OMN1TRAK simulations 

were applied to design such high-space-charge elliptic beams for applications in klystrons 

and vacuum electron devices. Numerical results showed that the beam edges in both 

transverse directions are well confined without twisting and the beam density profile is 

well preserved. For space-charge-dominated elliptic beams used in ribbon-beam klystron 

applications, the temperature effects are studied using both the kinetic equilibrium theory 

and PFB2D simulations. 
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Figure Caption 

Figure 1 Twisted coordinates. 

Figure 2 Plots of the beam envelopes a(s) and b(s) versus the axial distance s for the 

nonrelativistic elliptic beam in Table 1. The solid curves are the generalized 

envelope solution, whereas the dotted curves are from the PFB2D simulation. 

Figure 3 Plots of 5,000 particles (a sample of the 1 x 105 particles in the PFB2D 

simulation) in the (x, v) plane and (x,dy/ds) plane for five snapshots within 

one period: s/S - 9.0,9.25,9.5,9.75 and 10.0 for the same beam shown in Fig. 

2. 

Figure 4 3D OMNITRAK. simulation results: (a) image of the simulated beam and (b) 

plots of the beam envelopes from the 3D OMNITRAK simulation (dotted 

curves) and the theory (solid curves). Here, the parameters of the nonrelativistic 

ellipse-shaped beam are listed in Table 1. 

Figure 5 Plots of the beam envelopes a(s) and b(s) versus the axial distance s for the 

relativistic elliptic beam in Table 1 with zero temperature. The solid curves are 

the generalized envelope solution, whereas the dotted curves are from the 

PFB2D simulation. 

Figure 6 Plots of the beam envelopes (a) a(s) and (b) b(s) versus the axial distance 5 for 

the relativistic elliptic beam in Table 1 for three different temperature choices: 

OeV, 50eVand 100 eV. 

Figure 7 Plots of the beam envelopes a(s) and b(s) versus the axial distance s for the 

relativistic elliptic beam in Table 1 for a temeprature of 50 eV. The solid curves 
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are the generalized envelope solution, whereas the dotted curves are from the 

PFB2D simulation. 
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Table 1 System parameters for elliptic-beam examples 

Parameter Nonrelativistic Relativistic 

Application 

Wireless 

Communication 

ILC 

Frequency (GHz) 1.95 1.3 

RF Power (kW) 0.2 (cw) 10 (pulsed) 

Current (A) 0.11 111.1 

Voltage (kV) 2.29 120 

a/b 6.0 20 

a (cm) 0.373 1.0 

S (cm) 1.912 2.2 

koy /box 6.0 20 

BQ (kG) 0.263 2.0 

B'q (G/cm) 30.0 80.8 
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Fig. 1 
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Fig. 5 
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Appendix A 

The derivation of the generalized envelope equations (8)-(12) is as follows. We first 

solve the continuity equation (1). Substituting the density profile in Eq. (5) and the flow 

velocity profile in Eq. (6) into Eq (1), we obtain 

a'    b'~\ 
Mx+My T © 

a     b 

b        a   ,    b 

2      ,2 a       b 
+ 2 

{ w 

+ \ —6' + — 9' + — ar—a„ 
a        b        a   x    b   y 

xy 

ab 

-Mx 

~2      ~2 
x y_ 

a      b 

-My 
V2 

(A.l) 

= 0, 

where the prime denotes d/ds, and the relations x' = yO', y' = -x0', de-/ds = el0' 

and dex/ds = —t~0' have been used. Since Eq. (A.l) must be satisfied for all x and y, 

the coefficients of the terms proportional to 0 , x2S , y26 and xyS must vanish 

independently. This leads to the following equations 

1 da 
/', 

M, 

a ds 

]_db_ 

b ds' 

d6    a2av - b1ay 

~ds a   - b 

(A.2) 

(A.3) 

(A.4) 

Second, we solve the force balance equation (3). Substituting the density profile in Eq. 

(5), the flow velocity profile in Eq. (6), and the self-field potential in Eq. (7) into Eq. (3), 

we obtain two equations in the x - and y - directions, respectively. In the x - direction, 

we have 

35 



Pbc2[vl'x " <*y9' + /i - axay + ayffft + (- a'x + Hx&-ny&- ax/.ix - ax/.iy)y\ 

lM2-u^vfe 
Ybm n 2 a + b   a 

In the v - direction, we have 

file2 \a'y - nyff + jux6' + ayJux + (XyMy)* + [My + ctyO' - axff + juy - axay Jy 

\^-^PbB~x-{Mxx-axy)pbBz 
yhm yb  a + b   a 

We can rewrite Eqs. (A.5) and (A.6) as 

fxx+gyy = 0, 

gxx+fyy = 0, 

where 

fx = /J'X - av& + Mx ~ <xx
av + ax@' ~ 

2K 

a(a + b) 
2^K.(s)ay 

YbPb^c 2   : 

b(a + b) YbPb•c~ 

g.x = a'y ~ l-tyd' + M.x& + CCyMx + ayMy + 2T]
K

Z(
S
)MX ^ JB 

YbPbmc 
2     xx 

(A.5) 

(A.6) 

(A.7) 

(A.8) 

B~x, (A.9) 

fy = JJ'V + av6' - ax& + /Uy- axay 2^K.(s)ax —r- %? > (A. 10) 

(A.ll) 

g   = -a'x + f.ix&-/j 0'-axpx -ax/uy -2^Kz{s)fjy + — jBjy , 
YbPbmc1   » 

with the definitions of 

V^5J- ^K^K^1^ 
3 /j3 2   ' 2ybBbmcz YiPbmcl 

We can express the magnetic field in Eq. (4) in the twisted coordinate as 

(A.12) 

(A.13) 
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B = B. {s)e: + (B^x + %?K + (%* + By?yh • 

where the magnetic fields contributions are 

(A. 14) 

Bxx - 
dB:{s) 

ds 
^fcos2 

Kn 
e(s) + 2B' sin0(s)cosO(s), (A. 14) 

% = 
dB.{s) 

dS 
*0x     V 

A-2      £2 cos#(s)sin#(s)+^ cos2 $(s)-sin2 0(a)], (A.15) 

<«_(*) 
fe — — 

2   ^ 
*0x   ,  *0.V 

k2        k2 cosd{s)smO{s)+B'q cos2 0(s)- sin2 (9(5)], (A. 16) 

Byy - 
dB:{s) 

ds 
*Lin20(s)+^W0(5) 
J-2 J-2 

•2£'sin0(s)cos0(.s). (A. 17) 

Since Eq. (A.7) and (A.8) must be satisfied for all x and y, the coefficients of the terms 

proportional to x and y must vanish independently, which lead to 

/>0, (A.18) 

/,=0, (A.19) 

g,=0, 

gy=o. 

(A.20) 

(A.21) 

Substituting Eqs. (A.2)-(A.4) into Eqs. (A.18)-(A.21), we obtain 
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2K 
fx = /u'x - avff + f?x - axay + ax&- — — -2^K,(s)ay + 

a(a + b) 
qByx 

7bPbmc7 

•y -y 

a ay-b ax d(a')   (a'Y    ( 
= — - +  -    +{ax-a ) 

ds\a )   \a ) 

1 d2a    b2(a2
x-2axay)+a2a2

y        2K 

2K 

a   -b 
axav 

a(a + b) 

a dsz a   - b a(a + b) 
-2yJKz(s)av + 

-2TJK:(S} 

YbPb•7 

>«„+• 
<7% 

YbPbmc' 

= 0, 

(A.22) 

fy = /j'v + av6' - ax6' + /J\, - axav - 
2K r-n qB^ 
 2JKAs)ax •—. 
b{a + b)      V   'W A    y^mc1 

= X(TI
+
(TI -(«X-«V) 

i2av-b
2ax 2K r—r^ 

ds{b)   {bj a
2-b2 X  y    b(a + b) 

1 d2b    a2(ay-2axav)+b: ax2        2K 

bds2 

= 0, 

a2-b2 b(a + b) 
2^K:{s)ax 

<7% 

YbPbmc' 

YbPbmc' 

(A.23) 

qBx 
8x =a'y- My6' + Vx6' + «V#X + ayMy + 2^K.{s)fix - 

YbPbWc" 

( \a2ay-b
2ax (a'    b 

a-b -\a     b 

i\ 

2JK.{S)HX 
<fe 

YbPbmc' 

1   d ( 2     \   1 bi\ax-av) d (a 
— \a~av I- 

a2 c 

= 0, 

a    a-b      ds\b 

t        

+ 2 — JK.{S)- 
°BX 

a YbPb>"c 

(A.24) 

qB, 
gy = -«; + JJX0' - MV0' - axJux - axixy - 2^KZ{S)/J + 

YbPbmc~ 

-a'x+(jux-juv) 
2 .2 a av -b ax 

a2-b2 

• \ a'    b 
•<*x\— + T- a     b 

2j/cz{s)jUy 
qByy 

YbPbmc 

bl ds b      ds\a 

0. 

(A.25) 
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The generalized envelope equations are 

d2a    b2[a2-2axayJ+a2aj 2K 

a2-b2 ds' (a + b) 
• 2yJKz (s)ava + 2L_ a = 0. 

YbPbmc 

d2b    a2\a2
v-2axav)+b2a2 2K      ~ rT\    u      ^ 

 r- + — :; y b 2^K:[s)axb- —b = 0, 
ds2 a2-b2 (a + b) YbPbmc' 

(A.26) 

(A.27) 

d_(_2_  \    ab3\ax-ay) d 
ds 

(a2ay) 
az-b2      ds 

fa^ 

\u J 
+ 2a'a^Kz{s)- 

YbPb• 
(A.28) 

Mb2
ay^-^^{b- 

dsX     x>       a'-b2     ds{a 

(        )_^^^fr. _    ,%      2=Q 

V        nPbmc2 
(A.29) 

d6 _ a a, - blay 

ds a1 -b2 (A.30) 

Substituting Eqs. (A.14)-(A.17) into Eqs. (A.26)-(A.30), we obtain the set of generalized 

envelope equations (8)-(12). 
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Appendix B 

In this Appendix, we determine the elements of the matrix M(s). In order to determine 

the elements of the matrix M(s), we make the projection of a four-dimensional (4D) 

hyperellipsoid to a two dimensional ellipse. Let us first define the 4D hyperellipsoid 

through the equation 

XT{s)-L{s)x{s) = h (B.1) 

where L(s) = M~'(S) and 

*2 

KX4j 

(B.2) 

We expand Eq. (B.l) as 

1 — L| |X|  + L,22X2 "^    33^3 "^ ^44-^4 
(B.3) 

+ ZL/\2X\X2 + z/^|^X]X^ + ^JLI^XJX^ + LL*2-iX2X-i ~*~      24*^2*^4 "*" ^--^34-^3-*4* 

To project the 4D hyperellipsoid defined by Eq. (B.3) onto the subspace (xi,x2,xi), we 

find the extremal points in these coordinates by differentiating Eq. (B.3) implicitly and 

setting dxx = dx2 = dx^ = 0. In this case, we find 

x4 - ——(Z-14x, +£24X2+^34X3), 
L44 

(B.4) 

which we substitute into Eq. (B.3) to obtain the equation for the 3D ellipsoid that bounds 

the projection of the 4D hyperellipsoid defined by Eq. (B.3) onto the subspace (xx, x-> , x3), 

i.e., 

LAA - [L{ 1L44    LXA)X\ + \L22LAA - L2A)x2 + ^33^-44 - £34 j*3 -44 

"*"    v   12   44        14   24 /"^l-^2 "+ ^v^l 3^44 — ^14^34 j-^1^3 "*" •^(^'23^44 — ^24   34/^2^3 • 
(B.4) 
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The 3D ellipsoid of Eq. (B.4) can be further projected onto the 2D subspace (jt|,jc2). 

We again differentiate Eq. (B.4) implicitly and set dxi = dx2 = 0 to obtain 

x   _ 1^14^34 ~ ^13^44 )x\ + U-24^34 ~ ^23-^44 )x2 

L33L44 -134 

(B.5) 

which we substitute into Eq. (B.4) to obtain 

1 _ £[4^33    2Z.|3L14L34 + Lx,^34 + L^L^    Lx^33^44   2 
1 - 2 x\ 

L34 ~ ^33^44 
2 

^-14^24-^33 ~ ^14-^23^34 ~ ^13^24-^34 + ^12-^34 + ^13-^23-^44 ~ -^12^33^44 

^34 ~~ ^33-^44 

+ 2 X] X \x2 (B.6) 

7                                                         2           2 
^24-^33 ~ ^^23^24^34 + ^22^34 + ^23-^44 ~ ^22-^33^44 ,.2 

+ 2 *2- 
^34 ~~ ^33-^44 

Equation (B.6) is the 2D ellipse boundary of the projection of the 4D hyperellipsoid 

defined by Eq. (B.l) onto the subspace (xl,x2). 

Expressing   the   elements   Ly   in   terms   of  the   elements   My   via   the   relation 

L(s) = M~ (5), we obtain after lengthy manipulation, 

M22 •xl -2- 
M 12 -XyX-> +- 

M, 

M]|M22-M12 M||M22-M|2 MMM22-M|Z
2 

2   x2 (B.6) 

Figure B.l The boundary ellipse defined in Eq. (B6). 
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Note that there are a few useful properties associated with the ellipse defined in Eq. (B.6). 

The area bounded by the ellipse is n-\MnM22 ~ Mn • The maximum extents of the 

distribution in the X\ - and x2 - directions are -JM\\   and 7^22 > respectively, as 

shown in Fig. B.l. 

Since the projection of the 4D hyperellipsoid distribution onto any 2D subspace 

produces a uniform distribution bounded by the ellipse defined in Eq. (B.6), we can relate 

the M.(s) matrix elements to the statistical averages, 

\\x\dx\dx2 
2\ _ ellipse area 

IT dx^dxj 
ellipse area 

1, if 

JJ 
0 0 

M,,M22-M,2 n     MX1 „ 
-——— —rcos6 + -r=^rsm& 

M22 JM22 

2/r 1    ,  

\\^MnM22-Mn
2rdrd6 

y M| \M22 - M\2 rdrdd 

(B.7) 

0 0 

= -Mn, 

\\x2dx\dx2 

2\ _ ellipse area 

ellipse area 

In 1 
J \(-jM22rsm0f^MnM22-Mx2rdrd9 

- Q 0 
In 

w 
0 0 

f \^MUM22-Mx2rdrde 

I 

(B.8) 

-M22, 
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A'I X2 

\\xx x2dx\dx2 

ellipse area 

2/r 1 

If 
0 0 

\\dxidx2 

ellipse area 

f 

—-—— t^rcosf>+-p^£=rsin6' 
M22 JM: '22 

TJM22rsin0^M{,M22 - M12 ni/'c/tf 

2,7 

"j l^M^M^-M^rdi '22 "•'"12 
0 0 

= -M12, 

(B.9) 

It follows from Eqs. (B.7)-(B.9) that, 

2\/   2\     / \2        1 
*i)-(*i*2>   =—(A/nAf22-AfI2). (B.10) 

16 

We use the result in Eq. (B.6) to project the 4D hyperellipsoid defined in Eq. (33) onto 

the subspace {x, v)= (xl,xi). By the definition of the density profile, such a project 

should produce an elliptic boundary defined by 

x2 v2 

+ 7T7T = 1- (B.ll) 
a2(s)    b2(s) 

Comparing the coefficients in Eqs. (B.6) and (B.7), we find that M,\{s)= a~(s), 

M13(s) = 0, and Mi2{s) = b (s), which give Eqs. (36.a), (36.f), and (36.c), repsectviely. 

We project the 4D hyperellipsoid defined in Eq. (33) onto the subspace 

(x,x') = (xl,x2) to yield an elliptic boundary. We find that the usual rms emittance is 

related to the area of the ellipse as 

^(^|^)f'2)-M2 - UMUM22-M
2

2, (B.12) 
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where £xrms{s) is the rms emittance in the x- direction. Using the relation in Eq. (B.9), 

the correlation coefficient of x and x is (xx) (x ) = M]2/Mn , which allows us to 

relate the flow velocity defined in Eq. (6) to the element Mx2 as [see Eq. (36.e)] 

Ml2(s) = a2{s)Mx{s), (B.13) 

where use has been made of (xx') = (xVx/fibc) = \fixx ) = —/Jxa . Solving Eq. (B.12) 

yields 

M22(s)=
l-^fM + a2{s)M2(s), (B.14) 

which gives Eq. (36.b). 

In a similar manner, we determine the corresponding elements of the matrix M(s) for 

the subspace {y,y') = (x^,x4), i.e., 

M34{s) = b2(syv{s), (B.15) 

and 

\6£2
yrms{s) 

b2(s) 
^4(*)=  /;r; +fr2w(*), (B.i6) 

which give Eqs. (36.j) and (36.d), respectively. Here, pv(s) is the flow velocity in the 

y - direction, and 

^^(^)=^2)(^'2)-(^')2 = ^33^44-^4 (B-17) 

is the nns emittance in the y - direction. 
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We project the 4D hyperellipsoid defined in Eq. (33) onto the subspace 

(x,y')=(x\,x4) to yield an elliptic boundary describing the coupling of the particle 

motion between the x- and y'- directions. The projection involves the elements 

Mu{s)   ,    A/|4(.v)   and    M^s)   •    We    use    the    relation    in    Eq.    (B.9),    i.e., 

(xy')' \xj - M\4/M\ 1 and the definition of the flow velocity in Eq. (6) to express 

Mu(s) = a2{s)ay(s) (B.18) 

where av(s) is the rotational flow velocity in the y— direction. Similarly, we have 

M23{s)=-b2{s)ax{s), (B.19) 

where ax(s) is the rotational velocity in x- direction. Equations (B.18) and (B.19) give 

Eqs. (36.g) and (36.h), respectively. 

Finally, we project the 4D hyperellipsoid defined in Eq. (33) onto the subspace 

(x\y')= (x2,x4) . The correlation of the particle motion between the x'- and 

v'-directions is calculated to be 

M24(s)=(x'y') =i^M+^M = a2(s)Mx(s)ay(S)-b
2(s)My(s)ax(s).      (B.20) 

which gives Eq. (36.i). 

45 



US007381967B2 
nil ii III 

(12) United States Patent 
Bhatt et al. 

do) Patent No.:        US 7,381,967 B2 
(45) Date of Patent: Jun. 3, 2008 

(54)    NON-AXISYMMETRIC 
CHARGED-PARTICLE BEAM SYSTEM 

(75)    Inventors:  Ronak I. Bhatt. Cambridge, MA (US); 
Chiping Chen. Needham, MA (US); 
.ling Zhou, Cambridge, MA (US) 

(73)    Assignee:   Massachusetts Institute of 
Technology, Cambridge, MA (US) 

( * ) Notice: Subject to any disclaimer, the term of this 
patent is extended or adjusted under 35 
U.S.C. 154(b) by 341 days. 

(21) Appl. No.: 11/145,804 

(22) Filed: Jun. 6, 2005 

(65) Prior Publication Data 

US 2006/0017002 Al       Jan. 26, 2006 

Related U.S. Application Data 

(60)    Provisional application No. 60/577,132, filed on Jun. 
4, 2004. 

(51) Int. Cl. 
B0 ID 59/44 (2006.01) 
HO1J 49/00 (2006.01) 

(52) U.S. Cl    250/396 ML; 313/346 R; 
313/363.1; 315/501; 315/505; 118/50.1; 136/58 

(58)    Field of Classification Search     250/298, 
250/299, 300, 396 ML; 313/346 R, 363.1; 

315/501,505;  118/50.1;  136/58 
See application file for complete search history'. 

(56) References Cited 

U.S. PATENT DOCUMENTS 

2.410.863A        11/1946   Broadway et al. 

HI' 

6,670,767 B2*    12/2003   Villa      315/111.61 

FOREIGN PATENT DOCUMENTS 

0739492 B        6/2000 

OTHER PUHI ICATIONS 

Basten. MA et al., "Magnetic Quadrupole Formation of Elliptical 
Sheet Electron Beams for High-Power Microwave Devices" IEEE 
Transactions on Plasma Science, vol. 22. No. 5, Oct. 1994 pp 
960-966. 
Basten. M.A. et al., 'Two-plane focusing of high-space-chargc 
electron beams using periodically cusped magnetic fields" Journal 
of Applied Physics, New York, vol. 85, No. 9, May 1999 pp 
6313-6322. 
Chen C et al., "Ideal Matching of Heavy Ion Beams" Nuclear 
Instruments and Methods in Physics Research. Section A: Accelera- 
tors, Spectrometers, Detectors and Associated Equipment, vol. 464, 
No. 1-3, May 21, 2001. pp. 518-523. 
Pierce, J. R.. "Rectilinear Electron Flow in Beams." Journal of 
Applied Physics, Aug. 1940, vol. 11, pp. 548-554 
Pirkle D. R. et al., "Pierce-wigglei electron beam system of 250 
GHz gyro-BWO" International Electron Devices Meeting-Techni- 
cal Digest, Dec. 11, 1988. pp. 159-161. 

* cited by examiner 

Primary Examiner—Jack Berman 
Assistant Examiner—Meenakshi S Sahu 
(74) Attorney, Agent, or Firm—Gauthier & Connors I I ,P 

(57) ABSTRAC1 

The charged-particle beam system includes a non-axisym- 
metric diode forms a non-axisymmetric beam having an 
elliptic cross-section. A focusing element utilizes a magnetic 
field for focusing and transporting the non-axisymmetric 
beam, wherein the non-axisymmetric beam is appaiximalely 
matched with the channel of the focusing element. 

32 Claims, 13 Drawing Sheets 



U.S. Patent Jun. 3, 2008 Sheet 1 of 13 US 7,381,967 B2 

\ 

FIG. 1A 

electron 
beam 

FIG. 1B 



U.S. Patent Jun. 3,2008 Sheet 2 of 13 US 7,381,967 B2 

electron 
beam 

cathode\  \ anode 

FIG. 1C 

lm(ic) 

ETS^/W/^/V/W/W^^^^ iy Re(k) 

FIG. 2 



U.S. Patent Jun. 3,2008 Sheet 3 of 13 US 7,381,967 B2 

12 - 

10 

8 

6 

4 

? 
z=Q.5m 

z=0mm 

10 20 30 

FIG. 3 

40 

20 25 30 

FIG. 4 



U.S. Patent Jun. 3, 2008 Sheet 4 of 13 US 7,381,967 B2 

Charge- 
Collecting 
Surface 
10 

Parallel 
Particle 
Trajectories 
12 

Charge- 
11 Emitting 
Surface 
14 

Analytically 
Designed 
Electrodes 
16 

FIG. 5 

period 

Non-axisymmetric 
periodic magnet field 

pole piece 
19 

-magnet 
18 

FIG. 6 



U.S. Patent Jun. 3, 2008 Sheet 5 of 13 US 7,381,967 B2 

jm^ 

s- imB 
TO—• 

ii.'..;.;.\c:^ 

sir 
LL 

•=. 

CD 

I N 

>> 
-• 

N 
m c I 1 

5 



U.S. Patent Jun. 3,2008 Sheet 6 of 13 US 7,381,967 B2 

* X 

FIG. 8 



U.S. Patent Jun. 3, 2008 Sheet 7 of 13 US 7,381,967 B2 

10.0 

FIG. 9A 

10.0 

FIG. 9B 



U.S. Patent Jun. 3,2008 Sheet 8 of 13 US 7,381,967 B2 

FIG. 9C 

0.21—F~"^—'~~r 

0.1 

E 
OO.O 

-0.1 

-0.2' i    •—i—i- 

M, 

-!_ 
4 6 

s/S 
8 10 

FIG. 9D 



U.S. Patent Jun. 3, 2008 Sheet 9 of 13 US 7,381,967 B2 

3.01—•—>—'—i—•—>—'—i—'—'—>—r 

-1.5- 

-3.0 »—' 
0 

j i i i a. 

4 6 
s/S 

8 10 

FIG. 9E 



U.S. Patent Jun. 3,2008 Sheet 10 of 13 US 7,381,967 B2 

V.f — 1      1      1      1— [      1 •• i 1—1- -|—1-   1      1—• [—•r     1      \ —1— 

0.5 

0 

a(s) 
E

nv
el

op
es

 
0

  
  
  

  
  

 p
 

->
• 

  
  

  
  

  
  

  
  

 C
O

 

-                         b(s)                                       - 

n A 

10 
s/S 

15 20 

FIG. 10A 

FIG. 10B 



U.S. Patent Jun. 3,2008 Sheet ll of 13 US 7,381,967 B2 

0.2 

5 0.0 

-0.1 

-0.2 

~I 1 1 1 1 1—i 1—1 r "|    "i 1 1 r- 

1111 

10 
s/S 

15 20 

FIG. 10C 

0.2 

-0.1 

-0.2 
0 

• 1—1——1—1—1—1 1—1—1—1—i—1—1—1—1- 

10 
s/S 

15 20 

FIG. 10D 



U.S. Patent Jun. 3, 2008 Sheet 12 of 13 US 7,381,967 B2 

FIG.  10E 

^q f Periodic Quadrupole Field 

H Full-Period S H 

0 

FIG. 11 



U.S. Patent Jun. 3, 2008 Sheet 13 of 13 US 7,381,967 B2 

H Full-Period S- 

KAAA/ 
b(s) 

fc 

FIG. 12 

Periodic non-axisymmetric field on axis 

H—FulJ-Period S—•) 

FIG. 13 

a(s) 

b(s) 

FIG. 14 



US 7,381,967 B2 
1 2 

NON-AX1SYMMETRIC forms a non-axisymmetric beam having an elliptic cross- 
( HARGED-PARTICLE BEAM SYSTEM section. A focusing channel utilizes a magnetic field for 

focusing and transporting a non-axisymmetric beam,. 
PRIORITY INFORMA1 ION According to another aspect of the invention, there is 

5   provided a non-axisymmetric diode. The non-axisymmetric 
This application claims priority from provisional appli- diode comprises at least one electrical terminal for emitting 

cation Ser. No. 60/577.132 filed Jun. 4, 2004. which is charged-particles and at least one electrical terminal for 
incorporated herein by reference in its entirety. establishing an electric field and accelerating charged-par- 

ticles to form a charged-particle beam. These terminals are 
BACKGROUND OF THF, INVENTION io arranged such that the charged-particle beam possesses an 

elliptic cross-section. 
The invention relates to the field of charged-particle According to another aspect of the invention, there is 

systems, and in particular to a non-axisymmetric charged- provided a method of forming a non-axisymmetric diode 
particle system. comprising forming at least one electrical terminal  for 

Hie generation, acceleration and transport of a high- 15 emitting charged-particles. forming at least one electrical 
brightness, space-charge-dominated, charged-particle (elec- terminal for establishing an electric field and accelerating 
tron or ion) beam are the most challenging aspects in the charged-particles  to form a charged-particle  beam,  and 
design and operation of vacuum electron devices and par- arranging said terminals such that the charged-particle beam 
tide accelerators. A beam is said to be space-charge-domi- possesses an elliptic cross-section. 
nated if its self-electric and self-magnetic field energy is 20 According to another aspect of the invention, there is 
greater than its thermal energy. Because the beam brightness provided a charged-particle focusing and transport channel 
is proportional to the beam current and inversely propor- wherein a non-axisymmetric magnetic field is used to focus 
tional to the product of the beam cross-sectional area and the and transport a charged-particle beam of elliptic cross- 
beam temperature, generating and maintaining a beam at a section 
low temperature is most critical in the design of a high- 25      According to another aspect of the invention, there is 
brightness beam. It a beam is designed not to reside in an provlded a method of designing a charged-particle focusing 
equilibrium state, a sizable exchange occurs between the and transport cliamiel wherein a non-axisynmietric magnetic 
field and mean-flow energy and thermal energy in the beam. fie,d is used ,0 focus and transport a charged-particle beam 
When  the  beam   is  space-charge-dominated,   the  energy 0j- ei]jpUC cross-section 
exchange results in an increase in the beam temperature (or 30      Accordmg ,0 mother aspect of the invention, there is 
degradation 111 the beam brightness) as it propagates. provided a method of designing an interlace for matching a 

If brightness degradation is not well contained, it can charged-particle beam of elliptic-cross section between a 
cause beam interception by radio-frequency (RF) structures non.axisvrnmetric diode and a non-axisymmetric magnetic 
in vacuum electron devices and particle accelerators, pre- focusing'and transport channel. 
venting them from operation, especially from high-duty 35      According t0 another aspect of the invention, there is 

operation. It can also make the beam from the accelerator pR)videiJ a melhod of forming a charged-particle bean, 
unusable because of the difficulty ol focusing the beam to a m -^ memod ^j^ fomu     g Qon.axisymmetric 

small spot size, as often.required in accelerator applications. dk)de tha, ^^ , non.axisyinmetrit; beam ,;.|vl     m 

The design ol high-brightness, space-charge-dominated. e,u   fc cross_sectlon. Also, the method mcllldes lormi     „ 
charged-particle beams relies on equilibnum beam theories 40 focusi     chamle, that utilizes a          etic fleld for focusi 

and computer modeling. Equilibrium beam theories provide and t        orti     me elliptic cross-section beam, 
the guideline and set certain design goals, whereas computer 
modeling provides detailed implementation in the design. BRIEF DESCRIPTION OF THE DRAWINGS 

While some equilibrium states are known to exist, match- 
ing them between the continuous beam generation section 45      FIGS   1A.JC m schematic diagramS demonstrating a 
and  the continuous beam  transport  section has been a non-axisvmmetric diode; 
difficult task for beam designers and users, because none of CT„ -T •             ,.          .   ..     ,,    , .              ,,    ,             ^   ,                       , FIG. 2 is a graph demonstrating the Integration Contour 
the known equilibrium states for continuous beam genera- ^ r    .1        t   t' 1 <!>• 
tion can be perfectly matched into any of the known equi- 
librium states for continuous beam transport. 

For example, the equilibrium state from the Pierce diode 
..      ..        .     , ,-,-.,           .             .,        . ,    , FIG. 4 is a graph demonstrating the cross-section 01 the in round two dimensional (2D) geometry cannot be matched ....         •             .             . .         .         ,, 

...           ,        1    _              c u  . <P=V electrode at various positions along the beam axis.; into  a  periodic  quadrupole  magnetic  held  to  create  a r                     " 
Kapachinskij-Vladimirskij (KV) beam equilibrium. A reel- FI& 51S a schematic diagram demonstrating the electrode 
angular beam made by cutting off the ends of the equilibrium 55  Z••^ °f a well-confined, parallel beam ol elliptic cross 
state from the Pierce diode in infinite, 2D slab geometry section; 
ruins the equilibrium state FIG. 6 is a schematic diagram of a non-axisymmetric 

However, imperfection of beam matching in the beam periodic magnetic field; 
system design yields the growth of beam temperature and FIG- 7 is a schematic diagram of the field distribution of 
the degradation of beam brightness as the beam propagates 60 a non-axisymmetric periodic magnetic field; 
in an actual device. FIG. 8 is a schematic diagram demonstrating the labora- 

tory and rotating coordinate systems; 
SUMMARY OF THF. INVENTION FIGS. 9A-9E are graphs demonstrating matched solutions 

of the generalized envelope equations for a non-axisymmel- 
According to one aspect of the invention, there is pro- 65 ric beam system with parameters corresponding to: 1^=3.22 

vided a charged-particle beam system. The charged-particle cm"1, 1^=5.39 cm"', ^=0.805 cm"'. K=1.53xlOr2 and 
beam system includes a non-axisymmetric diode which axial periodicity length S=0.956 cm; 

FIG. 3 is a graph demonstrating the cross-section of the 
<1>=0 electrode at various positions along the beam axis; 
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FIGS. 10A-10E are graphs demonstrating the envelopes       construction of appropriately shaped electrodes. The design 
and flow velocities for a non-axisyrnmetric beam system        of said electrodes requires knowledge of the electrostatic 
with the choice of system parameters corresponding to:        potential function external to the beam which satisfies 
^-3.22 cm"1. ko,.-5.39 cm" , V'K.-0.805 cm"1, K-1.53x       appropriate boundary conditions on the beam edge: 
10"2, axial periodicity length S=0.956 cm, and a slight   S 
mismatch; 

FIG. 11 is a graph demonstrating the focusing parameter ^        )-Vll\w "-1 

for a periodic quadrupole magnetic field; *rf' 
FIG. 12 is a graph demonstrating the beam envelopes of _8 l 

a pulsating elliptic beam equilibrium state in the periodic   10 df     '      l{,<0 ~ 
quadrupole magnetic field shown in FIG. 11; 

FIG. 13 is a graph demonstrating the focusing parameter 
for a non-axisymmetric periodic permanent magnetic field; As the potential and its normal derivative are specified 
and independently on the surface (5=!^,. this forms an elliptic 

FIG. 14 is a graph demonstrating the beam envelopes of 15 Cauchy problem, for which standard analytic and numerical 
an elliptic beam equilibrium state in the non-axisymmetric solution methods fail due to the exponential growth of errors 
periodic permanent magnetic field shown in FIG. 13. which is characteristic of all elliptic Cauchy problems. The 

present technique builds on the 2-dimensional technique of 
DETAILED DESCRIPTION OF THE Radley in order to formulate a method of solution for the full 

INVENTION 20 3D problem of determining the electrostatic potential out- 
side a Child-Langmuir charged-particle beam of elliptic 

The invention comprises a non-axisymmetric charged-       cross-section, 
particle beam system having a novel design and method of In the region external to the beam, the potential satisfies 
design for non-axisymmetric charged-particle diodes. Laplace's equation, which is written in elliptic coordinates 

A non-axisymmetric diode 2 is shown schematically in        as 
FIGS. 1A-1C. FIG. 1A shows the non-axisymmetric diode 2 
with a Child-Langmuir electron beam 8 with an elliptic 
cross-section having an anode 4 and cathode 6. FIG. IB is 0_        1     V

:
FI^     -1 "'* 

a vertical  cross-sectional view of the non-axisymmetric Ptf.1. Jtf 
diode 2 and FIG. 1C is a horizontal cross-sectional view of 30 l     t , ( d2     a2 ) 
the non-axisymmetric diode 2 showing an electron beam 8 =   F^_ n z}|y:(cosA ^ _ cos T^J af * Of \ + 

and the cathode 6 and anode 4 electrodes. 
lite electron beam 8 has an elliptic cross section and the — l^lf. q. z) 

characteristics of Child-Langrnuir flow. The particles are az J 
emitted from the cathode 6, and accelerated by the electric [      1 / a:      a: \ 
field between the cathode 6 and anode 4. For an ion beam. =  zuirtf.n) /2(cos/i 24-cos 2nJ a?? + ~dif I+ 

the roles of cathode and anode are reversed. 
To describe the method of designing an non-axisymmetric _L \Z{z)T{(, ij> 

diode with an elliptic cross-section, one can introduce the ' ' 
elliptic coordinate system (S,r|,z; f). defined in terms of the 1 2 1 a2      02 ) 
usual Cartesian coordinates by =   n$7>h p^o*h2e-c<x iiAaf + S71 J '*"''''+ 

-1'cos h (^)COS(TJ), y-f sui h(^)sin(ri), z-z (1.1) 
r- 

i  a2 

where <;e[0, ac) is a radial coordinate. T|e[0.2;i) is an angular 45 ziz) a~z? 
coordinate, and f is a constant scaling parameter. A charged- 7- 
particle beam flowing in the e. direction and taking the 
Child-Langmuir profile of parallel flow with uniform trans- 
verse densitv will possess an internal electrostatic potential         ,„!,„., ,„_ r,ll       .1 I.I- e I- - r r where one can follow the usual technique ot separation ol 
° 50 variables, writing F(|,'T)lz)=Z(z)T(|,T|) and introducing the 

separation constant k2. The separated equations can now be 
written as 

«»tf.l.s) = v(5) 
(1.2) 

(S-K 
i  (S2 if \ 

— (cci 

i   a2 
k2/2 

—— cos/i 2£ + 

(1.5) 

where one can have defined <l>(z=0)=0 along a planar 
cliarge-emitting  surface  and  <t>(z-dVV  along  a  planar 1    I a2      d2 \    ,f2 il.6> 
cliarge-accepting sunace. 

If both planes have transverse boundaries of elliptic 60 
shape, specified by the surface i;=i;0=constant, then a solu- 
tion exists for a parallel flow, uniform transverse density, ^~ 
Child-Langmuir charged-particle beam of elliptic cross-                            j    £ ^2f2 

section, flowing between the planes at z~0 and z~d. Due to                         Q^] a^J0('',      ~cos lrl' 
the mutual space-charge repulsion of the particles constitut-  65                                      ~° 
ing the beam, this Child-I-angmuirprofile must be supported 
by the imposition of an external electric field through the 
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where one can have performed another separation on the sets of eigenvalues denoted by a,„, a2„+1, b2„, b2,;+1 for N 
transverse equation, writing T(|,r|)-R(5)Q(Tl) and introduc- e{0, 1,2,...} which differ in their symmetry properties, 
ing the separation constant a. This last equation thus yields Only the set a2„ and the corresponding cosine-elliptic solu- 

tions denoted by 6(r|)-ce2„(T|;k) possess the appropriate 
5 symmetries, and the integral over a becomes a sum of the 

a2 j     k'f2 ) 0-7) form 
0 = df-l'{()~\a~~^~ CiKhMKW- 

<   *2r 

(     k!f2 ) U-8i (1.14) 

Solutions to the separated transverse equations are known 
as the Radial Mathieu Functions R(|) and Angular Mathieu Moreover, the set of solutions ce2„ is ortliogonal and 
Functions 0(T,), respectively, while the solutions to the ., complete over the space of functions with the desired 
separated longitudinal equation are easily expressed in terms '" symmetry and penod.city properties. Thus one can expand 

of exponentials Z(z)xe±fc. umty as 

The solution for the potential is now represented as a 
superposition of separable solutions which, jointly, satisfy ^ 
the boundary conditions on 1>. One can write 2() » I   ce^^n.^dq 

I _  \    ... .... 1., •><> ce^ir.k)^  
i-"\ce^:kfc 4>Cc,.r\,z)-\dk[Mk)eb\ma)R&m^;k)dal (1.9) /_j £"\ce^n:kf dn 

where the amplitude functions A(k) and B(a) are introduced 
and the integration contours are as yet unspecified. In order 
to satisfy the boundary condition on <I> along the beam edge,  25  The boundary condition on <1> is then satisfied by choosing 
using the analytic continuation of the Gamma function, one 
can write 

dc 

(1.161 
ce2r\rf,k)dri 

k-•<tk. 
(1.10)   30 JJz"\ceu(r)\k)\ldn 

«„,„(&:*) = 1. (1.17. 

where the integration contour C is taken around the branch 35 

The condition that the normal derivative of the potential 
One can then write the boundary condition as vanishes along the beam surface implies 

<; \4" (111)  40 

a*    •" Wo 

k£* 
/r 45  which, along with the boundary value of Ra, and the eigen- 

tMj/tUV'J fl<a)iUfr;t)0„(ij;A)«/o]. value a^, fully specify the second-order Radial Mathieu 
Equation. It can then be integrated by standard methods in 
order to determine the radial solutions. 

50 
The boundary condition is satisfied by choosing C as the ,n      ^^ onc may rcwritc thc expansion for <t> as 
integration contour for the representation of <t> and making 
the correspondences 

v<rvi      i Hi''1 

<t>(f. v. z) = 

Vd-W        i ,,, (1-12) 
,Mk)= — k'm, 55 /   4\        {4n\ 

n 
and 

•HM! 

I' 
(1.13) 

(~ f r,^,,:k)dn 
> Silif.H^lfH^ — 
4^                              j»l«*0j:*)l2*! 

60 

A number of methods may be used to evaluate the charac- 
ITie physical system requires a solution periodic in T| and teristic values a2„ and thc corresponding Angular Mathieu 

symmetric about r|=0 and T|=JE/2. In general, the Angular Functions ce2„. These can be integrated by standard meth- 
Mathieu Functions 0„(r|) are not periodic. Indeed, a periodic 65 ods. In practice, only the first few terms of the infinite series 
solution arises only for certain characteristic eigenvalues of need be retained in order to reduce fractional errors to below 
the separation constant a. There are 4 infinite and discrete        10~5. The integral along the contour C can be transformed 
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into definite integrals of complex-valued functions along the 
real line, and thus it. too. can be evaluated using standard 
methods. 

Once the potential profile is known, one can employ a 
root-finding technique in order to determine surfaces along 
which one may place constant-potential electrodes. A 
numerical module has been developed which determines 
these electrode shapes based on the theory described and 
solution methods described above. Sample electrode designs 
are shown in FIGS. 3 and 4 for the case of a 10:1 elliptical 
beam of semi-major radius 6 mm and semi-minor radius 0.6 
mm. These electrodes serve to enforce the analytically- 
derived potential profile along the beam edge, which in turn 
serves to confine the beam and maintain it in the Child- 15 
I.angmuir form. 

The 3-dimensional charged-particle optics tool Omni- 
Trak has been used to simulate the emission and transport of 
charge particles in the geometry of FIGS. 3 and 4. The 
resulting particle trajectories, shown in FIG. 5, are indeed 20 

parallel, as predicted by the theory. The results of the 
Omni-Trak simulation also provide a validation of the 
analytical method presented above. 

One will ollen wish to extract this beam and inject it into 
another device by excising a portion of the charge-collecting 
plate. Doing so will modify the boundary conditions of the 
problem such that the above solution can no longer be 
considered exact, however, the errors introduced by rela- 
tively small excisions will be negligible, and the appropriate 
electrode shapes will be substantially unchanged from those 
produced by the method outlined above. 

It should also be noted that additional electrodes, inter- 
mediate in potential between the cathode and anode, may be 
added in order to aid the enforcement of the Child-Langmuir ,, 
flow condition. The above prescription allows for their 
design. As with the charge-collecting plate, neither the 
cathode electrode nor the intermediate electrodes need be 
extended arbitrarily close to the beam edge in order to 
enforce the Child-Langrnuir flow condition. The portion of .. 
these electrodes nearest the beam may be excised without 
substantially affecting the beam solution. 

Along similar lines, in a physical device, one cannot 
extend the electrodes infinitely far in the transverse direc- 
tions. The analytically-prescribed electrodes correspond to 45 

the surfaces of conductors separated by vacuum and/or other 
insulating materials and (in some region distant from the 
beam) deviating from the analytically-prescribed profiles. 
Nevertheless, as the influence of distant portions of the 
electrodes diminish exponentially with distance from the 50 

beam edge, these deviations will have a negligible effect on 
the beam profile, provided that they occur at a sufficient 
distance from the beam edge. 

FIG. 5 depicts an Omni-Trak simulation in which the 
finiteness of the electrodes is evident without aflecting the 55 
parallel-flow of the charged particle beam. Note FIG. 5 
illustrates the charge collection surface 10, charge emitting 
surface 14. parallel particle trajectories 12. and analytically 
designed electrodes 16. By equating the electrode geometry 
with equipotential surfaces, the analytic method of electrode 60 
design detailed herein specifies the precise geometry of the 
charge-emitting 14 and charge-collecting 10 surfaces as well 
as the precise geometry of external conductors 16. These 
external conductors may be held at any potential, however, 
generally, two external conductors are used—one held at the 65 
emitter potential and the other at the collector potential. A 
charged-particle system designed conformally to this gcom- 

«s 
elry will generate a high-quality, laminar, parallel-flow. 
Child-Langmuir beam of elliptic cross-section as shown in 
FIG. 5. 

As an illustrated example, a non-axisymmetric periodic 
magnetic field for focusing and transporting a non-axisym- 
metric beam is shown FIG. 6. FIG. 6 shows the iron pole 
pieces 18 and magnets 19 used to form the periodic magnetic 
field. The iron pole pieces are optional and may be omitted 
in other embodiments. The period of the magnetic field is 
defined by the line 20. The field distribution is illustrated 
FIG. 7. Note FIG. 7 illustrates the field lines form by the iron 
pole pieces 18 and magnets 19 of FIG. 6. 

For a high-brightness, space-charge-dominated beam, 
kinetic (emittance) effects are negligibly small, and the beam 
can be adequately described by cold-fluid equations. In the 
paraxial approximation, the steady-state cold-fluid equations 
for time-stationary flow (d/dt=0) in cgs units arc: 

d 

as 

1     a a \ n{^Ts'v   aTj' 

(2.1) 

(2.2 

(2.3) 

— -4v,^+A,^xfi?' + — xflT'cstf. . 
re• I n <-•     '      I 

where s-z, q and m are the particle charge and rest mass, 
respectively. 

V1-/? 

is  the relativistic  mass  factor,  use has  been  made of 
P2.«pA=const, and the self-electric field B* and self-magnetic 
field BJ are determined from the scalar potential tf and 
vector potential AJez, i.e.. F/—Vj^ and B'-VxA/e.. 

One seeks solutions to Eqs. (2.1 )-(2.3) of the form 

»/.('. 1) = 
Nt -HI - 

(2.4) 

na{s)b{s) ~["     a2[s)     b2^)]' 

^U..5) = [/i,u)i-",U).vlA.rft + [M,U)y + a,{s)xiPbcei.     (2.5) 

In Eqs. (2.4) and (2.5), Xy^xej+yej, is a transverse displace- 
ment in a rotating frame illustrated in FIG. 8; 8(s) is the 
angle of rotation of the ellipse with respect to the laboratory 
frame; 6(x)=l if x>0 and 0(x)=O if x<0; and the functions 
a(s), b(s), m(s), u

v(s)' ax(s)- a
v(s) anc' 6(s) are ,0 b° 

determined sclf-consistently [sec Eqs. (2.11)-(2.15)|. 
For the self-electric and self-magnetic fields, Eqs. (2.2) 

and (2.4) are solved to obtain the scalar and vector potentials 

0" =&'*;. W*2 , f) 
a + b\ a       b \ 

(2.6) 

For a 3D non-axisymmetric periodic magnetic field with 
an axial periodicity length of S, one can describe it as the 
fundamental mode, 



US 7,381,967 B2 
10 

B'"(.t) i (2.7 i 

Bo — sinM*o»-*)cos/i(*o^v)cos(Ao.s)e* - 
*o 

d    , 
-r{b2ax) 
as 

a b{ax -ay) d 

a^-b2 

continued 

ds\a) 

.  r—       ,      kl^O + kl^O 
2V*j cosltos) - f 

(2.14) 

r-  db 
2V*-; b-^sm(kos) - 0. 

ds 

cos(,kt>s)ey - cosh{ko,x)cof,h{koyy}sm{kos)eA dO •If a. (2.151 

und further expand it to the lowest order in the transverse 
dimension to obtain 

#"'(*) *   Bo\ -r— cos(AoS)x$j + -r^-ccKikos)yey - sin(t0*)^ 
*o 

(2.8 

So cos(fc0s) 
, sin* 9 

kft, - kr,v 

2*o 
-sin(20)_y fj + 

cos(Ao-v) - 
2*o 

-sin(20).v + 

kL sin" 9 + *"v 

-sin(*os^ • 

In Eqs. (2.7) and (2.8), 

*o = - 

JO 

(2.9)   35 

*/*T' «So 
lytPtmc"- rlPbmc2 

(2.16 

Equations (2.11)-(2.15) liave the time reversal symmetry 
under the transformations (s.a,b,a'.b',ar,av,9)—»(-s,a,b.-a\- 
b'.-a^-a 6). This implies that the dynamical system 
described by Eqs. (2.11)-(2.15) has the hyper symmetry 
plane (a',b',ax,ay). 

A numerical module was developed to solve the gener- 
alized envelope equations (2.11)-(2.15). There are. in total, 
seven functions a(s). b(s), a'(s), b'(s), a,(s). a,(s) and 0(s) to 
be solved. The time inverse symmetry of the dynamical 
system requires the quantities (a',b',av,a.v.) vanish at s~0 for 
matched solutions, therefore, only the three initial values 
a(0), b(0) and 9(0) corresponding lo a matched solution need 
to be determined by using Newton's method. The matched 
solutions of the generalized envelope equations are shown in 
FIGS. 9A-9E for a non-axisymmetric beam system with the 
choice of system parameters corresponding to: 1^=3.22 
cm"1, k^-5.39 cm"1, V'K-0.805 cm"1. K-1.53xl0"2 and 
axial periodicity length S=0.956 cm. 

In particular. FIG. 9A demonstrates the envelopes asso- 
ciated with the functions a(s) and b(s). FIG. 9B is graphical 
representation of rotating angle 0(s). FIG. 9C is a graph 
illustrating velocity 

*o. "*~*O« — *r>- (2.10) 

/•,(*>=• 
1 da 

The 3D magnetic field is specified by the three parameters 

B0, S and kcJKy 

Using the expressions in Eqs. (2.5), (2.6) and (2.8), it can 
be shown that both the equilibrium continuity and force 
equations (2.1) and (2.3) are satisfied if the dynamical 
variables a(s), b(s). m(s)--a"'da/ds, u.v(s)«b"'db/ds, ux(s). 
a (s) and 6(s) obey the generalized beam envelope equa- 
tions: 

d-a 

ds2' 

d'b 

ds2" 

b2[a;-2a,ay) + a2a2
y      _kl-kly .   _        (2.11) 

—^cos(*„s)sin(20)- 
a2 -b2 

al{a\ - 2axay) + b2^] 

v^7 

2v*7aysin(A:oJ) 
:K 

a--b- 

ki-kl (2.12) 
cos(fco-s)sin(2#) + 1       k0 

2\KZ »,sin(Ao-s) 
2Af 

b r=0, 
a + fc 

d    , abi[ax -ay) d ta\ 
— (<-\iO - - 
ds 

(2.13) 

2V*7cOS(A(; 

a--A2     ds\bl 

klxcoJe + kl sin-S 

*o 

,—  da 
a' - 2v K, a-i—%it\{koS)a = 0. 

of* 

FIG. 9D is a graph demonstrating velocity 

\db 

">[s)=bdl- 

FIG. 9F. is a graph demonstrating velocities cx,(s) and a (s) 
50 versus the axial distance s for a flat, ellipse-shaped, uniform- 

density charged-particle beam in a 3D non-axisymmelnc 
magnetic field. 

The matching from the charged-particle diode to the 
focusing channel might not be perfect in experiments. If a 

55 mismatch is unstable, it might ruin the beam. However, 
investigations of small-mismatch beams show that the enve- 
lopes are stable against small mismatch. 

For example, the envelopes and How velocities are plotted 
in FIGS. 10A-10E for a non-axisymmetric beam system 

60 with the choice of system parameters corresponding to: 
ka.--3.22   cm"1,   kor=5.39   cm-1,   ^=0.805   cm"1,   K 
1.53 xlO-2 and axial periodicity length S=0.956 cm with an 
initial 5% mismatch of 6, i.e. 9(s=0)=6„a,^<!rf(s=O)x(1.05). 

In particular, FIG. 10A demonstrates the envelopes asso- 
65 ciated with the functions a(s) and b(s). FIG. 10B is graphical 

representation of rotating angle 9(s). FIG. 10C is a graph 
illustrating velocity 
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*'.U) 
1 da 
a (is' 

JKZ{S) 
<jBzW 

lybpbmc- 

(4 1 

FIG. 10D is a graph demonstrating velocity 

i ,u 

FIG. 10H is a graph demonstrating velocities u^s) and u,,(s) 
versus the axial distance s for a flat, ellipse-shaped, uniform- 
density charged-particle beam in a 3D non-axisymmetric 
magnetic field. 

By the technique described herein, one can design a 
non-axisymmetric magnetic focusing channel which pre- 
serves a uniform-density, laminar charged-particle beam of 
elliptic cross-section. 

One can illustrate how to match an elliptic charged- 
particle beam from the non-axisymmetric diode, described 
herein, into a periodic quadrupole magnetic field. In the 
paraxial approximation, the periodic quadrupole magnetic 
field is described by 

(3.1)  30 

The concept of matching is illustrated in FIGS. 11 and 12. 

FIG. 11  shows an example of the magnetic focusing 
parameter 

*,(•» = 
YbPbinc 1 Sy j0 

35 

(3.2) 

associated with the periodic quadrupole magnetic field for a 
beam of charged particles with charge q. rest mass m, and 
axial momentum v^mc. 

FIG. 12 shows the envelopes for pulsating elliptic beam 
equilibrium in the periodic quadrupole magnetic field, as 
described previously. 

Ihe matching of the equilibrium state from the diode to 
the equilibrium state for the periodic quadrupole magnetic 
field at s=0 is feasible, because the transverse density profile 
and flow velocity of the two equilibrium states are identical 
at s=^0. In particular, the transverse particle density is uni- 
form within the beam ellipse and the transverse flow veloc- 
ity vanishes at s~0. 

Also, one can illustrate how to match an elliptic charged- 
particle beam from the non-axisymmetric diode, as 
described herein, into a non-axisymmetric periodic perma- 
nent magnetic field. In the paraxial approximation, the 
non-axisymmetric permanent magnetic field is described by 
Eq. (2.8). The concept of matching is illustrated in FIGS. 13 
and 14. 

FIG. 13 shows an example of the magnetic focusing 
parameter 

SO 

i)ii 

associated with the non-axisymmetric periodic permanent 
magnetic field (presented for a beam of charged particles 
with charge q, rest mass m, and axial momentum Y<,P6mc. 

FIG. 14 shows the envelopes for a flat, elliptic beam 
equilibrium state in the non-axisymmetric periodic perma- 
nent magnetic field. The angle of the ellipse exhibits slight 
oscillations. However, these oscillations can be corrected by 
utilizing higher longitudinal harmonics of the magnetic field 
profile. 

The matching of the equilibrium state from the diode to 
the equilibrium state for the non-axisymmetric periodic 
permanent magnetic field at s~0 is feasible, because the 
transverse density profile and flow velocity of the two 
equilibrium states are identical. In particular, the transverse 
particle density is uniform within the beam ellipse and the 
transverse flow velocity vanishes at s~0. 

The matching procedure discussed herein illustrates a 
high quality interface between a non-axisymmetric diode 
and a non-axisymmetric magnetic focusing channel lor 
charged-particle beam. 

This beam system will find application in vacuum elec- 
tron devices and particle accelerators where high brightness, 
low emittance. low temperature beams are desired. 

Although the present invention lias been shown and 
described with respect to several preferred embodiments 
thereof, various changes, omissions and additions to the 
form and detail thereof, may be made therein, without 
departing from the spirit and scope of the invention. 

What is claimed is: 
1. A charged-particle beam system comprising 
a non-axisymmetric diode that forms a non-axisymmetric 

beam having an elliptic cross-section: and 
a focusing channel that utilizes a magnetic field for 

focusing and transporting said elliptic cross-section 
beam. 

2. The charged-particle beam system of claim of 1, 
wherein said charged-particle beam possesses a uniform 
transverse density. 

3. The charged-particle beam system of claim of 1, 
wherein said charged-particle beam possesses a laminar 
flow. 

4. The charged-particle beam system of claim of 1, 
wherein said charged-particle beam possesses a parallel 
longitudinal flow. 

5. The charged-particle beam system of claim 1. wherein 
said focusing channel comprises a non-axisymmetric mag- 
netic field for focusing and transporting said charged-par- 
ticle beam. 

6. The charged-particle beam system of claim 5. wherein 
said non-axisymmetric magnetic field includes a non-axi- 
symmetric periodic magnetic field. 

7. The charged-particle beam system of claim 5, wherein 
said non-axisymmetric magnetic field includes a non-axi- 
symmetric permanent magnetic field. 

8. The charged-particle beam system of claim 5, wherein 
said non-axisymmetric magnetic field includes a non-axi- 
symmetric periodic permanent magnetic field. 

9. The charged-particle beam system of claim of 5. 
wherein said non-axisymmetric magnetic field includes at 
least one quadrupole magnetic field. 
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10. The charged-particle beam system of claim of 5. 
wherein said non-axisymmetric magnetic field includes a 
periodic quadrupole magnetic field. 

11. The charged-particle beam system of claim 2, wherein 
said focusing channel comprises a non-axisymmetric mag-   5 
netic field for focusing and transporting said charged-par- 
ticle beam. 

12. The charged-particle beam system of claim 11. 
wherein said non-axisymmetric magnetic field includes a 
non-axisymmetric periodic magnetic field. to 

13. The charged-particle beam system of claim 11. 
wherein said non-axisymmetric magnetic field includes a 
non-axisymmetric permanent magnetic field. 

14. The  charged-particle beam  system  of claim   11. 
wherein said non-axisymmetric magnetic field includes a  15 
non-axisymmetric periodic permanent magnetic field. 

15. The charged-particle beam system of claim of 11. 
wherein said non-axisymmetric magnetic field includes at 
least one quadrupole magnetic field. 

16. The charged-particle beam system of claim of 11,  20 
wherein said non-axisymmetric magnetic field includes a 
periodic quadrupole magnetic field. 

17. A method of forming a charged-particle beam system 
comprising 

forming a non-axisymmetric diode that includes a non-  25 
axisymmetric beam having an elliptic cross-section: 
and 

forming a focusing channel that utilizes a magnetic field 
for focusing and transporting said elliptic cross-section 
beam. 30 

18. The method of claim 17. wherein said charged-particle 
beam possesses a uniform transverse density. 

19. The method of claim 17, wherein said charged-particle 
beam possesses a laminar flow. 

20. The method of claim 17, wherein said charged-particle 35 
beam possesses a parallel longitudinal flow. 

21. The method of claim 17, wherein said focusing 
channel comprises a non-axisymmetric magnetic field for 
focusing and transporting said charged-particle beam. 

22. Ihe method of claim 21, wherein said non-axisym- 
metric magnetic field includes a non-axisymmetric periodic 
magnetic field. 

23. The method of claim 21, wherein said non-axisym- 
metric magnetic field includes a non-axisymmetric perma- 
nent magnetic field. 

24. The method of claim 21. wherein said non-axisym- 
metric magnetic field includes a non-axisymmetric periodic 
permanent magnetic field. 

25. The method of claim 21, wherein said non-axisym- 
metric magnetic field includes at least one quadrupole 
magnetic field. 

26. The method of claim 21, wherein said non-axisym- 
metric magnetic field includes a periodic quadrupole mag- 
netic field. 

27. The method of claim 18, wherein said focusing 
channel comprises a non-axisymmetric magnetic field for 
focusing and transporting said charged-particle beam. 

28. The charged-particle beam system of claim 27. 
wherein said non-axisymmetric magnetic field includes a 
non-axisymmetric periodic magnetic field. 

29. llie charged-particle beam syslem of claim 27. 
wherein said non-axisymmetric magnetic field includes a 
non-axisymmetric permanent magnetic field. 

30. The charged-particle beam system of claim 27. 
wherein said non-axisymmetric magnetic field includes a 
non-axisymmetric periodic permanent magnetic field. 

31. The charged-particle beam system of claim of 27. 
wherein said non-axisymmetric magnetic field includes at 
least one quadrupole magnetic field. 

32. The charged-particle beam system of claim of 27. 
wherein said non-axisymmetric magnetic field includes a 
periodic quadrupole magnetic field. 


