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Objectives
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Status of effort

We have extended Timed CSP and developed a reasoning tool that has applied
to millitary planning, extended job scheduling and timed reminding systems.

Abstract

In this project, we introduce a specification language named Timed Planning,
which is an extension of Timed CSP with the capability of stating more com-
plicated timing behaviors for processes and events. We also develop a reasoning
mechanism for Timed Planning based on Constraint Logic Programming. We
model the Pearl Harbor Attack plan to demonstrate the capability of our ap-
proach for modeling time based military plans with critical timing constraints.
Our approach is capable to handle the extended job-shop scheduling problems.
In our work, the job shop scheduling problems with extensions can be naturally
modeled as Timed Planning processes, whose complete executions correspond to
feasible schedules. By using CLP based reasoning mechanism, the optimal sched-
uler which is an execution with the minimum execution time, can be found.
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1 Introduction

Timed planning is to schedule a set of given timed tasks to fulfill certain desired
properties. It has important implications in a variety of domains, e.g., real-time
operating system, military planning, etc. In a broad view, Timed Planning is
a generalization of the well-understood schedulability problem of a given set of
timed tasks [3].

In order to handle the generalized Timed Planning problem, in this work
we model a timed task as a timed process specified using the well-established
timed specification language Timed CSP [5]. A task may have complicated timed
behavior patterns. Timed CSP is chosen over other timed formalisms (like Timed
Automata [2], Task Automata [8], etc.) is because of its compositional and event-
based nature. In order to state more timing behaviors of a timed task, such as
deadline and period of a task and time-related constrains among events, we
extend Timed CSP with capabilities to state timed-related system requirements
in a modular manner. Namely, each process, which is a task or a sub-task, may
be associated with a set of localized timing requirements. The Timed Planning
problem is then reduced to a feasibility test of the tasks. Based on the notion of
constraint solving [12, 13], we have developed a fully automated reasoning engine
which clarifies whether it is possible that a given set of tasks are scheduled in
a way to fulfill the timed requirements and generate a feasible scheduling (if
possible). Besides, feasibility checking, as well as various property verification
can be applied to Timed Planning specifications. Feasibility checking helps users
to debug the conflicts of the timing constraints specified in the systems.

We study a real military attack, the Pearl Harbor Attack, which is a carefully
planned military strike conducted by the Japanese navy. The whole mission
consists of several sub-missions, each has its own duty and timing constraints.
We model the main attack plan conducted on December 7, 1941. It is only a sub
plan of the whole pearl harbor attack plan which also consists of preparation
plans and follow-up plans after the main attack.

In this project, we apply Timed Planning to the classic scheduling domain,
job-shop scheduling problem (both deterministic and preemptive). This problem
cannot be modeled and solved using pure Timed CSP specifications. We also
apply our approach to handle the extended job-shop scheduling problems, where
jobs can have more complex relations, such as a composition of operational
behaviors with communications, and jobs with deadlines and relative timing



constraints, which no other current work are able to support. It is the main
feature of our work differs from [1] which proposed a mechanism for modeling the
job-shop scheduling problems in Timed Automata and hence finding the optimal
solutions. The job-shop scheduling problem can be very naturally modeled in
Timed Planning processes, whose executions correspond to feasible schedules.
In this work, the job-shop scheduling problem can be reduced to a problem of
finding a complete execution (an execution that terminates) with the minimum
execution time.

Another application is Timed Reminding System, which is a reminding sys-
tem design to generate real time scheduler for coordinating multiple reminders
and remedying possible conflicts. One typical application is to design a remind-
ing system for the dementias to help them doing daily activities such as take
medication at the right time, remind them prepare lunch, turn off stove after
cooking and etc. Our timed reminding system consists of multiple reminders.
Reminders can be triggered at a specific time or by some events. Reminders can
interrupt with each other due to the unexpected activities of the participant.
The reminder which has been interrupted also can resume to the previous one if
the interrupted one is ended before the expiry time.

The underlying reasoning mechanism is Constraint Logic Programming (CLP)
[13], which has been successfully applied to model programs and transition sys-
tems for the purpose of verification [10, 15], showing that their approach out-
performs the well-known state-of-art systems. In our previous work [6], we con-
structed a reasoning tool using CLP as an underlying reasoning mechanism for
Timed CSP . In this work, we extend the reasoning mechanism to support the
Timed Planning specification. Our approach starts with a systematic transla-
tion of the semantics of Timed Planning into CLP. The operational semantics is
encoded to CLP, where a set of global and local variables need to be captured
during the execution, then a set of safety and liveness properties be verified. We
implement a prototype reasoning engine based on one of the established CLP
solvers, CLP(R) [14]. CLP(R) is chosen for its support of real numbers and con-
tinuous time variables. A number of theories, libraries and shortcuts have been
developed for easy querying and proving.

The remainders of the report are organized as follows. Section 2 briefly review
the background of the work, i.e., the Timed CSP specification language and the
Constraint Logic Programming paradigm. Section 3 discusses the syntax and
semantics of Timed Planning, while Section 4 introduces the reasoning method
for Timed Planning. Section 5 shows how we model the Pearl Harbor Attack
plans in Timed planning specification. Section 6 presents how to use Timed
Planning to solve job-shop scheduling problems. Section 8 concludes this report.

2 Overview

Timed CSP Language Hoare’s CSP [11] is an event based notation primarily
aimed at describing the sequencing of behavior within a process and the synchro-
nization of behavior (or communication) between processes. Timed CSP extends



CSP by introducing a capability to quantify temporal aspects of sequencing and
synchronization. Inherited from CSP, Timed CSP adopts a symmetric view of
process and environment. Events represent a cooperative synchronization be-
tween process and environment. Both process and environment may control the
behavior of the other by enabling or refusing certain events and sequences of
events.

Definition 1 (Timed CSP). A Timed CSP process is defined by the following
syntax,

P ::= Stop | Skip | Run | e
t
→ P | e : E → P(e) | e@t → P(t)

| P1 2 P2 | P1 ⊓ P2 | P1 X ||Y P2 | P1 |[X ]|P2 | P1 ||| P2

| P1; P2 | P1 ▽ P2 | P1
d
⊲ P2 | Wait d | P1 ▽{d} P2

| µX • P(X )

RunΣ is a process always willing to engage any event in Σ. Stop denotes a
process that deadlocks and does nothing. A process that terminates is written
as Skip. A process which may participate in event e then act according to pro-
cess description P is written as e@t → P(t). The (optional) timing parameter t
records the time, relative to the start of the process, at which the event e occurs

and allows the subsequent behavior P to depend on its value. The process e
t
→ P

delays process P by t time units after engaging event e. The external choice op-
erator, written as P 2 Q , allows a process of choice of behavior according to
what events are requested by its environment. Internal choice represents vari-
ation in behavior determined by the internal state of the process. The parallel
composition of processes P1 and P2, synchronized on common events of their
alphabets X , Y (or a common set of events A) is written as P1 X ||Y P2 (or
P1 |[A ]|P2). The sequential composition of P1 and P2, written as P1; P2, acts
as P1 until P1 terminates by communicating a distinguished event X and then
proceeds to act as P2. The interrupt process P1 ▽ P2 behaves as P1 until the first
occurrence of event in P2, then the control passes to P2. The timed interrupt
process P1 ▽{d} P2 behaves similarly except P1 is interrupted as soon as d time
units have elapsed. A process which allows no communications for period d time
units then terminates is written as Wait d . The timeout construct written as
P1 ⊲{d} P2 passes control to an exception handler P2 if no event has occurred
in the primary process P1 by some deadline d . Recursion is used to give finite
representation of non-terminating processes. The process expression µX • P(X )
describes processes which repeatedly act as P(X ).

The detailed illustration of each process can be found in [18]. The semantics
of a Timed CSP process is precisely defined either by identifying how the process
may evolve through time or by engaging in events (i.e., the operational semantics
defined in [19]) or by stating the set of observations, e.g., traces, failures and
timed failures (i.e., the denotational semantics as defined in [4]). In this work,
Timed CSP is used to specify interactive timed tasks.

CLP Preliminaries Constraint Logic Programming (CLP [13]) began as a
natural merger of two declarative paradigms: constraint solving and logic pro-



gramming. This combination helps make CLP programs both expressive and
flexible, and in some cases, more efficient than other kinds of programs. The
CLP scheme defines a class of languages based upon the paradigm of rule-based
constraint programming, where CLP(R) is an instance of this class. We present
some preliminary definitions about CLP.

Definition 2 (Atom, Rule and Goal). An atom is of the form p(t̃), where
p is a user defined predicate symbol and t̃ is a sequence of terms ‘t1, t2.., tn ’. A
rule is of the form A : −B̃ , Ψ where the atom A is the head of the rule, and the
sequence of atoms B̃ and the constraint Ψ constitute the body of the rule. A goal
has exactly the same format as the body of the rule of the form ? − B̃ , Ψ . If B̃
is an empty sequence of atoms, we call this a (constrained) fact. All goals, rules
and facts are terms.

The universe of discourse D of our CLP program is a set of terms, integers,
and lists of integers. A constraint is written using a language of functions and
relations. They are used in two ways, in the basic programming language to
describe expressions and conditions, and in user assertions, defined below. In this
report, we will not define the constraint language explicitly, but invent them on
demand in accordance with our examples. Thus the terms of our CLP programs
include the function symbols of the constraint language. A ground instance of
a constraint, atom and rule is defined in obvious way. A ground instance of a
constraint is obtained by instantiating variables therein from D. The ground
instances of a goal G, written [[G]] is the set of ground atoms obtained by taking
all the true ground instances of G and then assembling the ground atoms therein
into a set. We write G1 |= G2 to mean that for all groundings θ of G1 and G2,
each ground atom in G1θ appears in G2θ.

Let G = (B1, ...,Bn , Ψ) and P denote a goal and program respectively. Let
R = A : −C1, ...,Cm , Ψ1 denote a rule in P , written so as none of its variables
appear in G. Let A = B , where A and B are atoms, be shorthand for equations
between their corresponding arguments. A reduct of G using R is of the form

(B1, ...,Bi−1,C1, ...,Cm ,Bi+1, ...,Bn ,Bi = A ∧ Ψ ∧ Ψ1)

provided Bi = A ∧ Ψ ∧ Ψ1 is satisfiable. A derivation sequence is a possibly
infinite sequence of goals G0,G1, ... where Gi , i > 0 is a reduct of Gi−1. If there
is a last goal Gn with no atoms, notationally (2, Ψ) and called a terminal goal,
we say that the derivation is a successful and that the answer constraint is Ψ .
A derivation is ground if every reduction therein is ground.

CLP has been successful as a programming language, and more recently, as a
model of executable specifications. There have been numerous works which use
CLP to model system modeling or programs and which use an adaptation of the
CLP proof system for proving certain properties [16][6]. In this work, we follow
this trends and use existing powerful constraint solvers for mechanized Timed
Planning.



3 Timed Planning Specification

In our setting, Timed CSP is used to specify the timed tasks, which are multi-
threaded and interactive. However, Timed CSP lacks expressiveness for stating
system requirements which constraints all behavioral traces of a given process,
i.e., the desired properties of Timed Planning. Thus, we extend Timed CSP with
capability of stating requirements on process deadlines, event ordering, etc.

3.1 syntax

In a Timed Planning specification, a process is extended with an optional Where

clause, which consists of a (first order) predicate over a predefined set of time
variables. For instance, given a process P , the variable P .Start (P .End) denotes
the exact starting (ending) time of the process P . More specifically, P .Start

captures the starting time of a process P when its first event is enabled or when
the “wait d” process is enabled if P starts with a wait process. P .End is the
ending time of the process P , i.e., the starting time of process Stop. If the pro-
cess is non-terminating, then P .End = ∞. Naturally, P .End ≥ P .Start all the
time. Using the two variables, a deadline property (a task must be accomplished
within a certain time) is expresses as P Where P .End− P .Start 6 d where
d is a constant (d ∈ R

+). In other scenarios, there may be a requirement on
some event to occur at some exact time, e.g., attending a meeting at 10:00. A
time variable Engage is attached to an event e to denote the exact time when
e is engaged, in the form of e.Engage.

Example 1. Kate needs to attend a meeting which starts at 10:00 and lasts less
than two hours. She will go home after the meeting.

Kate =̂ arrive → Meeting ; gohome → Skip

Where arrive.Engage 6 10 ∧ Meeting .Start = 10 ∧
Meeting .End − Meeting .Start 6 2

where for simplicity we write 10 to represent 10:00. 2

In addition, we use the variable P .Tes, where Tes stands for T imed Event Set,
to record the engage time of all events engaged so far, which can be viewed as
a history of the execution. We can retrieve the information we are interested in
from the set Tes. The following example illustrates a constraint concerning the
number of occurrences of events in P .

Example 2. In a restaurant, the staff in the kitchen cook and supply food to the
counter, the staff at the counter takes orders and delivers food to the customers.

Kitchen =̂ cook → supply → Kitchen

Counter =̂ order
30
→ serve → Counter

Where serve.Engage − order .Engage 6 60
Mcd =̂ Kitchen ‖ Counter

Where Tes ↓ supply ≥ Tes ↓ serve ∧ Tes ↓ supply − Tes ↓ serve 6 10



CP ::= P Where WherePred

WherePred ::= WherePre ∧ WherePred

| WherePre ∨ WherePred

| WherePre ⇔ WherePred

| WherePre ⇒ WherePred

| ¬WherePre | true | false

| WhereExpr ∼ WhereExpr – ∼ ∈ {<,6, =, >,≥}

WhereExpr ::= [Name.]Start – starting time of a process

| [Name.]End – ending time of a process

| [Name.]Tes – timed event set of a process

| Name.Engage – time of the occurrence of Name

| Name.Engagei – time of the ith occurrence of Name

| WhereExpr ⊙ WhereExpr – ⊙ ∈ {+,−}

Fig. 1. Timed Planning Process Syntax

where Tes ↓ supply is the number of occurrences of event supply in the event
set Tes. The Where clause guarantees for each order, there is available food
to be delivered. 2

The syntax of the Timed Planning process is summarized in Figure 1 where
Name is a sequence of characters starting an alphabet, i.e., an event or a process.
Note that if Name is missing, it defaults to the process name on the left hand
side. To differentiate events of the same name in different processes, we write
P .a to denote the event a in P whenever necessary. By using the syntax defined
above, common Timed Planning requirements can be specified easily.

We also add some functions over Tes to capture different aspects of the
execution which can be used in the where predicates.

– Tes ↓ a : the number of occurrences of event a in the timed event set Tes.

– first(Tes): The first event appear in Tes.

– last(Tes): The last event appear in Tes.

Example 3 (Common requirements). For instance, we can specify the deadline
of a process, order of events, separation time between events and etc, which are
shown in Table 1. 2

3.2 Data types

The Timed Planning specification supports some primitive data types, including
integers, real numbers, boolean values and list. We can define global variables



Requirements TP representation

Process P must be finished within time d P.End- P.Start6 d
Process P must be finished before time d P.End6 d

Max separation time between two events e1, e2 is d . e2.Engage- e1.Engage6 d
e2 must happen before e1 e2.Engage- e1.Engage≥ 0

Table 1. Basic Timed Planning Patterns

or process parameters.

R : RealNumber
N : Integers
B : BooleanType
SeqT : Sequence of elements of type T
SetT : Set of elements of type T

For Seq T and Set T, type T ∈ {R, N, B}.

3.3 Operational Semantics of Timed Planning

An operational semantics provides a way of interpreting a language by stepping
through executions of programs written in that language. It describes an opera-
tional understanding of the language. The operational semantics of Timed CSP
is precisely defined in Schneider [19] by using the combination of two relations:
event transition and evolution. The semantics model for Timed Planning con-
sists of three components: the event and timed transitions which are inherited
from Timed CSP, a Where predicate which must be satisfied by this model,
and an Timed stamped set. A Timed stamped set (Tss) is a record of an execu-
tion, consisting of a set of process related time stamps, namely the starting and
ending times of processes, and a timed event set (Tes) which is a set of timed
events. Tes is a subset of Tss : Tes ⊆ Tss . A timed event is a pair drawn from
e × R

+ where e ∈ Σ, consisting of a time and an event engage time value.
We define the state of a process as a quadruple 〈P , t ,W ,Tss〉 where P is the

process, t is the current time, W is the Where predicate and Tss is the timed
stamped set of the model. Tss keeps value for all variables. At each transition,
an evaluation of the system requirement W is performed. If the current state
satisfies the requirement, the transition can be enabled, otherwise not.

Definition 3. The operational semantics of a Timed Planning specification is
a timed transition where the state is a quadruple 〈P , t ,W ,Tss〉, and event tran-
sitions and evolution transitions are defined by the rules:

– 〈P , t ,W ,Tss〉
a
→ 〈P ′, t ,W ,Tss ′〉 where ∃ i : N • Tss ∪ {(a.Engagei , t)} �

W
– 〈P , t ,W ,Tss〉

d
 〈P ′, t + d ,W ,Tss ′〉 where d>0



Tss ∪ {(e.Engagei , t)} |= W P1
e
→ P ′

1
[ e ∈ X ∪ {τ} \ Y ,Tes ↓ e = i − 1 ]

〈P1 X ||Y P2, t ,W ,Tss〉
e
→

〈P ′

1 X ||Y P2, t ,W ,Tss ∪ {(e.Engagei , t)}〉

Tss ∪ {(e.Engagei , t)} |= W P2
e
→ P ′

2
[ e ∈ Y ∪ {τ} \ X ,Tes ↓ e = i − 1 ]

〈P1 X ||Y P2, t ,W ,Tss〉
e
→

〈P1 X ||Y P ′

2, t ,W ,Tss ∪ {(e.Engagei , t)}〉

Tss ∪ {(e.Engagei , t)} |= W P1
e
→ P ′

1 P2
e
→ P ′

2
[ e ∈ X ∩ Y ,Tes ↓ e = i − 1 ]

〈P1 X ||Y P2, t ,W ,Tss〉
e
→

〈P ′

1 X ||Y P ′

2, t ,W ,Tss ∪ {(e.Engagei , t)}〉

Tss ∪ {(X.Engage, t)} |= W P1
X
→ P ′

1 P2
X
→ P ′

2

〈P1 X ||Y P2, t ,W ,Tss〉
e
→ 〈P ′

1 X ||Y P ′

2, t ,W ,Tss ∪ {(End, t)}〉

P1
d
 P ′

1 P2
d
 P ′

2

〈P1 X ||Y P2, t ,W ,Tss〉
d
 〈P ′

1 X ||Y P ′

2, t + d , W ,Tss〉

Fig. 2. Operational Semantics of compositional operator P1 X ||Y P2

where P ′ is the subsequent process of P by involving either a event transition (→)
or a timed transition ( ). Tss ′ is a timed stamped set with updated Engage,
Start, and End variables. 2

The
a
→ represents an event transition, whereas

d
 is a timed transition. ∃ i :

N • Tss ∪ {(a.Engagei , t)} � W is an evaluation of the current state, which
is used to check whether the current timed stamped set Tss fulfills the system
requirements W or not.

In the operational semantics, we define both event transition and timed tran-
sition relations for all primary and compositional operators in Timed Planning
specification, which are fully presented in [7]. The operational semantics of the
alphabetized parallel composition operator P1 X ||Y P2 are illustrated in Figure
2. The first two rules state that either of the components (P1 or P2) may engage
an event as long as the event is not shared, only if the event with the current
time satisfies the requirements. The next rule states that a shared event can be
engaged simultaneously by both components as long as the event satisfies the
requirements. The fourth rule is a special case for the third rule, whereas the
event is the X which is a special event used purely to denote termination. A new
pair (End, t) is added to the Tss and hence checked. The last rule says that the
composition may allow time elapsing when both the components do . We define
the semantics rules for each operators in Timed CSP, which are fully illustrated



in [7].

Example 3 Take a printer process as an example. After the printer accepts a
job, it needs to print this job within 30 to 60 seconds. Assume the process starts
at time 0.

Printer =̂ accept
30
→ print → Printer

Where print .Engage-accept .Engage 6 60

W is the constraint print .Engage-accept .Engage 6 60, which means ∀ i : N •
print .Engagei -accept .Engagei 6 60. The following is one possible execution
sequence.

〈accept
30
→ print → Printer , 0,

{print.Engage-accept.Engage 6 60}, {(Start, 0)}〉
10
 

〈accept
30
→ print → Printer , 10,

{print.Engage-accept.Engage 6 60}, {(Start, 0)}〉
accept
→

〈Stop ⊲{30} print → Printer , 10, {print.Engage-accept.Engage 6 60},

{(Start, 0), (accept.Engage1, 10)}〉
30
 

〈print → Printer , 40, {print.Engage − accept.Engage 6 60},

{(Start, 0), (accept.Engage1, 10)}〉
20
 

〈print → Printer , 60, {print.Engage − accept.Engage 6 60},

{(Start, 0), (accept.Engage1, 10)}〉
print
→

〈Printer , 60, {print.Engage − accept.Engage 6 60}

{(Start, 0), (accept.Engage1, 10), (print.Engage1, 60)}〉

· · ·

In this execution, event accept is firstly engaged at 10, we insert (accept .Engagei10)
to Tss . It is not likely for event print to be firstly engaged after 40 seconds while
it is enabled, where print .Engagei will be greater than 70, since it is guarded
by print .Engage-accept .Engage 6 60. 2

Healthiness Conditions As illustrated in the last section, each process is
attached with a Where clause, which restricts the set of timed traces of the
process. The constraints associated with a process are divided into two groups,
namely the explicit ones defined in the Where clause and a set of implicit
ones. The implicit constraints should always be true, i.e., a set of healthiness
conditions. The following are two examples of such healthiness conditions. The
complete list of healthiness conditions can be found in [7].

– For every event e in process P , e must be engaged between the starting time
and ending time of P . Let αP be the alphabet of P .

∀ e : αP • P .Start 6 e.Engage ∧ e.Engage 6 P .End

– Let Pi be a sub-process of P , written as Pi 4 P . The starting time of Pi

must be greater than or equal to the starting time of P and the its ending
time must be less than or equal to that of P .

∀P ,Pi • Pi 4 P ⇒ P .Start 6 Pi .Start ∧ Pi .End 6 P .End



4 Verification of Timed Planning

In order to apply constraint solving technique to reason about systems modeled
in the extended Timed CSP, we need to firstly encode the semantics of the
processes as CLP rules. Once we encode the semantics of processes as CLP
rules, well-established constraint solvers like CLP(R) [14] can be used to reason
about those systems. Operational semantics defined in Section 3.3 are all encoded
systematically.

The very initial step is to encode the syntax the extended Timed CSP into
CLP. Note that this step can be automated by syntax rewriting. A relation
tproc(N ,P ,W ) is used to present a process P of name N with where predicates
W . W is a set of wherePred in a logical conjunction form. For instance, W =
[W 1,W 2,W 3] means wherePred = W 1 ∧ W 2 ∧ W 3. If there are no Where

predicates defined for this process, W is the empty set. For instance, the syntax
encoding of task Kitchen (Example 2) is as follows.

tproc(kitchen, eventprefix (cook , eventprefix (supply , kitchen)), [ ]).
tproc(counter , delay(order , eventprefix (serve, counter), 30),

[leq(engage(serve), engage(order))]).
tpoc(mc, parallel(kitchen, counter),

[geq(number(tr(mc), supply),number(tr(mc), order)),
leq(minus(number(tr(mc), supply),number(tr(mc), order)), 5)]).

where relations ‘leq , geq ,minus ,number ’ are built-in predicates defined in our
library, which represent ‘6,≥,−, ↓’ respectively.

Having defined the corresponding CLP syntax for the Timed Planning specifi-
cations, we devote the rest of this section to describe how the operational seman-
tics are embedded as CLP rules. A relation of the form tpos(P1,T1,E1,M ,P2,T2,E2)
is used to denote the t imed planning operational semantics, by capturing both
event transition relations and evolution relations with a set of constraints. In-
formally speaking, tpos(P1,T1,E1,M ,P2,T2,E2) returns true if the process P1

evolve to P2 through either a time evolution, i.e., let T2 − T1 time units elapse
(so that M = []), or an event transition by engaging an abstract event e in-
stantly (M = e), as long as both transitions satisfy the Where requirements
stored in E1. After this transition relation, the local environment might change
to E2 by adding more predicates. E1 (and E2) is the environment of the system,
which consists not only the Where predicates, but also the current values of
the variables appeared in the Where predicates.

We define the tpos/7 1 relation for each and every operator of the extended
Timed CSP according to the semantics presented previously in Section 3.3.

tpos(stop,T1,E , [], stop,T2,E ) : −D >= 0,T2 = T1 + D .
tpos(skip,T ,E1, [termination], stop,T ,E2) : −sat(E , termination,T ,E2).
tpos(skip,T1,E1, [], skip,T2,E2) : −D >= 0,T2 = T1 + D , sat(E1,T1,E2).

1 tpos/7 indicates the relation tpos with 7 parameters, same for sat/3 and sat/4.



The only transition for process Stop is time elapsing. Process Skip may choose
to wait some time before engaging the termination event which is our choice of
representing X in CLP. Process Skip may not be able to terminate immediately
since there might be some constraints involving P .End defined in the Where

clause. The relation sat is required to be evaluated before the termination. Re-
lation sat(E1,A,T ,E2) and sat(E1,T ,E2) are used to test whether the current
state fulfills the requirements. Relation sat/4 handles event transition and sat/3
handles timed transition. The sat/4 and sat/3 rules are defines as:

sat(E1, termination,T ,E2) : −get process(E1,N ),
insert(end(N ,T ),E1,E2), evaluate(E2).

sat(E1,A,T ,E2) : −get process(E1,N ),
insert(engage(A,N ,T ),E1,E2), evaluate(E2).

sat(E1,T ,E1) : −evaluate(E1).

The first rule says that whenever the termination event has been engaged, the
predicate P .End = T need to be validated in conjunction with all the current
requirements stored in E1. Once it has been proved that the resultant predicate
is not contradiction, we append this predicate to the current set of predicates.
The second rule is to validate the case when an event is engaged, by adding the
predicate A.Engage = T to the environment. The last rule captures the timed
transition relation by evaluating the current environment with the current time.
Relation get process(E ,N ) is to find the current named process being executed.
evaluate(E ) is to evaluate the current requirements, namely the constraint store.
The detailed definition of get process/2 and evaluate/1 can be found in our web
site2.

In the operational semantics, there are a set of composition operators which
are more complex than the primitive ones. For instance, the rules associated
with the semantics of alphabetized parallel composition operator P1 X ||Y P2

are as follows.

tpos(para(P1,P2,X ,Y ),T ,E1,A, para(P3,P2,X ,Y ),T ,E2)
: − member(A,X ),not(member(A,Y )),

sat(E1,A,T ,E2), tpos(P1,T ,E1,A,P3,T ,E2).
tpos(para(P1,P2,X ,Y ),T ,E1,A, para(P1,P4,X ,Y ),T ,E2)

: − member(A,Y ),not(member(A,X )),
sat(E1,A,T ,E2), tpos(P2,T ,E1,A,P4,T ,E2).

tpos(para(P1,P2,X ,Y ),T ,E1,A, para(P3,P4,X ,Y ),T ,E2)
: − member(E ,X ),member(E ,Y ), sat(E1,A,T ,E2),

tpos(P1,T ,E1,A,P3,T ,E2), tpos(P2,T ,E1,A,P4,T ,E2).

tpos(para(P1,P2,X ,Y ),T1,E , [], para(P3,P4,X ,Y ),T1 + D ,E )
: − tpos(P1,T1,E , [],P3,T1 + D ,E ), tpos(P2,T1,E , [],P4,T1 + D ,E ).

There is a one-to-one correspondence between our rules and the operators which
are fully defined at [7]. This makes the soundness of our rules straightforward.

2 http://www.comp.nus.edu.sg/∼zhangxi5/horae



We have implemented a prototype reasoner based on one of the established
CLP solver, namely CLP(R). CLP(R) is chosen for its support of real numbers
and thus continuous time variables. A number of theories, libraries and shortcuts
have been developed for easy querying and proving. This section is devoted to
various proving we may perform over systems modeled using our extended Timed
CSP. We discuss two main ones here. The first one is feasibility checking, which
answers the schedulability problem. The other is safety and liveness checking.

4.1 Feasibility Checking

After specifying the tasks using the extended Timed CSP in CLP(R), the very
first task is to check whether the tasks are feasible before simulation or reasoning
of the system. Feasibility checking is necessary because there might be a conflict
among the set of Where clauses of a system, which potentially invalidates any
proving result. To perform this task, the conjunction of the Where predicates
and the healthiness conditions are checked.

The output of the feasibility checking is either yes if the tasks are feasible
or else no. In case the tasks are infeasible, i.e., there is no way to satisfy all
the constraints, a minimum set of predicates which conflict each other can be
generated so as to facilitate user correction easily. We use the CLP(R) predicate
feasibility checking(N ,S ) to fulfill this purpose, where N is the name of the
process that is to be checked, and S is the minimum conflict set. If the process N
is a feasible process feasibility checking/2 returns false, otherwise the minimum
conflict set S is generated and returned.

feasibility checking(N ,S ) : −get where(N ,W ),min cons store(W ,S ).
min cons store(W ,S ) : −find min(1,W ,S ).
find min(N ,W ,W ) : −size(W ,L),L < N , !.
find min(N ,W ,S ) : −size(X ,L),L >= N , delete at(N ,W ,WS ),

(satisfy(WS )− > find min(N + 1,W ,S ); find min(N ,WS ,S )).

Relation min cons store(W ,S ) is to generate the the minimum conflict set S
of W if W |= false. It is performed by a linear scan on a sequence of constraints.
We check whether after removing one constraint, the constraints store becomes
satisfiable or not. If it does, then this constraint must be important and have
to be put back, otherwise it can be discarded. It is an iterative process until a
minimum set is found.

4.2 Reasoning about Safety and Liveness

Feasibility checking is to check whether the tasks modeled in Timed Planning are
feasible. Once it is proven to be feasible, we can reason about safety or liveness
properties by making explicit assertions.

Relation reachable(P ,Q ,E1,E2,T1,T2,Tr) is defined to explore the full
state space if necessary. Informally, it states that “process P starts at T1 with



environment E1 is able to be executed to Q at T2 with environment changed
to E2 via trace Tr”.

reachable(P ,P , , ,T ,T , []).
reachable(P ,Q ,E1,E2,T1,T2,N ) : −tpos(P ,T1,E1,A,P1,T3,E3),

(A = t( ); A == tau; A = reccall( )),not table(P1),
assert(table(P1)), reachable(P1,Q ,E3,E2,T3,T2,N ).

reachable(P ,Q ,E1,E2T1,T2, [E | N ]) : −tpos(P ,T1,E1,A,P1,T3,E3),
not(A = t( ); A == tau; A = reccall( )),not table(P1),
assert(table(P1)), reachable(P1,Q ,E3,E2,T3,T2,N ).

reachable/7 is used to build assertions for various property checking. The first
property of interest is to find one particular feasible schedule for the tasks,
provided that the tasks are feasible. Relation instance(P , Ins) is able to generate
such feasible schedule Ins of process P .

instance(P , Ins) : −not feasibility checking(N , ), init Env(N ,E ),
reachable(P , ,E , , 0, , Ins).

where P specifies the tasks and Ins is a scheduling.
One property of special interest is deadlock-freeness. Relation deadlock(P ,Tr)

is used to check the deadlock-freeness property, by trying to find a counterex-
ample where P is deadlocked at some trace Tr .

deadlock(P ,Tr) : −init Env(P ,E ), reachable(P ,P1,E ,E2, 0,T2,Tr),
(tpos(P1,T2,E2, [t( )],Q1,T3,E3) →

not(tpos(Q1,T3,E3,A, , , ),not A = [t( )]);
not(tpos(P1,T2,E1,A,Q1,T3, ),not A = [t( )])).

It states that a process P at time 0 may result in deadlock if it can evolve to the
process expression Q at time T2 where no event transition is available neither
at T2 nor at any later moment. The last line outputs the trace which leads to a
deadlock. Alternatively, we may present it as the result of the deadlock proving.
Note that the above is different from the deadlock checking for standard Timed
CSP as presented in [6]. Here the Where clauses at each step must be fulfilled.
In general, a deadlock-free Timed CSP process may become a non deadlock-free
process after it is enriched with certain Where clauses. It is, however, also
possible for a non deadlock-free process to become deadlock-free.

We can also find the execution duration of an specific event, more specifically,
the range of time that the event is able to be engaged. Relation engage time(P ,E ,R)
is defined for the purpose, which is to find the range R of the engage time of
event E in process P . The detailed definition for all relations can be found in
[7].

engage time(P ,E , []) : −not happen at(P ,E , ).
engage time(P ,E ,R) : −happen at(P ,E ,T ), union(R,T ,R1),

engage time(P ,E ,R1).



where R is the range of engaged time of event E in process P which is generated
after executing the relation. For instance,

P =̂ a
5
→ b

6
→ Skip || c

7
→ b

6
→ Skip

Where End − Start 6 15 ∧ 3 6 a.Engage 6 7

The range of engage time of event b can be found by executing the following
query ?−engage time(p, b,R). It returns result in the binding R = [b engage ≥
8, b engage 6 9], which indicates b.Engage∈ [8, 9].

5 Case Study: The Pearl Harbor Attack

The attack on Pearl Harbor was a surprise military strike conducted by the
Japanese navy against the United States’ naval base at Pearl Harbor, Hawaii,
on the morning of Sunday, December 7, 1941, later resulting in the United States
becoming militarily involved in World War II. It was a carefully planned attack
by the Japanese Navy which consisted of two aerial attack waves totaling 353
aircraft, launched from six Japanese aircraft carriers.

We studied some documents on plans and preparations of the attack from [9]
and formalize the model of this attack using the Timed Planning specifications.
The whole mission consists of several forces: air attack force, screening unit,
support force, patrol unit, midway bombardment unit, reconnaissance unit and
supply force, where each force has its own strength and duty.

Air Attack Force

“ Air attacks will be carried out by launching the first attack units 230
nautical miles due north of Z point at 0130 hours (05:30am honolulu time) X
Day (the day of the outbreak of hostilities), and the second attack unit at 200
nautical miles due north of Z point at 0245 hours....
Carrier Striking Task Force Operation Order No.3 23 Nov 1941”

The air force attack consists of two waves, we name take as FirstAttack and
SecondAttack . According to their plan, the air force advanced their destination
20 hours before the attack. We model the air force attack as follows, where we
use 0 to denote 00:00am such that 90 means 1:30 am and so on.

FirstAttack =̂ launching .24 → arrive.oahu → attack → return → Skip

Where launching .Engage = 90 ∧ 330 6 return.Engage 6 360

FirstAttack =̂ launching .24 → arrive.oahu → attack → return → Skip

Where launching .Engage = 165 ∧ 405 6 return.Engage 6 435

AirAttackForce =̂ advance
1200
→ (FirstAttack ||| SecondAttack)

According to the document, for both attack, the aircrafts would return after
4 hours and within 4 and half hours of the start of each attack. launching .24
denotes the aircrafts are launching at speed of 24 knots.



The Midway Bombardment Unit The midway bombardment unit will de-
part from Tokyo Bay and after after refueling, secretly approach midway. It will
arrive on the night of X Day and shell the air base. The unit will withdraw and,
after refueling, return to the western part of the Inland Sea. We model the task
of this unit as MidwayBUnit .

MidwayBUnit =̂ refuel → depart → arrive → shell → refuel → return → Skip

Where arrive.Engage > 1080

where constraint arrive.Engage > 1080 captures the idea that the unit would
arrive at that night.

The Reconnaissance Unit This unit consists of different kind of reconnais-
sances.

– Immediate Pre-attack Reconnaissance: Two reconnaissance seaplanes will
take off at 0030 hours, X Day, secretly reconnoiter Pearl Harbor and La-
haina Anchorage and report the presence of the enemy fleet.

– Post-Attack Reconnaissance: Before returning to the carrier, after the attack,
an element of the fighters will fly as low as possible to observe and determine
the extent of the damage inflicted upon the enemy aircraft and ships.

IPAReconn =̂ takeoff → (launch.pearlHarbor → reconnoiter → report → Skip

||| launch.lahaina → reconnoiter → report → Skip);
return → Skip

Where takeoff .Engage = 30
PAReconn =̂ takeoff → observe → report → return → Skip

Reconnaissance =̂ IPAReconn ||| PAReconn

The takeoff time of the Post-Attack Reconnaissance depends on the com-
pleteness of the main attack, so the constraint on the engage time of takeoff will
be attached on a upper level process.

We model the task of each force as a process, the Pearl Harbor Attack on X
Day is a composition of all sub tasks.

PearlHarborAttack =̂ AirForceAttack ||| MidwayBUnit ||| Reconnaissance
||| Supply ||| screening ||| Patrol
Where PAReconn.Start 6 AirForceAttack .End

The documents recorded that in the initial plan, the Japanese Navy con-
sidered an assault plan in case the surprise attack does not succeed. But later
they determined not to conduct this assault plan because at that time they had



complete confidence in the strength of the fighter units. If the assault plan is
included in the whole plan, the model will be as follows:

PearlHarborAttack2 =̂ (AirForceAttack ||| MidwayBUnit ||| Reconnaissance
||| Supply ||| screening ||| Patrol)
▽ fail → AssaultPlan
Where PAReconn.Start 6 AirForceAttack .End

6 Job-shop Scheduling

In this section, we show how the problem of job-shop scheduling can be modeled
and solved using the Timed Planning specifications. We model both determin-
istic job-shop scheduling problem as well as the preemptive ones, which to our
knowledge cannot be modeled and solved using purely Timed CSP specifications.

6.1 Job-Shop Scheduling Problem

The job-shop scheduling problem (JSSP) is a generic resource allocation problem
in which common resources (“machines”) are required at various time points (and
for given durations) by different jobs. The goal is to find a way to allocate the
resources such that all the jobs terminate as soon as possible, which is a schedule
with the minimum time interval to finish all jobs. The difference between a
deterministic and a preemptive job-shop scheduling problem is for the latter
case, jobs can use a machine for some time, stop for a while and then resume
from where they stopped. We define both problems formally as follows.

Definition 4. (Job-shop scheduling problem) Given a set of O ol operations, a
set M of m machines, and a set J of n jobs. For each operation ν ∈ O there is
a processing time p(ν) ∈ N, a unique machine M (v) ∈ M on which it requires
processing, and a unique job J (ν) ∈ J to which it belongs. 2

The difference between deterministic and preemptive job-shop scheduling
problem is the feasible schedule.

Definition 5. (Feasible Schedules for Deterministic Job-Shop Problem) A sched-
ule is a function S : O → N that for each operation ν defines a start time S (ν).
A schedule S is feasible if

1.Covering :
∀ ν ∈ O : S (ν) > 0,

2.Non-Preemption :
∀ ν, ω ∈ O, (ν, ω) ∈ A : S (ν) + p(ν) 6 S (ω)

3.Mutual-Exclusion :
∀ ν, ω ∈ O, ν 6= ω,M (ν) = M (ω) :
S (ν) + p(ν) 6 S (ω) or S (ω) + p(ω) 6 S (ν).

The problem is to find an optimal schedule, i.e., a feasible schedule of minimum
processing time.



Definition 6. (Feasible Schedules for Preemptive Job-Shop Problem) Let T (O, i) ∈
N be processing time of the ith step at which operation O executes. A schedule is
a relation S ⊆ O×N×T so that (ν, st, t) ∈ S indicates that operation ν starts
to process on time st and processes for time t. A schedule S is feasible if

1.Ordering :
∀ ν, ω ∈ O, (ν, ω) ∈ A,
(ν, st , t) ∈ S , (ω, st ′, t ′) ∈ S : st + t 6 st ′ + t ′

2.Covering :
∀ ν ∈ O :

∑
(ν,st,t)∈S t = p(ν)

3.Mutual-Exclusion :
∀ ν, ω ∈ O, ν 6= ω, (ν, st , t) ∈ S , (ω, st ′, t ′) ∈ S ,
M (ν) = M (ω) : st + t 6 st ′ or st ′ + t ′ 6 st .

Consider M={m1,m2} and two jobs J 1 = (m2, 4) and J 2 = (m1, 3), (m2, 4), (m3, 6).
The schedules S1, S2 and S3 are depicted in Figure 3. The length of S2 13 is the
optimal schedule for a deterministic problem while S3 which is 11 is the optimal
schedule for a preemptive problem.
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Fig. 3. The Gantt-Chart representations of three schedules

6.2 Modeling in Timed Planning

Deterministic Job-shop Scheduling Problem

Definition 7. (Timed Planning for a Job) Let J i = 〈o1, ..., on〉 be a job, which
is a chain of operations (ordered) on a set of machine M. Its associated process
presentation Pi is

Pi =̂ m1
p(o1)
→ m2

p(o2)
→ ...mk

p(ok )
→ Skip

where event mj in Pi denotes operation oj of job J i starts to process on machine
mj where mj = M(oj ). p(oj ) is the processing time required for oj on mj . Hence



the delay process mj

p(oj )
→ mj+1

p(oj+1)
→ ... denotes that oj must process at machine

mj for p(oj ) time units; then oj+1 can start to process which do not need to start
immediately.

Definition 8. (Mutual Exclusion Constraints) Let J = {J 1, ..., Jn} be a job-
shop specification and P = {P1, ...,Pn} be a set of timed planning processes
defined for each job.

mutual-exclusion(P) =̂

∀Pi ,Pj ∈ P , i 6= j ,∀m ∈
∑

Pi ∪
∑

Pj •

m
ti→ P ′

i 4 Pi ∧ m
tj
→ P ′

j 4 Pj ⇒

Pi .m.Engage + ti 6 Pj .m.Engage ∨

Pj .m.Engage + tj 6 Pj .m.Engage

Definition 9. (Timed Planning for Job-Shop specifications) Let J = {J 1, ..., Jn}
be a job-shop specification and P = {P1, ...,Pn} be a set of timed planning pro-
cesses defined for each job. The timed planning presentation for the job-shop
specification J will be an interleaving of all processes Pi with the non-delay and
mutual exclusion constraints:

JSSP =̂ |||0<i6n Pi Where mutual-exclusion(JSSP)

For every complete execution of JSSP (which terminates), its associated sched-
ule S is a feasible schedule. An optimal schedule is a trace of JSSP with the
minimum ending time min(JSSP .End).

Preemptive Job-shop Scheduling Problem

Definition 10. (Timed Planning for a Preemptive Job) Let J i = 〈o1, ..., on〉 be
a job, which is a chain of operations (ordered) on a set of machine M. Each
operation oi should process on machine mj for p(oi) time unit. Its associated
process presentation for oi is:

Oi =̂ µ X • ms → me → Skip; X 2 Skip

Where
∑

me .Engage − ms .Engage 6 p(oi) ∧∑
me .Engage-me .Engage = p(oi) ⇔ End < ∞

Event ms denotes operation oi starts to process on its corresponding machine
m, me denotes it leaves m. Expression

∑
me .Engage−ms .Engage represents

the total time oi processes on m.
The associated process presentation Pi for each job is

Pi =̂ Oi1 ; Oi2 ; ...; Oik

Definition 11. (Mutual Exclusion Constraints) Let J = {J 1, ..., Jn} be a job-
shop specification and P = {P1, ...,Pn} be a set of timed planning processes
defined for each job.



mutual-exclusion(P) =̂

∀Pi ,Pj ∈ P , i 6= j ,∀{ms ,me} ⊆
∑

Pi ∩
∑

Pj •

(µX • ms → me → ... 4 Pi ∧

µX • ms → me → ... 4 Pj ) ⇒

Pi .me .Engage 6 Pj .ms .Engage ∨

Pj .me .Engage 6 Pi .ms .Engage

Definition 12. (Timed Planning for Preemptive Job-Shop specifications) Let
J = {J 1, ..., Jn} be a job-shop specification and P = {P1, ...,Pn} be a set of
timed planning processes defined for each job. The timed planning presentation
for the preemptive job-shop specification J will be an interleaving of all processes
Pi with mutual exclusion constraints:

PJSSP =̂ |||0<i6n Pi

Where mutual-exclusion(PJSSP)

6.3 Extended Job-shop Scheduling

Since Timed Planning is very flexible to specify system behaviors, with opera-
tional behaviors and critical timing constraints, those extended job shop schedul-
ing problems with several additional features that are often specified in task
scheduling problems can be easily and naturally modeled and solved using Timed
Planning. In this project, we mainly focus on the compositional behaviors and
the deadline and relative times extension. To our knowledge no other approaches
are capable for those extensions.

Compositional Job Behaviors In traditional job-shop scheduling problems,
all jobs are executed synchronously, which means that they are enabled at the
same time. In our approach, jobs can be constructed in a more general way, for
example, we can specify choices of jobs, sequences of jobs and interruption of one
job by another job, by using the composition operators of Timed Planning. For
example, a job-shop scheduling problem consists of 4 jobs J = {J 1, J 2, J 3, J4},
where either J 1 or J 2 is running concurrently with J 3 which is interrupted by
J 4 in 10 time units after execution. This scheduling problem can be specified as
follows:

JSSP =̂ (P1 2 P2) ||| (P3 ▽{10} P4)

Where mutual-exclusion(JSSP) ∧ non-delay

In our interpretation, jobs can communicate with each other through channels.
A job P1 can activate another job P2 after some time t or after P1 finishes its
first ith operations. A job can also stop a job for some time units.

An extended job-shop scheduling problem consists of 2 jobs J 1, J 2, J 1 =
(1, 2), (0, 3), (2, 5), J 2 = (2, 3), (0, 3), (1, 3). J 1 will activate J 2 after J 1 finishes
its first operation. The Timed Planning model of this problem is specified as
follows where a channel naming c is used to fulfill this purpose.



P1 =̂ 1
2
→ c!activate → 0

3
→ 2

5
→ Skip

P2 =̂ c?activate → 2
3
→ 0

3
→ 1

3
→ Skip

JSSP =̂ P1 ||| P2

Where mutual-exclusion(JSSP) ∧ non-delay

Deadlines and Relative Timing Constraints Another extension of job-
shop scheduling problem is that we can specify the deadline, relative timing
constraints of each job. Those constraints can be naturally handled in Timed
Planning by using its Where predicate. We formulate the constraints into 3
rules as follows:

Rule 1 Every operation oi must be imperatively terminate before time d(oi)
∀ oi ∈ O • S (oi) + p(oi) 6 d(oi)

Rule 2 Every jobJ imust be terminate before time d(J i)
∀ J i ∈ J • J i .End 6 d(J i)

Rule 3 Relative timing constraints between operations
∃ oi , oj ∈ O • p(oi) ⊙ p(oj ) < t ,⊙ ∈ {+,−}

6.4 Experiments

We test ten problems among the bench marks of the job-shop scheduling prob-
lems on Windows XP with a 2.0 GHz Intel CPU and 1 GB memory. In Table 2
we compare our best result on the problems with the result reported in Table 15
of the survey paper [17], as well as the best result among randomly generated
solutions for each problem.

7 Case Study: Timed Reminding System

Timed Reminding System is a specific application of the Timed Planning speci-
fication, where some features cannot be fully modeled using purely Timed CSP
specification. For example, reminds the elderly to take medication at least 30
minutes after each meal, but cannot take more than once within 6 hours.

In this work, we provide a template of modeling timed reminders. Firstly, we
classify reminders into four different types each of which has different models
and parameters.

1. Timed-based Prompting
– Timed fixed prompting services
– Timed related prompting services (can be delayed within certain time)

2. Event-based Prompting
– Event urgent prompting services: triggered by events and need to be

prompt immediately.
– Event related prompting services: triggered by events, but can be delayed

up to an acceptable delay time, or must be delayed after an min delay
time.



Problem Timed Planning Random Opt

name ♯j ♯m time(s) length deviation length deviation length

FT10 10 10 18 1001 7.63% 1761 89.35% 930
LA02 5 10 2 720 9.90% 1056 61.68% 655
LA19 10 10 0.2 902 7.12 % 1612 91.45% 842
LA21 15 10 102 1104 5.54% 2339 123.61% 1046
LA24 15 10 66 1007 7.58% 2100 124.00% 936
LA25 15 10 19 1098 12.38% 2209 126.10% 977
LA27 20 10 25 1441 16.68% 2809 127.45% 1235
LA29 20 10 112 1357 17.79% 2713 135.50% 1152
LA36 15 15 35 1341 5.57% 2967 133.90% 1268
LA37 15 15 56 1489 6.58% 3188 128.20% 1397

Table 2. The result for the ten hard bench marks deterministic job-shop scheduling
problems. The first three columns give the problem name, no. of jobs and no. of ma-
chines. Out results (time in seconds, length of the best schedule and the deviation) ap-
pears next. The following two columns shows the best out of 2000 randomly-generated
solutions, followed by the optimal result of each problem

7.1 Modeling and Specification

In this reminding system, locations of the participant are modeled as global
variables which can be of type boolean, integer, string or tuple. We abstract
the changes of the variables which should be updated by the environment. The
activities of the participant, which should be detected by some sensing system,
are modeled as events , such as getup, leaving , take medication, pick phone and
etc.

Timed fixed reminders (TFR) Timed fixed reminders: The prompting is
issued strongly at defined time so that the subject understands the urgency of
executing certain activity. e.g.,

– get up at 7 a.m.
– catch flight at 11:30 a.m.
– go to attend lecture/meeting/seminar at 2p.m.

Timed fixed reminders can be modeled as processes whose starting time and
prompting time must be exactly as the required time.

TFR(t) =̂ [guard ]prompt → Skip

Where calendar time(c,Start).time = st ∧
prompt .Engage = Start

Example 4. The reminder which wakes up the elder at 7 a.m. would be:

wake up((7, 0, 0)) =̂ [athome ∧ sleeping ]prompt → Skip

Where calendar time(c,Start).time = (7, 0, 0) ∧
prompt .Engage = Start



Timed related reminders (TRR) Timed related reminders: prompting is
related to a time, but can be delayed within an acceptable time. e.g.,

– Start to cook dinner between 5 p.m and 5:30 p.m.
– Start to preparing tutorials/lectures at 3p.m.

At a specific time t , this reminder is enabled, but it do not need to prompt
immediately if there are other reminders prompting. It need to be prompted
within a acceptable delay d

TRR =̂ [guard ]prompt → Skip

Where calendar time(c,Start) > st ∧
calendar time(c, promp.Engage) 6 st + dt

Example 5. Remind the elderly to start preparing his dinner at around 5:30 p.m.
to 5:30 p.m. every day if he/she is at home.

prep dinner((17, 0, 0), (17, 30, 0)) =̂ [athome ∧ ¬sleeping ]prompt → Skip

Where calendar time(c,Start).time > (17, 0, 0)
∧ prompt .Engage 6 (17, 30, 0)

Event urgent reminders (EUR) Event urgent reminders: reminders trig-
gered by event, which must be prompt as soon as the event is engaged.

– turnoff the stove after cooking
– bring the key while going out

Event urgent reminders can be modeled as processes whose first event is the
triggering event.

EUR =̂ trigger event → [guard ]prompt → Skip

Where trigger event .Engage = prompt .Engage

Example 6. Remind the elderly to turnoff the stove after he finishes cooking.

turnoff stove =̂ cooking end → prompt → Skip

Where cooking end .Engage = prompt .Engage

Event related reminders (ERR) Event related reminders: prompting is trig-
gered by an event, but can be delayed within a accepted time, or must be delayed
after a certain time. e.g.,

– wash hands after toilet within 3 minutes.
– take medication after 30 minutes of lunch.

ERR =̂ trigger event
mdt
→ [guard ]prompt → Skip

Where prompt .Engage 6 trigger event .Engage + dt

Example 7. Remind the elderly to wash hand after he finishes the toilet in 3
minutes.

Wash hand =̂ finish toilet → prompt → Skip

Where prompt .Engage 6 finish toilet .Engage + 3minute



Daily/ Weekly reminders The reminders that will prompt at a specific time
every day, or every week with some conditions. For example, the wake up re-
minder which will prompt 8a.m. every weekdays. The attending lecture reminder
which will prompt every 10a.m. every Monday if not public holidays.

Then we need other techniques (rules) to identify that whether today is
weekdays or weekends or public holidays. We have two alternative options:

– get the information of whether today is weekdays or weekends from the
environment by channels and abstract the details

– Maybe can use Calendar Logic to calculate those information in our system.
In my opinion, Ontology can be a good candidate for modeling Calendar
Logic.

Daily promoting services: prompt at time t everyday.

Daily Reminder =̂ Reminder ; Wait 1day ; Daily Reminder
Where calendar time(c,Reminder .Start).time = t

Daily promoting services: prompt at time t everyday, except Saturday and Sun-
day

Daily Reminder =̂ Reminder ; Wait 1day ; Daily Reminder
Where 1 6 calendar time(c,Reminder .Start).week 6 5

∧ calendar time(c,Reminder .Start).time = t

7.2 Priorities

In the Timed Reminding System, reminders have different priorities. Whenever
more than one reminders are enabled at the same time, the one with the highest
priority will be triggered and the others will be suspended.

In our settings, we introduce a new variable e.Pri which records the priority
value of event e. Whenever more than one event are enabled, if the priorities
of all events are precisely specified, then the one with the highest priority is
engaged. If only some of the events have priority, then all unspecified events and
the one with the highest priority can be engaged.

We define both operational and denotational semantics of the priority.

7.3 Elderly Reminding System

The Elderly Reminding System is an instance of the Timed Planning System,
which helps the dementias doing daily activities such as take medication at the
right time, remind them prepare lunch, turn off stove after cooking and etc.

In this system, we consider the following reminders:

– wake up reminder (Timed fixed reminder)
– brush teeth (Timed related reminder)
– meal preparation (Timed related reminder)



– making phone calls (Timed related reminder)
– appointment (Timed related reminder)
– turn off stoves (Event urgent reminder)
– taking medication (Timed related reminder)
– bring keys while going out (Event urgent reminder)
– wash hands after toilet (Event related reminder)

Assumptions: the time stamp 00:00 a.m. is set to be 0. Hence 1:00 a.m. is
60, 2:00 a.m. is 120, and so on.

We need to define a set of global variables to keep the status of the elderly.

athome : boolean
sleep : boolean
goingout : boolean
bringkey : boolean
washhand : boolean

Wake up reminder Wake up the elderly at 7:00 a.m.

Wakeup =̂ [athome ∧ sleeping ]prompt wakeup → Skip

Where Start = calender time(c,Start) = (7, 0, 0)
∧ prompt wakeup = Start

Watch TV Reminders the elderly to watch his favorite TV program at 10 am,
which is timed fixed reminder.

TV =̂ [athome]prompt tv →
Where calender time(c,Start) = (10, 0, 0) ∧ prompt tv .Engage = Start

Bring key Remind the elderly to bring his keys while going out, which is an
event urgent reminder.
channel:{bring key} is a sensor detecting whether the elderly brings his keys or
not.
channel :{goingout}

Key =̂ goingout?yes → ([¬bringkey ]prompt bringkey → Skip 2

[bringkey ]Skip)
Where prompt bringkey .Engage = goingout?yes .Engage

Wash hands Remind the elderly to wash hands after toilet, if the elderly does
not wash his hand in one minute. It is an event related reminder.
chanel:{toilet, wash hands}

WashHands =̂ toilet?finish → (wash hand?yes → Skip ▽{1} prompt washhand → Skip)
Where prompt washhand .Engage − toilet?finish.Engage 6 5



Prepare Breakfast Remind the elderly to start preparing his breakfast at
around 8:30 a.m. to 9:00 a.m. every day if he/she is at home.

PrepareBreakfast =̂ [athome ∧ ¬sleep](prompt breakfast
45minute→ Skip)

Where calender time(c,Start) = (8, 30, 0) ∧
prompt breakfast .Engage 6 Start + 30

Medication Planner Basic system requirements: [20]

1. Never prompt outside the window: within a certain time interval: [st, st+dt]
2. Don’t prompt if pill is already taken within the current window
3. Don’t prompt if the participant is not at home: athome=true
4. Don’t prompt if the participant is sleeping
5. Don’t prompt if participant is on the phone
6. Prompting will resume if the participant returns home before the window

expires
7. Prompt at plan 2 if participant is leaving
8. Wait till the time the user usually takes the pill. If it is earlier than the

recommended pill taking time, start checking for plan 1 prompting oppor-
tunities at the usual pill time.

9. If only less than 20 minutes left till the window expires, start prompting at
plan 1 disregarding all other rules (except 1-3)

Two kinds of prompting:

Plan 1 Prompt using the nearest device. The chime is played 10 seconds each
time and lights stay on till location changes. Stop if pill is taken. Escalate
to Plan 2 after 10 minutes.

Plan 2 Prompt using all prompting devices in the house every minute. Lights
on devices stay on and chime is played for 10 seconds every minute.

Plan1 =̂ prompt
10
→ Skip; Wait(10minute); Plan2 ▽ taken?yes → Skip

Plan2 =̂ prompt
10
→ Skip; Wait(1minute); Plan2 ▽ taken?yes → Skip

Medi =̂ ( [athome ∧ ¬taken ∧ ¬onThePhone ∧ ¬sleeping ]Plan1 – rule 2 - 6
2 leaving?yes → Plan2) – rule 7
▽{dt − 20minute} Plan2 – rule 8
Where calendar time(c,Start) > st ∧

calendar time(c, promp.Engage) 6 st + dt – rule 1

For rule 6 :Prompting will resume if the participant returns home before the
window expires.
Our modeling is able to reserve this requirement in a more clever way. Once the
participant returns home, the boolean variable athome will be changed to true,
hence this process is able to be executed. So this model satisfies a more general
requirement:

– Prompting will resume if the participant returns home or wakes up or finishes
phone call before the window expires.



8 Conclusion

In this project, we formulated a more complicated scheduling problem, which
we call Timed Planning. We have extended the Timed CSP with capabilities
for stating planning related requirements in a compositional way. The Timed
Planning has more expressive power than Timed Automata, for example it has
the capability of keeping timed event set during execution and applying some
operations on the set. Due to the expressiveness of CLP, it can express the
syntax and semantics of Timed Planning fully. A mechanized proving system,
based on CLP(R), has been developed to check the schedulability of a set of
tasks and various safety and liveness properties can also be verified over sys-
tems modeled in Timed Planning. We studied the Japanese Navy plans for the
Pearl Harbor Attack. According to the historical documents, we modeled the
attack plan on December 7, 1941. We also applied Timed Planning to solve the
job-shop scheduling problems which can be naturally modeled as Timed Plan-
ning processes. We also worked with the extended job-shop scheduling problems,
where all jobs have composition operational behaviors. Besides, jobs with dead-
line and relative timing constrains are also able to be captured in our approach.
We believe that the insight gained from this point of view will contribute both
to scheduling and to the study of timed planning. We have demonstrated that
the performance of the timed planning approach of solving job-shop scheduling
problem can be highly improved by applying a set of optimizations. There are
still many potential improvements to be explored to reduce the execution time,
such as new partial-order methods and heuristics, etc.
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Appendix A: Operational Semantics of Timed Planning

Stop

〈Stop, t ,W ,Tss〉
d
 〈Stop, t + d , W ,Tss〉

Event Prefix: a → Q

Tss ∪ {(a.Engagei , t)} |= W
[ Tes ↓ a = i − 1 ]

〈a → Q , t , W ,Tss〉
a
→ 〈Q , t , W , Tss ∪ {(a.Engagei , t)}〉



〈a → Q , t , W ,Tss〉
a
 〈Q , t + d , W ,Tss〉

Skip

Tss ∪ {(X.Engage, t)} |= W

〈Skip, t ,W ,Tss〉
X
→ 〈Stop, t ,W ,Tss ∪ {(End , t)}〉

〈Skip, t ,W ,Tss〉
d
 〈Skip, t + d , W , Tss〉

Timeout: Q1 ⊲{d} Q2

Tss ∪ {(a.Engagei , t)} |= W Q1
a
→ Q ′

1
[ Tes ↓ a = i − 1 ]

〈Q1 ⊲{d} Q2, t ,W ,Tss〉
a
→ 〈Q ′

1, t ,W ,Tss ∪ {(a.Engagei , t)}〉

Q1
τ

→ Q ′

1

〈Q1 ⊲{d} Q2, t ,W ,Tss〉
τ

→ 〈Q ′

1 ⊲{d} Q2, t , W , Tss〉

〈Q1 ⊲{0} Q2, t ,W ,Tss〉
τ

→ 〈Q2, t ,W ,Tss〉

Q1
d′

 Q ′

1

〈Q1 ⊲{0} Q2, t ,W ,Tss〉
d′

 〈Q ′

1 ⊲{d − d ′} Q2, t + d ′,W ,Tss〉

External Choice: Q1 2 Q2

Tss ∪ {a.Engagei , t} |= W Q1
a
→ Q ′

1
[ Tes ↓ a = i − 1 ]

〈Q1 2 Q2, t , W , Tss〉
a
→ 〈Q ′

1 2 Q2, t ,W ,Tss ∪ {(a.Engagei , t)}〉

Tss ∪ {a.Engagei , t} |= W Q2
a
→ Q ′

2
[ Tes ↓ a = i − 1 ]

〈Q1 2 Q2, t , W , Tss〉
a
→ 〈Q1 2 Q ′

2, t ,W ,Tss ∪ {(a.Engagei , t)}〉

Q1
τ

→ Q ′

1

〈Q1 2 Q2, t , W , Tss〉
τ

→ 〈Q ′

1 2 Q2, t ,W ,Tss〉

Q2
τ

→ Q ′

2

〈Q1 2 Q2, t , W , Tss〉
τ

→ 〈Q1 2 Q ′

2, t ,W ,Tss〉

Q1
d
 Q ′

1 Q2
d
 Q ′

2

〈Q1 2 Q2, t , W , Tss〉
d
 〈Q ′

1 2 Q ′

2, t + d , W ,Tss〉



Parallel: Q1 X ||Y Q2

Tss ∪ {(e.Engagei , t)} |= W Q1
e
→ Q ′

1
[ e ∈ X ∪ {τ} \ Y ,Tes ↓ e = i − 1 ]

〈Q1 X ||Y Q2, t ,W ,Tss〉
e
→

〈Q ′

1 X ||Y Q2, t ,W ,Tss ∪ {(e.Engagei , t)}〉

Tss ∪ {(e.Engagei , t)} |= W Q2
e
→ Q ′

2
[ e ∈ Y ∪ {τ} \ X ,Tes ↓ e = i − 1 ]

〈Q1 X ||Y Q2, t ,W ,Tss〉
e
→

〈Q1 X ||Y Q ′

2, t ,W ,Tss ∪ {(e.Engagei , t)}〉

Tss ∪ {(e.Engagei , t)} |= W Q1
e
→ Q ′

1 Q2
e
→ Q ′

2
[ e ∈ X ∩ Y , Tes ↓ e = i − 1 ]

〈Q1 X ||Y Q2, t ,W ,Tss〉
e
→

〈Q ′

1 X ||Y Q ′

2, t ,W ,Tss ∪ {(e.Engagei , t)}〉

Tss ∪ {(X.Engage, t)} |= W Q1
X
→ Q ′

1 Q2
X
→ Q ′

2

〈Q1 X ||Y Q2, t ,W ,Tss〉
X
→ 〈Q ′

1 X ||Y Q ′

2, t ,W ,Tss ∪ {(End, t)}〉

Q1
d
 Q ′

1 Q2
d
 Q ′

2

〈Q1 X ||Y Q2, t ,W ,Tss〉
d
 〈Q ′

1 X ||Y Q ′

2, t + d , W , Tss〉

Interleaving: Q1 ||| Q2

Tss ∪ {(e.Engagei , t)} |= W Q1
e
→ Q ′

1
[ Tes ↓ e = i − 1 ]

〈Q1 ||| Q2, t ,W ,Tss〉
e
→

〈Q ′

1 ||| Q2, t ,W ,Tss ∪ {(e.Engagei , t)}〉

Tss ∪ {(e.Engagei , t)} |= W Q2
e
→ Q ′

2
[ Tes ↓ e = i − 1 ]

〈Q1 ||| Q2, t ,W ,Tss〉
e
→

〈Q1 ||| Q ′

2, t ,W ,Tss ∪ {(e.Engagei , t)}〉

Tss ∪ {(X.Engage, t)} |= W Q1
X
→ Q ′

1 Q2
X
→ Q ′

2

〈Q1 ||| Q2, t ,W ,Tss〉
X
→ 〈Q ′

1 ||| Q ′

2, t ,W ,Tss ∪ {(End, t)}〉

Q1
d
 Q ′

1 Q2
d
 Q ′

2

〈Q1 ||| Q2, t ,W ,Tss〉
d
 〈Q ′

1 ||| Q ′

2, t + d , W , Tss〉



Appendix B: Healthiness Conditions for Timed Planning

Implicit predicates for most of the process operators are defined as follows, where P
denotes process, e denotes event, X and Y are set of events.

Event Prefix: an → P

∀ a → P • an .Engage 6 P .Start

Sequence: P1; P2

∀P1; P2 • P1.End 6 P2.Start

Choice: P12P2

∀P1 ||| P2 • P1.Start = P2.Start ∧ P1.End = P2.End

Timeout: P1 ⊲ {d} P2

∀P1 ⊲ {d} P2 • init{P1}.Engage <= d ∨ P2.Start = d

Interleaving: P1 ||| P2

∀P1 ||| P2 • P1.Start = P2.Start ∧ P1.End = P2.End

Interrupt: P1 ▽ P2

∀P1 ▽ P2 • P1.Start 6 P2.Start

Timed Interrupt: P1 ▽ dP2

∀P1 ▽{d} P2 • P1.Start + d 6 P2.Start

Parallel: P1 X ||Y P2

∀P1 X ||Y P2,∀ a ∈ X ∩ Y • P1.Start = P2.Start ∧

P1.End = P2.End ∧ P1.a.Engage = P2.a.Engage


