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Calculation of Entropy and Mutual Information for Sinusoids

Joseph V. Michalowicz1, Jonathan M. Nichols2,?, and Frank Bucholtz2
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D.C. 20375 (Permanent Address: SFA,

Inc., Crofton, MD 21114)
2 U. S. Naval Research Laboratory,

Optical Sciences Division, Washington, D.C. 20375

I. EXECUTIVE SUMMARY

In this work, an analytical expression is developed for the differential entropy of a sinusoid. The mutual information
between two sinusoids with different amplitudes and phase is then derived using both continuous and discrete entropies.

II. INTRODUCTION

One of the fundamental questions in information theory is the maximum level of data compression. Shannon [1]
provided the answer to this question by demonstrating that random processes have an irreducible complexity beyond
which no compression is possible. This quantity is called the entropy of the random process, and this concept is
currently of great interest in communication theory studies.

The concept of entropy is discussed in several books (see e.g. [2, 3]). Usually its formulation is first given for
discrete random variables; that is, if X is a discrete random variable with values {x1, x2, · · · , xm, · · · } and probability
density p(X) defined by p(xm) = Prob{X = xm}, the entropy is expressed as

H(X) = −
∑
m

p(xm) log[p(xm)].

This log is usually taken to be log2 and then the entropy is given in units of bits. If the log is taken in the base e,
then the entropy is written as He(X) and is given in units of “nats”. This (discrete) entropy has many interesting
properties, one of which is that it is non-negative; it provides a way to quantify the information content of a probability
distribution.

This concept is extended to the case of a continuous random variable, and is then called the differential entropy.
For a continuous random variable X with probability density function p(x), the differential entropy is given by:

h(X) = −
∫
S

p(x) log[p(x)]dx

where S = {x|p(x) > 0} is the support set of X. Again log usually means log2. If the log is taken to the base e,
the notation he(X) is utilized. Many properties of (discrete)entropy carry over to differential entropy; however, the
differential entropy may take on negative as well as positive values. The differences between discrete and continuous
entropy are discussed in [4] where, in fact, an alternative measure of information content is proposed.

In [2] tables of differential entropies are given for various probability distributions. However, in signal detection
research the prototypical case is the detection of a sinusoidal signal in background noise. For example, suppose the
signal is written as:

y = A sin(θ).

where θ is uniformly distributed on [−π, π] (A similar discussion applies if y = A sin(ωθ) or y = A sin(θ + φ)), where
ω and φ are constants. Restricting θ to the interval [−π

2 , π
2 ] on which y monotonically increases through its range of
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FIG. 1: Probability Density Function of a Sine Wave

values permits the use of the transformation of variables technique to calculate the probability density function of y

p(y) =
1
π

|dy
dθ |

=
1
π

Acos(θ)

=
1

π
√

A2 − y2
−A < y < A (1)

as depicted in Figure 1 This probability distribution has zero mean with variance σ2 = A2/2.
The sine wave differential entropy is important for signal detection applications and does not appear in the literature.

Its computation proceeds as follows:

he(y) = −
A∫

−A

p(y) ln[p(y)]dy

= −
A∫

−A

1

π
√

A2 − y2
ln[

1

π
√

A2 − y2
]dy

=
2
π

A∫
0

1√
A2 − y2

ln[π
√

A2 − y2]dy. (2)

Making the change of variables: w =
√

A2−y2

A , dw = −y

A
√

A2−y2
dy, and y = A

√
1− w2 leads to

he(y) =
2
π

1∫
0

ln[πAw]
dw√

1− w2

=
2
π

1∫
0

ln(w)dw√
1− w2

+
2
π

ln[πA]

1∫
0

dw√
1− w2

=
2
π

(−π

2
ln[2]) +

2
π

ln[πA] sin−1(w)|10 (3)

where the first integral is given in [5] (formula 4.241(7)). The differential entropy for a sine wave is therefore

he(y) = − ln[2] + ln[πA]

= ln[
πA

2
] (4)
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or in bits

h(y) = log2[e]he(y)

=
1

ln[2]
ln[

πA

2
]

= log2[
πA

2
]. (5)

Note that h(y) can be positive or negative, depending on the value of A.
Due to the ubiquity of analog-to-digital converters for transforming physical measurements into digital format, it

is instructive to also examine the discrete entropy of the sine wave. For this purpose we construct a new discrete
variable yQ as follows:

The random variable y = A sin(θ) ranges between −A and A; so we cover the interval [−A,A] with 2N + 1 bins,
each of width Q = 2A

2N = A
2N−1 . One bin is centered about 0, then there are 1/2(2N ) bins for positive values with

the last one centered about +A and 1/2(2N ) bins for negative values with the last one centered about −A. Then we
define yQ to be the value at the center of each bin; that is:

yQ =
{

i
A

2N−1
= iQ for iQ−Q/2 < y ≤ iQ + Q/2 (6)

for i = −2N−1, · · · ,−2,−1, 0, 1, 2, · · · , 2N−1. We now define the probability distribution for yQ so that the probability
of each value of yQ is the same as the integral of the probability density function of the continuous random variable
y over that bin. Let Pi = Prob {yQ = iQ}. Then for |i| < 2N−1,

Pi =
∫ iQ+Q/2

iQ−Q/2

1

π
√

A2 − y2
dy

=
1
π

sin−1(y/A)|iQ+Q/2
iQ−Q/2

=
1
π

[
sin−1(

i + 1/2
2N−1

)− sin−1(
i− 1/2
2N−1

)
]
. (7)

At the extreme bins, i.e. for |i| = 2N−1,

Pi =
∫ A

A−Q/2

1

π
√

A2 − y2
dy

=
1
π

sin−1(y/A)|AA−Q/2

=
1
π

[π

2
− sin−1(1− 1

2N
)
]
. (8)

Note the symmetry; that is, for i 6= 0, Pi = P−i. Now the (discrete) entropy for the discrete random variable yQ is
given by

H(yQ) = −
2N−1∑

i=−2N−1

Pi log2[Pi]

= −[Po log2[Po] + 2
2N−1∑
i=1

Pi log2[Pi]]. (9)

To provide an example of this formula, calculations were made with the parameters of a typical analog-to-digital
(A/D) converter. The device is an N -bit digitizer; 2N bins over the full range from -1 to +1. So the bin width Q is
1/(2N−1). In this case, A = 0.99 represents the A/D converter full scale in order to avoid truncation at the extreme
values. Table I shows the results calculated from Eqn. (9) for various values of N .

But the relationship between the discrete entropy H(yQ) and the differential entropy h(y) is given in [2] as:

H(yQ) + log2[Q] → h(y) as Q → 0.
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TABLE I: Theoretical and Estimated Discrete Entropies for Varying Discretizations

N Discrete Entropy H(yQ) (N − 1) + h(y)

2 1.96 1.637
4 3.86 3.637
6 5.81 5.637
8 7.73 7.637
10 9.66 9.637
12 11.65 11.637
14 13.65 13.637
16 15.64 15.637

TABLE II: Convergence of the discrete entropy to the differential entropy plus N − 1

In our case, Q = 1/(2N−1), so

H(yQ) → (N − 1) + h(y) as N →∞. (10)

From Eqn. (5), when A = 0.99, h(y) = 0.637. The right-hand column of Table I gives for comparison the values
(N − 1) + 0.637, and the expected convergence is clearly shown. For a typical A/D converter, N would range from 8
to 16.

In this paper we wish to calculate the mutual information between two sinusoids. Again, specific examples of the
computation of mutual information for continuous probability distributions do not appear in textbooks. Even for the
Gaussian case [2] does not specifically express the mutual information between two Gaussian distributions, although
all the necessary terms are given. The following formulas are all taken from [2] for normal variables X ∈ N(µx, σx),
Y ∈ N(µy, σy):

h(X) =
1
2

log2[2πeσ2
x]

h(Y ) =
1
2

log2[2πeσ2
y]

h(X, Y ) =
1
2

log2[(2πe)2|K|]

=
1
2

log2[(2πe)2(σ2
xσ2

y − (E[(X − µx)(Y − µy)])2)] (11)

where |K| is the covariance matrix. Therefore, we can express the mutual information between X and Y as

I(X, Y ) = h(X) + h(Y )− h(X, Y )

=
1
2

log2[σ
2
xσ2

y]− 1
2

log2[σ
2
xσ2

y − (E[X − µx](Y − µy)])2]

=
1
2

log2[σ
2
xσ2

y]− 1
2

log2[(1− ρ2)σ2
xσ2

y]

= −1
2

log2[(1− ρ2)] (12)

where ρ is the correlation coefficient. This formula has been given explicitly so that we can draw attention to the two
extreme special cases:

Case 1: X and Y are independent
ρ = 0
I(X;Y ) = 0

Case 2: X and Y are linearly related so X and Y completely determine one another; that is, for any given X there
corresponds one value of Y (so X gives complete information about Y ) and vice-versa
ρ = ±1
I(X;Y ) = +∞
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FIG. 2: Determination of two angles for fixed values of X

Now consider the case of interest here, where

X = A sin(θ)Y = B sin(θ + φ)

are two sinusoids with θ uniformly distributed on [−π, π] and φ a fixed phase angle between 0 and 2π. In order
to compute the mutual information between X and Y , we first note that a fixed value of X corresponds to two
values of Y as depicted in Figure (2). Let w be a specific value of X. If 0 ≤ w ≤ A then θ1 = sin−1(w/A) and
θ2 = π − sin−1(w/A) and Y is equal to either B sin(θ1 + φ) or B sin(θ2 + φ). If −A ≤ w ≤ 0, then θ′1 = sin−1(w/A)
and θ′2 = −π − sin−1(w/A) and Y is equal to either B sin(θ′1 + φ) or B sin(θ′2 + φ). Hence the conditional probability
distribution p(Y |X = w) is a discrete distribution with only two possible values for the discrete conditional random
variable. Since the mutual information of two random variables is the difference between an entropy and a conditional
entropy, it can be computed in either of two ways; that is, in terms of differential entropies:

I (X, Y ) = h (Y )− h (Y |X)

or in terms of discretized versions:

I (X, Y ) = H (Y )−H (Y |X)

But the differential entropy of a discrete random variable must be −∞, for the volume of the support set in n-
dimensional space that contains most of the probabilities of the variable is 2hn. Since for a discrete random variable,
this volume is clearly zero, the entropy h must be −∞. Consequently,h (Y |X) = −∞ and I (X, Y ) = +∞. Compare
this result to the case of the two linearly-related Gaussians that also gave the mutual information to be +∞. In the
Gaussian case, fixing X determines a single value of Y . In the sinusoidal case, fixing X determines two values of Y ,
but reducing the possible values of Y from an infinite number to just two numbers still provides an ”infinite amount
of information” about Y .

So we have the result that we sought, but it is still informative to examine the discretized calculation of the mutual
information. For this, the (discrete) entropy H (Y |X) is to be computed for the discrete probability distribution
p (Y |X). For a fixed value w of X with 0 ≤ w ≤ A (the case for −A ≤ w ≤ 0 yields the very same formulas), the
variable Y has values

y′ = B sin
(
sin−1 (w/A) + φ

)
= B

[
w
A cos φ + cos

(
sin−1

(
w
A

))
sinφ

]
= B

[
w
A cos φ +

√
1−

(
w
A

)2 sinφ

]
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or

y′′ = B sin
(
π − sin−1

(
w
A

)
+ φ

)
= B

[
w
A cos φ + cos

(
π − sin−1

(
w
A

))
sinφ

]
= B

[
w
A cos φ−

√
1−

(
w
A

)2 sinφ

]
.

Now from the probability density function for Y , p(Y ), we have

p (y′) = 1

π
√

B2−(y′)2

= 1

πB

r
cos2 φ− 2w

A

q
1−(w

A )2
sin φ cos φ−(w

A )2
cos 2φ

and likewise

p (y′′) = 1

π
√

B2−(y′′)2

= 1

πB

r
cos2 φ+ 2w

A

q
1−(w

A )2
sin φ cos φ−(w

A )2
cos 2φ

.
Normalization then gives the marginal distribution P (Y |X = w) for each w to be a discrete distribution with just

two values of the variable, with probabilities pw = D1
D1)+D2

, where

D1 =

√
cos2 φ +

2w

A

√
1−

(w

A

)2

sinφ cos φ−
(w

A

)2

cos 2φ

and

D2 =

√
cos2 φ− 2w

A

√
1−

(w

A

)2

sinφ cos φ−
(w

A

)2

cos 2φ

and 1− pw. For each w, the discrete entropy is then given by

H (pw) = −pw log2(pw)− (1− pw) log2(1− pw)

and the conditional entropy becomes

H (Y |X) =
∫ A

−A

1
π
√

A2 − w2
H (pw) dw.

Let us call this number H ′′′. Since 0 ≤ H(pw) ≤ 1, it is clear that 0 ≤ H ′′′ ≤ 1.
Consequently, in terms of discretized entropies, where the bins covering the range of Y are of width Q = 1/2N−1,

I (X, Y ) = H (YQ)−H ′′′

→ (N − 1) + log2

(
πB
2

)
−H ′′′

→ +∞asN →∞

since log2

(
πB
2

)
and H ′′′ are finite.

III. CONCLUSIONS

This paper calculates the differential entropy for a sinusoid and compares it to its discrete version for various
discretizations. The mutual information between two sinusoids differing in phase is shown to be +∞.
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